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Abstract

The decomposition of an integer program can provide a reformulation whose lin-
ear programming relaxation yields a tight bound. This in turn may allow one to
solve difficult integer programs to optimality. However, dealing with an integer pro-
gram that has a large (implicit) number of columns requires the integration of a
column generation procedure in the exact solution algorithm. The standard integer
programming techniques must be adapted to become compatible with column gen-

eration.

We implement an algorithm combining column generation and branch-and-bound.
We propose a branching scheme that offers a unified view of branching rules pre-
viously used in a column generation framework and extends the class of problems
that can be dealt with. We also derive conditions for early termination of the
column generation procedure. We test the algorithm on three types of problems:
a telecommunication traffic assignment problem, a graph node clustering problem
and a single-machine multi-item lot-sizing problem. We discuss a few algorithmic
choices that have a significant influence on the performance of the algorithm. Our

computational results highlight the advantages and the limitations of this approach.
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1 Introduction

Many practical optimization problems can be formulated as set partitioning prob-
lems: given a ground set of elements and a characterization of feasible subsets and
their costs, one searches for a selection of feasible subsets that forms a minimum
cost partition of the ground set. More generally, one might wish to find a minimum
cost selection of subsets that includes each ground set element (at least/at most) a
specified number of times. Such applications arise in the area of operational prob-
lems like the distributions of goods, but also in planning problems such as facility
location problems and assignment problems, and design problems such as commu-

nication and transportation network design problems.

To model these optimization problems one can either use a formulation containing
a set of constraints that define feasible subsets implicitly, or one can use a formula-
tion that explicitly enumerates all feasible subsets. In many applications, the latter
formulation choice improves one’s chances of solving the problem to optimality.
However, it raises specific difficulties due to the typically large number of feasible
subsets one has to deal with. For instance, suppose that the ground set consists of
a set of 100 customers and that a feasible subset is a subset of customers to whom
goods can be delivered by a single truck. Assuming a truck can fit goods for at most

10 customers, there are on the order of 10'2? possible subsets.

Our goal is to study the theoretical and practical problems encountered in tackling
such large formulations. Building on previous results, we develop an exact solution
algorithm for a class of set-partitioning-like problems. Using a partial representa-
tion of the large formulation, we generate feasible subsets if and when needed, a
technique known as column generation. In particular, we consider a telecommunica-
tion traffic assignment problem for which this approach is one of the only practical
solution method. We address the issue of the robustness of the methodology across
applications by looking at two other problems: a graph partitioning problem and a

multi-item single-machine lot-sizing problem.

In the rest of this introduction, we first present the subject of this thesis in more
detail. In an informal discussion, we place our topic in its context and motivate its
interest. The reader who is familiar with the field of integer programming may want
to skip these explanations (i.e. Section 1.1). Next, we give some theoretical back-
ground about Dantzig-Wolfe decomposition and column generation, we formalize

the decomposition and reformulation of integer programs, and we compare different



relaxations of integer programs. Then we give an overview of the literature in the

field. Finally, we discuss the content of this thesis and give a Chapter outline.

1.1 Scope and Motivation

A rich variety of optimization problems can be formulated as maximizing or minimiz-
ing a linear function of many variables subject to inequality and equality constraints
and integrality restrictions on some or all of the variables. Such models are referred

to as (mixed-)integer programs.

The successful solution of integer programs is based on solving easier problems, called
relazations, to obtain bounds approximating the optimal value. These bounds are
used to carry out an implicit enumeration of all feasible solutions. The technique is

called branch-and-bound.

The quality of the approximations (bounds) is critical for the efficiency of the
method. Conventional branch-and-bound uses a linear programming (LP) relax-
ation of the integer programming formulation to provide bounds. Solving the linear
program resulting from the relaxation of all the integrality constraints of a given
problem formulation is easy, using say the simplex algorithm; but the resulting ap-

proximation is often poor.

In an effort to provide better approximations, other types of relaxation have been
used. The Lagrangean approach consists of relaxing some of the constraints of a
given formulation of the problem as opposed to all integrality constraints. The poly-
hedral approach consists of improving the LP relaxation by adding inequalities to

strengthen the formulation.

Another technique that generally induces good approximations is to consider an
alternate problem formulation that is more extensive (i.e. that contains a large
number of variables). In this thesis we investigate an exact integer programming
solution method that relies on the quality of the approximation provided by the

extensive formulation.

A problem reformulation with many variables

Let us illustrate on an example what we mean by an extensive reformulation. Given

a finite set of items i € I = {1,..., m}, their sizes s; > 0, and a bin capacity C, one
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wishes to place items in bins so that the sum of the size of the items in a bin does
not exceed the bin capacity. The problem is to minimize the number of bins needed
to pack all items. It is known as the bin packing problem. To derive a compact
integer programming formulation, we define z¥ to be 1 if item i is placed in bin &
and zero otherwise, and we define y* to be 1 if bin k is used and zero otherwise.

Then a formulation of the problem is:

min Zyk
k=1

s.t.

m

oab =1 Vi=1,...,m (1)
k=1
Y sizp < Cyt Vik=1,...,m (2
i=1

¥ F € {01} Vi, k.

This formulation involves m? + m variables and 2m constraints.

Another point of view is to consider all possible ways to place items into a bin. For
instance, when m = 4, s = (1,2, 3,4), and C = 5, there are 8 feasible ways to assign
items to a bin. In the matrix below, each column represents the incidence vector
of a feasible assignment of items to a bin. Letting A, be 1 if the assignment ¢ is

selected in the solution and zero otherwise, an extensive formulation is:

min /\1+/\2+A3+)\4+/\5+/\6+)\7+)\8
At

s.t.

o O O =
o O = O
o = O O
—_ o O O
O O ==
e R e
—_ o O M
O R R O
&
|
ey

(/\17/\27/\37/\47/\57/\67/\77/\8) € {071}8

In general, let column ¢ be represented by an index vector a, € {0,1}™ corresponding
to a possible assignment of items to a bin (i.e. 3;a;4 < C). Let @) be the set of all

such feasible assignments. The reformulation is of the form

min > A

qeQ
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s.t.

Z aiq)\q =1 Vi
q€eQ
Ay, € {0,1} VgeQ.

The cardinality of the set () (and thus the number of variables in the formulation)
depends on the data, but it can be very large. For instance, if s; < %Vi, then |Q] is

greater or equal to ( o ) (i.e. the number of different subsets of n elements from
n

among a set of m elements).

How integer programming formulations with many variables arise

In many real-life situations, one can view the optimization problem as selecting a few
subsets from a very wide choice of subsets (representing possible scenarios, propos-
als, or patterns), that together satisfy some requirements at minimal cost (maximal
profit). In such cases, one can formulate the optimization problem directly as an

integer program with a large number of variables.

Alternatively, extensive formulations are often obtained as the result of the decom-
position of the problem constraint set. Given an integer problem formulation of the

form

min cx
s.t.
Axr =
Dz < 4
x integer

whose constraints are partitioned into a class of global constraints (Az = b) and a
class of specific constraints referred to as a subsystem (Dz < d and x integer), one
can potentially enumerate all the solutions of the subsystem of constraints and op-
erate a variable transformation that consists of reformulating the problem in terms
of the subsystem solutions. For instance, one can partition the constraints of the bin
packing problem by considering constraints (1) as the global constraints (Az = b),

and constraints (2) as a subsystem of constraints (Dx < d).

There are two kinds of situation where the decomposition approach is naturally
used. One is when the optimization problem is easy to solve over the subsystem
of constraints (i.e. Dz < d are nice constraints because they model a well-known
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polyhedron, for instance, a network flow problem), but constraints Az = b compli-
cate the problem. The second and most important case for us is that in which the
problem is decomposable, i.e. constraints Dz < d have a block diagonal structure
(see Figure 1), so that the subsystem decomposes into K subsystems. The global
constraints are then called linking constraints, since the K blocks associated with
the K subsystems would be independent without the presence of the constraints
(Az = b). In the bin packing example, Dz < d decomposes into one subsystem of
constraints for each bin.

Figure 1: Structure of the constraint matrix.

In some applications, the only way to formulate the problem is to use a large number
of variables (see Barnhart (1994) [4]). Whether the integer program with a large
number of variables results from decomposition or not, we call it the master by

reference to the Danzig-Wolfe decomposition principle in linear programming.

Dealing with a formulation with a large number of columns

The master integer program is solved to optimality by branch-and-bound. To carry
out the implicit enumeration scheme, we use approximations provided by the linear
programming relaxations of the master (master LP). Typically the columns of the
master are not known explicitly or/and are too many to be written out explicitly. In
practice, one works with a linear programming relaxation involving a small subset
of columns and generate new ones if and when needed. Since an optimum solution
typically involves only a few columns, the idea is to generate the columns that are
potentially part of the optimum solution and to avoid considering those that are not

attractive.

In practice, during the LP optimization procedure, one solves an optimization sub-

13



problem called the column generation subproblem to evaluate the attractiveness of
columns that have not yet been included in the formulation. If one or more columns
can potentially improve the current solution, they are added to the formulation and
the procedure reiterates. This technique is known as column generation. The master
formulation with many columns is also called the column generation formulation.
The combination of column generation with branch-and-bound is referred to as IP

column generation.

Interest of a formulation with large number of variables

Our motivation for considering integer programs with a large number of variables
is twofold. First, we want to solve a telecommunication problem consisting of the
allocation of the telecommunication traffic to an existing network. This problem
can be formulated as a compact integer program. However, the standard LP based
branch-and-bound algorithm cannot solve realistic sized instances of this problem.
Indeed, the linear programming relaxation bound is a poor approximation of the in-
teger optimal value. Moreover, standard branch-and-bound fails due to the inherent
symmetry of the problem. Exploiting the constraint matrix structure, we decompose
the problem. The master reformulation provides a tighter bound and eliminates the
difficulties associated with the problem symmetry. Thus, this problem is a good

candidate for the IP column generation solution method.

In many other applications, the master reformulation is advantageous because its
LP relaxation provides a tight bound on the integer solution value. Moreover, it
eliminates difficulties inherent in the symmetric structure of the problem and it of-
fers a natural 2-level decomposition with an aggregated level: the master, and a
disaggregated level: the subproblem defined by the subsystem of constraints.

The second motivation for studying the column generation approach for integer
programming is the recent success of this technique. In particular, Aghezzaf et. al.
(1992) [1] have shown that, for the problem of packing subtrees of a tree, the master
LP formulation has an integer optimal solution. This raises an interesting question:
When does the decomposition approach yields good approximations? In the next
Section, we recall the theoretical conditions under which the master LP solves the in-
teger problem. But, when these conditions do not hold, does the master LP provide
good bounds? In particular, how do these bounds compare with the ones obtained
with the polyhedral approach? More generally, is the column generation approach

robust across applications? These questions go beyond the scope of our study which
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is mainly concerned with the development of an IP column generation algorithm.
However, in the course of our computational experiments, we have tested the col-
umn generation approach on two other types of problems for which the polyhedral
approach performs well: graph partitioning problems and single-machine multi-item
lot-sizing problems. These tests partially address the question of robustness and
they may be compared with the existing results obtained using the polyhedral ap-
proach (see [7], [17]).

1.2 Dantzig-Wolfe Decomposition in Linear Programming

The decomposition principle was introduced by Dantzig and Wolfe in 1960 [11]. It
leads to the use of a column generation algorithm to solve large scale linear programs.
This decomposition approach has become standard linear programming methodol-
ogy and is described in numerous textbook and publications (see for instance , [21],
[32], [40], and [43], on which we have based the presentation below).

Dantzig-Wolfe decomposition was originally introduced in order to solve large scale
linear programming problems on computers with limited core storage capacity. It
was not meant to compete with the simplex method but rather to complement it by
extending the range of applicability of linear programming. This probably explains
why it is sometimes referred to as generalized linear programming. When applied to
linear programs whose coefficients matrices have the structure presented in Figure
1, i.e., one or more independent blocks (subsystems) linked by coupling equations,
it operates by forming an equivalent master linear program having only a few more
rows than there are linking constraints in the original formulation but having many

more columns.

Consider a general linear programming problem of the form

min cxT

S =
g8 8 &
AVARRVANR |

.

where Az = b represent the linking constraints. Let {p,},co be the set of extreme
points of the polyhedron {z € IR} : Dz < d}, assuming that it is bounded and
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non-empty. Then the equivalent master linear program is of the form

min Z CqM\q

q€Q
s.t.
Zaq)‘q = b
q€Q
DA =1
9€Q
Ay > 0 Vg € Q.

where ¢, = ¢ p; and a, = A p,.

In most applications, solving the master linear program directly is totally impractical
because of the enormous number of variables in the formulation. To overcome this
difficulty the master linear program is solved using a column generation procedure,
which we describe in detail in Chapter 3. In short, the idea of a column generation
algorithm is to work with just a subset of columns (variables) and generate missing
ones if and when needed. At a given iteration of the column generation algorithm,
one solves a restricted master linear program over a subset Q C Q of columns.
Letting (7, ) € IR™ X IR be an optimal dual solution, one checks if the current

master LP solution is optimal by solving the pricing subproblem:
v(m,p) = min{(c —7A)xz : Dz <d, > 0} + p.

If v(m, ) > 0, linear programming theory tells us that the master LP is solved.
Otherwise, the solution of the subproblem z* defines a new column, a, = A z* and

¢y = ¢ o*, that is added to the restricted master formulation.

A well-known difficulty with the column generation procedure is the typically large
number of iterations required to prove LP optimality. This drawback is referred to as
the tailing-off effect. However, recent studies (see for instance Goffin et. al. (1992)

[24]) show that tailing-off does not systematically happen in linear programming.

The decomposition methodology is also called the price directive decomposition
method for its important economic interpretation as a coordination mechanism for
decentralization of large organizations. If each subsystem (division) works indepen-
dently of the others, then we might assume that it adjusts the levels of its operations
so as to minimize its own cost. However, the subsystems are not independent, but
linked by the constraints on the use of resources shared on a global level. The goal
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of a coordinator is to set prices 7w on the shared resources (the right hand side of
the linking constraints) so that each of the K divisions can independently optimize
their own operations. The rationale for selecting prices is to assure that the resource
constraints are satisfied on the global level. The interpretation of the master is that
the coordinator makes the best use he can of the information he has about the op-

erating possibilities of each division in minimizing total cost.

1.3 Decomposition and Reformulation of an Integer Pro-

gram

Although the decomposition principle was developed for linear programming, it
is commonly applied in integer programming to derive good approximations. In
this context, a linear programming reformulation (named the master problem) was
proposed as an alternative to the standard linear relaxation because it leads to a
generally tighter relaxation. Thus, the decomposition approach remained essentially

a linear programming concept.

Here, we present the decomposition in integer programming terms, showing that the
reformulation of the initial compact integer program is an integer program involving
many nteger variables. In other words, when we apply decomposition to an integer
program, we obtain a master integer program with a large number of columns. The
linear relaxation of the master is then solved using a column generation algorithm.
The column generation subproblem is also an integer program. We emphazise the
equivalence between the master integer programming reformulation and the initial
compact integer programming formulation. Solving the master IP resulting from the
decomposition is equivalent to solving the original integer programming formulation
in the same way that, in linear programming, a solution of the master leads to an

optimal solution to the original formulation.

A General Model [P]
The general model we consider can be formulated as a nonlinear integer program
[P]:

min c(x)
[P] s.t.
Ax =
r € X



where (A, b) is an integer m x (n + 1) matrix, X = {x € IN" : Dz < d}, and (D, d)
is an integer [ X (n+ 1) matrix. In practice, we will work with applications in which

matrix D has the block diagonal structure presented in Figure 1.

We make the restrictive assumption that the cost function can be linearized by in-
troducing auxiliary integer and continuous variables (y, z) € IN? X IR". The resulting
augmented problem [P'] is of the form:

min fr+gy+ hz
[P'] s.t.
Ax = p
(z,9,2) € S
where f, g and h represent the cost vector, S C IN" x IN? x IR" describes the com-
binatorial restrictions on z and the link between the x variables and the auxiliary

variables (y, z). We assume that S can be represented as a mixed integer program.
Moreover, c(z) = ming, ;) {fz + gy + hz : (x,y,2) € S} and X = proyj,S.

The Reformulation of an IP by Decomposition

The fundamental theoretical principle, on which the integer programming decom-
position is based, is that the set of integer points in a polyhedron can be finitely
generated. To derive an IP master formulation, we use the following result concern-
ing the set of integer points (see Section 1.4.6 of Nemhauser and Wolsey (1988) [40]).

Proposition 1 If F = {z € R : Dx <d} # 0 and X = F N IN" where (D, d) is
an integer | X (n + 1) matriz, then the following statements are true:

(¢) There exist a finite set of points {p,}eeq of X and a finite set of rays {r;};c; of
F' such that

X={zeRl:z=Y A\p, + . Bimj, . A\=1Ae N9 ge N’} (3)

qeQ j€J qeQ

(i) If F' is a cone (d = 0), there ezists a finite set of of rays {rn}nen of F such that

X={zeR!:z=> v N} (4)

heEH

Thus X can be generated by taking a point p, for some ¢ in the finite set () plus a

non-negative integer combination of extreme rays of . When X is bounded, as we
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shall assume from now on for simplicity, the finite set of points {p, }4cq is the set X
itself.

Using this characterization of integer polyhedra, in place of the Minkowski’s theorem
that is the basis for Dantzig-Wolfe decomposition in linear programming, we obtain
an integer programming decomposition. To parallel the developments leading to the
master formulation in linear programming, we state that any point of X is of the

form:

T o= ) APy

9€Q
s.t.
Z)‘q =1
9€Q
Ay € NN Yq € Q

Note that this is a trivial statement because we have assumed that X is bounded,

but this statement indicates how to obtain a reformulation when X is unbounded.

Replacing = by its equivalent expression in problem [P] leads to the formulation

min C(Z AgPq)

9€Q
s.t.
A (Z )‘qpq) = b
q€Q
Z)‘q =1
9€Q
Ay € IN Vq € Q.

Let us define ¢, = ¢(p,) and a, = Ap,. Note that the convexity constraint together
with the integrality constraints amounts to imposing A, € {0,1}. So, in any feasible
solution, only one A, will take value 1, say it is A;, while all the others take value
zero. Thus, for any feasible solution of [P], ¢(X,cq AqPq) = c(01) = €1 = Xy AoCos
and the above formulation is equivalent to

min > g

€Q

q€Q
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Ay € {01} Vg e Q,

which we refer to as the master problem.

Solving the master binary integer program is equivalent to solving the original in-
teger formulation [P]. However, the linear programming relaxations of these two
formulations are different. As we shall show in the Section 1.4, the master linear
programming relaxation generally leads to a tighter lower bound than the linear

relaxation of the original formulation.

We point out that the decomposition of an integer program is sometimes introduced
differently in the literature (see [4], [16]). The alternate presentation uses the fact
that the integer programming optimization of the subproblem is equivalent to a
linear programming optimization over the convex hull of the subproblem extreme
points (see Nemhauser and Wolsey (1988) [40]). That is, any point of conv(X) can
be expressed as Y- g aghg With 3 50, =1and oy >0, Vq € Q, where {Pg}yen is
the set of extreme points of conv(X).

This approach yields a slightly different master IP formulation:

min Zcqaq
7€Q
s.t.
Zaqo‘q = b
q€Q
Zaq =1
q€Q
> g, € IN
9€Q
ag 2 0 VgeQ.

Here the integrality constraints are expressed in terms of the original variables
T = Y0 QPq- Note that imposing integrality of the a’s would not lead to an
equivalent integer programming reformulation as the optimal integer solution of [P]

may be a interior point of X.

When the z variables are binary, Q = () and the two master reformulations are

equivalent. However, in the case of general integer variables, they are different. In
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this thesis, we shall present an integer programming column generation algorithm
that encompasses the case of a set X containing general integer points. Through
the branching scheme and the associated subproblem modification scheme, one can

generate interior points of X as solutions of the pricing subproblem.

The Case of a Decomposable Problem
When problem [P] has a structured constraint matrix like the one presented in Fig-
ure 1, we say that it is decomposable. Then, the pricing subproblem decomposes

into K independent subproblems: i.e. X = X! x ... x XX,

If we let {p’;}qEQk represent the set of feasible solutions in X*, then for all z¥ € X*,
there exists A* € {0,1}/?" such that o* = ¥, qe NipF and Y cor A6 = 1. The

resulting master is:

K
min Y Y dx

k=1 qeQ*
s.t.
us kK
DD Ay = b
k:lqEQk
DN =1 Vi
qeQk
i€ {0,1} Vk, g € QF.

where c’; = c(p’;) and a’; = Akp’;. In addition, there is a pricing subproblem associ-

ated with each subsystem k.

When the K subsystems are identical, as often happens in practice, the master

formulation becomes a general integer program. If A'= ... = A¥ and X! = ... =
X5 =X = {p;}qeq, let Ay = 41 A¥. Then the master take the form
min D A
q€Q
s.t.
doaghg = b
q€Q
Z Ay = K
qeqQ
A, € {0,... K} VgeQ.

If the null vector is a solution of X, it may be omitted from the formulation and the

aggregated convexity constraint may be replaced by > cq0 Ay < K.
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The Example of the Cutting Stock Problem
Gilmore and Gomory (1961-1963) [22] [23] present a first application of Dantzig-
Wolfe LP decomposition to an integer program for the cutting stock problem. They

used it to obtain a very tight lower bound and very good heuristic solutions. The
bin packing problem we introduced in Section 1.1 is a special case of the cutting

stock problem that we present now.

Suppose that a paper (textile) company has a supply of large rolls of paper of width
R, but that customer demand is for paper of smaller width. Suppose b; rolls of strip
of width [; < R, i =1,...,m need to be produced. We obtain smaller rolls by slicing
a large roll using a particular pattern. Invariably, the cutting process involves some
waste. The company would like to minimize waste, or equivalently, to meet demand

using the fewest number of rolls.

One way to formulate this problem (for the purpose of exposition) is to use the
following variables:

y*¥ = 1 if roll k is used, 0 otherwise and

x¥ = the number of pieces of width I; cut in roll k.

Let K be an upper bound on the number of rolls used in any optimal solution.
Then, the problem of minimizing the number of rolls, while satisfying demand, can

be formulated as:

K
min Zyk
k=1
s.t.
K
k=1
> Lizi < Ry* Vk
¥ < opyk Vi, k
e IN Vi, k
y* e {0,1} Vk

Let S = {(z,y) € IN™ x {0,1} : ¥;l;z; < Ry, and z; < by Vi}. Then, ¢(z) =
min,{y : (z,y) € S}, that is ¢(z) = 0 if (z,y) = (0,0) and c¢(z) = 1 otherwise, and
X =proj, S = {x € IN™ : ¥, l;z; < R}. The set of feasible solutions of X is just
the set of cutting patterns that satisfy the knapsack constraint. Since the matrix
AF associated with subsystem k is a unit matrix, there is no distinction between the

points of X, {p,}seq, and the columns of the master, a, (a, represents a cutting
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pattern in which a;, pieces of width [; are cut from a paper roll of width R). The
cutting pattern a, is feasible if 3>, l;a;;, < R. The associated cost c(a,) is 1 if a, is
non null. If one does not include the null pattern in (), the master integer program

is

min >N

q€qQ
S.t.
Zaiq)\q = bz Vi
qeqQ
YA <K
q€Q
N, € IN VgeQ.

Given the cost structure, the aggregated convexity constraint may be dropped.

The latter formulation (without the convexity constraint) is frequently used in the
literature to present the cutting stock problem. The master IP formulation with a
large number of columns is equivalent to the more compact formulation we started
with. We usually refer to the compact formulation as the original or the initial for-
mulation. However, one can also view the master formulation with a large number of
variables as the natural starting formulation instead of considering it as the result of
a variable transformation. This is generally the case for the cutting stock problem.
In Chapter 3, where we present a solution method for the IP master, we shall adopt
the latter point of view, starting immediately from a master IP formulation which

involves a large number of columns.

1.4 Alternative Relaxations of an Integer Program

In this Section, we present basic theoretical results. We show that typically the mas-
ter reformulation of [P] has a stronger LP relaxation than the initial more compact
formulation. In the process, we discuss several solution methods for problem [P]
that lead to equivalent relaxations, i.e., relaxations that produce the same bound as
the master LP. These results are well-known but important to remember.

The master Linear Relaxation

The linear programming relaxation of the master is of the form

ZMLP = min Zcq)\q
qeqQ
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S.t.

Zaq/\q = b

q€Q

Z)‘q =1
9€Q
Ay > 0 Vg € Q.

where ¢, = ming, ,\{fp,+9y+hz: (pg,v,2) € S}, and ay = Ap, for some point p, €
X =projz S = {pgtpeq- Let Smin = {(z,y*,2") € S : (y*,2") = argming,.(fr +
gy + hz)}. Then each point p, € X is the projection on the z-space of a point
(Pg> Yqs Z¢) € Smin such that ¢, = fp, + gy, + hz,. Moreover,
ZMLP = min fx+gy+hz
s.t.
Ax = b
(LL', Y, Z) = ZqEQ )‘q (p(Ia Yq» Zq)

Yo =1
q€qQ
Ag = 0 Vg € Q.

That is
Zyrp = min{fx+gy+hz: Az =0, (z,y,2) € conv(Smin)}

Note that replacing conv(Smin) by conv(S) lead to the same value of Zypp.

In comparison, the formulation of the original integer program and its linear relax-

ation are:

Zip = min{fr+gy+hz: Az =b, (v,y,2) € S},
Zrp = min{fr+gy+hz: Az =0b, (z,y,2) € SLp},

where Spp is the linear relaxation of S, i.e. the feasible set obtained after removing
all the integrality constraints.

Because Spp 2 conv(S) D S,
Zip < Zywe < Zip

Moreover, if Spp = conv(S), i.e. if the polyhedron Sy p has integer extreme points

(which is known as the integrality property), then Z;p = Zpyp. On the other
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hand, if conv({(z,y,2) € S : Az = b}) = {(z,y,2) € conv(S) : Ax = b}, then

ZMLP = ZIP-

Lagrangean Relaxation

Dualizing the linking constraints (Az = b) leads to the so-called Lagrangean sub-

problem:
L(r) = min{(f —7A)z +gy+hz+br: (z,y,2) € S},

where 7 represent the Lagrange multipliers associated with the dualized constraints.
L(7) defines a lower bound on Z;p. The best possible such lower bound is obtained
by solving the Lagrangean dual problem

ZLD = mﬂaXL(ﬂ')

One common approach to solve the Lagrangean dual is to use a subgradient algo-

rithm.

It is well-known that the Lagrangean dual resulting from the relaxation of the link-
ing constraints (Az = b) provides a relaxation equivalent to (giving the same bound
as) the master LP. Geoffrion (1974) [21] proved that the Lagrangean dual linear
program and the master linear program are dual problems (see also Nemhauser and
Wolsey (1988) [40]).

In Section 2.1, we illustrate the equivalence between the Lagrangean dual to the
master LP formulation for a specific application. Barnhart et.al.(1994) [4] sum-
marize the pros and cons of the Lagrangean duality approach versus the column

generation approach.

A Cutting Plane Approach

A third approach, known as partial convexification, leads to another equivalent re-
laxation. It consists of approximating conv(S) by adding cuts to Sp. Suppose that
we have an implicit representation of conv(S) in terms of linear inequalities, then,
we can solve the following separation problem: given a point (z,y,z) ¢ conv(S),
produce one or more violated valid inequalities. A cutting plane algorithm consists
of iteratively adding violated inequalities to the formulation of Spp. Let S% . be the

strengthened formulation of Spp at iteration ¢ of the cutting plane algorithm, then
Ztp = min{fr+gy+hz: Az =0, (z,y,2) € Sk},
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with Spp 2 Stp D Sﬁ} D conwv(S). If the separation algorithm used is exact, i.e. a
violated inequality is found whenever the current solution (z,y,2)" ¢ conv(S), the

algorithm terminates with a solution to

Zep = min{fr+gy+hz: Ax =0, (z,y,2) € conv(S)}.

Comparison of the 3 approaches

We have presented three different relaxations and algorithms to solve these relax-
ations: the master LP relaxation solved by the column generation algorithm, the
Lagrangean relaxation solved using a subgradient algorithm, and the partial convexi-
fication relaxation (the polyhedral approach) solved using a cutting plane algorithm.
They all lead to the same bound

ZMLP = ZLD = ZCP

However, they differ in terms of assumptions, approximation strategies, and conver-

gence.

The decomposition approach and the Lagrangean dual approach both lead to a sub-
problem that is to optimize over the set S. In contrast, the cutting plane approach

leads to a subproblem that is to solve the separation problem over S.

During the column generation algorithm, primal feasibility is maintained. So the
intermediate feasible primal solutions define upper bounds on Z,;;,p. In comparison,
the polyhedral approach is a dual approximation approach in which the intermediate
solutions are not primal feasible. The intermediate bounds are valid lower bounds

increasing toward Z¢p.

During the subgradient algorithm used to solve the Lagrangean dual, the interme-
diate solutions may not be primal feasible. The intermediate bounds are valid lower
bounds converging towards Z;p. Note that, since the Lagrangean subproblem and
the column generation subproblem are identical, Lagrangean bounds can typically

be used as intermediate lower bounds during the column generation process.

The column generation algorithm converges monotonically and finitely, while the
subgradient algorithm is not monotonic and might require an infinite number of

iterations to terminate. With the cutting plane algorithm, finite convergence is not
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guaranteed unless one uses facet defining inequalities of S, but the convergence is

monotonic.

1.5 Literature Overview

In the last 30 years, the development of general integer programming (IP) techniques
has lead to an extension of the range and size of integer programs that can be solved
to optimality. A particular effort has been made to obtain tight relaxations of inte-
ger programs. Techniques such as Lagrangean relaxation, problem convexification
(polyhedral approach), and problem decomposition and reformulation have been
developed intensively. The next step has been to embed these bounding techniques
in an implicit enumeration approach to solve integer programs to optimality more

efficiently than with standard branch-and-bound.

The first experiment along these lines has concerned the Lagrangean approach which
is probably the easiest to implement. Held and Karp (1970 -1971) [26]-[27] have suc-
cessfully applied Lagrangean bounding techniques to the traveling salesman prob-
lem. In the last decade, the polyhedral approach has been used extensively (see for
instance Balas et. al. (1993) [2]). The integration of the cutting plane algorithm
within a branch-and-bound procedure has been named branch-and-cut (for general
exposition see Hoffman and Padberg (1985) [28] and Nemhauser and Wolsey (1988)
[40]). It is only recently that difficult mixed integer programs have been solved to
optimality using the decomposition approach to produce good bounds.

Although column generation formulations of integer programs have been proposed
and discussed for several decades, for many years this technique was used to produce
solutions that were good but not always optimal. The pioneering work of Gilmore
and Gomory (1961-1963) [22] [23] on the cutting stock problem demonstrates the
strength of the linear programming relaxation of the master formulation involving
a large number of columns. Marcotte (1985) [34] shows that the cutting stock opti-
mum LP solution, once rounded so as to satisfy the integrality constraints, provides
a very satisfactory solution of the integer problem. Minoux (1987) [36] shows how
several important combinatorial optimization problems can be reformulated and
tackled by column generation. Johnson et. al. (1993) [29] use a column generation
approach to solve a graph partitioning problem (clustering problem). When they
obtain a fractional master LP solution, they proceed to solve the restricted master

integer program (i.e. the formulation containing only the columns that have been
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generated) by branch-and-bound without generating any new columns. With this
heuristic procedure, they obtain a provably optimal integer solution in 9 out of 12

instances.

The use of column generation to solve integer programs to optimality is recent.
Large airline staffing problems known as crew scheduling problems as well as multi-
commodity network flow problems have been tackled by column generation, for
instance see Barnhart et. al. (1991) [3] and [5]. Degraeve (1992) [12] considers some
production scheduling problems. In [44], Vance et. al. (1992) propose an exact
optimization procedure for the binary cutting stock problem. Savelsbergh (1993)
[41] treats the generalized assignment problem. Numerous applications in routing
and scheduling are covered in a recent survey of Desrosiers et.al. (1994) [16]: the
aircraft fleet assignment problem, the pickup and delivery problem, the urban trans-
portation problem, the vehicle routing problem with time windows, etc. In a recent
survey, Barnhart et. al. (1994) [4] present an unified review of general IP column

generation ideas that have appeared in different contexts.

1.6 Content of the thesis

The main aspect of this work is the study of column generation as a tool to solve
large scale integer programs to optimality. We implement an algorithm combining
column generation and branch-and-bound. We generalize previous results to extend
the class of problems that can be dealt with using this approach. We test the algo-
rithm for three types of problems: a telecommunication network design problem plus
a variant of the same problem, a graph partitioning problem and a single-machine
multi-item lot-sizing problem. We share the insights of our computational experi-

ments.

Both column generation and branch-and-bound are common techniques that have
been applied in integer programming for many years. Embedding column generation
into branch-and-bound sounds like a simple combination of well-known procedures.
In fact, it is not straightforward. The branch-and-bound implicit enumeration mech-
anism interferes with the column generation mechanism. Moreover, as the column
generation procedure is repeated at each node of the branch-and-bound tree, it be-
comes very important to perform it efficiently. Below we mention how these issues

have been dealt with previously and point out our contributions.
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The first concern in an IP column generation algorithm is how to eliminate frac-
tional solutions. Conventional integer programming branching based on variable
fixing is not straightforward to implement in a column generation context. Indeed,
fixing a master variable to zero corresponds to forbidding the use of a particular
column. However, this column will probably reappear as the solution of the column
generation subproblem. Then, one could generate the 2"¢ best solution of the col-
umn generation subproblem (deeper in the branch-and-bound tree, one might end
up searching for the n™ best solution). This technique has been used in [25] and
[37]. A second approach consists of adding constraints to the column generation sub-
problem in order to make the targeted column infeasible. However, it may destroy
the structure of the column generation subproblem. For instance, in the context of
the cutting stock problem, it eliminates the possibility of solving the subproblem

exactly by dynamic programming.

Alternate branching schemes have been explored. In their research on routing and
scheduling problems, Desrosiers et.al. (1994) [16] propose to take the branching
decision in the initial compact formulation as opposed to the master reformulation
and to reapply the Dantzig-Wolfe decomposition scheme to the augmented initial
formulation to define a new master LP formulation at each node of the branch-and-

bound tree.

In a recent survey on solving integer programs by column generation, Barnhart et.
al. (1994) [4] recall an earlier result of Ryan and Foster (1981) [38] leading to a
branching scheme in terms of the master variables. This method for branching is
valid for a 0-1 set partitioning formulation with right-hand-sides equal to 1. It con-
sists of selecting two rows of the master formulation. Then, all columns that have
an entry one in both of the chosen rows are eliminated on one branch, whereas,
on the other branch, all columns that have an entry one in only one of the rows
are eliminated. This branching scheme has a natural interpretation in the initial

compact formulation.

The branching scheme we propose in this thesis includes the Ryan and Foster branch-
ing scheme and more. It allows us to present an unified view of various simple
branching rules. Moreover, it provides a way of dealing with an extension of the
set partitioning problem in which the variables as well as the right-hand-sides are
general integers. We even extend the scheme, in theory, to a model with general

integer matrix entries, which includes the general integer cutting stock problem.
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The column generation algorithm which is applied at each node of the branch-and-
bound tree requires one to solve the master linear program and the subproblem
integer program at each iteration. Due to the typically large number of column gen-
eration iterations often needed to prove LP optimality, it is important to perform
each iteration as efficiently as possible, or/and to limit the number of iterations (i.e.

the tailing-off effect) as much as possible.

Barnhart et.al. (1994) [4] propose two alternative ways to improve the efficiency
in solving the LP’s: employ specialized simplex procedures that exploit the prob-
lem structure, and alter the master problem formulation to reduce the number of

columns. We have not yet tried to incorporate these enhancements in our algorithm.

In some applications, the subproblem solution is not too computationally intensive
and most of the algorithm effort is spent on solving the master LP. With other
applications, such as those we treat in this thesis, the computational bottleneck is
the solution of the subproblem. The column generation subproblem is a difficult
integer program. In the first iterations of the column generation algorithm, we use a
heuristic procedure to generate columns. But, as column generation approaches to
LP optimality, it becomes harder to find negative reduced cost columns heuristically
and an exact optimization procedure is required to generate new columns. Thus,
it is crucial to control tailing-off. To this purpose, we propose a bounding scheme
based on Lagrangean duality and we derive conditions for early termination of the
column generation procedure. Moreover, we show that these termination conditions
can be expressed in terms of a priori bounds on the column generation subproblem

value.

The performance of the IP column generation algorithm may be improved by ju-
dicious implementation choices. In this thesis, we describe some enhancements of
the procedure. We discuss the formulation we use in practice, the way we branch,
the column generation subproblem solution, the column selection criteria, and more.
In presenting our computational tests, we try to bring some understanding on the

impact of different implementation strategies.

Our computational results highlight the attractiveness of the column generation ap-
proach. The bounds provided by the master LP solution at the root node are shown

to be tight. The embedding of this bounding technique in branch-and-bound allows
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one to solve realistic size problems to optimality within reasonable time. Moreover,
experiments with different applications partially address the question of robustness

of the method and the comparison with other integer programming techniques.

1.7 Chapter Outline

The rest of this thesis is organized in four Chapters in which we discuss respectively
the applications we consider, the IP column generation algorithm, its implementa-

tion, and computational results.

In Chapter 2, we describe the problems that we will try to solve. We apply the
decomposition principle to reformulate these problems as integer programs with a

large number of variables.

In Chapter 3, we describe the theoretical aspects of the exact optimization proce-
dure that solves integer programs with a large number of variables. We present the
algorithm for a general set partitioning model that includes all the applications we
consider. We describe the column generation procedure used to solve the master
linear relaxation at a node of the enumeration tree and we present the branch-and-
bound procedure with emphasis on the branching scheme and the efficient use of

bounds.

Chapter 4 contains the details concerning a practical implementation of the IP
column generation algorithm. We discuss the choice of a master formulation (parti-
tioning vs covering). We say how we start the column generation procedure, how we
solve the subproblem, and how we select a branching rule. We discuss some column
selection strategies. We then give a global picture of the algorithm.

Finally, in Chapter 5, we present the results of our computations for the different
applications. We also provide some computational comparative test results that
show the efficiency of our column generation early termination technique and justify
our implementation choices. In the conclusions, we summarizes the pros and cons

of IP column generation and we make suggestions for further research.
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2 Decomposition of Integer Programs: 4 applica-

tions

The motivation for this thesis has been to solve real-life problems which happen to
be well suited for decomposition. In this Chapter, we shall describe the four appli-

cations we have been working on.

2.1 A Telecommunication Network Design Application

Given a graph G(V, E) that represents a city, in which a vertex (node) ¢ represents a
telecommunications center and an edge e represents a pair of points (centers) in the
city between which there is a positive demand d,, for telecommunication traffic. The
problem (Pyp) is to assign traffic on an existing network which is made of fiber optic
cycles, called rings. If the traffic on a given edge e is assigned to ring k, some costly
piece of equipment (called a multiplexer) has to be installed at the end points of e to
make the connection between the center and the ring network. Once a multiplexer
is installed at a center (node), it can be shared with other edges incident to this
node that are assigned to the same ring. However, the limited capacity of a mul-

tiplexer implies an upper bound C on the total traffic that can be assigned to a ring.

The objective is to minimize the number of multiplexers needed to realize the con-
nections. Thus one tends to assign edges sharing a node to the same ring. If feasible,
the optimal solution would be to assign all edges on the same ring (needing a total of

|V | multiplexers). But the limited ring capacity restricts the assignment possibilities.

A small instance of this problem is given in Figure 2, in which V' = {A, B, C, D}, dagp
10, dac = 12, dap = 14, dge = 16, dgp = 18,and dcp = 20. Figure 3 represents a
feasible solution when the capacity is 60. Next, we present the model and we discuss

its difficulty. Then, we derive the extended formulation from the Lagrangean dual.

Figure 2: Telecommunication traffic.
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Figure 3: Feasible assignment of traffic on rings network (capacity = 60).

We assume that d. < C since otherwise part of the traffic on edge e is shared
between | % | rings devoted to edge e and the remaining traffic d, — C' | %] is treated
separately. We define L and K as respectively lower and upper bounds on the

number of rings required in an optimal solution, with

L>]

Zecble) K < |Bl,and L < K. (5)

Letting 2% = 1 if edge e is assigned on ring k and zero otherwise, and y* = 1 if a

multiplexer is installed at node 7 on ring £ and zero otherwise, leads to a natural

integer programming formulation which we refer to as [Fyp].

Z = min Zny (6)

[Fnp] s.t.

Assign every edge Serk =1 Ve € E (7)
Install multiplexer if needed yk > zf Ve, i, k with e € §(i) (8)
Capacity constraints S dext < ¢ Yk (9)
Binary variables ok ke {0,1} Ve, i, 10)

where (i) is the set of edges incident to node i.

Let us show that this problem is NP-hard in the strong sense [20], because it con-
tains the bin packing problem as a special case. Given an instance of the bin packing
problem, that is a finite set E of items, a weight d. € IV for each e € E, a positive
integer bin capacity C, we can define a corresponding instance for the telecommu-
nication network design problem by letting the set of edges with their associated
weight be equal to the set of items, and by specifying that all edges share a common
node, node 0, while their other end point is not incident to any other edge (Figure
4 represents an instance with |E| = 4). Then in any solution of the network design

problem, the total number of multiplexers is |E|+ B where B is the number of times
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node 0 is duplicated. Equivalently, B is the number of bins used in the correspond-

ing bin packing solution.

Figure 4: Restriction of the network design problem to a bin packing (|E| = 4).

The approximation offered by the linear relaxation of the integer program [Fip] is
poor. Indeed if we take L = [#], ab =yb =1 foralli,e, k=1,.. L, and
zero otherwise, we have a feasible LP solution of cost |V| which is a trivial lower

bound on the objective value, assuming positive demands at each node.

Moreover, this problem has built in symmetry: all rings have identical character-
istics. Formulation [Fyp] allows alternate variable settings to represent the same
physical solution. Variable fixing will often result in an alternate form of the same

solution without forcing the objective value to rise.

Consequently, it is intractable to solve problems of practical size with a standard
branch-and-bound approach whose bounds are based on the LP relaxation of [Fy p]
and whose branching scheme consist of setting x variables to zero or one (note that if
all 2’s are integer in [Fyp], then the y’s are also integer). Instead, the reformulation
resulting from decomposition leads to a much better linear relaxation bound, and

takes advantage of the fact that all rings are identical.

In the rest of this Section, we derive the master formulation by means of Lagrangean
duality. This shows how the master LP formulation and the Lagrangean dual are
related (they are dual problems). We have found it interesting to emphasize the
link between Lagrangean duality and Dantzig-Wolfe decomposition since it is typi-
cally exploited to produce lower bounds at every iteration of the column generation
procedure. Indeed, each subproblem solution gives rise to a new (although not nec-

essarily better) Lagrangean lower bound.

Observing [Fyp|, we note that, without the presence of equations (7), the problem
decomposes into one for each ring. We proceed by performing a Lagrangean relax-

ation of the linking constraints. We associate, with each dualized linking constraint,
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a weight 7., called a Lagrange multiplier or dual variable. For any vector m, we
define the Lagrangean function LG(7) as

LG(r) = min ;nyJrZ%(l—Xk:x’é)

s.t. (11)
yr > b Ve, i, k with e € §(4)
Yedet < C Vk
zf, yf € {0,1} Ve, i, k

Noting that each ring has identical characteristics, we define a subproblem associated
with a single ring:

v(m) = min Zyi—Zﬂexe

2

[SPnp] s.t. (12)
Yi > Ve, i, with e € §(7)
Yeldere < C
Ze, Yi € {0,1} Ve,

which is a feasible problem whose optimal value is non-positive.

The Lagrangean function decomposes into the solution of K independent subprob-
lems of this type:

LG(m) = Zwe—i-];v(w) = > 7T+ K x v(m) (13)

As LG(m) defines a lower bound on Z, we obtain the best possible such lower bound

by maximizing over the choice of weight vector 7.
Zrp = max, LG(w) (14)

The above problem is called the Lagrangean dual. As we mentioned in a previous
Section of this Chapter, it is the dual of the linear relaxation of the master problem
that would result from applying Dantzig-Wolfe decomposition to the telecommuni-
cation network design problem formulation [Fyp]. Let us show how it relates to the

master.

Since problem [SPyp| admits a finite set of feasible solutions, we can potentially
proceed to enumerate them. Let {(c,, ag, 74) € IN x {0,1}® x {0,1}V1}cq be a
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complete enumeration of the || undominated feasible solutions of [SPypl: a, =
for some = € {0, 1}/#! such that ¥, d.z. < C,

cg = myln{ZyZ sy e {0, 1YV g > ae, Vi, e with e € 5(3)}

and r, = y* the solution of the above minimization problem. We adopt the following

notation to restate the above in a more compact form:

cg = min, { 3t a r € {0, 1}/l

e = ye {01}V,
Te Vi, e with e € §(7),
C}

Yi
e dee

IN IV

Note that enumerating over all feasible solution of [SPyp]| (including the dominated

ones that do not minimize 3, y; for a given z) is also valid.

Then we linearize the Lagrangean dual (14), using an auxiliary variable p < 0, which
stands for v(7) < 0.
Zrp = max YeTe + Kpu
s.t.
YeTeleq + 1 Vge @ (15)

I

IN A
o 0

By linear programming strong duality, we obtain

Zrp = min 24 Cq N
s.t.
Yglegrg = 1 Ve e E
2¢N £ K
Aq =20 Vge@Q

where )\ is a vector of variables associated with constraints (15).

The theory of Lagrangean duality tells us that Z7p is a better bound than the one
resulting from the linear programming relaxation of [Fyyp], when the subproblem
does not have the integrality property. This is the case for [SPyp] since
conv({(z, y) € {0,1}/B x {0, 1}V!: 2, < y; Ve, i, Y. deze < C}) C
{(z,9) €[0,10" x 0,1V : 2, <y Ve,i, D dere <C}
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and, typically, the inclusion is strict.

The latter formulation of the Lagrangean dual can be viewed as the linear relaxation
of an alternate formulation for problem (Pyp). The incidence vectors a, represent
feasible edges to ring assignment patterns of cost c,. The variable ), is one if
pattern ¢ is selected, zero otherwise. The integer programming reformulation of

(Pnp), which we refer to as the master, is

7 = min Zq Cq Ag

[MND] s.t. (16)
Zq Qeq )‘q =1 Vee E
L <Y N <K
Ay € {0,1} VgeQ

Without lost of generality, we have explicitly added the lower bound on the number
of selected patterns. If we can derive the explicit bounds L and K on the number
of rings in any optimal solution using combinatorial arguments, then the linear re-

laxation of [Myp] produces a lower bound on Z which is even tighter than Zp.

2.2 Network Design with Split Assignments

The second application we present here is an extension of the telecommunication
network design problem in which edges must be assigned twice, half of the traf-
fic going on one ring, the rest being assigned to another ring. The natural IP
formulation of this problem is analogous to [Fyp], but the right hand side of
the partitioning constraints take a more general form. Let b, be the number of
rings to which traffic demand associated edge e must be assigned. If d, is even,
we divide it by 2 and we set b, = 2. Otherwise, we define two edges, ¢’ and
e”, to replace edge e, with dv = |%] and dov = [%]. Let S = {(¢,€") :
e’ and ¢”are new edges defined to replace an odd demand edge}. We set by = ber =

1 for all (¢’,€") € S. Moreover, we add explicit disjunctive constraints
z% 4 2%, <1 for all k, and for all (¢/,e") € S, (17)

stating that edges e’ and €” may not be assigned to the same ring. Let m represent
the number of edges after this transformation. Using the same notation as before,

a compact integer programming formulation of this problem is
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min Z Z yf

ki
[Fnpsal s.t. (18)
Yrak o= b Ve=1,...,m
b+ 2k, <1 V(e e") e S, k
yr > ak Ve, i, k with e € §(3)
Yedert < C Vk
zk gk e {0,1} Ve,i, k
The Master we obtain from reformulating this problem is
min >4 Ca A\
(M psal s.b. (19)
YgleqAg = b Ve=1,....m
L <¥YiN £ K
A, € {0,1,2} Vg € Q,

where q, represents a feasible edge assignment pattern, i.e. a, € {0,1}™ : 3, deae, <
C, aeg+aeqg <1, V(e,€e") € S; ¢, is the associated cost, i.e. ¢; = min, {>;y; :
y € {0,131, y; > aey, Vi, e with e € §(i)}; and )\, stands for the number of times

pattern ¢ is selected in the solution.

2.3 The Clustering Problem

The third application we consider is a graph partitioning problem that arises in
contexts such as VLSI production, compiler design, or ordering of the computations
in the Finite Elements method (see de Souza (1993) [13] and Johnson et. al. (1993)

[29]).

Given an undirected graph G = (V, E), edge costs ¢, for each edge e € E, weights
d; > 0 for each vertex (node) i € V, and a capacity C' (with d; < C for all : € V),
we wish to find a partition of V' into clusters such that the sum of the node weights
in each cluster does not exceed C, and that minimizes the sum of the costs of edges
between clusters. Note that an equivalent objective is to maximize the sum of the
costs on edges within the clusters. Without lost of generality, we assume that we

have lower and upper bounds, respectively L and K, on the number of clusters in
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an optimal partition (with L > [ZC&] and K < |V|). Alternatively L and K can

be part of the problem data.

Letting 2% = 1 if node i is assigned to cluster k, zero otherwise , and y* = 1 if edge e
is within cluster k, zero otherwise, a compact IP formulation for the above problem

is

K
max Y3 eyt

k=1 c€E
[Ferust] s.t. (20)
Yok =1 VieV
y* < ok Ve, i, k with e € §(7)
Yk > xf—i—xf—l Ve = (i,7), k,
Yidiz; < C Vk
Sab > 1 Vk=1,...,L
kb e {0,1} Vi, e, k

When all the edge costs are non-negative, this problem is known as the Min-Cut
Clustering problem (MCC), and is also called the graph partitioning problem. It is
an NP-hard problem as shown in (Johnson et. al. (1993) [29]).

Using arguments similar to those we have used for the network design application,
one can show that formulation [Forysr] has an extremely weak linear program-
ming relaxation and does not exploit the inherent problem symmetry. Here again
a disaggregated formulation obtained by applying the decomposition principle can
be derived. In [29] Johnson et. al. (1993) give an explicit comparison of the two

formulations for this problem.

The set partitioning formulation that results from decomposition assumes that one
can generate feasible clusters. Let {(c,, aq4, 74) }qeq be an enumeration of all feasible
clusters, i.e. a, € {0, v v, digiqg < C, cg =maxy { Xecele  Ye < aig Vi, €
with e € 6(4), and y. > a;q + a;4 Ve = (4,7)}, and r, = y*, a solution of this

maximization problem. In our notation,

¢g = maxy { Y,cle : 0 = z€{0,1}V],
re = ye{0,1}¥,
Ye < Vi, e with e € §(7),
Ye > zi+a3;—1 Ve = (i, ]),
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Yudiz, < C }.

Let A\, € {0,1} for ¢ € Q represent the decision of selecting cluster ¢ in the solution.

Then the master formulation is

max >4 Cq g
[McrusT] s.t. (21)
Yq0igAg = 1 YVieV
L <X, AN < K
Ay € {0,1} Yq € Q.

2.4 The Single-machine Multi-item Lot-sizing Problem

The fourth application we consider differs from the previous ones in that the sub-
systems have different characteristics. The problem of finding a production plan
for different goods (items) that share a common production facility (machine) has
different variations. Here, we address the case where the machine has a limited pro-
duction capacity, at most one item can be produced in each period and the objective

is to minimize production, storage, set-up, and start-up costs.

Given demands d:, the setup, startup, production, and storage costs, respectively
¢, fi, pt, and A%, and the machine capacity U}, for item ¢ = 1,..., I over a discrete
time horizon ¢ = 1,...,7 and given that the single machine can produce at most
one type of item in each period (without lost of generality, we can assume that the
single machine processes exactly one item in each period), the problem is to find
a feasible production plan (i.e., a machine/period to item assignment with corre-
sponding production level to satisfy demands while respecting the machine capacity

constraint) that minimizes the overall cost.

To formulate this problem, we introduce the following variables:

z¢ =1 if the machine is setup for item ¢ in period ¢, 0 otherwise;
yi =1 if the production of item i is started in period ¢, 0 otherwise;
zi = the production level of item 7 in period ¢;

st = the stock level of item i at the beginning of period ¢.

A natural model for this fourth application is:
I T o o o
min = Y > (G + fiy, + piz + his))
i=1 t=1
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[Furrs] s.t. (22)

Siato= 1 Vt,
Z+ s = dl + si, Vi, t,
2 < Uil Vi, t,

yi > T — T Vi, t,
oyt e {0,1} Vi, t,
Zist > 0 Vi, t,

After dualization of the partitioning constraints, the problem decomposes into one
subproblem for each item. The subproblems are feasible if F;;.s is feasible, and
they have a finite number of feasible solutions. Let {(c,, aq, 7¢) }4cqi be a complete

enumeration of all feasible single item production plans for item 3; i.e. ¢ € Q° iff

Cq = miny: 4, ) { To(dat + flyi + pial + his):
ag = (2}, ¢') € {0, 1}7 x {0, 1},
where vector ¢’ has an entry 1 in row 7 and zero’s elsewhere,

re=(y", 7', s') € {0,1}" x R} x RY,

Z 4+ st = di + st Ve,
2 < Ul Vi,
yi > 7 — Ty vt ).

Letting @ = U!_;Q", and letting A\, € {0,1} Vg € @ represent the decision of
selecting production plan ¢ in the solution, we formulate the Master as

min 2qCa Mg
[Mrrrs] s.t. (23)
YgltgAg = 1 Vi=1,...,T (24)
Y UTriyg g = 1 Vi=1,...,1 (25
Ay € {0,1} Vq € Q,

where we indexed by ¢ (resp. (7 + i)) the first T (resp. following I) components
of vector a,. Constraint (24) ensures that the single machine processes one type of
item in each period, while constraint (25) accounts for the fact that there must be
one complete production plan for each item. Note that the latter constraints imply
that >, Ay = |1].
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3 IP Column Generation for Set Partitioning Prob-

lems

In this Chapter, we present a column generation based algorithm to solve exactly
integer programs involving an enormous number of variables. We first give a column
generation formulation of an integer program which we refer to as the master. We

then articulate our theoretical presentation around this particular formulation.

The model [M] that we propose below is a slightly generalized version of the set
partitioning problem in which the right hand sides and the decision variables are
positive integers not restricted to 0-1. This model is general enough to include all
four applications presented in Chapter 2. The master integer program [M] can ei-
ther be the result of the reformulation of an IP by decomposition, or be the initial

way to model the problem on hand.

The integer programming (IP) column generation algorithm we describe is an exact
optimization procedure that integrates column generation with branch-and-bound.
The bounding scheme used to prune the branch-and-bound tree is based on the lin-
ear relaxation of the master. Due to the large number of columns in the master, a
column generation algorithm is used at each node of the branch-and-bound tree to
solve the master linear relaxation. The branching scheme is made compatible with

the column generation algorithm by modifying the subproblems appropriately.

After the model presentation, we successively describe the components of the TP col-
umn generation algorithm. First we present the procedure to solve the master LP
at a branch-and-bound node. Then, we discuss the enumeration scheme to solve the
master IP and we describe in more detail the branching scheme and the bounding

scheme.

3.1 A Model for Generalized Set Partitioning

Let I be a set of m elements. We consider a set of subsets of I, the set of fea-
sible subsets. With a feasible subset 19 C I, we associate an incidence vector
a, € {0,1}™, with a;, = 1if ¢ € 1%, a;; = 0 otherwise, and a cost ¢,. We let r,
represent the remaining characteristics of 19 (optional). In the model we consider,
the set of feasible subsets can be described implicitly by a mixed integer program,
ie., c¢(x) = ming {fz + gy + hz, (z,y,2) € W, 2 € {0,1}", y € IN?, z € R, },
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where x represent decision variables defining the subset, y and z represent auxiliary
variables, f, g, and h represent the associated cost vectors, and W is a polyhedron
that can be described by linear inequalities. In Chapter 1, we used similar notations,
letting S = W N ({0,1}™ x IN? x IR", ). Any feasible vector = of the above optimiza-
tion subproblem defines a feasible subset 9 represented by ¢, = ¢(z), a, = z, and
rq = (Y, 2*) = argming {fr + gy + hz, (z,y,2) € S}. Let {(cq, aq,74) }4eq@ be a
complete list of all feasible subsets. Typically, the size of @) is large, the number of
feasible subsets growing exponentially with m. In general, the problem is well de-

fined if one is able to enumerate all the feasible subsets either implicitly or explicitly.

Given I, W, and b; € IN Vi, the problem consists of finding a minimum cost selection
of subsets that covers each element 7 exactly b; times. Letting A\, equal the number

of times subset ¢ is selected, we obtain an integer programming formulation:

7 = min D e (26)
g€q
[M] s.t.
Saigh = b Vie I (27)
9€q
>N <K (28)
S
YA > L (29)
9€Q
Ay € IN Vg € @ (30)

Without lost of generality , we have added constraints (28) and (29) providing lower
and upper bounds on the total number of selected subsets. Equations (27) represent
the partitioning constraints. The standard set partitioning problem assumes that

all b; are 1 and that the \’s are restricted to be zero or one.

It is straightforward to see how this model includes the applications formulated in
Chapter 2. Note that model [M] even allows us to treat problems with non-identical
subsystems such as the single-machine multi-item lot-sizing application. Numerous
other applications can be modeled by [M]. To cite only one, we mention the single
depot capacitate vehicle routing problem. In this case, I represents a set of clients
to which one must deliver goods from a depot, and b; = 1 Vi. A subset of clients
is feasible if the total demand of these clients does not exceed the capacity of a
vehicle. The associated cost is the length of the shortest route starting from the

depot, visiting these clients and ending at the depot. One can generalize model [M]
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further by letting the entries a;, be positive integers. The model would then include
the cutting stock problem presented in Chapter 1.

3.2 Using Column Generation to Solve the Master LP

If we drop the integer restrictions in Model [M], the resulting linear program [M p]
is not trivial to solve. It has typically a very large number of variables, each of
which is associated with some feasible subset 19 (i.e. a feasible solution in S). So,
it is practically impossible to generate the entire model. Instead, the master LP is
solved by generating the columns if and when the LP solution method needs them,

a technique that is called column generation.

The column generation procedure starts with a known basic feasible solution of
the linear relaxation of the master [Mp]. This initial solution can be generated
by solving the corresponding phase 1 problem, i.e., initiating the formulation with
appropriate artificial basic variables and using the column generation algorithm to
solve this augmented problem with an artificial objective function penalizing the
presence of artificial variables in the basis. Alternatively, one can generate a feasible
solution heuristically or combine the phase 1 problem with the phase 2 problem as

we shall see in the next Chapter.

Initially, the formulation of the linear program contains only a subset of the possible
columns Q C Q, i.e. the basic feasible solution plus eventually a few other columns.

We refer to it as the restricted master LP, M p(Q). Additional columns are gener-

ated as described below.

The algorithm proceeds by pricing out the variables (columns) that are not currently
in the formulation, in order to check the optimality of the current basis. Most LP
solvers produce the dual solution (the shadow prices) as a by-product of the primal
optimization. So after solving the restricted master LP, M LP(Q), the values of the
dual variables are collected. Let (7, u, v) € IR™ x IRt x IR be the dual variables
associated with, respectively, the partitioning constraints (27) and the upper and

lower bound cardinality constraints (28-29).

If the primal optimality condition holds, i.e., the minimum reduced cost is non-
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negative
m
min{c, — > miaij,—p—v: g€ Q} >0, (31)
i=1

the master LP problem has been solved without specifying all the columns or solving
the full formulation. If not, the algorithm produces one (or more) non-basic columns
g that violates dual feasibility, i.e., for which 7" m;a;4 + 1 + v > ¢;. Then the
simplex method, when applied to the master LP, would introduce variable A, in the
basis to improve the current solution, barring degeneracy. The column generation
procedure accounts for this possibility by adding variable A\, as a new column to the
restricted master LP, augmenting Q. The new restricted formulation can be solved,

using any LP solver, and the entire procedure can be repeated.

Observe that (31) is itself an optimization problem referred to as the pricing sub-
problem. Since the set ) is only known implicitly (cfr Section 3.1), the most negative

reduced cost column, if any, is obtained by solving

v(mp,v) = min{ (f-mz + gy + hz —p—v:

(x,y, 2) € W,

xz € {0,1}™,

y € IN?,

ze R, } (32)
whose solution (z*,y*,z*) defines a new column a, = z*, r, = (y*,z*) of cost

cg=fz" + gy* + hz".

To be effective, the column generation algorithm requires that the subproblem can
be solved efficiently, and that an optimal solution to the master LP be obtained be-

fore too many columns have been added to the formulation of the restricted master
LP.

3.3 Solving the Master 1P

Unless the solution of the master LP is integer, solving [Mp| does not provide
a solution to the original IP problem [M]. This means that one has to turn to
branch-and-bound in order to find an optimal IP solution. Applying a standard
branch-and-bound algorithm to the restricted master is not an exact optimization

procedure since there is no guarantee that an optimal solution (or even a feasible
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IP solution) can be found from among the existing columns. However, an optimal
solution of the restricted master integer program provides an heuristic solution (i.e.

the best integer solution that can be obtained by combining existing columns).

Note that, when the standard branch-and-bound algorithm is applied to the re-
stricted master, the LP relaxation bounds are valid lower bounds for the restricted
master only. At a given node, in order to obtain a valid lower bound for the un-
restricted node master problem, one must prove LP optimality. That is one must
solve the pricing subproblem since after branching some new columns might price
out negatively. Using column generation at the node leads to a valid lower bound for
the unrestricted node master problem and generates additional columns that might

be part of the optimal integer solution to the unrestricted master.

Combining column generation with branch-and-bound, one can solve problem [M]
optimally. At each node u of the branch-and-bound enumeration tree, the above
column generation algorithm is applied to solve the linear relaxation of the master
[M!p]. At each iteration of the column generation procedure at node wu, the re-
stricted master LP [M¥,(Q)] is solved giving an upper bound Z%,(Q) on the value
of the linear programming relaxation Z¥,(@Q). The process continues until LP opti-
mality is proved. Then Z¢,(Q) = Z¥»(Q). Next, either node v is pruned by bound,
IP optimality, or infeasibility; or the optimal LP solution is fractional. In the latter
case, we branch; that is, we separate the feasible solution set of the node problem
into more restricted subsets whose union does not contain the current fractional

solution, but contains all integer solutions.

Embedding column generation in integer programming techniques raises some spe-
cific difficulties. First, a branching scheme compatible with column generation must
be derived since applying a conventional integer programming branching scheme
is not straightforward nor recommended in this context. Second, the efficiency of
branch-and-bound algorithm will suffer from the tailing-off effect of the column
generation algorithm (i.e., the large number of iterations needed to prove LP opti-
mality). But is it really necessary to solve the master LP to optimality in order to

derive a bound at the node? In the next two sections we address these issues.
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3.4 Branching

Solving integer programs using a branch-and-bound algorithm based on the LP re-
laxation assumes that all fractional solutions can be eliminated by successive separa-
tion of the feasible solution space. A branching scheme is a set of rules that enables
one to exclude any given fractional solution while making sure that the resulting
separation of the IP feasible solution space is valid. In mathematical terms, let X“0
represent the set of LP feasible solutions at node ug, given A\* a current fractional
feasible solution of [M}'%], the branching scheme must provide a way to separate X “0
into X", ..., X% such that A\* ¢ (UF_; X%) and (X" N INI9) C (U7, X%). More-
over, to guarantee final termination of the branch-and-bound algorithm, it must
be proved that, after a finite number of separations, the solutions of the leaf node
master problems are integer. In this thesis, we will use only a binary enumeration

trees (i.e. p = 2); so, after separation, node ug has two successor nodes, u; and us.

A good branching scheme is one that, in addition to having the properties presented
above, takes into consideration the performance of the branch-and-bound algorithm.
This is a qualitative concept. Recall that branch-and-bound is a procedure to im-
plicitly enumerate all integer solutions. It works on two fronts, on the one hand
trying to construct an optimal integer solution and on the other trying to produce
a tighter lower bound that proves the optimality of the current integer solution.
So, among alternate branching schemes leading to a valid separation, one wishes to
select the one that maximizes the value of the minimum lower bound over all the
successor nodes, and that improves one’s chance of generating intermediate integer
solutions. In the operations research literature, one can find many heuristic argu-
ments to qualify a good branching scheme. Such rules of thumb are: a separation
leading to a partition of the feasible space (s.t. X*' N X" = () is better than a
covering; one should try to split the solution space into subspaces of approximately
equal size; one should try to eliminate as many fractional solutions as possible in

one separation.

In the column generation context, other considerations must be taken into account
as well. First, we need to show that the branching scheme we use is compatible with
the column generation algorithm. That is, we can still use column generation to
solve the LP relaxation of the more restricted problems defined at successor nodes.
Moreover, when it comes to qualify a good branching scheme, we insist on keeping

the master and the subproblem tractable.
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In the rest of this section, we show how separation can be implemented in a col-
umn generation framework. We present an earlier approach of Ryan and Foster
[1981]. Then we propose to extend Ryan and Foster branching scheme to the case
of model [M]. We next prove the validity of our branching scheme. Finally we
present a generalization of this branching rule for the case where the matrix entries
in model [M] are general integers not restricted to zero or one. To begin, we show

why the conventional branching rule based on variable dichotomy is not appropriate.

3.4.1 Conventional branching

To motivate our assertion, let us look at the fractional solution obtained for the
small instance of the telecommunication network application given in Chapter 2
(see Figure 5). A feasible integer solution for this problem is given in figure 6; its
cost is 7. In table 1, we present a few feasible patterns (columns) for this problem.
The edges have been numbered in increasing order of the associated traffic demands
(i.e. edge 1 = (A, B),..., edge 6 = (C,D)).

Figure 5: An instance of the network design (ND) problem.

Figure 6: A feasible solution (with capacity = 60).

At the root node of the master branch-and-bound tree (node 0), Ao = \3 = A\ =
As = 3 is an optimal solution of [M?,(Q)]. The corresponding value Z9,(Q) is
6. Conventional branching consists of selecting a fractional variable, say Ay, and
imposing Ay < 0 on one branch, and A\; > 1 on the other. In figure 7, we present the

resulting branch-and-bound tree where for each node we give the upper and lower
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3| 141|011 4041j0}1y1, 17070
4116 (0|1(0|0Of1|1|0|1|1]0]O0]1
5118 (0j1}1(04011j1]0;0 0}0]O0
6|20 (0]1(0}1(040|1}{12}]010]1]1

cost |4 (33|33 (4444|224

Table 1: Some feasible patterns for the network design instance.

bound on the node problem value.

Figure 7: Branching on As.

At node 2, edges 4, 5 and 6 are covered by pattern 2, the remaining problem con-
sists of finding an optimal assignment for edges 1, 2 and 3. Since these edges can
be assigned together on the same ring, \; = Ay = 1 is an optimal LP solution and

the node can be pruned by optimality.

At node 1, Ay < 0 implies that pattern 2 cannot be used; so, we delete it from the
formulation of the restricted master. But we must also make sure that it will not
be regenerated. This is done by adding to the subproblem [SPyp] (cfr (12)), the

constraint
T+ za+ 3+ (1 —z4)+ (1 —25) + (1 —26) > 1. (33)

After application of the column generation algorithm, we find a new fractional so-
lution A\g = Ay = g = % of cost 6. So the lower bound is no tighter than the bound

at the root node. A new separation must take place.

In conclusion, we observe that the variable fixing branching scheme leads to an
unbalanced separation. On the right branch, the feasible space is very restricted

while on the left branch, only one pattern is excluded, leading to a problem that
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is not much more restricted than the one at the predecessor node. Moreover, the
constraint added to the subproblem is not trivial and it may destroy the structure
of the subproblem, making column generation difficult by means of a heuristic or a

dynamic program and maybe making exact column generation intractable as well.

3.4.2 Ryan and Foster branching scheme for standard set partitioning

For the standard set partitioning problem (with right hand side restricted to 1),
Ryan and Foster (1981) [38] suggest a more appropriate branching strategy based
on the following proposition.

Proposition 2 (Ryan and Foster, 1981) Ifb; = 1 Vi = 1....,m, and X is a
fractional solution of [Myp], then there exist e and f € {1....,m} such that

0 < oo <L (34)

Having identified such a pair of rows (e, f), one can cut off the current fractional
—ap =1 Ag < 0 on the left

—1A¢ > 1 on the right branch. Since the number of such pairs

solution and perform a valid separation by imposing > ., .
branch and D giaeq=as,
of distinct elements from {1....,m} is finite, the branch-and-bound algorithm will

terminate with an integer solution.

This branching strategy is typically compatible with column generation. On the
left branch, it amounts to eliminating all the columns with a., = ay, = 1 from the
master formulation and, to avoid to regenerate such columns, we require that all
newly generated patterns (i.e. subproblem solutions) satisfy a.q + a5, < 1. This
latter requirement amounts to adding the constraint . + z; < 1 to the subprob-

lem formulation. On the right branch, } —1A¢ > 1 implies that elements

q:ae g=a
e and f will be covered exclusively with pat’:errg that include them both; mean-
ing that patterns containing only one of them are excluded from the solution, i.e.
Ygiacqtas, A < 0. So we eliminate all columns with a.q # afq from the master
formulation, and we require that all new patterns satisfy a., = ay,, that is, we add

the constraint z. = z; in the subproblem.
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Let us illustrate this branching strategy on the network design application instance.

Given the fractional solution at the root node, we note that

wse = Y, A= 5 (35)

g:a5 q=a6 =1
where we have introduced w54 as an auxiliary variable to represent the co-assignment
of edges 5 and 6. In an integer solution, edges 5 and 6 are assigned to either the
same ring (wse = 1) or different rings (ws¢ = 0). So the branching scheme proposed
by Ryan and Foster can be interpreted as a conventional branching rule on such

auxiliary variables.

Figure 8: Branching on wsg.

We separate by letting ws¢ < 0 on the left branch and wsg > 1 on the right branch
(see figure 8). After reoptimization of the successor node master LP, we obtain the
fractional solutions Ag = Ay = Ag = Ajp = % with cost 6.5 at node 1 (see Table 1),
and A3 = A\g = A1 = A2 = % with cost 6.5 at node 2. Both nodes can be pruned
because we know an integer solution of cost 7 (see Figure 6), all integer solutions

have integer cost and [6.5] > 7.

In conclusion, with Ryan and Foster branching scheme, one separates the solution
space into subsets of approximately equal size, and the constraints one has to add to
the pricing subproblem are quite simple: constraints like . = xy amount to defining
groups of elements; while z. +x; < 1 are disjunctive constraints. As we shall see in
the next Chapter, for the applications we consider, these subproblem constraints can
be incorporated in a heuristic column generation procedure and they do not very
much increase the difficulty of solving the subproblem exactly. The co-assignment
(ze = z¢) and disjunctive (z, + z; < 1) constraints that result from branching
progressively induce a partition of the column set into subclasses, each of which is
covering a subset of rows. Consequently, as expected from a branching scheme, the

intermediate master LP solutions are more likely to be integral.
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There are many ways of implementing Ryan and Foster branching rule. The selec-
tion of rows on which to branch can be extended to rows that are not explicitly in
the formulation [M], but that could be added to define auxiliary variables, i.e., rows
associated with the components of 7, (cfr Section 3.1). For instance, in the network
design application, letting r;, = 1 if a multiplexer is installed at node ¢ in pattern g,
we can add to [Myp] rows such as w; = Y cqur,,—1 A, Where w; represent the total
number of multiplexers installed at node 7. Then, we may branch on a pair of rows
one of which corresponds to an edge and the other to a node (note that the extra

rows do not have to be introduced explicitly in order to use this type of branching).

In some applications, one can show that all fractional solutions can be eliminated
using only a subset of pairs of rows. This is typically the case when there is a one
to one correspondence between the integer variables in the original formulation [F]
and auxiliary variables in the reformulation [M], and when these auxiliary variables
can be defined as a subset sum of A’s such as (34). For instance, in the multi-item
lot-sizing application (22-23), it is enough to enforce the integrality of the machine
setup variables (z} = 1 if the machine is setup for item 7 in period ¢, zero oth-
erwise) to obtain an integer solution of [Fysrrs]. Moreover, there is a one to one
correspondence between these original integer variables and particular subset sums
of Ns: xt = Ygara=arrn =1 M- M Lgarg=airps,=1 Aq 18 integer for all {t,7}, then the
corresponding solution z in [Firrs] is integer. Conversely, if all ¢ are integer, then
all X’s are integer in [Mysr1,s] (as shown in [4]). So, if all subsets of 2 rows, one of
which corresponds to a period and the other to an item, lead to an integer subset

sum of \’s, then A is integer.

3.4.3 A branching scheme for model [M]

When the right hand sides in [M] are not restricted to 1, the previous branching
scheme is not sufficient to eliminate all fractional solutions. For instance, consider a
problem in which m =3 and b; =2 Vi =1,...,m. In Table 2, we have enumerated
all possible patterns, assuming that they are all feasible. Assuming the current frac-
tional solution is A\, = % Vq, it is not possible to eliminate this fractional solution
based on the subset sum of \’s defined by Ryan and Foster (34). One can easily
check that for any pair of rows (e, f), 3 A =1

Giaeq=af =1

However, considering a third row, one can define a subset of patterns whose \’s

sum is fractional: .. _  _ _ A\, = )\ = 1. The fractional solution can then
q:a1g=az24=a3q=1 "¢ 2
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1(1/1]0]1]0]0
101101
1(011{1]0]0]|1

Table 2: Tableau with all possible patterns when m =3 and b; =2Vi=1,...,m.

be eliminated by enforcing that one must select an integer number of patterns from
that subset. This example illustrates how Ryan and Foster branching scheme can
be extended to include the case of general integer RHS. Next, we give an intuitive
explanation of the way we eliminate a fractional solution of model [M]. Then, in
Proposition 3, we formalize the result on which we base our branching scheme. The
constructive proof paves the way for a practical separation scheme.

Branching for model [M] is based on the identification of a subset of patterns whose
variable sum is fractional. In the search for a fractional sum of \’s, one can ig-
nore patterns whose A is integer. As in the Ryan and Foster branching scheme,
one tries to derive a subset of patterns that includes some fractional patterns and
excludes others. To identify such a subset of pattern, one partitions the fractional
N's according to the elements covered by the associated patterns. A restriction to
fractional patterns that contains a given element 7 leads to a sum of A’s bounded by
b;. The class of fractional patterns containing element ¢ is then partitioned further
by selecting another element that is included in some of the remaining patterns but
not all. This leads to a new subclass of patterns whose sum of variables is either
fractional or bounded above by an integer which is strictly smaller than the bound
one had before partitioning. Pursuing this idea, we generalize the previous result

of Ryan and Foster (Proposition 2) and we derive a branching scheme for model [M].

Let us introduce some notation. Let T C I = {1,...,m} be represented by its
incidence vector ar (a;7 = 1 if i € T, zero otherwise). Pattern ¢ satisfies a, > ar
if a;q > a;7 Vi =1,...,m. Let bmax = max{b; : ¢ € I}, and |a,| be the size of the

element set represented by a,: |a4| = Yicr tig-

Proposition 3 If A is a fractional solution of [M1p(Q)], then there exist a subset
T C I such that
> A, s fractional, (36)
qEQ:ana‘T
and |T| < min(min{b; + 1 : 3q with a;; = 1 and A\, is fractional} , max,{|a,| :
Aq is fractional}) < bmax + 1.
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Proof. To prove the result, we first show that the following claim is valid:

if there exists S C I such that 3., sa5 Ag =1 € IN' and )\ is fractional for some
k with ay > ag, then there exists R C I\ S and T = S U R such that Y giag>ar Ag 1s
fractional and |R| < n.

We use an inductive argument on n. Assuming that this observation is true for
n = 1,...,r, let us prove that it is still true for n = r + 1. Assume that )\, is
fractional with ay > as and 3 ;.4 >4, Ay = 7 + 1 is integer. Then, as 3 ., >qg Aq 18
integer, there exists a second pattern k' € Q with ai > ag and Ay is fractional.
There are no duplicate columns in Q, so 3j € I s.t. a;; # a;. Assume that a;, = 1
and a;p = 0 (otherwise invert the roles of £ and £'). Let R = {j} and T'= SU R.
Then

0< > N<r+l-dp<r+1 (37)

q:ag>ar

Thus, the subset sum defined by 7" is either fractional and we have found an appro-
priate set 7', or it is integer and smaller than or equal to r. In the latter case, the
induction hypothesis applies since for S =T, a; > as and A is fractional. Using a
similar argument it is straightforward to prove that the above claim is also true for
n = 1.

Now, assuming that the current solution A is fractional, we let b = min;{b; :
Jq with a;q = 1 and ), is fractional}. For S = {i*}, X y.0,5a5 Aq = bi» € IN'. Ap-
plying the above claim leads to the conclusion that there exists 7" such that |T'| <
bi- + 1 and g4 >0, A 18 fractional. Moreover |T'| < max{[a,| : A is fractional },
since elements of 7" are chosen from the subset of elements covered by a fractional
pattern. m

Separation
Given a set T leading to a fractional subset sum 3 ., >4, A = @ ¢ IN ! separation
is performed by imposing

Y. A< lal (38)

g:ag>ar

on one branch, and

3 A > o] (39)

g:ag>ar
on the other branch. We need to show that such a branching scheme leads to final
termination of the branch-and-bound algorithm and can be implemented in a col-
umn generation framework.

We can guarantee that a feasible integer solution will be found (or infeasibility

proved) after a finite number of branches. Indeed, the number of subsets T is finite,
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and, since b,y is a valid upper bound on the value of a subset sum like (36), the
number of dichotomies is finite as well. Moreover, Proposition 3 implies that if there
is no set 7' C I leading to a fractional subset sum like (36), then the solution of the

master must be integer.

Given a fractional basic solution A, the first step towards implementing this branch-
ing scheme is to find a fractional subset sum (36), while keeping |T'| as small as
possible. The proof of proposition 3 tells us how to construct a subset 7. Alterna-
tively, one can enumerate all subsets of 2 rows before going on to subsets of 3 rows,
etc.., until one identifies a fractional subset sum. This is a reasonable procedure
when by, is small or m (i.e. the maximum number of element in a column) is a
small number. Then, we add the branching constraint (38) or (39) to the master

formulation [M}].

For a correct computation of the reduced cost of a column, one must then take into
account the additional dual variables associated with the new branching constraint
in the master. Consequently, along with the branching scheme, we present a pricing
subproblem modification scheme. We define auxiliary variables for the subproblem.
If a branching constraint concerns a subclass of pattern ¢ such that a, > ar for
some T C I, we define an auxiliary variable wr € {0,1} in the subproblem such
that wy = 1 if the pattern defined by the subproblem solution includes subset 7',
and zero otherwise. Then wyr also appears in the objective of the pricing subproblem

weighted by the appropriated shadow price of the master LP.

Note that the definition of the subproblem auxiliary variables can be enforced using
linear inequalities. Given T" C I, we add the following set of constraints to the

subproblem to define wr:
wr > 1= Yier(l — ;) (40)
wr <z VieT (41)
The integrality of the x variables will guarantee the integrality of wr with no need
to specify explicitly that wy € {0,1} . If the master branching constraint is of type
(38) (resp. (39)), then the corresponding dual variable represents a penalty (resp. a

reward) for selecting a pattern that includes 7' as a subproblem solution, and only
constraint (40) is (resp. constraints (41) are) active in defining wr-.

Node master and subproblem formulation

We are now in a position to give an explicit formulation of the master problem and
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the associated pricing subproblem at a given node u of the branch-and-bound tree.

Let G (resp. H{) be the set of branching constraints of type (38) (resp. (39)) that
have led to the definition of the problem at node u. That is, we let g € G if one of

the branching constraints defining the problem at node u is

> A< K (42)

q:0q>0ag

where a, is the incidence vector of a specific set T C I and K9 € IN'. Equivalently,
h € H if 34,54, Ag > L" is part of the definition of M™.

Since the initial cardinality constraints (28-29) of model [M] have the same form,
we let ag be the null vector, K = K, L = L, G* = G¢ U {0} and H* = H¥ U {0}.
Then, the formulation of the master at node u is

Z"(Q) = min D eg A

qeq
[M*] 5.t (43)
Za,-q)\q = bz Viel (44)
q€Q
> oA < KY Vg € G*
q€Q:aq>ag
> A > Lk Vh € H"
q€Q:aq>ap
N, € IN VgeQ

We refer to its linear programming relaxation by [M}p(Q)] whose optimal objective
value is Z¥p(Q).

Let (m, u, v) € R™ x R x ]R'fu‘ be an optimal dual solution of the linear
relaxation of the restricted master at node u, M¥p(Q) with Q C Q, i.e.

Z%P(Q) = Zﬂ'ibi + Z g K9+ Z v, L. (45)
il geGH heHu
Given the current set of shadow prices, the reduced cost of a column ¢ is
G=Cg= X Milig— >, Hg— D,V (46)
el gEG :a4>ay hEH"Y:aq>ap,
So, the pricing subproblem, which aims at identifying a feasible column of minimum
reduced cost, can be formulated as

v(m, p,v) =min{ [fT+gy+hz— 7T — Y eqn PBeWg — pemy VnWh — o — Vo
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[SPY] st. (9, 2) € WN{0,1}™ x IN? x IR". (47)
Wi, 2 1-— Zi:aikzl(l — .’131) Vk € Gg N Hgf
wy < x; Vi:a;,=1, Vb€ GyNHY }

and the LP optimality condition (31) becomes
v*(m, u, v) > 0. (48)

When LP optimality does not hold, the solution of the subproblem defines a new
column with ¢, = fz + gy + hz and a, = z that we add to the master formulation.

Simplifications for subclasses of branching constraints

The way the branching constraints are enforced in the master and the associated
subproblem modifications simplify when K9 (resp. L") take its minimum (resp.
maximum) value. Then, the master branching constraint amounts to eliminating
columns from the formulation and the definition of the auxiliary variable in the

pricing subproblem is replaced by an explicit constraint.

If K9 =0, then ),
in the solution; so, these columns are removed from @ and the constraint

:ag>a, ¢ = 0 implies that no pattern with a; > a4 can be used

> i <lag| -1, (49)

1:a; >0

where |a,| = ¥; a4, is added to the subproblem.

Another special case arises when the lower bound L” is also an upper bound on the
subset sum defined by a;. Note that, for any element ¢ in the set defined by ay, i.e.,
foralli:a;p, =1,

Z Ag < Z )‘qzzaiq)‘q:bi (50)

g:ag>ap g:a;q=1 q

If, for some h € H*, L" = min;{b; : a;;, = 1}, then the elements in S = {i € I :
a;, = 1 and b; = L"} must be covered exclusively with pattern such that Qg > Q.
Consequently, one can remove from the master formulation any column ¢ such that
Yies @ig > 0 and a;4 < a;p, for some 7. To avoid regenerating such patterns in the
pricing subproblem, we constrain new columns that contain one element of S to

cover all the other elements in the set defined by ay, i.e.
x; > xjforalliel:a;,=1andforall jeS. (51)
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Note that any feasible solution of the master that uses none of the deleted patterns

must satisfy 3. 5a, Ag = L

We point out that applying the general scheme in these special cases is valid but not
as efficient. In the case K9 = 0, for instance, whatever the value p, of the dual vari-
able associated with the branching constraint 324,54, Aq < 0, 1y’ = 15— € defines an
alternate dual optimal solution Ve € IR, (since this new dual value is dual feasible
for the restricted master LP and leads to the same objective value). So, if a column
that includes the set defined by a, has negative reduced cost (cfr (46)), there exists
an alternate dual solution for which this column prices out non-negatively. Thus it
is unnecessary to include this column in the formulation. In the case L" is equal
to an upper bound on the number of columns s.t. a, > as, it can also been shown
that there exists a dual solution for which the columns we explicitly excluded would

price out non-negatively.

It is straightforward to check that the Ryan and Foster branching scheme is a spe-
cialization of the above branching scheme for the case bya, = 1.

3.4.4 Generalization to the case where [M] admits integer entries a;,

In Chapter 1, we have introduced a model [P] (see Section 1.3) which is more gen-
eral than the model [M] treated in this chapter, in the sense that the entries of the
matrix, the a;,’s, are general integers not restricted to 0-1. One can extend the
above branching scheme to model [P], as we shall see in this section. The following
presentation is mainly theoretical since, to date, we have not applied this branching
scheme to any practical problem. Although the proposed branching scheme seems
to raise questions concerning the tractability of the modified subproblem, it may

take a simpler form once adapted to a particular application.

Proposition 4 Given a fractional solution X of [P, there exist p € IN™ such that

> Ag s fractional, (52)

q:09>p

Proof. Take p € IN" to be any maximal element of the set S = {a, : ¢ €
@ and )\, is fractional} € IN". Such an element p = a, € S always exists as @
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is a finite set. Then >7.., >, Ay = Ay is fractional. .

A branching scheme based on Proposition 4 eliminates a fractional solution by iden-
tifying a column p such that 3 .., >, A\g = @ & IN' and by replacing the node mas-
ter problem by two more restricted problems defined by the additional constraints
Ygagsp A < laf and 3., 5, Ay > [a] respectively. The proof of Proposition 4
mentions how to identify such a vector p. As @ is finite and Pgag>p N < 2ieq bi for
all p, the number of such separations necessary to yield integer solutions is finite.

The additional constraints added to the master formulation in the course of the
branching scheme are taken into account in the reduced cost computation by mod-
ifying the subproblem accordingly: We introduce auxiliary variables of the type
w = 11if x > p and zero otherwise, which are added to the pricing subproblem
objective function with coefficients equal to the dual variables associated with the

targeted master branching constraints.

The correct setting of the auxiliary variable w may be enforced using a MIP formu-
lation. Let P* = {i € I : p; > 0}. Introduce a binary variable n; Vi € Pt where
n; = 1if x; > p; and n; = 0 if z; < p;. Then, to define w, the following system must

be added to the pricing subproblem formulation:
pimi <z < (pi—1)+ (b —p;+ 1)y i€ Pt

w<mn 1€Pt
w>1— 3> (1-m)
iePt

we {0,1},nm;, € {0,1} i € P*.

As in the case of model [M], the branching scheme implementation simplifies when
K? = |a] (resp. L? = [a]) takes his minimum (resp. maximum) value: If K? =0,
one can set A\, = 0 for all ¢ € @) such that a; > p = a,~ and the pricing subproblem
modification reduces to adding to the subproblem formulation, the following set of
constraints:
2; < (pi— 1)+ (bi —pi+ 1) i€ P*
Y (1l-m)>1
iep+

i E{O,l}i€P+.
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Note that, for alli € P, 3 ., 55 Ay < 0i Egiayop Mg < Lgiagsp Gighg < 2g Gighg = bi.
Now suppose that LP takes its maximum value, i.e. LP = min;cp+ L%’:J Moreover,
if min;ep+ [;’J—ij = min;ep+ 1%-’ then SP = {1 € PT: [P = ;’J—i} # ), and one can set
A =0forallge {g € Q:Xicoraig >0}\{qg € Q:a, > p}. Also, one canset A\, =0
for all¢ € {¢ € Q : a; > p and a;, > p; for some 7 € SP}. The resulting subproblem
modification reduces to adding to the subproblem formulation, the following set of

constraints:

x=p;w 1€S?P
T >p;w i€ PT\SP

w e {0,1}.

3.5 Bounding

At every node of the branch-and-bound tree, a lower bound on the node master prob-
lem value Z* can be obtained by solving its linear programming relaxation M}y by
means of column generation. In practice, however, solving the LP relaxation to
optimality is cumbersome, as the column generation algorithm may require a large
number of iterations to prove LP optimality. This drawback of the column gener-
ation technique is known as the tailing-off effect. Its consequences on the overall
algorithm performance are far greater in an integer programming framework, since
this can now potentially happen at each node of the branch-and-bound tree, and
what is more the subproblem to be solved at each iteration is now typically a difficult
integer program. In addition the subproblem becomes considerably harder to solve

as the dual variables converge to their optimal values for the unrestricted master LP.

In an effort to control the tailing-off effect, we develop an alternate bounding strat-
egy based on Lagrangean duality. Recall from Chapter 1, that the disaggregated
formulation linear relaxation [Mpp| is intimately linked to the Lagrangean dual.
This fact has been traditionally exploited to derive lower bound at every iteration of
the column generation algorithm (see for instance Vance et. al. (1992) [44]). Here,
however, we improve upon the Lagrangean dual lower bound by dualizing only the
set partitioning constraints(44) and the branching constraints defining [M*|, and
keeping the initial cardinality constraints (28-29) of model [M].
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Below, we formalize our claim in a proposition and then we show how the lower
bounds can be exploited for early termination of the column generation algorithm.
Finally, we push the argument one step further and show how to derive a priori

bounds on the pricing subproblem value.

3.5.1 Valid node lower bound

At any given node u of the branch-and-bound tree, we apply column generation

to solve the linear relaxation [M}p(Q)] of the node master problem (43). The in-

termediate values of the restricted master LP, Z}5(Q), form a list of monotically
non-increasing upper bounds on Z¥,(@). The following proposition shows that one
can also compute a lower bound on Z¥,(Q) at each iteration of the column genera-

tion procedure.

Proposition 5 Let (7, pu,v) € R™ X R x R‘fu' be an optimal dual solution of
the restricted master LP, M¥»(Q), and let

LB*(m, u,v) = Z%5(Q) — uoK® — 1L
+min{K0(v“(7r,,u, l/)+:u'0+1/0)aL0(,Uu(7rauv l/)+/1,0+1/())}

where v*(, p, v) is the value of the pricing subproblem (47), then

Proof. Using (7, u,v) as weights, and dualizing all the constraints of M}, (Q)

except for the initial cardinality constraints (28-29), gives

ZﬁP(Q) 2 EiEI ﬂ—ZbZ + ZgEGg ,ugKg + ZhEHg I/th
+ min ZQEQ[C(] - ZiEI Wiaiq - deGu:anag ,ug - ZheHu:anah Vh]Aq
st. L0< Y oA < K°
= Zip(Q) — moK® — oL
+ min ZqEQ[cq - Zie[ 7Tialiq - deGu:anag l,[;g — ZheH“:anah Vh]Aq

s.t. LO S EQEQ )\q S KO

where the last equality is obtained using (45). The remaining optimization problem

immediately leads to the proposed lower bound. Z¥,(Q) < Z¥,(Q) follows from
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QCQ. .

Every time the restricted master LP and the associated pricing subproblem are
solved, one can compute the value of the lower bound LB"(rw, u,v). Note that one
can also use a lower bound on v*(7, u, v) (for instance the solution of a relaxation of
the subproblem) to derive a valid lower bound on Z¥,(Q). When the LP optimality
condition holds, v*(m, u,v) = 0, and LB"(m, i, v) = Z¢p(Q) = Z¢p(Q). In Figure
9, we sketch the evolution of the values of LB*(m, u,v) and Z%5(Q). During the
course of the column generation algorithm, Z¥,(Q) monotonically decreases towards
Z'5(Q), while LB"(m, u, v) increases but not monotonically towards Z¥,(Q). The

flat end of the curves represent the tailing off effect which we typically observe. The

Figure 9: Bounds evolution during the column generation procedure.

best previously generated bound (i.e. the largest value of LB"(m, u,v)) is kept as
node lower bound LB*. We initialize LB" with the lower bound that was computed

at the predecessor node, and we update it at every column generation iteration.

The interest of the node lower bound LB" is twofold. First, if column generation is
interrupted before LP optimality is proved, one still has a lower bound on the node
problem value. Second, the lower bound leads to criteria for early termination of

the column generation algorithm.
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3.5.2 Early termination of column generation at a node

At any given node u, column generation is stopped when Z},(Q), the value of the

master LP, is known. Up to now, we have only used the fact that Z},(Q) = Z}p(Q)
when the LP optimality condition (z) holds,

(1) v*(m,p,v)>0 (54)

Proposition 5 provides another way to prove that Z¥,(Q) is known. That is checking

if the gap between the lower and upper bounds on Z},(Q) is closed, i.e.,
(i) LB" = Z;p(Q) (55)

where LB" has been defined previously as the maximum of the predecessor node
lower bound and all previously computed lower bounds LB"(r, u, v) at node u. Note
that stopping criteria (i) and (i7) are equivalent when LB" = LB"(w, 1, v), which
only happens when the last computed lower bound is the best one. Otherwise, due
to degeneracy of the master LP, we may have that (i) does not hold but (iz) does
hold.

Moreover, we can also stop column generation when the current lower approximation
LB* of Z!5(Q) is high enough to prune the node. Letting Z/NC be the current

incumbent primal integer solution value,
(i3i) LB* > Z'N¢ (56)

implies that, at node u, there is no integer solution better than the current incum-

bent solution and the node can be pruned.

If we assume that the optimal solution value Z of [M] is integral, as in many ap-
plication, the above stopping criteria become even tighter. Under the integrality
assumption, the lower bound produced at a given node u on the master problem
value Z" is [Z}¥p(Q)]. Thus we stop column generation when either we know the
value of [Z¥p(Q)], or its current lower approximation [LB"]| is high enough to

prune the node. This amounts to checking 3 stopping conditions:

@  o*(mpr) =20
€0) [LB*] > Zip(Q)
(i)  [LB*] > ZINC
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If case (i) holds, Z¢p(Q) = Z¢p(Q), and thus the node bound is [Z%p(Q)]. Case
(i1) implies [Z}5(Q)] = [LB"], since [LB"] < [Z}p(Q)] < [Z3p(Q)] < [LB].
Case (i11) implies Z* > ZINC since ZINC < [LB%] < [Z¥p(Q)] < [Z¥] = Z~.

3.5.3 A priori bound on the pricing subproblem value

The column generation stopping conditions presented in the previous section can be
used to derive an a priori upper bound on the subproblem value. We shall show that
if, at a given column generation iteration, the minimum reduced cost is not smaller
than the a priori bound, then one of the stopping conditions holds and either the
node bound is known or the node can be pruned.

Stopping condition (7) induces a trivial bound on the reduced cost of a newly gen-
erated pattern. If, in conditions (iz) and (ii7), we replace LB" by LB"(w, u,v), we
obtain valid stopping conditions whose expressions explicitly contain v*(m, u, v). A
simple reformulation of these expressions leads to bounds on v*(7, u,v). Next we
perform these developments under the integrality assumption. In the general case,
similar developments lead to an a priori bound on the pricing subproblem as well.
a1 a

&Ly — o — Vo where

Let py = max{%5, ¢

ar =[Z3p(Q)] — 1= Zp(Q) + 1o K® + 1L

Q3 Qy

%, %} — po — vy, where

and p, = max{
ay = ZMNC —1 - Z85(Q) + 1o K° + 1y L°
and p = min{py, p}.

Proposition 6 If v*(w, u,v) > p, column generation terminates. If in addition

p = p2, node u can be pruned.

Proof. Condition (¢7) implies that the lower bound for node u is known if [ LB* (7, u, v)] >

Z¥p(Q). This is equivalent to the condition LB*(m, u,v) > [Z¥p(Q)] —1 or written
explicitly:

ZEP(Q) - /’LOKO - VOLO + min{KO(Uu(ﬂ—a 22 V) + Mo + VO)a LO(UU(Wa y l/) + Ho + VO)}
> [Z1p(Q)] — 1
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or
K" (m, ) + po + v0) > [Z1p(Q)] = 1 = Z;p(Q) + moK® + no L

and
Lo (m, ) + po + 10) > [21p(Q)] — 1 = Z¢p(Q) + oK + o L°
This in turn can be written as:
u a1
v (ﬂ-alu',y) > F — Mo — Vo

and

e
vt (m, p,v) > L_é — o — V.

Thus v*(m, u,v) > p; implies condition (77) holds. The other case is identical using
stopping condition (7i7) in place of (7). If v*(m, u,v) > pe, condition (4i7) holds and

the node can be pruned. .

In conclusion, each stopping condition leads to a bound on v*(7, u, v). The minimum
one is kept as an a priori upper bound on the subproblem. If this bound is violated
by the minimum column reduced cost, column generation terminates. The interest
of such a bound is to potentially speed up the solution of the subproblem. Using the
a priori bound, one can define an initial upper cutoff value for the subproblem (or
add an explicit constraint in the formulation of the subproblem); if the subproblem
becomes infeasible, a stopping condition holds. We observed in our computations
that, as we approach optimality of the master LP at a node, this a priori bound

becomes tighter and thus may help in reducing the tailing-off effect.
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4 Implementation of IP Column Generation

Implementing an algorithm that combines column generation with branch-and-
bound to solve model [M] raises many issues. One faces questions like: how to
initialize the column generation algorithm, how to solve the pricing subproblem (ex-
act versus approximation algorithm), what kind of column generation strategy to
adopt (multiple versus single column generation at each iteration), how to imple-
ment branching efficiently, etc... From the judicious choice of implementation will
depend the efficiency of the algorithm. In our experience, the computational time
to solve a particular instance of the network design application decreased from 529
to 107 seconds of CPU time between the initial straightforward implementation of
IP column generation presented in Chapter 3 and the enhanced later version of the

same algorithm.

In this Chapter, we discuss the issues concerning the implementation of the IP col-
umn generation algorithm. We compare different possible implementation strategies.
We describe our own implementation. We share the insights that we have acquired
through computational experiments. We use partial computational results to illus-
trate the impact of some implementation choices. We also refer to computational
experience reported in the literature. After discussing our implementation strate-

gies, we present a flow sheet of the overall algorithm.

4.1 Partitioning versus Covering Formulation

Although we have presented the IP column generation algorithm for the set par-
titioning formulation [M], everything carries over to set covering and set packing
formulations. The sign of the dual variables associated with the linking constraints
is then restricted.

The set covering (resp. packing) formulation admits more solutions. However, for
the applications we consider, the objective value of the optimal solution is identical
to that of the set partitioning optimal solution. And, if in an optimal set covering
(resp. packing) solution, an element 7 is covered more (resp. less) than b; times,
it can be removed from one of the feasible patterns selected in the solution (resp.
added as a feasible pattern on its own) at no extra cost (resp. profit) in a post-
processing phase. For instance, for the network design application, the real problem

is to assign each demand (edge) to the network at least once. If, in the proposed
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solution, an edge is assigned to more than one ring, it can be removed from one of

the rings according to the designer’s choice.

In general, as long as any sub-pattern of a feasible pattern is another feasible pattern
without a higher cost, adopting the set covering formulation instead of the partition-
ing formulation is a matter of implementation choice. The branching scheme that
we have designed for the set partitioning formulation might eliminate some feasible
integer set covering (resp. packing) solutions. But this has no effect on the search
for an optimal solution since there exists a set covering (resp. packing) optimal

solution among the set partitioning solutions.

In our implementation, we opt for the set covering (resp. packing) formulation (see
Appendix A) for the following reasons:

e The main reason is that it is easier to find an initial master LP feasible solution,

as we shall see.

e The dual variables are then restricted in sign, which always leads to the same
cost structure in the pricing subproblem and thus makes it easier to develop
a heuristic solution method for the subproblem.

e In the literature, the set covering linear program is reported to be numerically

more stable and easier to solve than the set partitioning LP (see Barnhart et.
al. (1994) [4]).

e We avoid column generation iterations whose only outcome is to generate a
pattern that is a subset of an already existing pattern (resp. to generate a
zero profit pattern).

e It increases our chances to find master integer solutions combining columns

from the restricted formulation.

The two last points merits more explanation. With the partitioning formulation,
the dual variables associated with a row may be negative, for instance suppose
m; < 0. Assume a column ¢ currently in the master with a non-negative reduced
cost 0 < ¢, < —m; has an entry 1 in row i (a;, = 1). Then, by removing element
i from that column, we create a new column ¢’ that prices out negatively even if
¢, = cy. For instance, using a set partitioning formulation for the network design
application, we observed the following: when the current formulation contained a

pattern that includes a clique of 3 edges at cost 3, one of which has now a negative
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dual price, a new column was generated by removing that edge; the cost of the new

pattern was identical to the old because one still needs to install 3 multiplexers.

There is more chance of having intermediate integer solutions during the solution of
the LP master by column generation with the set covering (resp. packing) formu-
lation. Indeed, the set covering (resp. packing) constraints are not as restrictive as
the set partitioning constraints, so one can construct more feasible integer solutions
from the existing columns. Solving the restricted master IP by branch-and-bound
will also provide better heuristic solutions if one uses the set covering (resp. pack-

ing) formulation.

To enlarge the set of feasible integer solutions of the covering formulation, we try
to generate maximal patterns, that is, after a new pattern is generated, we add
elements that can be included in this new pattern without augmenting the cost,
barring capacity. For the set packing formulation, one eliminates an element from

a pattern if this element makes a zero contribution to the profit of that pattern.

4.2 Initial Set of Columns (Phase 1)

The column generation procedure must be initialized with a feasible solution of the
master LP (or infeasibility of the master problem must be proved). This issue is ad-
dressed by providing an initial set of columns for the restricted master formulation
at each node of the master branch-and-bound tree. In this Section, we discuss the
choice of initial columns. The primary purpose of this initialization is to provide a
feasible master LP solution. However, the initial set of of columns also determines
the starting value of Z%,(Q), an initial incumbent solution if this set of columns de-
fines an integer solution, and initial bounds on the dual prices (cfr dual formulation
of the master problem presented in Appendix A). Thus, with an appropriate initial

set of columns, one can get a good start in the column generation procedure.

Generating an initial feasible solution for the master LP might require the solution
of a phase 1 problem, i.e., to initialize the formulation with appropriate artificial
variables and an artificial objective function that penalize the use of artificial vari-
ables in the solution. However, if we use an artificial objective function, we may
be generating columns that will serve only for the phase 1 because their cost is too

high to be part of the solution during phase 2.
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Instead, we combine phase 1 with phase 2, that is we add artificial variables in the
formulation and we keep the original master objective function, to which we add
costs associated with the selection of artificial variables. Moreover, we try to keep
the costs of the artificial variables as small as possible so that the shadow prices
are not too much the result of the artificial variable costs but they are driven by
the costs of the real columns. If column generation terminates with a solution that
includes some artificial variables, then we augment their cost and return to column
generation. Doing so, we either end up with a solution free of artificial variables or
the node problem lower bound increases to the point at which the node gets pruned,
assuming we initialized the algorithm with a cut-off value (i.e. a bound on the cost

of a master integer solution).

At the root node, the current restricted master LP may be infeasible because the
original problem is infeasible or simply because the relevant columns have not yet
been included in the formulation. At successor nodes, infeasibilities of the restricted
master LP can be caused by the branching constraints or be due to the absence of
relevant columns. Recall that in the Ryan and Foster branching scheme (which is
the one we mainly use), the branching constraints are explicitly enforced by remov-
ing columns from the formulation. So, infeasibilities due to branching can appear

as infeasibilities due to the absence of columns necessary to form a feasible solution.

In any case, the restricted master LP augmented with artificial variables will be
feasible. If the unrestricted master is infeasible, the artificial variables will always
remain in the solution of the augmented restricted master LP, so our scheme will

lead to pruning the node by bound.

In practice, one needs only one artificial variable to make the covering (resp. pack-
ing) formulation of the restricted master LP M¥,(Q) feasible. This artificial pattern
has an entry equal to one in all rows corresponding to greater or equal constraints,
and zero for the rows corresponding to less or equal constraints. Its cost may be set
equal to an a priori upper bound on Z. Note that it is not so easy to initialize the

set partitioning formulation.

To detect obvious infeasibilities due to the branching constraints, we check if these
are consistent. For instance, a set of branching constraints saying that elements ¢
and 7 must be assigned to the same pattern, elements j and £ must also be assigned

to a same pattern, but elements ¢ and k£ must be assigned to different patterns, is
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inconsistent. Or if 4+ and j are forced to be assigned to the same pattern but their
total weight exceeds the maximal feasible weight in a pattern, branching is incon-
sistent. These tests are carried out while forming the group of elements that are
forced to be in the same pattern due to the branching constraints. If infeasibility is

detected in this way, the node is pruned.

At the root node, the choice of initial columns for the master formulation is appli-
cation specific. In addition to the artificial variable, we include a set of columns
that define initial bounds on the dual variables. For the network design applications
(ND and NDSA, cfr Appendix A.1 and A.2), we initially include in the master the
unit matrix, that is |F| patterns containing a single edge. This provides an initial
feasible solution barring the cardinality constraints, and bounds the dual variables:

i + 7 < ¢ for all e = (4, 7).

For the clustering application (CLUST, cfr Appendix A.3), we initialize the formu-
lation with columns containing a single edge (i.e. patterns ¢ with a;, = a;, = 1
for e = (i,j) € E such that d; + d; < C) so that the initial shadow prices are not
trivially zero: m; + m; > c.. Feasibility is not really a problem with the set packing

formulation. In our experiments, we have never needed to use an artificial variable.

For the single-machine multi-item lot-sizing application (MILS, cfr Appendix A.4),
we initialize the formulation with one column for each item that corresponds to pro-
ducing this item in each period for which there is a positive demand. Assuming that
di < U' for all t, as is the case for our data set, the i pattern is defined by a;; = 1
ifdi >0forallt=1,...,7 and a(r+i); = 1. This set of columns orients the initial
shadow prices. Here, we need the artificial variable as well. An alternative choice of
artificial variables consists of having an artificial pattern for each item with a single
entry of one in the row corresponding to the covering of that item (i.e. a;, = 0Vt

and a7y 4 = 1).

At successor nodes, for all applications, we initialize the node master problem re-
stricted formulation using all previously generated columns that satisfy the branch-
ing constraints. Also, we keep the artificial variables in the formulation at all times
and reset their cost to their initial values every time we start processing a new node.
Note that, since we do not remove an artificial variable that does not satisfy the
branching constraints from the formulation, it is important to complete the phase

1 (i.e. iterate on the column generation procedure until no artificial variables are
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part of the solution) before branching. For otherwise, we might branch using the
same rule as at a predecessor node and the branch-and-bound algorithm might not

terminate.

4.3 Branching Selection

Our branching scheme for problem [M] is based on Proposition 3 which guarantees
that we can eliminate all fractional solutions by choosing a subset of elements T' C I
that leads to a fractional subset sum (36) and imposing branching constraints like
(38) and (39). We describe here how, in practice, we select a subset 7" on which to
branch.

For the network design application (ND), we consider three types of branching (i.e.
of subset T'): cardinality branching, node cardinality branching, and branching on
pairs of edges. Cardinality branching consists of taking 7" to be the empty set;
it amounts to checking if the total number of patterns used in the solution (i.e.
Y40 Ag) is integer. The resulting branching constraints aim at forcing the master
solution to use an integer number of patterns. To implement it, one simply needs
to modify K° on one branch and L° on the other, while the subproblem remains
unchanged. These global cardinality constraints enforced in the master augment our
chances to have intermediate integer solutions during column generation. Tighter
values for K° and L° improve the quality of the bound LB“(w, u,v) whose value

depends on K° and L°, and lead to better a priori bounds on the subproblem value.

If the master solution is fractional but 3 5 A, is integer, we then search for a subset
T of two edges e and f such that quézaeq:afqzl
we try all possible pairs of edges from the set of edges incident to node i, §(i) C F.

Aq is fractional. For every node 7,

We keep the pair that leads to the most fractional subset sum (36) (i.e. whose

fractional part is the closest to ). We favor edges with high demand. The reason

2
for this selection of edge pairs is heuristic: we try to derive branching constraints
that help in constructing good integer solutions. Then, in one (resp. in the other)
successor node, we remove all columns such that a., = a5, = 1 (resp. aeq # ayy)
and we modify the subproblem accordingly by explicitly adding to its formulation

the extra constraint z. +zy < 1 (resp. z. = xy).

In our experimentation with the network design problem ND, we have been able to

eliminate all fractional solutions using only such subsets of pairs of edges. However,
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we have observed that the branch-and-bound tree grows bigger as the average edge
demand size gets smaller relative to the ring capacity. Indeed, as the granularity of
demand increases, the number of master feasible solutions gets larger and forcing
two edges together or apart might not be very restrictive. In this case, we have
obtained smaller branch-and-bound trees by using a third kind of branching that

imposes more aggregated restrictions.

The third type of branching is obtained by choosing T" = {i} where i € V is a
node. This selection of 7" amounts to checking that the number of selected patterns
for which a multiplexer is installed at node ¢ is integer. If we define r;, = 1 if
pattern ¢ contains node i and zero otherwise (i.e. 7;4 = 1 if Y .c54) Geq > 0), then
Y geGiri,=1 A¢ = @ is the number of multiplexers installed at node i. When this
number « is fractional, one can branch by adding explicitly to the master
> h<la (57)
qeEQ:Tig=1
on one branch and
> A >Jal (58)
qeEQ:r; g=1
on the other branch. In the subproblem, one needs only to modify the cost of in-
stalling a multiplexer at node 4 (which is originally 1) in order to account for the

new dual variables. We call this branching rule node cardinality branching.

Branching on the number of patterns that include a given node leads to more ag-
gregated (global) restriction than branching on a pair of edges. When we apply
this type of branching, we observe a smaller branch-and-bound tree for problems
with demands small relative to the capacity. However, node cardinality branching
makes the master and the subproblem harder to solve. So the overall performance
(CPU time) of the algorithm, using node cardinality branching, improves only for

instances exhibiting high demand granularity.

They are other possible types of branching which we have not implemented to date.
For instance, one can select T'= {e,i} withe € E, i € V, and e ¢ (7). Forcing e
and 7 to be on the same ring corresponds to trying to assign edge e with some edges
incident to 7. Imposing that e and ¢ must be on different rings means that e and f
must be apart for all f € §(7).

One may also use sets T' = {i, j} where i, j € V are nodes not linked by an edge.

So there is an whole range of possible branching rules, from the more global to the
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more specific: cardinality, node cardinality, pairs of nodes, pairs consisting of one
node and one edge, pairs of edges. The latter subclass (pairs of edges) corresponds
to the straightforward implementation of Ryan and Foster branching scheme. It is

thus sufficient in theory to eliminate all fractional solutions.

For the network design application with split demand assignment (NDSA), the right
hand side of the master covering constraints can take value 2. Proposition 3 tells
us that we may have to try subsets T of cardinality 3 in order to identify a subset
sum (36) on which to branch. However, as long as there is a fractional A, corre-
sponding to a pattern ¢ for which a., = 1 for some e with b, = 1, then the Ryan
and Foster Branching scheme can be used. In our computational experiments, we
have always been able to eliminate all fractional master solution using cardinality
branching, node cardinality branching, or branching on pairs of edges one of which
had a corresponding right hand side b, = 1.

For the clustering problem (CLUST), we branch using cardinality branching first
(optional) and eliminating the remaining fractional solutions by branching on edges,
i.e., on pairs of nodes. We search for a set 7' = {4, j} with e = (4,j) € E that leads
to the most fractional subset sum (36). We break ties by selecting the edge with

maximum cost.

For the multi-item single-machine lot-sizing problem (MILS), we branch on sets

‘IEQ=‘1(T+¢)q:atq:1 )\q is the
closest to % As mentioned in the last Chapter, these subset sums correspond to the

T = {3, t} involving an item ¢ and a period ¢t for which }°

setup variables in the original formulation. It is thus sufficient to branch on these

subsets T in order to eliminate all fractional solutions.

4.4 Solving the Pricing Subproblem

Through the decomposition approach, the solution of the original integer program
boils down to solving many pricing subproblems. In integer programming column
generation, the pricing subproblem is often itself a difficult integer program. If the
decomposition approach performs well, it is because the difficulty of solving the
original problem has been replaced by tackling a somewhat simpler but still diffi-
cult subproblem. In comparison, when the pricing subproblem LP relaxation has
the integrality property making the subproblem optimization easy, the master LP
bound is no tighter than the one obtained by solving the linear relaxation of the

original formulation [F]. In the applications we consider, most of the work of the
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algorithm is spent in solving the subproblems. This computationally intensive part
of the algorithm requires over 90 % of the CPU time.

Note that the column generation algorithm does not require an optimal solution
of the pricing subproblem. In a minimization (resp. maximization) problem, any
column with negative (resp. positive) reduced cost can be used to move on to the
next iteration of the column generation procedure. Moreover, as attested by recent
studies on the simplex pivot selection criteria (see for instance Forrest and Gold-
farb (1992) [19]), using a maximum absolute value reduced cost column as entering
variable does not necessarily lead to the fastest converging linear programming so-
lution method for the master. The selection of entering columns leading to good
convergence performance is discussed in the next section. Let us now focus on how

we generate new patterns.

The solution of the application specific pricing subproblem is a research topic on its
own. For many applications however, some results concerning the subproblem can
be found in the literature. To efficiently tackle this bottleneck of our algorithm, we
combine the use of bounds, an approximation algorithm, and strengthening of the

formulation.

Considering the minimization pricing subproblem (47) defined for model [M], one
can derive a lower bound on its value by solving its linear programming relaxation.
We try to improve this lower bound by strengthening the formulation. That is, we
use a cutting plane algorithm. If we find an integer solution to the LP relaxation
of the pricing subproblem, it is optimal. On the other hand, we compute an upper
bound on the minimum reduced cost by solving the pricing subproblem heuristically.
If the heuristic cost is equal to the pricing subproblem lower bound, the heuristic
solution is optimal. Otherwise, if we need to solve the pricing subproblem optimally,
we apply standard branch-and-bound to the strengthened formulation, using some

priority rule for branching.

To test for early termination of the column generation algorithm, we use the a priori
upper bounds on the subproblem value developed in Section 3.5.3. The specific ex-
pressions for these bounds are given for each application in Appendix A. We define
an admissible new pattern as a feasible solution of the pricing subproblem whose

reduced cost satisfies the a priori bounds.
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At every iteration of the column generation procedure, we first compute the a priori
upper bounds on the pricing subproblem. Then, we solve the pricing subproblem
approximately, using an application specific heuristic. We may find a few patterns
whose reduced cost satisfies the a priori bounds (i.e. admissible patterns). If not,
we approximate the subproblem value from below: we compute progressively tighter
lower bounds starting with the linear programming relaxation, then moving to the
cutting plane algorithm and, as a last resort, to the branch-and-bound algorithm.
This three phase lower bound computation is interrupted by optimality, if we obtain
an integer solution, or by bound, if the current lower bound violates one of the a
priori subproblem upper bounds.

At the end of this search for new patterns, we either have proved that column gener-
ation may be terminated; or we have generated one or more admissible patterns (i.e.
patterns of appropriate reduced cost). We then add some of these new admissible
patterns to the master formulation depending on our column selection criteria which

we discuss in the next section.

Let us now turn to the application specific aspects of this process, namely the
heuristic for the subproblem and the cutting plane algorithm. For the network de-
sign applications, we have developed a greedy heuristic for the subproblem. We first
define groups of edges that must be assigned together according to the branching
constraints. Then, we construct a feasible assignment of groups of edges to a ring:
we initially assign a specific group to the ring; then we sequentially try to add a
new node on the ring; we see what groups of edges can then be accommodated on
the ring (i.e. a group whose edges are incident to nodes already on the ring, that is
not excluded because of edge disjunctive branching constraints, and whose capacity
requirement does not exceed the remaining ring capacity); we compute the resulting
cost; we record the node selection that leads to the most negative cost difference;
and we implement this node addition. Each pattern initialization by a group of
edges may lead to a different negative reduced cost column. We record all the new

admissible columns.

For the clustering application, we use a similar subproblem heuristic. We construct
a feasible cluster by initially selecting a group of nodes as defined by the branching
constraints; we then iteratively add the group of nodes that leads to the best profit
improvement. A group of nodes can be added to a cluster if its weight does not

exceed the remaining cluster capacity and if it is not excluded by another group
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already in the cluster. Note that, since clusters are complete subgraphs, the node
selection determines the edges that are within the cluster. For the multi-item single-

machine lot-sizing application, we did not use any heuristic for the subproblem.

To develop a full-blown cutting plane algorithm for the pricing subproblem of each
application would have required specific polyhedral studies. Instead, we use existing
results. For the network design subproblem, we use knapsack cover inequalities. For
the clustering subproblem, we based our cutting planes on cuts developed by John-
son et al. ([29]) and de Souza ([13]). In both these applications, however, we obtain
a faster algorithm by using standard branch-and-bound on the initial subproblem
formulation. This may be due to the fact that the cuts we add are not strong enough
or/and because, for this size of problems, standard branch-and-bound is more effi-

cient.

For the single-machine multi-item lot-sizing application, we solve the pricing sub-
problem optimally at every iteration of the column generation algorithm. We rely on
the valid inequalities developed by Constantino [7] to strengthen the formulation. In-

deed, standard branch-and-bound applied to the initial formulation performs poorly.

An interesting issue raised by the use of a cutting plane algorithm for the subproblem
is the management of cuts. In the course of the algorithm, we solve many subprob-
lems which differ only in their objective coefficients and in some extra constraints
due to branching. So the globally valid cuts, generated while solving a subproblem,
may be recycled for other subproblem solutions. On the other hand, if we leave
all the cuts in the subproblem formulation all the time, the size of the formulation

quickly increases, affecting the solution time.

In our implementation, we clean up the formulation (i.e. remove all the cuts), either
after each subproblem solution, or, after each master node problem termination. In
addition, we keep all the generated cuts in a pool (one for each item in the case of
the MILS application) which we scan before calling the cut generation subroutine.

These enhancements lead to a marginal reduction in computation time.

4.5 Column Selection Strategy

The implicit question when one establishes a strategy for selecting columns is: what

is a good column. In other words, what columns serve our goals better. Recall that
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the objective of the algorithm is twofold: on the one hand, to produce an integer
primal master solution, and on the other hand, to provide a bound attesting to
the quality of this solution. So a column can be qualified as good because it helps
in constructing an integer solution or because it helps in solving the master linear
relaxation faster. A column selection strategy can aim at generating good columns
and/or at selecting the good ones from among all the columns that have been gen-

erated at a given iteration.

Good columns for the LP optimization:

In an attempt to understand what columns to add in the master formulation in
order to obtain fast convergence of the LP optimization, one can consult two bodies
of literature. First, the research on pivot selection for the simplex method (see for
instance Forrest and Goldfarb (1992) [19]) studies the issue of optimum reduced cost
versus steepest edge criteria for selecting the entering column. Second, the research
on developing an efficient cutting plane algorithm (Balas et. al. (1993) [2]) studies
cut selection criteria based on greatest violation versus deepest cut. Both domains
are linked since adding columns in the primal master corresponds to adding cuts in
the dual formulation of the master. Let us examine the pros and the cons of these

column selection criteria, starting with the optimal reduced cost criteria.

At a given iteration of the column generation algorithm for solving the linear master
problem [M} p|, the most negative reduced cost column represents the most violated
cut in the dual formulation. The logic for selecting a most negative reduced cost
column is that it might lead to the best objective improvement. However, there is
no guarantee that this will effectively happen. For instance, it could be that the
current objective value is optimal and that, due to degeneracy, some columns price
out negatively although no objective improvement is possible. So, is there some
other column selection criteria that would not have this drawback?

The deepest cut criteria is based on a geometric argument. It does not measure the
progress made because of the entering column in terms of objective improvement
but in terms of restriction of the dual polyhedron. A good column is one that cuts
a big chunk out off the current approximation of the dual master polyhedron. The
deepest cut (the one that maximizes the Euclidian distance to the current dual so-

lution) potentially leads to the best restriction of the dual feasible space.

The Euclidian distance between the cut and the current dual solution (7, i, ) €

78



R" x IR! x IR} is the distance between this latter point and its projection on the
hyperplane defined by the cut. Let (¢, a,) be a column that prices out negatively
for the current value of the dual variables, i.e. a column that cuts off the current
dual solution:

Tag + fL + 0V > ¢ - (59)

Let (7, i, 7) be the projection of (7, &1, 7) on the hyperplane defined by ma, + pu +
v = ¢4 That is

=
+

Fa, + b= ¢, (60)

and
(7, 0) = (7, 1, 7) + a(ag,1,1) (61)

for some scalar . The Euclidian distance from (7, fi, ) to the cut is:

||(ﬁ-’ﬂaﬂ)_(ﬁ—:ﬂ’ﬁ)|| = ( , ) (62)

that is the violation divided by the norm of the vector defining the cut. Note that
this dual measure of the deepest cut is related to the primal measure of the steepest
edge (see Forrest and Goldfarb (1992) [19]).

This geometric approach for evaluating the quality of a column also has its draw-
backs. First, generating a column that maximizes the distance between the current
dual solution and its projection is computationally expensive. In our case, since
aq € {0,1}", a brute force implementation consists of solving a subproblem for each
possible value of the norm of (a4, 1,1). Second, this measure become totally irrel-
evant if the projected point, (7, fi, 7), is not dual feasible. For instance, if (7, i, ')
does not belong to IR x IRt x IR!, the above criteria might lead to the selection of
a column that cuts off much less of the dual space than other columns with smaller
Euclidian distance to the current dual solution. The third drawback of this column
selection criteria also applies to the most negative reduced cost criteria: in fact,
these measurements are very sensitive to the current value of the dual solution.
But, there are typically many alternative optimal dual solutions to the restricted
master. Because of all these drawbacks, we did not implement a column selection

rule based on the deepest cut criteria.

Selecting a dual solution:

From the previous discussion we remember that the analysis of the effect of an ad-
ditional column on the dual space geometry is a valuable tool to characterize the

quality of this column; and that column reduced costs depend on the current set
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of dual values. Typically, the restricted master LP admits many alternative dual
solutions all of which lie on a face of the dual polyhedron. Instead of considering an
extreme point of this face, we could take the central point as dual optimal solution.
Then, a column that cuts off such a dual solution is more likely to cut a bigger

portion of the dual solution space.

We have carried out limited computational experiments along these lines. For the
clustering application (cfr Appendix A.3), we try to generate pseudo-central points
as dual solutions of the restricted master LP at each iteration of the column gener-
ation algorithm. That is, we solve the master LP twice: once to get the objective
value; and a second time to find, from among all dual solutions leading to that ob-
jective value, a dual solution that maximizes the sum of auxiliary variables v, which
represent the minimum value of a variable 7 on the face defined by column ¢ (i.e.
vy < m; for all ¢ such that a;;, = 1). We have observed that as a consequence of
this choice of dual variables, the pricing subproblem became much harder to solve
(the heuristic for the subproblem very often fails to produce a positive reduced cost
column, and we then have to use branch-and-bound to solve the subproblem). So

the overall CPU time of the algorithm increases by 56% on average.

We also see good reasons for using extreme point dual solutions. With very different
dual solutions, one generates different types of columns which, hopefully, are comple-
mentary for the construction of good primal solutions and whose convex combination
may encompass a larger master LP feasible space. Moreover, extreme points being
easier to cut, the column generation subproblem is solved faster. When the column
generation procedure is tailing off, solving the subproblem optimally at each iter-
ation to try to prove LP optimality, one could use central point dual solution and
hopefully reduce the number of iterations. However, we have not implemented such
a two-phase procedure for selecting dual solutions. In practice, we use the extreme
point dual solutions provided by the LP solver.

Dominated /undominated columns:

Another column generation selection criterion that we use to improve the mas-
ter LP convergence is based on a simple domination concept. We say that a col-
umn k of model [M] is dominated if there exists another column [ € @, such that
the reduced cost of k, G, is greater or equal to that of [, ¢, for all dual values
(m,pu,v) € R} x R x IRY. On the other hand, a column k is undominated if for
all columns ¢ € @, there exists a set of dual variables (m, u,v) € R" x IR x IRY
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for which ¢, < ¢,. For instance, considering the network design application (ND), a
pattern to which an edge can be added without having to install another multiplexer

is dominated. If the edges in a pattern form a clique, the pattern is undominated.

If we discover that a column is dominated, we replace it by the column that dom-
inates it. This is done in the post-processing phase described in Section 4.1 by
augmenting (resp. reducing) a column of the covering (resp. packing) formulation
whenever it is possible. Also, in the network design and clustering applications, the
columns we use to initialize the master formulation and to define initial bounds on

the dual variables (see Section 4.2) are undominated columns (cliques).

Good columns for TP optimization:

In an effort to select columns that improve our chances to find good integer mas-
ter solutions, we have experimented with different strategies. In previous research
(Vanderbeck (1993) [45]), we have tried to initialize the master formulation with an
optimal integer solution and noted that the algorithm does not perform better. For
the network design application, we have tried to initialize the master formulation
with a set of columns that are good candidates to be part of an optimal integer
solution (for instance, patterns corresponding to a selection of edges that use almost
all the ring capacity and exhibit high node commonality). The performance of the

resulting algorithm is worse.

Our understanding is that columns which are good for integer solutions are not
helpful for the master LP solution (in the next chapter, we present computational
results supporting this claim). As far as LP optimization is concerned, the column
generation algorithm itself seems to be the best mechanism for generating appro-
priate columns. By generating extra columns which are supposedly good for the IP
optimization, we perturb this mechanism (influencing the values of the dual vari-
ables), and we unnecessarily increase the size of the formulation, slowing down the
master LP solution. Moreover, for our applications, the performance of the overall
algorithm depends mainly on the solution efficiency of the LP master (remember
that solving the master LP requires solving many difficult column generation sub-
problems). The integer solution only helps by providing a cut off value to prune the
branch-and-bound tree. So the column selection aims first at helping the master
LP solution, and, as a secondary criteria (to break ties), one can be concerned with

favoring columns that help the IP master resolution.
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Multiple v/s single and optimum v/s heuristic columns:

As part of the column selection strategy, one must decide on whether or not to
solve the pricing subproblem optimally at every iteration, and whether to generate
multiple columns at once or to solve the master after addition of a single column.
For the MILS application, there is also the issue of selecting a column for each item

or only treating one item per master iteration.

Although we have argued that minimum reduced cost columns are not necessarily
best, the optimal subproblem solution may lead to a faster algorithm as reported for
the binary cutting stock problem in Vance et. al. (1992) [44]. In general, our under-
standing, supported by what is reported in the literature (see for instance Degraeve
(1992) [12]), is that, if the subproblem can be solved to optimality quite efficiently,
then optimum/single column generation is superior. However, when the subproblem
solution is computationally expensive, as is the case for the applications we consider,
approximately-optimal /multiple column generation works better (see Section 5.5).
The logic for adapting the strategy to the difficulty of the subproblem is to aim at

balancing the computational workload between the master and the subproblem.

A simple column selection strategy:

To conclude this section, we describe the column selection strategy that we have im-
plemented. After all these unfruitful tests, we have adopted a very simple scheme.
At every iteration of the column generation algorithm, we first apply the approxima-
tion algorithm to solve the subproblem. If the best reduced cost of all heuristically
generated columns is smaller than the a priori subproblem upper bounds (i.e. if
the early termination conditions are not satisfied), we add all patterns that have a
reduced cost equal to the best heuristic cost to the master formulation. Otherwise,
we solve the subproblem optimally, and we add the optimum column to the master
formulation if it is an admissible pattern (i.e. if its reduced cost is smaller than the

a priori subproblem bounds).

4.6 Algorithm Overview

In this Section, we give an overall presentation of the algorithm. Figure 10 gives
the basic flow of control of the computer code. We have previously described the
specifics. Now we succinctly present the different stages through which the program
passes: initialization, select node, process node, improve incumbent (i.e. getting

integer solutions to the master), fathom node list, and print results. A description
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of the code can be found in Appendix B.

4.6.1 Initialization

The program starts by reading the problem data and the parameter settings. Then
the pool of columns is initialized with the application specific initial set of columns
(see Section 4.2), plus artificial variables, plus eventually columns corresponding to
an initial incumbent integer solution. The master and subproblem formulations are
set up and loaded into the LP/MIP solver. The list of nodes in the branch-and-
bound tree is initialized with the root node.

4.6.2 Select node

An iteration of the branch-and-bound algorithm consists of selecting a node to be
processed, solving the node master linear relaxation by column generation in order
to get a node lower bound, and, at some nodes, trying to improve the current in-
cumbent integer solution. The order in which the nodes of the branch-and-bound
tree are processed has a very significant influence on the overall performance of the

algorithm.

We combine two standard node selection schemes: depth first search and best bound
first search. Depth first search consists of processing next the descendant of the node
that was just processed. Since it is more likely to find integer solutions down the
tree, as the problem gets more restricted by the branching constraints, depth first
search is applied first to hopefully lead to an incumbent integer solution that will
help in pruning the tree. We consider that the incumbent solution is good enough
once the gap between it and the current lower bound is smaller than a prespecified
threshold. We then switch to best bound search in an effort to limit the number of
nodes that will be processed. Indeed, the node with the best lower bound has to be
processed anyway, so we might as well start with it. Other nodes with higher initial
bounds may not have to be processed at all if we can get a new incumbent solution
that prunes them. And the best bound node is also the most promising one as far

as finding a better incumbent solution is concerned.

Together with the branching selection, the node selection scheme completely deter-
mines the sequence of the computations. In numerical experiments, we observed

the great impact of these selection strategies on the tree size and the CPU time.
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Figure 10: Algorithm flow of control.
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However, what works best for one instance can be worse for another instance. So,

we have no conclusive results to present.

4.6.3 Process node

Once a node is selected, we read the branching constraints that define the problem
at the node; we detect basic inconsistencies (see Section 4.2); we generate a node
specific initial set of columns (see Section 4.2); and we customize the master and

the subproblem formulation. The algorithm proceeds by solving the master LP.

At every iteration of the column generation algorithm, we solve the restricted master
LP problem. We also check if the LP solution happens to be integer. We collect
the dual values. We solve the pricing subproblem (see Section 4.4). And we select
columns to be added to the master formulation (see Section 4.5). Also, we test
if column generation can be terminated using the conditions presented in Section
3.5.2. Note that these tests are performed twice at each master iteration: once after
solving the master LP since Z¢p(Q) and Z/NC may have changed, and once after

solving the subproblem since LB" may have changed.

If the master LP solution contains artificial variables, their costs are increased and
we return to column generation (see Section 4.2). Otherwise, we record the node
bound, and we update the root lower bound accordingly. If the current node cannot
be fathomed according to standard arguments, we choose how to branch (see Section
4.3). We define two successor nodes whose bound is initially set equal to the bound

of their ancestor, and we add them to the list of unprocessed nodes.

4.6.4 Getting integer master solutions

One of the nice features of the column generation algorithm is that it is a primal
approximation approach. The successive restricted master solutions are primal fea-
sible and provide improving upper bounds on the optimum LP solution of [M*],
but also on the optimum IP solution if the intermediate master solution happens to
be integer. In practice, in the applications we consider, we often generate master
integer solutions as a by product of the master LP optimization. In this way, we

easily get incumbent solutions.
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However, finding an optimal integer solution, i.e., closing the gap between the lower
bound and the best integer solution cost, requires some work. For example, we
solved an instance of the network design problem involving 9 nodes in 1:06 hours
of CPU time. After 3 minutes of computation, the root node was solved and we
already had the optimum lower bound of value 62 and an integer solution of cost

64. It took 1:03 hours and 86 more nodes to find an integer solution of cost 62.

The above example also illustrates the importance of getting tight cut-off values
early in the procedure. If we had had an integer solution of cost 62 to start with,
the solution time would have been 3 minutes instead of 1:06 hours. Thus, it is worth

spending some computational effort in constructing integer solutions.

In this regard, we can exploit the information contained in the generated columns.
By solving the restricted master integer program to optimality, we get the best in-
teger solution that combines columns from the current set Q. We have observed
that in general this integer solution is significantly better than those we obtain at
intermediate stages of the LP optimization. For instance, in the above example,
we obtained a primal integer solution of cost 94 during the LP optimization, while
the best integer solution combining columns generated at the root node has cost 64.
The time required to solve the restricted master by branch-and-bound is generally
not prohibitive. On average, less than 10% of the total CPU time is spent in solving
both the LP and IP restricted master formulations. The quality of the incumbent
solutions obtained this way is fairly good, so we have not tried to generate integer

solutions through other means such as a heuristic for the global problem.

This approach of solving the restricted master by standard branch-and-bound be-
comes computationally prohibitive when they are many alternate master solutions
of the same cost. For instance, for the network design problem, if the edge demands
are small relative to the ring capacity, there are many possible subset of edges that
can form a feasible ring assignment. Then fixing a column selection variable A, as is
done in standard branch-and-bound, is not very restrictive, as there is a high prob-
ability of finding an alternate solution of the same cost that satisfies this branching
constraint. Consequently, the branch-and-bound tree becomes quite large and the

approach may fail to produce an optimum solution within the computational limits.

We observed that the time spent in solving the restricted master IP can increase,

as the number of alternate master solutions gets larger, even taking from 50 to 80%
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of the total CPU time. We have experimented with a restricted master IP approx-
imation algorithm using a standard greedy heuristic for the covering problem (see
Nemhauser and Wolsey (1988) [40]). However, the greedy solution of the restricted

master IP is not as good as that obtained by branch-and-bound.

4.6.5 Algorithm termination

After a node has been processed, if a new primal integer solution has been found, we
scan the list of unprocessed nodes to prune it. The algorithm terminates when this
list is empty. We then print the results: the branch-and-bound tree, the statistics

in terms of counters and times, and the best integer solution we have found.
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5 Computational Results

We have implemented the algorithm in programming language C on a SUN work
station SPARC 10 (Model 51). We use the CPLEX [9] callable library (version 2.1)
as a linear and integer program solver. Initially, we used MINTO (Mixed INTeger
Optimizer, [39]-[42]). MINTO is a software system built on top of CPLEX that
solves mixed-integer linear programs by a branch-and-bound algorithm using linear
programming relaxations. It provides automatic constraint classification, prepro-
cessing, primal heuristics and constraint generation. It allows for column generation
through the use of application routines that customize the code. Using MINTO, we
quickly developed a code and gained some understanding of what are the impor-
tant issues in the implementation. We then switched to our own implementation of
branch-and-bound to have full control of every feature of the code. We opted for

a very modular implementation that can quickly be adapted to different applications.

We have tested our algorithm on all four applications presented in Chapter 2: the
network design problem (referred to as ND), the problem of network design with split
assignment (NDSA), the clustering problem (CLUST), and the multi-item single-
machine lot-sizing problem (MILS). We have performed extensive computational
tests for the network design application in order to get some insights into a good
implementation of IP column generation. Based on these, we have solved instances of
the three other applications. For the network design applications (ND and NDSA),
we use real data for practical size instances involving 5 to 21 nodes (i.e. 10 to 210
edges). We have also generated some instances by perturbing real data sets and
modifying the ring capacity. For the two other applications, we use data from the

literature. We now report the results of our computations on a variety of data sets.

5.1 The Network Design Problem

We have received real telecommunication traffic and network configuration data for
the network design problem. Based on these, we have also generated some data
sets by perturbing real traffic demands and modifying the ring capacity. We thus
have a few test problems for our experimentation: some of which are real and others
are generated. We refer to a specific instance by the number of nodes, followed by
the ring capacity. We use a trailing letter to distinguish between multiple instances
with the same number of nodes and capacity. The instances with less than 10 and

more than 15 nodes represent complete networks. The instances with 10 to 15 nodes
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represent incomplete networks. A sample of the perturbed test problems is given in
Appendix C.

In Table 3, we report our results for all test problems for application ND. The op-
tion parameters of the program have been fixed to the setting that performs best on
average across all instances. We switch from depth first search to best first search
when the optimality gap is less than 30%. We do not use a cutting plane algorithm
to solve the subproblem. We solve the restricted master IP by standard branch-
and-bound when the node that has just been processed cannot be pruned and the
number of columns that have been generated since the last call to branch-and-bound
for the IP restricted master is at least twice the number of rows in the master (if
only a few new columns have been generated, it is not worth resolving the master
IP). The branching scheme consists of using cardinality branching if possible and
otherwise branching on pairs of edges. We set an upper limit of 2 hours on the total
CPU time. After 2 hours of computation, the algorithm stops generating columns
and solves the restricted master IP by branch-and-bound to try to improve the in-

cumbent solution before terminating.

Table 3 contains the following information: the problem name, the number of nodes
in the master branch-and-bound tree, the total number of columns generated, the
number of pricing subproblems that have been solved either heuristically or opti-
mally, the number of times branch-and-bound has been used to solve the subproblem,
the value of the master LP at the root node (i.e. the value of the restricted master
upon node termination), the proven lower bound at the end of the algorithm, the
value of the best integer solution found, and the total CPU time in terms of hours,

minutes, and seconds (rounded down to the nearest integer).

The number of columns may exceed the number of pricing subproblems treated since
at a given master iteration, we may generate multiple columns. Some subproblem
solutions yield no new columns but simply prove LP optimality. So, the number
of pricing subproblems solved by branch-and-bound represents partially a number
of master LP optimality proofs, and partially a number of optimum reduced cost

columns. The remaining columns have been generated with the heuristic.

Note also that the linear relaxation of the master provides a tight lower bound on
the optimum integer solution. Across all instances solved, rounding the root LP

bound up, and, in some cases, adding one to it, gives the value of the optimum
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name nod col SP BB | rootLP LB UB | CPU time
7¢50 1 47 32 3 22.15 23 23 | OH:0M:3s
7¢c60 29 153 133 24 20.39 21 21 | OH:0M:40s
7c¢60b 1 51 26 1 20.38 21 21 | OH:0M:2s
7¢100 3 7 71 11 14.97 16 16 | OH:0M:15s
7¢200 10 99 89 7 10.05 11 11 | OH:0M:7s
7¢240 15 384 352 103 9.58 10 10 | OH:1M:47s
8¢50 1 66 43 3 30.82 31 31 | OH:0M:12s
8¢60 39 116 88 17 3091 32 32 | OH:0M:47s
8c60b 7 79 58 11 31.88 33 33 | OH:0M:35s
8¢100 23 152 138 20 21.91 23 23 | OH:0M:58s
8¢200 9 230 222 38 14.83 16 16 | OH:1M:35s
8c240 241 2744 2647 853 14.15 16 16 | 1H:22M:59s
9¢50 6 76 50 4 4277 43 43 | OH:0M:35s
9¢60 35 202 176 52 42.59 44 44 | OH:5M:5s
9¢60b 109 239 211 96 42.86 44 44 | OH:11M:32s
9¢100 69 380 331 97 33.03 34 34 | OH:9M:23s
9¢200 112 813 764 303 24.12 25 25| OH:44M:33s
9¢240 58 619 582 309 21.70 23 23 | OH:50M:16s
10c¢50 1 o8 40 3 27.50 28 28 | OH:0M:9s
10c60 9 122 110 29 2470 26 26 | OH:2M:0s
10c¢100 14 180 159 31 19.53 20 20 | OH:1M:10s
10¢200 16 255 225 70 13.93 15 15 | OH:1M:10s
10c214 66 916 852 203 13.35 15 15 | OH:20M:46s
12¢50 1 86 31 1 7233 73 73 | OH:0M:19s
12¢60 1 140 49 3 66.00 66 66 | OH:0M:34s
12¢100 213 551 581 216 51.13 53 53 | OH:54M:48s
12c200« | 402 732 612 181 35.46 37 39 | 2H:8M:41s
15¢50 1 187 49 2| 101.27 102 102 | OH:1M:36s
15¢60 1 193 103 4 88.60 89 89 | OH:2M:37s
15¢60b 12 181 69 4 9453 95 95 | OH:2M:4s
15¢100 147 344 248 25 81.11 82 82 | OH:13M:27s
18¢100%x 1 633 577 49| 120.46 91 203 | 4H:28M:8s
21cH0x%x 1 636 479 22| 221.21 179 331 | 4H:7M:25s
21c60bx** 1 645 478 30| 215.75 162 323 | 4H:5M:11s

Table 3: Computational results for application ND.
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name master subpr. | masLP masIP | spHeur spBB
7¢50 7.2 90.1 4.2 2.9 5.9  80.7
7c60 3.6 95.1 2.5 1.0 23 91.0
7c60b 15.4 80.9 6.3 9.1 9.8  69.0
7c100 3.4 95.5 2.6 0.7 6.3 86.9
7c200 24.5 72.6 9.9 14.5 9.3 61.1
7c240 14.7 84.9 2.6 12.0 3.9 79.0
8cH0 2.0 96.5 2.0 0.0 46 904
8c60 7.5 91.2 2.8 4.6 2.3 87.5
8c60b 1.9 97.3 1.6 0.3 20 941
8c100 4.9 94.1 3.0 1.8 4.8 87.8
8c200 11.7 87.8 3.3 8.4 7.6 785
8c240 71.7 28.1 1.0 70.7 1.2 26.1
9¢50 1.8 97.5 1.6 0.2 3.0 93.7
9c60 1.0 98.7 0.7 0.2 1.2 96.6
9c60b 1.6 98.1 0.6 0.9 0.5 96.7
9¢100 4.2 95.4 1.5 2.7 1.5 928
9c200 44.7 55.1 0.9 43.8 1.0  53.3
9c240 27.0 72.9 0.5 26.4 0.7 T7T1.5
10c50 5.1 93.4 2.7 2.4 7.2  84.2
10c60 1.0 98.7 0.8 0.2 1.5 95.8
10c100 6.5 93.0 2.8 3.6 4.8 86.3
10c200 22.1 77.3 3.9 18.2 7.5  66.5
10c214 82.2 17.6 0.9 81.3 1.8 15.2
12¢50 1.8 97.1 1.3 0.4 7.5 88.6
12¢60 1.6 97.8 1.6 0.0 7.1  89.5
12¢100 2.4 97.3 0.9 1.4 1.1 954
12¢200% 64.4 35.4 1.4 62.9 0.8 34.2
15¢50 0.8 98.9 0.8 0.0 6.1 92.3
15¢60 1.8 97.9 1.1 0.6 9.6 87.8
15¢214 3.4 96.0 1.7 1.6 7.3  88.0
15¢100 6.3 92.6 3.5 2.7 5.0  86.9
18c100%x* 54.3 45.6 0.4 53.8 4.1 41.2
21¢50%x 48.7 51.2 0.4 48.3 5.9 45.1
21¢c60bsx 51.4 48.5 0.4 50.9 6.0 423

Table 4: CPU time distribution in percent for application ND.
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integer solution.

The problems become harder to solve as the size of the network (number of nodes)
increases and, for the same size network, as the ring capacity increases. Recall that
high ring capacity means a larger number of feasible solutions to the master IP.
The larger problems are not solved to optimality within the allowed 2 hours of CPU
time. By allowing 3 hours instead of 2 for these larger problems we do not get better
results. However, many real-life problems involve less than 10 nodes. In comparison,
a standard branch-and-bound approach applied to the natural integer formulation
[Fnp] fails to solve even the smaller problems (7 nodes) within reasonable time (we

interrupted the resolution after 4 hours).

Note that as the column generation procedure at the root node may be terminated
early (i.e. before LP optimality is proved), the root node LP value is not necessarily
equal to the master LP value, but the root LP value rounded up is a valid lower
bound on the optimal integer value. If the solution of an instance has been inter-
rupted after 2 hours, we place a * by its name. When this interruption occurs at
the root node, we place a *x by the name of the instance. In that case, the root LP
value information does not yield a valid bound and typically the gap between the
best Lagrangian based lower bound and the best integer solution is still large.

In Table 4, we show where the algorithm spends its time. The first column of the
table contains the problem name. Then, in the two following columns we give the
percentage of the total CPU time that is spent solving respectively the master prob-
lem and the subproblem. We next decompose the restricted master solution time
into LP optimization and IP optimization time (i.e. the time spent trying to improve
the incumbent solution). For the subproblem, we decompose the time percentage
into heuristic time and time spent in branch-and-bound. The given percentages do
not add up to 100; the difference corresponds to the overhead.

Note that the most time consuming part of the algorithm is finding the exact so-
lution of the pricing subproblem. However, as the ring capacity increases and the
master solution space becomes larger, the time required to solve the master becomes
significant. Be aware that the partition of the CPU time has a different interpre-
tation when the solution of an instance has been interrupted at the root node (i.e.
instances marked with *x). Then, the portion of time spent on the subproblem is

smaller partly because column generation has not yet passed the tailing off phase
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which requires intensive computation to solve difficult subproblems.

For the network design problem with split assignments (NDSA), we use the same
data sets as for ND. The demands are divided in two and each half (i.e. split
demand) must be assigned to a different ring (this transformation is described in
Section 2.2). These problems are harder to solve because, as a result of the splitting,
there are more edge demands to consider for the same size of network. Moreover
the granularity of demand relative to the capacity increases and there are some
a priori edge disjunctive constraints. Given that the ring capacity is now larger
relative to the average demand size, branching on pairs of edges often leads to an
alternate solution of the same cost. Branching first on node cardinality leads to
better performance on average. So, we try to eliminate a given fractional solution
using cardinality branching, if it is not possible, we use node cardinality branching,
and as a last resort, we use branching on pairs of edges.

We report our results for a few instances in Tables 5 and 6, using the same notation
as before. One instance has been interrupted before 2 hours because we could not
solve the subproblem to optimality within 10,000 branch-and-bound nodes. It is
marked with a +.

5.2 The Clustering Problem

We have tested our algorithm on 3 types of clustering applications. These three
classes of clustering problems have been studied by de Souza (1993) [13] and by
Ferreira, Martin, de Souza, Weismantel and Wolsey (1994) [17]. We use the same
data sets as these authors. The first type of instances arises from compiler design
problems (see Johnson et al. (1993) [29]). Their test set consists of six problems
and two possible cluster capacities. Each problem is referred to by a name starting
with cd followed by a if the cluster capacity is 450 or a b if it is 512; next comes
the number of nodes in the underlying incomplete graph. To distinguish between
instances with the same number of nodes, we add a tailing b followed by the number

of edges.

Johnson et al. have solved these instances on a RISC 6000 (Model 540) using a
column generation algorithm and a cutting plane algorithm for the pricing subprob-
lem. However, they only solved the root node master problem. Once LP optimality

of the root node master is proven, they apply standard branch-and-bound to the
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name # nod # col # BB |rootLP LB UB | CPU time
6¢50 12 95 15 20.11 21 21 | OH:0M:28s
6¢60 5 112 11 17.88 18 18 | OH:0M:7s
6¢100 6 91 13 14.43 15 15| OH:0M:6s
6c214 1 115 17 18.06 19 19 | OH:0M:30s
7¢50 35 411 128 2791 29 29 | OH:6M:49s
7¢60 13 400 135 25.54 27 27| OH:11M:2s
7c¢60b 45 639 266 25.34 27 27 | OH:15M:47s
7¢100 24 576 147 19.99 21 21 | OH:6M:6s
7¢200 17 0 14.00 14 14 | OH:0M:0s
7c240 15 0 14.00 14 14 | OH:0M:0s
8¢50 22 257 57 43.38 44 44 | OH:6M.:31s
8¢60 53 476 228 39.67 41 41 | O0H:32M:15s
8c60b 115 662 404 40.22 42 42 | 1H:39M:27s
8¢100 45 663 263 29.32 31 31 | 1H:50M:47s
8¢200x 27 1240 295 20.26 22 23 | 2H:14M:44s
8c240x+ 4 189 101 19.32 20 23 | OH:20M:16s
9¢50% 238 677 353 65.10 66 67 | 2H:0M:8s
9¢60 130 545 261 63.87 65 65| 1H:4M:56s
9¢60b 87 639 352 61.25 62 62 | 1H:6M:45s
9c¢100x 56 880 422 4721 48 49 | 2H:0M:7s
9¢200x 27 709 219 32.00 33 37| 2H:6M:2s
9¢240% 16 914 343 29.61 30 34 | 2H:19M:28s
10¢50 39 359 173 38.64 39 39| 0H:22M:27s
10c60 20 293 61 34.34 35 35 | OH:6M:54s
10c100x 72 1051 488 27.53 29 30| 2H:1M:41s
10¢200 2 13 0 20.00 20 20 | OH:0M:0s
10c214 2 15 0 20.00 20 20 | OH:0M:0s
12¢50 120 416 62 | 100.91 102 102 | O0H:36M:52s
12c60x 156 615 210 88.02 89 90 | 2H:0M:13s
12¢100x 17 564 95 70.70 71 120 | 2H:57M:40s
12¢200x 5 536 78 48.63 49 102 | 2H:0M:21s
15¢50% 49 458 74| 159.76 160 161 | 2H:0M:57s
15¢60% 184 555 53 | 141.27 142 143 | 2H:1M:19s
15¢60bx* 462 581 107 | 141.12 142 143 | 2H:0M:36s

Table 5: Computational results for application NDSA.
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name master subpr. | masLP masIP | spHeur spBB
6¢50 8.8 90.1 3.7 5.1 2.8 854
6c60 12.4 86.2 8.5 3.8 9.7 729
6¢100 20.4 76.0 9.5 10.8 15.6  56.1
6c214 2.7 96.7 2.1 0.6 3.5 90.7
7c50 28.6 71.1 3.9 24.6 3.0 66.3
7c60 32.9 67.0 1.5 31.3 1.8 64.0
7c¢60b 25.9 73.9 3.0 22.8 20 704
7¢100 41.5 58.1 6.0 35.4 49 51.3
7c200 13.6 40.9 13.6 0.0 36.3 0.0
7c240 9.0 36.3 9.0 0.0 36.3 0.0
8cH0 26.7 73.0 1.6 25.1 2.1 699
8c60 29.2 70.6 1.2 28.0 1.0 68.7
8c60b 43.3 56.5 0.8 42.4 0.4 55.6
8c100 85.1 14.8 0.7 84.3 0.6 139
8c200x 93.3 6.5 1.4 91.9 1.1 5.1
8c240x+ 1.2 98.7 0.5 0.6 0.7 823
9cH0x% 18.4 81.4 1.4 16.9 0.6 80.3
9¢c60 28.0 71.7 1.2 26.8 0.7 703
9¢60b 13.5 86.3 1.1 12.4 0.8 84.6
9¢100x 36.2 63.7 1.0 35.1 1.1 62.0
9c200x 63.6 36.3 0.8 62.7 1.1 349
9c240x% 62.7 37.2 1.1 61.5 1.4 354
10c50 6.8 93.1 1.0 5.7 1.1 91.2
10c60 21.1 78.6 2.3 18.8 3.3 743
10c100% 78.0 21.9 1.6 76.4 0.8  20.7
10c200 7.6 50.0 7.6 0.0 46.1 0.0
10c214 14.2 53.5 14.2 0.0 53.5 0.0
12¢50 17.7 82.0 2.0 15.6 1.9 79.5
12c60% 13.3 86.5 1.2 12.0 1.3 84.6
12¢100% 61.9 38.0 0.2 61.6 0.9 36.8
12c200% 50.1 49.8 0.5 49.5 1.8 47.7
15¢50x 4.4 95.4 0.4 4.0 1.7 934
15¢60x 29.5 70.1 1.9 27.5 2.1 67.7
15c60bx* 12.8 86.4 3.4 9.4 1.8 84.2

Table 6: CPU time distribution in percent for application NDSA.
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restricted master to get a good integer solution. If there is an optimality gap (which
only happens in 3 out of 12 instances) they do not pursue the search for an exact
solution of the master. The CPU times we report in Table 7 improve upon theirs

by a factor of between 2 and 20 depending on the instance.

The second type of test problems arises in VLSI placement design (see Junger et.
al. (1992) [30]). These test problems have a name starting with vlsi followed by the

number of nodes in the graph.

The third class of test problems are clustering problems arising in finite element
computations (de Souza (1994) [14]). They consist of finding an equipartition of a
sparse graph that minimizes the number of edges in the cut. We refer to them with
a name starting by mesh and followed by the number of nodes in the graph. Tables
7 and 8 contain the computational results for the 3 classes of test problems. The
parameter settings leading to the best results on average are: a switch from depth
first to best first search for a gap of 20%, no cutting planes for the subproblem, and
branching on pairs of nodes only. After 2 hours of CPU time, we stop generating
new columns and we solve the restricted master IP by branch-and-bound, hoping to
improve our incumbent solution. By allowing 3 hours we do not improve our results
except for problems vlsi42 and vlsi166. We also report computation results with a

3 hour limit for instances vlsi42 and vlsi166, marked with a hA3.

Ferreira et. al. (1994) [17] have developed a branch-and-cut approach for the cluster-
ing problem. It is interesting to compare the two approaches: IP column generation
and branch-and-cut. In Table 9, we present comparative results. In the columns of
this table we give the problem names, the root node upper bound value obtained
with our IP Column Generation algorithm (CGrootBd), the best upper bound that
is obtained at the root node when using the Branch-and-Cut approach (BCrootBd),
and the value of the optimal solution (when it is not known, we give our best lower
bound and we place a x by the value). Then, in the column entitled BCtime (resp.
CGtime), we report the total computational time (on the same machine) given in
[17] for the branch-and-cut approach (resp. obtained with our algorithm). We place

a * when the instance has not been solved to optimality.

Comparing CPU times, we note that the instances that are difficult for the branch-
and-cut method are the same as the difficult ones for the column generation method.

Second, the solution times are of the same order of magnitude with both approaches
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name nd col BB | rootLP UB LB | time
cda30b47 1 33 31 1099.00 1099 1099 | OH:0M:4s
cda30bb6 1 32 4| 1642.00 1642 1642 | OH:0M:6s
cdadb 1 63 71 2928.00 2928 2928 | OH:0M:55s
cda47b99 1 66 11| 1837.00 1837 1837 | OH:1M:53s
cdad7b101 5 128 39| 3574.00 3569 3569 | OH:7M:23s
cdabl 7 264 96| 22245.00 22216 22216 | 1H:26M:24s
cdb30b47 1 13 51 1174.00 1174 1174 | OH:0M:5s
cdb30b56 1 35 3| 1748.00 1748 1748 | OH:0M:6s
cdb4b 1 53 14| 3238.00 3238 3238 | OH:1M:17s
cdb47b99 1 77 18| 1993.00 1993 1993 | OH:3M:37s
cdb47b101 3 155 46| 3969.00 3960 3960 | OH:7M:18s
cdb61 1 91 15| 23564.00 23564 23564 | OH:17M:9s
vlsilh 4 40 14 96.00 95 95 | OH:0M:4s
vlsil7 3 49 12 48.00 47 47 | 0H:0M:37s
vlsi34 2 202 47 183.00 183 183 | OH:2M:20s
vlsi37 1 143 35 211.50 211 211 | OH:1M:51s
vlsi38 17 1345 669 285.80 282 282 | 1H:8M:44s
visid2x 6 1093 403 408.00 407 406 | 2H:0M:0s
vlsid2h3 7 1385 516 408.00 406 406 | 2H:14M:10s
vlsid3 7 660 216 526.00 524 524 | OH:9M:46s
vlsid4 7 905 388 527.00 524 524 | OH:18M:23s
vlsi46 1 381 169 491.00 491 491 | OH:10M:6s
vlsi48 1 414 163 522.00 522 522 | OH:9M:49s
visil66%* 1 2221 51| 2056.86 2402 1909 | 2H:48M:25s
vlsil66xh3 1 2549 119 | 2073.81 2377 1969 | 3H:25M:15s
mesh31 2 203 82 44.00 44 44 | OH:0M:58s
mesh70 1 19 1 113.00 113 113 | OH:0M:3s
mesh138x | 1 1648 949 214.68 232 170 | 2H:11M:23s
mesh148xx | 1 535 0 246.40 265 244 | 2H:2M:6s
mesh274xx | 1 643 83 447.02 469 437 | 2H:0M:26s

Table 7: Computational results for application CLUST.
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name master subpr. | masLP masIP | spHeur spBB
cda30b47 1.0 95.9 1.0 0.0 1.6 89.2
cda30b56 0.7 95.0 0.7 0.0 20 879
cdadb 0.2 99.2 0.2 0.0 1.0  95.3
cda47b99 0.2 99.5 0.2 0.0 0.5 96.8
cda47b101 0.2 99.6 0.1 0.0 0.3 970
cdabl 0.0 99.8 0.0 0.0 0.1 98.2
cdb30b47 1.1 95.5 1.1 0.0 1.9 88.5
c¢db30b56 0.9 96.1 0.9 0.0 1.9 90.6
cdb4b 0.3 99.3 0.3 0.0 0.9 946
cdb47b99 0.1 99.7 0.1 0.0 0.4 973
cdb47b101 0.2 99.6 0.2 0.0 0.4 96.6
cdb61 0.0 99.8 0.0 0.0 0.3 984
vlsilh 4.8 89.5 4.4 0.3 0.7 772
vlsil7 0.5 99.0 0.4 0.0 0.1 98.6
vlsi34 1.5 98.3 0.8 0.6 0.9 927
vlsi37 0.9 98.7 0.9 0.0 1.4 89.9
vlsi38 3.0 96.9 0.6 24 0.3 86.8
visid2x 0.6 99.3 0.5 0.0 0.2 948
vlsid2h3 0.7 99.2 0.7 0.0 0.3 9838
vlsi43 2.1 97.7 2.0 0.0 1.6 86.8
vlsi44 2.1 97.7 2.0 0.1 1.2 87.6
vlsi46 1.6 98.3 1.6 0.0 1.1 923
vlsid8 1.9 97.9 1.9 0.0 1.4 91.2
vIsil66%x 49.4 50.5 20.6 28.7 279 19.7
mesh31 5.5 94.0 5.4 0.1 2.1 789
mesh70 0.4 91.5 0.4 0.0 32.7 483
mesh138x%x 43.6 56.3 35.0 8.6 5.1  33.6
mesh148x%x 88.4 11.5 87.1 1.3 11.5 0.0
mesh274x%x 45.3 54.5 45.2 0.1 40.1 7.6

Table 8: CPU time distribution in percent for application CLUST.
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name CGrootBd BCrootBd optimum | CG time BC time
cda30b47 1099 1099 1099 | 0H:0M:4s 0H:0M:26s
cda30b56 1642 1642 1642 | OH:0M:6s 0H:0M:16s
cdadb 2928 2966 2928 | OH:0M:55s 0H:20M:44s
cdad47b99 1837 1848 1837 | OH:1M:53s 0H:18M:43s
cdad7b101 3574 3682 3569 | O0H:7TM:23s 2H:43M:25s
cdabl 22245 na 22216 | 1H:26M:24s 27Hx
cdb30b47 1174 1174 1174 | OH:0M:5s OH:0M:21s
cdb30b56 1748 1748 1748 | OH:0M:6s 0H:0M:24s
cdb45 3238 3259 3238 | OH:1M:17s OH:17M:04s
cdb47b99 1993 2006 1993 | 0H:3M:37s 0H:56M:50s
cdb47b101 3969 4034 3960 | OH:7TM:18s 0H:26M:09s
cdb61 23564 23577 23564 | OH:17M:9s 2H:46M:47s
vlsilb 96 96 95 | OH:0M:4s 0H:0M:8s
vlsil7 48 50 47 | OH:0M:37s OH:17M:7s
vlsi34 183 184 183 | OH:2M:20s OH:1M:33s
vlsi37 211 212 211 | OH:1M:51s 0H:1M:39s
vlsi38 285 287 282 | 1H:8M:44s 2H:30M:58sx
vlsid2 408 407 406 | 2H:14M:10s 0H:20M:10s
vlsi44 527 525 524 | OH:18M:23s 0H:2M:0s
vlsi46 491 495 491 | OH:10M:6s OH:59M:15s
vlsi48 522 528 522 | 0H:9M:49s 5H:26M:20s
vlsil66 2377 2428 x1969 | 3H:25M:15s** 5H5H:29Mx
mesh31 44 44 44 | OH:0M:58s OH:0M:5s
mesh70 113 113 113 | OH:0M:3s OH:1M:43s
mesh138 232 224 224 | 2H:11M:23sxx 1H:48M:36s
mesh148 265 258 258 | 2H:2M:6sx** 0H:14M:11s
mesh274 469 462 462 | 2H:0M:26sxx  1H:32M:02s

Table 9: Comparing our results for CLUST with branch-and-cuts results.
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with some variations depending on the problem type. For the compiler design prob-
lems IP column generation is significantly faster. For the VLSI problems, the ad-
vantage depends on the instance. For the finite element problems, our algorithm
fails to solve the larger instances while the branch-and-cut approach succeeds. For
these mesh problems, the master formulation is highly degenerate: the size of the
basis is greater than the number of nodes, while in an optimal IP solution, only 2
columns have a non zero value. We observe that the master LP solution requires 35
to 87 % of the time spent trying to solve these large instances.

5.3 The Multi-item Single-machine Lot-sizing Problem

Constantino (1994) [7] has developed a branch-and-cut algorithm for the multi-item
single-machine lot-sizing problem. Most of the cuts he uses concern the subproblem.
We have integrated his separation subroutines in the cutting plane algorithm for the

pricing subproblem. We have tested IP column generation on his set of test problems.

The name of an instance is of the type mbnvicjsk, where m is the number of item,
n is the number of period, i refers to a set of demands for this size problem, j refers
to the machine capacity, and k refers to the start-up cost. For a detailed description
of these data sets, the reader is referred to Constantino (1994) [7].

The algorithm settings we use for this problem consist of a 20% gap for the switch
to best first search, and branching on a pair consisting of a period and an item.
We have not implemented any heuristic procedure to solve the subproblem. In-
stead, we solve it exactly at every master iteration, using cutting planes followed
by branch-and-bound. Our results are presented in Tables 10 and 11. In Table 10,
we have added a column to report the total number of cuts we have generated for
the subproblem during the cutting plane algorithm we use at the root node of the
subproblem branch-and-bound tree. We manage the cuts using a pool and remove
them from the subproblem formulation after each master iteration. In Table 11, we
show the portion of time spent on the subproblem solution using respectively the
cutting plane algorithm and branch-and-bound applied to the strengthened sub-

problem formulation.

The comparison with the branch-and-cut approach used by Constantino shows that
our CPU times are worse (by a factor of about 1 to 3). We have not tested how the

two approaches compare on larger instances; nor have we implemented a heuristic

101



name nod col BB cuts rootLP LB = UB | CPU time
5b12vicl2s2 1 75 13 1219 | 3479846.00 3479846 | 0H:0M:13s
5b12v2c¢12s2 1 57 0 763 | 873644.00 873644 | OH:0M:5s
5b12v3c12s2 1 36 0 511 | 888844.00 888844 | OH:0M:4s
5b24v1cl2s2 1 111 24 3600 | 1723945.00 1723945 | O0H:1M:41s
5b24v2c12s2 1 52 1375 | 1811497.00 1811497 | OH:0M:24s
5b24v3cl2s2 1 79 2051 | 1255917.00 1255917 | OH:0M:41s
5b36v1cl2s2 1 161 48 8246 | 947394.00 947394 | OH:8M:24s
5b36v2c12s2 1 38 3 2023 | 867049.00 867049 | OH:1M:9s
5b36v3cl2s2 | 43 481 435 4918 | 1526633.00 1529170 | OH:41M:26s
5b12v1c16s2 1 63 4 856 | 2278268.00 2278268 | 0H:0M:8s
5b12v2c16s2 1 39 0 455 | 718781.00 718781 | OH:0M:2s
5b12v3c16s2 1 24 0 316 | 740190.00 740190 | OH:0M:1s
5b24v1c16s2 3 98 15 2509 | 1506855.50 1507041 | OH:1M:9s
5b24v2c16s2 1 40 0 1093 | 1785755.00 1785755 | OH:0M:20s
5b24v3c16s2 1 45 0 1233 | 1095568.00 1095568 | OH:0M:19s
5b36v1cl6s2 1 63 15 2640 | 724301.00 724301 | OH:1M:46s
5b36v2c16s2 1 26 0 1663 | 834056.00 834056 | OH:0M:37s
5b36v3c16s2 7 141 8 2466 | 1377965.00 1378455 | O0H:4M:46s
5bl12v1c24s2 1 30 3 427 | 1893442.00 1893442 | 0H:0M:2s
5b12v2c24s2 1 32 0 350 | 694991.00 694991 | OH:0M:1s
5b12v3c24s2 1 24 0 341 | 737190.00 737190 | OH:0M:1s
5b24v1c24s2 1 56 2 1074 | 1273593.00 1273593 | OH:0M:18s
5b24v2c24s2 1 35 0 898 | 1764143.00 1764143 | OH:0M:8s
5b24v3c24s2 1 27 0 1005 | 1091448.00 1091448 | OH:0M:11s
5b36v1c24s2 3 35 9 1560 | 652187.50 652634 | OH:1M:1s
5b36v2c24s2 1 27 0 1531 | 818018.00 818018 | OH:0M:31s
5b36v3c24s2 | 39 210 0 2121 | 1367520.00 1368279 | OH:7M:20s
5bl12vlcl2s4 1 75 19 1024 | 3679846.00 3679846 | 0H:0M:10s
5b12v2cl2s4 1 57 1 842 | 1053644.00 1053644 | OH:0M:7s
5b12v3c12s4 1 43 0 667 | 1068844.00 1068844 | OH:0M:4s
5b24vicl2s4 1 110 7 4273 | 1998430.00 1998430 | OH:2M:0s
5b24v2c12s4 1 48 4 1138 | 1986964.00 1986964 | OH:0M:14s
5b24v3c12s4 9 185 102 2938 | 1521427.43 1522772 | 0H:4M:29s
5b36v1cl2s4 1 155 77 7007 | 1268385.00 1268385 | OH:11M:50s
5b36v2cl2s4 1 43 7 1711 | 1101279.00 1101279 | OH:1M:11s
5b36v3cl2s4 9 236 75 4043 | 1872207.67 1876742 | OH:12M:5s
5bl12vlcl6sd 1 55 5 806 | 2478268.00 2478268 | 0H:0M:7s
5b12v2c16s4 1 39 374 | 858781.00 858781 | OH:0M:2s
5b12v3cl6s4 1 27 403 | 860976.00 860976 | OH:0M:1s
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name master subpr. | masLP masIP | spCut spBB
5b12v1c12s2 0.8 98.2 0.8 0.0 82.1 13.6
5b12v2c12s2 1.1 96.5 1.1 0.0 94.7 0.0
5b12v3c12s2 0.7 95.3 0.7 0.0 92.4 0.0
5b24v1c12s2 0.2 99.5 0.2 0.0 79.5  19.7
5b24v2c12s2 0.2 98.8 0.2 0.0 94.2 3.9
5b24v3c12s2 0.2 99.2 0.2 0.0 94.6 3.8
5b36v1cl2s2 0.0 99.8 0.0 0.0 68.8  30.5
5b36v2c12s2 0.1 99.5 0.1 0.0 84.5 143
5b36v3c12s2 0.3 99.6 0.2 0.1 68.4  30.5
5b12v1c16s2 0.9 97.3 0.9 0.0 92.3 2.9
5b12v2¢16s2 0.0 94.2 0.0 0.0 92.2 0.0
5b12v3c16s2 1.9 90.3 1.9 0.0 86.5 0.0
5b24v1c16s2 0.2 99.4 0.2 0.0 88.2  10.7
5b24v2c16s2 0.3 98.9 0.3 0.0 97.8 0.0
5b24v3c16s2 0.2 98.6 0.2 0.0 97.3 0.0
5b36v1cl6s2 0.1 99.7 0.1 0.0 78.2  20.8
5b36v2c16s2 0.0 99.3 0.0 0.0 98.3 0.0
5b36v3cl6s2 0.2 99.6 0.2 0.0 97.2 1.4
5b12v1c24s2 1.2 90.9 1.2 0.0 86.3 2.5
5b12v2¢24s2 3.0 90.7 3.0 0.0 83.4 0.0
5b12v3c24s2 0.9 90.0 0.9 0.0 86.3 0.0
5b24v1c24s2 0.1 98.8 0.1 0.0 96.3 1.1
5b24v2c24s2 0.1 98.0 0.1 0.0 97.1 0.0
5b24v3c24s2 0.6 97.7 0.6 0.0 96.2 0.0
5b36v1c24s2 0.0 99.4 0.0 0.0 88.9 9.4
5b36v2c24s2 0.2 99.1 0.2 0.0 98.5 0.0
5b36v3c24s2 0.2 99.5 0.2 0.0 98.5 0.0
5b12v1cl2s4 1.2 97.1 1.2 0.0 83.7 12.6
5b12v2c12s4 0.7 97.1 0.7 0.0 93.1 1.4
5b12v3cl2s4 1.1 95.8 1.1 0.0 93.5 0.0
5b24v1cl2s4 0.1 99.7 0.1 0.0 95.8 3.5
5b24v2c12s4 0.2 98.1 0.2 0.0 94.5 2.5
5b24v3c12s4 0.3 99.4 0.3 0.0 7.4 273
5b36v1cl2s4 0.0 99.8 0.0 0.0 38.5  61.0
5b36v2c12s4 0.1 99.4 0.1 0.0 81.6  17.0
5b36v3cl12s4 0.2 99.6 0.2 0.0 65.5  33.5
5b12v1cl6s4 0.9 96.6 0.9 0.0 89.6 4.7
5b12v2c16s4 0.7 94.2 0.7 0.0 91.9 0.0
5b12v3cl6s4 2.5 89.9 2.5 0.0 78.9 5.8
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or a dynamic programming algorithm for the subproblem.

5.4 Early Termination of Column Generation

In this Section, we want to test the hypothesis that the early termination conditions
presented in Section 3.5.2 help to reduce the amount of computation. We compare
the performance of the IP column generation algorithm with and without the use of
the conditions for early termination of the column generation procedure (cfr Section
3.5.2) and the resulting a priori upper bounds on the subproblem value (cfr Section
3.5.3).

With the IP column generation algorithm as with other IP algorithms, comparisons
between different options are not always easy because there is a factor of chance in
the performance of the algorithm. If, at one stage of the procedure, one generates
a column, say k, rather than another column, say [, the rest of the procedure may
take a completely different path of actions. For instance, column £ and [ may yield
different dual solutions and, in turn, different new columns. Also, column k£ may be
the right complement to existing columns in forming an integer solution, while / may
not be. In the case of this test, by stopping column generation early, we may not
generate columns that would have been very helpful and by setting an upper cut-off
for the subproblem branch-and-bound procedure, we may get a different subproblem
solution. Consequently, it is important to run a test on a large set of instances to

see what is the average behavior.

In addition, comparing two versions of the algorithm on the same instance, we might
observe that some performance parameters (number of columns, number of subprob-
lem solutions, number of calls to subproblem branch-and-bound, etc ...) are better
while others are worse. The total CPU time summarizes these sometimes contra-
dictory effects.

In Table 12, we present the total CPU time (in seconds) needed to solve the network
design instances with four different versions of the IP column generation algorithm.
Version ET'C'aSPB corresponds to the algorithm settings presented in Section 5.1,
in which we use the conditions for early termination of the column generation pro-
cedure as well as the resulting a priori upper bounds on the subproblem value. It is
our benchmark in the present comparative test. In Version noSPB, all algorithmic

options are equal to those of ETCaSPB, but we do not use the a priori bound on
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the subproblem value presented in Proposition 6. In Version noETC, we go one
step further: we do not use the column generation early termination condition (i7),
[LB*] > Z¥5(Q), nor condition (1), [LB*] > Z'™NC (cfr the end of Section 3.5.2).
In Version noETC1ii, we only use only condition (¢), v*(m, u,v) > 0, and condition
(i11), [LB*] > Z'™N¢  to terminate column generation at a node, but we do not use
condition (i7), [LB*] > Z¢»(Q). The last line of the table contains the sum of the
CPU times for all instances for a each algorithm version.

Looking at the times presented in Table 12, we conclude that the early termination
of column generation helps in solving problems faster. Comparing ETCaSPB and
noS P B, we note that the use of the a priori subproblem bounds improves the perfor-
mance in 24 out of 30 instances and the speed up factor varies from around 0.5 (twice
as slow) to 14.5. Comparing ETCaSPB and noETC, we see that the combined use
of early termination conditions and a priori subproblem bounds improves the perfor-
mance in 29 out of 30 instances and the speed up factor varies from around 0.7 to 20.
Comparing noETCii and noETC shows that early termination condition (i7) is the

main contributor to the time reduction in the case of the network design application.

5.5 Comparing Some Implementation Strategies

In this section, we want to illustrate the impact of some of the implementation
choices, which we discussed in Chapter 4, on the performance of our algorithm. As
in the comparative tests of the previous Section, we use the total CPU time measure

to summarize the effect of any particular implementation option.

Table 13 contains the computation time obtained for the network design (ND) prob-
lems with the different versions of the algorithm that we want to compare. The last
line of the table contains the average CPU time across all instances for a each al-
gorithm version. The first column contain the problem names. The headings of the
other columns refer to the algorithm versions that we have tested. BENCH stands
for the benchmark version presented in Section 5.1. To define other versions, we

mention in what way they differ from the benchmark.

Version FULLP solves the LP programs using full pricing instead of the default
CPLEX option of partial pricing. Bixby, the developer of CPLEX, has suggested
using the full pricing option when using a column generation procedure. We ob-

serve a significant time reduction which cannot be explained by reduction in master
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name ETCaSPB noSPB noETCii noETC
7¢50 3.9 4.6 4.2 4.4
7¢60 41.0 42.1 46.4 48.5
7c¢60b 2.2 2.7 2.8 2.8
7¢100 14.2 8.8 13.7 14.4
7¢200 7.2 36.0 56.3 58.9
7¢240 109.0 86.0 200.3 2574
8¢H0 11.6 14.8 14.1 14.7
8¢60 48.0 54.2 160.8 168.5
8c60b 36.1 42.1 47.7 51.0
8c100 61.9 68.5 1240.7  1297.8
8¢200 100.2 95.2 140.3 152.2
8¢240 4924.5  5926.8 4762.2  5246.7
9¢50 35.6 42.3 300.5 324.8
9¢60 262.1 292.6 258.3 276.2
9¢60b 615.2 701.4 1109.6  1056.1
9¢100 560.2 746.2 2338.1  2378.5
9¢200 2645.8  1187.1 1842.5 19414
9¢240 2957.3  3195.1 5476.2  5599.8
10c50 8.9 9.8 9.2 9.4
10c60 114.7 151.3 137.3 169.4
10c100 69.8 29.8 230.5 238.3
10c200 69.2 1007.8 4326.1  1367.3
10c214 1204.2 725.9 1287.5  1283.2
12¢50 18.9 24.5 23.6 23.4
12¢60 34.6 39.5 38.9 41.0
12¢100 3271.8  3679.2 4713.1 52404
15¢50 97.0 111.6 108.3 111.3
15¢60 159.6 209.4 210.0 208.2
15¢60b 124.8 140.7 970.2 1069.4
15¢100 790.9 735.8 4039.7  3924.7
TOTAL 18400.6 19411.7 34108.9 32580.1

Table 12: Early termination of column generation: time comparison for ND.
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LP solution time alone. In fact, for the instances where the benchmark algorithm
spends significant time in solving the master LP (more than 7% for instances 7¢200,
10¢200 and 10c240 (see Table 4)), the full pricing version is slower. One possible ex-
planation is that the better performance of full pricing is due to better dual master

solutions yielding different column generation patterns (paths).

Version PART uses full pricing and also uses a partitioning master formulation
rather than a covering formulation. Since we have not developed a procedure to
deal with master infeasibilities in the case of a partitioning formulation, we had to
interrupt the solution, for 4 instances (marked by inf) out of 28, due to master
LP infeasibilities. Comparing with the FULLP version, we observe a significant

increase in CPU time.

In version IOC, we have initialized the IP column generation algorithm with an
optimal IP solution, including the columns of the optimal solution in the initial
master formulation. Contrary to the conclusions of our previous research [45] (see
also Section 4.5), we observe that JOC yields a significant reduction in the amount
of computation. However, in [45], we were using column generation at the root node
only, and we did not use any column generation early termination criteria. So, one
possible interpretation, which explains this apparent contradiction, is that the com-
putational reduction we observe for the network design application is due to the fact
we have a priori the value of the optimal solution rather than due to the presence of
the optimal columns in the initial formulation. This cut-off value serves not only to
prune the master branch-and-bound tree, but also to terminate column generation

early at each node of the branch-and-bound tree.

To confirm this interpretation, we have tested yet another version, /OV, in which
we initialize the IP column generation algorithm with the optimal IP value, but
we do not include the corresponding columns in the initial master formulation. As
shown in Table 13, the average computation time improves a little over the IOC

version, supporting the above interpretation.

In version SOC, we experiment with another column generation strategy consist-
ing of generating one optimal reduced cost column at each iteration of the column
generation procedure. The CPU time increases significantly as a result. This test
shows that it is preferable to use a multiple/heuristic column generation strategy as

discussed in Section 4.5.
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name BENCH FULLP PART I0C IOV~ SOC
7¢50 3.9 4.8 4.6 4.1 3.3 24.6
7c60 41.0 16.3 34.2 7.1 7.8 67.2
7c60b 2.2 2.5 10.3 1.9 2.8 44.6
7¢100 14.2 10.1 16.0 5.5 9.4 50.8
7¢200 7.2 19.0 inf 10.3 8.9 17.0
7c240 109.0 70.2 76.3 0.6 0.6 72.3
8¢H0 11.6 6.3 10.4 11.5 11.1 88.6
8¢60 48.0 40.0 29.6 49.0 49.0 1313
8¢60b 36.1 46.4 37.3 58.1 50.0 1429
8c100 61.9 151.7  189.9 41.3 33.3 1178.8
8c200 100.2 110.1 inf 94.1 94.9  265.7
8c240 4924.5  3980.9 uns 5063.9 4589.1 5636.7
9¢50 35.6 51.9 79.6 29.7 42.1  357.2
9¢c60 262.1 2429 2512 2379 2231 3704
9c60b 615.2 416.4 626.8 840.6 462.5 1022.8
9c¢100 560.2 992.5 572.8 99.2 102.8 2415.7
9¢200 2645.8 792.3 4478.5 101.2 106.2 3946.9
9c¢240 2057.3 13384 6366.2 171.1  170.3 uns
10c50 8.9 11.6 24.3 3.8 4.0 53.0
10c60 114.7 75.7 82.6 84.8 76.8  198.2
10c¢100 69.8 89.0 55.1 24.5 225  150.0
10c200 69.2 233.1 inf 45.8 56.4 2248.8
10c214 1204.2  1913.9 inf 3206 3443 733.2
12¢50 18.9 19.5 18.5 17.6 30.9  297.5
12¢60 34.6 58.5 18.8 18.0 179  579.2
12¢100 3271.8 21173 2388.4 2839.5 2714.7 6654.6
15¢50 97.0 82.5 50.5 77.2 79.2  2155.6
15¢60 159.6 148.2  147.7 61.4 116.2 2166.3
15¢60b 124.8 67.0 102.6 62.5 52.3 1729.8
AVERAGE 607 452 653 358 327 1171

Table 13: Comparing CPU time required to solve ND problems with different im-

plementation options (uns stands for unsolved within the allocated 2 hours).
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5.6 Approximation Algorithm

As illustrated in the previous tables, we cannot solve the larger instances to optimal-
ity within reasonable time using our implementation of the IP column generation
algorithm. Limiting the total CPU time, we have produced an approximately opti-
mum solution and a bound to attest to its quality. However, there are other ways
to truncate the exact solution procedure in order to obtain approximate solutions.
One may set an upper limit on counters like the number of columns, the number
of optimally generated columns, the number of master iterations, or the number of

nodes in the branch-and-bound tree.

Another way to truncate the search tree is to set an a priori cut-off value. This
amounts to searching if there exists an integer solution that has a cost lower than
or equal to the a priori cut-off value. However, if the optimal value is equal to the
cut-off value, the algorithm will not necessarily provide such a solution. Our expe-
rience with the network design application is that the size of the branch-and-bound
tree is very much dependent on a tight cut-off value early in the procedure. So for
these problems, checking the existence of a solution of given cost can be much faster

than solving the optimization problem.

A third way to limit the computations consists of searching for an integer solution
whose cost is within a % of optimality. One may specify a tolerance factor (TOL) in
absolute value. Considering the minimization problem [M], we obtain an absolute
tolerance from the percentage specification by letting TOL = (100 + «)/100 x LB
where LB is the best known lower bound. Then, the criteria for pruning a branch-

and-bound node by bound becomes
LB"+TOL > Z'N¢

To take advantage of the tolerance factor for early termination of column genera-
tion, one can use LB" + TOL instead of LB" in the early termination conditions
presented in Section 3.5.2 as well as in the a priori subproblem bound computations.

For maximization problems the argument is similar.

We have tested the use of a tolerance factor for the network design problem with
and without split assignments. The strategy that seems to work best consists of

introducing a tolerance after the completion of the root node solution. In Tables
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14-17, we present the computational results obtained for large instances using an
absolute tolerance of 1 unit.

Comparing these results with the 2 hours limit truncation (Tables 3-6), we note that
for all instances (but one) we get the same incumbent value (or even a better value),
sometimes much quicker, but the lower bound is obviously not always as good. Also
the portion of time spent in solving the subproblems decreases since, by using a
tolerance, we truncate the cumbersome master LP optimality proofs.

name # nod # col # BB |rootLP LB UB | CPU time
8¢200 57 495 5 14.83 15 16 | OH:1M:31s
8c240 3 66 12 14.15 15 16 | OH:0M:21s
9¢200 186 925 17 2412 25 26 | OH:26M:11s
9¢240 65 666 276 21.70 22 23 | OH:28M:59s
10¢200 50 992 76 13.93 14 15| OH:5M:31s
10c214 56 640 69 13.35 14 15 | OH:3M:16s
12¢200x% 193 817 98 35.46 36 39 | 2H:1M:12s

Table 14: Computational results for application ND with TOL.

name master subpr. | masLP masIP | spHeur spBB
8¢200 82.4 16.7 9.9 72.4 114 4.5
8¢240 6.3 92.4 3.3 3.0 74 824
9¢200 93.6 6.1 1.4 92.1 0.9 5.1
9c240 46.8 53.0 1.1 45.7 1.2 50.8
10¢200 84.8 14.8 3.6 81.2 6.3 7.6
10c214 82.9 16.6 2.8 80.1 3.7 114
12¢200x 88.6 11.2 0.8 87.7 0.8 10.2

Table 15: CPU time distribution in percent for application ND with TOL.
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name # nod # col # BB | rootLP LB UB | CPU time
8c200x 37 1612 269 20.26 21 22 | 2H:4M:6s
8¢240 32 1833 429 19.32 20 21 | OH:57M:10s
9¢50 3 275 39 65.10 66 67 | OH:11M:47s
9¢100 73 551 112 4721 48 49 | 1H:6M:57s
9¢200x 33 737 125 32.00 32 37| 2H:0M:2s
9¢240x 23 951 278 29.61 30 34 | 2H:5M:9s
10c100% 68 1233 394 27.53 28 30 | 2H:8M:58s
12¢60 3 334 33 88.02 89 90 | OH:19M:29s
12¢100% 23 570 71 70.70 71 120 | 2H:45M:5s
12¢200% 16 592 56 48.63 49 102 | 3H:3M:52s
15¢50 3 348 22 | 159.76 160 161 | 0H:34M:35s
15¢60 3 466 22 | 141.27 142 143 | 1H:8M:27s
15¢60b 3 404 25| 141.12 142 143 | OH:35M:48s

Table 16: Computational results for application NDSA with TOL.

name master subpr. | masLP masIP | spHeur spBB
8c200x% 94.7 5.1 1.3 93.4 1.4 3.4
8c240 78.5 21.3 6.4 72.0 4.6 158
9¢50 21.7 78.1 0.6 21.1 2.0 735
9¢100 70.6 29.2 1.2 69.4 1.0 27.8
9c200x% 85.2 14.7 1.0 84.1 1.1 13.3
9c240x 75.8 24.1 1.3 74.4 1.6 221
10c100x 86.8 13.0 1.5 85.3 1.1 116
12¢60 21.8 78.0 0.7 21.1 4.0 734
12¢100x 67.5 31.6 0.3 67.2 1.0 304
12¢200x 81.7 18.2 0.5 81.2 1.2 16.8
15¢50 14.1 85.8 0.4 13.6 4.1 81.3
15¢60 49.6 50.3 0.3 49.2 29 471
15¢60b 32.0 67.9 0.4 31.6 3.5  64.0

Table 17: CPU time distribution in percent for application NDSA with TOL.
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6 Conclusions

Summary

This work shows that the decomposition of an integer program can provide a re-
formulation whose LP relaxation yields tight bounds. This in turn allows us to
solve difficult integer programs to optimality. However, dealing with an integer pro-
gram that has an enormous (implicit) number of columns requires the integration
of a column generation procedure in the exact solution algorithm. The standard IP

techniques must be adapted to become compatible with column generation.

We have proposed a branching scheme that offers a unified view of branching rules
previously used in a column generation framework and extends the class of prob-
lems that can be dealt with. We also have derived conditions for early termination
of the column generation procedure. In the process of developing an implementa-
tion of the IP column generation algorithm, we have discussed a few algorithmic
choices that may have a significant influence on the algorithm performance. Our

computational results highlight the capabilities and the limitations of this approach.
Pros of IP column generation

The IP column generation approach seems to be well suited when most of the com-
binatorial difficulty of the set-partitioning-like optimization problem on hand is in
the subproblem (which implies that the master LP bound is tight) but still the sub-
problem remains tractable.

We point out that we have obtained our results for the network design and clustering
problems using very few application specific devices. Apart from the subproblem
heuristics, the IP column generation algorithm we have implemented is a general

purpose shell.

This approach is portable to other applications. To adapt the IP column generation
algorithm to other set-partitioning-like optimization problems, one only needs to
deal with the subproblem for which one might find existing results in the literature
or for which one might easily develop a heuristic. By embedding the subproblem
solution technique in the IP column generation algorithm, one often obtains a good

(optimal) primal solution and a bound to attest of its quality.
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Decomposing the optimization problem leads to a natural disaggregation and yields
subproblems that are interesting on their own right. Then, the success of this ap-
proach depends essentially on one’s ability to solve the subproblem. Developing an
efficient solution method for the subproblem is hopefully much easier than tackling

the global problem directly.

Cons of IP column generation

The method breaks down when the subproblem is intractable (i.e. if one cannot
solve the subproblem within reasonable time). In many applications, the subprob-
lem is difficult and cannot be solved with standard techniques. It is then necessary
to develop a special purpose algorithm to solve the subproblem. For instance, in our
experiment with the MILS application, we could not solve the subproblem without
using cuts. Also, when the size of the problem data gets larger, the subproblem

solution might require too much time as we observed in our computations for appli-
cations ND and CLUST.

Another drawback of the IP column generation algorithm arises when the solution
of the master becomes intractable: For the network design problems with high ring
capacity, we have encountered difficulties in finding an optimum master IP solution
because there are many combinations of columns yielding the same objective value.
We observed that although the master LP bounds are very tight, the branch-and-
bound tree grows large because branching results in many alternative solutions of
the same cost. For the equipartitioning clustering problems (mesh), the master LP

itself is hard to solve due to the degeneracy.

Further Remarks

There is more work to be done to study the robustness of this methodology across
applications and to see how this approach compares with others. In particular, we
would like to test the IP column generation algorithm on applications for which the
root master LP bound is not as close to the optimal IP solution. Also, it would be
interesting to compare the branch-and-cut and the IP column generation approaches
on a more complicated versions of the multi-item single-machine lot-sizing problem

with set-up times.

The enhancements of branch-and-bound commonly used in integer programming
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have not been fully exploited here. Most standard techniques used for solving inte-
ger programs have their analogue in an IP column generation context. For instance,
let us mention variable fixing by reduced cost. If one applies it to the master vari-
ables A, one encounters the same problem inherent to branching on A (i.e. it is
problematic to enforce A = 0). Instead, one could apply the reduced cost fixing
concept to subsets of master rows such as those we have used for branching !. Other
standard techniques such as constructing a master integer solution by rounding of
the LP solution can probably be adapted to the column generation context.

Due to the correspondence between adding columns in the primal and adding cuts
in the dual master formulation, one can perhaps also draw on techniques used in
branch-and-cut to develop IP column generation further.

Among the questions left unanswered, it seems interesting to find out if we can
reduce the tailing off effect by using dual solutions that are central points of the
optimal face (i.e. solutions obtained with an interior point method) rather than

extreme point solutions.

We have seen that a good a priori bound on the optimum IP solution significantly
helps in reducing the computational effort. Consequently, it sounds reasonable to
spend more time in trying to find good integer master solutions early in the branch-
and-bound procedure and to develop heuristics specific to the application for the

master IP.

We have tested the use of a cutting plane algorithm for the subproblem. We have
observed that, for applications ND and CLUST, the subproblem solution is quicker
without these extra rows in the formulation. This raises the question if a full blown
branch-and-cut algorithm for the subproblem would improve the overall performance
of the algorithm, or if it is better to tackle the subproblem with a meta-heuristic

that can handle the subproblem modifications due to branching.

Note that the branching scheme we have proposed can be viewed as a general pro-
cedure to add constraints to the master and modify the subproblem accordingly. In

the same spirit, one can strengthen the master LP formulation to reduce the gap

1For instance, assume the current master LP solution at node u is Z¥ P(Q). Solving the sub-
problem with additional constraint z; = z; gives the best reduced cost of all patterns where 4 and
j are together, €7, Then, if Z},(Q) + ¢/ > Z'NC, one can restrict the search for an optimal
solution to the subset of patterns such that a;, # a;,-
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with the IP master by adding global cuts such as those proposed by Ferreira et. al.
(1994) [17] for the clustering problem. However, it is important to make sure that
the subproblem remains tractable after the modifications yielded by the master cuts.
So, a rich topic for further research is the combination of IP column generation with
branch-and-cut.
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A Problem Formulations

In our implementation, we use a set covering formulation for the network design
applications (ND and NDSA), and for the multi-item single-machine lot-sizing ap-
plication (MILS). For the Clustering application (CLUST), we use a set packing
formulation, assuming that the number of clusters is not prescribed. Below we
present for each of these applications, the Master Problem, the Pricing Subproblem,
the specific expression of the reduced cost of a pattern and the bound LB"(7, i, v)

and the a priori bounds on the subproblem value v*(7, u, ).

The linear relaxation of the master is obtained by replacing the integrality con-
straints with non-negativity constraints. We do not define variable upper bounds
in the LP relaxation as it perturbs the shadow prices and raise feasibility questions.
The dual formulation of the master LP is explicitly given to show what drives the
dual variables. A new column for the primal master is a new constraint in the dual

master formulation.

Note that, since in the master problem we have replace the standard convexity
constraints by an aggregated cardinality constraint (28), we may exclude the null
vector from the set of feasible pattern. Due to the shadow price of constraint (29),
the null pattern might be generated by the subproblem as the best reduced cost
pattern leading to an unproductive iteration of the column generation algorithm.
So we add an extra constraint in the subproblem that excludes the null solution.

Also, we use additional constraints to strengthen the formulation of the subproblem.

A.1 The Network Design application (ND)

Master Problem

Z"(Q) = min D g

q€Q
[Mu]ND s.t. (63)
Zaeq)\q Z 1 V@GE
q€Q
YA < KO
q€Q
YDA > L
q€Q
A, € {0,1} Vg€ @Q
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zINC

. de
with [2e2%) < L < LV < KO < K < | 2]
solution each pattern contains at least 2 nodes, the cost (2/¥°) of the best integer

| < |E|. Indeed, since in any feasible

solution divided by 2 provides an upper bound on the maximum number of rings

used in an optimal solution.

Dual formulation of the restricted master LP

Z!(Q) = max S me + poK® + pL°

ecE
[M¥,|NP s.t. (64)
D Meleq + o + 0 < g Vg e Q
ecE
) Te 2> 0 Ve € E
o < 0
vy 2 0

Column reduced cost

Cq=0Cq — Zwe“eq — Ko — o
eckE

Pricing SubProblem

/Uu(ﬂ-nu'al/):min Zyz’—zﬁeﬂfe—/io—l/o

icv e€E
[SPY¥NP s.t. (65)
Yi > Ve, i, with e € §(7)
Yi < Yees(i) Te Vi,
YievYi > 2
Yecpdete < C
Yecs(i) deTe < Cy; Vi,
Te = (e, f) € G,
Tet+zp < 1 V(e, f) € H,
e, i € {0,1} Ve, i

where §(7) is the set of edges incident to node i and G (resp. H) is the set of pairs
of edges that have to be assigned to the same ring (resp. different rings) according

to the branching constraints.
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Lower Bounds

LB*(m,,v) = Z%p(Q) — oK — 1 L°
+min{ K°(v*(, 1, v) + po+v0), L°(v* (7, pt, v) + po+v0) }

A priori bound on the subproblem value
Let oy = [ZﬁP(Q)] -1 —TOL—Z‘L‘P(Q)—FMOKO—FVOLO and ap = ZINC 1 -TOL —

Z¥p(Q) + o K° + 1y L° where TOL is the tolerance in the approximation algorithm
(TOL = 0 in the exact algorithm).

v (m, ) < 0
'Uu(’]r"u,,y) < max{%’%}—,u,o—yo
’Uu(ﬂ"lu,,y) < max{%a%}—ﬂo—l/o

A.2 Network Design application with Split Assignment (NDSA)

Master Problem

Z*(Q) = min D g

q€Q
[MuNDSA s.t. (66)
Y aeqAy > b, Ve € E'
q€Q
> A < K9 Vg € G*
g€Q:aq>ag
> A > Lk Vh € H"
q€Q:ag>ap
A, € {0,1,2} Vg € Q
ZINC

with [%] <L<L'<K’<K < |%5—] < |E'|, where E' and d, represent
respectively the edge set and the associated demands after the demand splitting
transformation.

Dual formulation of the restricted master LP

Zip(Q) = max > me+ 3 mK'+ 3wl

ecE’ geEGY heHv
[Mpp]|NPSA s.t. (67)
Z Teleq + Z Mg + Z vp < Cq Vq € Q
ecE'! geEG¥:aq>ay hEHY:aq>ap,
Te 2 0 Ve € E'
pg < Vg € G*
v, 2 0 Vh € H*

123



Column reduced cost

Cqg=1Cq — Z Teleq — Z Hg — Z Vp

eckE’ 9EGU :aq>ay heH":aq>ap,

Pricing SubProblem

V(T e v) =ming Yy — Y Melte — o — Vo — Y, pgw? — Y ppw”

icv c€E geGy heHY
[SPuNDsA s.t. (68)
Yi > =z Ve, i, with e € §(7)
Yi < Yees(i) Te Vi,
Yiev¥i = 2
Yoeer AdeTe < C
Yees(i) deTe < Cy; Vi,
Te < xy Ve, f) € O,
To+x; < 1 V(e, f) € P,
Tet+ap+a, < 2 V(e f,9) € R,
w <z Ve € TV C I,Yj € G*U HY,
wi > 1= Yeeri(1— Te) Vje GYUHL,
Te, Yi € {0,1} Vee E' i€V

where O, P and R define set of constraints resulting from special cases of branching
constraints, and G¥ and H} result from general cases of branching. Moreover P

includes the initial set of edge disjunctive constraints.

Lower Bounds

LB(m,p,v) = Z%(Q) — uoK° — 1, L°
+ min{ K°(v*(, u, v) +po+10), LO(v*(, 1, v) + po+10) }
A priori bound on the subproblem value
Let oy = [Z¢p(Q)] —1—=TOL—Z%o(Q) + p1oK° + 1o L° and ay = Z'¥¢ —1-TOL -

ZEP(Q) + 1o K°® + vy L where TOL is the tolerance in the approximation algorithm
(TOL = 0 in the exact algorithm).

v(m ) < 0
vi(m o) < max{gh, g5} - p’ =0
’Uu(ﬂ-auvlj) < max{%a% _MO_DO
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A.3 The Clustering application (CLUST)

Master Problem

Z*(Q) = max Zcq Aq

q€Q
[M¥]CLUST St (69)
daighy <1 VieV
q€Q
>N < KO
q€Q
YA 2 L
q€Q
A € {0,1} VgeQ
with [Zr%] < L < V<K' < K <[V,
Dual formulation of the restricted master LP
Z8(Q) = min  Ym — poK® — w1
i€V
[My,|CLUST s.t. (70)
Zﬁiaiq—uo—l/o > ¢ Vg e Q
i€V
o2 0 VieV
o < 0
vo 2 0
Column reduced cost
Cqg=2Cq — Zmaiq + Mo + Vo
i€V
Pricing SubProblem
v*(m, p, v) = max Z Cellfe — Z T + o + Y
e€lk i€V
[SPu]CLUST s.t. (71)
Ye < m; Ve, i, with e € §(7)
Ye > zi+x;—1 Ve,i,7:e € (i) N6(y),
YievTi > 1
Yievdizi < C
Yeesiynoi) 4Ye < (C —d;)z; Vi,
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T = x4 V(i,j) € G,
ri+r; < 1 V(i j) € H,
zi € {0,1} VieV
Ye > 0 Vee FE

where §(7) is the set of edges incident to node i and G (resp. H) is the set of pairs
of nodes that have to be assigned to the same cluster (resp. different clusters) ac-

cording to the branching constraints.

Upper Bounds
UB%(m, 1, v) = Z%p(Q) + poK® + 1 L°
+max{K°(v*(, g, v) —po—1o), L°(v*(m, p, v) = o—10) }

A priori bound on the subproblem value

Let ay = | Z4p(Q)] +1+TOL — Z¢5(Q) — o K° — 15 L° and oy = Z'™VNC +14TOL —
Z¢p(Q) — oK — vy L° where TOL is the tolerance in the approximation algorithm
(TOL = 0 in the exact algorithm).

v (m, ) > 0
V() > min{h, B} 40+
v >

u(ﬂ'"u,’ V) min{%7%}+uﬂ+yo

A.4 The single-machine Multi-Item Lot-Sizing application
(MILS)

Master Problem

Z*(@) = min D g A

qeq
[Mu]MILS s.t. (72)
dagA, <1 Vt=1,...,T
qeQ
> ariingAy > 1 Vi=1,...,1
€Q
A€ {01} VgeQ

Dual formulation of the restricted master LP
3 I T
Zpp(Q) = max 2o DT
i=1 t=1
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(M, |MILS .. (73)

I T
Zﬂiaiq_zﬂt“tq < g Vge @
i=1 t—1
m > 0 Vi=1,...,1
Tt Z 0 Vtzl,,T

Column reduced cost
T I
Cqg=Cq + Zﬂ-tatq - Zmaiq
t=1 i=1

Pricing SubProblem

v (m) = min i((ci‘i‘ﬂt)xt + fiye + pia + his) —m
[SPyMILS s.t. - (74)

2 + 50 = db + s Vit

ze < Ul Vi

Yo > xp — Ty Vi

st > di(1—my) Vit

T < 0 VteGY

T > 1 Vte H!

z, Y € {0,1} Vi

where G¥ (resp. H}) represent the set of period for which the machine is dedicated

to (resp. unavailable for) item i as a result of the branching constraints.

Lower Bounds

LBY(m,u,v) = Zip(Q) + I minv(r)

o LBUmur) = Zip(Q) + 3 vi()

I
i=1
where the first expression results from a strict applications of the general lower
bound we have defined, while the second is specific to the case where the subsystem

have different characteristics and is a little stronger.

A priori bound on the subproblem value

Let oy = [Z¢5(Q)] =1 = TOL — Z¢,(Q) and ay = Z'N¢ — 1 — TOL — Z!5(Q)
where TOL is the tolerance in the approximation algorithm (TTOL = 0 in the exact
algorithm).
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vi(m) < 0
W) < %
wir) < @

As long as there is an item ¢ for which the subproblem value satisfies these bounds,

column generation should continue. If for all item 7 one of these 3 bounds is violated,
column generation terminates.
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B Program Description

IPCG (Integer Programming Column Generation) is a computer program coded in
C. It solves an integer program, called the master, of the set partitioning type, hav-
ing many columns. Note that the code treats set covering and set packing problems
as well. The master problem is solved to optimality by branch-and-bound with lin-

ear programming based relaxation.

The columns of the master are only known implicitly. They are solutions of an
application specific mixed-integer subproblem. Consequently, a column generation
procedure is used to solve the linear relaxation of the master problem at each node
of the branch-and-bound tree. The branching scheme is specifically designed to be
compatible with column generation. A judicious use of bounds attempt to reduce

the column generation tailing-off effect.

This program is build on top of the CPLEX callable library, which handles the mas-
ter LP optimization and the subproblem LP and IP optimization. The code is at
present customized for 3 applications: i) a network design problem, referred to as
ND, which is a set covering minimization problem; ii) a graph partitioning problem,
referred to as CLUST, which is a set packing maximization problem; iii) a single-
machine multi-item lot-sizing problem, referred to as MILS, which is a minimization

set packing problem with different types of columns and subproblems.

The instructions on how to use the program, how to setup the inputs and collect
the outputs, how to modify its parameters and options, are given in a companion
file named readme. The code is composed of many subroutines, each of which is
contained in a separate file whose name is the same as the subroutine name preceded
by ”CG” and ended by ”.c”. Header files (with extension ”.h”) contain the global

variable declarations, the subroutine prototypes and other program parameters.

Next we give a chart picturing where each subroutine is called. We give each sub-
routine name in the order in which they appear in the program. Below any given
subroutine, we place a tab and list all the subroutines that are called by it (this is
done recursively). At the end of that chart we give the list of utility subroutines

which are called throughout the program.
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3k >k ok ok >k k %k >k ok koK ok kok ok k ok kk kck kok kok

THE PROGRAM
Rk AR KA F KA KK KKK K

main()
readOptions();
initializations();
printOptions();
readdatal);
readNDdata();
readCLUSdata();
readMILSdata();
initVar();
initNDVar();
createNewNode();
addNodeToActiveList();
initCLUSVar();
createNewNode();
addNodeToActiveList();
initCLUSseparation();
initMILSVar();
createNewNode();
addNodeToActiveList();
initMILSseparation();
generateMaster();
initCplexMastVar();
read AndLoadMast();
generateNDSubProblem();
generateCLUSTSubProblem();
generateMILSSubProblem();
initCplexSuPbVar();
readAndLoadSuPb();
readInitialSolution();
selectNode();
read Customization();
defineGroups();
computeGroupCharacterictics();
detectInconsistency();
addGroupCol()
addCandidatColToRec();
recordNewCols();
addVarsInMaster();
initSetofCol();
addCandidatColToRec();
recordNewCols();
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addVarsInMaster();
customizeMaster();
delVarsInMaster();
addVarsInMaster();
customizeSubproblem();
solveMaster();
solveLP();
getDualValues();
checkMasterSol()
compareWithIncumbent();
terminateNode();
findNewCols();
solveSubproblem();
computeSpLowerBd();
solveSpHeuristically();
solveNDSpConstrHeur();
solveCLUSTSpConstrHeur();
updateSubproblemy();
computeSpUpperBd();
solveLLP();
checkSPfeasibility();
spCuttingPlaneAlg();
checkSpCutPool();
solveLP();
checkSPfeasibility();
cutoffSPfractSol();
knapNDSpcuts();
knapCLUSTSpcuts();
knapTreeCLUSTSpcuts();
milsSpCuts();
cssepl();
sepfam3();
cssep();
addSpCutToPool();
retrieveSpSol();
addCandidatColToRec();
solveSPoptimally();
solveMIP();
checkSPfeasibility();
retrieveSpSol();
addCandidatColToRec();
eraseAllSpCuts();
recordNewCols();
addVarsInMaster();
updateGap();
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phaseluncompleted()
updateBBtree();
deleteGroupCustomization();
uncustomizeSubproblem();
eraseAllSpCuts();
uncustomizeMaster();
updateGap();
divideNode();
chooseProductsForBranch();
createNewNode();
addNodeToActiveList();
solveRestMastIPbyBB();
solveMIP();
compareWithIncumbent();
constrHeurPrimalSol();
compareWithIncumbent();
fathomByBDnodeList();
printOut();
printSolution();
print TreeNodes();
printOptions();
printTree();
printRes();
printStatistics();
printTimes();
closing();
eraseCplexMastVar();
eraseCplexSuPbVar();

3k >k 5k 3k >k 5k %k >k %k %k ok sk %k ok ok ok ok k ok k ok kok >k

SUBROUTINE LIBRARY

3k >k 5k 3k %k 5k %k %k 5k %k ok 5k %k ok ok ok ok k ok k ok kok >k

C standard funtion
CPLEX library

declar_dyn Library
checkSpace Library

and
convertDtoL();

readword();
tempo();
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terminateEarly();
knapsackcutfor_();
CGdijkstra();

3k 3k 3k 3k >k 3k %k 5k %k %k 5k %k >k sk kok skok kokkk sk >k

HEADER FILES

>k 3k 3k ok 5k 3k ok 5k %k ok 5k %k K sk kok kok ko k ok ok >k

CGdeclar_dyn.h
CGglobForCplexMastDeclar.h
CGglobForCplexMastExt.h
CGglobForCplexSuPbDeclar.h
CGglobForCplexSuPbExt.h
CGglobalDeclar.h
CGglobalExt.h
CGincl_standard.h
CGparamForConstant.h
CGparamForSwitch.h
CGsubroutPrototype.h
CGtyp-def.h

>k 3k 3k %k 5k %k %k 5k %k %k 5k %k K kR ok ok kokkok ok >k

MAKE FILE
sk kR ok ok kR koK ok ok ok

MakeCG
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C Data Sample

ND7c60

number of nodes: 7

ring capacity: 60

8 25 6 13 5 7
11 4 5 3 2
13 38 11 18

39 31 17

32 29

19

demand matrix:

ND8c60
number of nodes: 8

ring capacity: 60

10 44 2 9 29 28 6
15 10 15 56 14 11
10 20 21 25 3

demand matrix: 9 24 25 14
52 16 10
18 46
35
ND9c60

number of nodes: 9

ring capacity: 60

10 8 10 10 68 20 13 34
9 10 11 48 17 19 38

7 8 51 13 14 35

9 50 16 13 44

45 19 14 26

demand matrix:

90 105 117
27 48
65
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