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Abstract

We review the main issues that arise when implementing a column generation
approach to solve a mixed integer program: setting-up the Dantzig-Wolfe refor-
mulation, adapting standard MIP techniques to the context of column generation
(branching, preprocessing, primal heuristics), and dealing with issues specific to col-
umn generation (initialization, stabilization, column management strategies). The
description of the different features is done in generic terms to emphasize their ap-
plicability across problems. More hand-on experiences are reported in the literature
in application specific context, f.i., see Desaulniers, Desrosiers and Solomon (2001)
for vehicle routing and crew scheduling applications. This paper summarizes recent
work in the field, in particular that of Vanderbeck (2002) and (2003).

Introduction

The Dantzig-Wolfe reformulation approach is an application of a decomposition prin-
ciple: one chooses to solve a large number of smaller size and typically well-structured
subproblems instead of being confronted to the original problem whose size and complex-
ity are beyond what can be solved in reasonable time. The approach is well suited for
problems whose constraint set admits a natural decomposition into sub-systems repre-
senting well known combinatorial structure.

Consider a mixed integer problem of the form:

ZMIP —min  c(z,Y) (1)



|MIP] st.  A(r,y) > a (2)
B(z,y) > b (3)

r > (4)

y € IN? (5)

where A € QP B ¢ @™*(+P) are rational matrices and ¢ € Q") ¢ € @, and
b € @™ are rational vectors. This structure encompasses cases in which the problem has

1. Difficult Constraints: A (z,y) > a represents difficult constraints. B (xz,y) > b
represents a more tractable combinatorial subproblem that can be solved much more
efficiently than the global problem. A classic example is the Traveling Salesperson
Problem (TSP) where sub-system B represents 1-tree constraints while sub-system
A stands for degree-2 constraints at each node. However, the word “efficiently” needs
not necessarily mean polynomially solvable.

2. Linking Constraints: B(z,y) > b has a block diagonal structure while A(z,y) > a
represents linking constraints. An example is the Cutting Stock Problem (CSP)
where B defines a feasible way to cut each wide paper roll into products of smaller
width (a knapsack subproblem for each wide roll) and A defines product demand
covering constraints.

3. Multiple Sub-Systems: A (z,y) > a and B (z,y) > b represent each a more
tractable sub-system (possibly having its own block diagonal structure) and the
difficulty arises from having them simultaneously. An example is the Capacitated
Multi-Item Lot-Sizing (CMILS) problem, where there is a subsystem associated with
each item defining a single-item lot-sizing problem and a subsystem associated with
each period defining a knapsack capacity constraint.

They are alternative ways to take advantage of such problem structure to compute
efficiently strong dual bounds around which an efficient exact optimization approach can
be developed: Lagrangian relaxation (Geoffrion, 1974), cutting plane approach (Crowder,
Johnson and Padberg, 1983), and variable redefinition (Martin, 1987) are such techniques.

1 Dantzig-Wolfe reformulation

The Dantzig-Wolfe reformulation approach is a special form of variable redefinition. It
can be presented using the concept of generating sets: For each sub-system on which the
decomposition is based, one defines a finite set of generators from which each subproblem



solution can be generated. The variables of the reformulation shall be the weights of the
elements of these generating sets.

Saying that G® is a generating set for subproblem
XP ={(z,y): B(z,y)>b, >0, yc N"}. (6)

means that
XP={(z,y) = > gA;: Ae RP}.
geGB
Set GP is typically large but finite even if X? is not. RP represents specific restrictions
on the weights A, including cardinality and integrality restrictions.

This framework encompasses various definitions of D-W reformulation. In the classic
convexification approach, the generating set is defined as the set of extreme points and
rays of conv(X?®). An alternative approach is to base the decomposition on a property
that integer polyhedra can be generated from a finite set of feasible integer solutions plus a
non-negative integer linear combination of integer extreme rays (Nemhauser and Wolsey,
1988). This is the discretization approach of Vanderbeck (2000). It generalizes to Mixed
Integer Programs, by applying discretization in the integer variables (in the y-space) while
convexification is used for the continuous variables. In Table 1, we specify the definition
of G and RP for each of the above cases. Vanderbeck (2002) discusses other possible
definitions of generating sets. In Table 1, we assume boundedness of the subproblem X
and a single block in matrix B to simplify the notation (the generalization to the un-
bounded case is straightforward, the case of a block diagonal subsystem is treated below).

The reformulation based on subproblem B takes the form:

M(B)=min{ Y (cg)As: > (Ag)A;>a, A€ R"}. (7)

geGB geGB

Due to its large number of variables the linear relaxation of the reformulation is solved
using a delayed column generation technique. Then, the reformulation is commonly called
the master program while the slave is the pricing subproblem. For M(B), the pricing
subproblem takes the form

¢(B(7) =min{(c —7A) g: g € GP}. (8)

where 7 are dual variables associated with constraints >°,cq5(Ag) Ay > a. The procedure
starts by solving a master LP restricted to a subset of columns. While the subproblem
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Table 1: Definitions of G® and R® under convexification and discretization approaches

Convexification:
GP = {(z,y) € R} x IN? : (z,y) = extreme point of conv(X?)}
RB == {A Z O . EQEGCB Ag == 1, EQEGB y‘q )\g € WP}

Discretization for an IP:
GE={ye IN?: By >b}
RE={)\: T e Ay =1, )\, € NVge GF}

Discretization for a MIP:
G? =proj, X ={y € IN? : B (z,y) > b, z >0}
SB(y) = {z € R" : z is an extreme point of B (z,y) > b}
GP ={(z,y) e R x IN*: ye GZ, z € SB(y)}
GP(y)={g=(2%y9): v =y € G}, 29 € SP(y)}
RE = {)\ : deGB )\g =1, deGB(y) )\g eINVye Gf}

returns negative reduced cost columns, they are added to the linear program that is re-
optimized. The intermediate master LP values are not valid dual bounds. However, a
Lagrangian dual bound can readily be computed from the subproblem value: applying
Lagrangian relaxation to M, dualizing the A constraints with weights 7 > 0 yields a valid
bound of the form

L(m) = ma+ f(¢%(m)) 9)

where function f(.) takes a form that varies with the definition of the cardinality restric-
tions in RZ (Vanderbeck, 2003). In the case of a single subproblem taking the form of
a bounded integer polyhedron, f((Z(m)) simply equals (Z(7). Upon completion of the
column generation procedure, this Lagrangian bound equals the master LP value. This
column generation algorithm is embedded in a branch-and-bound procedure to solve the
integer problem. The overall algorithm is known as Branch-and-Price.

The interest of the reformulation is twofold. First, it leads to a solution method
implementing the desired decomposition of the problem and exploiting our ability to solve
the subproblem. Second, it often leads to strong dual bounds: Lagrangian duality theory (
Geoffrion, 1974) tells us that the master LP (under a standard definition of the generating
set) is equivalent to the Lagrangian dual defined by dualizing the master constraints, itself
equivalent to solving an LP on the intersection of the master constraints and the convex



hull of the MIP subproblem polyhedron. For M(B), this writes
ZMB) = min{c (z,y) : A(z,y) > a, (z,y) € conv(XP)}. (10)

Thus, ZMIP < ZMB) < zMIP  The first inequality is typically strict unless X5, =
conv(XPB) (that is when the subproblem has the “integrality property”). In the latter
case, although the Dantzig-Wolfe decomposition approach gives a dual bound equal to
the standard LP relaxation of the MIP, it might be worthwhile: beyond the motivation of
working with a specialized subproblem solver, it may allow to avoid symmetry (as devel-
oped below in the case of multiple identical subsystems); it also provides a good strategy

for introducing variables dynamically (if the original MIP formulation is itself large scale,
as in Briant and Naddef (2004)).

In a standard D-W reformulation, the definitions of G® and R® ensure that

Property 1 The master linear programming relazxation offers a dual bound which is equal
to the Lagrangian dual value (10): i.e., we must have

{(z,9) = > grg: A€ R[p} = conv(XP);

geGB

Property 2 The master program (7) is a valid mized integer reformulation of the original
MIP problem (1-5).

However, in extensions of the D-W reformulation principle, one might consider generating
set definitions where these properties are relaxed as discussed in Section 3.

When matrix B is block diagonal

B 0 0

0 B2 ... 0
B = , _ _ (11)

0 O B¥
with K non-identical blocks, one defines a generating set GB" for each k = 1,..., K.
But, when the blocks are identical, i.e. B' = B%2 = ... = BX, one only needs to define

one generating set GB = GB'. The weigths associated with the generators can then be
aggregated,

K
Ag =Y M VgeGP (12)
k=1
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and the cardinality constraint in the associated restriction set R? be written as

Yo =K. (13)

geGB

Then, there is a third benefit in working with the D-W reformulation: it does not suffer
from the drawback of symmetry present in the original formulation. Indeed, in the origi-
nal formulation, variables must be indexed by k and a given solution can be represented
in several ways by permuting the k£ indexing. This is quite harmful when it comes to
enforcing integrality through branching constraints.

A distinction is to be made between convexification and discretization approaches that
relates to the expression of the integrality restrictions. With the former one must translate
the master solution in the space of the original variables to express and enforce integrality.
As a consequence, when there are multiple identical sub-systems, one cannot aggregate
weights using (12) and the reformulation suffers from the same symmetry drawback as
the original formulation. The discretization approach, offers a true integer programming
reformulation with which it is easier to implement some branching schemes as we shall see.

In most applications, cardinality constraints (13) can be relaxed to either a < or a >
constraint (whether K = 1 or K > 1) as the combinatorial relaxation yields the same
optimum value. This is in particular the case when 0 € GB. A generalization is to write
the cardinality constraint in the form:

LP< Y )\ <U® (14)

geEGE

where L? and U® define a lower and an upper bound on the number of generators that
can be used from subproblem B. They have an economical interpretation: for instance in
a vehicle routing problem they stand for the minimum and maximum number of vehicles
that must/can be used.

Formulation (7) assumes a simple Lagrangian relazation of a sub-system A while B
are being kept as hard constraints. However, one can treat both sub-systems as hard
constraints by duplicating variables and dualizing constraints that enforce equality of the
copies: this variable splitting approach implements a Lagrangian decomposition (Guignard,
2004). Then, the master takes the form

M(A,B) =min{ 3 (5 9) 00 + 3 (5 9) A7 :

geGA €GB



YogAi=3Y gAl, (15)

geGA geGB

M e R4, \P ¢ RB}
and the dual bound is
Zé/[P(A’B) = min{c (z,y) : (z,y) € conv(XA) N com)(XB)} ; (16)

In the sequel, unless said otherwise, we assume a simple Lagrangian relaxation with B as
the sub-system.

2 Choosing a solver for the Master

There are alternatives to solving the master LP with the revised simplex algorithm.
Seen in the dual space, the latter amounts to applying a cutting plane algorithm known
as Kelley’s method (Kelley, 1960; Cheney and Goldstein, 1959); the column generation
subproblem is then to be seen as a separation routine generating cuts. Other approaches
are known to have better performance: the bundle method (Lemaréchal, 1998) and AC-
CPM (Goffin and Vial, 2002) are cutting plane algorithms for the dual of the master that
differ from Kelley’s cutting plane method by the choice of proposal that is made to the
subproblem solver.

In Kelley’s method, the dual solution that is returned to the subproblem is the point
that optimizes the current restricted master linear program. In the bundle method the
proposal is the point that optimizes a modified objective over the restricted master poly-
hedron: a quadratic term that penalizes the norm of the deviation to the current best
dual solution, 7, is included in the objective to stabilize the search (7 is the dual solution
that gave the best Lagrangian bound value). In ACCPM, the proposal is the analytic
center of the localization set defined by the restricted master polyhedron intersected with
a cut on the objective value (defined by the best Lagrangian bound). The latest version
of ACCPM (du Merle and Vial, 2002) includes a proximal term like in the bundle method
to enhance stability.

Another alternative to the simplex algorithm is the interior point method that is
readily available in most commercial MIP solvers. Applied to the dual it has the benefit
of (approximately) computing dual prices centered in the optimal face when the dual
admits many alternative optimum solutions (as it often happens)— before translating it
into an extreme solution. Such “centered dual solutions” may help in stabilizing the column
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generation procedure. Finally, a sub-gradient algorithm is an alternative that exhibits slow
convergence but requires little computations at each iteration. It is often used when one
is happy with an approximate dual solution of the master LP. The sub-gradient algorithm
also provides a candidate primal solution in the convex hull of generated subproblem
solutions, but it may violate the master constraints (Briant et al., 2004).

3 Options in setting-up the D-W reformulation

Given an application, there are typically many ways of formulating it as a MIP and
selecting sub-systems on which the D-W decomposition is based. The quality of the
resulting dual bounds can be compared theoretically using Lagrangian duality theory (
Geoffrion, 1974). But, for practical purposes, the important consideration is the trade-off
between the duality gap observed on practical data sets and the computational time re-
quired to solve resulting master and subproblems.

The options are:

e To adopt a tighter or looser definition of a sub-system. Some constraints can go
in either sub-system A or B or be duplicated in both. Implicit constraints (cuts)
can also be added. In particular, one can enforce bounds on subproblem variables
that are induced by constraints that are not in the subproblem. Columns whose
coefficients take value within the bounds implied by master constraints are called
proper. Vanderbeck (2002) also defines strongly proper columns whose component
values satisfy bounds implied by using probing techniques in the master. Including
extra restrictions in a subproblem may make it much harder to solve but may yield
better dual bounds. The opposite trade-off consists in relaxing the subproblem
to ease its solution while weakening the dual bounds. This can be viewed as a
form of state-space-relaxation —a classical technique in dynamic programming — see
Gamache et al. (1999) for an example of its use in a column generation context.
Such relaxation can be exploited just to provide a warm start, or to implement a
primal-dual heuristic for the subproblem.

e To base the reformulation on one or several sub-systems: a Lagrangian relaxation
approach yields reformulation (7) while a Lagrangian decomposition approach yields
reformulation (15). Although the latter yields a theoretically stronger dual bound,
the master program is typically much harder to solve: the number of dualized con-
straints (15) is often large and each restricted master typically admits many alter-
native dual solutions (a degeneracy that causes a large number of iterations in the
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4

column generation procedure). Moreover the theoretically better dual bound may
in practice be not significantly better than the bound given by simple Lagrangian
relaxation (Monneris, 2002). Guignard (2004) proposes to aggregate variables in or-
der to reduce the number of dualized constraints (15); in some case the same quality
dual bound can be obtained with aggregate representation of the link between the
subsystems.

To reformulate a sub-system (say A), improving its formulation, either instead of
treating it as a subproblem (while decomposition is performed based on a second sub-
system(B) as in Michel (2003)) or before applying D-W decomposition (as in Thizy
(1991)). One might have a formulation of the convex-hull of subproblem A solutions:
for instance, as a network flow problem equivalent to solving the subproblem by
dynamic programming (Martin, 1987). Or one might know cutting planes describing
the integer polyhedron A. However, the size of such explicit reformulation is often
too large. Then an approximate improved formulation can be used: for instance by
aggregating variables (as in van Vyve (2003)) or by adding only a subset of cuts.
The formulation can also be improved dynamically, using a cutting plane algorithm,
which, combined with the column generation procedure, leads to a branch-and-price-
and-cut algorithm.

To disaggregate a sub-system, say B, that has a block diagonal structure or treat
it as a single block. As discussed in Vanderbeck (2003), this does not affect the
quality of the final dual bound as conv(XB) = @K, conv(XB"). But intermediate
dual bounds can be better with the aggregated approach. (However, one can work
with a disaggregate master while adopting the Lagrangian bound computation and
the column generation strategy of the aggregate approach.) On the other hand,
aggregation influences the efficiency of the master solver: the disaggregate formu-
lation typically requires fewer iterations (because the disaggregate columns can be
recombined in different implicitly defined aggregate columns); but solving a disag-
gregate master can be more costly computationally (in particular, when the master
is solved using the bundle method, solving the disaggregate form of the quadratic
master is much harder than the aggregate form).

Branching Scheme

In a branch-and-bound algorithm, the branching scheme consists in partitioning the

solution space into sub-spaces so as to cut off the current fractional solution while ensuring



that all feasible integer solutions are included in one of the sub-spaces. In a branch-and-
price algorithm one can fall back to this standard scheme by using a convexification
approach. Then, one returns to the space of the original variables (x,y) to check integral-
ity and derive branching constraints (Villeneuve et al., 2003).

Alternatively, with the discretization approach, one has a mixed integer programming
D-W reformulation and branching can be implemented by partitioning the generating
sets, G = G' U G?, and enforcing separate cardinality constraints (14) on each subset:

L'<Y A <U' and L*< ) A <U?

geG! geG?

so as to eliminate infeasible fractional solutions for which }°;c(,) Ay & IV for some y € G),.
The recursive partition of the generating set shall be pursued until the integrality con-
straints - gegr(y) Ag € IV are met for all y € GE. The scheme seems to call for associating
a subproblem with each subset of generators G! and G?. This, of course, quickly gets
out of hand due to the exponentially increasing number of subsets. Instead, the pricing
subproblem associated with G is amended to model correctly the reduced cost of gen-
erators from any subsets. The resulting modifications to the pricing subproblem range
from amending the objective coefficients to adding new variables and constraints that
may destroy the initial combinatorial structure and make the subproblem less tractable.

_In practice, the separation of the generating set shall define a true partition G =
G U (G \ G). Branching is implemented by choosing G such that 3 .z Ay = o ¢ IV and
by adding a disjunctive branching constraint

Z Ag < |a] or Z Ag > [a] . (17)

ge@ ge@

An indicator variable 14 saying whether or not the generated column belongs to G is
added to the pricing subproblem. Its cost equals the dual value of the branching con-
straint. MIP constraints can be necessary to define 14 in terms of the existing subproblem
variables while in the simplest case 14 is equal to an existing subproblem variable. Thus,
sets GG must be carefully chosen, making a trade-off between the efficiency of the branch-
ing scheme and the difficulties resulting from the subproblem modifications (Vanderbeck,
2000).

Branching on a single )\, variable corresponds to choosing G to be a singleton. This
is typically a poor choice on both regards: it yields an unbalanced branch-and-bound
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tree and requires heavy modifications to the subproblem. Instead, the most aggregate
definitions of G that yield the most balanced tree are also the easiest to accommodate in
the subproblem. The simplest definition is G = G, enforcing integrality of the number of
generators used from a sub-system:

Rule 1 S A eN.

geG

For instance, in a column generation approach to the facility location problem, this rule
enforces 0 — 1 decisions on opening facilities. The next easiest rule that does not yield
any subproblem modification is to branch on existing binary variables: say y; € {0,1} is
a subproblem variable then define G = {9 € G :y; =1} and enforce

Rule 2 Z Ag € IN .

9€Giy;=1

Then, 15 = y;.

Next consider an integer variable of the subproblem, say yx € IN, with bounds [, <
Yr < ug. It admits a binary decomposition:

[logug|
ye= > 2yg with yg € {0,1} V5.
=0

One can branch on these binary components starting with the heaviest:

Rule 3 Yo MEDN.

9€Giyp;=1

The modification to the subproblem consists in introducing the binary components ei-
ther dynamically as they arise in branching constraints (one replaces y; using yx =
Yy + E}ff““ 24y, with g4 € IN, yj, < 27 — 1 and bounds I < yx < ug must be explicitly
enforced on the new expression of y;); or statically by reformulating the subproblem as a
0-1 program.

Both Rule 2 and 3 can sometimes be enforced directly in the subproblem rather than
being set as a master constraint. This results in a stronger dual bound. When the upper
bound |«] of branching constraint (17) is equal to zero, no generators can be chosen in
G and the subproblem solution space can be redefined to yield G \ G. Symmetrically,
when the lower bound [« of (17) equals the upper bound U of the cardinality constraint
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(14), all the generators must be chosen in G and the subproblem solution space can be
redefined accordingly.

When the master solution remains fractional beyond these simplest rules, one can
branch on pairs (s,t) of binary variables or binary components introduced for Rule 3:

Rule 4 > A eNN.

9€Gys=yt=1

This rule generalizes a branching scheme attributed to Ryan and Foster (1981). It admits
special cases where it can be implemented directly in the subproblem while it normally
requires to introduce a new binary variable in the subproblem, say 1, = y. Specifically,
there are four distinct cases:

1. When |«a| = 0, the constraint ys + y; < 1 is added to the subproblem.

2. When |«a| > 0, ys is introduced in the subproblem along with the constraint y; >
Ys + Yt — 1.

3. When [a]| = U, the constraint y, = y; is added to the subproblem.

4. When [a] < U, ys is introduced in the subproblem along with the constraints
Yst < Ys and ygp < Yy

Columns present in the master that do not satisfy the new subproblem constraints must
be deleted. Vanderbeck (2003) presents this rule in a more general context and defines
two more special cases.

The above rules may not suffice to generate a solution that obey the integrality re-
strictions. Then one shall pursue branching by implementing rules based on subset G
defined by fixing more than 2 column components. Worst case results and subproblem
modifications are given in Vanderbeck (2000). However, for many applications, the above
rules suffice to ensure integer solutions: either theoretically — for instance when the master
is a set partitionning problem — or in practice — for example, most instances of the cut-
ting stock problems can be solved by combining these basic branching rules with primal
heuristics (Perrot, 2004).

Choosing specific components (or pairs) on which to branch is done according to

branching priorities associated with variables of the original formulation. Which of the
disjunctive branch is explored first depends on the priorities defined for original variables.
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A tree search strategy (best bound first, depth first, least discrepeancy, ...) must be
selected. The above hierarchy of rules along with a best bound first strategy focuses
on improving dual bounds. However, if the goal is to obtain incumbent integer solution
quickly, branching rules yielding an unbalanced tree may be appropriate along with a
depth first or a least discrepancy search strategy. One might even consider branching by
rounding-up A, if backtracking is not expected (or in a rounding heuristic).

The distinction between convexification and discretization approaches is mostly a mat-
ter of presentation framework. The discretization has an apparent drawback: it requires

> NeNVyeG) (18)

9EGB(y)

although an integer solution can be obtained for which this isn’t true: The current solu-
tion in A may be fractional, while its translation in the original variables y is not. This is
in particular the case in applications where the subproblem is a shortest path problem:
as we know from the flow decomposition theorem, the arc flow y can be integer while the
path flows A are fractional. Thus one could say that the condition (18) is too strict and
might lead to continue on branching when it is not necessary. This misfortune can easily
be avoided by checking integrality using the convexification conditions 3 cqn y9 Ay € IN?
while implementing branching with the goal of enforcing (18).

On the other hand, the convexification approach has its drawbacks too. With the
plain implementation defined in Table 1, branching constraints are always implemented
in the master and are therefore dualized. While, with the discretization approach, special
cases can be detected automatically where branching can be enforced directly in the sub-
problem. Then, the branching constraints are part of the polyhedron that is convexified
yielding a better Lagrangian dual bound. However, this apparent drawback of the convex-
ification approach can be circumscribed in an application specific context by recognizing,
in the master, constraints that concern the subproblem variables only and can therefore
be placed in the subproblem. It is equivalent to redefining the D-W reformulation from
the original formulation at each node of the branch-and-bound tree (Villeneuve et al.,
2003). We could call this approach the “dynamic convexification approach”, it reproduces
the subproblem modifications of the discretization approach. Thus, the discretization ap-
proach can be understood as a way to implement implicitly /automatically the redefinition
of the D-W reformulation at each branch-and-bound node with no need to do it explic-
itly/manually. While the convexification approach is normally static but can be reseted
at each node.
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The second drawback of the convexification approach arises when the sub-system
on which the decomposition is based has a block diagonal structure, as it is often the
case. Even if these blocks are identical, the convexification approach requires to asso-
ciate different variables with each block to enforce Ygeqrt VP /\’; € INPYk, which results
in symmetry. Again, this drawback can be overcome: by introducing auxiliary aggregate
variables, y = 3F EgeGBk y9 )\’; on which to branch. Again, this remark reveals what the
discretization approach does implicitly: it permits to branch on auxiliary variables. Even
when diagonal blocks are not identical but are similar, it is worthwhile branching on sets
G C G = UK G* to avoid symmetry.

Note that when these two drawbacks of the convexification approach cumulate, i.e.
when you have a branching constraint that could go in the subproblem in the presence
of multiple blocks, the manipulations that need to be done under convexification to com-
pensate for them become difficult to implement. For instance, consider implementing
Rule 4 in the presence of multiple identical blocks. Thus, our view is that the discretiza-
tion approach provides a theoretical framework in which it is more natural to formulate
branching constraints. In particular, any branching rule implemented in the convexifi-
cation framework can be implemented in the discretization framework in the same way
but the converse is not true. The same conclusion holds for adding cutting planes for the
master.

5 Preprocessing and variable fixing

Standard preprocessing techniques (Savelsbergh, 1994) can also be used in a column
generation approach. Not directly on the column generation re-formulation that is only
known implicitly through the solution of subproblems, but in the solution space of the
original formulation (1-5), which is also that of the subproblem variables. Bounds on
subproblem variables can be tightened not only based on subproblem constraints but also
on the basis of their input in the master constraints. Tighter bounds might permit to
eliminate redundant constraints (in the subproblem or in the master) or to prove infea-
sibility. The reduced cost fixing techniques permit to strengthen subproblem variable
bounds further. Preprocessing can also be used to estimate the range of dual price values:
this dual information is helpful for a warm start of the column generation procedure.

When the sub-system is made of blocks (11), preprocessing can be used to derive

bounds on aggregate variables (z,y) = Y4, (z¥, y*), which in turn implies bounds on the
disaggregate variables (2%, y¥). The useful formulation where standard preprocessing can
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be applied is therefore:

min ¢ (z,y) (19)
Az,y) > a (20)
B (2*,y") > b Vk=1,....K (21)
K
(z,y) = D (%) (22)
k=1
k
k< (pk ky < U Vk =
0<%y < 1,....K
0<i<(z,y) < w. (23)

Using constraints (20) to strengthen bounds (I,u) and constraints (21) to strengthen
bounds (I¥, u¥), one can then combine these strengthening through constraints (22).

Formulation (19-23) does not need to be generated explicitly, but these implicit rela-
tions can be exploited for preprocessing. As it is standard, the lower bound on a variable
x; with positive coefficient a;; in > constraints A; can be improved if it violates

lj > (CLZ' - Z Qjy Uy — z Qiy lv)/aij

v#£j 105, >0 v#£j:ai,<0

and similarly for other coefficient sign and constraint sense and for (z*,*) in the B*
constraints. Then, combining aggregate and disaggregate bounds can result in further
strenghtening if one of the following relations is violated:

leZi—Zuf, ufgui—Zlf,
t£k t£k
K K
liZZlfy uzﬁzuf
k=1 k=1

When the diagonal blocks are identical, (I*,u*) = (I,4) Vk = 1, ..., K, the above proce-
dure simplifies: one only needs to preprocess one sub-block and the strengthening through
combining aggregate and disaggregate bounds takes the form

ZZZZZ—(U—l)&,, ﬂ,guz—(L—l)l,,

I, > Li;, w < U
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where (L, U) are the bounds of the cardinality constraint(14). These relations are tested
iteratively until no variable bounds can be improved. For integer variables, bounds are
rounded to their integer parts.

If an incumbent integer solution /NC' is available, it can be shown to dominate so-
lutions where a variable takes value within restricted range: if a dual bound conditional
to such restriction is available that takes value greater than INC. Lagrangian bound (9)
can be made conditional to restricted range (I, u’) on subproblem variables:

L(n|l',u) =ma+min{(c — 7A) (z,y) : B(z,y) >b, I' <(z,y) <u'}. (24)
Thus, further bound strengthening for integer variables y; can be achieved as follows:
while L(7|l' =1+ €' (u; — l;),u) > INC, reset u; :=u; — 1,

while L(r|l,v' =u—e" (u; —1;)) > INC, reset l;:=1; +1,

where €’ is the 7" unit vector. The reduced cost indicates which variable bound is candi-
date for such strengthening (Vanderbeck, 2003).

This so-called “variable fixing” scheme is computationally costly since it requires solv-
ing a subproblem for each test. However, a dual bound on the subproblem value is
sufficient to define a valid test. Thus, in practice, one may solve a relaxed subproblem:
for instance, a combinatorial relaxation of constraints B (x,y) > b yields a trivial bound.
A linear relaxation of the subproblem can yield a stronger bound (if the subproblem has
the integrality property this bound has the same quality as (24)— this is the case when the
subproblem is a shortest path problem). Yet another strategy is to dualize constraints
B (z,y) > b and apply a dual heuristic (such as several steps of a sub-gradient method)
to estimate the Lagrangian prices.

When variable bounds cannot be further strengthened, constraint redundancy and
infeasibility can be tested. The improved bounds on subproblem variables shall be used
in the definition of the generating set. They guarantee that only proper columns shall
be generated. However, this can make the subproblem much harder to solve. Take the
two dimensional knapsack problem for example. The unbounded version can be solved in
pseudo-polynomial time by dynamic programming while the bounded version is strongly
NP-hard. For the single-item lot-sizing problem the uncapacitated version is polynomial
while the capacitated case is NP-hard. Nevertheless it might be worth enforcing subprob-
lem variable bounds since the D-W reformulation yields a better dual bound then.
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Applying preprocessing to the dual of (19-23) allows to estimate the dual prices. This
LP dual is a valid dual problem for the mixed integer program (1-5) or (7). However, the
bounds on dual prices are not valid bounds for the Lagrangian dual (10). They merely
provide estimates of dual price values. Take the example of the cutting stock problem.
The primal LP takes the form:

min{z Y szk > d; Vi, Zwi Tig < W yp VE, 24 > 0, yp € [0,1]}
% % i

where x;; is the number of pieces of product 7 cut in wide-roll &, while y;, is 1 if wide-roll
k is used. Its dual writes

max{Zdim—Zl/k: O'kW—l/k S 1Vk, T, — W; O S OVZ]{?, T3y VE, Ok ZO}
i k

It can be solved trivially through preprocessing: o < 1};”“ = m < 3 (1 +w); the

objective is maximized by setting the 7;’s equal to those upper bounds and v, = 0 V&

because K > w Thus m; = §t solves the dual LP. These values provide good
estimates for starting up the column generation procedure but do not define valid upper

bounds on the Lagrangian dual solution.

6 Initialization

The generalized simplex algorithm used to solve the column generation formulation
must be started with a feasible primal solution. It can be constructed heuristically. Al-
ternatively, one can introduce artificial columns and combine phase 1 and phase 2 of the
simplex method: at the end of phase 2, if artificial columns remain in the primal solu-
tion, their cost is increased and one returns to phase 2. Artificial columns remain useful
to restart column generation after adding branching constraints. They also stabilize the
column generation procedure. Dual methods need not be started with a primal feasible
solution but they can benefit anyway from a warm start.

There are various ways to set artificial variables in the D-W reformulation from the
most aggregate to the least: one can define a single artificial column, or one for each
subproblem (representing the sort of solutions expected from this subproblem) or one
for each master constraint (which offers an individual control on dual prices). In defin-
ing artificial column coefficients, one tries to feed the model with relevant information
concerning the order of magnitude of the data: after the pre-processing phase, one has
estimates of the maximum and minimum value that can be assumed by master constraint
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LHS, either globally or for a single subproblem solution; these values can be used to set
artificial column coefficients.

In the primal, artificial columns act as slack variables that transform the hard con-
straints into soft ones: minimizing their cost amounts to minimizing the constraints’
violations. In the dual of the master program, artificial columns define cuts (in the same
way as regular columns do). Let us look for instance at the primal dual pair for the
LP relaxation of (7) augmented with artificial columns associated with individual master
constraints (indexed by ¢). The artificial columns are defined by their cost, constraint
coefficient and upper bound: (¢, a, @);.

min deG Cg Ag + Zz éz Pi

YgeG g A\g T a;p; > a; Vi
Primal: Ygecrg = 1
Ag > 0 Vge&
0<p < @ Vi
max ., a; m; — o+ Y U; Vs
YiQigTi—0 > ¢ Vg e G
Dual: vy 9 X
ua am < ¢G+uv Vi
T, Vj Z 0 Vi .

It appears that the artificial column cost over its constraint coefficient, Z—:, defines an
upper bound on the dual variable 7; that can be overruled (when v; > 0) at a cost defined
by the upper bound ;. In the same way, more aggregate definitions of artificial columns
define generalized upper bounds on dual prices. Modifying their definition dynamically is
a way to control dual variables. A general presentation of the primal-dual interpretation
of modifications done to the master can be found in Briant et al. (2004) — it relies on

Fenchel duality.

At a branch-and-price node other than the root, the pool of already generated columns
offers a natural set for initialization, once the columns that do not satisfy branching con-
straints are eliminated, but it might be too large. Selecting only the columns that were
potentially active at the parent node (i.e. with zero reduced cost) offers a good filter.

An intelligent initialization of the restricted master program offers a warm start. It
might be worthwhile working harder at initialization. One can generate an initial set of
columns based on the above dual price estimates. In turn, dual price estimates can be
refined further using a truncated version of the master solver: for instance, perform a few
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pivots of the simplex or several iterations of a sub-gradient algorithm with a subproblem
optimized over the existing columns. The spirit is to avoid using the computationally
costly procedure (whether it is the exact solution of the subproblem or that of the re-
stricted master) while the problem knowledge is approximative. This strategy has some-
times proved helpful (Caprara, Fischetti and Toth, 2000). However, the exact method (for
the master or the subproblem) is often very quick at the outset (because of the simplicity
of initial master formulation or subproblem objective) and using approximate procedures
does not always translate in big time savings.

7 Stabilization

The standard method for solving the LP relaxation of D-W reformulation, i.e. using
the simplex algorithm with dynamic pricing of variables, suffers from several drawbacks
as illustrated in Figure 1: (i) a slow convergence (a phenomenon called the “¢ailing-off
effect” in reference to the long convergence tail); (i) the first iterations produce irrele-
vant columns and dual bounds due to poor dual information at the outset (let us call
this the heading-in effect), (iii) degeneracy in the primal and hence multiple optimal so-
lutions in the dual: one can observe that the restricted master solution value remains
constant for several iterations (which can be called the plateau effect); (iv) instability in
the dual solutions that are jumping from one extreme value to another (the bang-bang
effect); the distance between the dual solution at an intermediate iteration k, 7%, and an
optimum dual solution, 7*, does not necessarily decrease at each iteration, i.e., one can
have ||7F —7*|| > ||7*~! — 7*||; (v) likewise, the intermediate Lagrangian dual bounds (9)
do not converge monotonically (the yo-yo effect).

Stabilization techniques have been developed to reduce these drawbacks (a review is
given in Liibbecke and Desrosiers (2004)). Vignac (2003) classifies them into 4 categories
according to the mechanism that is used: (i) defining bounds on dual prices (the dynamic
boxes of Marsten, Hogan and Blankenship (1975)), (#¢) smoothing dual prices that are
returned to the subproblem (Neame (1999) takes a convex combination of the current
master dual solution and that of the previous iterate, Wentges (1997) takes a convex
combination of the current dual solution and the dual solution that yielded the best La-
grangian bound), (4i7) penalizing deviation from a stability center, usually defined as the
dual solution that gave the best Lagrangian bound value (as in the bundle method of
Lemaréchal (1998)), (iv) working with interior dual solution rather than extreme dual
solutions (as in the solution method ACCPM of Goffin and Vial (2002), or in Rousseau,
Gendreau and Feillet (2003), where the center of the dual optimal face is computed ap-
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Figure 1: Illustration of the convergence of a simplex-based column generation approach
on the TSP instance €il76 of the TSPLIB: the upper (resp. lower) curve gives the primal
(resp. dual) bound at each iteration.
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proximately). These can be combined into hybrid methods (du Merle et al., 1999; Neame,
1999; du Merle and Vial, 2002).

These techniques often have an intuitive interpretation in the primal space of the A
variables (Briant et al., 2004). The basic techniques (dynamic boxstep and smoothing)
can be implemented within the linear programming framework. Observe that using sim-
plex re-optimization after adding a column rather than optimization from scratch can
bring some form of stabilization toward the previous primal solution (whether this is de-
sirable or not). Other techniques, such as penalizing deviation from a stability center,
can be tuned to remain usable within the linear programming context (by choosing the
L, norm for instance). Otherwise, an alternative master solver (as presented in Section
2) must be used. It is only by using a different master solver (such as bundle or ACCPM)
that one can get theoretical convergence rate better than that of the simplex-method.

There are basic tips to reduce instability. One should avoid including redundant con-
straints in the master as they create degeneracy. In particular, one should use inequality
constraints rather than equalities when this combinatorial relaxation yields the same so-
lution. This also bounds the dual variables to positive values. Including the original
variable in the master problem, as proposed in Poggi de Aragao and Uchoa (2003), can
yield harmful redundancy. A more aggregate formulation of master constraints can bring
stability (Perrot, 2004).

Basic stabilization can be obtained by managing artificial columns dynamically to con-
trol dual variables along with an intelligent initialization of the restricted master program
that allows to alleviate the heading-in effect (Briant et al., 2004). The next easy step is
to use a form of smoothing of dual prices. The more advanced stabilization techniques,
in particular the hybrid methods, require intensive parametrization (which may hide the
logic). They can be seen as barely attempting to mimic the behavior of alternative dual
price updating methods such as an interior point solver, the bundle method or ACCPM.
They are attempt at getting the benefits of these alternative approaches while staying in
the Simplex world. Therefore, their theoretical convergence rate is that of the simplex
method. When instability is problematic beyond the use of basic procedures, one should
consider methods based on non-differentiable convex optimization that really bring a dif-
ferent logic.

In a branch-and-price algorithm however the exact solution of the master LP might
not always be needed. A node can sometimes be cut by bound before reaching optimality

of the master LP. The convergence tail can also be truncated by branching early.
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8 Column re-optimization and post-processing

Re-optimizing existing columns before calling on the oracle subproblem to generate
new columns, has proved to be a successful strategy: for instance, Savelsbergh and Sol
(1995) apply a local search heuristic to active columns. It can be used as an alterna-
tive to a multiple column generation strategy: instead of introducing several columns of
negative reduced cost at a given iteration, return only one but scan the others in the
re-optimization phase after updating the dual prices.

Re-optimization can be somewhat formalized using the concept of base-pattern of Van-
derbeck (2002). If the generating set defines our universe, base-patterns are the aggregate
states resulting from some sort of projection/mapping onto a smaller size universe. In a
sense a base-pattern summarizes the main properties of the columns/generators that are
mapped onto it. It can be viewed as a seed for the generation of all the columns that
are represented by it. To re-optimize a column, one can compute the best reduced cost
column that can be obtained from its base-pattern, assuming that this re-optimization is
much cheaper than solving the subproblem.

For example for the capacitated multi-item lot-sizing problem, the setup solution y
to the discrete setup subproblem represents a base pattern for all associated production
levels x. Then, re-optimizing x for a fixed y involves solving a shortest path subproblem.
For the cutting stock problem, a cutting pattern defines a partition of the wide-roll where
cut pieces can be replaced by an assortment of smaller items. The re-optimization can be
heuristic.

Both examples call upon the concept of exchange vectors. An exchange vector is a
valid perturbation: added to a feasible column, it gives rise to another feasible column (see
Vanderbeck (2002) for a formal definition). Exchange vectors define dual cuts (Valério
de Carvalho, 2002); handling exchange vectors implicitly through re-optimization is the
equivalent of using a cutting plane procedure rather than setting all cuts a priori in the
dual master formulation. It can be called after a few master simplex iterations and not
wait until the restricted master LP is re-optimized.

The column generation literature includes discussions on what could be dominant/redundant
columns (a review is given in Liibbecke and Desrosiers (2004)). Since columns for the mas-
ter primal are cuts for its dual, one can turn to the well-defined concepts of redundant
dual constraints versus facet defining constraints to characterize columns. A more prag-
matic concept that can be imported in column generation is that of lifting: the idea is to
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apply post-processing to subproblem solutions to increase column coefficients in master
constraints (assuming “>” constraints) to their maximum feasible value (feasibility being
defined by the subproblem constraints).

A sequential lifting procedure consists in enumerating each master constraint ¢ with
zero dual price m; = 0 and solve the auxiliary subproblem

max{A4; (z,y) : B(z,y) >b,(c—7A) (z,y) <{(7), x >0,y € IN}

where ((7) is defined in (8). Alternatively, it can be formulated in terms of variables rep-
resenting variations from the current subproblem solution. Lifting is a practical approach
when this auxiliary subproblem is trivial: for instance, in the cutting stock application,
it consists in filling-up the knapsack with zero profit items.

9 Primal heuristics

The column generation approach is also a natural setting for deriving good primal solu-
tions to a combinatorial problem: the decomposition principle can be exploited in greedy,
local search or math-programming based heuristics. The price coordination mechanism of
the Dantzig-Wolfe approach brings the global view that may be lacking when local search
or constructive heuristics are applied directly to the original problem formulation (these
latter approaches are often qualified as myopic).

There are examples of decomposition based heuristics in the literature that range
from the simplest to the latest heuristic paradigm: a standard heuristic is to initialize
the master with a set of heuristically generated columns and to solve the MIP master
problem restricted to that initial set. Alternatively, on can use the columns generated
while solving the master LP (approximately or exactly) to define the restricted master IP.
However, there is typically no guarantee that such a static restricted set of columns holds
a feasible integer solution. Methods that dynamically generate further columns needed
for the integer solution avoid such drawback.

A rounding heuristic can be implemented by iteratively selecting in the master LP
solution the branching variable that is closest to its integer part and rounding it. Vari-
ables that are currently integer can be fixed first. It is important to use pre-processing to
adapt the subproblem to the residual master problem. The definition of branching vari-
able is not tuned to improving dual bounds as in Section 4: on can round ), variables as
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in Vanderbeck (1999) or the underlying original variables as in Elhedhli and Goffin (2002).

A generic greedy heuristic for the master consists in generating iteratively the columns
that have the smallest ratio of cost per unit of constraint satisfaction, take it in the solu-
tion and reiterate for the residual master problem (this requires generating columns that
are proper for the residual problem).

The local search paradigm can be implemented by exchanging columns in a restricted
pool over which the restricted integer master program is solved (heuristically or exactly).
Examples of meta-heuristic based on decomposition can also be found in the literature.
Taillard (1999) proposed an Adaptive Memory Programming heuristic for the vehicle rout-
ing problem based on managing a pool of columns representing feasible routes: columns
with a history of being present in good solutions are iteratively selected that are suitable
for the residual problem; if no more columns are available, remaining customers are being
introduced in an existing route if feasible or new routes are generated for them.

10 Automated reformulation

Implementations of column generation based solution methods that are reported in
the literature have been developed for a specific application. These algorithms are build-
ing on general purpose features such as the ideas reviewed herein. They are therefore
amenable to a generic solver for decomposable MIPs. If such generic solvers were not pro-
posed, it is because of the belief that there remain mandatory manual steps in the process
of implementing a column generation code: the user must define the reformulation, the
form taken by a column and its reduced cost, the user must say how the subproblem is
modified after branching; he must define the form of intermediate Lagrangian bounds for
its problem. Once the user has all that defined then he can use the tool-boz offered by
Abacus (Thienel, 1995), BCP (Ladanyi, Ralphs and Trotter, 1998), Maestro (Chabrier,
2003), or Minto (Savelsbergh and Nemhauser, 1991) to ease the implementation. Then,
generic parts of the code can easily be adapted for re-use in other applications.

However, it is possible to automatize the reformulation, letting a code apply the
Dantzig-Wolfe decomposition based on the original formulation and the user indication of
what constraints must be dualized. All further modifications resulting from branching or
adding cuts in the master for instance can be taken into account automatically too. Van-
derbeck (2003) presents a framework for representing a MIP in an aggregate/implicit way
from which the column generation reformulation can easily be generated automatically
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along with the subproblem and Lagrangian bound expressions. A prototype “black-box”
column generation generic solver for MIP, named BaPCod, was developed along these
principles. The underlying idea is simple: start with the most general form assumed by
a decomposable MIP, write the formulas for its D-W reformulation, and code them. All
simpler problems will be special cases.
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