AN EXACT ALGORITHM FOR
IP COLUMN GENERATION

Francois Vanderbeck
Management studies group, Cambridge University
Trumpington st., Cambridge CB2 1AG, UK

and

Laurence A. Wolsey
CORE, Université Catholique de Louvain
Voie du Roman Pays 34, 1348 LLN, Belgium

April 1994 (revised August 1995)

ABSTRACT

An exact column generation algorithm for integer programs with a large
(implicit) number of columns is presented. The family of problems that can
be treated includes not only standard partitioning problems such as bin pack-
ing and certain vehicle routing problems in which the columns generated have
0 — 1 components and a right hand side vector of 1’s, but also the cutting
stock problem in which the columns and right hand side are nonnegative
integer vectors. We develop a combined branching and subproblem modifi-
cation scheme that generalizes existing approaches, and also describe the use
of lower bounds to reduce tailing-off effects.

Keywords: Integer Programming, Column Generation

This text presents research results of the Belgian programme on interuniversity poles of
attraction, PAI contract no.26, initiated by the Belgian state, Prime Minister’s Office,
Science Policy Programming. The scientific responsibility is assumed by its authors.
This research was supported in part by Science Program SC1-CT91-620 of the EEC,
and F. Vanderbeck was partially supported by a doctoral fellowship from the Centre

Interuniversitaire d’Etudes Doctorales dans les Sciences du Management (CIM).

1 Introduction

Column generation formulations of integer programs have been proposed
and discussed for several decades. Starting from the pioneering work of
Gilmore and Gomory [5,6] on the cutting stock problem, Minoux [12] shows
how several important combinatorial optimization problems can be refor-
mulated and tackled by column generation, numerous applications in the
routing/distribution area are covered in a recent survey of Desrosiers et al.
[3], and recently Hansen et al. [7], Savelsbergh [14], Vance et al. [16] among
others have shown different ways in which column generation and branch and
bound can be combined to obtain guaranteed optimal solutions. Barnhart et
al. [1] survey some of the recent work in this area.
The problem to be solved is the Integer Program (Master):

Z=MminY coCeAq
(P) Y@M =10
Yo N S K
ZqGQ)\q Z L
Ag > 0 and integer , ¢ € Q

where ¢,b € ZT', W is a set defining the set of feasible columns and their
associated costs, i.e. Q = {z : (z,w) € W} C Z7, ¢, = min,{ex + fw :
z = q,(z,w) € W} is the minimum cost solution associated with column
g € @, where (e, f) € R™ x RP is the cost vector and w € RP represents
auxiliary variables that may be real or integer. The variable A, (indexed by
a vector ¢ € Z'") is the number of times the vector ¢ € @ is chosen, and L
and K are lower and upper bounds on the total number of columns. We set
M={1,...,m}.

Typically the Master problem has such a large number of columns that
they cannot be written out explicitly. Thus in practice one works with a
linear programming relaxation involving only a small subset of the columns
of . New columns are generated as needed when their reduced costs are
negative and they are therefore candidates to improve the objective function.
Using optimal dual variables (7, u,v) € R™ x R_ x R, from this restricted
linear programming relaxation, a pricing subproblem is solved exactly or
heuristically to generate a column of negative reduced cost. This pricing

subproblem takes the form:
¢ =minfez + fw -7z : (z,w) € W} —p—v,

and a solution (z,w) leads to a new column with ¢ = z,¢, = ex + fw.

Problem (P) contains many well-known models as special cases. The
cutting stock problem is the case in which ¢ € () represents a feasible cutting
pattern in which ¢; pieces of length a; are cut from a piece of length A. Here
one can take W = {(z,w) € Z7" x {0,1} : 12, a;2; < Aw} with e = 0 and
f=1,50 ¢, =w for all ¢ € Q. The right hand side b is the demand vector
with b; indicating how many pieces of length a; must be cut in total.

The single depot capacitated vehicle routing problem involves a graph
G = (V, E), « vehicles of capacity C, depot node 0, client demands d; for i €
V\{0}, and edge lengths f, for e € E. Taking g to be the characteristic vector
of client subsets S? C V' \ {0} visited on a feasible tour, we can take W =
{(z,w) € {0,1}™ x {0, 1}1E : ¥ 50y we = 2; for i € V \ {0}, Teeso) we =
2, Y ees(s) We > 2z; for all 4,5 with 0 ¢ S ,i € S, ¥,cpdiws < C} where
8(S)={(,7): i€ S,7 € V\S} and (i) = 6({¢}) so that edges w, form a
single subtour including the depot node 0. Also e = 0, and ¢, is the length
of the shortest tour through the nodes S?U {0}. Here b is a vector of 1’s
indicating that each client is visited once, and L = 1 and K = k represent
bounds on the number of vehicles used.

It is also possible to treat problems where columns can be generated
from different subsets, in which case we talk of different (as opposed to
identical) subproblems. For instance the single machine multi-item lot-sizing
model with k items, n periods and demands d¥ and production capacities
CF for item k in period ¢, where only one item can be produced in each
period, is a special case in which ¢ € R"** and ¢ = (i:) for some k, where
Wk = {(zF, ek, y* %) € {0,1}" x {0,1}" x R} xR sk tyk =db sk ok <
C¥x¥ for all t} representing the feasible production region for item k where
w = (y*,s*) are the production and stock variables respectively, z* is the
characteristic vector of the production periods for item k, and e* is the kth
unit vector. Here b; = 1 for all 7 indicates that exactly one item is produced
in each period, and that exactly one production plan must be chosen for each
item. The cardinality constraints with . = K = k are redundant.

Problems of the form (P) sometimes arise directly, but are also often
obtained by applying Dantzig-Wolfe decomposition (Dantzig and Wolfe [2])

2

to some different initial formulation. Thus Gilmore and Gomory formulated
the cutting stock formulation directly in the form (P), but it is not the usual
starting formulation for the multi-item lot-sizing problem. See Magnanti and
Wolsey [11] for a discussion of various other models leading to formulations
of the form (P).

Here we present an algorithm that solves the problem (P) exactly. It
has been largely motivated by problems with identical subproblems, and in
which b,q € Z7' in contrast to most previous work in which ¢ € {0,1}™
and b; = 1 for all © € M. To our knowledge no satisfactory general branch-
ing scheme has been proposed for such problems, see the recent survey [1].
Though the scheme we propose is largely ”conceptual”, the algorithm can
be implemented using a modular mixed integer programming system such as
CPLEX, MINTO, OSL or XPRESS if an explicit mixed integer formulation
of the set W defining the set of feasible columns is provided. The algorithm
may be suitable for certain complicated problems for which column gener-
ation appears to be an appropriate approach, but in which the subproblem
is still a difficult integer program. This is in contrast to most specific appli-
cations treated to date, where the subproblems are relatively easy problems
that are solved rapidly by special purpose algorithms or heuristics. The de-
sire for simplicity and speed is motivated by the fact that the subproblem
needs to be solved a large number of times.

The contents of the paper are as follows. Section 2 contains a description
of the algorithm, in particular a valid branching scheme, a corresponding
method to modify the subproblems after branching, and verification that
it can be implemented. In Section 3 we discuss the separate issue of how
lower bounds can be used to improve the performance of the basic algorithm.
In Section 4 we discuss how various steps of the algorithm simplify when
the feasible columns are only 0-1 vectors, so that the problem is one of set
partitioning where each item must be chosen b; times. We then further
specialize by taking b; = 1 for all 7 which gives the problem generally treated
in earlier work.

In Section 5 we present some computational experience from two prob-
lems in order to show first that the ”conceptual” algorithm and branching
scheme presented in Section 2 can be implemented as described to solve a
general class of cutting stock problems, and secondly to report briefly on
the effectiveness of the early termination rules of Section 3 on a class of
telecommunications problems. Finally we discuss some outstanding issues.

3

2 The IP Column Generation Algorithm

We describe a branch and bound algorithm for (P) in which we show that all
fractional master solutions can be eliminated by branching on general upper
(lower) bound constraints of the form

Z)‘q S Kj (Z Lj)’
9€Q(¢7)
where Q(p) = {g € Q:q > p} forpe ZT.

Thus at each node u of an enumeration tree, we associate a problem P
that is characterised by cardinality constraints arising from branching. Let
G" and H" be the index sets of branching constraints at node u consisting
of pairs (¢, K7) and pairs (¢’, L) respectively.

The problem at node u then takes the form:

z% = min quQ CqNq
(Pu) ZqEQ q/\q =b
Yee@) M S K7 e Gt
Yoeey A 2 L) g€ HY
Ag > 0 and integer ¢ € Q.

Note that the initial cardinality constraints L < > ..o Ay < K present at the
root node are also present at node u as Q = Q(0),0 € G represents the pair
(0,K), and 0 € H" represents the pair (0, L).

With (P") we associate a restricted linear program over a subset QCQ
of the columns:

7} p(Q) = min 224e0 Cag

(LP*(Q)) Yoeqtha =
oegi) M S K j G
24ediay M 2 L jeH"

A >0g€Q

where Q7 = Q(¢/) N Q, and (, u,v) € R™ x R x R are optimal dual
variables.

With (LP"(Q)) we associate the subproblem designed to test whether any
column g € @\ @ has a negative reduced cost. To calculate the reduced cost
of a column ¢ € (), we need to include the values of the dual variables ;, v;
depending on whether ¢ € Q(¢’) or not. To do this we explicitly introduce a
0-1 variable 27 in the subproblem which takes the value 1 if ¢ € Q(¢?) and 0
otherwise. The resulting subproblem is:

("M = min(e —)z + fw — po — U — Ljequ 17 — Ljeny Vi?
(SP*(m, 1, v)) (z,w) €W
(z,27) € Xy j € Gy U Hy

where X; = {(z,2) : 2/ =1 if x > ¢/ and 2/ = 0 otherwise}, G§ = G*\ {0}
and HY = H* \ {0}.

Now at each node u, a standard column generation algorithm is applied to
solve problem LP"(Q). At each iteration the restricted LP Master Problem
LP*(Q) is solved giving an upper bound 2z%,(Q) on the value of the linear
programming relaxation z¥,(Q)). Taking an optimal dual solution (7, u,v),
the subproblem SP¥(m, pu,v) is then solved. If (™" < 0 and (z,w) is an
optimal solution, a new column ¢ = x with ¢, = ex + fw is found, Q is
updated and a new iteration begins. If (™*" = 0, LP"(Q) is solved, and
either node u is pruned by standard arguments, or branching takes place.

In the latter case, let A* be an optimal solution of LP“(Q). A* is not
integral.

SEPARATION. Choose ¢* such that 3= cog) Ay = « is fractional.

BRANCHING. Add two problems to the node list consisting of problem (P*)
plus the single constraint:

Z Ag <]

q€Q(g*)

and (P*) plus the single constraint:

Z Ag 2 [a]

q€Q(q*)

respectively.

To establish that this algorithm can be implemented, we need to show
that an appropriate vector ¢* can be found for the SEPARATION step,
and that the subproblems at each node can be formulated as mixed integer
programming problems.

Proposition 1 Given a feasible solution * of (P") that is not integral, there
exists a vector ¢* € Z™ such that 3 coq) Ay 18 fractional.

Proof. Take ¢* to be any maximal (undominated) element of the set
{g€Q: X, ¢ Z1}. Such an element always exists as @ is a finite set. Then
Yaeau) N = Ao F 75 .

Now we need to show that sets of the form X, = {(z,z) : z = 1 if
x > p,z = 0 otherwise } with p € Z7* can be formulated as MIPs. Let
Pt ={i € M : p; > 0} be the support of p. We introduce variables 7* for
i € Pt where n* =1 if z; > p; and ¢ = 0 if z; < p;.

Proposition 2 X, is the set of (z, z) satisfying

pin' <z < (pi—1)+ (b —p; + 1) i€ P*
2<n' i€ P"

z>1- 3 (1-17)

iePt+

zeZT 2e{0,1},n' € {0,1} i€ P*.

Note that in practice it is desirable to choose a branching vector ¢* with as
few positive components as possible, so as to minimise the changes in the
subproblem.

As @, the number of vectors ¢/ and scalars L7 and K7(< S, b;) are fi-
nite, and the problems (P") are more restricted at each level of the enumera-
tion tree, it is easily verified that the integer programming column generation
algorithm terminates finitely.

We terminate this section with some observations showing how the branch-
ing constraints, and additional subproblem constraints, simplify when K7 and
L7 take their minimum and maximum values respectively.

Observation 1. If K/ = 0, then one can set A, = 0 for all ¢ € Q(¢?) in
(P“), and set 2/ = 0 in the subproblem. The resulting set X, reduces to z
satisfying:

7 < (¢ =)+ (b —ql +1)n' i € P

Y (1-7)>1

iepPt
zeZ"ne{0,1}ie Pt.

where here P+ = {i € M : ¢/ > 0}.
We can also bound K.

S?J as ¢ Ygeqe) M < Lgeqe) Girg <

Y 4e@ 4irg = b; for all i € M such that ¢} > 1.

1

Observation 2. K’/ < min‘;qull

Now suppose that for some j € H*, L’ takes its maximum possible value

as defined in Observation 2, i.e. L7 = mjni:qu1 LZ_ZJ If minz’:q{y[z—ﬂ _
1 b; . . 5 b i
M sy o then I = {i: ¢ > 1 and g = Li} # ¢.

Observation 3. If L’ = min, b one can set A\, = 0 for all ¢ € Q\Q(¢’)

z:quI q_g’
satisfying > ;c; ¢; > 0, and also set A\, = 0 for all ¢ € Q(¢?) with ¢; > ¢/ for
some ¢ € I. The resulting set X,; reduces to (z, 27) satisfying

:Uizquj 1el
;> gl iePt\I
21 € {0,1}.

3 Lower Bounds for Early Termination of Col-
umn Generation

In practice, one of the well-known difficulties with column generation is the
”tailing-off effect”, namely the large number of iterations often needed to
prove LP optimality. Potentially this can now happen at each node of the
branch and bound tree, and what is more the subproblem to be solved at

7

each iteration is now typically a difficult integer program. In addition the
subproblem becomes considerably harder to solve as the dual variables con-
verge to the optimal dual values for z}p. This means that it is of crucial
importance to control the tailing-off effect.

Here we show how the basic algorithm can be adapted so as to partially
tackle this drawback. First we need to obtain as tight a lower bound as
possible on z¥,(Q) at each iteration.

Proposition 3 Given (7, pu,v) € R™ X RI%*I « R'fu‘, 24 p(Q) > LB™ =
min{ K°(C™"Y + o + 10), LM + o + v0) } + Lien Tibi + Ljeay ni K7 +
djeny ;7).

Proof. Dualizing all the constraints of LP"(Q) except for the initial cardi-
nality constraints 0 € G* N H" gives:

2ip(@Q) > > mbi+ Y K+ > vl

ieM JEGY JEHy
+min2[cq— ZWiCIi— Z Hj = Z vi)lAq
7€Q ieM JEGY:q>qi JEHY:q>q
subject to
LO< Y A <K°
q€Q
Ag>0ge€Q.

The optimal solution of a two-sided cardinality knapsack problem:

min{ > YA : L° <> N <K% A\, >0 g€ Q}
q€Q q€Q

is min{ K°~*, L%*} where v* = min,~,. The claim now follows from the
definition of {™*". .

Note that when (™" = 0, 27,(Q) = LB™"". Lasdon[10] and Farley[4]
have also proposed lower bounds. The Lagrangian bound proposed above is
a minor strengthening of that of Lasdon. Farley’s is different in that it is
based on rescaling of the dual variables 7, and may often require the solution
of an additional subproblem.

To make precise the potential value of a good lower bound, we suppose
that the optimal value z of (P) is integral as in many applications, and that a
best feasible solution of value z/V¢ has been found, as well as a best possible
lower bound 2%, on z%,(Q), namely the largest value of LB™*" over the
previous iterations. This leads to:

Observation 4. If [z¢,] > 2¢p(Q), then z* > [2%5(Q)] = [245(Q)], so
further work at node u will not produce a better lower bound, and column
generation at the node can be terminated.

Observation 5. If [z%5] > 2/VY) then z* > 2/VY and node u can be
pruned.

Observations 4 and 5 can be used once the subproblem at an iteration has
been solved. What can be concluded a prior: before solving the subproblem?
Let p; = max{ o %} — lo — Vg Where

KO
6= [ep(Q)] ~ 1-Embi— Y wyK'= 3 vyL)
i JEGY jeHY
and py = max{%, &} — 1y — 1, where
52 = ZINC —1- Zﬂ'zbz — Z ,quj — Z l/ij
i JEGY jeHY

and p = min{pi, p2}.

Proposition 4 The constraint (or cutoff) (™" < p can be added to the sub-
problem. If the subproblem is then infeasible, column generation terminates.
If in addition p = ps, node u can be pruned.

Proof. From Observation 4, the lower bound for node u cannot be im-

proved if [LB™""] > 27p(Q). This is equivalent to the condition LB™" >
[2%5(Q)] — 1 or written explicitly:

Z ﬂ'ibi+ Z ,UjKj+ Z Vij+min{K0(<F’”’u+lL0+V0),LO(CW’H’V‘F,M()-FV())}
ieM JEGY JEHY

> [27p(Q)] — 1

or KO(C™HY + g + 1) > 6 and LO((™HY + pg + 1) > 6.

This in turn can be written as (™" > % — Mo — Vo and (MY > % — o — Vo

Thus no improvement is obtained if (™** > max{2%, %} — oy — vy = py,
and thus the constraint (""" < p; can be added. The other case is identical

using Observation 5 in place of Observation 4. "

Note that when z is not restricted to be integer, the lower bound LB™#¥
can still be used in a similar way.

The basic algorithm can be modified based on the results of this section.
Observation 4 can be used after solving the restricted Master LP to possibly
terminate column generation, and Observation 5 to possibly prune the node.
Then using the latest values of (7, u,v), p can be calculated, and used to
introduce a cutoff constraint on the subproblem value. If the subproblem
is infeasible, then again column generation terminates, and in addition the
node is pruned if p = ps. The implicit bound used at each node is [2%,(Q)].

4 The 0-1 Case

Various aspects of the algorithm can be simplified when @ C {0,1}™, i.e. all
the columns are 0-1 vectors corresponding to some subset of M = {1,...,m}.
Let E = max; bz

First we examine the branching rule.

Proposition 5 The branching vector ¢ € {0,1}™ can be chosen so that
miq <b+1

Proof. Let A* be the current fractional solution. Choose a minimal vector
q* with ¥p. 50« Ao = ¢ Z' and let S* = {i : ¢f = 1}. WLOG suppose that
S*={1,...,r}. Consider the partial sums

> Ay=fs s=1,...,m

q:¢i=1, ie{l,...,s}

By hypothesis f, € Z! for s=1,...,7 — 1, as ¢* is minimal.
If the values of f; are distinct, we have f; > foi1+1fors=1,...;r—2
and f,_1 > fr=a>0. Thus f; >r—1. Asb > b, = f;, we obtain r < b+1.

10

Otherwise f; = fs_1 for some s =2,...,r. Then

2 A= >, N

q:qi=1, ie{l,...,s} q:qi=1, i€{l,...,s—1}
But then
* *
> N= X XN=o
q:qi=1, 1€S* q:¢i=1, i€S*\{s}
and ¢* is not minimal, a contradiction. "

With ¢ € {0,1}™, the additional constraints needed in the subproblem
also simplify, and the auxiliary variables 1’ needed in Proposition 2 can be
eliminated.

Observation 6. X, = {(z,2) : z € {0,1}™, 2z € {0,1},2 < z; if p; = 1,
z>1-— Zi:pizl(l - xl)}

Observations 1 and 3 also simplify.

Observation 7. If K7 = 0, then one can set A\, = 0 for all ¢ € Q(¢’)
in (P*), and drop 2’ in the subproblem. The resulting set X, reduces to x
satisfying:
{zef{0,1}™: Y =z < Zqzj—l}
i:qi:l =1

Observation 8. If [/ = min, ;_, b; for some j € H", let I = {i: ¢ =1
and b; = L} # ¢. Then one can set \, = 0 for all ¢ € Q \ Q(¢’) satisfying
>ier ¢ > 0, and auxiliary variables are no longer needed in the subproblem.
X,i reduces to z satisfying: {z € {0,1}™ : z; > x4 for all i, k withq] = ¢, =1
and k € I}.

Specializing further, now suppose that b = 1 i.e. b; = 1 for all i € M.
Combining Proposition 5 with Observations 7 and 8 leads to one of the
important branching schemes.

Proposition 6 (Ryan and Foster [13]) When b = 1, if X is a fractional
solution of LP"(Q), then there ezists a pair of rows {u,v} C M such that if
q* s defined by q;, = q; =1 and g7 = 0 otherwise

11

Z) 0< quQ(q*) /\q <1

ii) in the separation step, on one branch 2 qeq(qr) N\ = 0 can be represented
implicitly by removing all columns with q, = q, = 1, and adding the subprob-
lem constraint x, + x, <1

iii) on the other branch 2aeQ(e) Aq = 1 can be represented implicitly by
removing all columns with q, + q, = 1, and adding the subproblem constraint
Ty = Ty.

5 Implementation

The algorithm and branching rule presented in Section 2 have been imple-
mented as described with the branching pairs (¢’, K7), (¢, L?) chosen so that
the support of ¢/ is as small as possible. Results for a small sample of cutting
stock instances are presented in Table 1. The columns specify the name of
the instance with the number of different items and the number of different
types of rolls, then the number of nodes processed in the Branch and Bound
algorithm, the number of Master iterations, the total number of generated
columns, the number of times the subproblem is solved, the LP and IP val-
ues, the total CPU time (on a HP9000/712/80 using CPLEX 3.0), and finally
the % of the total time spent in solving subproblems.

Inst | BBnod | Mits | cols | SPs LP IP Time | %SP
4b1 5 14 10 12 6.74 7 1.0s| 73.1
10b1 8 26 18 21 13.75 14 7s| 924
14561 27 70| 43 471 50.63 51 55s | 97.5
1561 24 77| b4 57| 25.35 26 2mbs | 98.9
20561 20 721 50 55| 115.05 116 1m39s | 98.6
3b3 5 8 13 9 0 0 0.3s| 33.3
4b7c 1417 | 1741 | 546 | 7798 | 702055 | 1674031 | 2h6m32s | 98.6
4b7 401 | 1065 | 474 | 3780 1054 1462 | 48mb2s| 98.8
4b7d 7 31 64| 119| 81843 | infeas. 19s| 97.4
4b7e 7| 120 | 156 | 735 | 188890 | 433274 8mdds | 99.5

The first five instances in Table 1 are standard one-dimensional cutting
stock problems, while the last five are instances of a model due to Hurkens|8],
in which each roll is different and the cost of a cutting pattern is the size of
the unused strip.

12

As one would expect, the last column shows that nearly all the computa-
tion time is spent in solving the mixed integer subproblems with a standard
optimiser. We note that no instance has required using a separation with
|P*| > 1. Instance 4b7c has been solved by Hurkens using MINTO and
a special purpose algorithm for the subproblem. His algorithm runs about
about 10 times faster on this instance, but requires about twice as many
nodes in the enumeration tree.

The early termination rules of Section 3 have also been implemented.
Representative results from [17] for five instances of a telecommunications
(edge partitioning) model described in Sutter et al.[15] are presented in Table
2. The first column gives the name of the instance including the number of
nodes and edges in the network, the second the basic running time (CPU
time in seconds on a Sparc 10 model 51, using CPLEX 2.1), the third the
running time using the lower bound, and finally the time with both lower
bound and subproblem cutoff.

Instance | NoLB | LB |LB+ Cutoff
ND7b21 2.8 2.7 2.2
ND8b28 51.0| 42.1 36.1
ND936 | 1056.1 | 701.4 615.2
N D12b50 41.0| 39.5 34.6
ND15b72 | 1069.4 | 140.7 124.8

More extensive extensive computational results on different problems,
branching rules, early termination, etc., can be found in Sutter et al.[15],
Vanderbeck[17] and Vanderbeck and Wolsey[18].

6 Further Remarks

We emphasize that the algorithm presented in Section 2 generates an opti-
mal integer solution for problem (P) even when the columns of (3 are general
integer, and not just 0-1, vectors. This means that the column generation
scheme may have to generate points € Q = proj, (W) that are not extreme
points of conv(Q), but are optimal subproblem solutions. This apparent
contradiction is resolved once auxiliary variables w are permitted, and addi-
tional constraints or variables are added in the subproblem at node u of the
enumeration tree.

13

An alternative and natural interpretation of the branching scheme pro-
posed above is to introduce auxiliary integer variables y(¢?) = 2qeQ(gi) Ao
and then branch on the variables y(g?). Such variables often arise naturally
and may be a subset of the variables w appearing in the feasible region W of
the subproblem: for instance in graph partitioning (Johnson et al.[9]) with
b= 1, M is the set of nodes, and the choice of a pair {u,v} of nodes can be
interpreted as branching on edge variables y,, where y,, = 1 if both nodes
u and v lie in the same set of the partition, and y,, = 0 if (u,v) is an edge
of the corresponding multicut.

A second possibility is to combine the above algorithm with the poly-
hedral approach by adding cutting planes to the Master IP problem (P).
Again taking the graph partitioning problem as an example, let X, = 1 — Yy,
represent the incidence vector of the multicut. Several families of valid in-
equalities >, cp TywXuw > To for the multicut polytope are known, so cuts
Y ecr Tuw(l — Yuy) > mo can be added to (P), and the subproblems modified
appropriately.

Various versions of the algorithm described here have been implemented.
Several applications concerning the installation of multiplexing equipment
are reported in Sutter at al. [15] involving both b = 1 and general b. Re-
sults on implementation choices, heuristics and computational experience on
different models including graph partitioning and multi-item lot-sizing are
reported in Vanderbeck [17]. Vanderbeck and Wolsey [18] will include ex-
amples of implementation of the proposed branching scheme and practical
comparison of branching rules.

Acknowledgement. We are grateful to C. Hurkens, M. Savelsbergh, and
a referee for their helpful comments and criticism, and to C. Hurkens for
providing information and data for the generalised cutting stock model.

7 References

[1] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, Branch
and Price: Column Generation for Solving Huge Integer Programs, Compu-

tational Optimization Center COC-94-03, Georgia Institute of Technology,
Atlanta, February 1994 (revised May 1995).

14

[2] G.B. Dantzig and P. Wolfe, Decomposition Principle for Linear Programs,
Operations Research 8, 101-111 (1960).

[3] J. Desrosiers, Y. Dumas, M.M. Solomon and F. Soumis, Time Constrained
Routing and Scheduling, Chapter 11 in Handbooks in Operations Research
and Managament Science: Networks eds. M.E. Ball, T.L. Magnanti, C.
Monma and G.L. Nemhauser, North-Holland (1994).

[4] A.A. Farley, A Note on Bounding a Class of Linear Programming Prob-
lems, including Cutting Stock Problems, Operations Research 38, 922-923
(1990).

[5] P.C. Gilmore and R.E. Gomory, A Linear Programming Approach to the
Cutting Stock Problem, Operations Research 9, 849-859 (1961).

[6] P.C. Gilmore and R.E. Gomory, A Linear Programming Approach to the
Cutting Stock Problem: Part II, Operations Research 11, 863-888 (1963).

[7] P. Hansen, B. Jaumard and M. Poggi de Aragao, Mixed Integer Column
Generation and the Probabilistic Maximum Satisfiability Problem, Proceed-
ings of IPCO2, Carnegie-Mellon University, Pittsburg, 165-180 (1992).

[8] Hurkens, private communication (1995).

[9] E. Johnson, A. Mehrotra and G.L. Nemhauser, Min-cut Clustering, Math-
ematical Programming 62, 133-152.

[10] L.S. Lasdon, Optimization Theory for Large Systems, Macmillan, Lon-
don 1970.

[11] T.L. Magnanti and L.A. Wolsey, Optimal Trees, Chapter 9 in Network
Models, Handbooks in Operations Research and Managament Science 7 M.

Ball et al. (eds.), North-Holland, Amsterdam (1995).

[12] M. Minoux, A Class of Combinatorial Optimization Problems with
Polynomially Solvable Large Scale Set-Covering/Partitioning Relaxations,

15

RAIRO 21, 105-136 (1987).

[13] D.M. Ryan and B.A. Foster, An Integer Programming Approach to
Scheduling, A. Wren (ed.) Computer Scheduling of Public Transport Ur-
ban Passenger Vehicle and Crew Scheduling, North-Holland, Amsterdam,
269-280 (1981).

[14] M.W.P. Savelsbergh, A Branch and Price Algorithm for the General-
ized Assignment Problem, Computational Optimization Center COC-93-02,
Georgia Institute of Technology, Atlanta (1993).

[15] A. Sutter, F. Vanderbeck and L.A. Wolsey, Optimal Placement of Add/Drop
Multiplexers: Heuristic and Exact Algorithms, Core Discussion Paper 9479,
Université Catholique de Louvain, Louvain-la-Neuve 1994.

[16] P.H. Vance, C. Barnhart, E.L. Johnson and G.L. Nemhauser, Solving
Binary Cutting Stock Problems by Column Generation and Branch-and-
Bound, Computational Optimization Center COC-92-09, Georgia Institute
of Technology, Atlanta (1992).

[17] F. Vanderbeck, Decomposition and Column Generation for Integer Pro-
grams, Ph.D. Thesis, Faculté des Sciences Appligées, Université Catholique

de Louvain, Louvain-la-Neuve (1994).

[18] F. Vanderbeck and L.A. Wolsey, 77?7

16

