
Elliptic Curves

Guilhem Castagnos

September – December 2023

last updated: September 3, 2023

Contents

I TheDiscrete LogarithmProblem 1
1 Bibliography . 1
2 Asymmetric and Symmetric Cryptography . 1
3 The Discrete Logarithm Problem . 2

3.1 Definitions . 2
3.2 Algorithms for Computing Discrete Logarithms 3

II First Cryptographic Applications 9
1 Diffie-Hellman (76) . 9
2 Elgamal Encryption (84) . 9
3 Digital Signature . 10

3.1 Definition . 10
3.2 Elgamal Signature (84) . 10

4 Elliptic Curve Cryptography . 11
4.1 ECDSA. 11
4.2 EC-Schnorr . 12
4.3 How to generate an elliptic curve suitable for cryptography 12

– iii –

CONTENTS

– iv –

Chapter I

The Discrete Logarithm Problem

1. Bibliography

• In French: Courbes elliptiques - Une présentation élémentaire pour la cryptographie, Philippe Guillot, Édi-
tions Hermes-Lavoisier, (2010)

• Elliptic Curves and Their Applications to Cryptography — An Introduction, Andreas Enge, Kluwer Aca-
demic Publishers (1999), Bilinear pairings on elliptic curves, Andreas Enge, L’Enseignement Mathéma-
tique, https://hal.inria.fr/hal-00767404/ (2015)

• Handbook of Elliptic and Hyperelliptic Curve Cryptography, Henri Cohen, Gerhard Frey, Chapman &
Hall/CRC (2006)

• The arithmetic of Elliptic Curves, JosephH. Silverman, Springer, 2nd Edition (2009), in particular chap-
ter XI, Algorithmic Aspects of Elliptic Curves

• Mathematics of Public Key Cryptography, Steven Galbraith, Cambridge University Press (2012), in par-
ticular Part II Algebraic Groups and Part V Cryptography Related to Discrete Logarithms

2. Asymmetric and Symmetric Cryptography

In cryptography, Elliptic Curves are mainly used for asymmetric cryptography.
Differences between Symmetric and Asymmetric Cryptography: For example, encryption Schemes :

to protect confidentiality between Alice and Bob.

– 1 –

https://hal.inria.fr/hal-00767404/

Chapitre I : The Discrete Logarithm Problem

Symmetric Encryption Scheme

Oscar

Alice
𝑠𝑘

Bob
𝑠𝑘

Encrypt𝑠𝑘(𝑚A) = 𝑐A Decrypt𝑠𝑘(𝑐A) = 𝑚A

Encrypt𝑠𝑘(𝑚B) = 𝑐B Decrypt𝑠𝑘(𝑐B) = 𝑚B

𝑚A, 𝑚B: plaintexts (messages clairs), 𝑐A, 𝑐B: ciphertexts (messages chiffrés), Encrypt : encryption scheme
(Algorithme de chiffrement), Decrypt : decryption scheme (Algorithme de déchiffrement), 𝑠𝑘: secret or private
key

Asymmetric Encryption Scheme

Alice
Bob
𝑝𝑘, 𝑠𝑘

Encrypt𝑝𝑘(𝑚) = 𝑐 Decrypt𝑠𝑘(𝑐) = 𝑚

𝑝𝑘: public key, 𝑠𝑘: private key

Symmetric vs Asymmetric
Symmetric cryptography: security is based on the size of the key (only attack must be exhaustive search:
𝑘 bits key, 2𝑘 operations), Fast, Encryption (e.g. AES), MAC (for integrity and authentication), Hash
Functions (for integrity, e.g. the SHA family),…

Asymmetric cryptography: security is based on the difficulty of on algorithmic problem. Key size is
chosen in order to make this problem intractable. Slower than symmetric cryptography, Key exchange
(e.g. Diffie-Hellman), Encryption (e.g. RSA), Digital Signature (e.g. DSA, for integrity, authentication
and non repudiation).

Security of cryptosystems based on elliptic curves mostly rely on algorithmic problems related to the
discrete logarithm problem.

3. TheDiscrete LogarithmProblem

3.1. Definitions
We consider a cyclic group of order 𝑛, (G, ×) generated by 𝑔 ∈ G, i.e., ⟨𝑔⟩ = {𝑔, 𝑔2, 𝑔3, … , 𝑔𝑛 = 1} = G. In
general, 𝑛 will be a prime number (cf. Pohlig–Hellman Algorithm).

– 2 –

3. The Discrete Logarithm Problem

Examples
For example a subgroup of (Z/𝑝Z)× with 𝑝 prime. (Z/𝑝Z)× is cyclic of order 𝑝 − 1. If 𝑛 divides 𝑝 − 1, there
exists 𝑔 ∈ (Z/𝑝Z)× of order 𝑛. More generally, a subgroup of a finite field F𝑞 (𝑞 = 𝑝𝑑) as (F𝑞)× is cyclic
of order 𝑞 − 1. The group of points of an Elliptic Curve. Order is by Hasse: |E(F𝑞) − (𝑞 + 1)| ⩽ 2√𝑞,
then we consider a subgroup of prime order 𝑛. In this case, we will use additive notations: (G, +) with
G = {P, 2P, 3P,… , 𝑛P = O}.

The Discrete Logarithm Problem
Let ℎ ∈ 𝑔. We know that ℎ = 𝑔𝑥 for some 𝑥. Finding 𝑥 is solving the Discrete Logarithm Problem. We will
denote 𝑥 = log𝑔(ℎ). We can define 𝑥 modulo 𝑛: Let us consider the group morphism 𝑒𝑥𝑝𝑔 ∶ (Z/𝑛Z, +) →
(G,×), 𝑎 ↦ 𝑔𝑎. It is well-defined: if 𝑎 = 𝑏 + 𝑘𝑛, 𝑒𝑥𝑝𝑔(𝑎) = 𝑔𝑎 = 𝑔𝑏 = 𝑒𝑥𝑝𝑔(𝑏). It is a morphism :
𝑒𝑥𝑝𝑔(𝑎+𝑏) = 𝑒𝑥𝑝𝑔(𝑎)× 𝑒𝑥𝑝𝑔(𝑏). It is an isomorphism (a bijective morphism): same number of elements and
injective: 𝑒𝑥𝑝𝑔(𝑎) = 1, 𝑛 ∣ 𝑎, so 𝑎 = 0. The discrete logarithm is the inverse function, so it is a morphism
from (G, ×) to (Z/𝑛Z, +).

Properties
If 𝑔 and 𝑔′ are two generators then 𝑔′ = 𝑔𝑎 with 𝑎 invertible modulo 𝑛: indeed, there exits also 𝑏 such that
𝑔 = 𝑔′𝑏 = 𝑔𝑎𝑏, so 𝑎𝑏 ≡ 1 mod 𝑛. Conversely, if ℎ = 𝑔𝑎 with 𝑎 invertible then ℎ is a generator: if ℎ𝑏 = 1 then
𝑔𝑎𝑏 = 1 so 𝑎𝑏 ≡ 0 and 𝑏 ≡ 0.

Change of generator: If 𝑔, 𝑔′ are two generators, ℎ = 𝑔𝑎 et ℎ = 𝑔′𝑏, i.e., log𝑔(ℎ) = 𝑎 and log𝑔′ (ℎ) = 𝑏.We
denote 𝑐 = log𝑔 𝑔

′. Then 𝑔′ = 𝑔𝑐 so ℎ = 𝑔𝑏𝑐 = 𝑔𝑎 and 𝑎 ≡ 𝑏𝑐. As a result, log𝑔(𝑔) = log𝑔′ (ℎ) × log𝑔 𝑔
′, or

log𝑔′ (ℎ) ≡ log𝑔(𝑔) log𝑔 𝑔
′−1 where this last term is invertible because 𝑔′ is a generator.

As a result, if we know how to compute discrete logarithms in basis 𝑔 then we can do it in basis 𝑔′. The
difficulty of computing discrete logarithms only depends on the group and not on the generator chosen.

Remark that the discrete logarithmproblem can be easy: For example inG = (Z/𝑛Z, +). 𝑔 is a generator
if and only if gcd(𝑔, 𝑛) = 1. Indeed, we know that 1 is a generator as G = {1, 2, 3, … , 𝑛 = 0} = {1, 2 × 1, 3 ×
1, 𝑛 × 1 = 0}. From what we saw, the others generators are the 𝑎 × 1 with 𝑎 invertible modulo 𝑛. Then
(Z/𝑛Z, +) = G = 𝑔, 2𝑔, 3𝑔, … 𝑛𝑔 = 0. If ℎ ∈ Z/𝑛Z, ℎ ≡ 𝑥𝑔, 𝑥 ≡ ℎ𝑔−1 computable in polynomial time with a
simple extended Euclidean algorithm.

3.2. Algorithms for ComputingDiscrete Logarithms
First we see some generic algorithms that work for all cyclic group G of order 𝑛: the naive algorithm, The
Baby Step Giant Step method , the ρ method of Pollard, and the Pohlig–Hellman algorithm that reduce
computing discrete logarithm in a group of order 𝑛 to computing logarithm in subgroups of order 𝑝 where
𝑝 is prime and 𝑝 divides 𝑛. By a theorem of Shoup (97), an algorithm that solve the discrete logarithm in
G must do at least 𝒪 (√𝑛) operations in G.

The Naive Algorithm
ℎ = 𝑔𝑥, 𝑥?

Compute 𝑔, 𝑔2, 𝑔3, … . Complexity, 𝒪 (𝑛) multiplications in G

With memory: We pre-compute all the (𝑔𝑖, 𝑖) and store them in a list, sorted we respect to the 𝑔𝑖 (by
using a binary representation of the elements of G for instance). Complexity: 𝒪 (𝑛) multiplications in G,
𝒪 (𝑛) elements of G in memory, sorting algorithm complexity : 𝒪 (𝑛 log(𝑛)) Then to compute 𝑥 s.t. ℎ = 𝑔𝑥,
we look for ℎ in the list: complexity: 𝒪 (log(𝑛))

– 3 –

Chapitre I : The Discrete Logarithm Problem

Baby Step/Giant Step
Usually credited to Shanks 1971. Time-memory trade-off.

ℎ = 𝑔𝑥 𝑥?

Let 𝑚 = ⌈√𝑛⌉ and 𝑥 = 𝑖 + 𝑚𝑗 with 0 ⩽ 𝑖, 𝑗 < 𝑚. We have ℎ = 𝑔𝑥 = (𝑔𝑚)𝑗𝑔𝑖. So ℎ(𝑔−1)𝑖 = (𝑔𝑚)𝑗.

Pre-computations: a list of ((𝑔𝑚)𝑗, 𝑗) with 𝑗 < 𝑚 sorted with respect to the first coordinate: 𝒪 (√𝑛)
memory, and 𝒪 (√𝑛 log(𝑛)) for the sorting algorithm.

Then we compute ℎ, ℎ𝑔−1, ℎ(𝑔−1)2, ... and look for this element in the list. Worst case: 𝒪 (√𝑛)multipli-
cations and complexity for 𝒪 (√𝑛 log(𝑛)) the searches.

Pollard ρ
Pollard 1978

Same time complexity but quasi no memory. Probabilistic Algorithm: Sometimes no result is found.

We look for integers modulo 𝑛 s.t. 𝑔𝑖ℎ𝑗 = 𝑔𝑖′ℎ𝑗′ . Then 𝑔𝑖−𝑖′ = ℎ𝑗′−𝑗. So 𝑖 − 𝑖′ ≡ 𝑥(𝑗′ − 𝑗) and if (𝑗′ − 𝑗) is
invertible modulo 𝑛, we find 𝑥.

To find these integers, one can store all the tuples (𝑔𝑖ℎ𝑗, 𝑖, 𝑗) sorted with respect to the first coordinates,
with random 𝑖 and 𝑗. If one finds two times the same element of G (a collision), the discrete logarithm can
be extracted as above.

By the birthday paradox with a good probability, there will be a collision for around√𝑛 random choices.
We draw uniformly 𝑘 elements in a set of 𝑛 elements. Let 𝑝(𝑘) the probability that there is a collision. The
probability that all the elements are different is

1 − 𝑝(𝑘) = 1 −
1
𝑛 1 −

2
𝑛… 1 −

𝑘 − 1
𝑛 =

𝑘−1

𝑖=1

1 −
𝑖
𝑛

As 1 − 𝑥 ⩽ 𝑒−𝑥 for all 𝑥 ∈ R, 1 − 𝑝(𝑘) ⩽ ∏𝑘−1
𝑖=1 𝑒−𝑖/𝑛 = 𝑒−𝑘(𝑘−1)/2𝑛 ⩽ 𝑒−(𝑘−1)

2/2𝑛. As a result, there is a collision
with probability at least 𝑓(𝑘) ∶= 1 − 𝑒−(𝑘−1)2/2𝑛. For 𝑘0 = 1 + √−2𝑛 log(1 − A), one has A = 𝑓(𝑘0). So for
𝑘 ⩾ 𝑘0, one has 𝑝(𝑘) ⩾ 𝑓(𝑘) ⩾ 𝑓(𝑘0) = A. As a result, for the probability to be at least 1/2, one must draw
1 + √2𝑛 log 2 ≈ 1.177√𝑛 elements (for a probability greater than 0.99, this gives 3.03√𝑛 elements). For
the classical birthday problem, 𝑛 = 365, and we have a probability 1/2 of having two people with the same
birthday for a set of 1 + √2 × 365 log 2 ≈ 23.49 people (In fact 23 is sufficient).

More generally, one can show that the expected number of elements to be drawn until a collision is
found is less than √π𝑛/2 + 2 ≈ 1.253√𝑛.

As a consequence, this method gives a priori no gain with respect to Baby Step/Giant Step which gives
a deterministic method with the same memory and a slightly better time complexity.

To get rid of the need of storage, one can make an iteration of a function 𝑓 ∶ G → G that « looks like
» a random function. That function must satisfy the following property: given X ∈ G and 𝑖, 𝑗 s.t. X = 𝑔𝑖ℎ𝑗,
on can efficiently compute 𝑓(X) and 𝑖′, 𝑗′ s.t. 𝑓(X) = 𝑔𝑖′ℎ𝑗′ .

Such a function can be obtained as follows. First, one makes a partition of G in sets S1, … , S𝑛. Then 𝑓
is defined on each S𝑘 with the previous property on the power of 𝑔 and ℎ. For example, the initial proposal
of Pollard consists in partitioning G with three sets S0, S1, S2, and setting 𝑓(X) = X2 if X ∈ S0, 𝑓(X) = ℎX
if X ∈ S1 and 𝑓(X) = 𝑔X if X ∈ S2. For example, in the case S0, if X = 𝑔𝑖ℎ𝑗, than 𝑓(X) = X2 = 𝑔2𝑖ℎ2𝑗. In
practice, a larger number of sets (10 to 20) gives better results.

– 4 –

3. The Discrete Logarithm Problem

With that function, we start with a random X0 ∈ G, then we define X𝑚 = 𝑓(X𝑚−1) pour 𝑚 > 0 and we
search for a collision. The graph formed by the values in the sequence gives the ρ shape that gives its name
to the method. To find the collision, a cycle-finding algorithm such as the Floyd method is used. That
method, also known as the method of «the tortoise and the hare algorithm » is as follows. One iteratively
compute the position of the tortoise and the hare: (X𝑚, X2𝑚) = (𝑓(X𝑚−1), 𝑓 ∘ 𝑓(X2(𝑚−1))). For that only the
two previous positions are needed, so a few memory is needed. Then we stop when the tortoise and the
hare are in the same position, where we obtain the collision.

What is the complexity? Let ℓ be the index of the first element of the cycle and 𝑐 the period, i.e, the
length of the cycle. As a result, X0, … , Xℓ−1, Xℓ, … , Xℓ+𝑐−1 are all distinct and X𝑚+𝑐 = X𝑚 for 𝑚 ⩾ ℓ. With
the Floyd method, we find the smallest 𝑢 s.t. X𝑢 = X2𝑢 where 𝑢 ⩾ ℓ et 2𝑢 − 𝑢 = 𝑢. As a result 𝑢 is a
multiple of the period 𝑐. So 𝑢 can be defined as the smallest multiple of 𝑐 greatest than ℓ. As there is a
multiple of 𝑐 between ℓ and ℓ + 𝑐, we get that the position 𝑢 ⩽ 𝑐 + ℓ where the first collision takes place.
And we hope that 𝑐 + ℓ is a 𝒪 (√𝑛) (This would be the case if 𝑓 was really a random function). As a result,
with the Floyd method we should find the collision with 𝒪 (√𝑛) iterations, and a few storage.

A variant of this method (the λ method) gives a parallel algorithm.

To sum up we have first a subfunction:
Function iteration:
input: (X, 𝑖, 𝑗): s.t. X = 𝑔𝑖ℎ𝑗
output: F(X), 𝑖′, 𝑗′: s.t. F(X) = 𝑔𝑖′ℎ𝑗′

Then the main algorithm:

input: 𝑛, 𝑔 and ℎ
output: 𝑥 s.t. ℎ = 𝑔𝑥
Set 𝑖𝑥, 𝑗𝑥 uniformly at random from Z/𝑛Z
X = 𝑔𝑖𝑥ℎ𝑗𝑥
(X, 𝑖𝑥, 𝑗𝑥) = iteration(X, 𝑖𝑥, 𝑗𝑥)
(Y, 𝑖𝑦, 𝑗𝑦) = iteration(X, 𝑖𝑥, 𝑗𝑥)
While X ≠ Y :

(X, 𝑖𝑥, 𝑗𝑥) = iteration(X, 𝑖𝑥, 𝑗𝑥)
(Y, 𝑖𝑦, 𝑗𝑦) = iteration(Y, 𝑖𝑦, 𝑗𝑦)
(Y, 𝑖𝑦, 𝑗𝑦) = iteration(Y, 𝑖𝑦, 𝑗𝑦)

If 𝑗𝑦 − 𝑗𝑥 non invertible modulo 𝑛 then the algorithm fails
Else return (𝑖𝑥 − 𝑖𝑦)(𝑗𝑦 − 𝑗𝑥)−1 (mod 𝑛)

Pohlig–Hellman
The Pohlig–Hellman method reduces the computation of discrete logarithms in a group of order 𝑛 to
computing logarithm in subgroups of order 𝑝 where 𝑝 is prime and 𝑝 divides 𝑛.

We denote 𝑛 = 𝑝𝑒11 …𝑝
𝑒𝑟𝑟 and ℎ = 𝑔𝑥 Then we compute the discrete logarithm modulo the 𝑝𝑒𝑖𝑖 and the

value modulo 𝑛 is computed by the Chinese Remainder Theorem.
So we have to compute 𝑥modulo 𝑝𝑒. We denote 𝑥 mod 𝑝𝑒 = 𝑎0+𝑎1𝑝+⋯+𝑎𝑒−1𝑝𝑒−1, where 0 ⩽ 𝑎𝑖 ⩽ 𝑝−1.

Then from ℎ = 𝑔𝑥, we have ℎ𝑛/𝑝 = (𝑔𝑛/𝑝)𝑎0 and 𝑔𝑛/𝑝 as order 𝑝 (𝑔 is a generator). So we can compute 𝑎0
mod 𝑝 = 𝑎0 by an algorithm that computes discrete logarithm modulo 𝑝. Then ℎ𝑛/𝑝2 = (𝑔𝑛/𝑝2)𝑎0+𝑎1𝑝,
so (ℎ/𝑔𝑎0)𝑛/𝑝2 = (𝑔𝑛/𝑝2)𝑎0+𝑎1𝑝−𝑎0 = (𝑔𝑛/𝑝2)𝑎1𝑝 = (𝑔𝑛/𝑝)𝑎1 . So we can find 𝑎1 by another computation of a
discrete logarithmmodulo 𝑝. By iterating thismethod, one finds 𝑥 mod 𝑝𝑒 with 𝑒 computations of discrete
logarithms mod 𝑝.

This gives the following algorithm:
Input : 𝑛 and its factorization: (𝑝1, … , 𝑝𝑟), (𝑒1, … , 𝑒𝑟), 𝑔 and ℎ
Output : 𝑥 s.t. ℎ = 𝑔𝑥.

– 5 –

Chapitre I : The Discrete Logarithm Problem

For 𝑖 = 1 to 𝑟 :
Denote �̃� = 𝑔𝑛/𝑝𝑖 ; ℎ̃ = ℎ̃𝑛/𝑝𝑖 ; 𝑎0 = log�̃�(ℎ̃); 𝑓 = 1 ; 𝑥𝑖 = 𝑎0
For 𝑗 = 1 to 𝑒 − 1 :

𝑓 = 𝑓𝑔𝑎𝑗−1𝑝
𝑗−1
𝑖 ; ℎ̃ = (ℎ𝑓−1)𝑛/𝑝

𝑗+1
𝑖

Set 𝑎𝑗 = log�̃�(ℎ̃)

𝑥𝑖 = 𝑥𝑖 + 𝑎𝑗𝑝
𝑗
𝑖

Return 𝑥 (mod 𝑛) s.t. 𝑥 ≡ 𝑥𝑖 (mod 𝑝𝑒𝑖𝑖) for 𝑖 = 1, … , 𝑟.

In practice, for cryptographic applications, one always (almost) takes 𝑛 prime, otherwise if its factor-
ization is tractable, one can reduce to smaller computation of discrete logarithm modulo 𝑝|𝑛.

Index Calculus Algorithms
Wesuppose 𝑛 to be prime. This is not a generic algorithm: we suppose that there exists S = {𝑝1, 𝑝2, … , 𝑝𝑡} ⊂
G a factor basis s.t. a large proportion of elements of G can be written efficiently as a product of the 𝑝𝑖’s.

Pre-computation : We pre-compute the log𝑔(𝑝𝑖): we take randoms 𝑘 inZ/𝑛Z and for a large proportion
we can write 𝑔𝑘 = ∏𝑝𝑒𝑖𝑖 (easily parallelizable)

By applying the log : 𝑘 = ∑ 𝑒𝑖 log𝑔(𝑝𝑖). With at least 𝑡 independant linear equations, we can resolve a
linear system that gives the log𝑔(𝑝𝑖).

Then, in an active phase, if ℎ = 𝑔𝑥, we compute ℎ𝑔𝑘 with random 𝑘. If we can factor in S, by applying
the log, we have 𝑥 + 𝑘 = ∑𝑒𝑖 log𝑔(𝑝𝑖).

Trade-off on 𝑡 : small, we need a small system of 𝑡 equations. Big, there is a better probability that the
random elements can be factored in S. So we make less random choices.

Sub exponential complexity: L𝑛(α, 𝑐) = 𝒪 (𝑒𝑥𝑝(𝑐(log 𝑛)α(log log 𝑛)1−α)).
L(0, 𝑐) = (log 𝑛)𝑐 : polynomial complexity (in the size of 𝑛) and L(1, 𝑐) = 𝑛𝑐 exponential complexity.

In Z/𝑝Z with S = {primes < B} one obtains an algorithm in L𝑝(1/2, √2) (Kraitchik, 1922, rediscovered
at the end of the 70’s). The number field sieve (NFS, 1993) and the function field sieve (FFS, 1994) are im-
provement of this idea, they search respectively for smooth elements in function fields and number fields.
For computing discrete logarithms in finite fields F𝑞, these algorithms have an expected time complexity
of L𝑞(1/3, 𝑐) for some 𝑐 > 0, FFS being dedicated to small characteristic and NFS to large characteristic.

Starting from 2013, they have been lots of improvements on algorithms to compute discrete logarithm
in finite fields F𝑝𝑛 , depending on the size and the form of 𝑝 and 𝑛.

When 𝑛 = 1, i.e., in Z/𝑝Z, the best algorithm remains the number field sieve. The record is for a 795
bits 𝑝, Dec 2019 (with huge computing power: more than a year, approximately 3100 core years).

For small characteristic, there exists algorithms in L𝑞(1/4, 𝑐) with 𝑐 > 0 and quasi polynomial for very
small 𝑝, especially when the extension degree 𝑛 is composite. As a result the finite fields F2𝑛 must not
be used for cryptography, especially pairing-based cryptography with elliptic curve over F2𝑛 . Records: In
F230750 July 2019 (2907 core years)

In the others cases, there exists many variants of the number field sieve, that improve the asymptotic
complexity (still L𝑞(1/3, 𝑐) but with a better 𝑐): for example, when 𝑝 as a special form, or/and when 𝑞 = 𝑝𝑛
and 𝑛 composite with relatively prime factors (Kim-Barbulescu, 2016). This has an important impact on
pairing-based cryptography, for which the discrete logarithm problem has to be hard in F𝑛𝑝 and a popular
choice is 𝑛 = 6 or 𝑛 = 12.

For records, cf. http://en.wikipedia.org/wiki/Discrete_logarithm_records

– 6 –

http://en.wikipedia.org/wiki/Discrete_logarithm_records

3. The Discrete Logarithm Problem

Conclusion
In (Z/𝑝Z)× for instance, to have 128 bits security (i.e, the best attack have a complexity of 2128 operations),
we take 𝑝 of at least 3072 bits (for NFS) and we work in a subgroup of order 𝑞, a prime dividing 𝑝 − 1 with
𝑞 of order 256 bits to avoid attacks with BS/BG and Pollard.

Security level bitsize of 𝑝
80 1024
112 2048
128 3072
192 7680
256 15360

For most of elliptic curves, the index calculus methods can not be applied. So only the exponential
generic algorithms can be applied (we will see the situation of pairing friendly curve later).

As a result elliptic curves can be used to define groups where the discrete logarithm problem is in-
tractable with smaller parameters : Z/𝑝Z, E(Z/𝑝Z)may define a cyclic group of prime order, with order of
roughly the same size of 𝑝. With 𝑝 of 2𝑘 bits we obtain a 𝑘 bit security, e.g. 256 bits 𝑝 for 128 bit security.

For elliptic curve With F𝑝 of 112 bits (so the order of 256 computations) in 2009 with a parallelized
Pollard ρ and 200 PlayStation 3 in 6 months.

Records over binary fields of roughly the same sizes.

– 7 –

Chapitre I : The Discrete Logarithm Problem

– 8 –

Chapter II

First Cryptographic Applications

Let (G, 𝑥) be a cyclic group, G = ⟨𝑔⟩ of prime order 𝑛.

1. Diffie-Hellman (76)
Key exchange. With this protocol, Alice and Bob jointly establish a secret quantity over a public channel.
This quantity can be used later to derive a secret key used for symmetric encryption.

Alice takes a random 𝑎 ∈ Z/𝑛Z, computes X = 𝑔𝑎 and sends X to Bob. Bob takes a random 𝑏 ∈ Z/𝑛Z,
computes Y = 𝑔𝑏 and sends Y to Alice. Alice and Bob can compute Z = 𝑔𝑎𝑏 = Y𝑎 = X𝑏.

An eavesdropper can retrieve X and Y. Computing Z = 𝑔𝑎𝑏 from X = 𝑔𝑎 and Y = 𝑔𝑏, is called the
Computational Diffie Hellman Problem (CDH), and the triplet (X = 𝑔𝑎, Y = 𝑔𝑏, Z = 𝑔𝑎𝑏) is called a
Diffie-Hellman triplet.

Distinguishing Z from a random element of G, knowing X and Y, is called the Decisional Diffie–
Hellman (DDH).

In general, the only known way to resolve these problem is by computing one of the discrete logarithm
(e.g., to compute 𝑎 from X, and retrieve Z = Y𝑎).

2. Elgamal Encryption (84)
Asymmetric encryption scheme. Can be viewed as a Diffie-Hellman key exchange, followed by a one time
pad in G: the symmetric encryption scheme, that encrypts 𝑚 ∈ G as 𝑚𝑧 where 𝑧 is a secret key used only
once.

The element Y is viewed as Bob’s public key: 𝑝𝑘 = Y = 𝑔𝑏. To encrypt 𝑚 ∈ G for Bob, Alice sends
X = 𝑔𝑎 and𝑚Y𝑎 = 𝑚Z. Bob can decrypts thanks to 𝑏, which is his secret key: from 𝑏 andX he can compute
Z and recover 𝑚.

More precisely, with a little change of notations, the Elgamal encryption scheme can be described as
follows:

• 𝑝𝑘 = ℎ = 𝑔𝑥, where 𝑥 is random in Z/𝑛Z and 𝑠𝑘 = 𝑥.

• Encryption of𝑚 ∈ Gwith the public key ℎ = 𝑝𝑘: takes a random 𝑟 ∈ Z/𝑛Z and 𝑐 = (𝑐1, 𝑐2) = (𝑔𝑟, 𝑚ℎ𝑟).

• Decryption of 𝑐 = (𝑐1, 𝑐2) with the private key 𝑥 = 𝑠𝑘: Compute 𝑐2(𝑐𝑥1)−1

The scheme is correct as if (𝑐1, 𝑐2) = (𝑔𝑟, 𝑚ℎ𝑟) then 𝑐2(𝑐𝑥1)−1 = 𝑚ℎ𝑟 × (𝑔𝑟𝑥)−1 = 𝑚𝑔𝑟𝑥 × (𝑔𝑟𝑥)−1 = 𝑚. Note
that it is a probabilistic encryption scheme.

It is easy to see that recovering the secret key from the public key is an hard problem if the discrete loga-
rithmproblem is hard inG. One can also prove that recovering𝑚 from 𝑐 and 𝑝𝑘 (breaking theOne-Wayness

– 9 –

Chapitre II : First Cryptographic Applications

of encryption) is hard if the CDH problem is hard and moreover that finding any partial information of𝑚
from 𝑐 and 𝑝𝑘 (breaking semantic security) is hard if the DDH is hard.

3. Digital Signature

3.1. Definition
Digital Signatures are roughly equivalent to handwritten signatures on paper documents.

More precisely, a digital signature scheme works as follows:

• Alice has 𝑝𝑘 a public key (for verification) and 𝑠𝑘 a private key (for signing).

• With a message 𝑚 and her private key 𝑠𝑘, Alice executes a signing algorithm to get σ the signature.

• With a message 𝑚, the signature σ of 𝑚 by Alice, and 𝑝𝑘 the public key of Alice, Bob executes a
verification algorithm to verify if the signature is valid.

In general, the signing algorithm uses first a cryptographic hash function H applied on the message.
This is a function H from {0, 1}∗ → A where A is a finite set, for instance A = {0, 1}𝑛. Moreover H
has several property (one-way, collision resistance,…). The hash function makes digital signature more
practical (can be applied to any digital files), and also provides security.

The main features of a digital signature scheme are:

• the signed message can not be modified (or otherwise the signature is invalid): notion of integrity.

• Notion of non repudiation: someone that has signed some information can not deny having signed
it (only the person that knows the private key can have produce the signature, it can not be forged).
As a result, it is a way to authenticate the authors of a message.

• The signature can be verified by anyone with the public key.

3.2. Elgamal Signature (84)
We give here a generalization of the signature scheme of Elgamal in a cyclic group G (original scheme in
(Z/𝑝Z)×).

A message 𝑚, is mapped toM = H(𝑚) ∈ Z/𝑛Z where H is an hash function H ∶ {0, 1}∗ → Z/𝑛Z.
A first idea (not working) is to use the same setup as in the Elgamal encryption scheme: The public key

is ℎ = 𝑔𝑥 and the private key is 𝑥 ∈ Z/𝑛Z. We try to build a signature of 𝑚 from a Diffie-Hellman triplet
that involvesM. We thus consider an Elgamal encryption of 𝑔M : (𝑔𝑟, ℎ𝑟𝑔M) = (𝑔𝑟, 𝑔𝑥𝑟+M) with 𝑟 random in
Z/𝑛Z. Let 𝑠 = 𝑥𝑟 + M ∈ Z/𝑛Z and 𝑓 = 𝑔𝑟, we then have (𝑔𝑟, 𝑔𝑥𝑟+M) = (𝑓, 𝑔𝑠). The signature of 𝑚 could be
σ = (𝑓, 𝑠), and the verification could consists in verifying if (ℎ, 𝑓, 𝑔𝑠/𝑔M) = (𝑔𝑥, 𝑔𝑟, 𝑔𝑥𝑟) is a Diffie-Hellman
triplet.

Issues: The only (generic) known to test if this is a Diffie-Hellman Triplet, is by knowing one of the
discrete logarithms (𝑟 or 𝑥 but this is the secret key). Knowing 𝑟, the scheme is trivially insecure: from
𝑟, 𝑠, 𝑚 one can compute 𝑥 as 𝑥 = 𝑟−1(𝑠 − M) ∈ Z/𝑛Z if 𝑟 is invertible (𝑟 ≠ 0 as 𝑛 is prime).

Solution: We will see later that with elliptic curve pairings it is possible to distinguish if we have a
Diffie-Hellman Triplet or not, without knowing individual discrete logarithm. For now, without pairings,
the solution used by Elgamal is to useH(𝑓) instead of using 𝑟 to compute 𝑠, and instead of having 𝑔𝑠 = 𝑔𝑥𝑟+M,
he defines 𝑠 such that 𝑓𝑠 = 𝑔𝑥H(𝑓)+M. As a result, the equation for the exponent is 𝑟𝑠 = 𝑥H(𝑓) +M.

To summarize, the protocol is as follows:

• G of order 𝑛 and H a hash function {0, 1}∗ → Z/𝑛Z.

– 10 –

4. Elliptic Curve Cryptography

• 𝑝𝑘 = ℎ = 𝑔𝑥 with a random 𝑥, 𝑠𝑘 = 𝑥

• Signing a message𝑚with the key 𝑥: 𝑟 a random invertible element modulo 𝑛, 𝑓 = 𝑔𝑟, 𝑠 ≡ 𝑟−1(𝑥H(𝑓)+
H(𝑚)) (mod 𝑛). σ = (𝑓, 𝑠).

• Verifying a signature σ = (𝑓, 𝑠) of 𝑚 with the public key ℎ: 𝑣1 = 𝑓𝑠, 𝑣2 = ℎH(𝑓)𝑔H(𝑚), ok if 𝑣1 = 𝑣2.

The scheme is correct has 𝑣1 = 𝑓𝑠 = 𝑔𝑟𝑠 = 𝑔𝑥H(𝑓)+H(𝑚) and 𝑣2 = ℎH(𝑓)𝑔H(𝑚) = 𝑔𝑥H(𝑓)+H(𝑚).
DSA: Digital Signature Algorithm (NIST 91) is a variant of the Elgamal signature in a subgroup of

prime order 𝑞 of (Z/𝑝Z)×.

4. Elliptic Curve Cryptography
Elliptic curve are mostly used in cryptography for

• key exchange: ECDH which is an adaptation of the Diffie-Hellman key exchange in the group of
points of an Elliptic curve

• Signature: ECDSA, an adaptation of the Elgamal signature, see details below.

There are lots of others applications that use pairings of elliptic curves. ECDH and ECDSA are stan-
dardized. They can be used to secure communications over a computer network with Transport Layer
Security (TLS), since version 1.0 (1999). There are more and more used (see Google certificate for in-
stance). Indeed, the common alternatives to these two protocols are respectively the Diffie-Hellman key
exchange in finite fields and theRSA signature schemewhich is based on the hardness of factoring integers.
Nowadays, both protocols need key sizes of at least 2048 bits and 3072 bits is recommended.

For elliptic curve, one can work with smaller key sizes. An elliptic curve defined on a finite field of size
around 200 to 256 bits is recommended. As we saw in the previous chapter, the best algorithm to com-
pute discrete logarithm for elliptic curve (the ρmethod) is exponential, and the best algorithm to compute
discrete logarithm for finite fields and factoring integers (the number field sieve) is sub-exponential. As a
result, with the increasing power of computers, elliptic curves become more and more interesting, espe-
cially for embedded systems such as smart cards, where it is crucial to work with small data.

4.1. ECDSA
This is a variant of the Elgamal signature, with some changes and optimization to handle the representation
of the group elements, i.e., the points of an elliptic curve.

• We work in a cyclic subgroup ⟨P⟩ of prime order 𝑛 of the groups of points of an elliptic curve. Let
H be an hash function {0, 1}∗ with values in {1, … , 𝑛 − 1}. In practice, the function SHA2 is used with
a truncation of the output to get ℓ bits where ℓ is the number of bits of 𝑛

• 𝑝𝑘 = Q = 𝑥P with 𝑥 random 0 < 𝑥 < 𝑛, 𝑠𝑘 = 𝑥

• Signing a message 𝑚 with the key 𝑥: 𝑟 random, 0 < 𝑟 < 𝑛, R = (𝑥R, 𝑦R) = 𝑟P, If 𝑥R mod 𝑛 = 0,
choose an other 𝑟. 𝑠 ≡ 𝑟−1(𝑥(𝑥R𝑚𝑜𝑑𝑛) +H(𝑚)) (mod 𝑛). If 𝑠 ≡ 0 choose an other 𝑟. The signature is
σ = (σ1, σ2) = (𝑥R mod 𝑛, 𝑠).

• Verifying a signature (σ1, σ2). Verify that Q is on the curve, and that Q has order 𝑛 and that 1 <
σ𝑖 < 𝑛, for 𝑖 = 1, 2. Then compute 𝑢1 ≡ H(𝑚)σ−12 (mod 𝑛) and 𝑢2 ≡ σ1σ−12 (mod 𝑛), and then
(𝑥1, 𝑦1) = 𝑢1P + 𝑢2Q. ok if σ1 ≡ 𝑥1 mod 𝑛.

The scheme is correct as 𝑢1P + 𝑢2Q = (𝑢1 + 𝑢2𝑥)P = (H(𝑚)𝑠−1 + (𝑥R𝑚𝑜𝑑𝑛)𝑠−1𝑥)P = 𝑠−1(H(𝑚) +
(𝑥R𝑚𝑜𝑑𝑛)𝑥)P = 𝑟(H(𝑚) + 𝑥(𝑥R𝑚𝑜𝑑𝑛))−1(H(𝑚) + (𝑥R𝑚𝑜𝑑𝑛)𝑥)P = 𝑟P.

The differences with Elgamal signature scheme, is that only 𝑥R is given in the signature, instead of 𝑟P,
and that this point is not hashed, 𝑥R is used instead.

– 11 –

Chapitre II : First Cryptographic Applications

Note that 𝑟 must be random. If two signatures are issued with the same 𝑟: σ, σ′ of 𝑚 and 𝑚′. Then,
σ2−σ′2 = 𝑟−1(H(𝑚)−H(𝑚′)). So 𝑟 can be recovered. Then as σ2 = 𝑟−1(𝑥(𝑥R𝑚𝑜𝑑𝑛)+H(𝑚)) one can deduce 𝑥.

This textbook attack was surprisingly used real life. An attack against the PlayStation 3 in 2010 allows
to recover the key used to sign the files that the PlayStation could execute (𝑟 was constant, 𝑟 = 4), Another
attack on a digital wallet for Bitcoins on Android was done in 2013. The application was using a weak
random number generator (ECDSA is used in the Bitcoin protocol to prove the property of Bitcoins). As
a consequence, some bitcoins were stolen.

4.2. EC-Schnorr
Schnorr signature is built from an identification protocol proposed by Schnorr in 1989, related to a proof
of knowledge of a discrete logarithm. Its adaptation in elliptic curves provides a signature scheme whose
security is more understood than ECDSA. Furthermore, the implementation is less intricate than the
implementation of ECDSA. However, this signature scheme did not became “the” standard of digital
signatures as it was covered by an US patent (now expired). Furthermore, they are multiple standardised
version of this scheme for elliptic curve. Below we give a general description using a cyclic group G = ⟨𝑔⟩
of prime order 𝑛.

• 𝑝𝑘 = ℎ = 𝑔𝑥 with 𝑥 random 0 < 𝑥 < 𝑛, 𝑠𝑘 = 𝑥

• Signing a message 𝑚 with the key 𝑥: 𝑟 random, 0 < 𝑟 < 𝑛, σ1 = 𝑔𝑟, 𝑘 = H(𝑚||σ1) and σ2 = 𝑟 + 𝑥𝑘
mod 𝑛. The signature is σ = (σ1, σ2).

• Verifying a signature (σ1, σ2) of 𝑚: Test whether 𝑔σ2 = σ1𝑝𝑘H(𝑚||σ1)

4.3. How to generate an elliptic curve suitable for cryptography
FIPS 186-4: 2013, 4th revision, US standard describes ECDSAcf. http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.186-4.pdf

FIPS gives also some standardized curves and a standardized way to generate a random elliptic curve.

Standard Elliptic Curves
Curve over F𝑝, 𝑝 odd prime. We will work with G = ⟨P⟩ where P = (𝑥P, 𝑦P) has order 𝑛 and 𝑛 is prime.
Let ℎ such that CardE = 𝑛ℎ. This co factor ℎ must be small, to improve efficiency: 𝑛 will be of roughly
the same bit size than 𝑝.

The NIST gives several standard curve over F𝑝: e.g., P − 192, P − 224, P − 256, P − 384, P − 521, where
the number is the bit size of 𝑝. The co factor ℎ = 1 for these curves (the group of points are cyclic of prime
order). The curve equations are 𝑦2 = 𝑥3–3𝑥 + 𝑏 mod 𝑝. Note: 𝑎 = −3 for efficiency, only 𝑎 is used in the
classic formulae for the group law.

The chosen 𝑝 have a sparse binary representation in order to speedup computations modulo 𝑝.

There are also curves standardized over F2𝑑 :

• 3 Koblitz curves, K − 163, K − 233, K − 283, K − 409, K − 571 where the number is the degree 𝑑.
Equations 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 1 where 𝑎 = 0, 1. For these curves, ℎ = 2 if 𝑎 = 1 and ℎ = 4 if
𝑎 = 0. For these curves, one can explicitly compute the number of points, and there is an algorithm
to compute exponentiations without doubling operations.

• 3 standard curves of equations 𝑦2+𝑥𝑦 = 𝑥3+𝑥2+𝑏 with 𝑏 ∈ F2𝑑 , for which ℎ = 2. B−163, B−233B−
283, B − 409, B − 571.

Random curves
Modulo 𝑝 > 3 one wants an equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 with Δ = −16(4𝑎3 + 27𝑏2) ≠ 0 (mod 𝑝).

To generate 𝑎 and 𝑏, one choses a random seed and apply (several times) an hash function to come up
with an integer 𝑐. As the hash function is one-way (pre-image can not be computed), this procedure is

– 12 –

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

4. Elliptic Curve Cryptography

meant to ensure the users of the generated curve that this curve has been truly generated randomly, and
it does not contains an hidden weakness or a trapdoor that could be used to recover the private keys…

Then 𝑎 and 𝑏 are chosen such that 𝑐𝑏2 ≡ 𝑎3 (mod 𝑝) (e.g., 𝑎 = 𝑐, 𝑏 = 𝑐 but one can take a small 𝑎
to speed up computations). This is to generate isomorphism classes of elliptic curve (two elliptic curves
of parameters 𝑎, 𝑏 and 𝑎′, 𝑏′ over a finite field with characteristic at least 5 are isomorphic if and only if
𝑢4𝑎′ = 𝑎 et 𝑢6𝑏′ = 𝑏. As a result, the value of 𝑐 = 𝑎3/𝑏2 = 𝑎′3/𝑏′2 is fixed inside a class.

Note that Δ ≠ 0 ⇔ 4𝑎3 + 27𝑏2 ≠ 0 ⇔ −4𝑎3/27𝑏2 ≠ 1 ⇔ −4𝑐 ≠ 27 ⇔ 4𝑐 + 27 ≠ 0.
Then one verifies if the order is suitable, i.e, if it has a large prime factor (for that, one can compute the

order with an early abort strategy if it is divisible by to much small primes). If it is not the case another
seed is taken. There are more advanced criteria to generate a safe curve (e.g., see https://safecurves.
cr.yp.to).

Another way to generate a curve is to use the complex-multiplication (CM) method. The order is
selected first, then an elliptic curve and a finite field is found that meet that order. Over F𝑝, this method
is faster than the algorithms to compute the number of points.

– 13 –

https://safecurves.cr.yp.to
https://safecurves.cr.yp.to

	The Discrete Logarithm Problem
	Bibliography
	Asymmetric and Symmetric Cryptography
	The Discrete Logarithm Problem
	Definitions
	Algorithms for Computing Discrete Logarithms

	First Cryptographic Applications
	Diffie-Hellman (76)
	Elgamal Encryption (84)
	Digital Signature
	Definition
	Elgamal Signature (84)

	Elliptic Curve Cryptography
	ECDSA
	EC-Schnorr
	How to generate an elliptic curve suitable for cryptography

