
Fault Analysis of GRAIN-128
Alexandre Berzati∗‡, Cécile Canovas∗, Guilhem Castagnos‡, Blandine Debraize†,

Louis Goubin‡, Aline Gouget†, Pascal Paillier† and Stéphanie Salgado†
∗CEA-LETI/MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.

{alexandre.berzati,cecile.canovas}@cea.fr
†Gemalto, 6 rue de la Verrerie, 92190 Meudon, France.

{blandine.debraize,aline.gouget,pascal.paillier,stephanie.salgado}@gemalto.com
‡PRISM - Université de Versailles St-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France.

{guilhem.castagnos,louis.goubin}@prism.uvsq.fr

Abstract—GRAIN-v1 is a stream cipher that has been selected
in the final portfolio of the eSTREAM project. GRAIN-128 is
a variant of GRAIN-v1. The best known mathematical attack
against GRAIN-128 is the brute force key-search.

This paper introduces a fault attack on GRAIN-128 based on
a realistic fault model and explores possible improvements of the
attack. We also discuss countermeasures to counteract our fault
attack.

I. INTRODUCTION

The eSTREAM project [5] has federated a considerable
research effort to identify new stream ciphers that might
be interesting for widespread adoption. The stream cipher
GRAIN-v1 [7] has been selected in the final portfolio of
eSTREAM in Profile 2, i.e., stream ciphers supporting a 80-
bit key and a 64-bit initialization value (IV). However, due
to the time complexity of recent time-memory-data trade-offs,
the choice of a 80-bit key has been evaluated as inadequate
and a 128-bit key is now considered as the minimum key
size in secure applications. GRAIN-128 [6] is the 128-bit
version of GRAIN-v1, a resized variant which preserves the
main advantages of GRAIN-v1.

The resistance of GRAIN-128 against Differential Power
Analysis (DPA) has been studied in [2]. Fault attacks, an-
other type of physical attacks, constitute a powerful tool to
retrieve the private key material of many different types of
cryptosystems. Fault analysis was first used to break number-
theoretic public-key cryptosystems [4], and was later extended
to product block ciphers [3]. General techniques have been
developed in [8], [1] to attack standard constructions of LFSR-
based stream ciphers. However GRAIN-128 does not fall in
this category of constructions since it relies on a non-linear
feedback shift register.

In this paper, we suggest a fault attack on the stream
cipher GRAIN-128. In Section II, we recall the description
of GRAIN-128. The security model is discussed in Sec-
tion III and an high-level description of our attack is given
in Section IV. The main steps of the attack are described in
Sections V, VI, VII, VIII. Finally, we discuss countermeasures
in Section IX.

II. DESCRIPTION OF GRAIN-128

GRAIN-128 [6] supports a 128 bits key and a 96 bits IV.
The design is based on two 128-bit shift registers, the first
being linear (LFSR) and the second being nonlinear (NFSR).
It also specifies an output function h. The internal state of
GRAIN-128 has 256 bits. A schematic description of GRAIN-
128 in keystream generation mode can be found in Figure 1.

The content of the LFSR (resp. NFSR) is denoted by
si, . . . , si+127 (resp. bi, . . . , bi+127). The LFSR is updated by
setting

si+128 = si ⊕ si+7 ⊕i+38 ⊕i+70 ⊕i+81 ⊕i+96,

and the NFSR by

bi+128 = si ⊕ bi ⊕ bi+26 ⊕ bi+56 ⊕ bi+91 ⊕ bi+96

⊕bi+3bi+67 ⊕ bi+11bi+13 ⊕ bi+17bi+18

⊕bi+27bi+59 ⊕ bi+40bi+48 ⊕ bi+61bi+65

⊕bi+68bi+84.

The filtering function h is a 9-variable Boolean function which
outputs bi+12si+8 ⊕ si+13si+20 ⊕ bi+95si+42 ⊕ si+60si+79 ⊕
bi+12bi+95si+95. This output is then e-xored with bi+2 ⊕
bi+15⊕bi+36⊕bi+45⊕bi+64⊕bi+73⊕bi+89⊕si+93 to define
the output bit zi.

Before the keystream is generated, GRAIN-128 is initialized
with the 128-bit key K and the 96-bit IV. The key is loaded
into the NFSR and the IV is loaded in the first 96 cells of the
LFSR (the remaining 32 cells are filled with ones). Then the
cipher is clocked 256 times without producing any keystream
such that the output function is fed back and e-xored with the
input both to the LFSR and to the NFSR.

III. FAULT ATTACK AND SECURITY MODEL

We consider that injected faults are transient and that the
attacker is in possession of the physical device. The adversary
is assumed to know the IV and the keystream generated by
the stream cipher.



NFSR + LFSR

g f

+

sibi+128

h

+

si+128

zi

0 26 56 91 963

67

11

13

17

18

27

5940

48
61

65 68 84

2 15 36 45 64 73 89

12

95

0 7 38 70 81 96

8
13

20
42

60
79

95

93

Fig. 1. Description of GRAIN-128

The ultimate goal of the attacker is to retrieve the secret
key. In the following, the adversary will attempt to exploit
only faults that are induced while generating the keystream,
i.e., after the initialization step. In this respect, the attacker
first attempts to retrieve the secret initial state of the stream
cipher, and then proceeds to recovering the secret key.

Depending on the fault model, the practicality of the attack
may be debatable. In [8], the attacker is assumed to be able to
apply bit-flipping faults with a partial control of their number,
location and timing. The attacker can reset the cryptographic
device to its original state. In [6], two variants of this fault
model are envisioned in the particular case of GRAIN-128.
We thus adopt a similar approach.

A. Definition of our Fault Model.

The adversary is assumed to be able to flip exactly one bit
lying in one position in the LFSR without choosing its location
but at a chosen point in time. Fault injection is performed
e.g., by lighting up the device with laser beams [9], [10]. The
attacker has only partial control on the locations of the faults
but he is assumed to be able to inject a fault over and over
again at his will at the same position. In addition, the attacker
is assumed to have full control over timing. The attacker is
also assumed to be able to reset the cryptographic device to
its original state and then apply another randomly chosen fault
to the same device.

B. Practicality of our Fault Model

As we deal with an hardware implementation, choosing the
time of the laser shot is possible by triggering it from the I/O
signal. Shift registers are regularly clocked, and one keystream
bit is computed per clock cycle. Hence, the attacker can
identify steps in the execution, and it can safely be assumed
that he has a full control over the exact timing of the fault
injection.

The attacker can locate the position of the LFSR on the
chip without increasing the number of faults by performing
a preliminary fault setup stage. During this stage, he attacks
a device architecturally close to the target device. He scans
this device by performing laser shots on different areas and by
analyzing the corresponding faulty outputs. Finally the attacker
replaces the test device with the target device and attempts to
inject faults with respect to the previous setup. The number of
additional adjustments is as small as the test device is close
to the target device.

Our model includes, as a particular case, a more restrictive
fault model which is usually considered as being realistic
where a fault is applied on the LFSR update function, f . The
adversary is assumed to be able to randomly corrupt the result
of f without knowing the computed faulty value. But in half
of cases, this value is different from the correct one. Then, the
perturbation of f can be seen as flipping the bit 127 of the
LFSR at a chosen point in time.

This model can thus be considered as a particular applica-
tion of our more general model.

IV. FAULT ATTACK ON FILTERED FSR

In [8], a general technique is introduced to attack LFSR-
based stream ciphers filtered by a function f which takes j
input bits. A high-level view is as follows:

1) Inject a fault and produce the keystream
2) Guess the nature of the fault
3) Check whether the guess is correct, otherwise make a

new guess
4) Repeat steps 1-3 O(j) times
5) Solve a system of linear equations



This general framework exploits the linearity of the state
update function. In this particular case, the correctness of a
guess is easily checked by predicting the future differences
on the input bits of the filtering function. Whenever this input
difference is 0, we expect to see an output difference equal to
0. If our guess was incorrect, then we expect to see a nonzero
output difference for half of these observations. So in average,
we expect to reject incorrect guesses after 2j+1 output bits. We
can easily construct a system of linear equations by collecting
pairs of input/output differences corresponding to the same
output bit location. Given about j pairs, we can narrow down
exhaustive search on all possible input bits to one possibility.
Once we have collected enough equations, we solve the system
to determine the initial state of the LFSR.

Since the update function of the internal state in GRAIN-
128 is not linear, the previous attack strategy cannot be applied
directly. We now give a high-level description of our attack
which can be summarized in five steps.

a) Characterization (Phase 1): During this phase, the
attacker uses the test device. The goal is to find the position
of the LFSR and also the location of one cell which can
be perturbed, i.e., the adversary will be able to flip the
bit contained in the cell. Since the state update function of
GRAIN-128 is nonlinear, we introduce in Section V a specific
algorithm to check whether a guess is correct and the exact
location of the LFSR cell, for any key the device may contain.

b) Check the correctness of a guess (Phase 2): The
attacker uses the target device containing the wanted secret
key. Based on the characterization phase, the attacker attempts
to reproduce the same type of fault and possibly needs
additional adjustments made with the specific algorithm. It
is now assumed that the adversary is able to induce a fault at
his will at the same position in the LFSR at different instants.

c) Recovering the LFSR state (Phase 3): This step is
similar to the method described in [8] to construct and solve
a system of linear equations in the LFSR state variables. This
step is explained in more details in Section V.

d) Recovering the NFSR state (Phase 4): This step is not
covered by any of the prior fault attacks on stream ciphers.
We explain in Section V how to construct and solve a system
of linear equations in the NFSR state variables.

e) Recovering the secret key (Phase 5): Given an internal
state of GRAIN-128 at time t, the last part of the attack
consists in recovering the key knowing the IV.

V. ATTACK DESCRIPTION: PHASES 1-2
The goal of this phase is to locate the position i of the

flipped bit in the LFSR (at a known time t) by observing the
differential bit sequence S = S ⊕ S′, where S and S′ are the
regular and faulted keystream, respectively. We suppose that
the bit i is flipped before the keystream bit is computed.

For each of the 128 cells of the LFSR, it is possible to
predict some pattern P in S. If a given pattern P appears after
a fault injection at position i in S, and does never appear when
the fault is injected at another position j, ∀j ∈ [0, 127], j 6= i,
then we can deduce that the fault has been indeed injected at
position i. If P always appears when the fault is injected at
position i, then there an equivalence between the presence of
the pattern P in S and the fact that the fault was injected at
position i.

A. Description of ∆Grain Algorithm
For each and every position i, 0 ≤ i ≤ 127, in the LFSR,

we compute the related pattern Pi using a dedicated algorithm
that we call ∆Grain. This algorithm makes use of two 128-bit
registers denoted by ∆LFSR= (σ0, . . . , σ127) and ∆NFSR=
(β0, . . . , β127). The 256-bit state is initialized to ~0. When the
fault is supposed to flip the bit at position i, we set σi = 1. We
use the LFSR update function of GRAIN-128 to update the
register ∆LFSR, and a variant of the NFSR update function
to update the register ∆NFSR defined by:

g′(x0, · · · , x18) = x0 ∨ x1 ∨ · · · ∨ x18 ,

where ∨ is an inclusive-or and x0, · · · , x18 are plugged at the
positions defined by the NFSR update function of GRAIN-128.

From the consecutive states of ∆LFSR and ∆NFSR, we
compute the sequence of integers ω0ω1 · · ·ωn · · ·, where ωi

is the number of values equal to 1 among the 17 bit values
implied in the computation of the keystream bit. Then, if the
fault occurs at time t, the state of ∆LFSR after t0 updates
provides the complete knowledge of the XOR difference
between the regular and the faulted LFSR state at time t+ t0.
All the bits set to 0 in ∆NFSR after t0 updates are, with
probability 1, the bits having the same value in both the non
faulted and the faulted NFSR (this does not depend on the
value of the key and IV). The value of ωt+t0 is the number
of bits potentially flipped by the fault and also implied in the
computation of the keystream bit zt+t0 ; all the other 17−ωt+t0

bits are the same in the faulted and non-faulted LFSR and
NFSR.

B. Construction of Patterns
For every position, 0 ≤ i ≤ 127, in the LFSR, we have to

find a pattern {e1, · · · , en} that will be used to locate faults.
For example, if the first LFSR bit has been flipped at time 0, it
is possible to predict that a 1-bit can appear in the differential
keystream from tap s93 at time 35, another 1-bit at time 39
from tap b89, etc. We call this pattern {35, 39, 55, 64}. The taps
s93, b64, b73 and b89 have been chosen since they are linear
taps meaning that they are linearly involved in the computation
of the keystream. In the following, we use only linear taps.

Using ∆Grain we build the algorithm described in Fig. 2
to check if the pattern is suitable or not to locate a fault that
flipped bit σi.

First, this algorithm allows to check that the input pattern
always appears in the keystream if the fault has flipped bit p.
Indeed, if ∆Grain returns w = 1 from a linear tap then



INPUT: Fault location p, pattern {e1, e2, · · · , en},
range [i0 · · · i1]

Initialize ∆LFSR and ∆NFSR to 0
Set σp to 1,
Clock ∆Grain en times,
If ωe1 = ωe2 = · · · = ωen = 1 :

For each i0 ≤ i < i1, i 6= p:
Initialize ∆LFSR and ∆NFSR to 0
Set σi to 1,
Clock ∆Grain en times,
If ωe1 , ωe2 , · · · , ωen are not all nonzero

Return OK
Else Return NOT OK

Else Return NOT OK

Fig. 2. Algorithm 1

• As w < 2, no other tap provides a bit that could be
different between the faulted and not faulted execution
for the computation of the keystream bit;

• As the tap is linear, this difference appears in the
keystream with probability 1.

Secondly, the algorithm ensures that the pattern never
appears if the fault has flipped another LFSR bit in range
i0, . . . , i1.

Algorithm 1 with (i0, i1) = (0, 127) returns OK for patterns
given in Table I. Patterns of Table II are OK for Algorithm 1
with smaller range (i0, i1) = (42, 95) as well and pattern of
Table III for (i0, i1) = (68, 80).

Fault position Patterns
0 ≤ i ≤ 31 {35 + i, 39 + i, 55 + i, 64 + i}
32 ≤ i ≤ 37 {35 + (i− 32), 42 + (i− 32),

46 + (i− 32), 62 + (i− 32),
71 + (i− 32)}

38 ≤ i ≤ 41 {35 + (i− 38), 66 + (i− 38),
73 + (i− 38), 77 + (i− 38)}

96 ≤ i ≤ 127 {3 + (i− 96), 35 + (i− 96),
50 + (i− 96), 61 + (i− 96)}

TABLE I

Fault position Patterns
42 ≤ i ≤ 67 {35 + (i− 42), 66 + (i− 42),

73 + (i− 42), 77 + (i− 42)}
81 ≤ i ≤ 95 {35 + (i− 81), 46 + (i− 81),

67 + (i− 81), 82 + (i− 81)}

TABLE II

Fault position Patterns
70 ≤ i ≤ 80 {35 + (i− 70), 82 + (i− 42),

93 + (i− 42), 98 + (i− 42)}

TABLE III

The presence in the keystream of one of the patterns given
in Table I is a necessary condition for the fault to have been
injected in position 0 ≤ i ≤ 41 or 96 ≤ i ≤ 127. When
the attacker does not find a matching pattern in Table I (Step
1), then he deduces that the fault has been injected between
position 42 and position 95. Hence if he finds a matching
pattern (Step 2) in Table II, he has found a sufficient condition
for the fault to have been injected at the corresponding
position.

If not, he looks for the pattern given in Table III (Step 3).
If he finds this pattern in the output difference, he learns the
fault position. If not, the remaining positions are bits number
68 and 69 of the LFSR. Once the attacker has eliminated all
the other possibilities, it is straightforward to locate the right
position among the two by looking at the differential sequence.

VI. ATTACK DESCRIPTION: PHASE 3

We have seen in Section V that if the fault flips one
bit of the LFSR, it is always possible to learn its position
by analyzing the keystream difference. Now that the fault is
located, we explain how to make use of the information given
by the output difference to obtain linear equations on a specific
state of the LFSR. Let us recall that each keystream bit zi is
computed as the XOR of some LFSR and NFSR bits and the
output of the filter h, bi+12si+8 ⊕ si+13si+20 ⊕ bi+95si+42 ⊕
si+60si+79 ⊕ bi+12bi+95si+95. It is easy to see that at clock
i, if among all the state bits implied in the computation of
zi only one of the four bits s13, s20, s60 and s79 has been
faulted, then the output difference is the value of an LFSR bit
at clock t. For example, if σ13 = 1, the output difference is
the value of s20.

The number of LFSR bits which we can recover from the
differential sequence depends on both the fault location and
the number of times the cipher is clocked after the fault is
injected. We describe the method to compute these numbers
of bits in Figure 3.

INPUT: Fault location p, number of clock NC
OUTPUT:Number of known LFSR bits KB
Initialize ∆LFSR and ∆NFSR to 0
Set σp to 1 and KB to 0
For each 0 ≤ i ≤ NC:

If
[(

(σ13 = 1) OR (σ20 = 1) OR (σ60 = 1)
OR S(σ79 = 1)

)
AND (∆Grain output = 1)

]
Then KB = KB +1
If

[
(σ13 ⊕ σ20 = 1) AND (σ60 ⊕ σ79 = 1) AND

(∆Grain output = 2)
]

Then KB = KB +1
Clock ∆Grain

Return(KB)

Fig. 3. Algorithm 3

In a few words, the first If block (resp. the second block)
counts the number of times it is possible to recover the value
of an LFSR bit (resp. a linear equation on the LFSR bits).



Since the number of clock NC chosen by the attacker can
be more than 128, and due to the linear update of the LFSR,
we can consider that all these bits and equations recovered
are equations in variables representing the 128 bits of an
“initial state” of the LFSR. As linear dependencies can appear,
the output of Algorithm 3 is not the rank of the system of
linear equations. We build a second algorithm, derived from
Algorithm 3, that we call “ComputeRank”: Each time a linear
equation is found by Algorithm 3, it is added as a column
vector to a matrix with 128 rows M. At the end, the number
of column vectors in M is the number of linear equations
found by the algorithm. M’s rank is the number of linearly
independent equations that the attacker can recover with this
fault.

The “ComputeRank” algorithm can be extended by con-
catenating inM systems corresponding to several faults. This
allowed us to compute the number of faults, injected at the
same location but at different clocks, that are necessary to
recover the initial state of the LFSR. Is is possible to improve
this method but due to lack of space, we omit details here and
just give the results we obtained (see Figure 4).

Fault number of number of number of
positions consecutive faults each faults each

faults 4 clocks 30 clocks
0 to 6 90 62 44

7 to 12 81 32 19
13 to 19 41 23 16
20 to 37 34 19 15
38 to 59 20 17 11
60 to 69 16 17 11
70 to 78 14 15 10
79 to 80 11 14 9
81 to 127 6 8 6

Average nb 23.8 17.3 12.1

Fig. 4. Faults for recovering the LFSR state

Let us remark that these results are always true, for all
key and IV values. We also made simulations validating this
method.

VII. DESCRIPTION OF THE ATTACK: PHASE 4

Once the LFSR state has been retrieved, the next step is to
obtain the NFSR state. Note that if the LFSR state is known
at time t, then it is also known at any time. In this section,
we describe how to retrieve the NFSR state at a well chosen
time following our fault model.

A. Obtaining equations on the NFSR state

Knowing the LFSR state, we can easily deduce linear
equations on the NFSR bits from the regular keystream.
The only non linear monomial in the expression of zi is

bi+12bi+95si+95. So if si+95 = 0, then we get a linear equation
in several bits of the current NFSR state.

Moreover, the differences between the faulted and non-
faulted executions that have been used to recover the LFSR
state in Section VI can be re-used to get extra linear equa-
tions. Suppose that a fault has been injected in position p,
0 ≤ p ≤ 127, in the LFSR state si, si+1, . . . , si+127 (i.e.,
si+p has been flipped). At time i + p + 32, this fault will
be in the bit 96 of the NFSR, and will not have affected the
feedback function g. Then, the only differences between the
state of the faulted and non-faulted execution will be at this
bit of the NFSR and in known positions of the LFSR (that
may have appeared if the fault has entered the feedback of the
LFSR). Now, by analyzing the keystream difference after the
time t = i+ p+ 32, we can get equations on the NFSR state
at time t. Some linear equations can appear when the fault
enters bits 12 and 95 due to the monomial bi+12bi+95si+95

in zi. Others can appear when the fault enters locations that
have a quadratic contribution in the feedback of the NFSR.
For example, when a fault hits bit 84 at time t′, the difference
bt′+84 will appear from the monomial bt′+68bt′+84 of bt′+128.
Eventually, we might get this bit from the keystream difference
when it will be in position 89 of the NFSR, as this position
contributes linearly in the keystream. All that equations can
be recovered only if there are no others differences between
the keystreams at the same time.

B. Number of equations from one fault

The number of linear equations that we can get from a
keystream difference depends on the value of the bits of
the LFSR state and on the fault position. We use Algorithm
“CountEquations” of Fig. 5 with a computer algebra system
to estimate this number.

1. Initialize the LFSR state with random values
2. Inject a fault in the bit at position 0 ≤ p ≤ 127

of the LFSR state
3. Clock the non-faulted and the faulted LFSR states

32 + p times
4. Formally initialize a non-faulted NFSR state with

variables b0, b1, . . . , b96, . . . , b127
The corresponding formal faulted NFSR state is
b0, b1, . . . , b96 + 1, . . . , b127

5. Formally clock 117 times the non-faulted and the
faulted GRAIN-128 states and count the linear
equations in the variables b0, b1, . . . , b96, . . . , b127
obtained in the keystream difference

Fig. 5. Algorithm “CountEquations”

We use 117 iterations since for more iterations, the formal
computation becomes heavy and very few new linear equations
appear. The strategy of clocking 32+p times before doing the
formal computation ensures that the location of differences are
precisely known and that they will quickly produce exploitable
equations. The number of equations we can obtain only
depends on between which feedback taps of the LFSR the



Fault position in Number of linear equations
the LFSR state on the NFSR state

0 to 6 10.97
7 to 37 10.09

38 to 69 11.64
70 to 80 12.43
81 to 95 16.32

96 to 127 21.50

Fig. 6. Linear equations on the NFSR from a single fault

fault has occurred. It is notable that the majority of equations
obtained involves only one variable, i.e., directly gives the
value of a bit of the NFSR without any linear algebra. The
result obtained with this algorithm are depicted in Fig. 6. To
sum up, the analysis from a single bit flipping in the LFSR
state gives more than 10 bits of the NFSR state.

C. Number of equations from several faults

We now want to determine the number of keystream dif-
ferences needed to recover the whole NFSR state. To figure
this out, we have used Algorithm “RecoverNFSR” of Fig. 7
that recursively combined the information obtained from the
keystream with the information obtained from each keystream
difference.

1. For each keystream difference :
a) collect in a system (S), linear and simple

quadratic equations in the NFSR state at
time t from the keystream difference as
in Algorithm “CountEquations”

b) append to (S) linear and simple quadratic
equations in the NFSR state at time t
obtained from the keystream

c) compute a Groebner basis of (S) and solve
the equations involving only one variable

d) try to obtain new equations from the
keystream and from the already used
keystream differences thanks to the NFSR
bits obtained in the previous step

2. Output (S)

Fig. 7. Algorithm “RecoverNFSR”

In our simulation, we use quadratic equations that involve
at most 2 monomials. It experimentally ensures that the
Groebner basis computation remains fast while providing more
equations from a single fault analysis. The time t at which we
recover the NFSR state depends on the type of fault used. For
faults occurring in the same position p of the LFSR but at
consecutive times, if starting with time i, then t = i+ p+ 32.
The result obtained for this type of faults are summarized in
Figure 8. Note that this algorithm can be executed in a couple
of minutes.

For faults occurring on bits si+p0 , si+p1 , si+p2 , . . . where
pj − pj−1 > 1, we use Algorithm “RecoverNFSR” to retrieve

Fault positions in number of faults needed
the LFSR state to recover the whole NFSR state

0 to 6 8.29
7 to 37 7.48

38 to 69 6.75
70 to 80 6.09
81 to 95 4.53
96 to 127 4.40

Fig. 8. Consecutive faults for recovering the NFSR state

the NFSR state at time t = i + p0 + 32. As the distance
increases, the NFSR has to be formally clocked an increasing
number of times before the fault enters the NFSR state. As a
result, the degree of the equations obtained from the keystream
differences increases because of the nonlinear feedback. The
number of linear equations obtained from each new fault will
be smaller than what we obtained with consecutive faults (see
Figure 9). The worst situation (which occurs when the faults
are at the beginning of the LFSR state) and the better one
(when the faults are at the end of the state) are shown. To
minimize the number of faults needed, we stop when the
number of linear equations is greater than 97 and find the
remaining bits with an exhaustive search. For example, the
whole state can be recovered when the space between two
faults is smaller than 5, but with a space of 30, exhaustive
search can not be done in practice.

Space # of faults corresponding
between # of independent

faults min/max linear equations
2 4/6 108/99
5 3/9 103/102

10 3/12 106/79
20 5/8 104/59
30 4/5 45/79

Fig. 9. Numbers of equations from non consecutive faults

From the analysis of this phase, we see that the faults used
in Phase 3 to recover the LFSR state are sufficient to recover
the NFSR state with a couple of minutes of computation.

VIII. ATTACK DESCRIPTION: PHASE 5

Given the internal state of GRAIN-128 at time t, St =
{st, . . . , st+127, bt, . . . , bt+127}, we show that we can compute
previous internal states. The computation of St−1 consists in
computing st−1 and bt−1. During initialization, the output of
h is fed back and xored with the input both to the LFSR and to
the NFSR. We first compute the value of the output function
which is denoted by zt−1:

zt−1 = h(bt+11, st+7, st+12, st+19, bt+94, st+41, st+59,
st+78, st+94)⊕ st+92 ⊕ bt+1 ⊕ bt+14 ⊕ bt+35

⊕bt+44,⊕bt+63 ⊕ bt+72 ⊕ bt+88.



Next, the value of st−1 and of bt−1 can be computed as
follows:

st−1 = zt−1 ⊕ st+127 ⊕ st+6 ⊕ st+37 ⊕ st+69

⊕st+80 ⊕ st+95,

and

bt−1 = zt−1 ⊕ st−1 ⊕ bt+127 ⊕ bt+25 ⊕ bt+55 ⊕ bt+90

⊕bt+95 ⊕ bt+2bt+66 ⊕ bt+10bt+12 ⊕ bt+16bt+17

⊕bt+26bt+58 ⊕ bt+39bt+47 ⊕ bt+60bt+64

⊕bt+67bt+83.

Knowing how to compute St−1 from St, it is straightfor-
ward to compute St−i for any index i ≥ 0 and thus to recover
the secret key K.

IX. COUNTERMEASURES

Up to our knowledge, there is no fault attack that targets the
NFSR. Thus, protecting GRAIN-128 against our fault attack
amounts to protect the LFSR part only. This observation makes
GRAIN-128 more suited to fault-tolerant hardware implemen-
tations than other stream ciphers which, in the general case,
must be protected on their entire internal memory space.

A simple countermeasure consists in duplicating the LFSR
in a mirror LFSR and to synchronously update it at each clock
signal. A comparator checks that the contents of both LFSR’s
remain identical over time. In case of mismatch, the circuitry
triggers a killing event, e.g., the stream cipher halts, thereby
preventing any form of observation by the attacker. One can
also think of combining several mirror LFSR’s together e.g.,
the main LFSR is replaced with the XOR of 3 mirror LFSR’s.

A more intricate countermeasure consists in adding linear
redundancy in the LFSR’s internal state. In this case, the

update operation of the extended LFSR is not a feedback
anymore but must be replaced with some more general linear
transformation, and the number of faults that the device can
detect is inherently limited by the detection capability of the
underlying linear code.

X. CONCLUSION

We have proposed a fault attack on GRAIN-128. With an
average number of 24 consecutive faults in the LFSR state,
we can recover the secret key within a couple of minutes of
off-line computation. We also propose some realistic counter-
measures which protect GRAIN-128 at low extra cost.

REFERENCES

[1] F. Armknecht and W. Meier. Fault Attacks on Combiners with Memory.
In SAC 2005, volume 3897 of LNCS, pages 36–50. Springer, 2005.

[2] R.E. Atani, W. Meier, S. Mirzakuchaki, and S.E. Atani. Design and
Implementation of DPA Resistive Grain-128 Stream Cipher Based on
SABL Logic. IJCCC, III:100–110, 2008.

[3] E. Biham and A. Shamir. Differential Fault Analysis of Secret Key
Cryptosystems. In Crypto ’97, volume 1294 of LNCS, pages 513–525.
Springer, 1997.

[4] D. Boneh, R.A. DeMillo, and R.J. Lipton. On the Importance of
Checking Cryptographic Protocols for Faults. In Eurocrypt ’97, volume
1233 of LNCS, pages 37–51. Springer, 1997.

[5] ECRYPT. eSTREAM: ECRYPT Stream Cipher Project. cf. http://www.
ecrypt.eu.org/stream/.

[6] M. Hell, T. Johansson, A. Maximov, and W. Meier. A Stream Cipher
Proposal: Grain-128. IT, IEEE International Symposium on, pages 1614–
1618, 2006.

[7] M. Hell, T. Johansson, A. Maximov, and W. Meier. GRAIN - a stream
cipher for constrained environments. IJWMC, Spec. Iss. on Security of
Computer Network and Mobile Systems, 2006.

[8] J.J. Hoch and A. Shamir. Fault Analysis of Stream Ciphers. In CHES
2004, volume 3156 of LNCS, pages 240–253. Springer, 2004.

[9] Sergei P. Skorobogatov. Optically enhanced position-locked power
analysis. In CHES 2006, volume 4249 of LNCS, pages 61–75. Springer,
2006.

[10] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction
attacks. In CHES 2002, volume 2523 of LNCS, pages 2–12. Springer,
2002.

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/

	Introduction
	Description of Grain-128
	Fault Attack and Security Model
	Definition of our Fault Model.
	Practicality of our Fault Model

	Fault Attack on Filtered FSR
	Attack Description: Phases 1-2
	Description of Grain Algorithm
	Construction of Patterns

	Attack Description: Phase 3
	Description of the Attack: Phase 4
	Obtaining equations on the NFSR state
	Number of equations from one fault
	Number of equations from several faults

	Attack Description: Phase 5
	Countermeasures
	Conclusion
	References

