
Cours de Cryptologie

Guilhem Castagnos

Janvier – Avril 2026

version du 20 janvier 2026

Table des matières

I Introduction 1
1 Bibliographie . 1
2 Plan du cours . 1
3 Courte introduction à la cryptologie . 1

II Chiffrement parfait, Chiffrement par flot 3
1 Le chiffrement symétrique . 3
2 Le chiffrement parfait. 4
3 Chiffrement par flot . 5

III Chiffrement par bloc 11
1 Introduction, modes opératoires . 11
2 Schéma de Feistel, le DES. 13
3 Schéma substitution permutation (SPN), l’AES 14

IV fonctions de hachage,MAC 19
1 fonctions de hachage . 19
2 MAC . 20
3 Constructions de fonctions de hachage . 21

V Cryptographie fondée sur le problème du logarithme discret 23
1 Le problème du logarithme discret . 23
2 Quelques applications cryptographiques. 24
3 Algorithmes de calcul du logarithme discret . 25
4 Introduction aux courbes elliptiques . 27

VI Cryptographie fondée sur la factorisation 33
1 Rappels sur Z/NZ . 33
2 Cryptographie avec les carrés de Z/NZ . 35
3 Le chiffrement RSA (1977) . 36
4 Le chiffrement de Paillier (1999). 37
5 Mise en oeuvre . 39

VII Signatures numériques 41
1 Propriétés . 41
2 Signature RSA-FDH . 42
3 Signature de Schnorr . 42
4 Signatures utilisant des couplages . 43

VIIICryptographie post quantique 45

– iii –

Table des matières

– iv –

Chapitre I

Introduction

1. Bibliographie
• Gilles Zémor, Cours de cryptographie, Cassini, 2000.

• Nigel Smart, CryptographyMade Simple, Springer, 2016

• DanBoneh etVictor Shoup,AGraduateCourse inAppliedCryptography, en ligne https://toc.cryptobook.
us

2. Plan du cours
• Chiffrement parfait et chiffrement par flot

• Chiffrement par bloc

• Fonctions de hachage, MAC

• Cryptographie sur le problème du logarithme discret

• Cryptographie sur le problème de la factorisation

• Signatures numériques

• Cryptographie post quantique

3. Courte introduction à la cryptologie
Cryptographie : ensemble de méthodes pour sécuriser l’information et les communications numé-

riques contre des adversaires.
Cryptanalyse : consiste à casser ces méthodes (attaques), alors que la cryptographie consiste à les

concevoir.
Cryptologie =Cryptographie +Cryptanalyse. En pratique, on emploie souvent le terme cryptographie

à la place de cryptologie.
Adversaire : Principe de Kerckhoffs (fin 19e siècle), l’adversaire connaît la méthode utilisée. Seule une

donnée lui est inconnue : la clef secrète. On définit plusieurs niveaux de sécurité en définissant les buts de
l’adversaire : retrouver la clef secrète (bris total), retrouver l’information d’origine…On définit également
les moyens à la disposition de l’adversaire pour faire son attaque.

– 1 –

https://toc.cryptobook.us
https://toc.cryptobook.us

Chapitre I : Introduction

– 2 –

Chapitre II

Chiffrement parfait, Chiffrement par flot

1. Le chiffrement symétrique

Notations et vocabulaire :

• ℳ : l’espace des messages clairs (plaintexts)

• 𝒞 : l’espace des messages chiffrés (ciphertexts)

• 𝒦 : l’espace des clefs secrètes (secret keys)

• E ∶ 𝒦 ×ℳ → 𝒞 la fonction de chiffrement (encryption)

• D ∶ 𝒦 × 𝒞 →ℳ la fonction de déchiffrement (decryption)

Typiquementℳ = {0, 1}ℓ ou {0, 1}∗. On suppose que l’information est codée sous forme d’une chaîne
de bits.

On veut une notion de correction : pour tout 𝑘 ∈ 𝒦 , 𝑚 ∈ ℳ , D(𝑘, E(𝑚, 𝑘)) = 𝑚.
On suppose qu’Alice et Bob disposent d’une même clef 𝑘, connue d’eux seuls, et utilisent E et D pour

communiquer. Le but est d’assurer la confidentialité des messages clairs échangés.

Oscar

Alice
𝑘

Bob
𝑘

E(𝑘,𝑚A) = 𝑐A D(𝑘, 𝑐A) = 𝑚A

D(𝑘, 𝑐B) = 𝑚B E(𝑘,𝑚B) = 𝑐B

– 3 –

Chapitre II : Chiffrement parfait, Chiffrement par flot

2. Le chiffrement parfait

Le chiffrement de Vernam (1917)…
Aussi appelé masque jetable ou One Time Pad en anglais.

• ℳ = 𝒞 = 𝒦 = {0, 1}ℓ

• E(𝑘,𝑚) = 𝑘 ⊕ 𝑚

• D(𝑘, 𝑐) = 𝑘 ⊕ 𝑐
On va voir que si la clef 𝑘 est utilisée une seule fois et choisie au hasard avec équiprobabilité, alors le

chiffrement de Vernam est un chiffrement parfait, inconditionnellement sûr même pour un adversaire tout
puissant. Ce chiffrement est avant tout théorique, mais a été tout de même utilisé en pratique par exemple
pour le téléphone rouge ou encore dans les Numbers stations, une très longue clef secrète étant transmise
préalablement.

Pourquoi une utilisation unique de la clef est nécessaire :
• attaque à clair(s) connu(s) : l’adversaire connaît un ou plusieurs (éventuellement un très grand
nombre) couples clairs chiffrés. Souvent le moyen minimal en cryptographie symétrique : entête de
fichier connu (mail, image jpeg…), début de protocole.
Sur le chiffrement deVernam : 𝑐1⊕𝑚1 → 𝑘. Bris total ! Si on réutilise 𝑘 pour chiffrer𝑚2 par 𝑐2 = 𝑚2⊕𝑘.
On peut retrouver 𝑚2 à partir de 𝑐2.

• attaque à chiffré(s) seul(s) : l’adversaire ne connaît que le chiffré (moyen le plus faible) : 𝑐1⊕𝑐2 =
𝑚1 ⊕ 𝑚2. Information sur les clairs : on attaque la sécurité sémantique.

…est un chiffrement parfait
On voit message, chiffré, et clef, comme des variables aléatoires discrètes M,C et K, ainsi on attache

une probabilité au choix d’un message particulier 𝑚, au choix d’une clef 𝑘 et à celui d’obtenir un chiffre 𝑐.
On supposera toujours que le choix de la clef se fait indépendamment de celui du message, c’est à dire que
M et K sont indépendantes.

Rappel : cela signifie que pour tout 𝑚 ∈ ℳ , 𝑘 ∈ 𝒦 , P(M = 𝑚,K = 𝑘) = P(M = 𝑚)P(K = 𝑘).
Autre rappel, si P(C = 𝑐) > 0, on définit la probabilité conditionnelle

P(M = 𝑚 |C = 𝑐) ∶= P(M = 𝑚,C = 𝑐)
P(C = 𝑐) ⋅

Dans la suite, on supposera également toujours que pour tout 𝑚, 𝑘, 𝑐,
P(M = 𝑚) > 0, P(C = 𝑐) > 0, P(K = 𝑘) > 0.

Définition II – 1. Un système de chiffrement symétrique est parfaitement sûr si pour tout𝑚 ∈ ℳ , 𝑐 ∈ 𝒞 ,
P(M = 𝑚 |C = 𝑐) = P(M = 𝑚).

Autrement dit le chiffré n’apporte pas d’information supplémentaire sur le clair, même pour un adver-
saire tout puissant. Cela signifie également queM et C sont indépendantes.
Théorème II – 2. Le système de Vernam où la clef est choisie de manière équiprobable est parfaitement
sûr.
Démonstration. On a d’une part

P(M = 𝑚,C = C) = P(M = 𝑚,K = 𝑚 ⊕ 𝑐) = P(M = 𝑚) × P(K = 𝑚 ⊕ 𝑐) = P(M = 𝑚)
|𝒦 | ⋅

D’autre part,

P(C = 𝑐) = 􏾜
𝑚∈ℳ

P(C = 𝑐,M = 𝑚) = 􏾜
𝑚∈ℳ

P(K = 𝑚 ⊕ 𝑐,M = 𝑚) = 1
|𝒦 |

􏾜
𝑚∈ℳ

P(M = 𝑚) = 1
|𝒦 | ⋅

– 4 –

3. Chiffrement par flot

Proposition II – 3. Si un système de chiffrement symétrique est parfaitement sûr alors |ℳ | ⩽ |𝒞 | ⩽ |𝒦 |.

Démonstration. Nécessairement |ℳ | ⩽ |𝒞 | : la fonction de chiffrement doit être injective pour pouvoir
déchiffrer sans ambiguïté.

Si le chiffrement est parfait on a P(C = 𝑐 |M = 𝑚) = P(C = 𝑐) par indépendance. D’autre part, on a
supposé que P(C = 𝑐) > 0. Donc pour un𝑚 fixé et pour chaque 𝑐 il existe au moins un 𝑘 tel que 𝑐 = E(𝑘,𝑚).
Ainsi |𝒞 | ⩽ |𝒦 |.

L’espace des clefs doit donc au moins être aussi grand que celui des clairs et des chiffrés. Pour trans-
mettre un message de ℓ bits de manière confidentielle il faut donc avoir préalablement transmis un clef
secrète d’au moins ℓ bits. Cela est peu pratique ! Remarque : la notion d’entropie (cf. le cours de théorie
de l’information) permet de mieux formaliser cela : si le chiffrement est parfait H(K) ⩾ H(M).

Les chiffrements symétriques actuels utilisent une même clef courte (typiquement 128 à 256 bits) que
l’on réutilise pour chiffrer des gigas octets de données. On perd donc la sécurité parfaite.

Tous ces algorithmes de chiffrement à clef secrète sont sensibles à la recherche exhaustive. C’est
une attaque à clair connu. Connaissant un message clair 𝑚 et son chiffré correspondant 𝑐, on calcule le
chiffrement de 𝑚 par toutes les clefs possibles jusqu’à trouver 𝑐. Si la clef secrète fait 𝑛 bits, on doit donc
faire 2𝑛 chiffrements dans le cas le pire. Le but du cryptographe symétrique est de concevoir un système
dont la meilleure attaque connue soit la recherche exhaustive.

3. Chiffrement par flot

Cadre

C’est une version pratique du chiffrement de Vernam. À partir d’une clef secrète, une chaîne de bits
aléatoire courte, on crée de manière déterministe une suite (pseudo-aléatoire) de bits (𝑧𝑘)𝑘∈N, dite suite
chiffrante. Puis on chiffre une suite de bits (𝑚𝑘)𝑘∈N par 𝑐𝑘 = 𝑚𝑘 ⊕ 𝑧𝑘 pour tout 𝑘 ∈ N (on parle plus
exactement de chiffrement par flot synchrone additif).

Ce chiffrement est plus rapide que le chiffrement par bloc que l’on verra ensuite, surtout en implanta-
tion matérielle car la complexité matérielle est plus faible. Il est basé sur des primitives simples (LFSR cf.
suite du cours). Ils peuvent être exécutés avec une mémoire limitée, ils traitent le message clair bit par bit
à la volée, et sont donc utilisés pour chiffrer des communications.

Exemples : RC4 (1987, obsolète), SNOW3G (2002, 3G→), ChaCha20 (2008, TLS, OpenSSH), ZUC
(2010, 3G→).

Ces systèmes peuvent être vus comme des automates, dont l’état interne est initialisé par une clef
secrète à l’instant 𝑡 = 0. Au temps 𝑡 > 0, l’état interne S𝑡 est fonction de l’état au temps précédent, S𝑡−1, et
un bit de suite chiffrante fonction de l’état est produit, 𝑧𝑡.

Si l’état interne de l’automate est un registre ℓ bits, alors au plus 2ℓ états différents sont possibles. Au
bout de 2ℓ itérations, on retombe donc sur un état déjà rencontré, et la suite chiffrante est donc pério-
dique de période au plus 2ℓ. Or répéter une même suite chiffrante conduit aux mêmes attaques que sur le
chiffrement de Vernam. Il faut donc pouvoir créer différentes suites chiffrantes pour un même choix de
clef secrète.

Dans les chiffrements par flot modernes, on utilise une entrée auxiliaire, un vecteur d’initialisation
public, IV, afin de pouvoir produire plusieurs suites chiffrantes à partir de la même clef secrète. Au bout
de 𝑛 bits produits avec une même clef secrète, un nouvel IV (public) est choisi par Alice et Bob et l’état
interne du chiffrement par flot est réinitialisé avec la clef secrète et ce nouvel IV.

Pour résumer, on a

• Initialisation : choix d’un IV et S0 = ℎ(𝑘, IV)

• Pour 𝑡 = 1, … , 𝑛

– Mise à jour de l’état : S𝑡 = 𝑓(S𝑡−1)

– 5 –

Chapitre II : Chiffrement parfait, Chiffrement par flot

– Extraction du terme de suite chiffrante : 𝑧𝑡 = 𝑔(S𝑡)

• Retour à l’initialisation.

LFSR
C’est une brique de base intervenant avec d’autres composants dans de nombreuses constructions de

chiffrements par flot afin de mettre à jour l’état. Ils permettent de construire à moindre coût des suites
avec des périodes élevées et des bonnes propriétés statistiques.

Définition II –4. Un registre à décalage à rétroaction linéaire (LFSR, Linear Feedback Shift Register) bi-
naire de longueur ℓ est un automate composé d’un registre S à décalage de ℓ bits. Au temps 𝑡 ⩾ 0, on note
S (𝑡) = (S(𝑡)0 , … , S

(𝑡)
ℓ−1) l’état du registre.

Son polynôme de rétroaction (parfois appelé polynôme de connexion) est un polynôme de F2[X]
de degré ℓ

𝑓(X) ∶= 1 ⊕ 𝑐1X ⊕ 𝑐2X2 ⊕⋯⊕ 𝑐ℓXℓ.

Dans la suite on posera également 𝑐0 ∶= 1. Son état initial est S (0) ∶= (𝑧0, … , 𝑧ℓ−1) ∈ Fℓ2.
À l’instant 𝑡, on sort le bit d’indice 0, S(𝑡)0 , et on met à jour pour donner le registre S (𝑡+1) de la façon

suivante : les bits d’indices 1 à ℓ sont décalées :

S(𝑡+1)𝑖 = S(𝑡)𝑖+1, pour 0 ⩽ 𝑖 ⩽ ℓ − 2,

et le bit d’indice ℓ − 1 est mis à jour par une fonction linéaire :

S(𝑡+1)ℓ−1 = 𝑐1S
(𝑡)
ℓ−1 ⊕ 𝑐2S

(𝑡)
ℓ−2 ⊕⋯⊕ 𝑐ℓ−1S

(𝑡)
1 ⊕ 𝑐ℓS

(𝑡)
0 ,

où les calculs sont dans F2. On représente un LFSR ainsi :

S(𝑡)ℓ−1 S(𝑡)ℓ−2 … … … S(𝑡)1 S(𝑡)0

𝑐1 𝑐2 … … … 𝑐ℓ−1 𝑐ℓ

Un LFSR est donc un automate qui calcule les termes d’une suite à récurrence linéaire d’ordre ℓ initia-
lisée par 𝑧0, … , 𝑧ℓ−1 (le contenu de S (0)) et de récurrence 𝑧𝑡 = 𝑐1𝑧𝑡−1 ⊕ 𝑐2𝑧𝑡−2 ⊕⋯⊕ 𝑐ℓ−1𝑧𝑡−ℓ+1 ⊕ 𝑐ℓ𝑧𝑡−ℓ pour
tout 𝑡 ⩾ ℓ. À chaque instant 𝑡 ⩾ 0, S (𝑡) contient 𝑡 termes consécutifs de la suite S (𝑡) = (𝑧𝑡, 𝑧𝑡+1, … , 𝑧𝑡+ℓ−1).

Proposition II – 5. La suite 𝑧 produite par un LFSR de longueur ℓ est périodique de période T ⩽ 2ℓ − 1.
D’autre part, la période est maximale T = 2ℓ − 1 si et seulement si le polynôme de rétroaction est primitif.
On parle de 𝑚-suite ou 𝑚-séquence.

Démonstration. Un registre peut prendre au plus 2ℓ états. S’il vaut (0, … , 0) alors les registres successifs sont
tous nuls et la suite de sortie est elle-même nulle à partir de ce rang, elle est donc périodique de période 1.

Si les registres ne sont jamais nuls alors parmi les 2ℓ registres S (0), S (1), … , S (2ℓ−1), aumoins deux registres
sont identiques. Supposons S (𝑡0) = S (𝑡0+T), alors la suite des registres S (𝑡0), S (𝑡0+1), … , S (𝑡0+T−1) se répète
indéfiniment. On a donc 𝑧𝑡+T = 𝑧𝑡 pour tout 𝑡 ≥ 𝑡0 avec T ≤ 2ℓ − 1.

On note

– 6 –

3. Chiffrement par flot

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 1 0 0

10

0

0

𝑐ℓ 𝑐ℓ−1 𝑐2 𝑐1

En considérant les registres comme des vecteurs colonnes, cette matrice permet d’exprimer la rétroac-
tion linéaire :

S (𝑡+1) = AS (𝑡).

Ainsi, on a S (𝑡) = A𝑡S (0). En développant par rapport à la première colonne, on remarque que le déterminant
de A est égal à 𝑐ℓ = 1. La matrice A est donc inversible et le LFSR ne passe jamais par le registre nul si
l’état initial S (0) est non nul. La condition S (𝑡0) = S (𝑡0+T) devient A𝑡0S (0) = A𝑡0+TS (0) mais comme A est
inversible, on en déduit S (0) = ATS (0) = S (T) et la suite 𝑠 est périodique.

On montre ensuite que le polynôme caractéristique de A est le polynôme réciproque du polynôme de
rétroaction dont les racines ont le même ordre. En diagonalisant A, on voit que la période de 𝑧 est l’ordre
de A qui est lui même l’ordre des racines du polynôme caractéristique. La période est donc maximale si le
polynôme est primitif.

On admet la réciproque.

Une 𝑚-suite sera souhaitable pour des applications cryptographiques. Remarquons que, dans ce cas,
dans une période, les registres prennent tous les états possibles de Fℓ2 sauf le registre nul. En particulier,
deux telles suites associées aux mêmes coefficients de récurrence mais pas au même état initial sont en fait
décalées l’une de l’autre. D’autre part une 𝑚-suite a de bons critères statistiques.

Proposition II –6. Une m-suite est équilibrée, c’est à dire que dans une période, les nombres de 0 et de
1 diffèrent au plus de 1 (premier critère de Golomb).

Démonstration. On a vu que dans une période, le registre prend toutes les valeurs possibles de Fℓ2 sauf le
registre nul. Le premier élément de chaque registre prend donc 2ℓ−1 fois la valeur 1 et 2ℓ−1 − 1 la valeur 0.
Ce premier élément étant à chaque tour le bit de sortie, on en déduit que dans une période, dans la m-suite
produite, le nombre de 1 et de 0 diffèrent de 1.

On associe à la suite 𝑧 = (𝑧𝑡)𝑡⩾0 la série génératrice

Z(X) = 􏾜
𝑡⩾0
𝑧𝑡X 𝑡.

Proposition II – 7. Une suite 𝑧 strictement périodique est produite par un LFSR de longueur ℓ dont le
polynôme de rétroaction est 𝑓(X) = 1 ⊕ 𝑐1X ⊕ 𝑐2X2 ⊕⋯ ⊕ 𝑐ℓXℓ si et seulement si son développement en
série formelle vérifie

Z(X) = 𝑔(X)/𝑓(X),

où 𝑔 est un polynôme deF2[X] tel que deg(𝑔) < deg(𝑓). En outre, le polynôme 𝑔 est entièrement déterminé
par l’état initial du registre :

𝑔(X) =
ℓ−1
􏾜
𝑖=0
X 𝑖

𝑖
􏾜
𝑗=0
𝑐𝑗𝑧𝑖−𝑗.

– 7 –

Chapitre II : Chiffrement parfait, Chiffrement par flot

Démonstration. Supposons 𝑧 produite par un LFSR de polynôme de rétroaction 𝑐0 ⊕ 𝑐1X ⊕⋯ ⊕ 𝑐ℓXℓ avec
𝑐0 = 𝑐ℓ = 1. On pose

𝑔(X) = Z(X)𝑓(X) = (𝑧0 ⊕ 𝑧1X ⊕⋯)(𝑐0 ⊕ 𝑐1X ⊕⋯⊕ 𝑐ℓXℓ).

On vérifie que 𝑔 est bien un polynôme. On note 𝑔𝑖 le coefficient de g de degré 𝑖. On a 𝑔0 = 𝑧0𝑐0, 𝑔1 =
𝑧0𝑐1 ⊕ 𝑧1𝑐0 et pour tout 𝑖 avec 0 ⩽ 𝑖 < ℓ, 𝑔𝑖 = ∑

𝑖
𝑗=0 𝑐𝑗𝑧𝑖−𝑗. Ensuite, pour tout 𝑖 ⩾ 0,

𝑔ℓ+𝑖 =
ℓ
􏾜
𝑗=0
𝑐𝑗𝑧ℓ+𝑖−𝑗 = 𝑐0𝑧ℓ+𝑖 ⊕ 𝑐1𝑧ℓ+𝑖−1 ⊕⋯⊕ 𝑐ℓ𝑧𝑖 = 0,

car on retrouve l’équation de rétroaction. Donc 𝑔 est bien un polynôme de degré inférieur à ℓ. Réciproque-
ment, si Z(X) = 𝑔(X)/𝑓(X), alors la suite 𝑧 satisfait une récurrence linéaire d’ordre ℓ, donnée par la formule
précédente.

Afin d’obtenir une forme canonique de la série génératrice Z, on définit le polynôme de rétroaction
minimal : c’est un diviseur de 𝑓(X), qui de plus est le polynôme de plus bas degré parmi les polynômes de
rétroaction de tous les LFSR possibles qui génèrent la suite 𝑧.

Définition II – 8. Soit un LFSR de longueur ℓ d’initialisation non nulle et 𝑧 sa suite de sortie supposée
strictement périodique. Son polynôme de rétroaction minimal est l’unique polynôme unitaire 𝑓 de
F2[X] tel qu’il existe 𝑔 ∈ F2[X], avec deg(𝑔) < deg(𝑓) et pgcd(𝑓, 𝑔) = 1, vérifiant Z(X) = 𝑔(X)/𝑓(X). La
complexité linéaire du LFSR produisant la suite 𝑧, notée Λ(𝑧), est alors égale au degré de 𝑓 : c’est la
longueur du plus petit LFSR permettant d’engendrer 𝑧.

Si le polynôme de rétroaction est irréductible de degré ℓ, on a Λ(𝑧) = ℓ.

Un LFSR de polynôme de rétroaction primitif est donc un bon candidat pour construire un chiffrement
par flot : on a une implantation logicielle et matérielle très rapide, de bonnes propriétés statistiques et une
grande période possible (un LFSR de ℓ bits peut produire une suite de 2ℓ − 1 bits). Cependant, on ne peut
pas les utiliser directement : ℓ bits consécutifs de la suite chiffrante (obtenue par une attaque à clairs connus
avec ℓ bits de clairs) fournissent directement l’état interne. Une solution pourrait être de garder comme
clef secrète la fonction de rétroaction, donc la valeur de (𝑐1, … , 𝑐ℓ) : même si on récupère l’état interne, on
ne pourrait « dérouler » ou « rembobiner » le LFSR. Cependant…

Proposition II –9. Soit 𝑧 une suite produite par un LFSR de longueur ℓ et de polynôme de rétroaction
𝑓 irréductible de degré ℓ. Si on connaît 2ℓ bits consécutifs de 𝑧 alors on peut retrouver les coefficients de
rétroaction en inversant un système linéaire ℓ × ℓ.

Démonstration. Comme 𝑧 est une suite produite par un LFSR de longueur ℓ et de polynôme de rétroac-
tion 𝑓 irréductible de degré ℓ, on a Λ(𝑧) = ℓ. On suppose que l’on connaît 2ℓ bits à partir du temps 𝑡 :
𝑧𝑡, 𝑧𝑡+1, 𝑧𝑡+2, … , 𝑧𝑡+2ℓ−1. On construit le système linéaire suivant :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑧𝑡 𝑧𝑡+1 𝑧𝑡+2 … 𝑧𝑡+ℓ−1
𝑧𝑡+1 𝑧𝑡+2 … … 𝑧𝑡+ℓ
⋮ ⋮ ⋮ ⋮ ⋮

𝑧𝑡+ℓ−2 … … … 𝑧𝑡+2ℓ−3
𝑧𝑡+ℓ−1 𝑧𝑡+ℓ … … 𝑧𝑡+2ℓ−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐ℓ
𝑐ℓ−1
⋮
𝑐2
𝑐1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑧𝑡+ℓ
𝑧𝑡+ℓ+1
⋮

𝑧𝑡+2ℓ−2
𝑧𝑡+2ℓ−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Les lignes de la matrice sont les registres S (𝑡), S (𝑡+1), … , S (𝑡+ℓ−1). Si le système a une solution, les coefficients
de rétroaction seront donc bien solutions. Onmontre en fait que le système a une unique solution en mon-
trant que les lignes sont indépendantes (par l’absurde, on montre que sinon cela donnerait une récurrence
linéaire sur la suite d’ordre < ℓ, ce qui contredit le fait que Λ(𝑧) = ℓ).

Si la longueur du LFSR est ℓ, sa complexité linéaire est au plus ℓ. Donc en la devinant, la proposition
montre que l’on peut retrouver le LFSR en temps au plus𝒪 (ℓ4) avec seulement 2ℓ bits consécutifs de suite

– 8 –

3. Chiffrement par flot

chiffrante. Cette attaque polynomiale empêche d’utiliser tel quel un LFSR. De plus, on peut faire mieux
(en temps 𝒪 (ℓ2) avec un algorithme du à Berlekamp et Massey).

En pratique, la mise à jour des chiffrements à flot actuels fait également intervenir au moins un com-
posant non linéaire (des fonctions booléennes), par exemple SNOW3G et ZUC sont des constructions de
type LFSR filtré : l’état interne d’un LFSR est l’entrée d’une fonction non linéaire qui produit le bit de
suite chiffrante.

– 9 –

Chapitre II : Chiffrement parfait, Chiffrement par flot

– 10 –

Chapitre III

Chiffrement par bloc

1. Introduction,modes opératoires

Un algorithme de chiffrement par bloc est un algorithme de cryptographie symétrique. Il prend en
entrée unmessage clair de 𝑛 bits (que l’on peut voir comme un élément deF𝑛2) et donne en sortie un chiffré,
qui est un autre bloc de bits (en général également 𝑛), en utilisant une clef secrète 𝑘. Si le message clair est
de taille plus grande que 𝑛 on le découpe en des blocs,𝑚0, 𝑚1, … de taille 𝑛. Puis pour chaque 𝑡 = 0, 1, 2, … ,
on applique le chiffrement. Le déchiffrement se fait de manière similaire, avec la même clef 𝑘.

On peut voir la fonction de chiffrement comme une permutation de F𝑛2 sélectionnée par la clef (2ℓ
choix pour une clef de ℓ bits) parmi les 2𝑛! possibles. Tout l’enjeu est de produire une permutation la plus
« aléatoire » possible tout en gardant une certaine structure pour avoir un algorithme de longueur succincte
(décrire une permutation sans structure quelconque se fait en donnant la liste de ses images ici 2𝑛 × 𝑛 bits
et 𝑛 = 128 en pratique). Contrairement au chiffrement par flot, les chiffrements par blocs n’ont pas d’état
interne, et sont en général plus complexes à évaluer.

𝑚𝑡

E𝑘

𝑐𝑡

𝑐𝑡

D𝑘

𝑚𝑡

Ci-dessus le mode ECB, Electronic CodeBook. Ce mode ne cache pas les redondances éventuelles du
texte clair, (par exemple si 𝑚𝑖 = 𝑚𝑗 avec 𝑖 ≠ 𝑗 alors 𝑐𝑖 = 𝑐𝑗). On n’a donc pas de sécurité sémantique.

D’autres modes opératoires remédient à ce problème. Par exemple, le mode OFB (Output FeedBack)
permet d’obtenir un chiffrement par flot :

– 11 –

Chapitre III : Chiffrement par bloc

IV

E𝑘

𝑧0

𝑚0 𝑐0

E𝑘

𝑧1

𝑚1 𝑐1

E𝑘

𝑧2

𝑚2 𝑐2

Il en est de même du mode CTR (compteur) où 𝑐𝑡 = 𝑚𝑡 ⊕ E(𝑘, IV ⊕ ⟨𝑡⟩𝑛) où ⟨𝑡⟩𝑛 est la représentation
de l’entier 𝑡 sur 𝑛 bits. Comparé au mode OFB, ce mode, très populaire, permet de procéder directement
au chiffrement ou déchiffrement à n’importe quel temps sans devoir générer toute une suite chiffrante.

Autre exemple, le mode CBC (Cipher Block Chaining) utilise le schéma suivant :

𝑚0

E𝑘

𝑐0

IV

𝑚1

E𝑘

𝑐1

𝑚2

E𝑘

𝑐2

Tous ces modes (sauf ECB) permettent d’avoir une sécurité sémantique pour des attaques à chif-
frés seuls, en idéalisant le chiffrement par bloc utilisé, quel que soit le choix d’IV (fixe, number used once
(nonce), aléatoire). Si l’IV est pris aléatoirement, on peut également montrer que tous ces modes (sauf ECB)
donnent une sécurité sémantique pour des attaques à clairs choisis. Ainsi on assure bien la confidentialité
des données échangées. Cependant ces modes ne protègent pas contre un attaquant qui modifierait les
chiffrés ou des attaques à chiffrés choisis. Nous verrons comment assurer l’intégrité des données et les
authentifier au chapitre suivant.

La construction des chiffrements par bloc utilise la plupart du temps un schéma itératif. Les itérations,
appelées tours ou rondes, sont en général identiques (à part la première et la dernière), seule la clef de tour,
créée à partir de la clef secrète 𝑘 au moyen d’un algorithme dit de cadencement de clef, change.

𝑚 = 𝑥0 𝑥1 𝑥2 … 𝑥𝑟 = 𝑐

FK0 FK1 FK𝑟−1

Cette construction itérative permet une description concise de l’algorithme de chiffrement. On doit
juste décrire la permutation F et l’algorithme de cadencement de clefs. Pour obtenir cette permutation F,
deux classes générales de constructions ont été proposées : les schémas de Feistel et les schémas substitu-
tion permutation (SPN).

– 12 –

2. Schéma de Feistel, le DES

2. Schéma de Feistel, le DES

Cette construction a été introduite par Feistel dans les années 70. On suppose que le bloc de message
clair est de longueur paire 𝑛 et on le découpe en deux blocs de longueur 𝑛

2 , notés L0 et R0. On note
𝑚 = L0||R0. À chaque tour 𝑖 = 1, 2, … , 𝑟, on prend en entrée un bloc (L𝑖−1, R𝑖−1) et on le transforme en un
bloc (L𝑖, R𝑖) en faisant intervenir la clef de tour K𝑖. On note 𝑓 une fonction prenant en entrée et en sortie
des blocs de 𝑛/2 bits. La transformation se fait par les formules :

L𝑖 = R𝑖−1, R𝑖 = L𝑖−1 ⊕ 𝑓(K𝑖, R𝑖−1)

L𝑖−1 R𝑖−1

𝑓
K𝑖

L𝑖 R𝑖

Au bout de 𝑟 tours, le chiffré est 𝑐 = R𝑟||L𝑟 (on ne « croise » pas les flèches au dernier tour). Ce schéma
est inversible, (si l’on connaît les clefs de tours), que 𝑓 soit une bijection ou non. En effet, on a

R𝑖−1 = L𝑖, L𝑖−1 = R𝑖 ⊕ 𝑓(K𝑖, R𝑖−1).

R𝑖 L𝑖

𝑓
K𝑖

R𝑖−1 L𝑖−1

Le déchiffrement de 𝑐 = R𝑟||L𝑟 se fait donc avec exactement le même procédé que le chiffrement
en appliquant les clefs de tours dans l’ordre inverse. On retrouve bien, à la dernière étape, (toujours sans
croiser) L0||R0.

Le DES, Data Encryption Standard, standard de chiffrement par bloc de 1977 à 2000 utilise un
schéma de Feistel. Les blocs de clair et chiffré sont de 64 bits, la clef secrète de 56 bits et les clefs de tour
de 48 bits. On effectue 16 tours de schéma de Feistel avec des permutations initiale et finale.

La fonction de tour opère sur desmots de 32 bits. Elle est la composition de plusieurs fonctions, suivant
le schéma suivant.

– 13 –

Chapitre III : Chiffrement par bloc

32 bits

48 bits

K (clef de tour)

(8 fois 6 bits)

(8 fois 4 bits)

32 bits

E

S1 S2 S3 S4 S5 S6 S7 S8

P

La fonction d’expansion E est linéaire de F322 → F482 (on répète certains bits). La fonction P est une
permutation des 32 bits, donc aussi une fonction linéaire de F322 → F322 . Ces deux fonctions, E et P ap-
portent de la diffusion c’est-à-dire que si l’on change un bit en entrée, cette modification va se propager
sur l’ensemble de l’état interne.

Les fonctions S1, … , S8 sont appelées boîtes S ou S-box. Ce sont des fonctions dites booléennes vec-
torielles, ici deF62 → F42, non linéaires. Les boites S sont décrites par la table des 26 sorties possibles. Elles
permettent d’apporter de la confusion : le but est de rendre complexe les relations entre bits de chiffré
et bits de clef.

Les concepts de diffusion et confusion ont été introduits par Shannon en 1949. Les chiffrements par
blocs modernes sont bâtis sur l’alternance de ces étapes de confusion et de diffusion.

Voir https://en.wikipedia.org/wiki/DES_supplementary_material pour une description pré-
cise de ses fonctions.

Pour palier à la faiblesse du DES due à sa clef de 56 bits trop courte, on utilise encore couramment
aujourd’hui (dans le monde bancaire) une variante utilisant 3 clefs DES 𝑘1, 𝑘2, 𝑘3, appelée Triple DES.
Cela consiste à composer trois fois le DES (donc trois fois plus lent que le DES) de la manière suivante :

𝑐 = E􏿵𝑘3, D􏿴𝑘2, E(𝑘1, 𝑚)􏿷􏿸,

avec trois options sur le choix des clefs :

Option 1 : trois clefs distinctes, ce qui revient à 168 bits de clef ;

Option 2 : 𝑘1 = 𝑘3 et 𝑘2 ≠ 𝑘1, ce qui revient à 112 bits de clef ;

Option 3 : 𝑘1 = 𝑘2 = 𝑘3, une seule clef de 56 bits, et 𝑐 = E(𝑘1, 𝑚) on a un chiffrement classique du
DES pour garantir la compatibilité (ce qui explique pourquoi on alterne chiffrement et
déchiffrement).

3. Schéma substitution permutation (SPN), l’AES
C’est une autre construction itérative de chiffrement par bloc. On utilise maintenant une fonction de

tour bijective en alternant les opérations de diffusion et de confusion. On effectue une étape initiale d’ajout
bit à bit de la première clef de tour : 𝑥0 = 𝑚 + K0. Puis pour 𝑖 = 1, … , 𝑟, on calcule 𝑥𝑖 = FK𝑖 (𝑥𝑖−1) pour
obtenir 𝑐 = 𝑥𝑟. La fonction 𝑓 commence par l’application de ℓ boîtes S bijectives (étape de confusion) sur
𝑥𝑖−1 découpé en ℓ sous blocs, pour donner un nouveau bloc 𝑢𝑖. Puis on applique une permutation P (étape
de diffusion) sur les bits de 𝑢𝑖, on note 𝑣𝑖 le résultat. Enfin, on ajoute la clef de tour : 𝑥𝑖 = 𝑣𝑖 + K𝑖.

– 14 –

https://en.wikipedia.org/wiki/DES_supplementary_material

3. Schéma substitution permutation (SPN), l’AES

𝑥𝑖−1

𝑢𝑖

𝑣𝑖

K𝑖 (clef de tour)

𝑥𝑖

P

S1 S2 Sℓ

L’étape initiale évite qu’un attaquant puisse calculer le début du chiffrement jusqu’à l’ajout de clef K1.
Le déchiffrement se fait en « remontant » tout le chiffrement, toutes les opérations étant inversibles.

Un exemple de tel schéma est l’AES, Advanced Encryption Standard. Ce standard pour remplacé
le DES est issu d’un concours qui s’est déroulé de 1997 à 2001. Le vainqueur a été l’algorithme Rijndael
conçu par Joan Daemen et Vincent Rijmen. L’AES utilise une clef du 128, 192 ou 256 bits avec des blocs
de 128 bits. Suivant la taille de la clef, le nombre de tours (en plus de l’étape initiale d’ajout de clef 𝑘0) est
respectivement 10, 12 et 14. On détaille le fonctionnement de l’AES dans le cas 128 bits.

L’état interne est vu comme un tableau de 4 × 4 octets. Chaque octet étant identifié avec un élément
de F28 par le choix du polynôme irréductible (non primitif)

T(X) = X8 + X4 + X3 + X + 1.

En notant α = X mod T(X), on a

F256 =

⎧⎪⎪⎨
⎪⎪⎩

7
􏾜
𝑖=0
𝑏𝑖α𝑖, 𝑏𝑖 ∈ F2

⎫⎪⎪⎬
⎪⎪⎭ .

Ainsi comme les éléments de F2 sont les bits 0 et 1, un élément de F256 peut être représenté par 8 bits,
c’est à dire un octet. Plus précisément, dans l’AES, chaque élément 𝑏0 + 𝑏1α +⋯+ 𝑏7α7 est identifié avec
l’octet (𝑏7, 𝑏6, … , 𝑏0) ∈ F2 (Attention au sens d’écriture !).

L’état est ainsi une matrice deℳ4(F28), l’ensemble des matrices 4 × 4 à coefficients dans F28 .

La fonction de diffusion est la composée de deux fonctions linéaires, ShiftRows et MixColumns. La
fonction ShiftRows consiste en une permutation circulaire des lignes de la matrice tandis que MixColumns
est une multiplication par une matrice fixe inversible de ℳ4(F28). Ces fonctions linéaires n’agissent que
sur les octets, et pas sur les bits de l’état.

La fonction de substitution, SubBytes, consiste en une seule boîte S appliquée 16 fois, sur chaque
octet de l’état. Cette fonction consiste à composer l’inversion dans F28 (complétée par 0 ↦ 0) avec une
transformation affine dansF82, du typeA𝑥+𝑏 avecA une matrice inversible fixe deℳ8(F2) et 𝑏 un vecteur
fixe de F82. Cette transformation permet de casser le caractère algébrique de l’inversion.

Tout le déroulement de l’AES suit le schéma général d’un SPN, hormis le tour final qui n’inclut pas la
fonction MixColumns. Au final, le fonctionnement à haut niveau de l’AES est le suivant. On part d’un bloc
de 128 bits de texte clair et on applique successivement sur ce bloc les opérations suivantes :

1. AddRoundKey(K0) ;

2. Pour 𝑖 = 0,… , 𝑟−2, on effectue le tour comportant les 4 opérations SubBytes, ShiftRows, MixColumns,
AddRoundKey(K𝑖+1) dans cet ordre ;

3. Un dernier tour ne comporte plus que 3 étapes : SubBytes, ShiftRows, AddRoundKey(K𝑟) ;

4. Le contenu actuel du bloc donne les 128 bits du texte chiffré.

– 15 –

Chapitre III : Chiffrement par bloc

De nombreuses attaques ont été proposées sur des versions réduites de l’AES (en réduisant le nombre
de tours). À ce jour la meilleure attaque connue sur l’AES complet (Bogdanov, Khovratovich, Rechberger,
2011) ne gagne qu’un facteur 4 sur la recherche exhaustive (donc 2126 opérations pour une clef de 128 bits).

On détaille maintenant le fonctionnement plus précis des 4 opérations de l’AES.

Représentation des éléments
Tout d’abord, le message clair, puis chaque résultat intermédiaire est un bloc de 128 bits. On le voit

comme 16 × 8 bits c’est à dire 16 octets. On range ces octets dans un tableau 4 × 4 :

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

D’autre part, comme vu dans la section précédente, chaque octet est identifié avec un élément du corps
fini F256.

SubBytes (boîte S)
Elle opère indépendamment sur chacun des 16 octets. C’est la composée S = 𝑓 ∘ I des applications

I ∶ F256 → F256

𝑥 ↦
⎧⎪⎨
⎪⎩
𝑥−1 si 𝑥 ≠ 0,
0 si 𝑥 = 0,

et
𝑓 ∶ (F2)8 → (F2)8

𝑦 ↦ A𝑦 + B

oùA est unematrice 8×8 à coefficients dansF2, B est un vecteur de (F2)8, explicités en dessous. Plus préci-
sément, on identifie comme on l’a vu l’élément∑7

𝑖=0 𝑦𝑖α𝑖 deF256 calculé par I avec l’octet 𝑦 = (𝑦7, 𝑦6, … , 𝑦0)
puis on calcule A𝑦 + B ainsi : ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

En pratique, lorsque l’on implante l’AES, cette boîte S est donnée par une table décrivant toutes les
sorties1, on ne fait pas les calculs dans le corps F256 et dans l’espace vectoriel (F2)8.

La fonction I d’inversion dans le corps F256 a été choisie car on peut montrer qu’elle a de très bonnes
propriétés pour se protéger contre certaines attaques avancées. Ensuite, on compose par la fonction affine
𝑓 pour casser le caractère algébrique de I et enlever le point fixe 0 ↦ 0.

ShiftRows
Elle fait subir une permutation circulaire vers la gauche aux lignes du tableau, respectivement de 0, 1,

2, 3 cases :
1On peut la trouver ici : https://en.wikipedia.org/wiki/Rijndael_S-box

– 16 –

https://en.wikipedia.org/wiki/Rijndael_S-box

3. Schéma substitution permutation (SPN), l’AES

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

⟶

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,0
𝑎2,2 𝑎2,3 𝑎2,0 𝑎2,1
𝑎3,3 𝑎3,0 𝑎3,1 𝑎3,2

MixColumns
Elle s’interprète comme une multiplication matricielle :

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

⟶

𝑏0,0 𝑏0,1 𝑏0,2 𝑏0,3
𝑏1,0 𝑏1,1 𝑏1,2 𝑏1,3
𝑏2,0 𝑏2,1 𝑏2,2 𝑏2,3
𝑏3,0 𝑏3,1 𝑏3,2 𝑏3,3

où ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏0,0 𝑏0,1 𝑏0,2 𝑏0,3
𝑏1,0 𝑏1,1 𝑏1,2 𝑏1,3
𝑏2,0 𝑏2,1 𝑏2,2 𝑏2,3
𝑏3,0 𝑏3,1 𝑏3,2 𝑏3,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α α + 1 1 1
1 α α + 1 1
1 1 α α + 1

α + 1 1 1 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

est le produit des matrices à coefficients dans F256. La matrice de cette opération a été choisie pour ses
propriétés de diffusion.

AddRoundKey(𝑘𝑖+1)
C’est l’addition bit à bit (le xor) de la clef de tour 𝑘𝑖+1, case par case.
L’algorithme de cadencement de clefs, voir par exemple https://en.wikipedia.org/wiki/AES_key_

schedule pour une description, calcule à partir de la clef secrète 𝑘 une suite de 𝑟+1 clefs de tour (𝑘0, … , 𝑘𝑟),
comportant toutes 128 bits.

– 17 –

https://en.wikipedia.org/wiki/AES_key_schedule
https://en.wikipedia.org/wiki/AES_key_schedule

Chapitre III : Chiffrement par bloc

– 18 –

Chapitre IV

fonctions de hachage, MAC

1. fonctions de hachage

Une fonction de hachage ℎ est une application prenant en entrée des messages, des suites de bits de
longueurs quelconques et retournant un haché ou une empreinte de longueur fixé, par exemple une suite
binaire de longueur 𝑛 :

ℎ ∶ {0, 1}∗ ⟶ {0, 1}𝑛.

On veut que ℎ soit rapide à évaluer.
Originellement, ces fonctions ont été introduites dans le contexte des bases de données afin d’y « ran-

ger » des objets de natures diverses. On cherche donc en général à éviter les collisions (le fait que ℎ(𝑥) = ℎ(𝑦)
pour 𝑥 ≠ 𝑦) pour éviter que deux objets ne se retrouvent au même endroit, ce qui allonge la recherche dans
la base de données. En cryptographie, on veut des propriétés plus restrictives (on parle parfois de fonc-
tions de hachage cryptographiques).

Propriétés de sécurité attendues

• À sens-unique : étant donné un haché 𝑦 ∈ {0, 1}𝑛 il est difficile de trouver 𝑚 ∈ {0, 1}∗ tel que
ℎ(𝑚) = 𝑦.

• Résistance à la seconde pré-image : étant donné un message 𝑚 ∈ {0, 1}∗, il est difficile de trouver
𝑚′ ≠ 𝑚 avec 𝑚′ ∈ {0, 1}∗ tel que ℎ(𝑚) = ℎ(𝑚′).

• Résistance aux collisions : il est difficile de trouver𝑚 ≠ 𝑚′ avec𝑚,𝑚′ ∈ {0, 1}∗ tels que ℎ(𝑚) = ℎ(𝑚′).

Si ℎ n’est pas injective, il existe des collisions. Par exemple, si ℎ désigne l’application qui a une personne
associe le jour de son anniversaire (à valeurs dans {1, … , 365}), alors le paradoxe des anniversaires nous dit
qu’avec 23 évaluations différentes de ℎ on a plus de 50% de chances d’avoir une collision. De manière
générale, si ℎ est à valeurs dans {0, 1}𝑛, en 𝒪 (2𝑛/2) évaluations on a une bonne probabilité d’obtenir une
collision. En pratique, on prend aujourd’hui 𝑛 ⩾ 256 pour avoir une sécurité de 128 bits : la meilleure
attaque prend plus de 2128 opérations.

Plus généralement, on aimerait qu’une fonction de hachage se comporte comme un oracle aléatoire :
pour obtenir le haché de 𝑚, on soumet 𝑚 à un oracle modélisant ℎ qui répond par une valeur aléatoire de
{0, 1}𝑛, ℎ(𝑚), obtenue avec équiprobabilité. Par contre, si on a déjà soumis 𝑚 à l’oracle, alors on obtient la
même valeur ℎ(𝑚).

– 19 –

Chapitre IV : fonctions de hachage, MAC

Quelques Applications
Une application directe est d’assurer l’intégrité de messages ou de fichiers. Modifier un fichier donné

afin qu’il ait toujours un haché donné correspond à trouver une seconde pré-image (mais cette application
pose le problème de l’intégrité du haché).

Une autre application est la vérification demot de passe. Plutôt que de stocker des mots de passe
sur un serveur, on stocke leur haché. Lors d’une authentification, le serveur hache le mot de passe reçu
et compare les hachés. Cela évite la divulgation des mots de passe en cas de compromission du serveur.
Retrouver les mots de passe à partir du haché revient à attaquer la notion de sens-unique (en général on
fait une attaque par dictionnaire, le mot de passe appartenant à un ensemble de cardinal petit).

D’autres applications comme extracteur d’aléa, pour la génération de mot de passe à usage unique
(One-Time Password), ou la dérivation de clefs de chiffrement symétrique (à partir d’un mot de passe par
exemple).

On verra d’autres applications pour les signatures numériques. On ne signe pas directement un
message mais un haché du message. Le chiffrement asymétrique utilise aussi souvent des fonctions de
hachage (par exemple le standard RSA-OAEP) pour résister aux attaques à chiffrés choisis.

2. MAC
C’est une primitive proche des fonctions de hachage : Message authentication code (MAC). Lors d’une

communication, unMAC permet de garantir l’intégrité dumessage et authentifie l’expéditeur par l’uti-
lisation d’une clef secrète.

Alice
𝑘

Bob
𝑘

𝑚
MAC(𝑘, 𝑚) = mac 􏿿 MAC(𝑘, 𝑚) ?= mac

La notion de sécurité la plus forte pour un MAC consiste à ce qu’un attaquant ne puisse créer un
nouveau MAC valide étant connus des couples (𝑚𝑖,MAC(𝑘, 𝑚𝑖)) pour des 𝑚𝑖 de son choix.

On peut construire des MAC directement, par des chiffrements par blocs, ou à partir de fonctions
de hachage. Une construction populaire, HMAC, proposée par Bellare, Canetti, et Krawczyk en 1996, est
standardisée et utilisée dans de nombreux protocoles. On a HMAC(𝑘, 𝑚) = ℎ(𝑘2||ℎ(𝑘1||𝑚)) avec 𝑘2 = 𝑘⊕opad
et 𝑘1 = 𝑘 ⊕ ipad, avec opad et ipad des constantes. La notation || désigne la concaténation des chaînes
binaires. On verra en TD pourquoi on évite des constructions plus simples du type MAC(𝑘, 𝑚) = ℎ(𝑘||𝑚)
avec certaines fonctions de hachage.

Retour sur lesmode opératoires
Pour assurer confidentialité, intégrité et authentification d’une communication on combine un mode

opératoire d’un chiffrement par bloc avec un MAC ou un procédé plus léger apportant ces propriétés. On
parle de chiffrement authentifié (Authenticated Encryption).

Exemples
Uneméthode générique (Encrypt-then-MAC) : on chiffre𝑚 en 𝑐 = E(𝑘1, 𝑚) et on l’envoie au destinataire

avec mac = MAC(𝑘2, 𝑐). Celui-ci connaissant (𝑘1, 𝑘2) peut déchiffrer et vérifier le mac afin de prendre en
compte ou non le message. Ceci permet d’obtenir une sécurité sémantique contre des attaques à chiffrés
choisis où l’attaquant peut obtenir le déchiffrement de certains messages.

Le mode opératoire GCM (Galois/counter mode) combine le mode compteur avec un procédé d’authen-
tification adapté. Voici une présentation simplifiée1 : on utilise tout d’abord le mode CTR pour obtenir

1On peut trouver une description complète ici https://en.wikipedia.org/wiki/Galois/Counter_Mode, incluant le traite-
ment de la longueur du message et de données additionnelles non chiffrées.

– 20 –

https://en.wikipedia.org/wiki/Galois/Counter_Mode

3. Constructions de fonctions de hachage

une suite de chiffré 𝑐0, 𝑐1, 𝑐2, … en utilisant un chiffrement par bloc de 128 bits, E avec une clef 𝑘. On dé-
signe par H = E(𝑘, 00⋯00) le chiffrement du bloc nul. On voit les blocs de 128 bits comme éléments du
corps F2128 pour un certain choix de polynôme minimal. On calcule ensuite successivement 𝑥0 ∶= 𝑐0 × H
dans ce corps puis 𝑥1 = (𝑥0 + 𝑐1) × H, 𝑥2 = (𝑥1 + 𝑐2) × H… La valeur finale sera une sorte de mac, qui
pourra être vérifiée par le même procédé par le destinataire. Ce mode est un standard très performant et
populaire couplé avec l’AES (WPA-3, SSH, TLS…).

Un concours (Competition for Authenticated Encryption : Security, Applicability, and Robustness, CAESAR) a
été organisé (2013-2019), plusieurs nouveaux schémas et modes opératoires ont été sélectionnés suivant les
cas d’applications (Ascon, AEGIS-128, Deoxys-II, ACORN, OCB, COLM).

3. Constructions de fonctions de hachage

Exemples
• MD5 128 bits, Rivest 1992, collision en quelques secondes, obsolète.

• SHA1, 160 bits, NIST 1993, collision trouvée en 263.1 opérations par Stevens, Bursztein, Karpman,
Albertini, Markov en 2017, obsolète

• SHA2, plusieurs variantes de 224 à 512 bits, NIST 2001, pas d’attaque sur la fonction complète

• SHA3, vainqueur de la compétition du NIST (2007-2012), Keccak, 224 à 512 bits, Bertoni, Daemen,
Peeters, Van Assche, 2008

Les attaques par collisions sont des attaques dites différentielles : on considère une paire de messages
avec une petite différence et on cherche à contrôler la propagation des différences.

Construction deMerkle-Damgård
Cette construction est suivie par les fonctions MD5, SHA1 et SHA2 avec des variations sur les ité-

rations initiale et finale. Elle permet de transformer une fonction de hachage admettant une entrée de
longueur fixée (dite fonction de compression) en une fonction de hachage admettant une entrée de lon-
gueur (presque) quelconque. On note 𝑓 une fonction de compression de {0, 1}𝑛+𝑘 dans {0, 1}𝑛, avec 𝑘 > 0.
Soit IV un élément fixé de {0, 1}𝑛. Soit 𝑚 message à hacher. On commence par découper 𝑚 en ℓ blocs de
𝑘 bits, 𝑚0, … ,𝑚ℓ−1 en « paddant » 𝑚ℓ−1 par 10000… pour obtenir un bloc de 𝑘 bits. Dans le bloc 𝑚ℓ, on
code sur exactement 𝑘 bits le nombre de bits du message 𝑚. Il faut donc que 𝑚 ait strictement moins de
2𝑘 bits. Ce rajout de la longueur de 𝑚 est parfois appelé Merkle–Damgård strengthening. Il permet d’éviter
que le haché de 𝑚 soit le même que celui d’une sous-chaîne de 𝑚 en ajustant l’IV, ou alors de construire
des collisions à l’aide d’une pré-image de l’IV.

On note 𝑧0 = IV et pour 𝑖 = 0,… , ℓ, 𝑧𝑖+1 = 𝑓(𝑚𝑖||𝑧𝑖). Le haché ℎ(𝑚) de 𝑚 est alors ℎ(𝑚) = 𝑧ℓ+1.

IV 𝑓

𝑚0

𝑓

𝑚1

… 𝑓

𝑚ℓ−1

𝑓

𝑚ℓ

ℎ(𝑚)
𝑧1 𝑧2 𝑧ℓ−1 𝑧ℓ 𝑧ℓ+1

Théorème IV– 1 (Merkle, Damgård 1989). Soit 𝑓 une fonction de compression résistante aux collisions.
La construction précédente appliquée à 𝑓 donne une fonction de hachage ℎ résistante aux collisions.

– 21 –

Chapitre IV : fonctions de hachage, MAC

Démonstration. Soit 𝑚 ≠ 𝑚′ tel que ℎ(𝑚) = ℎ(𝑚′). Supposons que 𝑚 et 𝑚′ aient des longueurs différentes.
La dernière itération donne ℎ(𝑚) = 𝑓(𝑚ℓ||𝑧ℓ) = ℎ(𝑚′) = 𝑓(𝑚′

ℓ′ ||𝑧′ℓ′). On a alors 𝑚ℓ ≠ 𝑚′
ℓ puisque ce bloc

code la longueur. Donc on a trouvé une collision sur 𝑓.
Supposons maintenant 𝑚 et 𝑚′ de même longueur, ce qui implique que le nombre d’itérations est le

même pour 𝑚 et 𝑚′ : ℓ = ℓ′. On a 𝑓(𝑚ℓ||𝑧ℓ) = 𝑓(𝑚′
ℓ||𝑧′ℓ), avec 𝑚ℓ = 𝑚′

ℓ. Soit 𝑧ℓ ≠ 𝑧′ℓ et on a trouvé une
collision sur 𝑓, soit 𝑧ℓ = 𝑧′ℓ. Dans ce cas, on a, à l’itération précédente, 𝑓(𝑚ℓ−1||𝑧ℓ−1) = 𝑓(𝑚′

ℓ−1||𝑧′ℓ−1), soit
𝑚ℓ−1||𝑧ℓ−1 ≠ 𝑚′

ℓ−1||𝑧′ℓ−1 et on a trouvé une collision, soit 𝑚ℓ−1||𝑧ℓ−1 = 𝑚′
ℓ−1||𝑧′ℓ−1. On remonte ainsi jusqu’à

trouver une collision sur 𝑓. S’il n’y a pas de collision, 𝑚𝑖||𝑧𝑖 = 𝑚′
𝑖 ||𝑧′𝑖 pour 𝑖 = 0 à ℓ, ce qui implique que

𝑚 = 𝑚′ et on a une contradiction.

Pour SHA2, SHA256 (et SHA224 qui est une version tronquée) on utilise Merkle Damgård avec une
fonction 𝑓 de compression {0, 1}𝑛+𝑘 dans {0, 1}𝑛 avec 𝑛 = 256 et 𝑘 = 512. Cette fonction 𝑓 consiste à
effectuer 64 tours opérant sur un état interne de 8×32 bits en composant des permutations, des additions
modulo 232, des rotations, et l’application de fonctions booléennes simples.Demême, SHA512 (et SHA384)
utilise 𝑛 = 512 et 𝑘 = 1024 et une fonction 𝑓 de 80 tour opérant sur un état interne de 8 × 64 bits.

Fonctions éponges
Une autre construction de fonction de hachage a été proposée et utilisée par les auteurs de Keccak

(Bertoni, Daemen, Peeters, Van Assche), le vainqueur du concours SHA3 : les fonctions éponges. Un état
interne de 𝑟 + 𝑐 bits est utilisé. On note 𝑚0, … ,𝑚ℓ−1 le message avec padding, découpé en blocs de 𝑟 bits.
À chacun des ℓ tours, le bloc 𝑚𝑖 est ajouté bit à bit aux 𝑟 premiers bit de l’état, puis une permutation 𝑓 est
appliqué à l’état (c’est la partie d’absorption). Une fois que tout le message a été traité, le haché est produit
sur plusieurs tours : à chaque tour les 𝑟 premiers bits de l’état donnent une partie du haché (𝑧0, 𝑧1, … sur le
dessin ci-dessous), et la fonction 𝑓 est appliquée sur l’état (c’est la partie où l’on presse l’éponge). Quand 𝑓
est une permutation aléatoire, les sorties de cette construction sont indistinguables d’un oracle aléatoire.

0

0
𝑓

𝑚0

𝑓

𝑚1

…

…
𝑓

𝑚ℓ−1

𝑓

𝑧0

𝑓

𝑧1

…

…𝑐

𝑟

absorption pressage

SHA3 a été standardisé par le NIST en 20152. Comme pour SHA2, plusieurs versions de SHA3 sont
spécifiées : SHA3-224, SHA3-256, SHA3-384, SHA3-512, Ces versions correspondent à fixer 𝑟 + 𝑐 = 1600
bits dans la construction de Keccak. Les tailles de hachés 𝑛 sont respectivement 224, 256, 384 et 512 bits,
et 𝑐 = 2𝑛, on a donc 𝑟 égal respectivement à 1152, 1088, 832 ou 576 suivant la taille du haché. L’état interne,
de 1600 bits est donc beaucoup plus gros que pour les fonctions basées sur Merkle Damgård. Un seul tour
de pressage d’éponge est effectuée comme 𝑟 est plus grand que 𝑛 (les 𝑛 bits de poids fort sont utilisés).

La permutation 𝑓 est construite en appliquant 24 fois une fonction de tour. L’état interne est vu comme
un pavé de 5×5×64 bits. Cette fonction de tour est la composition de 5 fonctions. La première, θ, consiste
à rajouter à chaque bit de l’état la parité de deux colonnes. La deuxième ρ, est une rotation circulaire sur
chaque ligne (dans le sens de l’axe des 𝑧). La fonction π, est une permutation des bits de chaque tranche du
plan (𝑥, 𝑦). La fonction χ est la seule fonction non linéaire, elle consiste à appliquer la fonction booléenne
𝑥1⊕𝑥2𝑥3⊕𝑥3 sur 3 bits d’unemême ligne (dans le sens de l’axe des 𝑥). Enfin la fonction ι, change uniquement
une ligne (dans le sens de l’axe des 𝑧) en lui ajoutant une constante ne dépendant que du numéro de tour,
calculée à l’aide d’un LFSR.

2cf. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

– 22 –

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

Chapitre V

Cryptographie fondée sur le problème du
logarithme discret

1. Le problème du logarithme discret

Définition

Soit (G, ×) un groupe cyclique d’ordre 𝑛 et 𝑔 un générateur. G = ⟨𝑔⟩ = {𝑔, 𝑔2, … , 𝑔𝑛−1, 𝑔𝑛 = 1}. Étant
donné ℎ ∈ G, le problème du logarithme discret consiste à retrouver 𝑥 défini modulo 𝑛 tel que ℎ = 𝑔𝑥.
On note log𝑔(ℎ) = 𝑥. En général, 𝑛 sera un nombre premier.

Si on considère le morphisme de groupe 𝑒𝑥𝑝𝑔 ∶ (Z/𝑛Z, +) → (G, ×), 𝑎 ↦ 𝑔𝑎, log𝑔 est le morphisme
inverse de (G, ×) dans (Z/𝑛Z, +).

Si ce problème est difficile dans G alors la fonction 𝑒𝑥𝑝𝑔 est à sens unique. Ce problème n’est pas
toujours difficile par exemple si G = (Z/𝑛Z, +). Dans ce cas un entier 𝑔 engendre G si pgcd(𝑔, 𝑛) = 1. Si
ℎ ∈ G, en notation additive, on a ℎ ≡ 𝑥𝑔 (mod 𝑛) et on peut trouver 𝑥 en calculant 𝑥 = ℎ𝑔−1 (mod 𝑛).

Cependant il existe des groupes dans lequel ce problème est supposé difficile notamment dans des sous
groupes de Z/𝑝Z pour 𝑝 premier et des groupes utilisant des courbes elliptiques sur des corps finis. Ces
deux groupes permettent de construire de nombreux systèmes cryptographiques basés sur le problème du
logarithme discret.

Propriétés

Si 𝑔 et 𝑔′ sont deux générateurs alors 𝑔′ = 𝑔𝑎 avec 𝑎 inversible modulo 𝑛 : en effet il existe aussi 𝑏 tel que
𝑔 = 𝑔′𝑏 = 𝑔𝑎𝑏, donc 𝑎𝑏 ≡ 1 mod 𝑛. Réciproquement, si ℎ = 𝑔𝑎 avec 𝑎 inversible alors ℎ est un générateur :
si ℎ𝑏 = 1 alors 𝑔𝑎𝑏 = 1 donc 𝑎𝑏 ≡ 0 donc 𝑏 ≡ 0.

Changement de générateur : si 𝑔, 𝑔′ sont deux générateurs, ℎ = 𝑔𝑎 et ℎ = 𝑔′𝑏, c’est à dire log𝑔(ℎ) = 𝑎 et
log𝑔′ (ℎ) = 𝑏.On pose 𝑐 = log𝑔 𝑔

′. Alors 𝑔′ = 𝑔𝑐 donc ℎ = 𝑔𝑏𝑐 = 𝑔𝑎 et 𝑎 ≡ 𝑏𝑐. Ainsi, log𝑔(𝑔) = log𝑔′ (ℎ)×log𝑔 𝑔
′,

ou log𝑔′ (ℎ) ≡ log𝑔(𝑔) log𝑔 𝑔
′−1 où le dernier terme est inversible car 𝑔′ est un générateur.

Par conséquent, si on sait calculer des logarithmes discrets dans un base 𝑔 alors on peut en calculer en
base 𝑔′. La difficulté du calcul de logarithme discret dépend donc seulement du groupe et non pas du choix
du générateur.

– 23 –

Chapitre V : Cryptographie fondée sur le problème du logarithme discret

2. Quelques applications cryptographiques

L’échange de clefs deDiffie-Hellman (76)
Ce protocole interactif permet à Alice et Bob d’échanger publiquement des informations et à la fin

du protocole de connaître une quantité qui pourra servir comme clef secrète pour faire du chiffrement
symétrique : on souhaite qu’un adversaire Oscar qui écoute la conversation entre Alice et Bob n’ait aucune
information sur cette clef.

Pour cela Alice et Bob se mettent tout d’abord publiquement d’accord sur un groupe (G, ×) cyclique
d’ordre 𝑛 et 𝑔 un générateur.

• Ensuite Alice choisit un 𝑎 aléatoire 1 < 𝑎 < 𝑛 et calcule A ∶= 𝑔𝑎 et envoie cette quantité à Bob sur
un canal public.

• Parallèlement Bob choisit un 𝑏 aléatoire 1 < 𝑏 < 𝑛 et calcule B ∶= 𝑔𝑏 et envoie cette quantité à Alice
sur ce canal public.

• Alice calcule B𝑎 = 𝑔𝑎𝑏. Bob de son côté calcule A𝑏 = 𝑔𝑎𝑏. Cette quantité C = 𝑔𝑎𝑏 sera leur secret
commun (où un haché de C).

Pour retrouver cette quantité, Oscar qui écoute les échanges entre Alice et Bob doit résoudre le pro-
blème suivant : étant donné A,B ∈ G calculer C ∈ G tel que C = 𝑔𝑎𝑏 où 𝑎 et 𝑏 sont tels que A = 𝑔𝑎 et
B = 𝑔𝑏. Ce problème est appelé problème calculatoire de Diffie-Hellman, et (A, B, C) est appelé un
triplet Diffie-Hellman.

Si on sait calculer des logarithmes discrets dans G alors on peut résoudre ce problème (en calculant 𝑎
ou 𝑏). Cependant on ne sait pas s’il est possible de résoudre ce problème sans savoir calculer de logarithme
discret.

Un but moins fort pour Oscar serait d’obtenir une information sur C à partir de A et B. Ceci est
équivalent à résoudre le problème décisionnel suivant : étant donné A,B, C ∈ G, décider si (A, B, C) est
un triplet Diffie-Hellman ou non. On parle de problème décisionnel de Diffie-Hellman. La seule
manière connue de résoudre ce problème est de résoudre le problème calculatoire associé en calculant un
logarithme discret.

Le chiffrement d’Elgamal (85)

Principe
C’est un chiffrement à clef publique qui peut se déduire de l’échange de clef Diffie-Hellman. Dans

un chiffrement à clef publique ou chiffrement asymétrique, Bob possède un couple clef publique,
clef privée. Cette dernière est connue de lui seul, alors que sa clef publique est connue de tous. Pour
envoyer un message 𝑚 à Bob, Alice utilise la clef publique de Bob et un algorithme de chiffrement pour
obtenir le chiffré 𝑐. Pour retrouver 𝑐, Bob lui appliquera un algorithme de déchiffrement en utilisant sa clef
privée.

Pour recevoir des messages Bob choisit un groupe (G, ×) cyclique d’ordre 𝑛 et 𝑔 un générateur. Il choisit
ensuite un 𝑥 aléatoire 1 < 𝑥 < 𝑛 et calcule ℎ = 𝑔𝑥.

Le triplet KBpub = (𝑛, 𝑔, ℎ) constitue la clef publique de Bob, et KBpriv = 𝑥 est sa clef privée.

Pour envoyer un message 𝑚 ∈ G à Bob, Alice choisit 𝑟 aléatoire 1 < 𝑟 < 𝑛, et calcule EncryptKBpub (𝑚) ∶=
𝑐 ∶= (𝑐1, 𝑐2) = (𝑔𝑟, 𝑚ℎ𝑟) ∈ G × G.

Pour déchiffrer, Bob calcule DecryptKBpriv (𝑐1, 𝑐2) ∶= 𝑐2𝑐
−𝑥
1 .

Ce système de chiffrement est correct car si (𝑐1, 𝑐2) = (𝑔𝑟, 𝑚ℎ𝑟), 𝑐𝑥1 = 𝑔𝑟𝑥 = ℎ𝑟 comme dans l’échange de
clef Diffie-Hellman. Donc 𝑐2𝑐−𝑥1 = 𝑚ℎ𝑟(ℎ𝑟)−1 = 𝑚.

– 24 –

3. Algorithmes de calcul du logarithme discret

Sécurité
On se place dans le contexte minimal pour le chiffrement asymétrique : une attaque à clairs choisis, la

clef publique étant connue, un adversaire peut obtenir les chiffrés des messages clairs de son choix.
Le bris total (retrouver la clef secrète à partir de la clef publique) est équivalent au problème du loga-

rithme discret dans G.
On peutmontrer que casser la notion de sens unique est équivalent à résoudre un problème calculatoire

Diffie-Hellman dans G, en effet (ℎ, 𝑐1, ℎ𝑟) est un triplet Diffie-Hellman.
De même ce système est sémantiquement sûr (étant donné un chiffré 𝑐 il est difficile de retrouver une

information sur le message clair𝑚) si et seulement si le problème décisionnel deDiffie-Hellman est difficile
dans G.

Remarquons que les algorithmes de chiffrement à clef publique sont beaucoup plus lents (exponentia-
tions dans un groupe) que ceux à clef secrète (manipulations simples sur les bits) mais ne nécessitent pas
d’échange de clef. Leur sécurité est reliée à un problème algorithmique réputé difficile (ici le problème du
logarithme discret) et non à la recherche exhaustive de la clef secrète comme en symétrique.

3. Algorithmes de calcul du logarithme discret
Nous alors d’abord voir quelques algorithmes génériques qui fonctionnent pour tous les groupes cy-

cliques. Par un théorème de Shoup (1997), un algorithme qui résout le logarithme discret dans G d’ordre 𝑛
doit faire au moins 𝒪 (√𝑛) opérations dans G.

L’algorithme naïf
ℎ = 𝑔𝑥, 𝑥 ?

Calculer 𝑔, 𝑔2, 𝑔3, … . Complexité, 𝒪 (𝑛) multiplications dans G

En utilisant de la mémoire : On pré-calcule tous les (𝑔𝑖, 𝑖) et on les stocke dans une liste triée par
rapport au 𝑔𝑖 (en utilisant la représentation binaire des éléments de G par exemple). Complexité : 𝒪 (𝑛)
multiplications dansG,𝒪 (𝑛) éléments deG en mémoire. L’algorithme de tri à pour complexité𝒪 (𝑛 log(𝑛))
comparaisons. On calcule ensuite 𝑥 tel que ℎ = 𝑔𝑥. Pour cela, on cherche ℎ dans la liste, complexité :
𝒪 (log(𝑛)) comparaisons.

Baby Step/Giant Step
Shanks 1971. C’est un compromis temps mémoire.

Soit 𝑚 = ⌈√𝑛⌉ on décompose en base 𝑚 : 𝑥 = 𝑖 + 𝑚𝑗 avec 0 ⩽ 𝑖, 𝑗 < 𝑚. On a donc ℎ = 𝑔𝑥 = (𝑔𝑚)𝑗𝑔𝑖, et

ℎ(𝑔−1)𝑖 = (𝑔𝑚)𝑗.

Pré-calculs : une liste des ((𝑔𝑚)𝑗, 𝑗) avec 𝑗 < 𝑚 triée par rapport à la première coordonnée : 𝒪 (√𝑛)
éléments en mémoire, et 𝒪 (√𝑛 log(𝑛)) pour l’algorithme de tri.

Dans la phase active, on calcule ℎ, ℎ𝑔−1, ℎ(𝑔−1)2, ... en cherchant chaque élément dans la liste. Si on le
trouve on a ℎ(𝑔−1)𝑖 = (𝑔𝑚)𝑗 et on obtient donc 𝑥 = 𝑖 + 𝑚𝑗. Dans le cas le pire : 𝒪 (√𝑛) multiplications et
𝒪 (√𝑛 log(𝑛)) comparaisons.

Pollard ρ
Pollard 1978. Voir TD, similaire à la recherche de collision de fonction de hachage. On obtient un

algorithme avec une complexité calculatoire heuristique similaire en utilisant quasiment pas de mémoire.
Contrairement à Baby Step/Giant Step, c’est un algorithme probabiliste. Parfois aucun résultat n’est trouvé
(on relance alors l’algorithme avec d’autres choix aléatoires). C’est le meilleur algorithme qui fonctionne
dans n’importe quel groupe, en particulier c’est le meilleur algorithme pour les courbes elliptiques.

– 25 –

Chapitre V : Cryptographie fondée sur le problème du logarithme discret

Pohlig–Hellman
La méthode de Pohlig–Hellman réduit le problème du calcul de logarithme discret dans un groupe

d’ordre 𝑛 à celui du calcul dans des sous groupes d’ordre 𝑝 où 𝑝 est premier et 𝑝 divise 𝑛.

Supposons connue la factorisation de 𝑛 = 𝑝𝑒11 …𝑝
𝑒𝑟𝑟 . On calcule d’abord les valeurs du logarithme discret

modulo chaque 𝑝𝑒𝑖𝑖 et on en déduit la valeur modulo 𝑛 par le théorème des restes chinois.
Pour un premier 𝑝 = 𝑝𝑖 donné, comment calculer 𝑥 modulo 𝑝𝑒 ? On note 𝑥 mod 𝑝𝑒 = 𝑎0 + 𝑎1𝑝 +

⋯ + 𝑎𝑒−1𝑝𝑒−1, où 0 ⩽ 𝑎𝑖 ⩽ 𝑝 − 1 la décomposition en base 𝑝. Alors de ℎ = 𝑔𝑥, on a ℎ𝑛/𝑝 = (𝑔𝑛/𝑝)𝑎0 et 𝑔𝑛/𝑝
est d’ordre 𝑝 (𝑔 est un générateur). On obtient ainsi 𝑎0 mod 𝑝 = 𝑎0 par un algorithme qui calcule des
logarithmes discrets modulo 𝑝 en base 𝑔𝑛/𝑝. On continue ensuite en remarquant que ℎ𝑛/𝑝2 = (𝑔𝑛/𝑝2)𝑎0+𝑎1𝑝,
donc (ℎ/𝑔𝑎0)𝑛/𝑝2 = (𝑔𝑛/𝑝2)𝑎0+𝑎1𝑝−𝑎0 = (𝑔𝑛/𝑝2)𝑎1𝑝 = (𝑔𝑛/𝑝)𝑎1 . On peut trouver ainsi 𝑎1 et on itérer la méthode
pour trouver 𝑥 mod 𝑝𝑒 avec 𝑒 calculs de logarithme discret mod 𝑝.

En pratique, pour les applications cryptographiques, on prend toujours (presque) 𝑛 premier, sinon si
on peut le factoriser, alors on peut réduire à un calcul plus petit de logarithmes discrets modulo 𝑝|𝑛.

Algorithmes de type calcul d’indice
Les algorithmes génériques précédents ont une complexité exponentielle. Si le groupeG est particulier,

on peut parfois faire mieux. Supposons qu’il existe un ensemble S = {𝑝1, 𝑝2, … , 𝑝𝑡} ⊂ G, appelé base de
facteurs tels qu’une grande proportion d’éléments de G peuvent s’écrire de manière efficace comme un
produit de 𝑝𝑖s.

Phase de pré-calculs : on détermine les log𝑔(𝑝𝑖) : pour cela on prend des 𝑘 dans Z et par la propriété
supposée sur G on a de bonnes chances de pouvoir écrire 𝑔𝑘 = ∏𝑝𝑒𝑖𝑖 (facilement parallélisable)

En appliquant la fonction log on obtient : 𝑘 = ∑ 𝑒𝑖 log𝑔(𝑝𝑖). Avec au moins 𝑡 équations linéaires indé-
pendantes, on peut résoudre et trouver les log𝑔(𝑝𝑖).

Ensuite dans une phase active, si ℎ = 𝑔𝑥, on calcule ℎ𝑔𝑘 pour des 𝑘 aléatoires. Si on factorise, en appli-
quant le log, on obtient 𝑥 + 𝑘 = ∑𝑒𝑖 log𝑔(𝑝𝑖).

Il faut faire un compromis sur 𝑡 : petit on a besoin de moins d’équations. Grand, il y a une meilleure
probabilité qu’un élément aléatoire de G se factorise dans S.

Rappel : complexité sous exponentielle : L𝑛(α, 𝑐) = 𝒪 (𝑒𝑥𝑝(𝑐(log 𝑛)α(log log 𝑛)1−α)).
L(0, 𝑐) = (log 𝑛)𝑐 : complexité polynomiale (en la taille de 𝑛) et L(1, 𝑐) = 𝑛𝑐 : complexité exponentielle.

Dans Z/𝑝Z avec S = {premiers < B} on obtient un algorithme en L𝑝(1/2, √2) (Kraitchik, 1922, re-
découvert à la fin des années 1970). Le crible sur corps de nombre (number field sieve, NFS, 1993) est une
amélioration de cette idée en cherchant des éléments dits lisses dans des corps de nombres (des extensions
de Q). Pour le calcul de logarithmes discrets dans un corps finis F𝑞, cet algorithme a une complexité de
L𝑞(1/3, 𝑐) pous un certain 𝑐 > 0. Il y a également des algorithmes plus rapides dans le cas de corps fini F𝑝𝑘 ,
suivant la taille et la forme de 𝑝 et 𝑘.

Pour 𝑘 = 1, c’est à dire dans Z/𝑝Z, le meilleur algorithme est NFS. Le record est pour un 𝑝 de 795 bits
(2019, calculé en plus d’une année, avec un coût approximatif de 3100 ans sur un seul cœur).

Mise en place cryptographique dans Z/𝑝Z
En pratique on utilise généralement pour implanter les algorithmes cryptographiques fondés sur le

logarithme discret des groupes cycliques G d’ordre premier 𝑞. Comme les algorithmes génériques ont une
complexité 𝒪 (√𝑞) opérations, pour avoir une sécurité de 𝑘 bits (c’est à dire que les meilleures attaques
connues fonctionnent en 2𝑘 opérations), il faut prendre 𝑞 de 2𝑘 bits (par exemple 256 bits pour une sécurité
classique de 128 bits).

– 26 –

4. Introduction aux courbes elliptiques

Un choix est d’utiliser pourG un sous groupe des inversibles deZ/𝑝Z avec 𝑝 premier et 𝑞 divisant 𝑝−1.
Les algorithmes de type calcul d’indice s’appliquant dans Z/𝑝Z, on doit prendre 𝑝 de telle manière que
l’algorithme NFS, prenne 2𝑘 opérations. Le tableau suivant donne les tables estimées pour obtenir cela.

Niveau de sécurité taille de 𝑞 (bits) taille de 𝑝 (bits)
112 224 2048
128 256 3072
192 384 7680
256 512 15360

Pour l’échange de clefs Diffie-Hellman et le chiffrement Elgamal prendre 𝑞 relativement petit comparé
à 𝑝 augmente les performances : quasiment toutes les opérations sont des exponentiations modulaires dont
la complexité dépend essentiellement de la taille des exposants.

Pour générer de tels groupes, on choisit un nombre premier 𝑞 aléatoire suivant les tailles ci-dessus (en
utilisant des tests de pseudo-primalité commeRabin-Miller), puis on tire des nombresA aléatoires, jusqu’à
trouver 𝑝 ∶= 𝑞A + 1 premier (par le théorème des nombres premiers pour les progressions arithmétiques,
on s’attend à faire de l’ordre de log(𝑝) essais). On est ainsi assuré que 􏿴Z/𝑝Z􏿷

×
contient un sous groupe

cyclique d’ordre 𝑞 premier. Pour obtenir un générateur, on prend un entier 𝑥 au hasard et on calcule 𝑥A
modulo 𝑝. Si l’on ne trouve pas 1, on est assuré par le petit théorème de Fermat que 𝑔 ∶= 𝑥A est d’ordre
𝑞. Comme il y a A éléments d’ordre divisant A, on a une probabilité négligeable 1/𝑞 que 𝑥A = 1. On peut
aussi utiliser des groupes standardisés.

Un choix plus efficace de nos jours est d’utiliser des groupes issus des courbes elliptiques que l’on va
voir dans la section suivante.

4. Introduction aux courbes elliptiques

Définition
Les courbes elliptiques sont des objets aux propriétés très riches ayant de nombreuses applications

mathématiques et en particulier en cryptographie. On va ici les définir dans un cas très particulier qui
correspond aux applications que l’on va voir.

Soit 𝑝 > 3 un nombre premier et 𝑎 et 𝑏 deux éléments deF𝑝. On considère l’ensemble des points (X, Y)
à coordonnées dans F𝑝 satisfaisant l’équation

E ∶ Y2 = X3 + 𝑎X + 𝑏,

avec la condition de non singularité : 4𝑎3 + 27𝑏2 ≠ 0 dans F𝑝.
On rajoute à cet ensemble de points un point particulier dit point à l’infini.

Loi de groupe
On obtient ainsi un groupe fini noté (E(F𝑝), +) dont le neutreOE est le point à l’infini. La loi de groupe

a une interprétation géométrique.
L’opposé d’un point (𝑥, 𝑦) ∈ E(F𝑝) est le point (𝑥, −𝑦). L’addition de deux points distincts et non opposés,

P1 = (𝑥1, 𝑦1) et P2 = (𝑥2, 𝑦2), est l’opposé du troisième point d’intersection de la droite (P1, P2) avec E.
C’est le point de coordonnée (𝑥3, 𝑦3) avec

𝑥3 = λ2 − 𝑥1 − 𝑥2 et 𝑦3 = λ(𝑥1 − 𝑥3) − 𝑦1,

où λ = (𝑦2 − 𝑦1)(𝑥2 − 𝑥1)−1. Le double d’un point P = (𝑥1, 𝑦1) avec P ≠ −P (c’est à dire 𝑦1 ≠ 0) est le point
de coordonnées (𝑥3, 𝑦3) avec

𝑥3 = λ2 − 2𝑥1 et 𝑦3 = λ(𝑥1 − 𝑥3) − 𝑦1,

– 27 –

Chapitre V : Cryptographie fondée sur le problème du logarithme discret

avec λ = 3𝑥21+𝑎
2𝑦1

. C’est l’opposé de l’autre point d’intersection de la tangente en P avec E.
Il existe d’autres manières de représenter les points de E(F𝑝) et d’autres formules plus efficaces pour la

loi de groupe.

Structure
L’ordre de E(F𝑝) est proche de 𝑝 : le théorème de Hasse donne l’encadrement

𝑝 + 1 − 2√𝑝 ⩽ #E(F𝑝) ⩽ 𝑝 + 1 + 2√𝑝.

De plus, E(F𝑝) peut entre engendrée par au plus deux générateurs et en général E(F𝑝) est cyclique ou
proche d’être cyclique. Il est possible de calculer l’ordre et la structure de E(F𝑝) en temps polynomial.

Cependant en général, pour les applications cryptographiques, on utilise des courbes standardisées
comme la courbe « P − 256 » définie sur F𝑝 avec 𝑝 de 256 bits qui est cyclique d’ordre premier 𝑞 (aussi de
256 bits) ou la courbe « Curve25519 » défini sur F𝑝 avec 𝑝 = 2255 − 19 qui est également cyclique avec un
sous-groupe d’ordre premier 𝑞 de 253 bits. On travaille ensuite dans le groupe cyclique d’ordre premier 𝑞.

Compression de points
Les éléments de E(F𝑝) peuvent être représentés de manière compacte, ce qui donnera des chiffrés et

des signatures plus courts. En effet, un point P = (𝑥P, 𝑦𝑝) satisfaisant l’équation de E, peut se « compresser ».
Étant donné 𝑥𝑝, on peut retrouver S ∶= 𝑦2𝑝 = 𝑥3𝑝 + 𝑎𝑥𝑝 + 𝑏. Comme 𝑝 est premier, S a deux racines carrés
opposées ±𝑠. Si on représente 𝑠 comme un entier entre 1 et 𝑝 − 1, 𝑝 − 𝑠 représentera l’autre racine carré
dans cet intervalle. Ainsi les deux racines carrées ont des parités différentes car 𝑝 est impair.

Par conséquent, on représente P par (𝑥P, 𝑏) où 𝑏 est un bit représentant la parité de 𝑦P mod 𝑝, en
utilisant donc taille(𝑝) + 1 bits.

Applications cryptographiques
Comme vu précédemment, le problème du logarithme est plus difficile dans les courbes elliptiques que

dans les corps finis. La meilleure attaque est Pollard ρ avec une complexité exponentielle contre une com-
plexité sous-exponentielle pour NFS dansF𝑝. Le record de calcul actuel a été réalisé en 2020 en cherchant
un logarithme discret dans un intervalle de taille 2114 sur une courbe de 256 bits en 13 jours sur 256 GPU
avec une version parallèle de Pollard ρ1.

Pour avoir 𝑘 bits de sécurité, il suffira de prendre une courbe définie sur F𝑝 avec 𝑝 de 2𝑘 bits : cela
permettra de définir un groupe cyclique d’ordre premier qui aura aussi 2𝑘 bits (ou pas loin) comme dans les
exemples ci-dessus. Cela donne des implantations de systèmes cryptographiques plus rapides (un facteur 5
à 10 sur le temps de calcul des exponentiations comparé aux sous groupes deZ/𝑝Z pour la même sécurité).
En effet, même si la loi de groupe des courbes elliptiques est plus complexe que la multiplication dans les
corps finis, elle est évaluée sur des entiers beaucoup plus petits.

De nos jours les courbes elliptiques ont donc massivement remplacé les corps finis pour les implanta-
tions de la cryptographie fondée sur le logarithme discret. Ainsi l’échange de clefs Diffie-Hellman se fait
en utilisant le standard ECDH (Elliptic Curve Diffie Hellman).

Couplages
Les courbes elliptiques ont un autre intérêt pour la cryptographie. Il est possible d’y définir un appli-

cation bilinéaire, appelé couplage (pairing) ayant de nombreuses applications cryptographiques.
On considère toujours une courbe E définie sur le corps F𝑝 tel que E(F𝑝) contienne un grand sous

groupe cyclique d’ordre premier 𝑞. Ce couplage prend deux points en entrée et retourne un élément d’une
1cf. https://en.wikipedia.org/wiki/Discrete_logarithm_records

– 28 –

https://en.wikipedia.org/wiki/Discrete_logarithm_records

4. Introduction aux courbes elliptiques

extension F𝑝𝑘 de F𝑝. L’entier 𝑘 est appelé degré de plongement, c’est le plus petit entier tel que (F𝑝𝑘)×

contiennent les racines 𝑞−ièmes de l’unité, c’est à dire tel que 𝑞 divise 𝑝𝑘 − 1. Autrement dit, c’est l’ordre
de 𝑝 modulo 𝑞.

Pour une courbe elliptique quelconque, ainsi que pour les exemples mentionnés au dessus, 𝑘 va être de
l’ordre de 𝑞. Un élément de F𝑝𝑘 ne pourra être stocké sur machine et, a fortiori, le couplage ne peut être
calculé. Cependant il est possible de construire des courbes elliptiques où 𝑘 est petit (< 20). On parle de
pairing friendly elliptic curve. On peut alors utiliser de tels couplages. Ils sont définis en général à partir de
deux objets mathématiques, le couplage de Weil ou le couplage de Tate et prennent en entrée un point
d’ordre 𝑞 de E(F𝑝) et un point d’ordre 𝑞 de E(F𝑝𝑘) et retourne un élément d’ordre 𝑞 de F𝑝𝑘 . Si 𝑘 est petit,
ces couplages peuvent être calculés en temps polynomial pour un algorithme du à Miller.

Dans la suite nous allons utiliser de tels couplages en « boîte noire ». Ainsi, nous considérerons la notion
de couplage cryptographique.

Soient (G1, +), (G2, +), (G𝑡, ×) trois groupes cycliques d’ordre premier 𝑞. On noteP etQ des générateurs
de G1 et G2. Un couplage cryptographique 𝑒 ∶ G1 × G2 → G𝑡 est :

• une application bilinéaire : 𝑒(𝑎P, 𝑏Q) = 𝑒(P,Q)𝑎𝑏 pour tout 𝑎, 𝑏 ∈ Z/𝑞Z ;

• non dégénérée : 𝑒(P,Q) ≠ 1 ;

• calculable efficacement.

Une telle application permet de transporter le problème du logarithme discret de G1 dans G𝑡 (attaque
MOV) : SiH = 𝑥P, 𝑒(H,Q) = 𝑒(P,Q)𝑥. Ainsi log𝑒(P,Q) 𝑒(H,Q) donne 𝑥. Or pour les applications cryptogra-
phiques, on veut que le problème du logarithme discret soit dur dans les trois groupes. Cela impose une
analyse fine des paramètres quand on construit une courbe elliptique pairing friendly : comme G1 ⊂ E(F𝑝)
et G𝑡 ⊂ F∗𝑝𝑘 où le problème du logarithme discret est plus facile. Il existe de nombreuses constructions de
telles courbes pairing friendly. Un choix populaire est la courbe BLS12 − 381, définie sur F𝑝 avec 𝑝 de 381
bits, définissant des groupes d’ordre premier 𝑞 de 255 bits, avec un degré de plongement 12, c’est à dire
G𝑡 ⊂ F∗𝑝12 .

Cryptographie fondée sur les couplages
Les couplages ont fait leur entrée en cryptographie avec l’attaque MOV. Mais bien vite, au début des

années 2000, un nouveau domaine s’est développé en utilisant les couplages pour proposer des applications
cryptographiques qui n’étaient pas réalisable auparavant.

Dans la suite on va utiliser, pour simplifier l’exposition, un couplage cryptographique où G1 = G2 (dit
symétrique). En pratique on utilise plutôt un couplage où G1 ≠ G2 dont les instantiations permettent
d’avoir de meilleures performances.

Diffie-Hellman Tripartite en un tour
La première application, proposée par Joux en 2000, permet de faire un échange de clef entre Alice,

Bob et Charlie en un seul tour de communication. Pour cela, les trois participants se mettent tout d’abord
publiquement d’accord sur un couplage cryptographique symétrique 𝑒 ∶ G×G → G𝑡, avec P un générateur
de G d’ordre 𝑞.

• Alice choisit un 1 < 𝑎 < 𝑞 aléatoire , et calcule 𝑎P qu’elle envoie à Bob et Carl.

• Bob choisit un 1 < 𝑏 < 𝑞 aléatoire, et calcule 𝑏P qu’il envoie à Alice et Carl.

• Carl choisit un 1 < 𝑐 < 𝑞 aléatoire, et calcule 𝑐P qu’il envoie à Alice et Bob.

Alice calcule 𝑒(𝑏P, 𝑐P)𝑎 = 𝑒(P, P)𝑎𝑏𝑐. Bob calcule 𝑒(𝑎P, 𝑐P)𝑏 = 𝑒(P, P)𝑎𝑏𝑐 ; Carl calcule 𝑒(𝑎P, 𝑏P)𝑐 = 𝑒(P, P)𝑎𝑏𝑐.
La sécurité est fondée sur l’hypothèse suivante : étant donnés 𝑎P, 𝑏P, 𝑏Q, 𝑐Q il est difficile de calcu-

ler 𝑒(P, P)𝑎𝑏𝑐 appelé problème bilinéaire Diffie-Hellman (BDH). On peut également définir une variante
décisionnelle (DBDH).

– 29 –

Chapitre V : Cryptographie fondée sur le problème du logarithme discret

Chiffrement fondé sur l’identité
Le chiffrement à clef publique traditionnel est vulnérable aux attaques dites de l’homme du milieu.

Lorsqu’Alice envoie un message à Bob, elle doit récupérer la clé publique de Bob. Un adversaire actif
peut intercepter cette connexion et envoyer à Alice sa propre clef publique dont il connaît la clef secrète
correspondante. Cet attaquant peut ainsi déchiffrer chaquemessage qu’Alice souhaite envoyer à Bob. Pour
corriger ce problème, Alice doit s’assurer que la clé publique reçue appartient bien à Bob.

Dans une infrastructure à clé publique (PKI), une autorité de certification (CA) fournit cette confiance
dans les clefs publiques. Bob s’adresse à l’autorité qui signe sa clef publique en délivrant un certificat. Grâce
à ce certificat, Alice peut vérifier si la clef publique est légitime, et la confiance dans la clef publique repose
sur la confiance dans la CA.

En 1984, Shamir a introduit un concept connu sous le nom de chiffrement fondé sur l’identité (Identity-
Based Encryption, IBE). Ici toute information publique d’un utilisateur (par exemple une adresse email) peut
être utilisée comme clef publique. Ceci conduit à une infrastructure moins complexe, il n’y a plus lieu de
certifier les clefs publiques.

Plus précisément, un schéma de chiffrement fondé sur l’identité (IBE) est composé deux quatre
algorithmes probabilistes :

• Setup : prend en entrée un paramètre de sécurité et retourne des paramètres publics qui seront une
entrée commune aux autres algorithmes, ainsi qu’une clef publique maître 𝑚𝑝𝑘 et une clef secrète
maître 𝑚𝑠𝑘 ;

• Dérivation de clef : prend en entrée 𝑚𝑠𝑘 et une identité id ∈ {0, 1}∗ et retourne une clef privée 𝑠𝑘id ;

• Chiffrement : prend en entrée id et un message clair 𝑚 et retourne un chiffré 𝑐id ;

• Déchiffrement : prend en entrée une clef privée 𝑠𝑘id et un chiffré 𝑐id et retourne un message clair.

Ce schéma doit être correct, c’est à dire pour tout paramètre de sécurité, pour toute clef secrète 𝑠𝑘id dérivée
pour une certaine identité id, et pour tout message clair 𝑚, le déchiffrement avec la clef 𝑠𝑘id de 𝑐id généré
par l’algorithme de chiffrement sur l’entrée (id, 𝑚) retourne bien 𝑚.

En pratique, la dérivation de clef est faite par une autorité qui connaît la clef secrète maître 𝑚𝑠𝑘. Alice
récupère 𝑚𝑝𝑘 et les paramètres du système et peut envoyer à n’importe quel autre utilisateur, Bob, un
message chiffré avec son identité (par exemple bob@gmail.com). Bob pour pouvoir déchiffrer des mes-
sages envoyés pour cette identité, devra demander la clef secrète correspondante à l’autorité. Notons que
l’autorité a beaucoup de pouvoir, elle peut déchiffrer tout message chiffré !

Une première réalisation efficace de ce concept a été proposé par Boneh et Franklin en 2001, en utilisant
un couplage cryptographique. On utilise comme pour l’échange de clef un couplage symétrique 𝑒 ∶ G×G →
G𝑡, avec P un générateur de G d’ordre 𝑞.

• La clef secrète maître 𝑚𝑠𝑘 est un entier pris au hasard entre 1 et 𝑞. On pose 𝑚𝑝𝑘 = 𝑚𝑠𝑘 P ∈ G. On
utilisera aussi une fonction de hachage cryptographique , H ∶ {0, 1}∗ → G ;

• Dérivation de clef : Qid = H(id) et 𝑠𝑘id = 𝑚𝑠𝑘Qid ;

• Chiffrement d’un message𝑚 ∈ G𝑡 :Qid = H(id), on prend 𝑟 un entier aléatoire entre 1 et 𝑞, le chiffré
est 𝑐 = (𝑟P,𝑚 𝑒(𝑚𝑝𝑘,Qid)𝑟) ;

• Déchiffrement de (𝑐1, 𝑐2) : 𝑐2 𝑒(𝑐1, 𝑠𝑘id)−1.

Le déchiffrement est bien correct car

𝑒(𝑐1, 𝑠𝑘id) = 𝑒(𝑟P,𝑚𝑠𝑘Qid) = 𝑒(P,Qid)𝑟𝑚𝑠𝑘 = 𝑒(𝑚𝑠𝑘 P,Qid)𝑟 = 𝑒(𝑚𝑝𝑘,Qid)𝑟.

On peut montrer que la sécurité repose sur les mêmes hypothèses que l’échange de clef tripartite. Si
on pose 𝑥 l’entier inconnu tel que Qid = 𝑥P, le masque pour le chiffrement est 𝑒(P, P)𝑟𝑚𝑠𝑘 𝑥, étant connu
𝑐1 = 𝑟P, et 𝑚𝑝𝑘 = 𝑚𝑠𝑘 P et Qid = 𝑥P. C’est donc un problème BDH.

– 30 –

4. Introduction aux courbes elliptiques

Les couplages cryptographiques ont de nombreuses autres applications en chiffrement avancé. Le chif-
frement fondé sur l’identité est un cas particulier de chiffrement fondé sur les attributs où le chiffré dépend
d’un certain nombre d’attributs (par exemple le pays de résidence, l’âge…). Le déchiffrement est possible
si l’ensemble des attributs de l’utilisateur correspond à ceux du chiffré.

Un domaine proche est le chiffrement fonctionnel où les clefs secrètes permettent de récupérer une
fonction du message chiffré et non pas le chiffré tout entier comme dans le chiffrement asymétrique clas-
sique.

– 31 –

Chapitre V : Cryptographie fondée sur le problème du logarithme discret

– 32 –

Chapitre VI

Cryptographie fondée sur la factorisation

Dans le chapitre précédent, on a utilisé le problème du logarithme discret pour construire une fonc-
tion à sens unique, 𝑥 ↦ 𝑔𝑥. Le problème de la factorisation des entiers va nous permettre de construire
des groupes dont l’ordre est difficile à calculer. Ceci va nous permettre de construire d’autres fonctions à
sens unique. De plus, la connaissance de la factorisation permettra de calculer l’ordre des groupes, ce qui
donnera une trappe pour inverser ces fonctions.

Soient 𝑝 et 𝑞 deux grands nombres premiers distincts, on poseN = 𝑝𝑞. Dans la suite on appellera un tel
entier un entierRSA ou un module RSA du nom de Rivest, Shamir, Adleman, qui ont proposé le système
du même nom en 1977.

1. Rappels sur Z/NZ
Structure

On note (Z/NZ)× l’ensemble des éléments inversibles modulo N. C’est un groupe pour la multiplica-
tion. SiN = 𝑝𝑞 est un entier RSA, l’ordre du groupe est φ(N) = (𝑝 − 1)(𝑞 − 1). De plus, par le théorème des
restes chinois (Z/NZ)× est isomorphe à (Z/𝑝Z)× × (Z/𝑞Z)× :

(Z/NZ)× ∼⟶ (Z/𝑝Z)× × (Z/𝑞Z)×
𝑎 ⟼ (𝑎 (mod 𝑝), 𝑎 (mod 𝑞))

Ce groupe n’est donc pas cyclique, c’est le produit de deux groupes cycliques, d’ordre 𝑝 − 1 et 𝑞 − 1.
L’ordre maximal d’un élément est ppcm(𝑝−1, 𝑞−1) = (𝑝−1)(𝑞−1)/ pgcd(𝑝−1, 𝑞−1) et ce pgcd est au moins
égal à 2. Il n’y a donc pas d’élément d’ordre φ(N).

Carrésmodulo 𝑝
Soit 𝑝 un nombre premier impair. Dans (Z/𝑝Z)× il y a (𝑝 − 1)/2 carrés (ou résidus quadratiques) et

(𝑝 − 1)/2 non carrés. En effet, le morphisme 𝑎 ↦ 𝑎2 a pour noyau ±1 car Z/𝑝Z est un corps. Son image
correspond aux carrés et a pour cardinal (𝑝 − 1)/2.

Le symbole de Legendre permet de déterminer si un élément est un carré ou pas. Par définition, si
𝑎 est un entier, on a 􏿵 𝑎𝑝􏿸 = 0 si 𝑝 ∣ 𝑎, 􏿵 𝑎𝑝􏿸 = −1 si 𝑎 n’est pas un carré modulo 𝑝 et 􏿵 𝑎𝑝􏿸 = 1 si 𝑎 est un carré
modulo 𝑝. On a en fait

􏿶
𝑎
𝑝􏿹 ≡ 𝑎

𝑝−1
2 (mod 𝑝).

En effet, si 𝑝 ∣ 𝑎, c’est immédiat. Sinon comme 𝑎𝑝−1 = 1, on a 𝑎(𝑝−1)/2 = ±1 comme vu précédemment.
Si 𝑎 = 𝑏2 est un carré, on a 𝑎(𝑝−1)/2 = 𝑏𝑝−1 = 1. Les carrés sont donc les racines du polynôme X (𝑝−1)/2 − 1

– 33 –

Chapitre VI : Cryptographie fondée sur la factorisation

qui a plus (𝑝 − 1)/2 racines. On a donc égalité entre l’ensemble des carrés et l’ensemble des racines de ce

polynôme. On a donc bien 􏿵 𝑎𝑝􏿸 = 𝑎
𝑝−1
2 = 1 dans le cas où 𝑎 est un carré. Si 𝑎 n’est pas un carré, on a donc

forcement, 𝑎
𝑝−1
2 = −1 = 􏿵 𝑎𝑝􏿸.

Les conséquences sont que

􏿶
𝑎𝑏
𝑝 􏿹 = 􏿶

𝑎
𝑝􏿹 􏿶

𝑏
𝑝􏿹

et

􏿶
−1
𝑝 􏿹 = (−1)

𝑝−1
2 ,

c’est à dire que −1 est un carré modulo 𝑝 si 𝑝 ≡ 1 (mod 4) et n’est pas un carré si 𝑝 ≡ 3 (mod 4).
On peut également montrer que

􏿶
2
𝑝􏿹 = (−1)

𝑝2−1
8 ,

c’est à dire que 2 est un carré modulo 𝑝 si et seulement si 𝑝 est congru à ±1 modulo 8.

Loi de réciprocité quadratique : si 𝑝 et 𝑞 sont premiers impairs distincts, alors

􏿶
𝑝
𝑞 􏿹 = 􏿶

𝑞
𝑝􏿹 (−1)

(𝑝−1)(𝑞−1)
4 .

Autrement dit, 􏿵 𝑝𝑞 􏿸 = 􏿵
𝑞
𝑝􏿸 sauf si 𝑝 ≡ 𝑞 ≡ −1 (mod 4), auquel cas 􏿵 𝑝𝑞 􏿸 = − 􏿵

𝑞
𝑝􏿸.

Si 𝑎 est un carré modulo 𝑝, on peut calculer en temps polynomial une des ses deux racines carrées. Si

𝑝 ≡ 3 (mod 4), c’est facile : 𝑎
𝑝+1
4 . En effet, 𝑎

𝑝+1
2 = 𝑎

𝑝−1
2 𝑎 = 􏿵 𝑎𝑝􏿸 𝑎 = 𝑎. Si 𝑝 ≡ 1 (mod 4) on peut toujours

calculer des racines carrés (algorithme de Tonelli-Shanks). Plus généralement on peut trouver les racines
éventuelles de n’importe quel polynôme dans Z/𝑝Z en temps polynomial (algorithme de Berlekamp).

CarrésmoduloN
Si 𝑛 est un entier impair on définit le symbole de Jacobi. La factorisation de 𝑛 étant 𝑛 = ∏𝑟

𝑖=1 𝑝𝑖
(premiers non nécessairement distincts), on pose pour tout entier 𝑎 :

􏿵 𝑎
𝑛
􏿸 =

𝑟
􏾟
𝑖=1

􏿶
𝑎
𝑝𝑖
􏿹 .

On a alors pour tout 𝑚 et 𝑛 impairs et entier 𝑎 et 𝑏 :

􏿵 𝑎
𝑚𝑛

􏿸 = 􏿵 𝑎𝑚
􏿸 􏿵 𝑎
𝑛
􏿸 et 􏿶

𝑎𝑏
𝑛 􏿹 =

􏿵 𝑎
𝑛
􏿸 􏿶
𝑏
𝑛􏿹 .

D’autre part, 􏿵−1𝑛 􏿸 = (−1)
𝑛−1
2 et 􏿵 2𝑛􏿸 = (−1)

𝑛2−1
8 . Enfin la loi de réciprocité quadratique s’étend : si 𝑚 et

𝑛 sont impairs premiers entre eux

􏿵𝑚
𝑛
􏿸 = 􏿵 𝑛𝑚

􏿸 (−1)
(𝑚−1)(𝑛−1)

4 .

Ceci donne un algorithme efficace pour calculer le symbole de Jacobi (essentiellement l’algorithme d’Eu-
clide), même sans connaître la factorisation de 𝑛.

Si 𝑎 est un carré modulo 𝑛, 􏿴 𝑎𝑛 􏿷 = 1. Cependant la réciproque est généralement fausse. Plaçons nous
dans le cas N = 𝑝𝑞, un entier RSA et considérons les éléments inversibles. En utilisant le théorème des
restes chinois, on voit qu’il y a φ(N)/4 carrés modulo N : les carrés modulo N sont les éléments qui sont

– 34 –

2. Cryptographie avec les carrés de Z/NZ

des carrés modulo 𝑝 et modulo 𝑞. Il y a aussi φ(N)/4 éléments qui sont ni des carrés modulo 𝑝, ni des carrés
modulo 𝑞. Ainsi, il y a φ(N)/2 éléments de symbole de Jacobi 1. Distinguer parmi eux ce qui sont des carrés
est un problème difficile (le problème de la résidualité quadratique) sans connaître la factorisation
de N.

De même, il est difficile de calculer une des 4 racines carrés d’un carré modulo N = 𝑝𝑞. Si on sait
calculer des racines carrés efficacement, alors on peut factoriserN ! En effet, prenons 𝑥 un entier inversible
moduloN, qui correspond à (𝑥𝑝, 𝑥𝑞) dans Z/𝑝Z×Z/𝑞Z via les restes chinois. Calculons 𝑦 = 𝑥2 dans Z/NZ.
Alors les 4 racines carrées de 𝑦 sont 𝑥 = (𝑥𝑝, 𝑥𝑞), −𝑥 = (−𝑥𝑝, −𝑥𝑞), 𝑧 ∶= (−𝑥𝑝, 𝑥𝑞) et −𝑧 ∶= (𝑥𝑝, −𝑥𝑞). Si un
oracle nous donne une racine carrée de 𝑦, alors il y a une chance sur 2 que l’on obtienne 𝑧 ou −𝑧. On a alors
pgcd(𝑥 − 𝑧,N) = 𝑞 et pgcd(𝑥 + 𝑧,N) = 𝑝. C’est l’idée de l’algorithme de Fermat pour factoriser, que l’on
retrouve dans les algorithmes sous exponentiel de factorisation.

2. Cryptographie avec les carrés de Z/NZ
Fonction de Rabin (1978)

On prend N = 𝑝𝑞 un entier RSA avec 𝑝 ≡ 𝑞 ≡ 3 (mod 4). On considère alors la fonction

S ∶ (Z/NZ)× → (Z/NZ)×, 𝑚 ↦ 𝑚2.

Cette fonction est à sens-unique si factoriser N est difficile. En effet, inverser la fonction revient à
calculer des racines carrés, ce qui est équivalent à factoriser comme on vient de le voir.

La factorisation de N donne une trappe pour inverser cette fonction (on calcule les racines carrées
modulo 𝑝 et 𝑞 et on recombine avec les restes chinois). Par contre, si on utilise cette fonction pour créer
un algorithme de chiffrement, il y aura une ambiguïté dans le déchiffrement : il faut distinguer le bon
message clair parmi les 4 racines carrées. On verra en TD un moyen de lever cette ambiguïté. Ce système
est donc à sens-unique pour des attaques à clairs choisis sous l’hypothèse que factoriser est difficile. Par
contre on n’a pas de sécurité sémantique car le système est déterministe.

Le générateur de Blum-Blum-Shub (1986) est un générateur pseudo-aléatoire de suite binaire
construit en itérant la fonction de Rabin et en prenant le bit de parité. Ceci est extrêmement lent comparé
aux algorithmes de chiffrement par flot que l’on a vu précédemment mais on peut prouver ici que l’on ne
peut pas distinguer la sortie du générateur d’une suite aléatoire si factoriser N est difficile.

Chiffrement de GoldwasserMicali (1982)
On prendN = 𝑝𝑞 un entier RSA avec 𝑝 ≡ 𝑞 ≡ 3 (mod 4). La clef publique estN, la clef privée est (𝑝, 𝑞).

Pour chiffrer un message 𝑚 ∈ {0, 1}, on choisit 𝑟 aléatoire entre 1 et N et on calcule 𝑐 = (−1)𝑚𝑟2 dans
(Z/NZ)×. Remarquons que 𝑟 peut être considéré comme inversible sinon, on aurait factorisé N !

On a un chiffrement probabiliste comme Elgamal. Le bit 0 est chiffré par un carré aléatoire de (Z/NZ)×
tandis que le bit 1 va donner un élément aléatoire qui est ni un carré modulo 𝑝 ni un carré modulo 𝑞 (car
􏿵−1𝑝 􏿸 = 􏿵−1𝑞 􏿸 = −1). L’espace des chiffrés est donc l’ensemble des éléments de (Z/NZ)× de symbole de
Jacobi 1.

Ainsi distinguer les chiffrés de 0 de ceux de 1 est exactement le problème de la résidualité quadratique.
Ce schéma est donc sémantiquement sûr pour des attaques à clairs choisis sous l’hypothèse que ce pro-
blème est difficile. Il est à sens-unique sous la même hypothèse. Le bris total repose sur la factorisation
de N.

Le déchiffrement se fait par calcul de symbole de Legendre en utilisant la factorisation de N.

Ce schéma a des propriétés homomorphes. Si 𝑐1 (resp. 𝑐2) est un chiffré de 𝑚1 (resp. 𝑚2), alors 𝑐1𝑐2 est
un chiffré de 𝑚1 + 𝑚2 modulo 2.

– 35 –

Chapitre VI : Cryptographie fondée sur la factorisation

3. Le chiffrement RSA (1977)

Principe
Pour recevoir des messages Bob choisit deux grands nombres premiers 𝑝 et 𝑞 distincts et poseN = 𝑝𝑞.

Bob choisit 𝑒, un entier premier avec φ(N) et pose 𝑑 tel que 𝑒𝑑 ≡ 1 (mod φ(N)).

Le couple (N, 𝑒) constitue la clef publique de Bob, et 𝑑 est sa clef privée.

Pour envoyer un message 𝑚 ∈ (Z/NZ)× à Bob, Alice calcule 𝑐 ∶= 𝑚𝑒 (mod N).

Pour déchiffrer, Bob calcule 𝑐𝑑 (mod N).

Ce système de chiffrement est correct car si 𝑐 ≡ 𝑚𝑒 (mod N), 𝑐𝑑 ≡ 𝑚𝑒𝑑 ≡ 𝑚1+𝑘φ(N) ≡ 𝑚 (mod N) par
le théorème d’Euler.

Sécurité
On se place toujours dans le cadre minimal d’attaque à clairs choisis.

Le bris total consiste à retrouver 𝑑 à partir de (N, 𝑒). On peut montrer que cela est équivalent à facto-
riser N.

Pour la notion de sens-unique, retrouver 𝑚 à partir de 𝑐 ≡ 𝑚𝑒 (mod N) connaissant N et 𝑒 est appelé
le problème RSA. On ne connaît pas d’autres méthodes que de factoriser N (pour retrouver 𝑑) afin de
résoudre le problème RSA.

La permutation𝑚 ↦ 𝑚𝑒 (mod N) de (Z/NZ)× est donc à sens-unique sous l’hypothèse que le problème
RSA est dur. La factorisation et donc la connaissance de 𝑑 est une trappe pour inverser cette permutation.

Notez queRSA tel quel n’est pas sémantiquement sûr car il est déterministe. Pour résoudre ce problème
on utilise des versions de RSA qui rajoutent de l’aléa au message. La version standardisée, RSA-OAEP, est
prouvée sémantiquement sûre même pour des attaques à chiffrés choisis sous l’hypothèse que le problème
RSA est dur (prouvé en 2001). Elle consiste à effectuer deux tours de schémas de Feistel au moyen de
fonctions de hachage. Notons qu’il existe d’autres transformations permettant de construire un schéma
de chiffrement sûr contre des attaques à chiffrés choisis à partir d’un schéma seulement sûr contre des
attaques à clairs choisis.

𝑚||0… 0 𝑟

G

H

𝑠 𝑡

Soit ℓ la taille en bits du module RSA N. Soit 𝑘0, 𝑘1 deux entiers tels que 𝑘1 + 𝑘0 < ℓ. On considère
deux fonctions de hachage G ∶ {0, 1}𝑘0 → {0, 1}ℓ−𝑘0 et H ∶ {0, 1}ℓ−𝑘0 → {0, 1}𝑘0 . Pour chiffrer un message 𝑚,
un chaîne binaire de longueur ℓ − 𝑘1 − 𝑘0, on prend un aléa 𝑟 de 𝑘0 bits, et on pose 𝑠 = (𝑚||0… 0) ⊕G(𝑟) (en
concaténant 𝑘1 zéros à 𝑚), et 𝑡 = 𝑟 ⊕H(𝑠). On considère ensuite 𝑠||𝑡 comme un élément 𝑥 de (Z/NZ)×. On
pose ensuite 𝑐 = 𝑥𝑒 mod N.

– 36 –

4. Le chiffrement de Paillier (1999)

Le déchiffrement commence par calculer 𝑐𝑑 mod N et à considérer le résultat comme une chaîne de
bits 𝑠||𝑡 avec 𝑡 de longueur 𝑘0. On inverse ensuite le schéma de Feistel en calculant 𝑟 = 𝑡⊕H(𝑠) puisG(𝑟)⊕𝑠. Si
les 𝑘1 bits de poids faible du résultat ne sont pas tous nuls, on retourne une erreur. Sinon, le déchiffrement
est donné par les ℓ − 𝑘1 − 𝑘0 bits de poids fort.

4. Le chiffrement de Paillier (1999)
Nous avons vu le chiffrement de Goldwasser Micali qui est sémantiquement sûr sous l’hypothèse de

la résidualité quadratique et qui est homomorphe modulo 2. Cependant ce schéma utilise pour espaces
des chiffrés un sous-groupe de (Z/NZ)× où N est un entier RSA pour chiffrer un seul bit. L’expansion (le
rapport taille du chiffré sur taille du clair) est donc de log2(N), ce qui est loin d’être optimal !

De nombreux systèmes de chiffrements avec des propriétés homomorphes ont été proposés pour amé-
liorer cette expansion. Un des systèmes les plus aboutis en ce sens est le chiffrement de Paillier qui atteint
une expansion de 2. Pour cela Paillier utilise le groupe (Z/N2Z)× où N est un entier RSA.

Si N = 𝑝𝑞, on a

φ(N2) = φ(𝑝2𝑞2) = φ(𝑝2)φ(𝑞2) = 𝑝(𝑝 − 1)𝑞(𝑞 − 1) = Nφ(N).

Dans la suite on suppose que N est φ(N) sont premiers entre eux. On va voir que dans ce cas, chaque
élément 𝑧 de (Z/N2Z)× peut s’écrire de manière unique 𝑥𝑦 où 𝑥 est dans un sous-groupe d’ordre N et 𝑦
dans un sous-groupe d’ordre φ(N). Le système de Paillier utilise cette décomposition.

Sous-groupe d’ordreN
On note 𝑓 = 1 + N dans Z/N2Z. Cet élément est bien inversible car premier avec N et donc N2. De

plus, par la formule du binôme on a, modulo N2,

𝑓𝑘 = (1 + N)𝑘 =
𝑘
􏾜
𝑖=0
􏿶
𝑘
𝑖􏿹
N 𝑖 = 1 + 𝑘N.

Ainsi, 𝑓 est d’ordre N. De plus, si on prend un élément 𝑥 du groupe engendré par 𝑓 alors il est facile de
calculer son logarithme discret en base 𝑓 : on peut représenter 𝑥 par un entier modulo N2 que l’on note
toujours 𝑥. On a alors 𝑥 = 𝑓𝑘 = 1 + 𝑘N avec 𝑘 = (𝑥 − 1)/N.

Sous-groupe d’ordre φ(N)
On considère la fonction

𝑠 ∶ (Z/NZ)× ⟶􏿴Z/N2Z􏿷
×

𝑟 mod N ⟶ 𝑟N mod N2

Montrons que cette fonction est bien définie. Soit 𝑎 ≡ 𝑏 (mod N) avec 𝑎, 𝑏 premiers avec N. Il existe
𝑘 ∈ Z tel que 𝑎 = 𝑏 + 𝑘N. Soit 𝑐 l’inverse de 𝑏 modulo N. On a

𝑎 ≡ 𝑏 + 𝑘N ≡ 𝑏(1 + 𝑘𝑐N) = 𝑏(1 + N)𝑘𝑐 (mod N2).

Donc :
𝑠(𝑎) ≡ 𝑎N ≡ 𝑏N(1 + N)N𝑘𝑐 ≡ 𝑏N (mod N2).

De plus 𝑠 est un morphisme de groupe (𝑠(𝑎𝑏) = 𝑠(𝑎)𝑠(𝑏) pour tout 𝑎, 𝑏). D’autre part 𝑠 est injective : si
𝑠(𝑥) ≡ 1 (mod N2), on a aussi 𝑥N ≡ 1 (mod N). Comme N est premier avec φ(N) il existe un inverse 𝑑
de N modulo φ(N) et 𝑥 ≡ 𝑥N𝑑 ≡ 1𝑑 ≡ 1 (mod N). Ainsi ker 𝑠 = {1} et 𝑠 est un morphisme injectif. En
particulier, l’image de 𝑠 qui est le sous-groupe de 􏿴Z/N2Z􏿷

×
constitué des puissancesN−ièmes est d’ordre

φ(N).

– 37 –

Chapitre VI : Cryptographie fondée sur la factorisation

Fonction de chiffrement de Paillier
Au final, on a l’isomorphisme

ℰ ∶ Z/NZ × (Z/NZ)× ⟶􏿴Z/N2Z􏿷
×

(𝑚, 𝑟) ⟶ (1 + N)𝑚𝑟N

En effet, on voit facilement que ℰ est bien définie et que ℰ (𝑚1 + 𝑚2, 𝑟1𝑟2) = ℰ (𝑚1, 𝑟1)ℰ (𝑚2, 𝑟2). De
même l’injectivité de 𝑠 entraîne celle deℰ et on en déduit queℰ est bien bijective par égalité des cardinaux.

Le chiffrement de Paillier utilise cet isomorphisme. La clef publique estN, la clef privée est φ(N). Pour
chiffrer 𝑚 ∈ Z/NZ, on prend 𝑟 aléatoire, 1 < 𝑟 < N et le chiffré 𝑐 = E(𝑚, 𝑟) = (1 + 𝑚N)𝑟N dans Z/N2Z.

Pour déchiffrer, on pourrait inverser 𝑠 commeprécédemment pour retrouver 𝑟 puis𝑚. Plus directement,
on calcule

𝑐φ(N) = (1 + N)𝑚φ(N)𝑟Nφ(N)

= (1 + N)𝑚φ(N)𝑟φ(N2)

= 1 + 𝑚φ(N)N

On en déduit :
𝑐φ(N) − 1

N φ(N)−1 ≡ 𝑚 (mod N),

où la division est effectuée dans Z, en utilisant aussi queN et φ(N) sont premiers entre eux donc φ(N) est
bien inversible modulo N.

Propriétés
Onpeutmontrer que le chiffrement de Paillier est sémantiquement sûr pour des attaques à clairs choisis

si le problème suivant, dit de la résidualité composite est difficile : étant donné 𝑥 ∈ 􏿴Z/N2Z􏿷
×
, existe-t-il

𝑟 ∈ (Z/NZ)× tel que 𝑥 = 𝑟N = 𝑠(𝑟). C’est une généralisation de l’hypothèse de résidualité quadratique.
Comme la fonction ℰ est un morphisme, le chiffrement de Paillier est homomorphe modulo N : si 𝑐1

et 𝑐2 chiffrent respectivement𝑚1 et𝑚2, 𝑐1𝑐2 chiffre𝑚1+𝑚2 moduloN. De plus l’expansion est maintenant
constante égale à 2.

Une application
Supposons que ℓ électeurs veuillent voter à un référendum. Une autorité a un couple (𝑝𝑘, 𝑠𝑘) pour

Paillier, la clef publique étant un module RSA, N. On suppose que ℓ < N ce qui n’est pas une restriction
en pratique (N fait au moins 2048 bits, soit plus de 600 chiffres décimaux).

On désigne par𝑚𝑖 ∈ {0, 1} le vote en clair de l’électeur 𝑖, avec 0 pour « non » et 1 pour « oui » (on suppose
pour simplifier qu’il n’y a pas de vote blanc). Chaque électeur envoie 𝑐𝑖 un chiffré de 𝑚𝑖 avec la clef 𝑝𝑘 à
l’autorité. Ces chiffrés sont publiés en ligne. À partir de ces chiffrés, il est possible pour chacun de calculer
𝑐 un chiffré de∑ℓ

𝑖=1𝑚𝑖 en faisant le produit de tous les chiffrés 𝑐𝑖.
En déchiffrant 𝑐 avec 𝑠𝑘, l’autorité retrouvera ∑ℓ

𝑖=1𝑚𝑖 mod N = ∑ℓ
𝑖=1𝑚𝑖 dans Z car ce nombre est

inférieur à ℓ < N. Ainsi on trouvera le résultat du vote : cela donne le nombre de votes pour « oui », donc
si ce nombre est supérieur à ℓ/2 le « oui » l’emporte.

Quelques avantages et inconvénients de ce protocole :

• La sécurité sémantique du chiffrement assure qu’un adversaire extérieur ne pourra briser la confi-
dentialité du vote, il ne sera pas distinguer les chiffrés de 0 de ce de 1.

– 38 –

5. Mise en oeuvre

• La sécurité du chiffrement ne protège pas contre les attaques actives. L’adversaire pourrait modifier
un 𝑐𝑖.

• L’autorité, disposant de la clef privée 𝑠𝑘, pourrait déchiffrer n’importe quel 𝑐𝑖 au lieu de seulement 𝑐
et retrouver le vote en clair de chaque électeur.

• Un électeur malhonnête pourrait voter 10 ou −10, ce qui correspondrait à voter 10 fois.

Il existe des solutions cryptographiques à tous ces problèmes ! Pour protéger l’intégrité des chiffrés, on
peut rajouter une signature numérique qui de plus permet d’authentifier les électeurs inscrits au vote. On
verra les signatures numériques au prochain chapitre. Pour protéger contre la toute puissance de l’autorité,
on peut partager le procédé de déchiffrement entre plusieurs autorités. Pour finir, on peut vérifier qu’un
électeur a bien voté 0 ou 1 en lui demandant de prouver que 𝑐𝑖 est un chiffré de 0 ou de 1, par un procédé
appelé preuve à divulgation nulle de connaissance.

On peut généraliser simplement ce protocole pour voter pour 𝑘 candidats. Le vote en clair pour le
candidat 𝑗, avec 0 ⩽ 𝑗 ⩽ 𝑘 − 1, sera A𝑗 où A > ℓ majore strictement le nombre d’électeurs (ℓ + 1 suffit). La
somme des votes décomposée en base A donnera 𝑣0 + 𝑣1A +⋯ + 𝑣𝑘−1A𝑘−1, où 𝑣𝑗 ⩽ ℓ < A est le nombre
de votes pour le candidat 𝑗. Avec le protocole de Paillier, comme le déchiffrement retrouve ce nombre
modulo N, pour avoir le résultat dans Z il faut que A𝑘 < N. Donc si N fait 2048 bits, soit plus de 600
chiffres décimaux, on peut avoir 1010 personnes qui votent pour 60 candidats, donc couvrir une élection
mondiale.

5. Mise en oeuvre

Génération des clefs
Pour les schémas cryptographiques fondés sur le logarithme discret, nous avons vu que l’on peut utiliser

des groupes standardisés et seulement générer des clefs secrètes qui sont en général des entiers aléatoires
modulo l’ordre du groupe.

Pour les schémas fondés sur la factorisation, la génération est plus critique, il faut générer N = 𝑝𝑞
difficile à factoriser. Il ne faut donc pas qu’il y ait de biais sur la génération de 𝑝 et 𝑞. Pour avoir N de 𝑘
bits, il faut donc générer deux nombres premiers de 𝑘/2 bits. Pour cela on prend des nombres aléatoires de
𝑘/2 bits et on teste s’ils sont premiers, en général avec un test de pseudo-primalité comme le test de Rabin
Miller.

Pour générer 𝑒 dans RSA on peut prendre n’importe quel entier 2 < 𝑒 < φ(N) premier avec φ(N). On
veut parfois pouvoir accélérer le calcul de 𝑥𝑒 mod N. Dans ce cas, on prend 𝑒 petit. On évite en général 𝑒 =
3 pour éviter certaines attaques. La valeur 224 + 1 = 65537 est populaire. C’est F4 le plus grand nombre de
Fermat premier connu. Comme c’est un nombre premier, il a de bonnes chances d’être premier avec φ(N).
D’autre part sa forme particulière fait que le calcul de 𝑥𝑒 mod N se fait en seulement 17 multiplications
modulo N. On calcule ensuite 𝑑 par l’algorithme d’Euclide étendu. On évite de choisir un 𝑑 petit, ce qui
conduirait à des attaques astucieuses permettant de factoriser N en temps polynomial (si 𝑑 < N0.292).

Taille des clefs
La taille deN est paramétrée par la complexité des meilleurs algorithmes de factorisation connus. Une

classe d’algorithmes de complexité sous-exponentielle vise à trouver 𝑥 et 𝑦 dans (Z/NZ)× tels que 𝑥 ≠ ±𝑦
et 𝑥2 = 𝑦2 selon une idée de Fermat comme vu plus haut. Ces algorithmes passent par une phase de
collecte de relations puis une phase d’algèbre linéaire pour trouver ces deux entiers, de manière similaire
aux algorithmes de calcul d’indice pour le logarithme discret. Le meilleur algorithme est le crible sur corps
de nombres (NFS, Number Field Sieve) avec une complexité, LN[1/3, 𝑐]. Le record actuel date de février
2020 : factorisation d’un entier RSA de 829 bits (250 chiffres décimaux, avec un coût de 2450 ans sur un
seul cœur pour la phase de crible et 250 ans pour la phase d’algèbre linéaire)1.

1cf. https://en.wikipedia.org/wiki/Integer_factorization_records

– 39 –

https://en.wikipedia.org/wiki/Integer_factorization_records

Chapitre VI : Cryptographie fondée sur la factorisation

D’autres algorithmes de factorisation sont adaptés à trouver des facteurs relativement petits d’un entier
N : méthode ρ de Pollard (1975), de complexité exponentielle𝒪 (√𝑝) où 𝑝 est le plus petit facteur premier de
N. De même un algorithme utilise les courbes elliptiques (ECM) avec une complexité sous-exponentielle
en L𝑝[1/2, √2]. Il est moins intéressant que NFS pour attaquer des entiers RSA, mais en fait utilisé comme
sous-procédure dans NFS. Au final les tailles d’entiers RSA, N, recommandées sont les mêmes que pour
le logarithme discret dans (Z/𝑝Z)× :

Niveau de sécurité taille de N (bits)
112 2048
128 3072
192 7680
256 15360

– 40 –

Chapitre VII

Signatures numériques

Comme le chiffrement, les signatures numériques sont une application cruciale et extrêmement répan-
due en cryptographie à clef publique. Alice dispose toujours d’un couple clef publique (clef de vérification),
clef secrète (clef de signature). La clef secrète va lui permettre, à l’aide d’un algorithme de signature, de
pouvoir signer un document numérique représenté par une chaîne de bits 𝑚 (un fichier pdf, un email, une
transaction bancaire…) en produisant une signature σ.

Bob ayant à sa disposition la clef publique d’Alice, le document𝑚 et la signature σ de𝑚 émise par Alice,
va utiliser un algorithme de vérification qui lui permettra de vérifier si cette signature est bien valide.

Les signatures sont largement utilisées (signature de certificats pour l’authentification des sites web,
de logiciels, de transactions financières, authentification forte…).

1. Propriétés
On veut pour ces schémas de signatures des propriétés analogues à la signature manuscrite classique :

• la signature doit engager la responsabilité du signataire : seul lui connaît la clef privée permettant de
signer (notion de non-répudiation) ;

• la signature ne peut être imitée, cela garantit qu’elle provient d’un utilisateur donné (notion d’au-
thentification) ;

• le message signé n’a pas été modifié (notion d’intégrité) ;

• la signature peut-être vérifiée par tout le monde en utilisant la clef publique (notion de vérification
universelle).

On définit plusieurs niveaux de sécurité. L’attaquant peut avoir accès seulement à la clef publique de
vérification, ou connaître des couples (𝑚, σ) valides pour une certaine clef publique (attaque à messages
connus), ou pouvoir interroger un oracle de signature sur des messages 𝑚 (attaque à messages choisis). On
définit également plusieurs buts : retrouver la clef de signature, être capable de produire une signature
d’un message donné (contrefaçon universelle), ou d’un message de son choix (contrefaçon sélective), ou de
savoir produire un nouveau couple (𝑚⋆, σ⋆) valide (contrefaçon existentielle).

Le plus haut niveau de sécurité pour un schéma de signature est la résistance aux contrefaçons existen-
tielles pour des attaques à messages choisis.

Pour signer une chaîne de bits𝑚, en général on commence par appliquer sur𝑚 une fonction de hachage
cryptographique ℎ et l’algorithme traite ensuite ℎ(𝑚) et la signature ne dépend donc que de ℎ(𝑚). Des
attaques sur la fonction de hachage donnent donc des attaques sur la signature. Connaissant un couple
valide (𝑚, σ), trouver un seconde pré-image va donner𝑚′ ≠ 𝑚 avec ℎ(𝑚) = ℎ(𝑚′), donc (𝑚′, σ) est aussi une

– 41 –

Chapitre VII : Signatures numériques

signature valide. Si l’attaquant trouve une collision sur ℎ, il pourra également réaliser une contrefaçon par
une attaque àmessage choisi. Une collision permet aussi à un utilisateur légitime de répudier des signatures
(il signe 𝑚 et dit plus tard qu’il avait en fait signé 𝑚′). La non résistance à la notion de sens-unique permet
aussi des attaques pour certaines constructions comme RSA-FDH, défini plus bas.

2. Signature RSA-FDH
On utilise les mêmes notations que pour le chiffrement. On poseN = 𝑝𝑞 avec 𝑝, 𝑞 deux grands nombres

premiers distincts . On note 𝑒 et 𝑑 tels que 𝑒𝑑 ≡ 1 (mod φ(N)). La clef publique d’Alice est toujours (N, 𝑒) et
𝑑 sa clef privée. On note ℎ une fonction de hachage cryptographique de {0, 1}∗ dans (Z/NZ)×. On présente
ici la signature RSA-FDH (Full Domain Hash). Il existe d’autres constructions de signatures utilisant la
permutation à trappe RSA, comme RSA-PSS (Probabilistic Signature Scheme), standardisé par le NIST.

Pour une chaîne de bits 𝑚, Alice calcule

σ ∶≡ ℎ(𝑚)𝑑 (mod N).

Bob disposant de 𝑚, (N, 𝑒) et σ pourra vérifier que σ est bien la signature d’Alice du message 𝑚 en
testant si

σ𝑒 ?≡ ℎ(𝑚) (mod N).

En idéalisant les propriétés de la fonction de hachage (modèle de l’oracle aléatoire), on montre que si
le problème RSA est difficile alors il est aussi difficile de produire une contrefaçon existentielle pour des
attaques à messages choisis pour la signature RSA-FDH.

3. Signature de Schnorr
Cette signature est construire à partir d’un schéma d’authentification du à Schnorr (1989), qui est une

preuve à divulgation nulle de connaissance de la connaissance d’un logarithme discret.
Pour cela Alice et Bob se mettent tout d’abord publiquement d’accord sur un groupe (G, ×) cyclique

d’ordre premier 𝑞 et 𝑔 un générateur.
Alice (une carte à puce) a une clef privée 1 < 𝑥 < 𝑞 et une clef publique ℎ = 𝑔𝑥. Elle souhaite s’authen-

tifier auprès de Bob (un lecteur de carte), avec sa clef publique ℎ, en prouvant qu’elle connaît 𝑥, mais sans
donner d’information sur 𝑥.

Le protocole se déroule ainsi :

• Alice choisit aléatoirement de manière uniforme 𝑟 ∈ Z/𝑞Z, calcule 𝑡 = 𝑔𝑟 et envoie 𝑡 à Bob ;

• Bob lui envoie un défi aléatoire uniforme 𝑐 ∈ Z/𝑞Z ;

• Alice répond 𝑠 = 𝑟 + 𝑥𝑐, calculé dans Z/𝑞Z ;

• Bob vérifie que 𝑔𝑠 = 𝑡ℎ𝑐, si c’est le cas, il accepte l’authentification d’Alice.

Le protocole est bien correct : si Alice connaît bien 𝑥 et suit le protocole, on aura 𝑡ℎ𝑐 = 𝑔𝑟(𝑔𝑥)𝑐 = 𝑔𝑟+𝑥𝑐 =
𝑔𝑠. D’autre part, 𝑟 étant aléatoire, on montre qu’il masque la valeur de 𝑥 dans 𝑠, ainsi Bob n’apprend rien sur
𝑥. Enfin, on peut montrer que si Alice réussit à s’authentifier, elle connaît forcément. En effet, on montre
qu’elle est capable de le faire pour une même valeur de 𝑡 = 𝑔𝑟 mais pour deux valeurs 𝑐1, 𝑐2 différentes. On
a donc deux réponses 𝑠1, 𝑠2 différentes et

𝑔𝑠1 = 𝑡ℎ𝑐1 et 𝑔𝑠2 = 𝑡ℎ𝑐2 .

On a alors en combinant ces deux équations

𝑔𝑠1−𝑠2 = ℎ𝑐1−𝑐2 ,

– 42 –

4. Signatures utilisant des couplages

et comme 𝑐1 − 𝑐2 est inversible modulo 𝑞,

𝑔(𝑠1−𝑠2)(𝑐1−𝑐2)−1 = ℎ.

À partir de deux réponses d’Alice pour une même valeur 𝑡, on peut donc calculer 𝑥 = (𝑠1 − 𝑠2)(𝑐1 −𝑐2)−1
prouvant donc qu’elle connaît bien cette valeur.

On construit un algorithme de signature à partir de ce protocole. Alice a toujours la clef privée 𝑥 et
la clef publique ℎ = 𝑔𝑥. On considère une fonction de hachage cryptographique ℎ de {0, 1}∗ à valeurs dans
Z/𝑞Z. Pour signer 𝑚, Alice choisit aléatoirement de manière uniforme 𝑟 ∈ Z/𝑞Z, calcule 𝑡 = 𝑔𝑟, et pose
𝑐 = H(𝑚||𝑡), et calcule 𝑠 = 𝑟 + 𝑥𝑐 dans Z/𝑞Z. La signature est (𝑐, 𝑠).

La vérification consiste à recalculer 𝑡 en utilisant l’équation 𝑡 = 𝑔𝑠ℎ−𝑐, puis à vérifier 𝑐 : 𝑐 ?= H(𝑚||𝑡).

En utilisant les propriétés du schéma d’authentification, on peut montrer que cette signature est sûre
contre des contrefaçons existentielles pour des attaques à messages choisis si le problème du logarithme
discret est difficile dans G.

On peut instancier les signatures de Schnorr en utilisant un sous-groupe de (Z/𝑝Z)× ou avec des courbes
elliptiques. Comme déjà vu, les courbes elliptiques vont fournir des instantiations plus efficaces en terme
de taille de signature et de coût calculatoire.

Il existe d’autres schémas de signatures fondés sur le problème du logarithme discret dérivés des si-
gnatures d’Elgamal. Ces schémas sont standardisés : DSA utilisant un sous groupe d’ordre premier 𝑞 de
􏿴Z/𝑝Z􏿷

×
(qui est déclaré obsoléte pour la génération de signatures à partir de 2023) et ECDSA utilisant

des courbes elliptiques. Ce dernier schéma est largement utilisé à l’heure actuelle, il sera vu en TD.

4. Signatures utilisant des couplages

À partir d’un schéma de chiffrement fondé sur l’identité, on peut construire de manière générique un
schéma de signature dont la sécurité sera reliée à celle du chiffrement fondé sur l’identité.

La clef secrète maître 𝑚𝑠𝑘 sera la clef privée du schéma de signature, et la clef publique maître sera la
clef publique. Une identité id sera un message pour le schéma de signature et l’algorithme de dérivation de
clef sera celui de signature : la clef privée 𝑠𝑘id est la signature d’id.

Pour vérifier une signature de id, on chiffre un message aléatoire pour l’identité id (le message) et on le
déchiffre avec 𝑠𝑘id (la signature). Si le résultat correspond au message aléatoire, la signature est acceptée.

Pour des instantiations concrètes, l’algorithme de vérification peut-être simplifié (on chiffre l’élément
neutre, et on prend l’aléa de chiffrement égal à 1). Ainsi avec le chiffrement de Boneh et Franklin, on
obtient l’algorithme de signature suivant.

On considère un couplage symétrique 𝑒 ∶ G × G → G𝑡, avec P un générateur de G d’ordre 𝑞. La clef
secrète 𝑠𝑘 est un entier pris au hasard entre 1 et 𝑞. On pose 𝑝𝑘 = 𝑠𝑘 P ∈ G. On utilise aussi une fonction de
hachage, ℎ ∶ {0, 1}∗ → G.

Pour signer𝑚, Alice calculeQ = ℎ(𝑚) ∈ G puis σ = 𝑠𝑘Q ∈ G. Pour vérifier, le chiffrement de l’élément
neutre avec 𝑟 = 1 correspond essentiellement à calculer 𝑒(𝑝𝑘,Q) et le déchiffrement à calculer 𝑒(P, σ). Ainsi
l’algorithme de vérification teste l’égalité

𝑒(𝑝𝑘, ℎ(𝑚)) ?= 𝑒(P, σ).

Ce test correspond donc à tester si le triplet (𝑝𝑘, ℎ(𝑚), σ) est un triplet Diffie-Hellman. En effet, si σ
est une signature de 𝑚, ce triplet est égal à (𝑠𝑘 P, ℎ(𝑚), 𝑠𝑘 ℎ(𝑚)).

Ce schéma de signature du à Boneh, Lynn and Shacham (BLS, 2001) fournit des signatures très courtes,
avec un seul élément de groupe. On montre que ce schéma est sûr contre des contrefaçons existentielles
pour des attaques à messages choisis si le problème calculatoire Diffie-Hellman est difficile.

– 43 –

Chapitre VII : Signatures numériques

– 44 –

Chapitre VIII

Cryptographie post quantique

Dans un modèle de calcul quantique utilisant les lois de la mécanique quantique, certains problèmes
algorithmiques deviennent plus faciles : des algorithmes pour les résoudre ont une complexité plus faible
en utilisant le modèle de calcul quantique que les meilleurs algorithmes connus en utilisant le modèle de
calcul quantique.

Exemples :
• Algorithme de Grover (1996) : sur un problème de recherche sur un ensemble à N éléments, com-
plexité en 𝒪 (√N) au lieu de 𝒪 (N).

• Algorithme de Shor (1994) est un algorithme polynomial quantique pour trouver la période d’une
fonction.Via une réduction polynomiale classique le problème de la factorisation d’entiers,mais aussi
le problème du logarithme discret se ramène à ce problème.On obtient des algorithmes polynomiaux
quantiques pour la factorisation et le problème du logarithme discret (dans n’importe quel groupe)
au lieu des algorithmes sous-exponentiels ou exponentiel.

Conséquences cryptographiques :
La recherche exhaustive pour le chiffrement symétrique est accélérée (mais on a besoin d’avoir une

implantation quantique de l’algorithme de chiffrement). Cependant on peut toujours doubler la taille des
clefs : AES 256 bits aura une complexité d’au moins 2128 opérations quantiques.

La cryptographie à clef publique vu dans ce cours, fondée sur la factorisation et le logarithme discret
s’effondre (ECDH, RSA, ECDSA…). Des alternatives sont développées en reposant sur des problèmes
supposés être toujours difficiles dans le modèle de calcul quantique, c’est à dire qu’on ne connaît pas d’al-
gorithme quantique avec une complexité plus faible que les meilleurs algorithmes classiques connus. Ces
problèmes sont issus des réseaux euclidiens, des codes correcteurs d’erreurs… On parle de cryptographie
post-quantique.

Une standardisation est organisée par le NIST pour établir des standards de protocoles cryptogra-
phiques post-quantiques depuis 2016.Des premiers algorithmes d’échange de clefs (KEM :Key-Encapsulation
Mechanism) et de signatures ont été standardisés en 2024 :

• ML-KEM (Module-Lattice-Based Key-Encapsulation Mechanism) fondé sur la proposition CRYSTALS-
Kyber (réseaux)

• ML-DSA (Module-Lattice-Based Digital Signature Algorithm) fondé sur la proposition CRYSTALS-
Dilithium (réseaux)

• SLH-DSA (Stateless Hash-Based Digital Signature Algorithm) fondé sur la proposition Sphincs+ (fonc-
tions de hachage)

– 45 –

Chapitre VIII : Cryptographie post quantique

Un autre standard FN-DSA (FFT over NTRU-Lattice-Based Digital Signature Algorithm) fondé sur FAL-
CON (réseaux) est en cours de finalisation.

En 2025, le NIST a annoncé qu’une autre proposition HQC (codes) va être standardisé d’ici 2027 pour
l’échange de clef (KEM).

La plupart de ses propositions se caractérisent par des tailles de clefs et de signatures beaucoup plus
longues que celles utilisées en cryptographie classique.

Pour l’instant aucun ordinateur quantique assez gros n’a été construit pour exécuter les algorithmes
attaquant la cryptographie classique, même sur des tailles modestes (le record de factorisation avec l’al-
gorithme de Shor étant celle du nombre 21). Les opinions d’experts semblent s’accorder sur le fait que la
construction d’un tel ordinateur sera un jour possible, mais il n’est pas clair si cela sera dans 10, 20 ou 50
ans (nombres de qbits nécessaires, temps de cohérence, correction d’erreurs).

Pour la cryptographie pratique, on s’oriente vers une phase de transition, faisant cohabiter cryptogra-
phie classique et post-quantique (on ne passe pas directement au post-quantique au cas où une attaque
classique casse une proposition fondée sur un problème relativement jeune). En 2025, un draft du NIST
déclare obsolète la cryptographie classique en 2035 : même si un ordinateur quantique utilisable pour la
cryptanalyse est développé bien après, il est possible d’enregistrer les échanges de clefs/sessions symé-
triques chiffrées actuelles et de les déchiffrer dans plusieurs dizaines d’années.

– 46 –

	Introduction
	Bibliographie
	Plan du cours
	Courte introduction à la cryptologie

	Chiffrement parfait, Chiffrement par flot
	Le chiffrement symétrique
	Le chiffrement parfait
	Chiffrement par flot

	Chiffrement par bloc
	Introduction, modes opératoires
	Schéma de Feistel, le DES
	Schéma substitution permutation (SPN), l'AES

	fonctions de hachage, MAC
	fonctions de hachage
	MAC
	Constructions de fonctions de hachage

	Cryptographie fondée sur le problème du logarithme discret
	Le problème du logarithme discret
	Quelques applications cryptographiques
	Algorithmes de calcul du logarithme discret
	Introduction aux courbes elliptiques

	Cryptographie fondée sur la factorisation
	Rappels sur Z/NZ
	Cryptographie avec les carrés de Z/NZ
	Le chiffrement RSA (1977)
	Le chiffrement de Paillier (1999)
	Mise en oeuvre

	Signatures numériques
	Propriétés
	Signature RSA-FDH
	Signature de Schnorr
	Signatures utilisant des couplages

	Cryptographie post quantique

