Cours de Cryptologie

Guilhem Castagnos

Janvier — Avril 2026

version du 20 janvier 2026






Table des matiéres

[

ntroductio

1 bibliographid . . . . . . . . . L e e
2 P d S I T S

II [Chiffrement parfait, Chiffrement par flof
1 [Le chiffrement symetriqud . . . . . . . . . . . .. ..o L0
2 |Le chiffrementparfait. . . . . . . . . . . . . . L Lo e e
3 Chiffrementparfiof . . . . . . . . . . . . L

III [Chiffrement par blod
1 [Introduction, modes OPEratoIrey . . . . . . . « v v v 4 e h e e e e e e e e e
2 Dchemade Fewstel,le DEY. . . . . . . . ..o o000
3 Pchema substitution permutation OPN), TAEY . . . . . . . .. ... ... ..

IV [onctions de hachage, MAQ
I fonctionsde hachagd . . . . . . . . . . . ..o oL

2 MAQ. . . . .

3 [Constructions de fonctionsde hachagg . . . . . . . . . . . . . ... ...

V  [Cryptographie fondée sur Ie probléme dulogarithme discret
1 [Le probleme du logarithme discrett . . . . . . . . . . . . ... ...
2 Quelques applications cryptographiqued. . . . . . . . . . . . ..o oL
3 |Algorithmes de calcul du logarithme discreq. . . . . . . . . . . . ... ... ...
4 |Introduction aux courbes elliptiquey . . . . . . . ..o 00000000

VI [Cryptographie fondée surIa factorisatio
1 Rappels sur Z/Nz .................................

2 Cryptographie avec les carrésde Z/NZ| . . . . . . . . . . . . ...
3 [Le chiffrement KSA (1977} . . . . . . . . .o
4 |Le chiffrement de Paillier (t999g). . . . . . . . . .. .00 o000

S IMISE €N 0CUVIE . . . . . . . L Lo e e e e e e e e e e e e

VII Signatures numériques
1 Propriétéd . . . . . . . . . e e e e e e e e e
2 Dignature RSA-FDH| . . . . . . . . oo oo
3 Pignature de Schnory . . . . . ..o o oL L oo
4 Pignatures utilisantdes couplaged . . . . . . .. ..o 0oL oL oL

VIIICryptographie post quantique

—1ii —

T

AW

IX
II
13
14

19
19
20
21

23
23
24
25
27

33
33
35

37
39

4x
41
42
42
43

45



Table des matiéres

_iV_



Chapitre 1

Introduction

1. Bibliographie
* Gilles Zémor, Cours de cryptographie, Cassini, 2000.
* Nigel Smart, Cryptography Made Simple, Springer, 2016

* Dan Boneh et Victor Shoup, A Graduate Course in Applied Cryptography, en ligne https://toc.cryptobook.
us

2. Plan du cours

 Chiffrement parfait et chiffrement par flot

* Chiffrement par bloc

* Fonctions de hachage, MAC

* Cryptographie sur le probleme du logarithme discret
* Cryptographie sur le probléme de la factorisation

* Signatures numériques

* Cryptographie post quantique

3. Courte introduction a la cryptologie

Cryptographie : ensemble de méthodes pour sécuriser 'information et les communications numé-
riques contre des adversaires.

Cryptanalyse : consiste a casser ces méthodes (attaques), alors que la cryptographie consiste a les
CONCevoir.

Cryptologie = Cryptographie + Cryptanalyse. En pratique, on emploie souvent le terme cryptographie
a la place de cryptologie.

Adversaire : Principe de Kerckhoffs (fin 19e siécle), 'adversaire connait la méthode utilisée. Seule une
donnée lui est inconnue : la clef secréte. On définit plusieurs niveaux de sécurité en définissant les buts de
Padversaire : retrouver la clef secréte (bris total), retrouver l'information d’origine...On définit également
les moyens a la disposition de I'adversaire pour faire son attaque.


https://toc.cryptobook.us
https://toc.cryptobook.us

Chapitre I : Introduction




Chapitre 11

Chiffrement parfait, Chiffrement par flot

1. Le chiffrement symétrique

Notations et vocabulaire :

» M/ :lespace des messages clairs (plaintexts)

* ¢ :lespace des messages chiffrés (ciphertexts)

» 7% :lespace des clefs secrétes (secret keys)

* E: %7 X .# — % lafonction de chiffrement (encryption)

* D: % X% — ./ lafonction de déchiffrement (decryption)

Typiquement . = {0,1}¢ ou {0,1}*. On suppose que I'information est codée sous forme d’une chaine
de bits.

On veut une notion de correction : pour tout k € 7', m € .# ,D(k, E(m, k)) = m.

On suppose qu’Alice et Bob disposent d’'une méme clef k, connue d’eux seuls, et utilisent E et D pour
communiquer. Le but est d’assurer la confidentialité des messages clairs échangés.

Oscar
Alice |, | Bob
k ) i k
E(k/ mA) =CaA > D(k/ CA) =mp
D(k, cg) = mp 4 E(k,mg) = cp



Chapitre II : Chiffrement parfait, Chiffrement par flot

2. Le chiffrement parfait

Le chiffrement de Vernam (1917)...
Aussi appelé masque jetable ou One Time Pad en anglais.
M =F=%={0,1)f
s E(k,m)=keém
* D(k,c)=kac

On va voir que si la clef k est utilisée une seule fois et choisie au hasard avec équiprobabilité, alors le
chiffrement de Vernam est un chiffrement parfait, inconditionnellement siir méme pour un adversaire tout
puissant. Ce chiffrement est avant tout théorique, mais a été tout de méme utilisé en pratique par exemple
pour le téléphone rouge ou encore dans les Numbers stations, une trés longue clef secréte étant transmise
préalablement.

Pourquoi une utilisation unique de la clef est nécessaire :

* attaque a clair(s) connu(s) : P'adversaire connait un ou plusieurs (éventuellement un trés grand
nombre) couples clairs chiffrés. Souvent le moyen minimal en cryptographie symétrique : entéte de
fichier connu (mail, image jpeg...), début de protocole.

Sur le chiffrement de Vernam : c;®m; — k. Bris total! Si on réutilise k pour chiffrer m, parc, = m,®k.
On peut retrouver 1, a partir de c;.

* attaque a chiffré(s) seul(s) : 'adversaire ne connait que le chiffré (moyen le plus faible) : c; ®c, =
my @ m,. Information sur les clairs : on attaque la sécurité sémantique.

...est un chiffrement parfait

On voit message, chiffré, et clef, comme des variables aléatoires discretes M, C et K, ainsi on attache
une probabilité au choix d’'un message particulier 11, au choix d’une clef k et 4 celui d’obtenir un chiffre c.
On supposera toujours que le choix de la clef se fait indépendamment de celui du message, c’est a dire que
M et K sont indépendantes.

Rappel : cela signifie que pour tout m € .# ,k € Z,PM =m,K = k) = PM = m)P(K = k).
Autre rappel, si P(C = ¢) > 0, on définit la probabilité conditionnelle

P(M = m,C =
PM =m|C=c) = (P+=C)C)

Dans la suite, on supposera également toujours que pour tout m, k, c,
PM=m)>0,P(C=c)>0,PK=k)>0.

Définition IT - 1. Un systéme de chiffrement symétrique est parfaitement siir si pour toutm € .#Z,c € ¢,
PM =m|C =c)=PM =m).

Autrement dit le chiffré n’apporte pas d’information supplémentaire sur le clair, méme pour un adver-
saire tout puissant. Cela signifie également que M et C sont indépendantes.

Théoréme II —2. Le systéeme de Vernam ot la clef est choisie de maniére équiprobable est parfaitement
sar.
Démonstration. On a d’une part
PM=m
PM=mC=C)=PM=mK=mdc)=PM=m)xP(K=méc)= %
D’autre part,

1 1
PC=c)= ), PC=cM=m)= Y, PK=m&@cM=m)=— > PM=m)=—-
menN menN |‘%| meN |'%|



3. Chiffrement par flot

Proposition II —3. Siun systeme de chiffrement symétrique est parfaitement str alors |.Z| < |£| < |.Z].

Démonstration. Nécessairement |.Z| < || : la fonction de chiffrement doit étre injective pour pouvoir
déchiftrer sans ambiguité.

Si le chiffrement est parfait on a P(C = ¢|M = m) = P(C = c) par indépendance. D’autre part, on a
supposé que P(C = ¢) > 0. Donc pour un m fixé et pour chaque c il existe au moins un k tel que ¢ = E(k, m).
Ainsi |Z] < |.7Z). O

Lespace des clefs doit donc au moins étre aussi grand que celui des clairs et des chiffrés. Pour trans-
mettre un message de ¢ bits de maniére confidentielle il faut donc avoir préalablement transmis un clef
secréte d’au moins ¢ bits. Cela est peu pratique! Remarque : la notion d’entropie (cf. le cours de théorie
de l'information) permet de mieux formaliser cela : si le chiffrement est parfait H(K) > H(M).

Les chiffrements symétriques actuels utilisent une méme clef courte (typiquement 128 a 256 bits) que
I'on réutilise pour chiffrer des gigas octets de données. On perd donc la sécurité parfaite.

Tous ces algorithmes de chiffrement a clef secréte sont sensibles a la recherche exhaustive. C’est
une attaque a clair connu. Connaissant un message clair 7 et son chiffré correspondant c, on calcule le
chiffrement de m par toutes les clefs possibles jusqu’a trouver c. Si la clef secréte fait n bits, on doit donc
faire 2" chiffrements dans le cas le pire. Le but du cryptographe symétrique est de concevoir un systéme
dont la meilleure attaque connue soit la recherche exhaustive.

3. Chiffrement par flot
Cadre

C’est une version pratique du chiffrement de Vernam. A partir d’une clef secréte, une chaine de bits
aléatoire courte, on crée de maniére déterministe une suite (pseudo-aléatoire) de bits (z;)ren, dite suite
chiffrante. Puis on chiffre une suite de bits ()N par ¢x = My @ z; pour tout k € N (on parle plus
exactement de chiffrement par flot synchrone additif).

Ce chiffrement est plus rapide que le chiffrement par bloc que I'on verra ensuite, surtout en implanta-
tion matérielle car la complexité matérielle est plus faible. Il est basé sur des primitives simples (LFSR cf.
suite du cours). Ils peuvent étre exécutés avec une mémoire limitée, ils traitent le message clair bit par bit
alavolée, et sont donc utilisés pour chiffrer des communications.

Exemples : RC4 (1987, obsolete), SNOW3G (2002, 3G—), ChaChazo (2008, TLS, OpenSSH), ZUC
(2010, 3G—).

Ces systémes peuvent étre vus comme des automates, dont I'état interne est initialisé par une clef
secréte a 'instant = 0. Au temps ¢ > 0, I'état interne S; est fonction de I'état au temps précédent, S;_4, et
un bit de suite chiffrante fonction de I'état est produit, z;.

Si état interne de I'automate est un registre € bits, alors au plus 2 états différents sont possibles. Au
bout de 2! itérations, on retombe donc sur un état déja rencontré, et la suite chiffrante est donc pério-
dique de période au plus 2¢. Or répéter une méme suite chiffrante conduit aux mémes attaques que sur le
chiffrement de Vernam. Il faut donc pouvoir créer différentes suites chiffrantes pour un méme choix de
clef secrete.

Dans les chiffrements par flot modernes, on utilise une entrée auxiliaire, un vecteur d’initialisation
public, IV, afin de pouvoir produire plusieurs suites chiffrantes a partir de la méme clef secréte. Au bout
de n bits produits avec une méme clef secréte, un nouvel IV (public) est choisi par Alice et Bob et I'état
interne du chiffrement par flot est réinitialisé avec la clef secréte et ce nouvel I'V.

Pour résumer, on a
* Initialisation : choix d’'un IV et Sy = h(k, IV)
e Pourt=1,..,n

— Mise a jour de I'état : S; = f(S;_1)



Chapitre II : Chiffrement parfait, Chiffrement par flot

— Extraction du terme de suite chiffrante : z; = g(5;)

e Retour a I'initialisation.

LFSR

C’est une brique de base intervenant avec d’autres composants dans de nombreuses constructions de
chiffrements par flot afin de mettre a jour I’état. Ils permettent de construire 2 moindre cotit des suites
avec des périodes élevées et des bonnes propriétés statistiques.

Définition IT — 4. Un registre a décalage a rétroaction linéaire (LFSR, Linear Feedback Shift Register) bi-
naire de longueur ¢ est un automate composé d’un registre S a décalage de € bits. Au temps ¢ > 0, on note
s® =S¥, ...,sY ) rétat du registre.
Son polynéme de rétroaction (parfois appelé polynome de connexion) est un polyndme de F,[X]
de degré ¢
fX):=1®X®X2® - @ Xl

Dans la suite on posera également ¢ := 1. Son état initial est SO := (z, ..., z,1) € Fg.

A Tinstant t, on sort le bit d’indice 0, st ), et on met 2 jour pour donner le registre S**1 de la fagon
suivante : les bits d’indices 1 a € sont décalées :

S¥*D = sY  pour0<i< -2,

et le bit d’indice £ — 1 est mis a jour par une fonction linéaire :

S(gjll) = Cls(gzl D CZS([QZ b---D C[_ls(lt) ® C[S(t),

ou les calculs sont dans F,. On représente un LFSR ainsi :

WV

Js® [0 | v | v |« [0 |g®

Un LFSR est donc un automate qui calcule les termes d’une suite a récurrence linéaire d’ordre ¢ initia-
lisée par 2o -+ 1 21 (le contenu de S©) et de récurrence z;, = 12,1 @ CpZ;_p ® ** B Cp_1Z4_g41 D CpZs_¢ poUr
tout t > £. A chaque instant { > 0, S® contient t termes consécutifs de la suite SU = (2, 2141, . , Zrr-1)-

Proposition I - 5. La suite z produite par un LFSR de longueur ¢ est périodique de période T < 2 —1.
D’autre part, la période est maximale T = 2¢ — 1 si et seulement si le polynéme de rétroaction est primitif.
On parle de m-suite ou m-séquence.

Démonstration. Un registre peut prendre au plus 2¢ états. il vaut (0, ..., 0) alors les registres successifs sont
tous nuls et la suite de sortie est elle-méme nulle a partir de ce rang, elle est donc périodique de période 1.
Siles registres ne sont jamais nuls alors parmi les 2t registres sO s 51 ,au moins deux registres
sont identiques. Supposons St = S0+ alors la suite des registres S¢0),Sto+D) | St+T-1) ge répete
indéfiniment. On a donc z;, 1 = z; pour tout t > fy avec T < 20 -1,
On note



3. Chiffrement par flot

0 1 (R 0

A= R
0

O vrvrmrmenees 0 1

Cop Cppovvwvvnnnns c

En considérant les registres comme des vecteurs colonnes, cette matrice permet d’exprimer la rétroac-
tion linéaire :

g+1) = AG®),

Ainsi,onaS® = A'S©®) En développant par rapport ala premiére colonne, on remarque que le déterminant
de A est égal a ¢, = 1. La matrice A est donc inversible et le LFSR ne passe jamais par le registre nul si
Pétat initial S© est non nul. La condition S%) = St0*D devient A0S = Al*TSO) mais comme A est
inversible, on en déduit S© = ATS© = S et la suite s est périodique.

On montre ensuite que le polynéme caractéristique de A est le polynéme réciproque du polynéme de
rétroaction dont les racines ont le méme ordre. En diagonalisant A, on voit que la période de z est 'ordre
de A qui est lui méme l'ordre des racines du polynéme caractéristique. La période est donc maximale si le
polynéme est primitif.

On admet la réciproque. O

Une m-suite sera souhaitable pour des applications cryptographiques. Remarquons que, dans ce cas,
dans une période, les registres prennent tous les états possibles de Fg sauf le registre nul. En particulier,
deux telles suites associées aux mémes coefficients de récurrence mais pas au méme état initial sont en fait
décalées 'une de l'autre. D’autre part une m-suite a de bons critéres statistiques.

Proposition IT — 6. Une m-suite est équilibrée, c’est a dire que dans une période, les nombres de 0 et de
1 différent au plus de 1 (premier critére de Golomb).

Démonstration. On a vu que dans une période, le registre prend toutes les valeurs possibles de Fg sauf le
registre nul. Le premier élément de chaque registre prend donc 2¢7! fois la valeur 1 et 2~! — 1 la valeur 0.
Ce premier élément étant a chaque tour le bit de sortie, on en déduit que dans une période, dans la m-suite
produite, le nombre de 1 et de 0 différent de 1. O

On associe a la suite z = (2;)0 la série génératrice

Z(X) = Y, zX".

t>0

Proposition IT - 7. Une suite z strictement périodique est produite par un LFSR de longueur ¢ dont le
polynéme de rétroaction est f(X) =1®c; X @ Xo ® - & ¢ X si et seulement si son développement en
série formelle vérifie

Z(X) = gX)/f(X),

ou g est un polynéme de F;[X] tel que deg(g) < deg(f). En outre, le polynéme g est entiérement déterminé
par 'état initial du registre :

-1 i
g(X) = Z X! 2 C]'Zi_]'.
i=0 j=0



Chapitre II : Chiffrement parfait, Chiffrement par flot

Démonstration. Supposons z produite par un LFSR de polynéme de rétroaction ¢y & c;X @ -+ & c, X" avec
¢p = ¢y =1. On pose

gX) = ZX)FX) = (2o @ 1 X ® ) (co ® 1 X ® -+ ® ¢, XP).

On vérifie que g est bien un polynéme. On note g; le coefficient de g de degré i. On a go = zoco, §1 =

ZgC1 D z1¢o et pour toutiavec 0 < i< {, g = E;‘:o ¢jzi-j. Ensuite, pour tout i > 0,

t

esi = X CiZerioj = CoZexi ® C1Z¢4i1 @ -+ D Cez; = 0,
j=0

car on retrouve 'équation de rétroaction. Donc g est bien un polynéme de degré inférieur a £. Réciproque-
ment, si Z(X) = g(X)/f(X), alors la suite z satisfait une récurrence linéaire d’ordre ¢, donnée par la formule
précédente. O

Afin d’obtenir une forme canonique de la série génératrice Z, on définit le polynéme de rétroaction
minimal : c’est un diviseur de f(X), qui de plus est le polynéme de plus bas degré parmi les polynémes de
rétroaction de tous les LFSR possibles qui générent la suite z.

Définition IT-8. Soit un LFSR de longueur ¢ d’initialisation non nulle et z sa suite de sortie supposée
strictement périodique. Son polynéome de rétroaction minimal est 'unique polynéme unitaire f de
F,[X] tel qu'il existe g € F,[X], avec deg(g) < deg(f) et pged(f,g) = 1, vérifiant Z(X) = g(X)/f(X). La
complexité linéaire du LFSR produisant la suite z, notée A(z), est alors égale au degré de f : C’est la
longueur du plus petit LFSR permettant d’engendrer z.

Si le polynéme de rétroaction est irréductible de degré £, on a A(z) = £.

Un LFSR de polynéme de rétroaction primitif est donc un bon candidat pour construire un chiffrement
par flot : on a une implantation logicielle et matérielle trés rapide, de bonnes propriétés statistiques et une
grande période possible (un LFSR de ¢ bits peut produire une suite de 2¢ — 1 bits). Cependant, on ne peut
pas les utiliser directement : £ bits consécutifs de la suite chiffrante (obtenue par une attaque a clairs connus
avec ¢ bits de clairs) fournissent directement I'état interne. Une solution pourrait étre de garder comme
clef secrete la fonction de rétroaction, donc la valeur de (cy, ..., ¢¢) : méme si on récupére 'état interne, on
ne pourrait « dérouler » ou « rembobiner » le LFSR. Cependant...

Proposition IT—9. Soit z une suite produite par un LFSR de longueur ¢ et de polynéme de rétroaction
f irréductible de degré ¢. Si on connait 2¢ bits consécutifs de z alors on peut retrouver les coefficients de
rétroaction en inversant un systeéme linéaire £ X £.

Démonstration. Comme z est une suite produite par un LFSR de longueur ¢ et de polynéme de rétroac-
tion f irréductible de degré ¢, on a A(z) = £. On suppose que 'on connait 2¢ bits a partir du temps ¢ :
Zt, Zy41s Zi42s -+ Zr420-1- On construit le systéme linéaire suivant :

Zt Z+1 Zp+2 e Ape-1 || Ce Zr+t
Zt41 Zpg2 e e Ztve || Ce-1 Ztre+1
Zpye—2 e Zppe3 || 2 Zp420-2
Zpy-1 Zpre e e Zp20-2)\ 01 Zp420-1

Les lignes de la matrice sont les registres s g+l - gt+-1) Gjle systéme a une solution, les coefficients
de rétroaction seront donc bien solutions. On montre en fait que le systéme a une unique solution en mon-
trant que les lignes sont indépendantes (par 'absurde, on montre que sinon cela donnerait une récurrence
linéaire sur la suite d’ordre < ¢, ce qui contredit le fait que A(z) = £). O

Si la longueur du LFSR est £, sa complexité linéaire est au plus £. Donc en la devinant, la proposition
montre que l'on peut retrouver le LFSR en temps au plus @7 (¢4) avec seulement 2¢ bits consécutifs de suite



3. Chiffrement par flot

chiffrante. Cette attaque polynomiale empéche d’utiliser tel quel un LFSR. De plus, on peut faire mieux
(en temps 7 (£?) avec un algorithme du 2 Berlekamp et Massey).

En pratique, la mise a jour des chiffrements a flot actuels fait également intervenir au moins un com-
posant non linéaire (des fonctions booléennes), par exemple SNOW3G et ZUC sont des constructions de
type LFSR filtré : 'état interne d’'un LFSR est I'entrée d’une fonction non linéaire qui produit le bit de
suite chiffrante.



Chapitre II : Chiffrement parfait, Chiffrement par flot

—10—



Chapitre II1

Chiffrement par bloc

1. Introduction, modes opératoires

Un algorithme de chiffrement par bloc est un algorithme de cryptographie symétrique. Il prend en
entrée un message clair de 7 bits (que I'on peut voir comme un élément de F}) et donne en sortie un chiffré,
qui est un autre bloc de bits (en général également 1), en utilisant une clef secréte k. Si le message clair est
de taille plus grande que 71 on le découpe en des blocs, 11y, 114, ... de taille n1. Puis pour chaque t = 0,1,2, ...,
on applique le chiffrement. Le déchiffrement se fait de maniére similaire, avec la méme clef k.

On peut voir la fonction de chiffrement comme une permutation de F} sélectionnée par la clef Q¢
choix pour une clef de ¢ bits) parmi les 2! possibles. Tout 'enjeu est de produire une permutation la plus
« aléatoire » possible tout en gardant une certaine structure pour avoir un algorithme de longueur succincte
(décrire une permutation sans structure quelconque se fait en donnant la liste de ses images ici 2" X n bits
et 1 = 128 en pratique). Contrairement au chiffrement par flot, les chiffrements par blocs n’ont pas d’état
interne, et sont en général plus complexes a évaluer.

my Ct
k — E k — D
C My

Ci-dessus le mode ECB, Electronic CodeBook. Ce mode ne cache pas les redondances éventuelles du
texte clair, (par exemple si m; = m; avec i # j alors ¢; = ¢;). On n’a donc pas de sécurité sémantique.

D’autres modes opératoires remédient a ce probléme. Par exemple, le mode OFB (Output FeedBack)
permet d’obtenir un chiffrement par flot :

— 11—



Chapitre III : Chiffrement par bloc

I\Y%
k — E k— E k — E
Zg _/ Zq _/ Va))
my Co mq C1 my Cy

Il en est de méme du mode CTR (compteur) ot ¢; = m; @ E(k, IV @ (t),,) ot (t),, est la représentation
de l'entier ¢ sur 1 bits. Comparé au mode OFB, ce mode, trés populaire, permet de procéder directement
au chiffrement ou déchiffrement a n'importe quel temps sans devoir générer toute une suite chiffrante.

Autre exemple, le mode CBC (Cipher Block Chaining) utilise le schéma suivant :

My my L)

v — / P / D

k — E k — E k — E

g ———— €1 — 02

Tous ces modes (sauf ECB) permettent d’avoir une sécurité sémantique pour des attaques a chif-
frés seuls, en idéalisant le chiffrement par bloc utilisé, quel que soit le choix ATV (fixe, number used once
(nonce), aléatoire). SiI'TV est pris aléatoirement, on peut également montrer que tous ces modes (sauf ECB)
donnent une sécurité sémantique pour des attaques a clairs choisis. Ainsi on assure bien la confidentialité
des données échangées. Cependant ces modes ne protégent pas contre un attaquant qui modifierait les
chiffrés ou des attaques a chiffrés choisis. Nous verrons comment assurer I'intégrité des données et les
authentifier au chapitre suivant.

La construction des chiffrements par bloc utilise la plupart du temps un schéma itératif. Les itérations,
appelées tours ou rondes, sont en général identiques (a part la premiére et la derniére), seule la clef de tour,
créée a partir de la clef secréte k au moyen d’un algorithme dit de cadencement de clef, change.

F Ko F Ky F K21

Y Y
m = Xy X1 XZ/—\ /werC

Cette construction itérative permet une description concise de I'algorithme de chiffrement. On doit
juste décrire la permutation F et I'algorithme de cadencement de clefs. Pour obtenir cette permutation F,
deux classes générales de constructions ont été proposées : les schémas de Feistel et les schémas substitu-
tion permutation (SPN).

— 12—



2. Schéma de Feistel, le DES

2. Schéma de Feistel, le DES

Cette construction a été introduite par Feistel dans les années 70. On suppose que le bloc de message
. . )} n p
clair est de longueur paire 7 et on le découpe en deux blocs de longueur 7, notés Ly et Ry. On note

m = Lg|[Rg. A chaque touri =1,2,...,7, on prend en entrée un bloc (L;_1, R;_1) et on le transforme en un
bloc (L;, R;) en faisant intervenir la clef de tour K;. On note f une fonction prenant en entrée et en sortie
des blocs de 1/2 bits. La transformation se fait par les formules :

Li = Ri—l/ Ri = Lz’—l 69f(Ki/ Ri—l)

Au bout de r tours, le chiffré est ¢ = R,||L, (on ne « croise » pas les fleches au dernier tour). Ce schéma
est inversible, (si 'on connait les clefs de tours), que f soit une bijection ou non. En effet, on a

Ri1 =1L;, Lii1 = R;® f(K;, Ri).

Le déchiffrement de ¢ = R,||L, se fait donc avec exactement le méme procédé que le chiffrement
en appliquant les clefs de tours dans 'ordre inverse. On retrouve bien, a la derniére étape, (toujours sans
croiser) Lg|[R.

Le DES, Data Encryption Standard, standard de chiffrement par bloc de 1977 a 2000 utilise un
schéma de Feistel. Les blocs de clair et chiffré sont de 64 bits, la clef secréte de 56 bits et les clefs de tour
de 48 bits. On effectue 16 tours de schéma de Feistel avec des permutations initiale et finale.

La fonction de tour opére sur des mots de 32 bits. Elle est la composition de plusieurs fonctions, suivant
le schéma suivant.

-13-



Chapitre III : Chiffrement par bloc

| 32 bits |

E

| 48 bits |

@D K (clef de tour)

LT T T 1T T 11 ] ®foisébits
S\S, 53\54%5]56/57 S

| | | | | | | |(8fois4bits)

p

| 32 bits |

La fonction d’expansion E est linéaire de ng - F%B (on répéte certains bits). La fonction P est une
permutation des 32 bits, donc aussi une fonction linéaire de F3> — F32. Ces deux fonctions, E et P ap-
portent de la diffusion c’est-a-dire que si 'on change un bit en entrée, cette modification va se propager
sur 'ensemble de I'état interne.

Les fonctions Sy, ..., Sg sont appelées boites S ou S-box. Ce sont des fonctions dites booléennes vec-
torielles, ici de Fg - Fg, non linéaires. Les boites S sont décrites par la table des 2° sorties possibles. Elles
permettent d’apporter de la confusion : le but est de rendre complexe les relations entre bits de chiffré
et bits de clef.

Les concepts de diffusion et confusion ont été introduits par Shannon en 1949. Les chiffrements par
blocs modernes sont batis sur 'alternance de ces étapes de confusion et de diffusion.

Voir https://en.wikipedia.org/wiki/DES_supplementary_material pour une description pré-
cise de ses fonctions.

Pour palier a la faiblesse du DES due a sa clef de 56 bits trop courte, on utilise encore couramment
aujourd’hui (dans le monde bancaire) une variante utilisant 3 clefs DES ky, k,, k3, appelée Triple DES.
Cela consiste a composer trois fois le DES (donc trois fois plus lent que le DES) de la maniére suivante :

c= E(k3, D(kz,E(k1,m))),

avec trois options sur le choix des clefs :
Option 1: trois clefs distinctes, ce qui revient a 168 bits de clef;
Option 2: ky = k3 et ky # kq, ce qui revient a 112 bits de clef;

Option 3: ki = ky = ks, une seule clef de 56 bits, et ¢ = E(k{,m) on a un chiffrement classique du
DES pour garantir la compatibilité (ce qui explique pourquoi on alterne chiffrement et
déchiffrement).

3. Schéma substitution permutation (SPN), '’AES

C’est une autre construction itérative de chiffrement par bloc. On utilise maintenant une fonction de
tour bijective en alternant les opérations de diffusion et de confusion. On effectue une étape initiale d’ajout
bit a bit de la premiére clef de tour : xy = m + Kg. Puis pour i = 1, ..., 7, on calcule x; = Fg (x;_1) pour
obtenir ¢ = x,. La fonction f commence par I'application de ¢ boites S bijectives (étape de confusion) sur
X;_1 découpé en ¢ sous blocs, pour donner un nouveau bloc #;. Puis on applique une permutation P (étape
de diffusion) sur les bits de u;, on note v; le résultat. Enfin, on ajoute la clef de tour : x; = v; + K;.

—14-


https://en.wikipedia.org/wiki/DES_supplementary_material

3. Schéma substitution permutation (SPN), 'AES

&« K; (clef de tour)

|

Létape initiale évite qu'un attaquant puisse calculer le début du chiffrement jusqu’a 'ajout de clef K.
Le déchiffrement se fait en « remontant » tout le chiffrement, toutes les opérations étant inversibles.

Un exemple de tel schéma est TAES, Advanced Encryption Standard. Ce standard pour remplacé
le DES est issu d’un concours qui s’est déroulé de 1997 a 2001. Le vainqueur a été I'algorithme Rijndael
congu par Joan Daemen et Vincent Rijmen. CAES utilise une clef du 128,192 ou 256 bits avec des blocs
de 128 bits. Suivant la taille de la clef, le nombre de tours (en plus de I'étape initiale d’ajout de clef ko) est
respectivement 10,12 et 14. On détaille le fonctionnement de 'AES dans le cas 128 bits.

Létat interne est vu comme un tableau de 4 X 4 octets. Chaque octet étant identifié avec un élément
de Fs par le choix du polyndme irréductible (non primitif)

TX) = X8 + X4+ X3 + X +1.

En notant & = X mod T(X), on a

7
Fpse =4 Y, b, b; € F,
i=0

Ainsi comme les éléments de F; sont les bits 0 et 1, un élément de F,54 peut étre représenté par 8 bits,
c’est a dire un octet. Plus précisément, dans 'AES, chaque élément by + bya + -+ + bya” est identifié avec
loctet (by, b, ..., bg) € Fy (Attention au sens d’écriture).

Létat est ainsi une matrice de .#Z,(Fys), 'ensemble des matrices 4 X 4 a coeflicients dans Fys.

La fonction de diffusion est la composée de deux fonctions linéaires, ShiftRows et MixColumns. La
fonction ShiftRows consiste en une permutation circulaire des lignes de la matrice tandis que MixColumns
est une multiplication par une matrice fixe inversible de .#Z(Fs). Ces fonctions linéaires n’agissent que
sur les octets, et pas sur les bits de I'état.

La fonction de substitution, SubBytes, consiste en une seule boite S appliquée 16 fois, sur chaque
octet de Iétat. Cette fonction consiste a composer I'inversion dans F,s (complétée par 0 — 0) avec une
transformation affine dans Fg, du type Ax+Db avec A une matrice inversible fixe de .#3(F;) et b un vecteur
fixe de F5. Cette transformation permet de casser le caractére algébrique de Iinversion.

Tout le déroulement de ’AES suit le schéma général d'un SPN, hormis le tour final qui n’inclut pas la
fonction MixColumns. Au final, le fonctionnement a haut niveau de ’'AES est le suivant. On part d’un bloc
de 128 bits de texte clair et on applique successivement sur ce bloc les opérations suivantes :

1. AddRoundKey(Kj);

2. Pouri =0,...,r-2, on effectue le tour comportant les 4 opérations SubBytes, ShiftRows, MixColumns,
AddRoundKey(K;, 1) dans cet ordre;

3. Un dernier tour ne comporte plus que 3 étapes : SubBytes, ShiftRows, AddRoundKey(K,);

4. Le contenu actuel du bloc donne les 128 bits du texte chiffré.

S



Chapitre III : Chiffrement par bloc

De nombreuses attaques ont été proposées sur des versions réduites de 'AES (en réduisant le nombre
de tours). A ce jour la meilleure attaque connue sur PAES complet (Bogdanov, Khovratovich, Rechberger,
2011) ne gagne qu'un facteur 4 sur la recherche exhaustive (donc 2!2° opérations pour une clef de 128 bits).

On détaille maintenant le fonctionnement plus précis des 4 opérations de 'AES.

Représentation des éléments

Tout d’abord, le message clair, puis chaque résultat intermédiaire est un bloc de 128 bits. On le voit
comme 16 X 8 bits c’est a dire 16 octets. On range ces octets dans un tableau 4 X 4 :

40,0 | 901 | 402 | 903
10 | 411 | 12 | 113
420 | 921 | 422 | 923
430 | 931 | 432 | 433

D’autre part, comme vu dans la section précédente, chaque octet est identifié avec un élément du corps
fini F256'

SubBytes (boite S)

Elle opére indépendamment sur chacun des 16 octets. C’est la composée S = f o I des applications

[:Fye — Fose

x 1 six#0,
X
0 six=0,

et
fiF)P = (Fy)P
y — Ay+B

ot1 A est une matrice 8X8 a coefficients dans F,, B est un vecteur de (F,)8, explicités en dessous. Plus préci-

sément, on identifie comme on I'avu I'élément 3., y;a' de Fps calculé par L avec l'octet y = (y7, ye, -, Yo)
puis on calcule Ay + B ainsi :

1000 1 1 1 1)) (1
11000 1 1 1ffyu]| |1
1 1100 0 1 1fly] |0
11110 0 0 1yl |0
111110 0 ofly|™|of
01 1111 0 oflys| |1
00111 1 1 ofly| |1
0001111 1ly) o

En pratique, lorsque I'on implante 'AES, cette boite S est donnée par une table décrivant toutes les
sortiesd, on ne fait pas les calculs dans le corps Fysq et dans I'espace vectoriel (F)3.

La fonction I d’inversion dans le corps Fys¢ a été choisie car on peut montrer qu’elle a de trés bonnes
propriétés pour se protéger contre certaines attaques avancées. Ensuite, on compose par la fonction affine
f pour casser le caracteére algébrique de I et enlever le point fixe 0 — 0.

ShiftRows

Elle fait subir une permutation circulaire vers la gauche aux lignes du tableau, respectivement de 0, 1,
2,3 cases :

'On peut la trouver ici : https://en.wikipedia.org/wiki/Rijndael_S-box

_16_


https://en.wikipedia.org/wiki/Rijndael_S-box

3. Schéma substitution permutation (SPN), 'AES

40,0 | 901 | 02 | 903 40,0 | 901 | 402 | 903
a10 | 411 | B2 | D13 N a11 | M2 | 13 | 410
420 | 921 | 422 | 923 A2 | 423 | 20 | 921
30 | 431 | 932 | 933 433 | 430 | 431 | 432

MixColumns

Elle s’interpréte comme une multiplication matricielle :

0,0 | 901 | 402 | 403 bop | boa | boa | bos

410 | 410 | P12 | D3 N bl,O b1,1 bl,Z b1,3

A0 | 21 | G2 | 423 bz,o b2,1 bz,z bz,s

a30 | 431 | a3p | a33 bso | b3q | b3p | bas

ou

bo,o b0,1 bo,2 bo,s a a+1 1 1 Ao0 Adoa1 do2 4p3
b1,0 bl,l b1,2 b1,3 |1 a a+1 1 410 411 M2 413
bz,o b2,1 bz,z bz,s 1 1 a a+1flayy a1 axp a3
bsg b31 bsp bas a+l 1 1 a J\azg a31 a3y az3

est le produit des matrices a coefficients dans F;5¢. La matrice de cette opération a été choisie pour ses
propriétés de diffusion.

AddRoundKey(k;, )

C’est I'addition bit a bit (le xor) de la clef de tour k;, 1, case par case.

Lalgorithme de cadencement de clefs, voir par exemple https://en.wikipedia.org/wiki/AES_key_
schedule pour une description, calcule a partir de la clef secréte k une suite de r+1 clefs de tour (ky, ..., k,),
comportant toutes 128 bits.

—17-


https://en.wikipedia.org/wiki/AES_key_schedule
https://en.wikipedia.org/wiki/AES_key_schedule

Chapitre III : Chiffrement par bloc

_18_



Chapitre IV

fonctions de hachage, MAC

1. fonctions de hachage

Une fonction de hachage h est une application prenant en entrée des messages, des suites de bits de
longueurs quelconques et retournant un haché ou une empreinte de longueur fixé, par exemple une suite
binaire de longueur # :

h:{0,1}* — {0,1}".

On veut que / soit rapide a évaluer.

Originellement, ces fonctions ont été introduites dans le contexte des bases de données afin d’y « ran-
ger » des objets de natures diverses. On cherche donc en général a éviter les collisions (le fait que h(x) = h(y)
pour x # J) pour éviter que deux objets ne se retrouvent au méme endroit, ce qui allonge la recherche dans
la base de données. En cryptographie, on veut des propriétés plus restrictives (on parle parfois de fonc-
tions de hachage cryptographiques).

Propriétés de sécurité attendues

¢ A sens-unique : étant donné un haché y € {0,1}" il est difficile de trouver m € {0,1}* tel que

h(m) = y.

* Résistance a la seconde pré-image : étant donné un message m € {0,1}, il est difficile de trouver
m’ # m avec m’ € {0,1}" tel que h(m) = h(m’).

* Résistance aux collisions : il est difficile de trouver m # m’ avec m, m’ € {0,1}" tels que h(m) = h(m’).

Sih n’est pas injective, il existe des collisions. Par exemple, si i1 désigne I'application qui a une personne
associe le jour de son anniversaire (a valeurs dans {1, ..., 365}), alors le paradoxe des anniversaires nous dit
qu’avec 23 évaluations différentes de /1 on a plus de 50% de chances d’avoir une collision. De maniére
générale, si 1 est a valeurs dans {0,1}", en (2"?) évaluations on a une bonne probabilité d’obtenir une
collision. En pratique, on prend aujourd’hui n > 256 pour avoir une sécurité de 128 bits : la meilleure
attaque prend plus de 2128 opérations.

Plus généralement, on aimerait qu'une fonction de hachage se comporte comme un oracle aléatoire :
pour obtenir le haché de 7, on soumet m 4 un oracle modélisant & qui répond par une valeur aléatoire de
{0,1}", h(m), obtenue avec équiprobabilité. Par contre, si on a déja soumis m a 'oracle, alors on obtient la
méme valeur h(m).

—19 -



Chapitre IV : fonctions de hachage, MAC

Quelques Applications

Une application directe est d’assurer I'intégrité de messages ou de fichiers. Modifier un fichier donné
afin qu’il ait toujours un haché donné correspond a trouver une seconde pré-image (mais cette application
pose le probléme de l'intégrité du haché).

Une autre application est la vérification de mot de passe. Plutot que de stocker des mots de passe
sur un serveur, on stocke leur haché. Lors d’'une authentification, le serveur hache le mot de passe recu
et compare les hachés. Cela évite la divulgation des mots de passe en cas de compromission du serveur.
Retrouver les mots de passe a partir du haché revient a attaquer la notion de sens-unique (en général on
fait une attaque par dictionnaire, le mot de passe appartenant a un ensemble de cardinal petit).

D’autres applications comme extracteur d’aléa, pour la génération de mot de passe a usage unique
(One-Time Password), ou la dérivation de clefs de chiffrement symétrique (a partir d’'un mot de passe par
exemple).

On verra d’autres applications pour les signatures numériques. On ne signe pas directement un
message mais un haché du message. Le chiffrement asymétrique utilise aussi souvent des fonctions de
hachage (par exemple le standard RSA-OAEP) pour résister aux attaques a chiffrés choisis.

2. MAC

C’est une primitive proche des fonctions de hachage : Message authentication code (MAC). Lors d’une
communication, un MAC permet de garantir intégrité du message et authentifie l'expéditeur par 'uti-
lisation d’une clef secréte.

Alice |, | Bob
ko 1T &
m . )
MAC(k, m) = mac > MAC(k, m) = mac

La notion de sécurité la plus forte pour un MAC consiste a ce qu'un attaquant ne puisse créer un
nouveau MAC valide étant connus des couples (m;, MAC(k, m;)) pour des m; de son choix.

On peut construire des MAC directement, par des chiffrements par blocs, ou 4 partir de fonctions
de hachage. Une construction populaire, HMAC, proposée par Bellare, Canetti, et Krawczyk en 1996, est
standardisée et utilisée dans de nombreux protocoles. On a HMAC(k, m) = h(k,||h(k,||m)) avec k, = k®opad
et ky = k @ ipad, avec opad et ipad des constantes. La notation || désigne la concaténation des chaines
binaires. On verra en TD pourquoi on évite des constructions plus simples du type MAC(k, m) = h(k||m)
avec certaines fonctions de hachage.

Retour sur les mode opératoires

Pour assurer confidentialité, intégrité et authentification d’'une communication on combine un mode
opératoire d’'un chiffrement par bloc avec un MAC ou un procédé plus léger apportant ces propriétés. On
parle de chiffrement authentifié (Authenticated Encryption).

Exemples

Une méthode générique (Encrypt-then-MAC) : on chiffre m en ¢ = E(kq, m) et on I'envoie au destinataire
avec mac = MAC(k,, c). Celui-ci connaissant (kq, k;) peut déchiffrer et vérifier le mac afin de prendre en
compte ou non le message. Ceci permet d’obtenir une sécurité sémantique contre des attaques a chiffrés
choisis ou I'attaquant peut obtenir le déchiffrement de certains messages.

Le mode opératoire GCM (Galois/counter mode) combine le mode compteur avec un procédé d’authen-
tification adapté. Voici une présentation simplifiéef : on utilise tout d’abord le mode CTR pour obtenir

'On peut trouver une description compléte ici https://en.wikipedia.org/wiki/Galois/Counter_Mode, incluant le traite-
ment de la longueur du message et de données additionnelles non chiffrées.

—20—


https://en.wikipedia.org/wiki/Galois/Counter_Mode

3. Constructions de fonctions de hachage

une suite de chiffré ¢y, c1, ¢y, ... en utilisant un chiffrement par bloc de 128 bits, E avec une clef k. On dé-
signe par H = E(k, 00 --- 00) le chiffrement du bloc nul. On voit les blocs de 128 bits comme éléments du
corps F,128 pour un certain choix de polynéme minimal. On calcule ensuite successivement xg = ¢y X H
dans ce corps puis x; = (xg + ¢1) X H, x, = (x; + ¢;) X H... La valeur finale sera une sorte de mac, qui
pourra étre vérifiée par le méme procédé par le destinataire. Ce mode est un standard tres performant et
populaire couplé avec ’AES (WPA-3, SSH, TLS...).

Un concours (Competition for Authenticated Encryption : Security, Applicability, and Robustness, CAESAR) a
été organisé (2013-2019), plusieurs nouveaux schémas et modes opératoires ont été sélectionnés suivant les
cas d’applications (Ascon, AEGIS-128, Deoxys-1I, ACORN, OCB, COLM).

3. Constructions de fonctions de hachage

Exemples

* MD?5 128 bits, Rivest 1992, collision en quelques secondes, obsoléte.

* SHAL, 160 bits, NIST 1993, collision trouvée en 25%! opérations par Stevens, Bursztein, Karpman,
Albertini, Markov en 2017, obsoléte

* SHAZ2, plusieurs variantes de 224 4 512 bits, NIST 2001, pas d’attaque sur la fonction compléte

* SHAZ3, vainqueur de la compétition du NIST (2007-2012), Keccak, 224 a 512 bits, Bertoni, Daemen,
Peeters, Van Assche, 2008

Les attaques par collisions sont des attaques dites différentielles : on considére une paire de messages
avec une petite différence et on cherche a controéler la propagation des différences.

Construction de Merkle-Damgard

Cette construction est suivie par les fonctions MD5, SHAL et SHA2 avec des variations sur les ité-
rations initiale et finale. Elle permet de transformer une fonction de hachage admettant une entrée de
longueur fixée (dite fonction de compression) en une fonction de hachage admettant une entrée de lon-
gueur (presque) quelconque. On note f une fonction de compression de {0,1}"** dans {0,1}", avec k > 0.
Soit IV un élément fixé de {0,1}". Soit m message a hacher. On commence par découper m en £ blocs de
k bits, my, ... ,my_q en « paddant » m,_; par 10000 ... pour obtenir un bloc de k bits. Dans le bloc m;, on
code sur exactement k bits le nombre de bits du message m. Il faut donc que m ait strictement moins de
2k bits. Ce rajout de la longueur de m est parfois appelé Merkle—Damgird strengthening. 1l permet d’éviter
que le haché de m soit le méme que celui d’une sous-chaine de m en ajustant I'IV, ou alors de construire
des collisions a I'aide d’une pré-image de I'TV.

On note zg = IV et pouri =0, ..., £, z;,1 = f(m;l|z;). Le haché h(m) de m est alors h(m) = z;,1.

My my MmMe_q My

Z1 2 Zp-1 Zp Ze+1

v f f f f h(m)

Théoréme IV — 1 (Merkle, Damgérd 1989). Soit f une fonction de compression résistante aux collisions.
La construction précédente appliquée a f donne une fonction de hachage h résistante aux collisions.

— 21—



Chapitre IV : fonctions de hachage, MAC

Démonstration. Soit m # m’ tel que h(m) = h(m’). Supposons que m et m’ aient des longueurs différentes.
La derniére itération donne h(m) = f(myllz,) = h(m’) = f(m}||z}»). On a alors m, # m} puisque ce bloc
code la longueur. Donc on a trouvé une collision sur f.

Supposons maintenant m et m’ de méme longueur, ce qui implique que le nombre d’itérations est le
méme pour m et m’ : £ = €'. On a f(mllzy) = f(myllz}), avec my = mj. Soit z, # z; et on a trouvé une
collision sur f, soit z; = z;. Dans ce cas, on a, a l'itération précédente, f(m,_1|lz;—1) = f(my_4llz;_1), soit
me_1llzg-1 # mj_qllz;_; et on a trouvé une collision, soit m,_1llz,-1 = mj_4|lz;_;. On remonte ainsi jusqu’a
trouver une collision sur f. S’il n’y a pas de collision, m;||z; = mj||z] pour i = 0 a £, ce qui implique que
m = m’ et on a une contradiction.

Pour SHA2, SHA256 (et SHA224 qui est une version tronquée) on utilise Merkle Damgird avec une
fonction f de compression {0, 1}k dans {0,1}" avec n = 256 et k = 512. Cette fonction f consiste a
effectuer 64 tours opérant sur un état interne de 8 X 32 bits en composant des permutations, des additions
modulo 232, des rotations, et application de fonctions booléennes simples. De méme, SHA512 (et SHA384)
utilise n = 512 et k = 1024 et une fonction f de 80 tour opérant sur un état interne de 8 X 64 bits.

Fonctions éponges

Une autre construction de fonction de hachage a été proposée et utilisée par les auteurs de Keccak
(Bertoni, Daemen, Peeters, Van Assche), le vainqueur du concours SHA3 : les fonctions éponges. Un état
interne de 7 + ¢ bits est utilisé. On note my, ..., m,_1 le message avec padding, découpé en blocs de r bits.
A chacun des £ tours, le bloc m1; est ajouté bit 2 bit aux r premiers bit de I'état, puis une permutation f est
appliqué a 'état (C’est la partie d’absorption). Une fois que tout le message a été traité, le haché est produit
sur plusieurs tours : a chaque tour les 7 premiers bits de 'état donnent une partie du haché (zy, zy, ... surle
dessin ci-dessous), et la fonction f est appliquée sur 'état (C’est la partie ol 'on presse 'éponge). Quand f
est une permutation aléatoire, les sorties de cette construction sont indistinguables d’un oracle aléatoire.

My my MmMe_q

— 2 — 21

f f flo s f

absorption pressage

SHA3 a été standardisé par le NIST en 20158. Comme pour SHA2, plusieurs versions de SHA3 sont
spécifiées : SHA3-224, SHA3-256, SHA3-384, SHA3-512, Ces versions correspondent a fixer r + ¢ = 1600
bits dans la construction de Keccak. Les tailles de hachés 1 sont respectivement 224,256, 384 et 512 bits,
et c = 2n, on a donc r égal respectivement a 1152,1088, 832 ou 576 suivant la taille du haché. Létat interne,
de 1600 bits est donc beaucoup plus gros que pour les fonctions basées sur Merkle Damgard. Un seul tour
de pressage d’éponge est effectuée comme r est plus grand que 7 (les 1 bits de poids fort sont utilisés).

La permutation f est construite en appliquant 24 fois une fonction de tour. Létat interne est vu comme
un pavé de 5x5x64 bits. Cette fonction de tour est la composition de 5 fonctions. La premiere, 0, consiste
a rajouter a chaque bit de I'état la parité de deux colonnes. La deuxieme p, est une rotation circulaire sur
chaque ligne (dans le sens de I'axe des z). La fonction T, est une permutation des bits de chaque tranche du
plan (x, y). La fonction x est la seule fonction non linéaire, elle consiste a appliquer la fonction booléenne
x1@xpX3@®x;3 sur 3 bits d’'une méme ligne (dans le sens de I'axe des x). Enfin la fonction (, change uniquement
une ligne (dans le sens de I'axe des z) en lui ajoutant une constante ne dépendant que du numéro de tour,
calculée a I'aide d’un LFSR.

cf. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

— 22 —


http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

Chapitre V

Cryptographie fondée sur le probleme du
logarithme discret

1. Le probleme dulogarithme discret
Définition

Soit (G, x) un groupe cyclique d’ordre 7 et g un générateur. G = (g) = {g,%,..,¢"1,¢" = 1}. Etant
donné i € G, le probleme dulogarithme discret consiste a retrouver x défini modulo # tel que i = g*.
On note logg(h) = x. En général, n sera un nombre premier.

Si on considére le morphisme de groupe exp, : (Z/nZ,+) — (G, X), a — g, logg est le morphisme
inverse de (G, X) dans (Z/nZ, +).

Si ce probleme est difficile dans G alors la fonction exp, est a sens unique. Ce probleme n’est pas
toujours difficile par exemple si G = (Z/nZ, +). Dans ce cas un entier ¢ engendre G si pged(g,7) = 1. Si
h € G, en notation additive, on a h = x¢ (mod 1) et on peut trouver x en calculant x = hg™! (mod n).

Cependant il existe des groupes dans lequel ce probléme est supposé difficile notamment dans des sous
groupes de Z/pZ pour p premier et des groupes utilisant des courbes elliptiques sur des corps finis. Ces
deux groupes permettent de construire de nombreux systémes cryptographiques basés sur le probleme du
logarithme discret.

Propriétés

Sig et g’ sont deux générateurs alors g’ = g7 avec a inversible modulo 7 : en effet il existe aussi b tel que

g= g’b = g% doncab=1 mod n. Réciproquement, si h = g* avec a inversible alors / est un générateur :
si i’ =1 alors g =1 donc ab = 0 donc b = 0.

Changement de générateur : si g, ¢’ sont deux générateurs, h = g* eth = g’ b, C’est a dire logg(h) =aet
logg, (h) = b.Onposec = logg ¢’ Alors ¢’ = ¢ donch = ¢ = ¢” eta = bc. Ainsi, logg(g) = logg, (h)xlogg g,
ou logg, (h) = logg(g) logg g ! oi1 le dernier terme est inversible car g’ est un générateur.

Par conséquent, si on sait calculer des logarithmes discrets dans un base g alors on peut en calculer en
base g¢’. La difficulté du calcul de logarithme discret dépend donc seulement du groupe et non pas du choix
du générateur.

—23-



Chapitre V : Cryptographie fondée sur le probleme du logarithme discret

2. Quelques applications cryptographiques

L’échange de clefs de Diffie-Hellman (76)

Ce protocole interactif permet a Alice et Bob d’échanger publiquement des informations et a la fin
du protocole de connaitre une quantité qui pourra servir comme clef secréte pour faire du chiffrement
symétrique : on souhaite qu'un adversaire Oscar qui écoute la conversation entre Alice et Bob n’ait aucune
information sur cette clef.

Pour cela Alice et Bob se mettent tout d’abord publiquement d’accord sur un groupe (G, X) cyclique
d’ordre # et g un générateur.

* Ensuite Alice choisit un a4 aléatoire 1 < a < n et calcule A := ¢ et envoie cette quantité a Bob sur
un canal public.

* Parallelement Bob choisit un b aléatoire 1 < b < 7 et calcule B := g’ et envoie cette quantité a Alice
sur ce canal public.

* Alice calcule B® = ¢, Bob de son c6té calcule A” = ¢™. Cette quantité C = ¢ sera leur secret
commun (ot un haché de C).

Pour retrouver cette quantité, Oscar qui écoute les échanges entre Alice et Bob doit résoudre le pro-
bleéme suivant : étant donné A, B € G calculer C € G tel que C = ¢” ot a et b sont tels que A = g% et
B = g’. Ce probleme est appelé probléme calculatoire de Diffie-Hellman, et (A, B, C) est appelé un
triplet Diffie-Hellman.

Si on sait calculer des logarithmes discrets dans G alors on peut résoudre ce probléme (en calculant 4
ou b). Cependant on ne sait pas s'il est possible de résoudre ce probléme sans savoir calculer de logarithme
discret.

Un but moins fort pour Oscar serait d’obtenir une information sur C a partir de A et B. Ceci est
équivalent a résoudre le probléme décisionnel suivant : étant donné A, B, C € G, décider si (A, B,C) est
un triplet Diffie-Hellman ou non. On parle de probléme décisionnel de Diffie-Hellman. La scule
maniere connue de résoudre ce probléeme est de résoudre le probléme calculatoire associé en calculant un
logarithme discret.

Le chiffrement d’Elgamal (85)
Principe

C’est un chiffrement a clef publique qui peut se déduire de 'échange de clef Diffie-Hellman. Dans
un chiffrement a clef publique ou chiffrement asymétrique, Bob posséde un couple clef publique,
clef privée. Cette derniére est connue de lui seul, alors que sa clef publique est connue de tous. Pour
envoyer un message m a Bob, Alice utilise la clef publique de Bob et un algorithme de chiffrement pour
obtenir le chiffré c. Pour retrouver c, Bob lui appliquera un algorithme de déchiffrement en utilisant sa clef
privée.

Pour recevoir des messages Bob choisit un groupe (G, X) cyclique d’ordre 7 et g un générateur. Il choisit
ensuite un x aléatoire 1 < x < n et calcule h = ¢*.

Le triplet Kgub = (1,4, h) constitue la clef publique de Bob, et KB

priv = X est sa clef privée.

Pour envoyer un message m € G a Bob, Alice choisit r aléatoire 1 < r < 1, et calcule Encrypt,s b(m) =
pul
c:=(cy,0)=(g,mh") e GXG.

Pour déchiffrer, Bob calcule DecryptKgriv (c1,¢2) = cpcT™.

Ce systéme de chiffrement est correct car si (c1, ¢p) = (§', mh"), cf = g™ = " comme dans 'échange de
clef Diffie-Hellman. Donc ¢yc7* = mh" (W)™ = m.

—24-



3. Algorithmes de calcul du logarithme discret

Sécurité

On se place dans le contexte minimal pour le chiffrement asymétrique : une attaque a clairs choisis, la
clef publique étant connue, un adversaire peut obtenir les chiffrés des messages clairs de son choix.

Le bris total (retrouver la clef secréte a partir de la clef publique) est équivalent au probléme du loga-
rithme discret dans G.

On peut montrer que casser la notion de sens unique est équivalent a résoudre un probléme calculatoire
Diffie-Hellman dans G, en effet (%, cq, i") est un triplet Diffie-Hellman.

De méme ce systéme est sémantiquement str (étant donné un chiffré c il est difficile de retrouver une
information sur le message clair m) si et seulement sile probléme décisionnel de Diffie-Hellman est difficile
dans G.

Remarquons que les algorithmes de chiffrement a clef publique sont beaucoup plus lents (exponentia-
tions dans un groupe) que ceux a clef secréte (manipulations simples sur les bits) mais ne nécessitent pas
d’échange de clef. Leur sécurité est reliée a un probléme algorithmique réputé difficile (ici le probléme du
logarithme discret) et non a la recherche exhaustive de la clef secréte comme en symétrique.

3. Algorithmes de calcul dulogarithme discret

Nous alors d’abord voir quelques algorithmes génériques qui fonctionnent pour tous les groupes cy-
cliques. Par un théoréme de Shoup (1997), un algorithme qui résout le logarithme discret dans G d’ordre n
doit faire au moins @ (/1) opérations dans G.

L’algorithme naif
h=g%x?
Calculer g, g2, >, ... . Complexité, 7 (n) multiplications dans G

En utilisant de la mémoire : On pré-calcule tous les (¢°,7) et on les stocke dans une liste triée par
rapport au ¢' (en utilisant la représentation binaire des éléments de G par exemple). Complexité : @ ()
multiplications dans G, &'(n) éléments de G en mémoire. Lalgorithme de tri & pour complexité ¢ (1 log(n))
comparaisons. On calcule ensuite x tel que i = g*. Pour cela, on cherche & dans la liste, complexité :
@ (log(n)) comparaisons.

Baby Step/Giant Step

Shanks 1971. C’est un compromis temps mémoire.

Soit m = [y/n] on décompose en base m : x = i + mj avec 0 < i,j < m. On adonc h = ¢* = (¢")¢', et
gy = 6.

Pré-calculs : une liste des ((g"),]) avec j < m triée par rapport a la premiére coordonnée : @(+/n)
éléments en mémoire, et @ (+/nlog(n)) pour l'algorithme de tri.
Dans la phase active, on calcule 1,hg™!, h(¢™1)?, ... en cherchant chaque élément dans la liste. Si on le
trouve on a h(g™')' = (¢") et on obtient donc x = i + mj. Dans le cas le pire : @ (~/n) multiplications et
@ (+[nlog(n)) comparaisons.

Pollard p

Pollard 1978. Voir TD, similaire a la recherche de collision de fonction de hachage. On obtient un
algorithme avec une complexité calculatoire heuristique similaire en utilisant quasiment pas de mémoire.
Contrairement a Baby Step/Giant Step, c’est un algorithme probabiliste. Parfois aucun résultat n’est trouvé
(on relance alors l'algorithme avec d’autres choix aléatoires). C'est le meilleur algorithme qui fonctionne
dans n’'importe quel groupe, en particulier c’est le meilleur algorithme pour les courbes elliptiques.

— 25—



Chapitre V : Cryptographie fondée sur le probleme du logarithme discret

Pohlig-Hellman

La méthode de Pohlig-Hellman réduit le probléme du calcul de logarithme discret dans un groupe
d’ordre 7 a celui du calcul dans des sous groupes d’ordre p ou p est premier et p divise 7.

Supposons connue la factorisation de n = p{' ... p;". On calcule d’abord les valeurs du logarithme discret
modulo chaque p; et on en déduit la valeur modulo 7 par le théoréme des restes chinois.

Pour un premier p = p; donné, comment calculer x modulo p°? On note x mod p® = ag + a1p +
+ +a,1p°1, ot 0 < 4; < p — 1 la décomposition en base p. Alors de h = g%, on a h"F = (¢"P)™0 et g"F
est d’ordre p (¢ est un générateur). On obtient ainsi 49 mod p = 4y par un algorithme qui calcule des
logarithmes discrets modulo p en base ¢"/7. On continue ensuite en remarquant que i = (g”/F’2 yrorap,
donc (h/g“o)”/”2 = (g”/”z)“ff'”lp’”0 = (g”/pz)“lp = (¢"P)™. On peut trouver ainsi a; et on itérer la méthode
pour trouver x mod p° avec e calculs de logarithme discret mod p.

En pratique, pour les applications cryptographiques, on prend toujours (presque) 1 premier, sinon si
on peut le factoriser, alors on peut réduire 4 un calcul plus petit de logarithmes discrets modulo p|n.

Algorithmes de type calcul d’indice

Les algorithmes génériques précédents ont une complexité exponentielle. Si le groupe G est particulier,
on peut parfois faire mieux. Supposons qu’il existe un ensemble S = {py,p,, ..., ps} C G, appelé base de
facteurs tels qu’une grande proportion d’éléments de G peuvent s’écrire de maniere efficace comme un
produit de p;s.

Phase de pré-calculs : on détermine les logg(pl-) : pour cela on prend des k dans Z et par la propriété

supposée sur G on a de bonnes chances de pouvoir écrire g = [] p;' (facilement parallélisable)
En appliquant la fonction log on obtient : k = Y ¢; logg(pi). Avec au moins f équations linéaires indé-

pendantes, on peut résoudre et trouver les logg(p,').

Ensuite dans une phase active, si h = g, on calcule hg® pour des k aléatoires. Si on factorise, en appli-
quant le log, on obtient x + k = Y ¢; Iogg(pi).

I1 faut faire un compromis sur ¢ : petit on a besoin de moins d’équations. Grand, il y a une meilleure
probabilité qu'un élément aléatoire de G se factorise dans S.

Rappel : complexité sous exponentielle : L, (a, c) = @ (exp(c(logn)*(loglog n)'=%)).
L(0,¢) = (logn)° : complexité polynomiale (en la taille de 1) et L(1,¢) = n° : complexité exponentielle.

Dans Z/pZ avec S = {premiers < B} on obtient un algorithme en L,(1/2, \/E) (Kraitchik, 1922, re-
découvert 2 la fin des années 1970). Le crible sur corps de nombre (number field sieve, NFS, 1993) est une
amélioration de cette idée en cherchant des éléments dits lisses dans des corps de nombres (des extensions
de Q). Pour le calcul de logarithmes discrets dans un corps finis F,, cet algorithme a une complexité de
L,(1/3,¢) pous un certain ¢ > 0. Iy a également des algorithmes plus rapides dans le cas de corps fini F ,
suivant la taille et la forme de p et k.

Pour k =1, c’est a dire dans Z/pZ, le meilleur algorithme est NFS. Le record est pour un p de 795 bits
(2019, calculé en plus d’une année, avec un coiit approximatif de 3100 ans sur un seul coeur).

Mise en place cryptographique dans Z/pZ

En pratique on utilise généralement pour implanter les algorithmes cryptographiques fondés sur le
logarithme discret des groupes cycliques G d’ordre premier q. Comme les algorithmes génériques ont une
complexité 7'(,/q) opérations, pour avoir une sécurité de k bits (c’est a dire que les meilleures attaques
connues fonctionnent en 2X opérations), il faut prendre g de 2k bits (par exemple 256 bits pour une sécurité
classique de 128 bits).

_26_



4. Introduction aux courbes elliptiques

Un choix est d’utiliser pour G un sous groupe des inversibles de Z/pZ avec p premier et g divisant p —1.
Les algorithmes de type calcul d’indice s’appliquant dans Z/pZ, on doit prendre p de telle maniére que
lalgorithme NFS, prenne 2F opérations. Le tableau suivant donne les tables estimées pour obtenir cela.

Niveau de sécurité | taille de g (bits) | taille de p (bits)
112 224 2048
128 256 3072
192 384 7680
256 512 15360

Pour I'échange de clefs Diffie-Hellman et le chiffrement Elgamal prendre g relativement petit comparé
a p augmente les performances : quasiment toutes les opérations sont des exponentiations modulaires dont
la complexité dépend essentiellement de la taille des exposants.

Pour générer de tels groupes, on choisit un nombre premier g aléatoire suivant les tailles ci-dessus (en
utilisant des tests de pseudo-primalité comme Rabin-Miller), puis on tire des nombres A aléatoires, jusqu’a
trouver p := gA + 1 premier (par le théoréme des nombres premiers pour les progressions arithmétiques,

X
on s’attend a faire de l'ordre de log(p) essais). On est ainsi assuré que (Z/pZ) contient un sous groupe

cyclique d’ordre g premier. Pour obtenir un générateur, on prend un entier x au hasard et on calcule x*
modulo p. Si 'on ne trouve pas 1, on est assuré par le petit théoréme de Fermat que ¢ := x® est d’ordre
g. Comme il y a A éléments d’ordre divisant A, on a une probabilité négligeable 1/q que x* = 1. On peut
aussi utiliser des groupes standardisés.

Un choix plus efficace de nos jours est d’utiliser des groupes issus des courbes elliptiques que 'on va
voir dans la section suivante.

4. Introduction aux courbes elliptiques
Définition

Les courbes elliptiques sont des objets aux propriétés tres riches ayant de nombreuses applications
mathématiques et en particulier en cryptographie. On va ici les définir dans un cas trés particulier qui
correspond aux applications que I'on va voir.

Soit p > 3 un nombre premier et a et b deux éléments de F,. On considere l'ensemble des points (X, Y)
a coordonnées dans F, satisfaisant I'équation

E:Y2=X3+aX+b,
avec la condition de non singularité : 4a® + 27b? # 0 dans F,.
On rajoute a cet ensemble de points un point particulier dit point a I'infini.
Loi de groupe

On obtient ainsi un groupe fini noté (E(F,), +) dont le neutre O est le point a 'infini. La loi de groupe
a une interprétation géométrique.

Lopposé d’un point (x,y) € E(F)) estle point (x, —y). Laddition de deux points distincts et non opposés,
P1 = (x1,y1) et Py = (x3,15), est l'opposé du troisieme point d’intersection de la droite (P, P,) avec E.
C’est le point de coordonnée (x3,Y3) avec

x3=A2—x1—xy et y3=Ax;—x3)— Y1,

ot A = (i, — y1)(x2 — x1)7%. Le double d’'un point P = (x1,y;) avec P # —P (c’est a dire y; # 0) est le point
de coordonnées (x3, y3) avec

xX3=A2-2x; et Y3 = Mxy —x3) — Y1,

—27—



Chapitre V : Cryptographie fondée sur le probleme du logarithme discret

3x2+a , . . .
avec A = ? C’est l'opposé de 'autre point d’intersection de la tangente en P avec E.
1

Il existe d’autres maniéres de représenter les points de E(F),) et d’autres formules plus efficaces pour la
loi de groupe.

Structure

Lordre de E(F)) est proche de p : le théoreme de Hasse donne I'encadrement

p+1-2yp <HE(F,) <p+1+2yp.

De plus, E(F,) peut entre engendrée par au plus deux générateurs et en général E(F,) est cyclique ou
proche d’étre cyclique. Il est possible de calculer I'ordre et la structure de E(F),) en temps polynomial.

Cependant en général, pour les applications cryptographiques, on utilise des courbes standardisées
comme la courbe « P — 256 » définie sur F,, avec p de 256 bits qui est cyclique d’ordre premier g (aussi de
256 bits) ou la courbe « Curve25519 » défini sur F, avec p = 2255 — 19 qui est également cyclique avec un
sous-groupe d’ordre premier g de 253 bits. On travaille ensuite dans le groupe cyclique d’ordre premier 4.

Compression de points

Les éléments de E(F),) peuvent étre représentés de maniere compacte, ce qui donnera des chiffrés et
des signatures plus courts. En effet, un point P = (xp, y,) satisfaisant I'équation de E, peut se « compresser ».

Etant donné Xp, on peut retrouver S 1=y, = x; + ax, + b. Comme p est premier, S a deux racines carrés
opposées +s. Si on représente s comme un entier entre 1 et p — 1, p — s représentera l'autre racine carré
dans cet intervalle. Ainsi les deux racines carrées ont des parités différentes car p est impair.

Par conséquent, on représente P par (xp,b) ou b est un bit représentant la parité de yp mod p, en
utilisant donc taille(p) + 1 bits.

Applications cryptographiques

Comme vu précédemment, le probleme du logarithme est plus difficile dans les courbes elliptiques que
dans les corps finis. La meilleure attaque est Pollard p avec une complexité exponentielle contre une com-

plexité sous-exponentielle pour NFS dans F,,. Le record de calcul actuel a été réalisé en 2020 en cherchant

un logarithme discret dans un intervalle de taille 214

avec une version paralléle de Pollard p.

sur une courbe de 256 bits en 13 jours sur 256 GPU

Pour avoir k bits de sécurité, il suffira de prendre une courbe définie sur F, avec p de 2k bits : cela
permettra de définir un groupe cyclique d’ordre premier qui aura aussi 2k bits (ou pas loin) comme dans les
exemples ci-dessus. Cela donne des implantations de systémes cryptographiques plus rapides (un facteur 5
410 sur le temps de calcul des exponentiations comparé aux sous groupes de Z/pZ pour la méme sécurité).
En effet, méme si la loi de groupe des courbes elliptiques est plus complexe que la multiplication dans les
corps finis, elle est évaluée sur des entiers beaucoup plus petits.

De nos jours les courbes elliptiques ont donc massivement remplacé les corps finis pour les implanta-
tions de la cryptographie fondée sur le logarithme discret. Ainsi 'échange de clefs Diffie-Hellman se fait
en utilisant le standard ECDH (EXiptic Curve Diffie Hellman).

Couplages

Les courbes elliptiques ont un autre intérét pour la cryptographie. I1 est possible d’y définir un appli-
cation bilinéaire, appelé couplage (pairing) ayant de nombreuses applications cryptographiques.

On considére toujours une courbe E définie sur le corps F), tel que E(F,) contienne un grand sous
groupe cyclique d’ordre premier q. Ce couplage prend deux points en entrée et retourne un élément d’une

'cf. https://en.wikipedia.org/wiki/Discrete_logarithm_records

_28_


https://en.wikipedia.org/wiki/Discrete_logarithm_records

4. Introduction aux courbes elliptiques

extension F,x de F),. Lentier k est appelé degré de plongement, c’est le plus petit entier tel que (F)*

contiennent les racines g—iémes de Iunité, c’est a dire tel que g divise p* — 1. Autrement dit, c’est I'ordre
de p modulo 4.

Pour une courbe elliptique quelconque, ainsi que pour les exemples mentionnés au dessus, k va étre de
l'ordre de g. Un élément de Fx ne pourra étre stocké sur machine et, 4 fortiors, le couplage ne peut étre
calculé. Cependant il est possible de construire des courbes elliptiques ou1 k est petit (< 20). On parle de
pairing friendly elliptic curve. On peut alors utiliser de tels couplages. Ils sont définis en général a partir de
deux objets mathématiques, le couplage de Weil ou le couplage de Tate et prennent en entrée un point
d’ordre g de E(F)) et un point d’ordre g de E(F ) et retourne un élément d’ordre g de F . Si k est petit,
ces couplages peuvent étre calculés en temps polynomial pour un algorithme du a Miller.

Dans la suite nous allons utiliser de tels couplages en « boite noire ». Ainsi, nous considérerons la notion
de couplage cryptographique.

Soient (Gq, +), (Gy, +), (G4, X) trois groupes cycliques d’ordre premier 4. On note P et Q des générateurs
de G; et G,. Un couplage cryptographique e : G; X G, — G, est :

* une application bilinéaire : e(aP, bQ) = e(P, Q)™ pour tout a,b € Z/qZ;
* non dégénérée : e(P,Q) # 1;
* calculable efficacement.

Une telle application permet de transporter le probleme du logarithme discret de G; dans G; (attaque
MOV):SiH = xP, e(H, Q) = e(P, Q)*. Ainsi logdP’Q) e(H, Q) donne x. Or pour les applications cryptogra-
phiques, on veut que le probléme du logarithme discret soit dur dans les trois groupes. Cela impose une
analyse fine des parametres quand on construit une courbe elliptique pairing friendly : comme G; C E(F))
et G; C F*, oule probléeme du logarithme discret est plus facile. Il existe de nombreuses constructions de

telles courbes pairing friendly. Un choix populaire est la courbe BLS12 — 381, définie sur F,, avec p de 381
bits, définissant des groupes d’ordre premier g de 255 bits, avec un degré de plongement 12, c’est a dire
G, CcF,.

p

Cryptographie fondée sur les couplages

Les couplages ont fait leur entrée en cryptographie avec 'attaque MOV. Mais bien vite, au début des
années 2000, un nouveau domaine s’est développé en utilisant les couplages pour proposer des applications
cryptographiques qui n’étaient pas réalisable auparavant.

Dans la suite on va utiliser, pour simplifier I'exposition, un couplage cryptographique ou G; = G, (dit
symétrique). En pratique on utilise plutdt un couplage ou G; # G, dont les instantiations permettent
d’avoir de meilleures performances.

Diffie-Hellman Tripartite en un tour

La premiére application, proposée par Joux en 2000, permet de faire un échange de clef entre Alice,
Bob et Charlie en un seul tour de communication. Pour cela, les trois participants se mettent tout d’abord
publiquement d’accord sur un couplage cryptographique symétrique e : GXG — Gy, avec P un générateur

de G d’ordre 4.
* Alice choisit un1 < a < g aléatoire , et calcule aP qu’elle envoie a Bob et Carl.
* Bob choisit un1 < b < g aléatoire, et calcule bP qu’il envoie a Alice et Carl.
* Carl choisit un 1 < ¢ < g aléatoire, et calcule cP qu’il envoie a Alice et Bob.

Alice calcule e(bP, cP)? = e(P, P)®¢. Bob calcule e(aP, cP)? = e(P, P)?¢; Carl calcule e(aP, bP) = e(P, P)**.

La sécurité est fondée sur 'hypothése suivante : étant donnés aP, bP, bQ, cQ il est difficile de calcu-
ler e(P, P)™* appelé probléme bilinéaire Diffie-Hellman (BDH). On peut également définir une variante
décisionnelle (DBDH).

—29 -



Chapitre V : Cryptographie fondée sur le probleme du logarithme discret

Chiffrement fondé sur l'identité

Le chiffrement a clef publique traditionnel est vulnérable aux attaques dites de '’homme du milieu.
Lorsqu’Alice envoie un message a Bob, elle doit récupérer la clé publique de Bob. Un adversaire actif
peut intercepter cette connexion et envoyer a Alice sa propre clef publique dont il connait la clef secrete
correspondante. Cet attaquant peut ainsi déchiffrer chaque message qu’Alice souhaite envoyer a Bob. Pour
corriger ce probléme, Alice doit s’assurer que la clé publique recue appartient bien a Bob.

Dans une infrastructure a clé publique (PKI), une autorité de certification (CA) fournit cette confiance
dans les clefs publiques. Bob s’adresse a 'autorité qui signe sa clef publique en délivrant un certificat. Grice
a ce certificat, Alice peut vérifier si la clef publique est légitime, et la confiance dans la clef publique repose
sur la confiance dans la CA.

En 1984, Shamir a introduit un concept connu sous le nom de chiffrement fondé sur 'identité (Identity-
Based Encryption, IBE). Ici toute information publique d’un utilisateur (par exemple une adresse email) peut
étre utilisée comme clef publique. Ceci conduit 4 une infrastructure moins complexe, il n’y a plus lieu de
certifier les clefs publiques.

Plus précisément, un schéma de chiffrement fondé sur I'identité (IBE) est composé deux quatre
algorithmes probabilistes :

* Setup : prend en entrée un parametre de sécurité et retourne des paramétres publics qui seront une
entrée commune aux autres algorithmes, ainsi qu'une clef publique maitre mpk et une clef secréte
maitre msk ;

* Dérivation de clef : prend en entrée msk et une identité id € {0,1}* et retourne une clef privée skiqy;
* Chiffrement : prend en entrée id et un message clair m et retourne un chiffré c;q;
* Déchiffrement : prend en entrée une clef privée skiy et un chiffré c;y et retourne un message clair.

Ce schéma doit étre correct, c’est a dire pour tout parameétre de sécurité, pour toute clef secrete skiy dérivée
pour une certaine identité id, et pour tout message clair m, le déchiffrement avec la clef sk;y de ciy généré
par 'algorithme de chiffrement sur I'entrée (id, 71) retourne bien m.

En pratique, la dérivation de clef est faite par une autorité qui connait la clef secréte maitre msk. Alice
récupere mpk et les parameétres du systéme et peut envoyer a n'importe quel autre utilisateur, Bob, un
message chiffré avec son identité (par exemple bob@gmail.com). Bob pour pouvoir déchiffrer des mes-
sages envoyés pour cette identité, devra demander la clef secréte correspondante a l'autorité. Notons que
l'autorité a beaucoup de pouvoir, elle peut déchiffrer tout message chiffré!

Une premiére réalisation efficace de ce concept a été proposé par Boneh et Franklin en 2001, en utilisant
un couplage cryptographique. On utilise comme pour 'échange de clef un couplage symétrique e : GXG —
Gy, avec P un générateur de G d’ordre 4.

* La clef secréte maitre msk est un entier pris au hasard entre 1 et g. On pose mpk = mskP € G. On
utilisera aussi une fonction de hachage cryptographique , H : {0,1}* — G;

* Dérivation de clef : Q;y = H(id) et sk;qy = mskQq;

* Chiffrement d’'un message m € G; : Q;q = H(id), on prend 7 un entier aléatoire entre 1 et g, le chiffré
est ¢ = (rP, me(mpk, Qiq)");

* Déchiffrement de (cy,¢y) : ¢; e(cy, skig) ™"
Le déchiffrement est bien correct car
e(c1, skig) = e(rP, msk Qig) = e(P, Qiq)"™* = e(msk P, Qig)" = e(mpk, Qiq)".

On peut montrer que la sécurité repose sur les mémes hypothéses que 'échange de clef tripartite. Si
on pose x P'entier inconnu tel que Q4 = x P, le masque pour le chiffrement est e(P, P)" k¥, étant connu
c1 =rP, et mpk = msk P et Q;qy = xP. C’est donc un probléeme BDH.

-30-



4. Introduction aux courbes elliptiques

Les couplages cryptographiques ont de nombreuses autres applications en chiffrement avancé. Le chif-
frement fondé sur I'identité est un cas particulier de chiffrement fondé sur les attributs ot le chiffré dépend
d’un certain nombre d’attributs (par exemple le pays de résidence, I'dge...). Le déchiffrement est possible
si 'ensemble des attributs de I'utilisateur correspond a ceux du chiffré.

Un domaine proche est le chiffrement fonctionnel ou les clefs secrétes permettent de récupérer une
fonction du message chiffré et non pas le chiffré tout entier comme dans le chiffrement asymétrique clas-
sique.

31—



Chapitre V : Cryptographie fondée sur le probleme du logarithme discret

32—



Chapitre VI

Cryptographie fondée sur la factorisation

Dans le chapitre précédent, on a utilisé le probleme du logarithme discret pour construire une fonc-
tion a sens unique, x — ¢*. Le probleme de la factorisation des entiers va nous permettre de construire
des groupes dont 'ordre est difficile a calculer. Ceci va nous permettre de construire d’autres fonctions a
sens unique. De plus, la connaissance de la factorisation permettra de calculer I'ordre des groupes, ce qui
donnera une trappe pour inverser ces fonctions.

Soient p et g deux grands nombres premiers distincts, on pose N = pg. Dans la suite on appellera un tel
entier un entier RSA ou un module RSA du nom de Rivest, Shamir, Adleman, qui ont proposé le systéme
du méme nom en 1977.

1. Rappels sur Z/NZ

Structure

On note (Z/NZ)* 'ensemble des éléments inversibles modulo N. C’est un groupe pour la multiplica-
tion. Si N = pg est un entier RSA, I'ordre du groupe est ¢(N) = (p —1)(q —1). De plus, par le théoréme des
restes chinois (Z/NZ)* est isomorphe a (Z/pZ)* X (Z/qZ)* :

(ZINZY* —  (ZJpZ)y* X (Z/qZ)*
a — (@ (modp),a (mod q))
Ce groupe n’est donc pas cyclique, c’est le produit de deux groupes cycliques, d’ordre p —1 et g — 1.
Lordre maximal d’un élément est ppcm(p—1,4-1) = (p—1)(g—1)/ pged(p —1, g 1) et ce pgcd est au moins
égal 2 2. Il n’y a donc pas d’élément d’ordre p(N).

Carrés modulo p

Soit p un nombre premier impair. Dans (Z/pZ)* il y a (p — 1)/2 carrés (ou résidus quadratiques) et
(p — 1)/2 non carrés. En effet, le morphisme a +— a2 a pour noyau %1 car Z/pZ est un corps. Son image
correspond aux carrés et a pour cardinal (p —1)/2.

Le symbole de Legendre permet de déterminer si un élément est un carré ou pas. Par définition, si
a est un entier, on a (g) =0sip | a, (g) = —1 si a n’est pas un carré modulo p et (g) =1 si a est un carré

modulo p. On a en fait

(%) aE (mod p).

En effet, si p | a, c’est immédiat. Sinon comme @”! =1, 0on a a? V2 = +1 comme vu précédemment.
Sia = b? est un carré, on a a?" V2 = pP~1 =1, Les carrés sont donc les racines du polynéme X P12 —1

-33—



Chapitre VI : Cryptographie fondée sur la factorisation

qui a plus (p — 1)/2 racines. On a donc égalité entre I'ensemble des carrés et 'ensemble des racines de ce
p-1
R (e e . L .
polynéme. On a donc bien (;) =a 2 =1 dansle cas ot a est un carré. Si a n’est pas un carré, on a donc

3610
-

c’est a dire que —1 est un carré modulo psip =1 (mod 4) et n’est pas un carré si p = 3 (mod 4).
On peut également montrer que
2 ]
-

p

c’est a dire que 2 est un carré modulo p si et seulement si p est congru a +£1 modulo 8.

E a
forcement,a 2 =-1= (;)
Les conséquences sont que

et

Loi de réciprocité quadratique : si p et g sont premiers impairs distincts, alors

-
q p

Autrement dit, (g) = (g) sauf sip = g = -1 (mod 4), auquel cas (S) =- (g)

Si a est un carré modulo p, on peut calculer en temps polynomial une des ses deux racines carrées. Si
ptl p+l p-1 a . :
p =3 (mod 4), c’est facile: 2 ¢ . Eneffet,a 2 =a2a= (;) a=a.Sip =1 (mod 4) on peut toujours

calculer des racines carrés (algorithme de Tonelli-Shanks). Plus généralement on peut trouver les racines
éventuelles de n’importe quel polynéme dans Z/pZ en temps polynomial (algorithme de Berlekamp).

Carrés modulo N

. . . ) . . . . . , r
Si 7 est un entier impair on définit le symbole de Jacobi. La factorisation de n étant n = [],_, p;
(premiers non nécessairement distincts), on pose pour tout entier 4 :

(H)-11(5)

On a alors pour tout m et 1 impairs et entier a et b :

)= GG« (5)-G)G)
—)=={=) et |—=|=(=]|-]
mn m/\n n n/\n
1 1 2 w1
D’autre part, ( ) =(-1)2 et (—) = (-1) 8 . Enfin laloi de réciprocité quadratique s’étend : si m et

N e

7 sont impairs premiers entre eux
Ceci donne un algorithme efficace pour calculer le symbole de Jacobi (essentiellement algorithme d’Eu-
clide), méme sans connaitre la factorisation de 7.

. . a ) sz
Si a est un carré modulo 7, (;) = 1. Cependant la réciproque est généralement fausse. Plagons nous

dans le cas N = pg, un entier RSA et considérons les éléments inversibles. En utilisant le théoréme des
restes chinois, on voit qu’il y a ¢(N)/4 carrés modulo N : les carrés modulo N sont les éléments qui sont

—34—



2. Cryptographie avec les carrés de Z/NZ

des carrés modulo p et modulo g. I1y a aussi ¢(N)/4 éléments qui sont ni des carrés modulo p, ni des carrés
modulo ¢. Ainsi, il y a ¢(N)/2 éléments de symbole de Jacobi 1. Distinguer parmi eux ce qui sont des carrés
est un probléme difficile (le probléme de la résidualité quadratique) sans connaitre la factorisation
de N.

De méme, il est difficile de calculer une des 4 racines carrés d’un carré modulo N = pg. Si on sait
calculer des racines carrés efficacement, alors on peut factoriser N! En effet, prenons x un entier inversible
modulo N, qui correspond a (x,, xq) dans Z/pZ x Z/qZ via les restes chinois. Calculons y = x2 dans Z/NZ.
Alors les 4 racines carrées de y sont X = (x,,X,), =X = (=X, =X,), 2 = (=Xp, X;) et =z = (x,, —X,). Si un
oracle nous donne une racine carrée de y, alors il y a une chance sur 2 que 'on obtienne z ou —z. On a alors
pged(x — z,N) = g et pged(x + z,N) = p. Clest 'idée de I'algorithme de Fermat pour factoriser, que I'on
retrouve dans les algorithmes sous exponentiel de factorisation.

2. Cryptographie avec les carrés de Z/NZ

Fonction de Rabin (1978)

On prend N = pg un entier RSA avec p = g =3 (mod 4). On considére alors la fonction
S: (Z/NZ)* — (Z/NZ)*, m +— m?.

Cette fonction est a sens-unique si factoriser N est difficile. En effet, inverser la fonction revient a
calculer des racines carrés, ce qui est équivalent a factoriser comme on vient de le voir.

La factorisation de N donne une trappe pour inverser cette fonction (on calcule les racines carrées
modulo p et g et on recombine avec les restes chinois). Par contre, si on utilise cette fonction pour créer
un algorithme de chiffrement, il y aura une ambiguité dans le déchiffrement : il faut distinguer le bon
message clair parmi les 4 racines carrées. On verra en TD un moyen de lever cette ambiguité. Ce systéme
est donc a sens-unique pour des attaques a clairs choisis sous I’hypothése que factoriser est difficile. Par
contre on n'a pas de sécurité sémantique car le systéme est déterministe.

Le générateur de Blum-Blum-Shub (1986) est un générateur pseudo-aléatoire de suite binaire
construit en itérant la fonction de Rabin et en prenant le bit de parité. Ceci est extrémement lent comparé
aux algorithmes de chiffrement par flot que I'on a vu précédemment mais on peut prouver ici que 'on ne
peut pas distinguer la sortie du générateur d’une suite aléatoire si factoriser N est difficile.

Chiffrement de Goldwasser Micali (1982)
On prend N = pg un entier RSA avecp = g = 3 (mod 4). La clef publique est N, la clef privée est (p, 7).

Pour chiffrer un message m € {0,1}, on choisit r aléatoire entre 1 et N et on calcule ¢ = (-1)"? dans
(Z/NZ)*. Remarquons que ¥ peut étre considéré comme inversible sinon, on aurait factorisé N!

On a un chiffrement probabiliste comme Elgamal. Le bit 0 est chiffré par un carré aléatoire de (Z/NZ)*
tandis que le bit 1 va donner un élément aléatoire qui est ni un carré modulo p ni un carré modulo g (car
-1 1

(?) = (_7) = —1). Lespace des chiffrés est donc 'ensemble des éléments de (Z/NZ)* de symbole de

Jacobi 1.

Ainsi distinguer les chiffrés de 0 de ceux de 1 est exactement le probléme de la résidualité quadratique.
Ce schéma est donc sémantiquement siir pour des attaques a clairs choisis sous 'hypothése que ce pro-
bleéme est difficile. I est a sens-unique sous la méme hypothése. Le bris total repose sur la factorisation

de N.
Le déchiffrement se fait par calcul de symbole de Legendre en utilisant la factorisation de N.

Ce schéma a des propriétés homomorphes. Si ¢; (resp. ¢,) est un chiffré de m; (resp. m,), alors ¢1¢; est
un chiffré de mq + m, modulo 2.

- 35—



Chapitre VI : Cryptographie fondée sur la factorisation

3. Le chiffrement RSA (1977)

Principe

Pour recevoir des messages Bob choisit deux grands nombres premiers p et g distincts et pose N = pg.
Bob choisit ¢, un entier premier avec @(N) et pose d tel que ed =1 (mod @(N)).

Le couple (N, ) constitue la clef publique de Bob, et d est sa clef privée.
Pour envoyer un message m € (Z/NZ)* a Bob, Alice calcule ¢ := m° (mod N).
Pour déchiffrer, Bob calcule ¢ (mod N).

Ce systéme de chiffrement est correct car sic = m® (mod N),¢? = m™ = m'***®™) = 1 (mod N) par
le théoréeme d’Euler.

Sécurité
On se place toujours dans le cadre minimal d’attaque a clairs choisis.

Le bris total consiste a retrouver d a partir de (N, ¢). On peut montrer que cela est équivalent a facto-
riser N.

Pour la notion de sens-unique, retrouver m a partir de ¢ = m® (mod N) connaissant N et e est appelé
le probléme RSA. On ne connait pas d’autres méthodes que de factoriser N (pour retrouver d) afin de
résoudre le probleme RSA.

Lapermutationm — m° (mod N) de (Z/NZ)* est donc a sens-unique sous ’hypothése que le probléme
RSA est dur. La factorisation et donc la connaissance de d est une trappe pour inverser cette permutation.

Notez que RSA tel quel n’est pas sémantiquement sur car il est déterministe. Pour résoudre ce probléeme
on utilise des versions de RSA qui rajoutent de 'aléa au message. La version standardisée, RSA-OAEP, est
prouvée sémantiquement siire méme pour des attaques a chiffrés choisis sous ’hypothése que le probléeme
RSA est dur (prouvé en 2001). Elle consiste a effectuer deux tours de schémas de Feistel au moyen de
fonctions de hachage. Notons qu’il existe d’autres transformations permettant de construire un schéma
de chiffrement sir contre des attaques a chiffrés choisis a partir d'un schéma seulement siir contre des
attaques a clairs choisis.

| ml||0...0 | r |

d—cl—

L s [ ¢ |

Soit ¢ la taille en bits du module RSA N. Soit kg, k; deux entiers tels que k; + kg < €. On considére
deux fonctions de hachage G : {0,1}k0 — {0,1}("%0 et H : {0,1}¢ %0 — {0,1}%0. Pour chiffrer un message 11,
un chaine binaire de longueur ¢ — k1 — kg, on prend un aléa r de kg bits, et on pose s = (][0 ... 0) ® G(r) (en
concaténant k; zéros a m), et t = r ® H(s). On considére ensuite s||t comme un élément x de (Z/NZ)*. On
pose ensuite ¢ = x* mod N.

~~

_36_



4. Le chiffrement de Paillier (1999)

Le déchiffrement commence par calculer ¢ mod N et a considérer le résultat comme une chaine de
bits s||t avec t de longueur ky. On inverse ensuite le schéma de Feistel en calculant ¥ = t&H(s) puis G(r)®s. Si
les kq bits de poids faible du résultat ne sont pas tous nuls, on retourne une erreur. Sinon, le déchiffrement
est donné par les £ — k; — kg bits de poids fort.

4. Le chiffrement de Paillier (x999)

Nous avons vu le chiffrement de Goldwasser Micali qui est sémantiquement stir sous I'hypothese de
la résidualité quadratique et qui est homomorphe modulo 2. Cependant ce schéma utilise pour espaces
des chiffrés un sous-groupe de (Z/NZ)* ou N est un entier RSA pour chiffrer un seul bit. Lexpansion (le
rapport taille du chiffré sur taille du clair) est donc de log,(N), ce qui est loin d’étre optimal!

De nombreux systémes de chiffrements avec des propriétés homomorphes ont été proposés pour amé-
liorer cette expansion. Un des systémes les plus aboutis en ce sens est le chiffrement de Paillier qui atteint
une expansion de 2. Pour cela Paillier utilise le groupe (Z/N2?Z)* ot N est un entier RSA.

SiN=pg,ona

e(N?) = o(r*9%) = e(P*)9(g%) = p(p - 1)q(q - 1) = Np(N).

Dans la suite on suppose que N est @(IN) sont premiers entre eux. On va voir que dans ce cas, chaque
élément z de (Z/N?Z)* peut sécrire de maniére unique xy ot1 x est dans un sous-groupe d’ordre N et y
dans un sous-groupe d’ordre @(N). Le systéme de Paillier utilise cette décomposition.

Sous-groupe d’ordre N

On note f =1+ N dans Z/N?Z. Cet élément est bien inversible car premier avec N et donc N2. De
plus, par la formule du binéme on a, modulo N2,

k

fk:(1+N)k:§](’;)Ni:1+kN.

i=0

Ainsi, f est d’ordre N. De plus, si on prend un élément x du groupe engendré par f alors il est facile de
calculer son logarithme discret en base f : on peut représenter x par un entier modulo N2 que I'on note
toujours x. On a alors x = f¥ =1+ kN avec k = (x — 1)/N.

Sous-groupe d’ordre ¢(N)
On considére la fonction

s (ZNzZY© — (zN?Z)"

r mod N — ™ mod N2

Montrons que cette fonction est bien définie. Soit 4 = b (mod N) avec 4, b premiers avec N. I existe
k € Z tel que a = b + kN. Soit ¢ 'inverse de b modulo N. On a

a=b+kN = bl +keN) = b(1 + N)*  (mod N?).
Donc :
s(a) = aN = N1 + N)Nke = pN- (mod N2).

De plus s est un morphisme de groupe (s(ab) = s(a)s(b) pour tout a,b). D’autre part s est injective : si
s(x) =1 (mod N?), on a aussi xN = 1 (mod N). Comme N est premier avec ¢(N) il existe un inverse d
de N modulo @(N) et x = ¥N = 19 = 1 (mod N). Ainsi kers = {1} et s est un morphisme injectif. En

X
particulier, 'image de s qui est le sous-groupe de (Z/N 2Z) constitué des puissances N—iémes est d’ordre

o(N).

—37—



Chapitre VI : Cryptographie fondée sur la factorisation

Fonction de chiffrement de Paillier

Au final, on a ''somorphisme

&: ZNZX(ZNZY — (Z/N?Z)
(m,7) — 1+ N)y"N

En effet, on voit facilement que & est bien définie et que & (my + my, 1115) = & (my, 11)& (M3, 1,). De
méme l'injectivité de s entraine celle de & et on en déduit que & est bien bijective par égalité des cardinaux.

Le chiffrement de Paillier utilise cet isomorphisme. La clef publique est N, la clef privée est ¢(IN). Pour
chiffrer m € Z/NZ, on prend r aléatoire, 1 < < N et le chiffré c = E(m, r) = (1 + mN)rN dans Z/N?Z.

Pour déchiffrer, on pourrait inverser s comme précédemment pour retrouver r puis 7. Plus directement,
on calcule

N = (1 4 N)eN)No()

(1 + Nyme®) p(N?)
1+ me(N)N

On en déduit :
C‘P(N) -1
T(P(N)_l =m (mod N),

ou la division est effectuée dans Z, en utilisant aussi que N et ¢(IN) sont premiers entre eux donc @(N) est
bien inversible modulo N.

Propriétés
On peut montrer que le chiffrement de Paillier est sémantiquement stir pour des attaques a clairs choisis

X
si le probléme suivant, dit de la résidualité composite est difficile : étant donné x € (Z/NZZ) , existe-t-il

r € (Z/NZ)" tel que x = ™N = s(r). Cest une généralisation de I'hypothese de résidualité quadratique.

Comme la fonction & est un morphisme, le chiffrement de Paillier est homomorphe modulo N : si ¢
et ¢, chiffrent respectivement 1, et m1,, ¢1¢, chiffre m, +m, modulo N. De plus I'expansion est maintenant
constante égale a 2.

Une application

Supposons que ¢ électeurs veuillent voter 4 un référendum. Une autorité a un couple (pk, sk) pour
Paillier, la clef publique étant un module RSA, N. On suppose que £ < N ce qui n’est pas une restriction
en pratique (N fait au moins 2048 bits, soit plus de 600 chiffres décimaux).

On désigne par m; € {0,1} le vote en clair de 'électeur i, avec 0 pour « non » et 1 pour « oui » (on suppose
pour simplifier qu'il n'y a pas de vote blanc). Chaque électeur envoie c; un chiffré de m; avec la clef pk a
Pautorité. Ces chiffrés sont publiés en ligne. A partir de ces chiffrés, il est possible pour chacun de calculer

[ 4 . . cT 2
c un chiffré de };_, m; en faisant le produit de tous les chiffrés c;.

L1 s 4 ¢
En déchiffrant c avec sk, l'autorité retrouvera »;,_; m; mod N = .., m; dans Z car ce nombre est
inférieur a £ < N. Ainsi on trouvera le résultat du vote : cela donne le nombre de votes pour « oui », donc
si ce nombre est supérieur a £/2 le « oui » 'emporte.

Quelques avantages et inconvénients de ce protocole :

* La sécurité sémantique du chiffrement assure qu'un adversaire extérieur ne pourra briser la confi-
dentialité du vote, il ne sera pas distinguer les chiffrés de 0 de ce de 1.

_38_



5. Mise en oeuvre

* La sécurité du chiffrement ne protége pas contre les attaques actives. Ladversaire pourrait modifier
un ¢;.

* Lautorité, disposant de la clef privée sk, pourrait déchiffrer n’importe quel ¢; au lieu de seulement ¢
et retrouver le vote en clair de chaque électeur.

* Un électeur malhonnéte pourrait voter 10 ou —10, ce qui correspondrait a voter 10 fois.

Il existe des solutions cryptographiques a tous ces problémes! Pour protéger I'intégrité des chiffrés, on
peut rajouter une signature numérique qui de plus permet d’authentifier les électeurs inscrits au vote. On
verra les signatures numériques au prochain chapitre. Pour protéger contre la toute puissance de I'autorité,
on peut partager le procédé de déchiffrement entre plusieurs autorités. Pour finir, on peut vérifier qu'un
électeur a bien voté 0 ou 1 en lui demandant de prouver que c; est un chiffré de 0 ou de 1, par un procédé
appelé preuve a divulgation nulle de connaissance.

On peut généraliser simplement ce protocole pour voter pour k candidats. Le vote en clair pour le
candidat j, avec 0 < j < k — 1, sera Al o1 A > £ majore strictement le nombre d’électeurs (¢ + 1 suffit). La
somme des votes décomposée en base A donnera vy + V1A + -+ + v, A1, ot v; < { < A est le nombre
de votes pour le candidat j. Avec le protocole de Paillier, comme le déchiffrement retrouve ce nombre
modulo N, pour avoir le résultat dans Z il faut que A < N. Donc si N fait 2048 bits, soit plus de 600
chiffres décimaux, on peut avoir 10'° personnes qui votent pour 60 candidats, donc couvrir une élection
mondiale.

5. Mise en oeuvre

Génération des clefs

Pour les schémas cryptographiques fondés sur le logarithme discret, nous avons vu que I'on peut utiliser
des groupes standardisés et seulement générer des clefs secrétes qui sont en général des entiers aléatoires
modulo l'ordre du groupe.

Pour les schémas fondés sur la factorisation, la génération est plus critique, il faut générer N = pg
difficile a factoriser. Il ne faut donc pas qu’il y ait de biais sur la génération de p et g. Pour avoir N de k
bits, il faut donc générer deux nombres premiers de k/2 bits. Pour cela on prend des nombres aléatoires de

k/2 bits et on teste s’ils sont premiers, en général avec un test de pseudo-primalité comme le test de Rabin
Miller.

Pour générer e dans RSA on peut prendre n’'importe quel entier 2 < ¢ < ¢(N) premier avec ¢(N). On
veut parfois pouvoir accélérer le calcul de x* mod N. Dans ce cas, on prend e petit. On évite en général e =
3 pour éviter certaines attaques. La valeur 22" 41 = 65537 est populaire. C’est F4 le plus grand nombre de
Fermat premier connu. Comme c’est un nombre premier, il a de bonnes chances d’étre premier avec @(IN).
D’autre part sa forme particuliére fait que le calcul de x* mod N se fait en seulement 17 multiplications
modulo N. On calcule ensuite d par I'algorithme d’Euclide étendu. On évite de choisir un d petit, ce qui
conduirait a des attaques astucieuses permettant de factoriser N en temps polynomial (si d < N%22),

Taille des clefs

La taille de N est paramétrée par la complexité des meilleurs algorithmes de factorisation connus. Une
classe d’algorithmes de complexité sous-exponentielle vise a trouver x et y dans (Z/NZ)* tels que x # +y
et x> = y? selon une idée de Fermat comme vu plus haut. Ces algorithmes passent par une phase de
collecte de relations puis une phase d’algébre linéaire pour trouver ces deux entiers, de maniére similaire
aux algorithmes de calcul d’indice pour le logarithme discret. Le meilleur algorithme est le crible sur corps
de nombres (NFS, Number Field Sieve) avec une complexité, L[1/3, c]. Le record actuel date de février
2020 : factorisation d’un entier RSA de 829 bits (250 chiffres décimaux, avec un cofit de 2450 ans sur un
seul coeur pour la phase de crible et 250 ans pour la phase d’algebre linéaire)l.

Tcf. https://en.wikipedia.org/wiki/Integer_factorization_records

39—


https://en.wikipedia.org/wiki/Integer_factorization_records

Chapitre VI : Cryptographie fondée sur la factorisation

D’autres algorithmes de factorisation sont adaptés a trouver des facteurs relativement petits d’'un entier
N : méthode p de Pollard (1975), de complexité exponentielle @ (1/p) ot p est le plus petit facteur premier de
N. De méme un algorithme utilise les courbes elliptiques (ECM) avec une complexité sous-exponentielle
enL,[1/2, V2. Il est moins intéressant que NFS pour attaquer des entiers RSA, mais en fait utilisé comme
sous-procédure dans NFS. Au final les tailles d’entiers RSA, N, recommandées sont les mémes que pour
le logarithme discret dans (Z/pZ)* :

Niveau de sécurité | taille de N (bits)
I12 2048
128 3072
192 7680
256 15360

— 40—



Chapitre VII

Signatures numériques

Comme le chiffrement, les signatures numériques sont une application cruciale et extrémement répan-
due en cryptographie a clef publique. Alice dispose toujours d’un couple clef publique (clef de vérification),
clef secréte (clef de signature). La clef secréte va lui permettre, a 'aide d’un algorithme de signature, de
pouvoir signer un document numérique représenté par une chaine de bits m (un fichier pdf, un email, une
transaction bancaire...) en produisant une signature c.

Bob ayant a sa disposition la clef publique d’Alice, le document 1 et la signature o de m émise par Alice,
va utiliser un algorithme de vérification qui lui permettra de vérifier si cette signature est bien valide.

Les signatures sont largement utilisées (signature de certificats pour 'authentification des sites web,
de logiciels, de transactions financiéres, authentification forte...).

o, ,
1. Proprieétés
On veut pour ces schémas de signatures des propriétés analogues a la signature manuscrite classique :

* la signature doit engager la responsabilité du signataire : seul lui connait la clef privée permettant de
signer (notion de non-répudiation);

* la signature ne peut étre imitée, cela garantit qu'elle provient d’un utilisateur donné (notion d’au-
thentification);

* le message signé n’a pas été modifié (notion d’intégrité);

* la signature peut-étre vérifiée par tout le monde en utilisant la clef publique (notion de vérification
universelle).

On définit plusieurs niveaux de sécurité. Lattaquant peut avoir accés seulement a la clef publique de
vérification, ou connaitre des couples (11, 0) valides pour une certaine clef publique (attaque 2 messages
connus), ou pouvoir interroger un oracle de signature sur des messages m (attaque a messages choisis). On
définit également plusieurs buts : retrouver la clef de signature, étre capable de produire une signature
d’'un message donné (contrefagon universelle), ou d’un message de son choix (contrefacon sélective), ou de
savoir produire un nouveau couple (m*, 0*) valide (contrefacon existentielle).

Le plus haut niveau de sécurité pour un schéma de signature est la résistance aux contrefacons existen-
tielles pour des attaques a messages choisis.

Pour signer une chaine de bits 11, en général on commence par appliquer sur 7 une fonction de hachage
cryptographique h et 'algorithme traite ensuite /(i) et la signature ne dépend donc que de h(m). Des
attaques sur la fonction de hachage donnent donc des attaques sur la signature. Connaissant un couple
valide (1, 6), trouver un seconde pré-image va donner m’ # m avec h(m) = h(m’), donc (m’, o) est aussi une

—41—



Chapitre VII : Signatures numériques

signature valide. Si 'attaquant trouve une collision sur /;, il pourra également réaliser une contrefacon par
une attaque a message choisi. Une collision permet aussi 2 un utilisateur légitime de répudier des signatures
@il signe m et dit plus tard qu’il avait en fait signé m’). La non résistance a la notion de sens-unique permet
aussi des attaques pour certaines constructions comme RSA-FDH, défini plus bas.

2. Signature RSA-FDH

On utilise les mémes notations que pour le chiffrement. On pose N = pq avec p, g deux grands nombres
premiers distincts . Onnote e etd tels queed =1 (mod @(IN)). La clef publique d’Alice est toujours (N, e) et
d sa clef privée. On note /1 une fonction de hachage cryptographique de {0,1}* dans (Z/NZ)*. On présente
ici la signature RSA-FDH (Full Domain Hash). 11 existe d’autres constructions de signatures utilisant la
permutation a trappe RSA, comme RSA-PSS (Probabilistic Signature Scheme), standardisé par le NIST.

Pour une chaine de bits m, Alice calcule

6:=h(m)? (mod N).

Bob disposant de m, (N, ) et 0 pourra vérifier que o est bien la signature d’Alice du message m en
testant si

Q
A2
-~

= i(m) (mod N).

En idéalisant les propriétés de la fonction de hachage (modele de I'oracle aléatoire), on montre que si
le probléme RSA est difficile alors il est aussi difficile de produire une contrefagon existentielle pour des
attaques a messages choisis pour la signature RSA-FDH.

3. Signature de Schnorr

Cette signature est construire 2 partir d’'un schéma d’authentification du a Schnorr (1989), qui est une
preuve a divulgation nulle de connaissance de la connaissance d’un logarithme discret.

Pour cela Alice et Bob se mettent tout d’abord publiquement d’accord sur un groupe (G, X) cyclique
d’ordre premier g et g un générateur.

Alice (une carte a puce) a une clef privée 1 < x < g et une clef publique & = g*. Elle souhaite s’authen-
tifier aupres de Bob (un lecteur de carte), avec sa clef publique 4, en prouvant qu’elle connait x, mais sans
donner d’information sur x.

Le protocole se déroule ainsi :

* Alice choisit aléatoirement de maniére uniforme r € Z/qZ, calcule t = " et envoie f 4 Bob;
* Bob lui envoie un défi aléatoire uniforme ¢ € Z/qZ;

* Alice répond s = v + xc, calculé dans Z/qZ;

* Bob vérifie que g° = the, si c’est le cas, il accepte 'authentification d’Alice.

Le protocole est bien correct : si Alice connait bien x et suit le protocole, on aura th® = ¢"(g%)¢ = g™ =

g°. D’autre part, r étant aléatoire, on montre qu’il masque la valeur de x dans s, ainsi Bob n’apprend rien sur
x. Enfin, on peut montrer que si Alice réussit a s’authentifier, elle connait forcément. En effet, on montre
qu’elle est capable de le faire pour une méme valeur de t = ¢ mais pour deux valeurs cy, ¢, différentes. On
a donc deux réponses sy, s, différentes et

g1 =1tht et g2 =th2.
On a alors en combinant ces deux équations

g2 = ez,

—42-



4. Signatures utilisant des couplages

et comme ¢ — C; est inversible modulo g,

g(sl —sa)e1-e2)™t = py.

A partir de deux réponses d’Alice pour une méme valeur ¢, on peut donc calculer x = (51 —s,)(c; — )"
prouvant donc qu’elle connait bien cette valeur.

On construit un algorithme de signature a partir de ce protocole. Alice a toujours la clef privée x et
la clef publique & = g*. On considére une fonction de hachage cryptographique & de {0,1}" a valeurs dans
Z/qZ. Pour signer m, Alice choisit aléatoirement de maniére uniforme r € Z/qZ, calcule t = g, et pose
¢ = H(m||t), et calcule s = ¥ + xc dans Z/gZ. La signature est (c, s).

?
La vérification consiste a recalculer f en utilisant 'équation ¢ = g°h™, puis a vérifier c : ¢ = H(m|t).

En utilisant les propriétés du schéma d’authentification, on peut montrer que cette signature est siire
contre des contrefagons existentielles pour des attaques 4 messages choisis si le probléme du logarithme
discret est difficile dans G.

On peut instancier les signatures de Schnorr en utilisant un sous-groupe de (Z/pZ)* ou avec des courbes
elliptiques. Comme déja vu, les courbes elliptiques vont fournir des instantiations plus efficaces en terme
de taille de signature et de cout calculatoire.

Il existe d’autres schémas de signatures fondés sur le probléme du logarithme discret dérivés des si-
gnatures d’Elgamal. Ces schémas sont standardisés : DSA utilisant un sous groupe d’ordre premier g de

X
(Z/pZ) (qui est déclaré obsoléte pour la génération de signatures a partir de 2023) et ECDSA utilisant
des courbes elliptiques. Ce dernier schéma est largement utilisé a I’heure actuelle, il sera vu en TD.

4. Signatures utilisant des couplages

A partir d’'un schéma de chiffrement fondé sur 'identité, on peut construire de maniére générique un
schéma de signature dont la sécurité sera reliée a celle du chiffrement fondé sur I'identité.

La clef secréte maitre msk sera la clef privée du schéma de signature, et la clef publique maitre sera la
clef publique. Une identité id sera un message pour le schéma de signature et 'algorithme de dérivation de
clef sera celui de signature : la clef privée sk;y est la signature d’id.

Pour vérifier une signature de id, on chiffre un message aléatoire pour l'identité id (le message) et on le
déchiffre avec skiy (la signature). Si le résultat correspond au message aléatoire, la signature est acceptée.

Pour des instantiations concrétes, 'algorithme de vérification peut-étre simplifié (on chiffre 'élément
neutre, et on prend l'aléa de chiffrement égal a 1). Ainsi avec le chiffrement de Boneh et Franklin, on
obtient I'algorithme de signature suivant.

On considére un couplage symétrique ¢ : G X G — G, avec P un générateur de G d’ordre 4. La clef
secréte sk est un entier pris au hasard entre 1 et 4. On pose pk = sk P € G. On utilise aussi une fonction de
hachage, 1 : {0,1}* — G.

Pour signer m, Alice calcule Q = h(m) € G puis 0 = sk Q € G. Pour vérifier, le chiffrement de I'élément
neutre avec r = 1 correspond essentiellement a calculer e(pk, Q) et le déchiffrement a calculer e(P, 6). Ainsi
l'algorithme de vérification teste I'égalité

e(pk, h(m)) = e(P, o).

Ce test correspond donc a tester si le triplet (pk, h(m), 6) est un triplet Diffie-Hellman. En effet, si o
est une signature de m, ce triplet est égal a (sk P, h(m), sk h(m)).

Ce schéma de signature du 2 Boneh, Lynn and Shacham (BLS, 2001) fournit des signatures trés courtes,
avec un seul élément de groupe. On montre que ce schéma est sir contre des contrefagons existentielles
pour des attaques a messages choisis si le probléme calculatoire Diffie-Hellman est difficile.

-43-



Chapitre VII : Signatures numériques

— 44—



Chapitre VIII

Cryptographie post quantique

Dans un modele de calcul quantique utilisant les lois de la mécanique quantique, certains problémes
algorithmiques deviennent plus faciles : des algorithmes pour les résoudre ont une complexité plus faible
en utilisant le modéle de calcul quantique que les meilleurs algorithmes connus en utilisant le modéle de
calcul quantique.

Exemples :

* Algorithme de Grover (1996) : sur un probléme de recherche sur un ensemble a N éléments, com-

plexité en 7 (yYN) au lieu de @ (N).

* Algorithme de Shor (1994) est un algorithme polynomial quantique pour trouver la période d’une
fonction. Via une réduction polynomiale classique le probléme de la factorisation d’entiers, mais aussi
le probleme du logarithme discret se raméne a ce probléeme. On obtient des algorithmes polynomiaux
quantiques pour la factorisation et le probléme du logarithme discret (dans n'importe quel groupe)
au lieu des algorithmes sous-exponentiels ou exponentiel.

Conséquences cryptographiques :

La recherche exhaustive pour le chiffrement symétrique est accélérée (mais on a besoin d’avoir une
implantation quantique de l'algorithme de chiffrement). Cependant on peut toujours doubler la taille des
clefs : AES 256 bits aura une complexité d’au moins 2!28 opérations quantiques.

La cryptographie a clef publique vu dans ce cours, fondée sur la factorisation et le logarithme discret
s'effondre (ECDH, RSA, ECDSA...). Des alternatives sont développées en reposant sur des problémes
supposés étre toujours difficiles dans le modele de calcul quantique, c’est a dire qu’on ne connait pas d’al-
gorithme quantique avec une complexité plus faible que les meilleurs algorithmes classiques connus. Ces
problémes sont issus des réseaux euclidiens, des codes correcteurs d’erreurs... On parle de cryptographie
post-quantique.

Une standardisation est organisée par le NIST pour établir des standards de protocoles cryptogra-
phiques post-quantiques depuis 2016. Des premiers algorithmes d’échange de clefs (KEM : Key-Encapsulation
Mechanism) et de signatures ont été standardisés en 2024 :

* ML-KEM (Module-Lattice-Based Key-Encapsulation Mechanism) fondé sur la proposition CRYSTALS-
Kyber (réseaux)

* ML-DSA (Module-Lattice-Based Digital Signature Algorithm) fondé sur la proposition CRYSTALS-
Dilithium (réseaux)

* SLH-DSA (Stateless Hash-Based Digital Signature Algorithm) fondé sur la proposition Sphincs+ (fonc-
tions de hachage)

— 45—



Chapitre VIII : Cryptographie post quantique

Un autre standard FN-DSA (FFT over NTRU-Lattice-Based Digital Signature Algorithm) fondé sur FAL-
CON (réseaux) est en cours de finalisation.

En 2025, le NIST a annoncé qu’une autre proposition HQC (codes) va étre standardisé d’ici 2027 pour
'échange de clef (KEM).

La plupart de ses propositions se caractérisent par des tailles de clefs et de signatures beaucoup plus
longues que celles utilisées en cryptographie classique.

Pour l'instant aucun ordinateur quantique assez gros n’a été construit pour exécuter les algorithmes
attaquant la cryptographie classique, méme sur des tailles modestes (le record de factorisation avec l'al-
gorithme de Shor étant celle du nombre 21). Les opinions d’experts semblent s’accorder sur le fait que la
construction d’un tel ordinateur sera un jour possible, mais il n’est pas clair si cela sera dans 10, 20 ou 50
ans (nombres de gbits nécessaires, temps de cohérence, correction d’erreurs).

Pour la cryptographie pratique, on s’oriente vers une phase de transition, faisant cohabiter cryptogra-
phie classique et post-quantique (on ne passe pas directement au post-quantique au cas oll une attaque
classique casse une proposition fondée sur un probléme relativement jeune). En 2025, un draft du NIST
déclare obsolete la cryptographie classique en 2035 : méme si un ordinateur quantique utilisable pour la
cryptanalyse est développé bien apres, il est possible d’enregistrer les échanges de clefs/sessions symé-
triques chiffrées actuelles et de les déchiffrer dans plusieurs dizaines d’années.

_46_



	Introduction
	Bibliographie
	Plan du cours
	Courte introduction à la cryptologie

	Chiffrement parfait, Chiffrement par flot
	Le chiffrement symétrique
	Le chiffrement parfait
	Chiffrement par flot

	Chiffrement par bloc
	Introduction, modes opératoires
	Schéma de Feistel, le DES
	Schéma substitution permutation (SPN), l'AES

	fonctions de hachage, MAC
	fonctions de hachage
	MAC
	Constructions de fonctions de hachage

	Cryptographie fondée sur le problème du logarithme discret
	Le problème du logarithme discret
	Quelques applications cryptographiques
	Algorithmes de calcul du logarithme discret
	Introduction aux courbes elliptiques

	Cryptographie fondée sur la factorisation
	Rappels sur Z/NZ
	Cryptographie avec les carrés de Z/NZ
	Le chiffrement RSA (1977)
	Le chiffrement de Paillier (1999)
	Mise en oeuvre

	Signatures numériques
	Propriétés
	Signature RSA-FDH
	Signature de Schnorr
	Signatures utilisant des couplages

	Cryptographie post quantique

