Extended Formulations, Column Generation, and stabilization:
synergies in the benefit of large scale applications

François Vanderbeck

University of Bordeaux INRIA Bordeaux-Sud-Ouest

Co-authors: A. Pessoa, R. Sadykov, E. Uchoa, L.A. Wolsey

EURO/INFORMS, Rome, July 2013

An approach based on an extended formulation

- An **EASY WAY** to bring-in combinatorial structure.
- Its size can be coped with by **combining** ideas of
 - Restriction / Relaxation,
 - Benders projection, and
 - Dantzig-Wolfe dynamic generation.

- **With dynamic generation**, a small % of variables and constraints are needed; hence it **scales up** to real-life applications.

- Is well suited for **efficiency enhancement** features: **cuts** on lifted variables, **Dynamic Progr. state-space-relax.**, **red.-cost-fixing**.
1 Extented Formulations
 • Definitions
 • Interests
 • Coping with its large size

2 Dynamic Row-and-Column Generation
 • Methodology
 • Practical issues

3 Large-scale application
 • Freight transport by rail in Russia
1 Extented Formulations
 - Definitions
 - Interests
 - Coping with its large size

2 Dynamic Row-and-Column Generation
 - Methodology
 - Practical issues

3 Large-scale application
 - Freight transport by rail in Russia
(CO) ≡ \min\{c(s) : s \in S\}
where S is the “discrete” set of feasible solutions.
Combinatorial Optimization Problem

\[(CO) \equiv \min \{c(s) : s \in S\}\]

where \(S\) is the “discrete” set of feasible solutions.

Formulation

A polyhedron \(P = \{x \in \mathbb{R}^n : Ax \geq a\}\) is a formulation for \((CO)\) iff

\[\min \{c(s) : s \in S\} \equiv \min \{cx : x \in P_I = P \cap \mathbb{N}^n\}.\]
A formulation is typically not unique

P and P' can be alternative formulations for (CO) if

$$(CO) \equiv \min\{cx : x \in P \cap \mathbb{N}^n\} \equiv \min\{c'x' : x' \in P' \cap \mathbb{N}^{n'}\}$$

warning: can expressed in different variable-spaces.
Stronger formulation (in the same space)

Formulation $P' \subseteq \mathbb{R}^n$ is a **stronger** than $P \subseteq \mathbb{R}^n$ if $P' \subset P$. Then,

$$\min\{cx' : x' \in P'\} \geq \min\{cx : x \in P\}$$
The Convex hull of an IP set, P_I

$\text{conv}(P_I)$ is the smallest closed convex set containing P_I.

$\text{conv}(P_I)$ is an ideal polyhedron / formulation

If P_I is defined by rational data, $\text{conv}(P_I)$ is a polyhedron.
Given an initial **compact formulation**:

\[
\begin{align*}
 x_1 & = 1, 2, 3, 4 \\
 x_2 & = 5
\end{align*}
\]
Extended Formulations

François Vanderbeck

Extended Formulations & Column Generation: Synergies
The Projection

of \(Q = \{(x, w) \in \mathbb{R}^{n+e} : Gx + Hw \geq d\} \) on the \(x \)-space is:

\[
\text{proj}_x(Q) := \{x \in \mathbb{R}^n : \exists w \in \mathbb{R}^e \text{ such that } (x, w) \in Q\}.
\]
The Projection

of \(Q = \{(x, w) \in \mathbb{R}^{n+e} : Gx + Hw \geq d\} \) on the \(x \)-space is:

\[
\text{proj}_x(Q) := \{x \in \mathbb{R}^n : \exists w \in \mathbb{R}^e \text{ such that } (x, w) \in Q\}.
\]

Farka's Lemma

Given \(\tilde{x} \),

\[
\{w \in \mathbb{R}^n_+ : Hw \geq (d - G \tilde{x})\} \neq \emptyset
\]

if and only if

\[
\forall v \in \mathbb{R}^m_+ : vH \leq 0, \quad v(d - G \tilde{x}) \leq 0.
\]

Hence, a polyhedral description of the projection in the \(x \)-space is:

\[
\text{proj}_x(Q) = \{x \in \mathbb{R}^n : v^j (d - Gx) \leq 0 \quad j \in J\}
\]

\(\{v^j\}_{j \in J} \), exteme rays. of \(\{v \in \mathbb{R}^m_+ : vH \leq 0\} \).
An extended formulation for an IP set $P_I \subseteq \mathbb{N}^n$ is a polyhedron $Q = \{(x, w) \in \mathbb{R}^{n+e} : Gx + Hw \geq d\}$ such that $P_I = \text{proj}_x(Q) \cap \mathbb{N}^n$.
An extended formulation for an IP set $P_I \subseteq \mathbb{N}^n$ is a polyhedron $Q = \{(x, w) \in \mathbb{R}^{n+e} : Gx + Hw \geq d\}$ such that $P_I = \text{proj}_x(Q) \cap \mathbb{N}^n$.
A **tight** extended formulation for an IP set $P_I \subseteq \mathbb{N}^n$ is a polyhedron $Q = \{(x, w) \in \mathbb{R}^{n+e} : Gx + Hw \geq d\}$ such that $\text{conv}(P_I) = \text{proj}_x(Q)$.

François Vanderbeck

Extended Formulations & Column Generation: Synergies 16/70
An extended IP-formulation for an IP set $P_I \subseteq \mathbb{N}^n$
is an IP-set $Q_I = \{(x, w) \in \mathbb{R}^n \times \mathbb{N}^e : Gx + Hw \geq b\}$ s.t.

$$P_I = \text{proj}_x Q_I.$$
Change of variables: $x = T w$
An extended formulation based on a **change of variables**: $x = Tw$.

$$Q = \{(x, w) \in \mathbb{R}^{n+e} : Tw = x, \quad Hw \geq h\}.$$

Then,

$$\text{proj}_x(Q) = T(W) := \{x = Tw \in \mathbb{R}^n : Hw \geq h, w \in \mathbb{R}^e \}.$$

A reformulation for an IP-set $P_I \subseteq \mathbb{N}^n$ is a polyhedron W along a linear transformation, $x = Tw$, s.t.

$$P_I = T(W) \cap \mathbb{N}^n$$

A **IP-reformulation** for an IP-set $P_I \subseteq \mathbb{N}^n$ is an IP-set $W_I = W \cap \mathbb{N}^e$ along a linear transformation, $x = Tw$, s.t.,

$$P_I = T(W_I)$$
Polyhedron $\text{conv}(P_I)$ can be defined by its extreme points and rays:

$$Q = \{(x, \lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}_+^{|G|} \times \mathbb{R}_+^{|R|} : x = \sum_{g \in G} x_g \lambda_g + \sum_{r \in R} v_r \mu_r, \sum_{g \in G} \lambda_g = 1\}$$

change of variables: $x = X \lambda + V \mu$.
Example: Steiner Tree
Example: Steiner Tree

Extended Formulations

D
2 3
4 5
9 10 11 12 13
6
8
7
1
A
B
C

Special cases:
- $T = \{ i \}$: shortest path from r to i
- $T = V \{ r \}$: minimum cost spanning tree

François Vanderbeck
Extended Formulations & Column Generation: Synergies 22/70
Example: Steiner Tree

Special cases:

- \(T = \{i\} \): shortest path from \(r \) to \(i \)
- \(T = V \setminus \{r\} \): minimum cost spanning tree
Steiner Tree: Arc flow formulation

Variables
- \(x_{ij} \in \{0, 1\} \) — arc \((i, j)\) is used or not
- \(y_{ij} \in \mathbb{N} \) — number of connections going through \((i, j)\)

\[
\begin{align*}
\min & \sum_{(i,j) \in A} c_{ij} x_{ij} \\
\text{subject to} & \sum_{j \in V^+(r)} y_{rj} = |T| \\
\sum_{j \in V^-(i)} y_{ji} - \sum_{j \in V^+(i)} y_{ij} &= 1 \quad i \in T \\
\sum_{j \in V^-(i)} y_{ji} - \sum_{j \in V^+(i)} y_{ij} &= 0 \quad i \in V \setminus (T \cup \{r\}) \\
y_{ij} &\leq |T| x_{ij} \quad (i, j) \in A \\
y &\in \mathbb{R}_+^{|A|} \\
x &\in \{0, 1\}^{|A|}
\end{align*}
\]
Steiner Tree: Multi commodity flow formulation

Variable splitting

- \(w_{ij}^t \in \{0, 1\} \) — arc \((i, j)\) is used to connect terminal \(t \)
- \(y_{ij} = \sum_k w_{ij}^t \) — defines a linear transformation

\[
\begin{align*}
\min & \sum_{(i,j) \in A} c_{ij} x_{ij} \\
\sum_{j \in V^+(r)} w_{rj}^t &= 1 \quad t \in T \\
\sum_{j \in V^-(i)} w_{ji}^t - \sum_{j \in V^+(i)} w_{ij}^t &= 1 \quad i = t \in T \\
\sum_{j \in V^-(i)} w_{ji}^t - \sum_{j \in V^+(i)} w_{ij}^t &= 0 \quad i \in V \setminus \{r, k\}, \ t \in T \\
\end{align*}
\]

- \(w_{ij}^t \leq x_{ij} \ (i, j) \in A, \ t \in T \)
- \(w \in \mathbb{R}^{K \times |A|}_+ \)
- \(x \in \{0, 1\}^{|A|} \)
Example: Steiner Tree

François Vanderbeck
Extended Formulations & Column Generation: Synergies
projection in the x-space

\[
\begin{align*}
\min \quad & \sum_{(i,j) \in A} c_{ij} x_{ij} \\
\sum_{(i,j) \in \delta^+(S)} x_{ij} & \geq 1 \quad S \ni r, T \setminus S \neq \emptyset \\
x & \in \{0, 1\}^{|A|},
\end{align*}
\]
Steiner Tree: Network design formulation

projection in the x-space

\[
\begin{align*}
\min & \sum_{(i,j) \in A} c_{ij}x_{ij} \\
\sum_{(i,j) \in \delta^+(S)} x_{ij} & \geq 1 \ S \ni r, T \setminus S \neq \emptyset \\
x & \in \{0, 1\}^{|A|},
\end{align*}
\]

Note: This projection onto the x space
- has the **same LP value** than the multi-commodity flow formulation
- is **better than** the initial **compact** aggregate flow formulation.
Extended Formulations

Ways to obtain extended formulations

- **Variable Splitting**
 - Multi-Commodity Flow: \(x_{ij} = \sum_k x_{ij}^k \)
 - Unary expansion: \(x = \sum_{q=0}^u q w_q, \sum_{q=0}^u w_q = 1, w \in \{0, 1\}^{u+1} \)
 - Binary expansion: \(x = \sum_{p=0}^{\log|u|} w_p, , w \in \{0, 1\}^{\log|u|} \)

- **Dynamic Programming** Solver \(\rightarrow \) Network Flow LP [Martin et al]

- **Separation** is easy \(\rightarrow \) Separation LP [Martin et al]

- **Reduced coefficient / basis** reformulations [Aardal et al]

- **Union of Polyhedra** [Balas]

- \(\ldots \)
Single machine scheduling problem (with integer data):

\[S_j \geq S_i + p_i \text{ or } S_i \geq S_j + p_j \quad \forall \ i, j \]

requires big M formulation:

\[S_j \geq S_i + p_i - M(1 - x_{ij}). \]
Unary expansion: Time-Indexed Formulation

Single machine scheduling problem (with integer data):

\[
S_j \geq S_i + p_i \text{ or } S_i \geq S_j + p_j \quad \forall \; i, j
\]

Change of variables:

\[
S_j = \sum_t t \; w_{jt}
\]

with \(w_{jt} = 1 \) iff job \(j \) starts at the beginning of \([t, t + 1]\).

\[
\sum_{j \in J} w_{j0} = 1
\]

\[
\sum_{j \in J} w_{jt} - \sum_{j \in J} w_{j,t-p_j} = 0 \quad \forall \; t \geq 1
\]
Ways to obtain extended formulations

- **Variable Splitting**
 - Multi-Commodity Flow: \(x_{ij} = \sum_k x_{ij}^k \)
 - Unary expansion: \(x = \sum_{q=0}^{u} q w_q, \sum_{q=0}^{u} w_q = 1, w \in \{0, 1\}^{u+1} \)
 - Binary expansion: \(x = \sum_{p=0}^{\log u} w_p, w \in \{0, 1\}^{\log u} \)

- Dynamic Programming Solver \(\rightarrow \) Network Flow LP [Martin et al]
- Separation is easy \(\rightarrow \) Separation LP [Martin et al]
- Reduced coefficient / basis reformulations [Aardal et al]
- Union of Polyhedra [Balas]
- ...
DP based reformulation: the knapsack example

\[
\max \left\{ \sum p_i x_i : \sum a_i x_i \leq b, x_i \in \mathbb{N} \right\}
\]

- **DP Recursion:** \(V(c) = \max_{i=1,\ldots,n : c \geq a_i} \{ V(c - a_i) + p_i \} \)

- **in LP form:**

\[
\begin{align*}
\min V(b) \\
V(c) - V(c - a_i) & \geq p_i & i = 1, \ldots, n, c = a_i, \ldots, b \\
V(0) & = 0
\end{align*}
\]

- **its Dual:** “longest path problem”

[Diagram of a network with vertices labeled 0 to 7, showing paths and weights.]
DP based reformulation: the knapsack example

\[
\max \left\{ \sum_i p_i x_i : \sum_i a_i x_i \leq b, x_i \in \mathbb{N} \right\}
\]

- **DP Recursion:** \(V(c) = \max_{i=1,\ldots,n:c\geq a_i} \{ V(c-a_i) + p_i \} \)

- **in LP form:**
 \[
 \begin{align*}
 \min & \quad V(b) \\
 & \quad V(c) - V(c-a_i) \geq p_i \quad i = 1, \ldots, n, \ c = a_i, \ldots, b \\
 & \quad V(0) = 0
 \end{align*}
 \]

- **its Dual:** “longest path problem”

\[
\begin{align*}
\max & \quad \sum_{j=1}^{n} \sum_{r=0}^{b-a_i} c_i w_{ic} \\
\sum_i w_{ic} & = 1 \quad c = 0 \\
\sum_i w_{ic} - \sum_i w_{i,c-a_i} & = 0 \quad c = 1, \ldots, b - 1 \\
\sum_i w_{i,c-a_i} & = 1 \quad c = b \\
w_{ic} & \geq 0 \quad i = 1, \ldots, n; \ c = 0, \ldots, b - a_i
\end{align*}
\]
DP based reformulation: Multi-Echelon Lot-Sizing

Variables

- $x_{e,t}$ — production of intermediate product of echelon e in period t
- $s_{e,t}$ — stock of echelon e product at the end of period t

\[
x_{e,t} + s_{e,t-1} = x_{e+1,t} + s_{e,t} \quad \text{for } e = 1, \ldots, E - 1
\]
\[
x_{e,t} + s_{e,t-1} = d_t + s_{e,t} \quad \text{for } e = E
\]
Dominance property

\[\exists \text{ opt solution where } x_{e,t} \cdot s_{e,t-1} = 0 \ \forall e, t, \Rightarrow \text{ production plan is a tree:} \]

\[\begin{array}{c}
e = 1 \\
e = 2 \\
e = 3 \\
\end{array} \]

\[t \]
Dominance property

∃ opt solution where $x_{e,t} \cdot s_{e,t-1} = 0 \ \forall e,t, \Rightarrow$ production plan is a tree:

Dynamic programming

State (e,t,a,b) corresponds to accumulating at echelon e in period t a production covering exactly the demand of periods a, \ldots, b.

$$V(e,t,a,b) = \min \{ V(e,t+1,a,b), \min_{l=a,\ldots,b} \{ V(e+1,t,a,l) + c_{et}^k D_{al}^k + f_{et}^k + V(e,t+1,l+1,b) \} \}$$
DP Recursion:

\[V(e, t, a, b) = \min \{ V(e, t + 1, a, b), \]
\[\min_{l=a,...,b} \{ V(e + 1, t, a, l) + c_{et}^k D_{al}^k + f_{et}^k + V(e, t + 1, l + 1, b) \} \} \]

in LP form:

\[
\max V(1, 1, 1, T) \\
V(e, t, a, b) \leq V(e, t + 1, a, b) \forall e, t, a, b \\
V(e, t, a, b) \leq V(e + 1, t, a, l) + c_{et}^k D_{al}^k + f_{et}^k + V(e, t + 1, l + 1, b) \forall e, t, a, b, l \\
V(E + 1, t, a, b) = 0 \forall t, a, b
\]

its Dual: flow on hyper-arcs

\[w_{e,t,a,l,b} = 1 \] if at echelon \(e \) in period \(t \) production covers demands from period \(a \) to period \(l \), while the rest of demand up to \(b \), shall be covered in the future.
[Martin et al OR90] When a problem can be solved by dynamic programming,

\[V(l) = \min_{(J,l) \in A} \left\{ \sum_{j \in J} V(j) + c(J,l) \right\}, \]

an extended formulation consist in modeling a decision tree in an hyper-graph.
Ways to obtain extended formulations

- **Variable Splitting**
 - Multi-Commodity Flow: $x_{ij} = \sum_k x_{ij}^k$
 - Unary expansion: $x = \sum_{q=0}^u q w_q$, $\sum_{q=0}^u w_q = 1$, $w \in \{0, 1\}^{u+1}$
 - Binary expansion: $x = \sum_{p=0}^{\log \lceil u \rceil} w_p$, $w \in \{0, 1\}^\log u$

- **Dynamic Programming Solver** → **Network Flow LP** [Martin et al]

- **Separation is easy** → **Separation LP** [Martin et al]

- **Reduced coefficient / basis reformulations** [Aardal et al]

- **Union of Polyhedra** [Balas]

- …
Outline

1. Extented Formulations
 - Definitions
 - Interests
 - Coping with its large size

2. Dynamic Row-and-Column Generation
 - Methodology
 - Practical issues

3. Large-scale application
 - Freight transport by rail in Russia
Extended Formulation: Interests

Improved formulation *(better LP bound & rounding heuristic)*

- Extra variables
 - Tighter relations,
 - Linearisation

Vehicle routing:

\[
x_a = \sum_{l=0}^{C} w_{al} = \begin{cases} 1 & \text{if vehicle on arc } a \text{ with load } l, \\ 0 & \text{otherwise} \end{cases}
\]

\[
\sum_l \sum_a \in \delta^- (i) w_{al} - \sum_l \sum_a \in \delta^+ (i) w_{al} = d_i \rightarrow \text{knapsack cover cuts.}
\]
Extended formulation: Interests

1. **Improved formulation** (better LP bound & rounding heuristic)
2. **Simpler formulation** (captures the combinatorial structure)

- Extra variables
- Fewer constraints
- Structure built into var. definitions

Vehicle routing:

\[
\sum_{l=0}^{C} w_{a_l} = 1 \text{ if vehicle on arc } a \text{ with load } l,
\]

\[
\sum_{l} \sum_{a \in \delta^{-}(i)} w_{a_l} - \sum_{l} \sum_{a \in \delta^{+}(i)} w_{a_l} = d_i \rightarrow \text{knapsack cover cuts.}
\]
Extended formulation: Interests

1. Improved formulation (better LP bound & rounding heuristic)
2. Simpler formulation (captures the combinatorial structure)
3. Direct use of a MIP-Solver (solved by standard tools)
Extended formulation: Interests

1. **Improved formulation** (better LP bound & rounding heuristic)
2. **Simpler formulation** (captures the combinatorial structure)
3. **Direct use of a MIP-Solver** (solved by standard tools)
4. **Rich variable space** (to express cuts or branching)

Vehicle routing:

\[
\begin{align*}
x_a &= \sum_{l=0,\ldots,C} c \, w^a_l \\
w^a_q = 1 & \text{ if vehicle on arc } a \text{ with load } l,
\end{align*}
\]

\[
\sum_l \sum_{a \in \delta^{-}(i)} l w^a_l - \sum_l \sum_{a \in \delta^{+}(i)} l w^a_l = d_i
\]

→ knapsack cover cuts.

[Uchoa]
1. Extented Formulations
 - Definitions
 - Interests
 - Coping with its large size

2. Dynamic Row-and-Column Generation
 - Methodology
 - Practical issues

3. Large-scale application
 - Freight transport by rail in Russia
Coping with size: Related work on Multi-Route-VRP

[Macedo, Alves, Valerio de Carvalho, Clautiaux, Hanafi. EJOR2011]

Variables

- \(w_{st}^r \) — nb of vehicles using route \(r \) that starts in \(s \) and ends in \(t \)

\[
\begin{align*}
\min \sum_{rst} c_{st}^r w_{st}^r \\
\sum_{r \in i, s, t} w_{st}^r &= 1 \quad \forall \text{order } i \\
\sum_{rt} w_{0t}^r &= V \\
\sum_{r,t} w_{rt}^r - \sum_{r,s} w_{s\tau}^r &= 0 \quad \forall \tau > 1 \\
w_{st}^r &\in \{0, 1\} \quad r, s, t
\end{align*}
\]
Extented Formulations

Coping with size: Related work on Multi-Route-VRP

[Macedo, Alves, Valerio de Carvalho, Clautiaux, Hanafi. EJOR2011]

Relaxation

- round-up start time: $S = \{s : \lceil s \rceil = S\}$
- round-down termination time: $T = \{t : \lfloor t \rfloor = T\}$
- define relaxed route arcs: $w_{S,T}^r = \sum_{s \in S, t \in T} w_{s,r}^r$.

Automatic Desaggragation Algorithm:

1. Solve problem over aggregate time periods.
2. Try to build a desaggregate feasible solution.
3. If it fails, desaggregate the time period of conflict.
Mastering the size extended formulations

1. Use of a **relaxation** [Van Vyve & Wolsey MP06]
 - Drop some of the constraints
 - Aggregate commodities/nodes (down-rounding of durations)
 - Partial reformulation

 → static outer approximation of the extended formulation
1. **Use of a relaxation** [Van Vyve & Wolsey MP06]
 - Drop some of the constraints
 - Aggregate commodities/nodes (down-rounding of durations)
 - Partial reformulation
 \[\rightarrow \text{static outer approximation of the extended formulation}\]

2. **Use of a restriction**
 - define only some transitions in a dynamic program
 - up-rounding of durations
 \[\rightarrow \text{static inner approximation of the extended formulation}\]
1. Use of a relaxation [Van Vyve & Wolsey MP06]
 - Drop some of the constraints
 - Aggregate commodities/nodes (down-rounding of durations)
 - Partial reformulation
 \[\rightarrow\text{static outer approximation of the extended formulation}\]

2. Use of a restriction
 - define only some transitions in a dynamic program
 - up-rounding of durations
 \[\rightarrow\text{static inner approximation of the extended formulation}\]

3. Projection: Benders’ cuts (applying Farkas Lemma)
 \[\rightarrow\text{dynamic outer approximation of the extended formulation}\]
Mastering the size extended formulations

1. Use of a relaxation [Van Vyve & Wolsey MP06]
 - Drop some of the constraints
 - Aggregate commodities/nodes (down-rounding of durations)
 - Partial reformulation
 \[\text{\rightarrow static outer approximation of the extended formulation}\]

2. Use of a restriction
 - define only some transitions in a dynamic program
 - up-rounding of durations
 \[\text{\rightarrow static inner approximation of the extended formulation}\]

3. Projection: Benders’ cuts (applying Farkas Lemma)
 \[\text{\rightarrow dynamic outer approximation of the extended formulation}\]

 \[\text{\rightarrow dynamic inner approximation of the extended formulation}\]
Outline

1. Extented Formulations
 - Definitions
 - Interests
 - Coping with its large size

2. Dynamic Row-and-Column Generation
 - Methodology
 - Practical issues

3. Large-scale application
 - Freight transport by rail in Russia
Extended formulation based on a subproblem

Original formulation

\[
[F] \equiv \min \left\{ c x \right\} \\
A x \geq a \\
B x \geq b \\
x \in \mathbb{N}^n
\]

Subproblem

\[
P \equiv \left\{ B x \geq b \right\} \\
x \in \mathbb{R}_+^n
\]

\[P_1 = P \cap \mathbb{N}^n\]

Decomposition + SP Reformulation
Dynamic Row-and-Column Generation

Extended formulation based on a subproblem

<table>
<thead>
<tr>
<th>Original formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>([F] \equiv \min \left{ cx \right})</td>
</tr>
<tr>
<td>(Ax \geq a)</td>
</tr>
<tr>
<td>(Bx \geq b)</td>
</tr>
<tr>
<td>(x \in \mathbb{N}^n)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subproblem</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P \equiv \left{ \begin{array}{c} Bx \geq b \ x \in \mathbb{R}_+^n \end{array} \right})</td>
</tr>
<tr>
<td>(P_I = P \cap \mathbb{N}^n)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subproblem (P_I) admits an IP-reformulation (W_I): (\exists) polyhedron</td>
</tr>
<tr>
<td>(W = \left{ Hw \geq h, w \in \mathbb{R}_+^e \right})</td>
</tr>
<tr>
<td>and a linear transformation (T), such that</td>
</tr>
<tr>
<td>(P_I = \text{proj}_x(W_I) = T(W_I) = \left{ x = Tw : Hw \geq h, w \in \mathbb{N}^e \right})</td>
</tr>
</tbody>
</table>
Extended formulation based on a subproblem

<table>
<thead>
<tr>
<th>Original formulation</th>
<th>Extended reformulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>([F] \equiv \min \left{ c x \right})</td>
<td>([R] \equiv \min \left{ c T w \right})</td>
</tr>
<tr>
<td>(A x \geq a)</td>
<td>(A T w \geq a)</td>
</tr>
<tr>
<td>(B x \geq b)</td>
<td>(H w \geq h)</td>
</tr>
<tr>
<td>(x \in \mathbb{N}^n)</td>
<td>(w \in \mathbb{N}^e)</td>
</tr>
</tbody>
</table>

Assumption

Subproblem \(P_I\) admits an **IP-reformulation**, \(W_I\): \(\exists\) polyhedron

\[W = \{ H w \geq h, w \in \mathbb{R}_+^e \} \]

and **a linear transformation**, \(T\), s.t.

\[P_I = \text{proj}_x(W_I) = T(W_I) = \left\{ x = Tw : H w \geq h, w \in \mathbb{N}^e \right\} \]
Extended formulation based on a subproblem

Original formulation

\[\mathcal{F} \equiv \min \left\{ c \, x \right\} \]
\[A \, x \geq a \]
\[B \, x \geq b \]
\[x \in \mathbb{N}^n \}

Extended reformulation

\[\mathcal{R} \equiv \min \left\{ c \, T \, w \right\} \]
\[A \, T \, w \geq a \]
\[H \, w \geq h \]
\[w \in \mathbb{N}^e \}

Special case: Dantzig-Wolfe Reformulation

\[\mathcal{M} \equiv \min \left\{ \sum_{g \in G} c \, x^g \, \lambda_g \right\} \]
\[\sum_{g \in G} A \, x^g \, \lambda_g \geq a \]
\[\sum_{g \in G} \lambda_g = 1 \]
\[\lambda \in \{0, 1\}^{|G|} \}

Applying Minkowski

\[x = \sum_{g \in G} x^g \, \lambda_g \]
Dynamic Row-and-Column Generation

Extended formulation based on a subproblem

Original formulation

\[[F] \equiv \min \left\{ c x \right\} \]
\[A x \geq a \]
\[B x \geq b \]
\[x \in \mathbb{N}^n \]

Extended reformulation

\[[R] \equiv \min \left\{ c^T w \right\} \]
\[A^T w \geq a \]
\[H w \geq h \]
\[w \in \mathbb{N}^e \]

Column-and-row generation

- Dynamic generation of the variables of [R] by bunch, solving the column generation subproblem of [M] over \(W_I \).
- Adding rows that become active.
Restricted reformulations

\(\bar{S} = \{w^s\}_{s \in \bar{S}}\): a subset of integer solutions to \(W_I\).

\(\bar{w}\) = restriction of \(w\) to the non-zero components in \(\bar{S}\).

\(\bar{G} = \{g \in G : x^g = T w^s, s \in \bar{S}\}\)

\[
\begin{align*}
[\bar{R}_{LP}] & \equiv \min \left\{ c \bar{T} \bar{w} \right\} \\
A \bar{T} \bar{w} & \geq a \\
\bar{H} \bar{w} & \geq \bar{h} \\
\bar{w} & \in \mathbb{R}^e_+ \}
\end{align*}
\]

\[
[\bar{M}_{LP}] \equiv \min \left\{ \sum_{g \in \bar{G}} c x^g \lambda_g \right\} \\
\sum_{g \in \bar{G}} A x^g \lambda_g & \geq a \\
\sum_{g \in \bar{G}} \lambda_g & = 1 \\
\lambda & \in \mathbb{R}^{||\bar{G}||}_+ \}
\]
Restricted reformulations

\(\overline{S} = \{ w^s \}_{s \in \overline{S}} \): a subset of integer solutions to \(W_I \).
\(\overline{w} = \) restriction of \(w \) to the non-zero components in \(\overline{S} \).
\(\overline{G} = \{ g \in G : x^g = T w^s, s \in \overline{S} \} \)

\[
[\overline{R}_{LP}] \equiv \min \left\{ c \overline{T} \overline{w} \right\} \quad \text{subject to} \quad \begin{align*}
A \overline{T} \overline{w} & \geq \quad a \\
\overline{H} \overline{w} & \geq \quad \overline{h} \\
\overline{w} & \in \quad \mathbb{R}_+^e
\end{align*}
\]

\[
[\overline{M}_{LP}] \equiv \min \left\{ \sum_{g \in \overline{G}} c x^g \lambda_g \right\} \quad \text{subject to} \quad \begin{align*}
\sum_{g \in \overline{G}} A x^g \lambda_g & \geq \quad a \\
\sum_{g \in \overline{G}} \lambda_g & = \quad 1 \\
\lambda & \in \quad \mathbb{R}_{+}^{\overline{G}}
\end{align*}
\]

Proposition 1

\(v[\overline{M}_{LP}] =_* v[\overline{R}_{LP}] \leq v[\overline{R}_{LP}] \leq v[\overline{M}_{LP}] \quad (\ast) \text{ if tight reformulation} \)
Column-and-row generation procedure

Step 1: Solve $[\overline{R}_{LP}]$ and collect the dual solution $\overline{\pi}$ associated to constraints $A \overline{T} \overline{z} \geq a$, only.

Step 2: Obtain a solution w^* of the pricing problem:

$$\min \{(c - \overline{\pi}A)^T w : w \in W_I\}$$

Step 3: Compute the Lagrangian dual bound:

$$L(\overline{\pi}) \leftarrow \overline{\pi} a + (c - \overline{\pi}A)^T w^*, \beta \leftarrow \max\{\beta, L(\overline{\pi})\}.$$

If $v^{[\overline{R}_{LP}]} \leq \beta$, STOP.

Step 4: Update \overline{S} by adding solution w^* and iterate

Proposition 2

Either $v^{R}_{LP} \leq \beta$ (stopping condition),
or some of the components of w^* have negative reduced cost in $[\overline{R}_{LP}]$.
Example: parallel machine scheduling

\[[R] \equiv \min \left\{ \sum_{jt} c_{jt} w_{jt} \right\} \]

\[\sum_{t=0}^{T-p_j} w_{jt} = 1 \quad \forall j \in J \]

\[\sum_{j \in J} w_{j0} = m \]

\[\sum_{j \in J} w_{jt} - \sum_{j \in J} w_{j,t-p_j} = 0 \quad \forall t \geq 1 \]

\[w_{jt} \in \{0, 1\} \quad \forall j, t \]

\[[M] \equiv \min \left\{ \sum_{g \in G} c^g \lambda_g \right\} \]

\[\sum_{g \in G} \sum_{t=0}^{T-p_j} w_{jt}^g \lambda_g = 1 \quad \forall j \in J \]

\[\sum_{g \in G} \lambda_g = m \]

\[\lambda_g \in \{0, 1\} \quad \forall g \in G \]
Solve the pricing subproblem (obtain a pseudo schedule)
1. Solve the pricing subproblem (obtain a pseudo schedule)

2. Disaggregate the subproblem solution in arc variables w.
1. Solve the pricing subproblem (obtain a pseudo schedule)

2. Disaggregate the subproblem solution in arc variables w.

3. Add them to \bar{R} along with the associated flow conservation constraints.
1. Solve the pricing subproblem (obtain a pseudo schedule)

2. Disaggregate the subproblem solution in arc variables w.

3. Add them to \bar{R} along with the associated flow conservation constraints.

4. Solve the restricted extended formulation \bar{R} and update dual prices.
Machine scheduling: example of convergence

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Subproblem solution</th>
<th>Subproblem solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final solution</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Machine scheduling: recombination property

\[\bar{S} = \{w^1, w^2\} \]
\(\bar{S} = \{ w^1, w^2 \}, \quad \hat{w} \in \bar{W} \setminus \text{conv}(w^1, w^2) \)
Machine Scheduling: numerical results

- Averages on 25 instances (OR-library) with $p_j \in [1, \ldots, 100]$.

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Cplex 12.1 for [R]</th>
<th>Column gen. for [M]</th>
<th>Column-and-row generation for [R]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>7.1</td>
<td>337</td>
<td>0.9</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>132.6</td>
<td>1274</td>
<td>24.2</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>2332.0</td>
<td>8907</td>
<td>1764.4</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>4.1</td>
<td>207</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>109.2</td>
<td>645</td>
<td>5.7</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>3564.4</td>
<td>2678</td>
<td>115.5</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>18.7</td>
<td>433</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>485.7</td>
<td>1347</td>
<td>27.9</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>$>2h$</td>
<td>4315</td>
<td>409.4</td>
</tr>
</tbody>
</table>

- **#it**: number of column generation iterations
- **vars**: percentage of w variables that are generated
- **cpu**: solution time, in seconds
Machine Scheduling: results with stabilization

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>Column gen. for [M]</th>
<th>Column-and-row generation for [R]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>#it</td>
<td>cpu</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>150</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>354</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>781</td>
<td>39.5</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>142</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>323</td>
<td>1.7</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>715</td>
<td>17.3</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>287</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>638</td>
<td>8.7</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>1553</td>
<td>87.7</td>
</tr>
</tbody>
</table>
Multi-item Multi-echelon Lot-sizing: extended formulation

- x_{et}^i, s_{et}^i — production/stock for item i at echelon e in period t
- $y_{et}^i \in \{0, 1\}$ — setup for item i at echelon e in period t

coupling constraints:

$$\sum_i y_{et}^i \leq 1 \quad \forall e, t$$

Subproblems

- $e = 1$
- $e = 2$
- $e = 3$

DP based extended formulation as a flow in a hypergraph:

- $w_{e,t,a,l,b}^i = 1$ if at echelon e in period t production covers demands for item i from period a to period l, while the rest of demand up to b, shall be covered in the future.
\[\bar{S} = \{w^1, w^2\}, \quad \hat{w} \in \bar{W} \setminus \text{conv}(w^1, w^2) \]
Multi-echelon lot sizing: results with stabilization

Averages for 10 instances are given

<table>
<thead>
<tr>
<th>E</th>
<th>K</th>
<th>T</th>
<th>Colomn gen. for [M]</th>
<th>Column-and-row generation for [R]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>#it</td>
<td>cpu</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>50</td>
<td>126</td>
<td>1.7</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>50</td>
<td>79</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>100</td>
<td>332</td>
<td>38.0</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>100</td>
<td>232</td>
<td>31.5</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>50</td>
<td>187</td>
<td>11.8</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>50</td>
<td>112</td>
<td>12.0</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>100</td>
<td>509</td>
<td>454.5</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>100</td>
<td>362</td>
<td>520.4</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>50</td>
<td>296</td>
<td>62.6</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>50</td>
<td>223</td>
<td>66.8</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>100</td>
<td>882</td>
<td>4855.9</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>100</td>
<td>362</td>
<td>4657.8</td>
</tr>
</tbody>
</table>
Outline

1 Extented Formulations
 - Definitions
 - Interests
 - Coping with its large size

2 Dynamic Row-and-Column Generation
 - Methodology
 - Practical issues

3 Large-scale application
 - Freight transport by rail in Russia
Solve the **compact formulation**

Step 2: Obtain a solution x^* of the pricing problem:

$$\min\{(c - \pi A)x : x \in P_I\}.$$
Solve the **compact formulation**

Step 2: Obtain a solution x^* of the **pricing problem**:

$$\min\{(c - \pi A)x : x \in P_I\}.$$
Solve the **compact formulation**

Step 2: Obtain a solution \(x^* \) of the *pricing problem*:

\[
\min \{ (c - \overline{\pi} A) x : x \in P_I \}.
\]

Lifting set:

\[
T^{-1}(x) := \{ w \in \mathbb{N}^e : T w = x, H w \geq h \}
\]

Solving a “preprocessed” feasibility MIP
Solve the **compact formulation**

Step 2: Obtain a solution x^* of the pricing problem:

$$
\min\{(c - \pi A) x : x \in P_I\}.
$$

Lifting set:

$$
T^{-1}(x) := \{w \in \mathbb{N}^e : Tw = x; \; Hw \geq h\}
$$

Solving a “preprocessed” feasibility MIP

Example of the Knapsack Problem:

![Knapsack Problem Diagram](diagram.png)
Coping with the size of the Subproblem

1. Solve the **compact formulation**

 Step 2: Obtain a solution x^* of the pricing problem:

 $$\min \{(c - \pi A)x : x \in P_I\}.$$

 Lifting set:

 $$T^{-1}(x) := \{w \in \mathbb{N}^e : T w = x; H w \geq h\}$$

 Solving a “preprocessed” feasibility MIP

 Example of the Knapsack Problem:

 ![Diagram of the Knapsack Problem](image-url)
Solve the **compact formulation** (while no master constr. on w)

Step 2: Obtain a solution x^* of the **pricing problem**:

$$\min \{ (c - \pi A) x : x \in P_I \}.$$

Lifting set:

$$T^{-1}(x) := \{ w \in \mathbb{N}^e : T w = x; H w \geq h \}$$

Solving a “preprocessed” feasibility MIP

Lifting operator:

$$x^* \rightarrow w^* \in T^{-1}(x^*)$$

Breaking symmetries
Solve the **compact formulation** (while no master constr. on w)

$$\min \{ (c - \pi A) x : x \in X \}.$$

$x^* \rightarrow w^* \in T^{-1}(x^*)$

Use a **forward labelling** Dynamic Program

Handling the underlying graph implicitly
1. Solve the **compact formulation** (while no master constr. on \(w \))

\[
\min \{(c - \pi A)x : x \in X\}.
\]

\[x^* \rightarrow w^* \in T^{-1}(x^*)\]

2. Use a **forward labelling** Dynamic Program

Handling the underlying graph implicitly

3. Use **successive approximations**: restrictions or relaxations
Coping with the Subproblem: Related work

[F. Fischer, C. Helmberg, MP2012
Dynamic Graph Generation for Shortest Path in Time Expanded Networks]
Coping with the Subproblem: Related work

[F. Fischer, C. Helmberg, MP2012
Dynamic Graph Generation for Shortest Path in Time Expanded Networks]
Coping with the Subproblem: Related work

[F. Fischer, C. Helmberg, MP2012
Dynamic Graph Generation for Shortest Path in Time Expanded Networks]

Assumption
Capacity as only linking constraints ⇒ reduced cost = \(\bar{c}_a \geq c_a \forall a \in A \).

Proposition
Given a restricted graph \(\bar{G} \subset G \) and its augmentation \(G^+ \):
\[
G^+ = \bar{G} \cup \delta(\bar{G}) \cup \text{SP}(\delta(\bar{G}))
\]
Let \(\hat{c}_a = \bar{c}_a \) for \(a \in \bar{G} \), and \(c_a \) otherwise.
Let \(P^* = \text{argmin}\{\hat{c}(P_{st}) : P_{st} \in G^+\} \).

If \(P^* \in \bar{G} \), then \(P^* = \text{argmin}\{\bar{c}(P_{st}) : P_{st} \in G\} \).
Otherwise, \(\bar{G} \leftarrow \bar{G} \cup P^* \).
Practical issues

1. Coping with the size of the Subproblem
Coping with the size of the Subproblem

Coping with the size of the Master

→ Preprocessing
→ Master cleanup
→ Disaggregate only if it yields recombinations
Practical issues

1. Coping with the size of the Subproblem
2. Coping with the size of the Master
 → Preprocessing
 → Master cleanup
 → Disaggregate only if it yields recombinations

Acceleration of column generation convergence

Stabilization techniques
 → Penalty functions & Smoothing
 → Disaggregations/Recombinations (add waiting arcs)

Strategies for column generation
 → Build a global solution to the master at each iteration
 → Stage-by-stage approach: decreasing restriction/relaxation level

Combination with cut generation
 → Lifting added variables
Practical issues

1. Coping with the size of the Subproblem
2. Coping with the size of the Master
 - Preprocessing
 - Master cleanup
 - Disaggregate only if it yields recombinations
3. Acceleration of column generation convergence
Practical issues

1. Coping with the size of the Subproblem
2. Coping with the size of the Master
 → Preprocessing
 → Master cleanup
 → Disaggregate only if it yields recombinations
3. Acceleration of column generation convergence
 - Stabilization techniques

- Dual oscillations
- Tailing-off effect
- Primal degeneracy
Practical issues

1. Coping with the size of the Subproblem
2. Coping with the size of the Master
 - Preprocessing
 - Master cleanup
 - Disaggregate only if it yields recombinations
3. Acceleration of column generation convergence
 - Stabilization techniques
 - Penalty functions & Smoothing
Practical issues

1. Coping with the **size of the Subproblem**
2. Coping with the **size of the Master**
 - Preprocessing
 - Master cleanup
 - Disaggregate only if it yields recombinations
3. **Acceleration** of column generation convergence
 - Stabilization techniques
 - Penalty functions & Smoothing
 - Disaggregations/Recombinations
Practical issues

1. Coping with the size of the Subproblem
2. Coping with the size of the Master
 → Preprocessing
 → Master cleanup
 → Disaggregate only if it yields recombinations
3. Acceleration of column generation convergence
 - Stabilization techniques
 → Penalty functions & Smoothing
 → Disaggregations/Recombinations (add waiting arcs)
Practical issues

1. Coping with the size of the Subproblem
2. Coping with the size of the Master
 - Preprocessing
 - Master cleanup
 - Disaggregate only if it yields recombinations
3. Acceleration of column generation convergence
 - Stabilization techniques
 - Penalty functions & Smoothing
 - Disaggregations/Recombinations (add waiting arcs)
 - Strategies for column generation
 - Build a global solution to the master at each iteration
Practical issues

1. Coping with the size of the Subproblem
2. Coping with the size of the Master
 - Preprocessing
 - Master cleanup
 - Disaggregate only if it yields recombinations
3. Acceleration of column generation convergence
 - Stabilization techniques
 - Penalty functions & Smoothing
 - Disaggregations/Recombinations (add waiting arcs)
 - Strategies for column generation
 - Build a global solution to the master at each iteration
 - Stage-by-stage approach: decreasing restriction/relaxation level
Practical issues

1. Coping with the size of the Subproblem
2. Coping with the size of the Master
 - Preprocessing
 - Master cleanup
 - Disaggregate only if it yields recombinations
3. Acceleration of column generation convergence
 - Stabilization techniques
 - Penalty functions & Smoothing
 - Disaggregations/Recombinations (add waiting arcs)
 - Strategies for column generation
 - Build a global solution to the master at each iteration
 - Stage-by-stage approach: decreasing restriction/relaxation level
4. Combination with cut generation
 - Lifting added variables
Outline

1. Extented Formulations
 - Definitions
 - Interests
 - Coping with its large size

2. Dynamic Row-and-Column Generation
 - Methodology
 - Practical issues

3. Large-scale application
 - Freight transport by rail in Russia
The freight car routing problem

[R. Sadykov et al, 2013]
Each **type of railcar** defines a commodity $c \in C$
Multi-commodity flow formulation

Variables
- \(x_a \in \mathbb{N} \) — nb of cars using arc \(a \in A_c, \ c \in C \)
- \(y_d \in \{0, 1\} \) — demand \(d \) is accepted or not

\[
\begin{align*}
\max & \quad \sum_{c \in C} \sum_{a \in A_c} p_a x_a \\
\sum_{c \in C} \sum_{a \in A_{cd}} x_a & \geq n_{d_{\min}} y_d \quad \forall d \\
\sum_{c \in C} \sum_{a \in A_{cd}} x_a & \leq n_{d_{\max}} y_d \quad \forall d \\
\sum_{a \in \delta^- (v)} x_a - & \sum_{a \in \delta^+ (v)} x_a = b_v \quad \forall c \in C, v \in V_c \\
x_a & \in \mathbb{N} \quad \forall c \in C, a \in V_c \\
y_d & \in \{0, 1\} \quad \forall d
\end{align*}
\]
LP-Solution approaches

- **Direct**: solving a multi-commodity flow problem using *Clp* (specifically modified)

- **Standard Column Generation**: a column is
 - Option A: A full planning for a type of car (decomposition per commodity)
 - Option B: A in-tree into a sink (decomposition per sink)
 - Option C: A path for origin to destination (decomposition per pair o-d)

- **Column Generation for Extended Formulation**: using option A.
Real-life instances

1'025 stations, up to 6’800 demands, 11 car types, 12’651 cars, and 8’232 sources → 300 thousands nodes and 10 millions arcs.

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Direct</th>
<th>ColGenEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>5m24s</td>
<td>1m52s</td>
</tr>
<tr>
<td>90</td>
<td>7m05s</td>
<td>1m47s</td>
</tr>
<tr>
<td>100</td>
<td>9m42s</td>
<td>2m19s</td>
</tr>
<tr>
<td>110</td>
<td>13m38s</td>
<td>3m11s</td>
</tr>
<tr>
<td>120</td>
<td>17m19s</td>
<td>3m57s</td>
</tr>
<tr>
<td>130</td>
<td>25m52s</td>
<td>5m03s</td>
</tr>
<tr>
<td>140</td>
<td>35m08s</td>
<td>5m25s</td>
</tr>
<tr>
<td>150</td>
<td>44m58s</td>
<td>7m02s</td>
</tr>
<tr>
<td>160</td>
<td>57m11s</td>
<td>8m19s</td>
</tr>
<tr>
<td>170</td>
<td>1h13m58s</td>
<td>10m53s</td>
</tr>
<tr>
<td>180</td>
<td>1h26m46s</td>
<td>12m16s</td>
</tr>
</tbody>
</table>

≤ 15 iterations, about 3% of the arc variables have been generated
An approach based on an extended formulation

- An **EASY WAY** to bring-in combinatorial structure.
- Its size can be coped with by **combining** ideas of
 - Restriction / Relaxation
 - Benders projection
 - Dantzig-Wolfe dynamic generation.
- With **dynamic row-and-column generation**, a small % of variables and constraints are needed; hence it **scales up** to real-life applications.
- Is well suited for **efficiency enhancement** features: **cuts** on lifted variables, **Dynamic Progr. state-space-relax.**, **red.-cost-fixing**.
Take away messages

An approach based on an extended formulation

- An **EASY WAY** to bring-in combinatorial structure.
- Its size can be coped with by combining ideas of
 - Restriction / Relaxation
 - Benders projection
 - Dantzig-Wolfe dynamic generation.

- With *dynamic row-and-column generation*, a small % of variables and constraints are needed; hence it scales up to real-life applications.

- Is well suited for efficiency enhancement features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.

Perspectives
Take away messages

An approach based on an extended formulation

- An EASY WAY to bring-in combinatorial structure.
- Its size can be coped with by combining generic ideas of
 - Restriction / Relaxation [Soumis et al]
 - Benders projection [Van Vyve & Wolsey, EJCO, 2013]
 - Dantzig-Wolfe dynamic generation.

- With dynamic row-and-column generation, a small % of variables and constraints are needed; hence it scales up to real-life applications.
- Is well suited for efficiency enhancement features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.

Perspectives
An approach based on an extended formulation

- An EASY WAY to bring-in combinatorial structure.
- Its size can be coped with by combining ideas of
 - Restriction / Relaxation
 - Benders projection
 - Dantzig-Wolfe dynamic generation.

- With dynamic row-and-column generation [M. Goycoolea et al 2013], a small % of variables and constraints are needed; hence it scales up to real-life applications.

- Is well suited for efficiency enhancement features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.

Perspectives
An approach based on an extended formulation

- An **EASY WAY** to bring-in combinatorial structure.
- Its size can be coped with by **combining** ideas of
 - Restriction / Relaxation
 - Benders projection
 - Dantzig-Wolfe dynamic generation.
- With **dynamic row-and-column generation**, a small % of variables and constraints are needed; hence it **scales up** to real-life applications.
- Is well suited for **efficiency enhancement** features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.

Perspectives
Take away messages

An approach based on an extended formulation

- An **EASY WAY** to bring-in combinatorial structure.
- Its size can be coped with by **combining** ideas of
 - Restriction / Relaxation
 - Benders projection
 - Dantzig-Wolfe dynamic generation.

- With **dynamic row-and-column generation**, a small % of variables and constraints are needed; hence it scales up to real-life applications.

- Is well suited for **efficiency enhancement** features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.

Perspectives