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Abstract

This paper reports on our attempt to design an efficient exact algorithm based
on column generation for the cutting stock problem. The main focus of the research
is to study the extend to which standard branch-and-bound enhancement features
such as variable fixing, the tightening of the formulation with cutting planes, early
branching, and rounding heuristics can be usefully incorporated in a branch-and-
price algorithm. We review and compare lower bounds for the cutting stock problem.
We propose a pseudo-polynomial heuristic. We discuss the implementation of the
important features of the integer programming column generation algorithm and,
in particular, the implementation of the branching scheme. QOur computational
results demonstrate the efficiency of the resulting algorithm for various classes of

bin packing and cutting stock problems.
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Introduction

The efficiency of a branch-and-bound algorithm for an integer programming (IP) appli-
cation depends on the quality of bounds used, the design of the branching scheme, the
search priority, but also on enhancements such as variable fixing, the tightening of the for-
mulation with cutting planes, rounding heuristics, and the like. In search for an efficient
branch-and-price algorithm!, one would like to incorporate the features that have proved
helpful in standard branch-and-bound algorithms. However, most of these features are
not straightforwardly applicable in a column generation context. The difficulty arises from
the fact that there is a large number of variables to be considered and the working formu-
lation (the restricted master) contains only a subset of the variables while the others are
known implicitly through the solution of a column generation subproblem. Then, adding
a branching constraint or a cutting plane in the master, for instance, results in modifying
the definition of variable reduced costs and, hence, the structure of the column genera-

tion subproblem. Because of these modifications, the subproblem can become intractable.

In previous papers (Vanderbeck and Wolsey, 1996, and Vanderbeck, 1996), we have
shown how branching could be efficiently implemented in a branch-and-price algorithm
by introducing in the master, auxiliary variables that represent the number of selected
columns with a prescribed property and by forcing these auxiliary variables to their inte-
ger value. Adding cutting planes can be viewed in the same way. However, the scheme
efficiency depends on how easily one can recognise the prescribed column property that
defines the auxiliary variable when solving the column generation subproblem, i.e. on
the complexity of the resulting subproblem modifications. In this paper, we demonstrate
how such a scheme can be efficiently implemented in practice. We also consider adding
simple cuts in the master formulation. Moreover, we show that the standard techniques
of variable fixing and rounding heuristics can be used in a column generation context if

applied to these auxiliary variables.

The Cutting Stock Problem (CSP) has been chosen for these experimentations because
it is one of the simplest models well suited for branch-and-price. Consequently, one’s in-
tuition on algorithmic design and understanding of the effects of different algorithmic
features are not impaired by the complexity of the problem structure. We consider the
classical one-dimensional model with no side constraints. Then, the column generation
subproblem is an integer knapsack problem and the master problem is that of selecting a

minimum number of cutting patterns (solutions to the knapsack problem) that together

L A branch-and-price algorithm, also called an integer programming column generation algorithm, is a
procedure that uses a column generation algorithm at each node of a branch-and-bound tree.



satisfy demands for cut items. The Bin Packing Problem (BBP) can be seen as a special
case of CSP with unit demands. In this paper, we generalise some known results for BBP
to CSP. We also show that the lower bound provided by the LP relaxation of the column
generation formulation dominates the combinatorial bounds, L?, proposed by Martello

and Toth (1990) and we propose a pseudo-polynomial heuristic for the CSP.

The paper discuss in some details the elements of the branch-and-price algorithm that
have a significant influence on the overall efficiency. In particular, we compare different
initialisations of the column generation procedure; we consider criteria for early termina-
tion of the column generation procedure; we discuss early branching, variable fixing, and
the use of cutting planes; we say how we select appropriate branching priorities, and how
we implement a rounding heuristic. This study, we hope, will provide a useful reference for
those wishing to develop an efficient branch-and-price algorithm that incorporates some

of the above enhancement features.

Our algorithm solves cutting stock instances with 50 items, an average demand of 50,
a bin capacity of 10 000, and various sorts of item size distributions within 25 seconds
of CPU time on average (on an HP 712/80). The algorithm is also suitable and equally
efficient for bin packing problems (large bin packing instances with integer item size tend
to have several items of the same size which are better replaced by a single item with de-
mand equal to the number of duplicates). Standard test problems with 500 items, integer
item sizes from various uniform distribution, and a bin capacity less than 150 are solved

within 2.5 seconds.

Several exact algorithms for bin packing and cutting stock problems have appeared in
the literature. Martello and Toth (1990) summarise previous attempts at solving the bin
packing problem and propose a branch-and-bound algorithm based on combinatorial (a
priori) bounds and a “first-fit decreasing” branching strategy. Scholl et al. (1997) propose
further combinatorial bounds and heuristics that can allow to obtain provably optimum
solutions for instances that proved difficult for Martello and Toth’s algorithm. Vance et
al. (1994) propose a column generation based algorithm for bin packing, where columns
correspond to feasible bins. The branching strategy is based on enforcing either join or
separate assignment for item pairs. Valerio de Carvalho (1996) also uses a column gener-
ation based algorithm but the master is an arc flow formulation —the underlying network
is that of a dynamic programming solution of the knapsack problem— and branching is
on the arc flow variables. This approach is otherwise known as the variable redefinition

approach as introduced by Eppen and Martin (1987).



The cutting stock problem is notorious for the strength of its linear programming (LP)
lower bound. In practice, the round up of the master LP value is often the optimal IP
value (this is known as the integer round-up property, see Marcotte, 1985). Moreover,
the cutting stock problem has a “flat” objective function with many solutions of the same
cost. Consequently, an exact algorithm for the cutting stock problem is mostly a search
for one of the many feasible integer solutions whose cost is equal to the lower bound known
from the outset. For this problem, Goulimis (1990) obtains optimal solutions for small
instances by generating all feasible cutting patterns in advance and using a combination
of a cutting plane procedure (based on Gomory cuts) and a branch-and-bound algorithm.

Goulimis also solves problems with both lower and upper bounds on the item requirements.

Scheithauer and Terno (1995) find exact solutions to cutting stock problems using a
three stage procedure: they solve the continuous relaxation of the problem by column
generation, they round down the continuous solution to obtain a partial integer solution,
and they solve the residual problem (of finding cutting patterns to cover the remaining
demands) by branch-and-bound. Their solution proves to be optimal if the total number
of cutting patterns used in the partial integer solution and the residual problem is no
greater than the continuous lower bound rounded up. Their algorithm for the residual
problem is a branch-and-price algorithm where branching consists in fixing a specific cut-
ting pattern to zero or one. Then, in the column generation subproblem, they generate a
minimum reduced cost pattern from among those not set to zero (i.e. they compute the

n' best solution — see Barnhart et al. 1994).

Vance (1996) develops a branch-and-price algorithm for the cutting stock problem
based on generating maximal cutting patterns only (i.e. patterns that cannot accommo-
date an extra item) and branching on cutting patterns that are used fractionally. Then,
one can avoid regenerating patterns that have been bounded up by adjusting the item
upper bounds in the knapsack subproblem. The approach of Valerio de Carvalho (1996)
can also be used to solve cutting stock problems. However, the size of the underlying
network used by Valerio de Carvalho and hence the computational burden increases with
the bin capacity. In the branch-and-price algorithm used by Degraeve and Schrage (1998),
branching is performed by bounding pattern selection variables (master variables) up or
down. Then, patterns that have been bounded-up should not be considered in the col-
umn generation subproblem, hence one might have to compute the n'* best solution of

the subproblem.

Here, we use a branch-and-price algorithm that differs from that of Vance (1996) or
Degraeve and Schrage (1998) by its branching scheme. The branching scheme we use is



that of Vanderbeck (1996) —There, we did some comparative testing, showing that the
proposed branching scheme seems to lead to smaller branch-and-bound trees than the
branching scheme used by Vance (1996) or by Valerio de Carvalho (1996). Moreover, the
efficiency of our algorithm is enhanced by our use of cuts and the fixing of (auxiliary) vari-
ables. An essential ingredient of our algorithm is a rounding heuristic that concentrates
the computational effort on a reduced size formulation: it applies a depth-first-search
heuristic variant of our branch-and-price procedure to the residual problem that remains
after the rounded down LP solution has been used as a partial solution. In a sense, we

have rediscovered the idea on which Scheithauer and Terno (1995) based their algorithm.

The rest of this paper is organised as follows. We begin by comparing bounds for
the cutting stock: we prove the relative strength of the column generation bound using a
combinatorial argument. We also propose a pseudo-polynomial heuristic for the problem.
In Section 2, we present the branch-and-price algorithm and in particular the branching
scheme. We also discuss ways to tackle the modified subproblem. Section 3 is devoted to
the implementation of the branch-and-price algorithm. There, we review the important
ingredients of such algorithm (initialisation, early termination of the column generation
procedure, branching priorities, ...) and we discuss the enhancements outlined above
(cutting planes, variable fixing, early branching, and the rounding heuristic). In Section
4, we provide our test results showing what is the effect of various algorithmic settings

and we compare our computational results to previous studies.

1 Bin Packing and Cutting Stock Problems

The bin packing problem can be described as follows. Given a set of n items of weights (or
sizes) w; € IN for i = 1,...,n and a capacity W € IN, combine items into groups, called
bins, in such a way that the total item weight in each bin does not exceed the capacity W,
each item is assigned to one bin and the number of bins used is minimised. The cutting
stock problem is a generalisation where each item must be covered d; € IN times for
1 =1,...,n and a bin may contain multiple copies of the same item. The cutting stock
problem finds applications in the paper industry where demands (d;) for paper reels of
various width (w;) must be met by cutting so-called master reels (of width W). Then the
bins correspond to feasible cutting patterns and the objective is to satisfy the demands

using the minimum number of master reels.



1.1 Formulations

One way to formulate these problems is to introduce variables ¥ that represent the
number of items of size w; in bin k& and variables y* that take value one if bin % is used
and zero otherwise for £k = 1,..., K, where K is an upper bound on the number of bins

used in an optimum solution. Then, the formulation takes the form:

K
ZF = min Zyk
k=1

[F] s.t. (1)
K
Yoafb > a4 i=1,...,n (2)
k=1
Swiab < Wyt k=1,...,K
i=1
y* e {0,1} k=1,...,K

In the case of the bin packing problem, d; = 1 for ¢ = 1,...,n and zf € {0,1} for
1=1,....nand k=1,..., K.

Alternatively the problem can be formulated in terms of the variables associated with
the selection of feasible item combinations. Let () be the set of feasible combinations (or
feasible bin assignments), i.e. Q@ = {g € IN" : Yi-; w; ¢; < W}, and A\, be the number of
times combination ¢ € () is selected in the solution. Then, the formulation is an integer

program of the form:

ZM — min >N

qeq
[M] s.t. (3)
qeq
Ay € IN q € Q.

Formulation [M] was introduced by Gilmore and Gomory (1961). It involves a large

number of columns, one for each feasible combination of items.

1.2 Lower Bounds

The above formulations are equivalent integer programs but differ in their linear program-
ming relaxation. Let ZZ, and ZM, denote the solution value of the linear programming
relaxation of [F| and [M], respectively. Then L' = [Z EP-I and L* = [Z %3-‘ are valid lower
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bounds on Z¥ = ZM. 1t is well known that Zf, < ZM, as M p is the Lagrangian dual
that arises from the dualization of constraints (2) of [F]. Vance et al. (1994) have shown
that ZF, = Z:# and that this trivial lower bound has a worst-case performance ratio
of % On the other hand, Marcotte (1985) has shown that [Z %31 gives the optimum value
of the integer problem for certain classes of cutting stock instances. But Marcotte (1986)
has also shown that it is NP-hard to decide whether this so called integer round-up prop-

erty holds for any given instance.

In their study of the bin packing problem, Martello and Toth (1990) have derived an a
priori bound, denoted L?, that is empirically better than L' for instances with large weight
items. Their L2 bound also applies to the cutting stock problem and can be expressed as

follows. Given an integer a: 0 < a < %, let

I' = {i:w;>W —a},
P = {i:W-a>w>W/2}, (5)
P = {i:W/2>w; >a},

and let D' = Y",.;1d; and D? = 3,72 d;. Then,

: i d;
L(e) = D' + D? + max{0, [EZE(M;;) “ -‘ - D?*}

is a valid lower bound. The maximum value of L(«) is achieved for @ = w; < W/2 for some i
and
L? = max{L(a) : « = w; < W/2 for some i}

can be computed in linear time once the items have been sorted according to size. Martello

and Toth (1990) have also proved that L? > L!.

We now show that L? < L*. The result follows from the fact that any solution of My p

satisfies the combinatorial conditions implicit in the definition of L2.

Proposition 1 For any feasible solution \ € RL?' of Mpp, and 0 < a < %,

> L(a) .

{z Y

q€Q

Proof:

For the sake of this proof, we consider formulation Myp with equality constraints in
(4) which has the same value ZM,. Let Q* = {q € Q : ¢; > 0 for some i € I*}, for
k=1, 2, and 3, where I', I?  and I® are defined in (5). Observe that for all ¢ € Q' U Q?,



Yicrurzy ¢ = 1. Moreover Q' N Q* = () and Q' N Q* = (). Therefore,
DoAN=D D ar=) di=D".
qeqQ! i€l g€Q ielt

Similarly, > ,c2 Aq = D?, and

Yoo Ag=max{0, > A= D Ad.

geQ\(QUQ?) gEQ\Q!? qeQ?

. w; d;
Now the proposition follows from the fact that >,co\gt Aq > E*”* Indeed,

ie(12uU13) i€(I2UI3)  qeQ q€Q\Q! 1€(12UI3) 7€Q\Q*

The following example due to Mc Diarmid (see Goulimis, 1988) shows that L? can
be strictly dominated by L*. Take n = 3, W = 30, w = (15,10,6), and d = (1,2,4),
then ZF, = %, L' = L? =2, but L* = ZM = 3. Observe however that in this case,
the minimum wasted capacity in any item combination is 3, and therefore the capacity
can be redefined as W' = 27 since it is the maximal weight that can be achieved by any
group of items whose total weight does not exceed 30. With the modified capacity W',
L' = L? = 3. In practice, we shall preprocess the instances we solve by redefining the

capacity as the maximum usable capacity which we obtain by solving a knapsack problem.

Finally, Martello and Toth (1990) have also proposed a reduction scheme that at-
tempts to construct a partial solution using dominant item combinations. A feasible item
combination e € () is dominant if, for any other feasible combination of items f € @,
the items can be grouped into subsets whose total weight fits into the item weights of
the dominant combination, i.e. if e € () is a dominant combination that contains &k items
(counting multiple copies of the same item independently), then Vf € @), 3 a partition
(P1, Py, ..., P) of the items present in f such that > ,cpw; < w; for [ =1,... .k If a
dominant combination is identified, it can be used to (partially) meet the demands of
the corresponding items, and hence to reduce the problem size while insuring optimality
of the partial solution. However, checking the dominance of a feasible combination is
impractical, even more so for the cutting stock problem where multiple copies of the same
item can be found in a feasible item combination. Martello and Toth have applied this
reduction technique to bin packing instances with large item sizes, searching for dominant
combinations of up to three items. When a dominant combination is identified, the L2
bound is computed for the reduced instance, then the instance is relaxed by dropping
the smallest item and the process is reiterated. This procedure give rise to yet another
“improved” bound, L3. For the above example, there is no dominant item combination

and L3 = 2 which shows that L3 does not dominate L*.



1.3 Heuristic Solutions

Approximation procedures for the bin packing problem have been developed and theo-
retically assessed by many authors (see Martello and Toth, 1990). The procedures with
best worst-case performance ratios (= 1.222..) are First Fit Decreasing (FFD) and Best
Fit Decreasing (BFD) for a complexity of O(nlogn). For the cutting stock problem, the
(FFD) procedure can be described as follows. Iteratively select an item with maximum
size from among items with yet unsatisfied demand, and assign it to the first already
initialised bin that has sufficient remaining capacity, or if there are none, initialise a new
bin with that item. In the (BF D) procedure, the item is assigned to the bin with smallest
residual capacity from among those that can accommodate this item. In our computa-
tional experiments, we have not found the performance of these procedure to be very
good in practice. We have therefore developed another procedure which tends to perform

better for instances with small item weights.

The procedure, which we call Fill Bin heuristic, constructs pseudo-dominant bins, one
at a time. Because, the dominance of an item combination, as defined above, is impractical
to check, we have relaxed the concept to concentrate on item combinations with capacity
usage equal to the maximum that can be achieved and using the largest items in priority.
Let the items be indexed in order of non-increasing sizes

w12w222wn

Then, an item combination is pseudo-dominant if it is a solution z* of the following

knapsack problem

maX{Zwixi : Zwixi <W,z;<djfori=1,...,n, x € IN"}
i i
and x* is lexicographically smaller than any other solution x of this knapsack problem.

The Fill Bin heuristic iteratively obtains a pseudo dominant combination of items,
x*, using a standard procedure for the knapsack problem on the sorted set of items for
which there is a remaining demand. Then, it uses min; [;Z—ZJ copies of bin z*, updates
the demand vector, and iterates until all the item demands are covered. Although the
procedure is pseudo-polynomial in theory, it is quite fast in practice and, in any case,
the computational burden will not be prohibitive in the context of a column generation

algorithm that requires solving knapsack subproblems routinely.

The fill bin heuristic is naturally a myopic procedure with obvious drawbacks. Con-

centrating on filling up bins to the maximum level at the outset of the procedure, might
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result in leaving aside large items that could not have lead to a “well filled” bin. Then,
the bins constructed in the final stages of the procedure may involve a lot of waste. In an
attempt to avoid this effect, we also consider a variant of the Fill Bin procedure, where
bins are initialised with one copy of the largest item yet to be covered and a pseudo
dominant combination is used to fill the remaining bin capacity. We have also consider
another variant consisting in constructing maximal bins (bins where the unused capacity
is less then the smallest item size) one at the time, using the largest items in priority.

But, for the latter variant, the resulting heuristic solutions are similar to solutions of the
FFD or BFD heuristics.

2 An Algorithm based on Column Generation

We solve the cutting stock problem using a branch-and-bound procedure based on the
lower bound L*, i.e. we use formulation M whose LP relaxation provides the best known
lower bound on the problem. The large number of columns and associated variables of M
are dealt with implicitly. At each node of the branch-and-bound tree, a standard column
generation procedure is applied to solve the LP relaxation of [M], which is commonly
referred to as the master. The restricted master LP that contains only a subset of the
columns is solved optimally, then the dual solution is used to price out the other columns
which are only known implicitly as the solutions of a knapsack problem. The so-called
column generation subproblem consists in finding a feasible column with minimum reduced
cost. If a negative reduced cost column is found, it is added to the restricted master and

the process is reiterated. Otherwise, the current master solution is optimum.

2.1 The Column Generation Subproblem

At the root node, the column generation subproblem takes the form

v(m) = max{i T iwixi <W,zeN"} (6)
i=1 i=1
where ™ € IR} is the vector of dual variables associated to the demand covering constraints
(4). The solution z* of this knapsack subproblem defines a column whose reduced cost
1 — v(7) is minimum. To solve these integer knapsack subproblems, we transform them
into 0-1 knapsack problems and use branch-and-bound procedure similar to that pre-
sented in Nemhauser and Wolsey (1988), page 455. Indeed, in Vanderbeck (1998), we
show that an integer knapsack problem can be transformed into a bounded multiple-class
0-1 knapsack problem. This transformation does not involve a duplication of solution

representations as the standard transformation presented in Martello and Toth (1990),
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and it can be solved as efficiently as the standard 0-1 knapsack problem.

The transformation goes as follows. For each item i € {1,...,n}, let the implicit upper

bound (i.e the maximum value that can be assumed by the associated column entry) be
w
WA = min{d; , {—J ,
VR {dis | -]}

and define n; = [log(¢™* +1)| for i = 1,...,n and n’ = ¥, n;. Then, the 0-1 vector
¢ € {0,1}" associated with feasible column ¢ € IN" is defined by the relation ¢; =
SRt 2k Gy for i = 1,...,n, where p; = 1+ %! ng. For notational convenience,
we define a profit vector 7' € IR" and an item weight vector w’ € IN™ that are the
counterpart of 7 and w for the 0-1 form of the knapsack problem and a vector m € IN™
that denotes the multiplicities of the binary items, i.e. m = 2% m; w) = 2F w;, and m; = 2*
forl=p;+k, k=0,...,n;—1,and i =1,...,n. By convention, we use index i =1,...,n
to refer to the original items, and we use index [ = 1, ..., n’ to refer to the 0-1 components

of the transformed knapsack problem which takes the form:

n' n' pi+n;—1
v(m)=max{d ma Y wx <W, Y max<¢Vi, ze N} (7)
n=1 n=1 l=p;

2.2 The Branching Scheme

In an algorithm based on column generation, branching is not straightforward as the
rounding of master variables is usually not a viable scheme. In Vanderbeck (1996), we
discussed this issue at length and proposed a general framework to branch in a branch-
and-price algorithm. We compared different branching schemes for the cutting stock

problem, and suggested to use the following:

Given a fractional solution A of Myp, find a subset of columns
Q={qeQ:q¢=0VIecOandg,=1 Vle P} (8)
such that & = 3 5 Aq s fractional and branch by enforcing that either

Y A< o, 9)

q€Q
> A > ol (10)
q9ER
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The subsets O and P C {1,...,n'} completely characterise Q For any fractional master
solution, there exist subsets O and P with |O|+|P| < [log f| 41 for which the associated
a is fractional, where f = > o (A, — [A¢]) (Vanderbeck, 1996).

At a branch-and-bound node u, after such branching constraints have been added to

the master problem, the master LP formulation takes the form:

min >N

q€Q
[M}p] s.t.

YNogr > di i=1,...,n
q€Q
YA < K Ve g (11)
qeQy
DA > L VjeH (12)
qeQi

Ay >0 €@,

where G* and H* are sets of branching constraints of the form (12) and (10), respectively,
that define the problem at node u and the pairs (@7, K?) (resp. (Q’, L)) for j € G*
(resp. j € H") are respectively the associated column subsets, Q C @, and rounding

down (resp. up) of the fractional values .

The associated column generation subproblem takes the form

nl

o(m, p,v) = maxy maz— ¥, pigi+ >, vih;

I=1 jeGH jEH®
[SP] s.t. (13)
wyr < W
=1
pitni—1
Z mx < ¢ Vi (14)
I=p;
9 =2 1= m—-Y 1-=) VYjeG" (15)
1€0i lePi
i < (1—u) VieO', j € H" (16)
i < Vie P!, je H" (17)
r € {0,1} vi=1,...,n",

where (7, p,v) € RTHGHHH”\ is an optimal dual solution of the restricted master LP,

and 7’ and w' are the 0-1 form equivalent of 7 and w, respectively.
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Observe that for branching constraints with |O7| + |P’| = 1, the modifications in the
subproblem simply amount to amending the profits 7’ and there is no need to introduce
an extra variable g; or h;. When |07 + |P’| < 2 Vj the subproblem can be formulated
using quadratic terms instead of introducing extra variables g; or h;. For the general
case, the subproblem can be approached by dualizing the extra constraints (15-17). The
idea is to solve the subproblem using a branch-and-bound procedure similar to the one
used for the bounded multiple-class 0-1 knapsack problem, but where upper bounds are
solutions of the LP relaxation of the Lagrangian function. As the Lagrangian function is
a bounded multiple-class 0-1 knapsack problem, its LP relaxation admits a closed form
solution (Vanderbeck, 1998) and therefore Lagrangian parameters can be heuristically
chosen that minimise this LP bound. Alternatively, after relaxation of the class bound
constraints (14), the modified subproblem (13) can be transformed into a 0-1 knapsack
problem with additional variables and Special Ordered Set (SOS) constraints (also called
Generalised Upper Bound (GUB) constraints).

The transformation can be briefly described as follows: for each branching constraint
with |07] + |P/| > 1, define a group made of the variables z; involved; merge groups
that are not disjoint; for each group, discard the variables concerned and replace them
by new binary variables, one for each possible combinatorial combination of the variables
concerned; compute the weight and the cost of each of the combinations newly defined;
solve the resulting 0-1 knapsack with additional SOS constraints enforcing that, in each
group, at most one of the newly defined variables can be selected in the solution. Of
course, this transformation is only viable when the branching constraints involve a few
variables z; and tend to concern disjoint set of variables. There is an algorithm due
to Johnson and Padberg (1981) to compute the LP bound of a knapsack problem with

disjoint SOS constraints.

3 Implementation Details and Enhancement Features

There are many practical issues that are important in designing an efficient implemen-
tation of a column generation based algorithm. We now describe our implementation of
the important features of our algorithm. We also discuss the enhancements that we have
tested.

3.1 Initialisation

At the outset of the algorithm, we perform some preprocessing of the data: we eliminate

duplicate item sizes by grouping the corresponding demands and we redefine the bin ca-
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pacity as the maximal usable capacity. Then we compute the L? bound and initialise
the incumbent with the best of the heuristic solution obtained using FFD, BFD, the Fill
Bin heuristic and its variant. If the incumbent has cost equal to L?, the algorithm stops,
else the constraint }°,coA; > L with L initially equal to L? is added to the master to

round-up its LP solution and to ensure that the number of columns used is integer.

At each branch-and-bound node an initial feasible LP solution is required to start-
up the column generation procedure. At the root node, the master is initialised with
the columns of the best heuristic solutions, but this will not guarantee the presence of a
feasible LP solution further down the tree when branching constraints have been added.
For that purpose, we include in the formulation a single artificial column whose entries
equal to 1 for all rows corresponding to a “greater or equal to” constraint and whose cost
is equal to L. If the artificial variable is still in the LP solution upon termination of the
column generation procedure, its cost is multiplied tenfold and the column generation
procedure is reiterated. We have also tried an initialisation of the column generation
procedure using an “unit matrix”, i.e., a matrix made of one column for each item with
a single non-zero entry, ¢; = ¢;"*. The resulting algorithm performance is significantly

worse (in terms of number of master iterations and columns generated).

3.2 Intermediate Lower Bounds

The column generation procedure can have a slow convergence. To avoid this potential
drawback, it is customary to terminate the procedure early by monitoring the master LP
duality gap. At each branch-and-bound node u, the purpose of solving the master LP
M}, is to obtain the lower bound L} = [Z%ﬂ. However, the solution of the restricted
master LP, which we denote be 72/[; , gives only an upper bound on Z},'. On the other
hand, lower bounds on ZM,' are readily available at each column generation iteration.
The Lagrangian lower bound is the value of the Lagrangian problem resulting from the
dualization of constraints (2) for the current dual solution (7, i, 7). In Vanderbeck and
Wolsey (1996), we propose intermediate lower bounds that improve slightly on the La-
grangian bound. In the case of the cutting stock problem, where the column cost are all

equal to 1, there is an even tighter lower bound that has been introduced by Farley (1990).

Farley’s bound for the cutting stock problem can be expressed as

_M'U.
ZLP

_ZLP L gM*
v(m, p,v) =

where v(m, u, v) is the solution of the column generation subproblem (13) and (7, p, v) is

an optimal dual solution of the restricted master LP. Therefore, at each column generation
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iteration we compute
_Mu
ZLp

Li = ) R -
max{L )

}s (18)

the best intermediate lower bound. At the root node L is initially set equal to L?, while
at other nodes, the bound of the ancestor node is used. The column generation procedure

is terminated if

i 7M™
L' > [ZLP-‘ (19)
meaning that L' = L, or if
L' > incumbent (20)
meaning that L; > incumbent.
In comparison the Lagrangian bound at the root node is
Zip+ K (1—o(m, p,v)) < ZY, (21)

where K is a valid upper bound on the number of bins in an optimum solution. In the
final stages of the column generation procedure, ZJLV[P < K and the minimum reduced cost
converges towards zero by negative values, i.e. 1 — v(m, u,v) = —¢, where € € IR, and
€ — 0. Then, Farley’s bound dominates the Lagrangian bound since

M

Z M M
1iiZZLP(1_5)ZZLP_Kf

for e sufficiently small. The same is true at any branch-and-bound node.

The column generation termination criteria (19-20) give rise to a priori bounds on
the minimum column reduced cost (Vanderbeck and Wolsey, 1996). Termination of the
column generation procedure will take place unless

M M

7 VA
> 1 LP LpP 22
v(m, p,v) > max{l +e, [7LP" _ 1’ incumbent —1 ! 22)

where € is the precision level of computations. This a priori subproblem bound is used as

an artificial incumbent in the solution of the knapsack subproblem.

3.3 Selection of Branching Constraints and Branching Priorities

For the cutting stock problem, the lower bound L* that is obtained at the root node is
often the optimum solution value. Then, branching typically does not lead to improved

lower bounds, but aims at reducing the fractionality of the master solution. Hence, we
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adopt a depth-first tree-search strategy, processing the deepest branch-and-bound node
from amongst the many for which the a priori bound equals the current lower bound.
However, it remains important to select branching rules that give rise to balanced sub-
trees, i.e. that partition the solution set into roughly equal cardinality subsets. Indeed,
the strategy that consists in using a branching constraint that is very restrictive on one
branch but not on the other, in the hope that an optimum solution will be found on the
former branch, is risky. If the bet is unsuccessful (i.e. no optimum solution can be found
on the very restricted branch), backtracking must take place. Then, the computational
time spend in exploring the restricted branch is wasted and the remaining problem associ-
ated with the not-very-restricted branch is almost as hard as the ancestor node problem.
Hence an algorithm based on an unbalanced branching scheme is typically not stable,
yielding low computing time when it gets lucky but requiring very large computing time

for some instances.

Branching by fixing (or bounding) master variables, i.e. choosing to use (or not to use)
a specific cutting pattern, is the sort of unbalanced branching scheme that can lead to large
computing time when unlucky. On the other hand, the family of branching constraints
defined by (8), yield a more balanced tree and in particular, the branching rules (8) that
are the simplest to implement are also the ones that lead to the most balanced subtrees.
Branching constraints defined by sets O7 and P? of higher cardinality involve fewer feasible
item combinations and are therefore more specific. Hence, we use primarily branching
constraints defined by a single subproblem variable, i.e. with |P/| = 1. In fact, for
instances of the cutting stock problem, successive application of the simplest branching
rule

Yo A <lal or D> A > [a]
9€Q:q;=1 9€Q:q)=1

will typically allow us to eliminate all fractional solutions. Instances of the bin packing
problem on the other hand also require branching on pairs of knapsack components,

resulting in a branching rule of the form

> AN<lal or Yoo A2l .

9€Q:q;=q; =1 9€Q:q;=q; =1
Indeed, as item demands are typically equal to 1, ¢ = 1 for many items and
zqu:q;:qizl Aq = 1 although A might be fractional. To limit the extend of the resulting
modifications in the subproblem, we only consider disjoint subsets, P’, of binary knap-
sack item. None of the instances that we have tackled has required the use of branching
constraints with |P’/| > 2 or with non-disjoint sets P/. Observe that we do not need
to consider branching constraints with O’ # () because they are the complement of the

former: quQ;q;:o Ag = e g — quQ:qul A, and the integrality of }° .o A, has been
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enforced.

The subproblem modifications that result from these simple branching rules can be
accounted for in a standard branch-and-bound procedure for the 0-1 knapsack problem.
When dealing with branching constraints with P/ = {l}, we simply replace 7] by 7] — p;
or m, + v in (7), where p; or v; are the dual price associated with constraints (11) or
(12) respectively. When some of the branching constraints are defined by a component
set P7 = {l, k} (disjoint from other such branching pairs at the node), we ignore the
class upper bound constraints in (7) and we consider the resulting 0-1 knapsack prob-
lem in which we define an extra variable z;;, with weight w(l, k) = w; + wj, and profit
n(l,k) = m + m, — p; or w(l,k) = m] + 7w, + v;. We solve the resulting 0-1 knapsack
problem by branch-and-bound, handling the extra constraint z; + xy + x;, < 1 implicitly:
when one of the variables x;, xy, or x;; is set to one in a forward move, the others are
set, to zero; if backtracking occurs, this setting to zero is undone. We did not implement
Johnson and Padberg (1981)’s algorithm to compute the LP bound of a knapsack problem
with disjoint SOS constraints. Instead, we use the standard LP upper bound, ignoring
the SOS constraints.

We have found that the performance of the algorithm is relatively sensitive to the
order in which variables are considered for branching. A scheme that performs well is to
give priority to knapsack components [ with large weights w;. Given a fractional solution
A€ ]R‘f2 | of the master LP, we consider successively the 0-1 components [ in non-increasing
order of their weight w), we compute o! = quQ:q;=1 Ag, and we stop as soon as we find
an o with fractionality f = min{a!,1 — o!} bigger than a prescribed threshold e¢. The
smaller €, the more priority is given to branching on components with large weights. We

set the threshold € to be
> w; d;

o 100 (wmax - wmln) Zz dz -
In this manner, € is set lower for instances that have a wide range of item weights. If no

€

component [ gives rise to a fractional o, we search for a pair (I, k) on which to branch in
a similar way. Then we explore first the branch defined by > .5 A; > [a] and search the
successor of that node before returning to the branch }° .5 Ag < |a|]. The computational
tests of the next section show that giving priority to large weight items ¢ rather than to
large weight 0-1 components /, yields a larger branch-and-bound tree and a 70% increase

in computation time.
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3.4 Cutting Planes

We have experimented with the use of cutting planes to strengthen the master LP for-
mulation. First, we consider feasibility cuts similar to those used for the Vehicle Routing
Problem by Desrosiers and Soumis (1996). In any feasible IP solution to the cutting stock
problem, the number of bins covering a subset S C {1,...,n} of items must be larger or

equal to the total weight required by these items divided by the bin capacity:

T A {Mw (23)

qeEQ:qNS#D w

These inequalities are clearly valid since (4) implies that the master solution will verify

Zwidi = Zwi Z girg = Z (Z wigi) Ay < W Z Ag -

i€S €S qeQ geQ:qNS#P €S qEQ:qNS#D
An inequality (23) is unlikely to be violated by the master LP solution if > ;cq w;q; < W
in several of the columns involved in the constraint, which is typically the case when items
in S are combined with items not in S in columns of the current solution. Therefore, the
search for cuts should concentrate on small cardinality sets S or on subsets of items that

share the same bins in the LP solution.

We concentrate on inequalities involving a single item, S = {i}, for which the

right-and-side can be made even tighter:
d;
X A2 {Tax} (24)
7€Q:¢;>0 %

where ¢;"** denotes the maximum number of copies of item ¢ in a bin. The addition of
such a constraint in the master involves a modification of the reduced cost of columns for
which ¢; > 0. Observe that

{¢eQ: ¢>0=0Q\{¢geQ: ¢g=0VieO"}

where O = {p;,...,p; + b; — 1} and hence the subproblem modifications resulting from
these cuts are similar to those resulting from the branching scheme we described. To suit
the modification scheme that we have implemented for branching, we further restrict our
attention to cuts involving items for which ¢** < 3 and hence b; < 2.

We also use the trivial cut
DA 2L
q

where L is the current best lower bound on the optimum IP solution. Such rounding of

the objective function has been used in other studies, e.g. for vehicle routing problems
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(Desaulniers et al. , 1994, and Desrosiers et al., 1994). We have also considered the use
of a cut on the amount of unused capacity as proposed by Valerio de Carvalho (1996).
Knowing a lower bound L on the number of bins and the total capacity requirements, one

can derive a lower bound on the total waste (unused capacity)

waste > LW — Z w;d; (25)

where waste = > (W — X, wig;)A,. Note that enforcing this minimum waste can be
done by adding an artificial item of unit size with demand equal to the minimum waste
(although this creates symmetry problem if the instance already contains an item of unit
size or a very small size item). Alternatively, one can enforce the minimum waste by
working with a set partitioning formulation instead of a set covering one (i.e. imposing

strict equality in the demand covering constraints).

We also experiment with optimality cuts that can be briefly described as follows. If
YgeQug=1A = @ ¢ IN, we temporarily set a new item with weight w; and demand [«| and
update the demand d; = max{0, d; — 2* [a]|} for the item i associated with the knapsack
component [ = p; + k. Then, we compute the associated L? bound. If it is larger than

the incumbent solution value, we add the cut

> A< al (26)

q€Q:q=1

in the master. We refer to these cuts as L? cuts. Similarly we search for L? cuts involving

a pair of knapsack components.

In practice, the L? cuts are particularly useful to test whether the auxiliary variable
that has been chosen for branching can be bounded and hence whether one of the descen-
dant branch-and-bound node can be pruned without even being processed. In fact, we
have noticed that the typical branch-and-bound search basically goes down the tree on
the successive branches }° .5 A, > [a], until it encounters a node where 3 5 A; > [c]
means that an extra bin would be required. Then it backtracks one level, moves to the
branch 3° 5 Ay < || and goes depth from there. Proving that 3° .5 Ay > [a] results in
an extra bin typically requires quite a few column generation iteration. In comparison,
going down the tree on the successive branches 3° 5 Aq > [a] often requires only a single
column generation iteration per node. Therefore, avoiding the computational burden of
pruning the odd node, can potentially speed up the algorithm. Testing if Y~ €0 A < e
is a valid L? cut may allow us to cheaply prune the node without having to use the column

generation procedure. We refer to this test as L? pruning.
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3.5 Variable Fixing

Variable fixing refers to one’s attempt to fix or bound the value of variables based on con-
sideration of optimality or feasibility. In particular, reduced cost fixing uses the reduced
cost information to make such decisions: e.g. if an integer variable is at value zero in the
current LP solution and has reduced cost bigger than the gap between lower bound and
incumbent, it can be fixed to zero. The question is whether similar “tricks” can be used
in a column generation framework. We argue that this should not be attempted on the
master variables A, themselfs but on the auxiliary variables on which we branch. Indeed,
bounding the value of a particular A, may not be very helpful (as there are so many
other columns and alternative solutions) and it may lead to intractable modifications to
the subproblem. On the other hand, bounding the number of columns sharing a specific
property (e.g. including a particular item) does not have these drawbacks. With this
perspective, the cuts that we described above can be viewed as the fixing of auxiliary

variables.

We now examine the reduced cost fixing of auxiliary variables. An auxiliary variable
(of the branching scheme) can be fixed to 0 if, when it takes value 1, the Lagrangian
intermediate lower bound (21) exceeds the incumbent value. The test is as follows: Take
an auxiliary variable defined by a subset Q C @ that has value 0 in the current LP solution,
i.e. take Q such that 2 el A; = 0 (for instance, consider an knapsack component that
is not in any columns selected in the master LP solution). Compute the reduced cost
of columns in Q, i.e. modify the column generation subproblem by fixing subproblem
variables to insure that the solution belongs to Q Let o(m, u,v) denotes the optimal
value of this subproblem. Test whether the intermediate lower bound that results from

taking at least 1 column in @ exceeds the incumbent value. i.e. whether
[7%3 +1(1=0(m,pv)+(K-1) (1 —v(m,u, V))-I > incumbent (27)

where K is an upper bound on the number of bins in an optimum solution and v(r, u, v)

is the solution of the unconstrained subproblem.

Note that, since we have combined the phase 1 and phase 2 of the LP solution by
introducing artificial variables in the master, this test encompasses both feasibility and
optimality considerations. We have used this scheme to fix knapsack components to zero
and hence reduce the size of the subproblem. However there is not much benefit to
be drawn. Moreover the test is computationally costly as it requires solving an extra

subproblem. We have therefore abandoned this line of investigation.
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3.6 Early Branching

Early Branching refers to branching before the computation of the bound at a branch-
and-bound node has been completed. The purpose is to truncate a potentially slow
convergence of the bound computation procedure. In our case, the node computations
are stopped when one of the column generation termination criteria (19-22) is satisfied.
In practice, we use an “artificial incumbent” in stopping rule (20). The stopping criteria
we use is L' > L+1, where L is the current lower bound on the optimal solution. As long
as L+ 1 < incumbent, the current best integer solution, the node that are pruned on the
basis of L* > L + 1 are returned to the queue of nodes that require further processing.
This scheme makes the performance of our algorithm less dependent on the quality of the
incumbent initially obtained with a heuristic. Moreover, as for most instances, L* is the

optimum value, nodes temporarily interrupted are typically pruned at a later stage.

We have experimented with stopping the processing of a node even earlier. The first
scheme we tried consisted in introducing a tolerance in the stopping conditions, i.e. stop
if

L'+TOL > [7%:1 or L'+TOL > incumbent
where TOL > 0. The scheme yielded much larger branch-and-bound trees and compu-
tation times (even for TOL as small as 0.001). Our interpretation is that the columns
generated in the last stages of the column generation procedure are the “best” ones, i.e.
the ones that are the most likely to appear in an optimal solution. We have then used an-
other scheme that consists in stopping the column generation when the last column that
we have generated has a reduced cost that is “close to” zero, i.e. when v(m, u,v) < 1+e.
The latter scheme can be useful for larger instances where computational rounding errors

are significant.

3.7 Rounding Heuristic

A rounding heuristic is a procedure that attempts to find a “good” integer solution by
rounding the current LP solution. Here again the standard procedure that consists in
rounding the fractional variables does not straightforwardly apply in the context of a
column generation procedure, as bounding A,’s destroys the structure of the subproblem.
Moreover, apart from this difficulty, the standard procedure is doomed to fail because
the restricted set of columns in the master formulation typically does not contain an
optimal integer solution. Instead, we use a procedure based on the rounding of the aux-
iliary variables that are used for branching and we continue to generate columns after

rounding. That is we perform a heuristic depth first search of the branch-and-bound tree,
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and, along the way, we construct a partial integer solution by rounding down intermedi-

ate master LP solutions. The scheme is applied a every branch-and-bound node as follows.

We first take the round down of the master LP solution A at the current branch-
and-bound node as a partial solution. Then, we consider the remaining master LP
where the right-hand-sides have been appropriately updated, i.e. d; has been replaced
by max{0, d; — >, ¢; [A] }. We select a branching variable as we would do for normal
branching and we bound it down, i.e we add the constraint -, .5 A; > [a] in the re-
maining master problem, unless the L? pruning procedure reveals that we should explore
solutions where }°, .4 Ay < [a]. Then, we return to the column generation procedure but

with a smaller master problem and a smaller subproblem, since typically d;, and hence

max

q;
solution is found or the intermediate lower bound shows that no solution better than the

and n; are now reduced for some items 7. The procedure is reiterated until an integer
incumbent will be found along this route.

The rounding heuristic is a way to concentrate the computational effort on the frac-
tional part of the solution: after extracting a partial solution, the master problems is a
covering problem where the remaining demands are those that were covered by fractional
columns and the column generation process only produces columns containing those items
that account for the fractionality of the solution. The L? pruning is more effective on the
reduced size problem and the feasibility cuts are used more often as more items have
g"® < 3 after updating the demands. This heuristic is very helpful as we shall see in the

computational results.

4 Computational Results

For our computational tests, we have used a few real-life instances, but, for the main
part, we worked with randomly generated instances. For the cutting stock problem, we
consider instances similar to those generated by Vance (1996), with 50 items, an average
demand of 50, and item weights generated uniformly in intervals [1, 7500], [1,5000], and
[1,2500] for a bin capacity of 10000. Moreover, we also generated instances with item
weights in [500, 5000] and [500, 2500] because, in the real life instances we have seen, the
item size is hardly smaller than 5% of the bin size and rarely larger than 50% of the bin
size. These different item weight distributions are referred to as class 1 to class 5. We
also generate class 4 problems with an average item demand of 100, in order to test the
effect of demand size for the item size distribution that seems to reflect more closely real

life instances.
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For the bin packing problem, we have followed the foot steps of Martello and Toth
(1990) and Vance et al. (1994). We consider instances with item sizes generated uniformly
in [1,100], [20,100], and [50, 100], and bin capacity equal to 100, 120, and 150. We tried
all combinations, generating instances with 500 items. The instances with w; ~ U[20, 100]
are from the OR-Library (Beasley 1990). We also try the algorithm on a batch of prob-
lems with 1000 items and on the difficult “triplets” instances described in the OR-Library
(Beasley 1990). The latter have been generated in such a way that the optimal solution

consists of bins filled at capacity with exactly three items.

The code of our algorithm is in C. We use CPLEX 3.0 to solve the master LPs. The
column generation subproblems are solved using our own implementation of a branch-
and-bound code for the 0-1 knapsack with real number data (based on the presentation
found in Nemhauser and Wolsey, 1988, p.455). The computations have been carried out
on an HP9000/712/80 (80MHz) workstation with 64Mb of main memory (SPECint92 =
84.1, SPECint95 = 22.1, SPEC{p92 = 122, SPEC{p95 = 29.2).

4.1 Testing the Algorithm

To discover to what extend the algorithmic features that we described do help in solving
cutting stock and bin packing instances, we have carried out comparative tests. We have
used as a test bed a set of 34 problem instances whose characteristics are given in Ta-
ble 1. The first 10 instances are real-life cutting stock problems, the others are randomly
generated instances which are not trivially solved by the heuristic. Problems 11 to 20 are
cutting stock instances with 20 items and average demand of 50. They are 2 instances
for each of the five weight distribution classes described above. Problems 21 to 34 are bin
packing instances. Instances 21 to 24 have item weights drawn from U[1, 100], instances
25, 26, and 29 to 34 have item weights drawn from U[20, 100], instances 27 and 28 have
item weights drawn from U[50, 100]. The bin capacity is 100 for instances 21 and 22, 120
for instances 23 to 28, 150 for instances 29 to 34. The number of items are 500 for in-
stances 21 to 28 and 31 to 32, 250 for instances 29 and 30, and 1000 for instances 33 and 34.

For each instance, Table 1 gives the number of items n, the number of component in
the associated 0-1 knapsack subproblem n’, and the characteristics of the item weights
and demands after preprocessing of the data. The item weights are expressed as fractions
of the bin capacity. min w and maz w are the smallest and largest item weight, while

Zi d;w;

aver w = S Similarly, min d, aver d and maz d give the minimum, average, and
i ]

maximum demands.
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nb | name n n' | mnw averw maxw | mind averd max d
1| 7pl8 7 22101206 0.1450 0.1758 5 88.7 337
2| 11p4 11 46 | 0.0519 0.0744 0.1651 25 1234 318
3 | 12p19 12 391 0.0797 0.1354 0.2640 4 14.1 31
4 | 14p12 14 50 | 0.0524 0.0968 0.2143 2 40.6 174
5 | d16p6 16 3410.2366 0.3399 0.4911 5 6.8 10
6 | 25p0 25 80| 0.0797 0.1336 0.2640 4 34.4 337
7 | 28p0 28 102 | 0.0269 0.1186 0.2603 2 56.5 337
8 | 30p0 26 86 | 0.0759 0.1230 0.2784 2 28.0 252
9 | d33p20 23 53 |0.1011 0.2143 0.3177 1 5.8 16

10 | d43p21 32 7410.0521 0.2194 0.2998 1 5.6 17

11 | 20b50c1p3 20 47| 0.0048 0.3440 0.7096 13 50.0 87

12 | 20b50c1pbd 20 46 | 0.0323 0.3520 0.7490 2 50.0 107

13 | 20b50c2p1 20 60 | 0.0152 0.2483 0.4856 7 50.0 104

14 | 20b50c2p2 20 69 | 0.0031 0.1777 0.4641 5 50.0 93

15 | 20b50c3pl 20 70| 0.0539 0.1462 0.2476 4 50.0 108

16 | 20b50c3p4 20 74 10.0025 0.1474 0.2389 4 50.0 101

17 | 20b50c4pl 20 57 |0.0529 0.2286 0.4556 7 50.0 80

18 | 20b50c4p4 20 56 | 0.0576 0.2297 0.4444 7 50.0 111

19 | 20b50c5p2 20 70| 0.0573 0.1398 0.2336 4 50.0 84

20 | 20b50cHp3 20 67 |0.0520 0.1437 0.2462 4 50.0 96

21 | ult100W100n500p8 98 164 | 0.0100 0.5127 0.9900 1 5.1 12

22 | ult100W100n500p9 99 168 | 0.0100 0.4870 0.9900 1 5.1 10

23 | ult100W120n500p3 99 179 | 0.0083 0.4210 0.8250 1 5.1 11

24 | ult100W120n500p7 99 182 | 0.0083 0.4219 0.8250 1 5.1 12

25 | u20t100W120n500p1 81 129 | 0.1667 0.5021 0.8333 1 6.2 12

26 | u20t100W120n500p19 | 81 132 | 0.1667 0.4891 0.8333 1 6.2 12

27 | ub0t100W120n500p2 50 61 | 0.4167 0.6305 0.8250 2 10.0 18

28 | ub0t100W120n500p3 50 61 | 0.4167 0.6230 0.8250 4 10.0 19

29 | u20t100W150n250p0 71 123 | 0.1333 0.3942 0.6667 1 3.5 8

30 | u20t100W150n250p12 | 76 127 | 0.1333 0.4197 0.6667 1 3.3 8

31 | u20t100W150n500p3 81 150 | 0.1333 0.4076 0.6667 1 6.2 13

32 | u20t100W150n500p8 81 153 |0.1333 0.3914 0.6667 2 6.2 12

33 | u20t100W150n1000p3 | 81 155 | 0.1333 0.4109 0.6667 3 12.3 21

34 | u20t100W150n1000p14 | 81 155 | 0.1333 0.3939 0.6667 3 12.3 22

Table 1: Instances used to test the Algorithm
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nb L? L* IP H1 H2 | depth nod mast SP  time
1 91 91 91 94 94 2 3 ) 2 0.26
2 101 101 101 103 101 0 0 0 0 0.25
3 23 23 23 24 23 0 0 0 0 097
4 56 56 56 o7 56 0 0 0 0 0.26
5) 37 38 38 41 40 7 9 17 9 047
6 115 115 115 121 116 33 35 100 66 4.52
7 188 188 188 189 191 59 65 199 139 8.85
8 90 90 90 93 91 61 68 173 111 6.31
9 29 29 29 30 29 0 0 0 0 141
10 40 40 40 41 40 0 0 0 0 12.98
11 345 348 348 352 360 10 13 29 19 1.17
12 353 362 362 371 369 15 17 36 20 1.15
13 249 250 250 253 253 31 35 67 35  2.05
14 178 178 178 179 185 31 33 83 51  2.65
15 147 147 147 148 148 o7 63 114 56 4.41
16 148 148 148 149 149 48 54 108 59  4.51
17 229 229 229 233 235 31 33 83 51 248
18 230 231 231 235 233 21 23 58 36 1.79
19 140 140 140 142 141 49 52 107 57  5.23
20 144 144 144 147 145 41 43 101 59  3.95
21 261 262 262 262 262 0 1 20 20 1.54
22 245 246 246 247 247 10 16 50 40  2.75
23 211 211 211 212 213 15 16 164 148  7.25
24 211 211 211 212 212 19 26 101 81  5.27
25 256 258 258 258 258 0 1 10 10 1.15
26 246 246 246 247 247 11 15 79 67 3.24
27 409 411 411 411 411 1 1 1 0.78
28 402 403 403 403 403 0 1 1 1 0.80
29 99 99 99 100 100 15 18 96 80 4.11
30 105 105 105 107 106 6 8 114 107 3.60
31 204 204 204 207 206 30 31 137 106  8.10
32 196 196 196 199 197 47 57 191 143 9.60
33 411 411 411 416 414 58 61 168 109 11.76
34 394 394 394 400 395 82 91 215 132 1745
aver. | 193.62 194.25 194.25 196.56 196.18 | 23.20 26.14 77.27 53.38 4.212

Table 2: Computational results for the benchmark version of the algorithm
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Table 2 contains the solutions of these test instances when solved with a benchmark
version of our algorithm. The columns contain respectively the instance number nb, the
L? bound, the L* bound, the optimal solution (IP), the best of the FFD and BFD
heuristics (H1), the best of the two variants of the Fill Bin heuristic (H2), the depth
of the branch-and-bound tree (depth), the number of nodes that have been processed in
the branch-and-bound tree (nod), the number of times the master LP has been solved
(mast), the number of times the column generation subproblem has been solved (SP),
and the total CPU time in seconds (time) inclusive of the initialisation and heuristic
computations. The last line of Table 2 summarises the results by providing averages over
the 34 instances. In particular it shows that in all cases L* = I P, while the L? bound
underestimates the optimum number of bins by 0.32%. The H1 and H2 heuristics are on

average 1.19% and 0.99% above the optimum value respectively.

In the benchmark version of the algorithm, the master is initialised with the columns
associated with the best heuristic solutions and an artificial column having entries equal
to 1 in each row corresponding to a greater or equal to constraint. Termination of the
column generation algorithm at each node occurs when either condition (19) or condition
(20) is satisfied, but the associated a priori lower bound (22) on the subproblem solution
is not used. Branching is done on a single knapsack component where possible and on
a pair of components otherwise, priority being given to components with large weights.

The feasibility cuts and L? cuts are not used. The rounding heuristic is turned off.

We now compare the benchmark version of the algorithm to different variants in order
to test alternative initialisations, branching priority and the effect of the enhancement
features. Table 3 contains the comparative results. Each version of the algorithm differs
from the benchmark version by only one feature. The CPU times summarise the effect
of such variations. Version A gives branching priority to the large items ¢’s rather than
to the large knapsack components I’s. Version A requires 170% of the benchmark time.
Version B does not compute heuristic solution at the outset and uses only the artificial
column to initialise the master. Version B requires 165% of the benchmark time. Version
C uses an “unit matrix” instead of an artificial column to ensure an initial feasible solution
to the master LP at each node of the branch-and-bound tree. Version C requires 127% of
the benchmark time. Version D uses an artificial column whose entries are equal to the
right-hand-sides of the greater or equal to constraints. Version D requires approximately
the same time as the benchmark. However, having entries of different magnitude in the

master formulation can cause difficulties in solving these LPs.

The following versions of the algorithm differ from the benchmark by an extra feature.

26



Version F uses the a priori bound (22) on the column generation subproblem. There is an
unexpected increase in computational effort. Our interpretation is that the use of such
bound keeps the column generation procedure from generating the last column before
termination and this “last” column is probably a very “good” one, i.e. one that is likely
to appear in an optimum solution. Version G uses the feasibility cuts (24) for items ¢ with
g;"® < 3. This partial implementation of feasibility cuts shows a slight decrease in the size
of the branch-and-bound tree. Version H uses the L? cuts (26). The resulting decrease in
the size of the branch-and-bound tree does not compensates for the extra iterations in the
column generation procedure and the computational burden of the separation algorithm.
Version I applies L? cuts only to check whether the current node can be pruned before
it is processed. We can observe that this pruning yields a decrease in the number of
branch-and-bound nodes actually processed. In Version J, the column generation proce-
dure is terminated when the subproblem value is no greater than 1.001. This form of early
branching results in an increase of the computational effort. The increase is even much
worse when early branching is based on using a tolerance on the duality gap. Version K
uses the waste lower bound cut (25), adding an artificial item of unit weight and demand
equal to the minimum waste. This cut proved not helpful for cutting stock problems, but
it can be for bin packing problems with small bin capacity W as those solved by Valerio
de Carvalho (1996). Hence, we use this cut only when comparing our results with those
of Valerio de Carvalho (1996).

We conclude from these comparative tests that the helpful features are the feasibility
cuts and the L? pruning. We then use these two features together and refer to this
version L as the enhanced algorithm. Version L yields a smaller tree and fewer column
generation iterations. We therefore use these features within the rounding heuristic. In
Version M, we test the enhanced algorithm with calls to the rounding heuristic at every

branch-and-bound node. Version M yields a further 23% reduction in computation time.

4.2 Numerical Results and Benchmarking

We now present the results we obtained for the larger cutting stock and bin packing
instances and we compare them to those of previous studies. There are 6 classes of ran-
domly generated instances for the cutting stock problem (CS) and 11 for the bin packing
problem (BP). Table 4 summarises their characteristics. For each class of problems, we
have generated 20 instances. The results we present are averages over these 20 instances.
Table 4 gives the average sizes n and n' of these instances after preprocessing. It also
provides average values for the lower and upper bounds on the optimum integer solution
value, IP. In all cases, L* = IP. The L? bound is not as tight for instances with large
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Version depth nod  mast SP  time
A:  branch on big items 33.64 41.63 102.17 67.85 7.163
B:  no use of heuristics 29.77 34.16 222.21 191.53 6.972
C: unit matrix initialisation 24.56 30.71 87.58 61.29 5.366
D: art var with entry = to rhs | 24.37 27.88 7833 53.21 4.185
E: benchmark 23.20 26.14 77.27 53.38 4.212
F: a priori bound on v 2444 28.13 81.88 56.67 4.538
G: feasibility cuts 22.01 2429 7550 5221 4.167
H: L? cuts 22.84 2520 82.15 55.33 5.307
I: L? pruning 23.37 25.68 7854 54.52 4.126
J:  early branching 26.06 3244 8292 5594 4.666
K: lower bound on waste 28.56 34.44 89.24 5895 4.808
L: enhanced algorithm 2294 25.00 7720 5295 4.201
M: rounding heuristic 0.42 1.35 83.51 61.33 3.224

Table 3: Comparison of different versions of the algorithm.

range of item sizes. The Fill Bin heuristic H2 tends to dominate the standard FFD and

BFD heuristics H1 for instances with fewer large items.

Table 4 also contains the computational times (time = CPU time in seconds) re-
quired by our algorithm (Version M). In comparison, the columns ¢iH1 and tiH2 give
average times required by the heuristic H1 and H2 respectively, showing that the pseudo-
polynomial complexity of the H2 heuristics does not translate into large computational
time in practice. Table 4 therefore summarises the situation with regards to the difficulty
of cutting stock problems. It appears that the computational effort increases the number
of different item sizes (as opposed to the initial number of items) and not so much with
the magnitude of the demands. But, more importantly, it depends on the distribution of
item sizes. However, the classes of problems that are the most difficult for the branch-and-
bound enumeration (i.e. problems with small item weights) are often well approximated
by the Fill Bin heuristic.

In Tables 5 to 7, we consider each class of problems and compare the computational
effort required by our algorithm to that of previous algorithms. The computational effort
is assessed in terms of the depth of the branch-and-bound tree, the number of processed
nodes, the number of times the master and the subproblem are solved, and the CPU time

in seconds. Table 5 gives the results for the cutting stock problem. FEA refers to the
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Enhanced version of our Algorithm (denoted version L in Table 3). EA with RH refers
to the same algorithm with the additional use of the Rounding Heuristic at each node
of the branch-and-bound tree (this version was denoted M in Table 3). Vance refers to
the results obtained by Vance (1996). Her branch-and-price algorithm ran on an IBM
RS6000/590 using CPLEX 3.0 as LP solver. The column solved indicates the number of
instances in the sample of 20 randomly generated instances that could be solved within
the prescribed time limit (5 minutes for us and 10 minutes in Vance’s study). The table
entries are averages over the 20 instances, unless some of them could not be solved within

the prescribed time limit, in which cases the average is over the solved instances.

The computational effort required by the branch-and-price algorithm increases when
the range of item sizes and hence the number of knapsack component n’ (given in Ta-
ble 4) increase. However, this fact may not clearly appear in the results because the Fill
Bin heuristic has found optimal solutions for 18 out of 20 instances in class 3 and for 17
instances in class 5. The performance of the rounding heuristic is remarkable. It brings
robustness (solving every instances) and efficiency. The comparison with Vance’s results
is only illustrative as CPU times are not on the same machines and the statistics are
influenced by the number of problems solved (if, for instance, we consider only the 18
best solved class 2 instances, the statistics for algorithm “FA” are depth = 106.1, nod =
121.3, mast = 255.1, and time = 37.5 seconds and, for algorithm “FA with RH’, depth
= 1.82, nod = 2.8, mast = 349.9, and time = 18.25).

We have not explicitly compared our approach to that of Scheithauer and Terno (1995)
because we only became aware of their work after completing this study. Moreover, Schei-
thauer and Terno find optimal solutions for instances where the cost of the partial integer
solution plus that of the residual problem does not exceed the master LP bound, but it is
not clear how they proceed when this is not the case. The most difficult class of instances
solved by Scheithauer and Terno involved a knapsack capacity of 5000 and 10 to 100
items. Their results may be compared with those we obtain for classes 2 and 4. (How-
ever, we consider a knapsack capacity of 10 000). They solve problems with n ~ U[41, 50],
w ~ U[116,2500], W = 5000, and d ~ U[82,500] in an average of 167 seconds on a PC
486 DX, 66 MHz. For instances with n ~ U[51,60], w ~ U[96,2500], W = 5000, and
d ~ UJ[102,600], their average CPU time is 339 seconds.

Table 6 compares algorithms “EA” and “FA with RH’ with that of Martello and Toth
(1990), denoted “Mart. € Toth”, and that of Vance et al. (1994), denoted “Vance et al.”,
for a standard test set of Bin Packing problems. Martello and Toth’s times are on an HP
9000/840 and Vance et al.’s times on a IBM RS6000/550 using CPLEX 2.0 as LP solver.
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Table 6 shows that our algorithm performs well across the range of item size distribution,
and that the rounding heuristic is again very helpful for the most difficult instances. In
contrast, the approach of Martello and Toth and that of Vance et al. were not able to
solved problems for some item size distributions (the ones marked “not solved” in the
Table). The difficulties experienced by Martello and Toth and Vance et al. are partly due
to the fact that they have not grouped items of the same size under a single item as has
been done in Valerio de Carvalho’s study and ours. Then, their solution space exhibits

some symmetry, making the branching scheme less efficient.

Table 7 gives results for the bin packing instances with w € [20,100], W = 150, and
500 or 1000 items, as well as for the so-called “triplets” instances from the OR-library,
and compare them with the results obtained by Valerio de Carvalho (1996), denoted by
“VdC”. Valerio de Carvalho does not report results for instances with w € [1,100] or
w € [50,100]. Here F'A includes the use of the cut on the minimum amount of unused
capacity (i.e. the lower bound on the waste) as in Valerio de Carvalho’s algorithm and
the comparison with Table 6 for instances with w € [20,100], W = 150, and 500 items
shows that this cut yields an improvement. Valerio de Carvalho’s reported computation
times are on a 40 MHz PC 486 DX, with 4 Mbytes of RAM. Therefore CPU times cannot
be compared. However, judging from the counters, it appears that the two approaches
are comparable for these classes of instances (our branching scheme typically yields fewer

branch-and-bound nodes).

Valerio de Carvalho’s approach and ours also differ by the way in which the sub-
problem is handled. Valerio de Carvalho solves the knapsack subproblems by dynamic
programming (or equivalently as shortest path problems in an appropriate network). His
approach could be more sensitive to an increase of the bin capacity. On the other hand,
the variable redefinition approach used by Valerio de Carvalho permits the introduction of
several forms of branching constraints or cuts without having to modify the subproblem.
Finally, the current implementation of our algorithm is probably better suited for cutting
stock problems than it is for bin packing problems because bin packing problems require
the use of branching on pairs of items and we have not implemented a proper procedure
to deal with the resulting modified subproblem. It would interesting to see how Valerio de
Carvalho’s approach and ours compare on the cutting stock instances solved here which

have wider range of item sizes and larger bin capacity.
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Problem type n n' L? L* P H1 H2

CS, class 1: w ~ U[1,7500], d = 50 49.74 110.00 | 982.40 992.35 992.35 998.24 1007.8
CS, class 2: w ~ U[1,5000], d = 50 49.65 143.05 | 635.10 635.49 635.60 641.65 647.60
CS, class 3: w ~ U[1,2500], d = 50 49.39 185.31 | 317.03 317.03 317.09 318.14 317.19
CS, class 4a: w ~ U[500, 5000], d = 50 49.70 128.19 | 690.80 690.89 690.89 703.21 710.47
CS, class 4b: w ~ U[500,5000], d = 100 49.70 129.25 | 1380.5 1381.1 1381.1 1405.5 1420.0
CS, class 5: w ~ U[500,2500], d = 50 49.40 166.09 | 372.66 372.66 372.75 377.69 372.90

BP: w ~ U[1,100], W = 100, 500 items 98.45 166.76 | 2565.29 256.14 256.14 256.46 256.26
BP: w ~ U[1,100], W = 120, 500 items 98.45 180.54 | 209.46 209.49 209.49 209.69 209.64
BP: w ~ U[1,100], W = 150, 500 items 08.45 199.74 | 167.44 167.44 167.44 167.56 167.44
BP: w ~ U[20,100], W = 100, 500 items 80.79 116.30 | 318.65 319.09 319.09 319.18 319.29
BP: w ~ U[20,100], W = 120, 500 items 80.79 130.20 | 2566.96 257.94 257.94 258.05 258.05
BP: w ~ U[20,100], W = 150, 500 items 80.79 151.05 | 201.20 201.20 201.20 203.90 201.81
BP: w ~ U[50,100], W = 100, 500 items 50.00 51.00 | 495.16 495.16 495.16 495.16 495.16

|, W

|, W

BP: w ~ U[50,100 = 120, 500 items 50.00 61.00 | 401.45 401.74 401.74 401.74 401.74
BP: w ~ U[50,100 = 150, 500 items 50.00 76.00 | 2562.29 253.45 253.45 253.45 253.45
BP: w ~ U[20,100], W = 150, 1000 items | 81.00 155.00 | 400.56 400.56 400.56 405.41 401.36
BP: “Triplets”, IP = nb of items /3
w € [250,500], W = 1000, 249 items 140.10 199.14 | 83.00 83.00 &83.00 95.00 8&4.15

Table 4: Problem size, quality of upper and lower bounds, and computational times for the enhanced algori
(version M).
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Problem type CS, class 1: w ~ U[1,7500]

algorithm depth nod  mast SP  time solved
EA 14.05 16.74 6749 52.64 5.33 20
EA with RH 0.29 1.29 7296 58.01 4.84 20
Vance 55 129 403 32.1 19
Problem type CS, class 2: w ~ U[1, 5000]

algorithm depth nod  mast SP  time solved
EA 108.31 140.84 306.31 179.58 46.24 19
EA with RH 3.29 429 418.84 309.96 24.61 20
Vance 121 147 549 27.0 18
Problem type CS, class 3: w ~ U[1,2500]

algorithm depth nod mast SP  time solved
EA 8.42 9.16 22.00 13.53 6.84 19
EA with RH 0.10 0.22 104.50 85.80 12.70 20
Vance 157 227 1950 307.7 13
Problem type CS, class 4a: w ~ U[500,5000], d = 50
algorithm depth nod mast SP  time solved
EA 76.90 84.29 223.80 142.11 21.95 20
EA with RH 1.15 2.15 228,50 178.10 11.11 20
Problem type CS, class 4b: w ~ U[500, 5000], d = 100
algorithm depth nod  mast SP  time solved
EA 98.49 101.49 238.89 137.25 24.90 20
EA with RH 1.34 241 297.39 227.60 19.19 20
Problem type CS, class 5: w ~ U[500, 2500]
algorithm depth nod  mast SP  time solved
EA 24.33 2450 57.11  32.60 12.97 18
EA with RH 0.46 0.66 205.56 167.21 19.10 20

Table 5: Computational results for Cutting Stock Problems (with 50 items, average de-
mands of 50 or 100, and bin capacity W = 10000) and comparison with Vance’s results.
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BP with 500 items W =100 W =120
algorithms dep nod mast SP  time | dep nod mast SpP time | dep
EA 0.49 1.35 13.49 1290 1.52|1.50 1.63 12.79 11.06 1.39 | 0.00
w e EA with RH | 0.15 0.94 14.40 13.20 1.53|0.00 0.16 16.30 12.90 1.39 | 0.00
[1,100] | Mart. & Toth 2805 10.23 887 10.34
Vance et al. 25.4 1425 4741 not solved
algorithms dep nod mast SP time | dep nod mast SpP time | dep
EA 0.85 1.34 6.55 550 1.24]0.56 1.29 11.20 10.51 1.17 | 19.2
w e EA with RH | 0.00 0.34 569 430 1.20|0.00 0.63 10.20 9.17 1.11 | 0.16
[20,100] | Mart. & Toth 28 0.127 1663 10.06
Vance et al. 8.0 642.9 251.7 36.2  968.5 883.8
algorithms dep nod mast SP time | dep nod mast SP  time | dep
EA 0.00 0.00 0.00 0.00 0.89]0.00 0.26 0.80 0.80 0.74 | 0.00
w e EA with RH | 0.00 0.00 0.00 0.00 0.88|0.00 0.26 0.80 0.80 0.74 | 0.00
[50,100] | Mart. & Toth 0 0.049 0 0.050
Vance et al. 1.0 8.5 0.3 1.0 195.1 14.4

Table 6: Results for Bin Packing Problems and comparison with previous studies Martello and Toth (19¢
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Problem type | w ~ UJ[20,100], W = 150, 500 items
algorithm depth nod  mast SP time
EA 18.75 194  69.56  49.5 4.15
EA with RH 0.16 0.60 50.71 34.0 2.24
VdC 50.0 46.3  32.51
Problem type | w ~ U[20,100], W = 150, 1000 items
algorithm depth nod  mast SP time
EA 38.25 39.2 106.44 67.0 7.20
EA with RH 0.21 0.85 83.15 56.0 3.94
VdC 59.2 37.7  35.11
Problem type BP: triplets with 249 items

algorithm depth nod  mast SP time
EA 46.55 48.9 521.99 474.2 137.80
EA with RH 0.54 1.5 425.7 3747 44.13
VdC 58.3 439.4 649.04

Table 7: Results for Bin Packing instances when using the waste lower bound and results

for “triplets” instances, plus comparison with Valerio de Carvalho’s results.

5 Final Remark

We have seen that the efficient solution of an integer program such as the cutting stock
problem requires the combined use of tight lower bounds, efficient branching scheme, ap-
propriate tree search and proper initialisation. Additional features, such as good heuris-
tics, cutting planes, early branching or rounding procedures can make a significant contri-
bution as well. However, there is a tradeoff between their potential benefit and the extra
computational burden they cause. Both the benefits and the associated computational
burden depend on the problem on hand and the balance between the two will differ for
other applications. For instance, in applications where the column generation subproblem
is strongly NP-hard, the contribution of the a priori bound (22) is essential (Sutter, Van-
derbeck and Wolsey, 1994). In applications where the master LP solution is not a good
approximation of the IP solution, it is better not to include the columns of the heuristic
solution in the master (Vanderbeck, 1994).
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