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Abstract. To guarantee that some implementation of a cryptographic
scheme is secure against side channel analysis, one needs to formally
prove its leakage resilience. A relatively recent trend is to apply meth-
ods pertaining to the field of Multi-Party Computation: in particular this
means applying secret sharing techniques to design masking countermea-
sures. It is known besides that there is a strong connection between se-
cret sharing schemes and error-correcting codes, namely every linear code
gives rise to a linear secret sharing scheme. However, the schemes mostly
used in practice are the so-called Boolean masking and Shamir’s secret
sharing scheme and it is widely thought that they are the most adapted
to masking techniques because they correspond to MDS codes that are in
some sense optimal. We propose alternative masking techniques that rely
on non-MDS linear codes: these codes are non-binary but have an un-
derlying binary structure which is that of a self-orthogonal binary code.
Their being non-MDS is compensated by the fact that the distributed
multiplication procedure is more efficient than with MDS codes due to
an efficient encoding process and that the distributed computation of
squares comes at almost no cost. In protecting AES against high-order
side channel analysis, this approach is more efficient than methods using
Shamir’s secret sharing scheme and competitive with Boolean masking.

Keywords: High-Order Side Channel Analysis, Linear Secret Sharing
Scheme, Self-Dual Codes.

1 Introduction

In the 90’s, Kocher et al. published the so-called Side Channel Analysis (SCA
for short) which generated a huge interest in both academic and industrial com-
munities. Indeed, they noticed that side channel leakage of an embedded de-
vice such as its power consumption or its electromagnetic radiation can reveal
information on any value manipulated ([Koc96,KJJ99]). When applied during
the execution of a cryptographic algorithm, such an attack can be used for
secret key recovery. Since then, a wide variety of attacks has been proposed



including tth-order SCA which exploits leakage observations resulting from the
handling of t intermediate variables during the cryptosystem processing (see
e.g., [Mes00,JPS05,PR10,FMPR10]).

One standard way to thwart this kind of attack is based on secret sharing and
is called tth-order masking when each sensitive variable is split into numerous
shares in a way such that t of them give no information on this variable. These
shares must then be propagated independently throughout the algorithm to en-
sure its resistance against tth-order SCA. In particular, when applying a linear
secret sharing for a masked implementation of the AES cipher, shares can be eas-
ily propagated through all linear operations. However, much more work is needed
to deal with the inversion in the finite field F28 involved in the AES Sbox. When
masking AES, this inversion is usually (see e.g., [TDG02,BMK04,OMPR05])
computed using exponentiation so masking this operation comes down to mask-
ing multiplications of sensitive variables. This last problem has been extensively
addressed in the secure Multi-Party Computation literature. For instance in
[BOGW88,CCD88], the authors have introduced a secure multiplication proce-
dure for the secret sharing scheme of Shamir ([Sha79]). Much later, in [ISW03],
Ishai, Sahai and Wagner have proposed another procedure applied for a ba-
sic secret sharing scheme, commonly used to design countermeasures, the so-
called Boolean masking. These two methods have been used in the past few
years to propose high-order masking schemes for AES ([RP10,KHL11,CPRR13]
with Boolean Masking, and [GM11,PR11,CPR12] with Shamir’s secret sharing
scheme).

Let us mention that, quite recently, the authors of [BFGV12] have suggested
an adaptation of the nonlinear masking technique described in [DF12] to design
an implementation of AES resistant against high-order SCA. In particular, they
improved the secure multiplication of [DF12]. However this scheme being non-
linear, the implementation of linear operations becomes expensive compared to
linear schemes.

Another idea is to take advantage of the fact that every linear code gives rise
to a linear secret sharing scheme as described in [Mas93] for example. In practice,
MDS codes, such as the parity check code (corresponding to Boolean masking)
and Reed-Solomon code (for Shamir’s secret sharing scheme) are generally used
to design countermeasures as tth-order SCA resistance is achieved with only
t + 1 shares. Moreover, the initial Multi-Party Computation protocol proposed
in [BOGW88,CCD88] for Shamir’s secret sharing scheme has been generalized
by Cramer et al. ([CDM00]) from any linear secret sharing scheme and family
of codes such as self-dual and geometric codes have been suggested to improve
performance of the distributed multiplication procedure ([CC06,CDG+08]).

Our Contribution. In this paper, we propose to take advantage of results of
coding theory and Multi-Party Computation to design new tth-order masking
techniques by selecting linear codes adapted to the masked operations. More
precisely, we suggest to use self-dual codes with a binary basis to create secret
sharing schemes in which secrets and shares belong to an extension field K of
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the binary field F2. These codes will provide low-cost square operations3 and
an efficient encoding which is extensively used as a subroutine of the secure
multiplication procedure. Encoding require zero multiplication over the large
field, contrary to all strategies based on Shamir’s secret sharing scheme. As a
result, our secure multiplication procedure needs O(t) multiplications whereas
the methods based on Shamir’s secret sharing scheme ([GM11,PR11]) involve
O(t3) multiplications4, due to a costly encoding procedure, and the method
given in [RP10], using Boolean masking, has complexity O(t2) multiplications.
Moreover, we propose an improvement of the multiplication procedure given in
[BOGW88,CCD88,CDM00] which can also be applied for Shamir’s secret sharing
scheme.

Our codes are non-MDS, so we need more than t + 1 shares to achieve tth-
order SCA resistance. However, thanks to the underlying binary structure of our
code, we show that it is possible to efficiently switch code to the same code used
for Boolean masking during linear operations. As a result, these linear operations
can be masked as efficiently as with Boolean masking. We also propose to work
with an underlying self-dual code over F4 which provides a low-cost x 7→ x4

operation over K with less shares.
Finally, in the context of an implementation of a tth-order secure AES, we

show that our masking proposal dramatically improves the method with Shamir’s
secret sharing scheme and is competitive with Boolean masking.

Paper Organization. In Section 2, we recall the connection between tth-order
SCA countermeasures and secret sharing schemes and present the approach
with Shamir’s secret sharing scheme. In Section 3, we present the construc-
tion of linear secret sharing schemes derived from linear codes and the general
Multi-Party Computation multiplication procedure of [CDM00] that generalizes
[BOGW88,CCD88]. Section 4 is the core of our proposal: we present a new tth-
order masking technique based on self dual codes, and several implementation
improvements. In Section 5, we apply our technique to secure an AES imple-
mentation present experimental results and make a comparison with previous
works. Finally Section 5 concludes the paper.

2 Secret Sharing Scheme and tth-Order Masking

An implementation of a secret key algorithm is said to be tth-order secure if an
adversary gains no information about the secret key from the knowledge of t
intermediate values. This ensures that the observation of the physical leakage
related to the manipulation of these intermediate values will not help the adver-
sary in performing a key recovery attack. A sound approach to reach this level of

3 We note that a similar trick have been proposed to make efficient squaring in the
long version of [PR11] but only with Reed-Solomon codes which are different to the
codes used in our proposal.

4 This can be improved to O(t2 log4 t) multiplications by using discrete Fourier trans-
form cf. [CPR12].
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security is to mask each sensitive variable s with a linear secret sharing scheme.
For example, the so-called Boolean masking consists in randomly splitting s into
t+1 shares s1, . . . , st+1 in a way such that s = s1 + · · ·+st+1 ([RP10,CPRR13]).
The linear secret sharing scheme of Shamir has also been used in this context
([GM11,PR11,CPR12]).

Some mechanisms must be developed to make this masking procedure com-
patible with the operations performed in the protected algorithm, i.e., to enable
the computation on masked data. For example, for the AES cipher, linear oper-
ations are compatible with linear secret sharing. Nonlinear functions involved in
the SubBytes transformation are more difficult to deal with. Usually the inver-
sion involved in this transformation is computed using an exponentiation which
requires a method to protect multiplications of sensitive variables. In the context
of the AES, some solutions have been developed in [RP10,KHL11,CPRR13] for
multiplication with Boolean masking.

In this section, after some definitions on secret sharing schemes, we describe
the solution, close to our proposal, given in [GM11,PR11,CPR12] still in the
context of AES, to perform multiplications with Shamir’s secret sharing scheme.

2.1 Definitions

Let K be a field. A secret sharing scheme is a method to split a secret s ∈ K
among a set of n shares. More precisely a secret sharing scheme is composed of
two algorithms, encoding and decoding . The encoding of s provides an n−vector
of shares called share vector : (s1, . . . , sn) ∈ Kn. The decoding algorithm recon-
structs the secret s from (s1, . . . , sn).

A secret sharing scheme has t-privacy if any set of at most t shares reveals no
information about the secret, and r-reconstruction if r shares reveal the entire
secret. A secret sharing scheme is said to be linear if for any two secrets s and s′

shared respectively by (s1, . . . sn) and (s′1, . . . s
′
n), the vectors (s1+s′1, . . . , sn+s′n)

and (λs1, . . . , λsn) decode respectively to s+ s′ and λs, λ ∈ K.
A tth-order secure implementation of an algorithm can be based on a linear

secret sharing scheme with t−privacy. The encoding procedure is applied to
each input variable. Share vectors are then manipulated to reflect the protected
algorithm. Additions and scalar multiplications of secrets are performed easily
on the share vectors. In the following, we recall the linear secret sharing scheme
of Shamir and the method to perform tth-order secure multiplication of secrets
described in [GM11,PR11,CPR12].

2.2 Shamir’s Secret Sharing Scheme

In [Sha79], Shamir has introduced a linear secret sharing scheme over a finite field
Fq based on polynomial interpolation. The encoding step consists in generating
a random secret polynomial P of degree t over Fq such that P (0) = s. Then, the
share vector of s denoted (s1, . . . , sn) is generated by evaluating si = P (xi) in
n distinct non-zero points x1, . . . , xn of Fq. Let A be a subset of {1, . . . , n} such
that |A| > t+ 1. The decoding step consists in recovering the secret polynomial
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by interpolation and then the secret by an evaluation at 0. This is done by
computing:

s =
∑
i∈A

siβi(0), (1)

where βi(X) =
∏

j∈A,j 6=i
X−xj

xi−xj
are Lagrange polynomials. This gives a linear

secret sharing scheme with t-privacy and t+ 1-reconstruction.
Linear operations on secrets can be securely executed as described in sub-

section 2.1. However nonlinear operations over Fq are more complex to deal
with. Multiplication of two secrets has been extensively studied to design se-
cure multiparty computation schemes, e.g. in [BOGW88,CCD88,GRR98]. The
method consists in multiplying the two share vectors share by share. This oper-
ation corresponds to the multiplication of two degree t polynomials which gives
a polynomial of degree 2t. The secret result of the multiplication can then be
recovered with at least 2t + 1 shares if n > 2t + 1. A method to reduce the
number of shares required to reconstruct the secret is needed, otherwise k suc-
cessive multiplications would require to take n > kt+ 1. The solution consists in
re-encoding 2t+ 1 shares and to compute the sum of the resulting share vectors.

In [GM11,PR11], this secure multiplication has been used to implement the
AES cipher. Algorithm 1 recalls the solution to perform the secure multiplication
procedure as given in [GM11]. In particular the authors have suggested to take
n = t + 1 during the whole process and to generate on-the-fly the additional
shares when a multiplication step is required reducing the overall complexity of
their AES implementation.

Algorithm 1 Secure Multiplication [GM11, Algorithm 2]
Inputs: 2n− 1 distinct non-zero public elements x1, . . . , x2n−1

(s1, . . . , sn) a share vector of s and (s′1, . . . , s
′
n) a share vector of s′

βj(xi) pre-computed for 1 6 j 6 n and n+ 1 6 i 6 2n− 1

β∗i pre-computed for 1 6 i 6 2n− 1 with β∗i =
∏2n−1

j=1,j 6=i

−xj

xi−xj

Output: (z1, . . . , zn) a share vector of ss′

1. For i = n+ 1 to 2n− 1 do

2. si ←
∑n

j=1 sjβj(xi)

3. s′i ←
∑n

j=1 s
′
jβj(xi)

4. For i = 1 to 2n− 1 do

5. wi = sis
′
iβ
∗
i

6. (wi1 , . . . , win)← encoding(wi)

7. For j = 1 to n do

8. zj ←
∑2n−1

i=1 wij

9. Return (z1, . . . , zn)

Remark 1. When the field Fq has characteristic 2, the square of a secret can
be performed more efficiently than general multiplication. Let us consider the
square (s21, . . . , s

2
n) of a share vector of s and let us denote P the secret polynomial

used to share s. Relation (1) gives s2 =
∑

i∈A s
2
iβi(0)2, so the secret s2 can be
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recovered with only (t+ 1) shares. However each share s2i is an evaluation of P 2

at x2i instead of xi. In [GM11] the authors propose again to apply a re-encoding
step so that the shares are the evaluation of a polynomial at (x1, . . . , xn). In the
long version of [PR11] it is proposed to choose the points x1, . . . , xn such that
the set of these points is stable with respect to the Frobenius map x 7→ x2. As a
result, a simple re-ordering of the shares is needed instead of a re-encoding step.
The situation will be even simpler with our proposal since no re-ordering will be
needed.

The main cost of Algorithm 1 comes from the numerous multiplications by
constant values, namely the multiplications by β∗i and βj(xi) and the ones re-
quired during the encoding steps. These steps correspond to evaluations of poly-
nomials at n different points. In [CPR12], the authors propose to use the discrete
Fourier transform for these computations. Hence the whole secure multiplication
procedure can be improved to a complexity of O(n2) multiplications instead of
the naive approach in O(n3) multiplications. With our proposal, no multiplica-
tion by constant values over Fq will be needed, as a result of which the secure
multiplication procedure will be improved to a complexity of O(n) multiplica-
tions.

3 Coding Theory Generalisation

It is well-known that a linear secret sharing scheme can be built from a linear
code as described, for example, in [Mas93,CC06,CCG+07,CDG+08]. Moreover,
the problem of computing on masked data (addition and multiplication of secret
values) for general secret sharing schemes has been addressed to design secure
multiparty computation protocol (see, e.g., [CDM00]), generalizing the protocol
initially proposed in [BOGW88,CCD88] with Shamir’s scheme. In the follow-
ing, we recall some basic definitions, explain the construction of a linear secret
sharing scheme from a linear code and describe the algorithms to perform se-
cure computation on secrets that generalize the algorithms given in the previous
section.

3.1 Basic Definitions and Results from Coding Theory

Over a finite field Fq, an [n+ 1, k+ 1, d]q linear code C is a (k+ 1)−dimensional
vector subspace of Fn+1

q with minimum Hamming distance d. The generator
matrix G of a linear code in systematic form can be written as G = [Idk+1| A ],
whereA is a (k+1)×(n−k)−matrix. The elements c = (c0, . . . , cn) of C are called
codewords and can be generated as c = (r0, . . . , rk)·G, where (r0, . . . , rk) ∈ Fk+1

q .

The dual code C⊥ of C is an [n+ 1, n− k]q linear code defined by

C⊥ =
{
c ∈ Fn+1

q : 〈c, c′〉 = 0 for all c′ ∈ C
}
,

where 〈., .〉 denotes the inner product defined by 〈c, c′〉 =
∑n

i=0 cic
′
i. When C =

C⊥ (resp. C ⊆ C⊥), C is said to be self-dual (resp. self-orthogonal).
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From C an [n+ 1, k + 1]q linear code, the squared code denoted Ĉ is defined by

Ĉ = 〈{c ∗ c′, c, c′ ∈ C}〉 ,

where ∗ denotes the Schur product c ∗ c′ = (c0c
′
0, . . . , cnc

′
n). Moreover we define

C2 as
C2 =

〈
{c2 = c ∗ c, c ∈ C}

〉
.

For more details on linear codes, the interested reader may refer to [MS78].
In the following we give two lemmas useful to select suitable codes for efficient
operations on masked data.

Lemma 1. Let C be an [n, k] linear code over Fq of characteristic 2. The fol-
lowing assertions are equivalent:

1. ∀c ∈ C, c2 ∈ C,
2. C has a binary basis.

Proof. Let C be a linear code over Fq of characteristic 2 having a binary basis
(b1, . . . , bk) with bi ∈ Fn

2 . For all i, b2i = bi. If c is a codeword of C, then there

exists a linear combination such that c =
∑k

i=1 λibi with λi ∈ Fq. We have

c2 =
∑k

i=1 λ
2
i b

2
i =

∑k
i=1 λ

2
i bi ∈ C.

Conversely, let C be a [n, k] linear code over Fq, such that for all code-
word c ∈ C, c2 ∈ C. Let G be a generator matrix of C in systematic form
and bi be the ith row of G. Let a1, . . . , an−k be elements of Fq such that
bi = (0, . . . , 0, 1, 0, . . . , 0, a1, . . . , an−k).

By definition b2i = (0, . . . , 0, 1, 0, . . . , 0, a21, . . . , a
2
n−k) ∈ C, so there exists a

linear combination such that b2i =
∑k

i=1 λibi. From the last equality, the jth

coordinate of b2i is equal to λj for j ∈ {1, . . . , k}. By identification, we have for
1 6 j 6 k and j 6= i, λj = 0, and λi = 1. Therefore b2i = bi and then a2j = aj for
j ∈ {1, . . . , n− k}. Thus bi ∈ Fn

2 . ut

Lemma 2. If C is a linear self-dual code (or a linear self-orthogonal code), then

the codeword 1 = (1, . . . , 1) ∈ Ĉ⊥.

Proof. For all c, c′ ∈ C of the self-dual (or self-orthogonal) code, we have: 〈c, c′〉 =
〈c ∗ c′,1〉 = 0. ut

3.2 Construction of a Linear Secret Sharing Scheme from a Linear
Code

Let C be an [n+1, k+1, d]q linear code with G its generator matrix in systematic
form. All codewords c = (c0, c1, . . . , cn) of C can be identified with a share vector
(c1, . . . , cn) of the secret c0 = s. Hence the encoding procedure of a secret s ∈ Fq

consists in generating a codeword c = (s, r1, . . . , rk) · G, where r1, . . . , rk are
random values of Fq. In case of ambiguity, this procedure is denoted encodingC .
Assuming that there exists a codeword h = (h0, . . . , hn) of C⊥ such that h0 = 1,
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the decoding procedure can be implemented by computing s =
∑n

i=1 λici where
λi = −hi ∈ Fq. In this case, we call recombination vector of C, such a vector
λ = (λ1, . . . , λn) where the number of non-zero λi equals to d⊥ − 1.

In [CCG+07, Theorem 1], it is shown that such a linear secret sharing scheme
has (d⊥−2)−privacy and (n−d+ 2)−reconstruction, where d⊥ is the minimum
distance of C⊥.

3.3 Operations on Masked Data

A linear code gives a linear secret sharing scheme, so addition and scalar mul-
tiplication of secrets correspond to addition and scalar multiplication of share
vectors. Consider now the problem of multiplying two secrets shared by a general
secret sharing scheme. In other words, from the shared vectors of two secrets one
wishes to obtain a shared vector representing the product of the secrets by using
operations on shares and without reconstructing the secrets. This problem has
been addressed in [CDM00]. In this work, a procedure that generalizes Algo-

rithm 1 is given, by considering any linear code C such that d̂⊥ ≥ d⊥ where d̂⊥

is the minimum distance of Ĉ. We describe this approach below.
We assume that there exists a recombination vector λ̂ of Ĉ (for example,

according to Lemma 2, we can choose λ̂ = (1, . . . , 1) if C is self-dual or self-
orthogonal). Let c, c′ ∈ C be such that c0 = s and c′0 = s′. The secret multiplica-

tion ss′ can be shared by c∗c′ ∈ Ĉ and recovered by computing ss′ =
∑n

i=1 λ̂icic
′
i.

Furthermore Ĉ gives a secret sharing scheme with (d̂⊥ − 2)−privacy and as

d̂⊥ ≥ d⊥, the privacy level of the secret sharing scheme associated to C is pre-
served. To be able to perform further multiplications, we need a method for
re-encoding the codeword c ∗ c′ ∈ Ĉ into a new codeword z ∈ C such that
z0 = ss′. As seen in the previous section, this can be done by re-encoding each
λ̂icic

′
i into a new codeword of C. Then by summing these n codewords, we ob-

tain z, a codeword of C, such that z0 = ss′. This procedure is described in the
following algorithms: Algorithm 3 for the secure multiplication procedure, and
Algorithm 2 for the re-encoding subroutine.

Algorithm 2 Secure Re-encoding Procedure

Inputs: C a [n+ 1, k + 1]q linear code
C′ a [n′ + 1, k′ + 1]q linear code and λ′ a recombination vector
(w1, . . . , wn′) a share vector corresponding to a codeword of C′

Output: (z1, . . . , zn) a share vector of
∑n′

i=1 λ
′
ici corresponding to a codeword of C

Function: re-encoding C′ 7→C(λ
′, w1, . . . , wn′)

1. For i = 1 to n′ do

2. (wi1 , . . . , win)← encodingC(λ
′
iwi)

3. For j = 1 to n do

4. zj ←
∑n′

i=1 wij

5. Return (z1, . . . , zn)

8



Algorithm 3 Secure Multiplication Procedure
Inputs: C a [n+ 1, k + 1]q linear code
(c1, . . . , cn) a share vector of s and (c′1, . . . , c

′
n) a share vector of s′ corresponding to

codewords of C
λ̂ a recombination vector of Ĉ
Output: (z1, . . . , zn) a share vector of ss′ corresponding to a codeword of C

1. (w1, . . . , wn)← (c1c
′
1, . . . , cnc

′
n)

2. (z1, . . . , zn)← re-encoding Ĉ7→C(λ̂, w1, . . . , wn)

3. Return (z1, . . . , zn)

These algorithms requires n multiplications of shares and numerous multipli-
cations by constant values: the coordinates of λ̂ and the elements of the matrix
G for the encodings. In our proposal, all these elements will be binary, so only
n multiplications will be needed for a secure multiplication.

Fact 1 From the properties of the secure Multi-Party Computation protocol
given in [CDM00, Section 6], Algorithms 2 and 3 give a tth-order secure mul-
tiplication, with t = d⊥ − 2 where d⊥ is the dual distance of the linear code
C.

Remark 2. Over a finite field Fq of characteristic 2, the square of a secret s can be

computed without using the squared code Ĉ and λ̂. Indeed, if (1, λ1, . . . , λn) ∈ C⊥,

then (1, λ21, . . . , λ
2
n) ∈ C2⊥ . As a result, if s is shared by (c1, . . . , cn), one can apply

Algorithm 2 to λ2, (c21, . . . , c
2
n), to obtain a share vector of s2 corresponding to

a codeword of C. Moreover, no re-encoding is needed if c2 ∈ C. According to
Lemma 1, this will be the case if and only if C has a binary basis. In this case,
the secure squaring procedure only requires to compute n squares.

3.4 Application to Boolean Masking and to Shamir’s Secret Sharing
Scheme

The well-known Boolean masking can be obtained with this framework by using
the [n+ 1, n]q linear parity check code with generator matrix

G =

 1

Idn
...
1

 . (2)

The dual of this code is generated by the codeword (1, . . . , 1). As a con-
sequence, the secret sharing scheme constructed from such a code has (n − 1)-
privacy and the secret s ∈ Fq can be recovered by computing s =

∑n
i=1 ci, where

(c1, . . . , cn) is a share vector of s. As said in Remark 2 this scheme allows a secure
squaring procedure with a low computational cost. However for n+ 1 > 2, it is
easy to see that Ĉ⊥ = {0}. As a consequence we cannot apply Algorithm 3 to
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perform a secure multiplication. Nevertheless other methods are proposed in the
literature to perform such an operation without using the framework of error-
correcting codes (for instance the method given in [RP10] requires roughly n2

multiplications of shares).
Shamir’s secret sharing scheme can be constructed from the Reed-Solomon

code of parameters [n+ 1, t+ 1]q with the generator matrix

G =


1 1 . . . 1
0 x1 . . . xn
0 x21 . . . x

2
n

...
... . . .

...
0 xt1 . . . x

t
n

 ,

with for all i, j, i 6= j, xi 6= xj ∈ Fq r {0}. The recombination vector λ can
be chosen such that λi = βi(0) (i.e., Lagrange polynomials evaluated in 0).

Moreover, Ĉ is the [n+1, 2t+1]q Reed-Solomon code and if 2t+1 6 n, then we can
apply Algorithm 3. This gives essentially Algorithm 1 where the only difference
is the on-the-fly computation of the missing shares. Similarly the method of
[GM11] to compute secure squaring for Shamir’s scheme explained in Remark 1,
corresponds to the method given in Remark 2.

4 Our Contribution

The codes generally considered for the construction of secret sharing schemes
are MDS codes, such as the parity check code (for Boolean masking) and Reed-
Solomon codes (for Shamir’s scheme). This is because they give perfect secret
sharing schemes, namely t−privacy and t+1−reconstruction. In particular, when
used as tth-order masking, only t + 1 shares can be used to mask each input
variable.

The efficiency of Boolean masking comes from the fact that it corresponds
to a code with a binary generator matrix (2). By lemma 1, this binary basis
implies that squaring in an extension of the binary field is a low-cost operation.
Moreover, encoding requires only additions and no multiplications. As mentioned
in subsection 3.4, the general secure multiplication (Algorithm 3) cannot be
applied to Boolean masking, and the secure multiplication algorithm of [RP10]
requiresO(t2) multiplications. For Shamir’s secret sharing scheme [PR11,GM11],
secure multiplication corresponds to Algorithm 3. But the encoding subroutine
needs numerous multiplications in the finite field and secure multiplication has
complexity O(t3) or Õ(t2) multiplications with FFT techniques ([CPR12]), even
if only O(t) multiplications of shares are needed. Moreover, some work has been
done to make the squaring procedure more efficient (cf. remark 1).

We propose to select a family of non-MDS linear codes over an extension
of the binary field such that Algorithm 3 is applicable like in Shamir’s scheme,
and such that a binary basis is available like in Boolean masking. With these
codes we will have all the benefits: an encoding subroutine which requires zero
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multiplication, a low-cost square operation (like in Boolean masking), and a
secure multiplication procedure which requires only O(t) multiplications and is
thus more efficient than methods with MDS codes. The codes that we use have
an underlying binary structure which is that of a self-dual or a self-orthogonal
binary code. We also discuss the case of codes defined with a basis in F4.

Moreover, we propose an improvement of the multiplication procedure de-
scribed in Algorithm 3 which can also be applied for Shamir’s secret sharing
scheme.

Finally, to compensate the additional number of shares needed by the fact
that our codes are non-MDS, we show that it is possible to efficiently switch code
to the same code used for Boolean masking during linear operations, thanks to
the underlying binary structure of our codes. As a result, these linear operations
can be masked as efficiently as with Boolean masking.

Table 3 sums up the costs of our masking procedure when applying all these
improvements.

4.1 Linear Secret Sharing Schemes based on Self-Dual Codes

In all the following we consider a base field Fq of characteristic 2. As previously
said, we want to select a linear code C over Fq with a binary basis. Moreover,
as described in Section 3, to ensure that the multiplication procedure given by
Algorithm 3 is applicable, Ĉ⊥ must contains a particular codeword h such that
h0 = 1. Lemma 2 shows that by choosing for C a self-dual or self-orthogonal
code, such a property is fulfilled.

As described in Section 3, a linear [n + 1, k + 1] code allows to construct a
secret sharing scheme with n shares and t−privacy, where t = d⊥−2. For a fixed
value t, the number of shares must be the smallest possible to reduce the total
number of operations of a tth-order masking. In the coding literature, self-dual
and self-orthogonal binary codes are well-studied. In particular, we can give in
Table 1 a list of binary codes C with minimal length and dual distance d⊥ = t+2
for 1 6 t 6 6, such that for even length, the codes C are self-dual and for odd
length, self-orthogonal. The code used for our tth-order masking is not strictly
speaking the code C but the code over Fq generated by the binary generator
matrix of C. The code constructed over Fq remains self-dual or self-orthogonal,
and has the same properties (length, dimension, minimum distance and dual
distance) than the underlying binary code.

In this table, the self-dual shortened Golay code [22,11,6] is built from the
extended Golay code by using codewords beginning by 00 and 11. The code C21

[21,11,5] is obtained by removing a coordinate of the shortened Golay code. For
larger values of t, the reader is referred to the codes given in [CS90,GO03], and
it is known that n will be linear in t.

Interestingly, self-dual binary codes and some generalisations have been called
upon [CGKS12,CG13] in order to improve resistance against side-channel anal-
ysis, through in contexts that do not invoke secret sharing.

To construct a tth-order masking scheme, we select the [n+1, k+1] code from
the line t of Table 1. The encoding procedure (cf. subsection 3.2) requires the
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t
Binary code C Binary Dual code C⊥ Number of additions

[n+ 1, k + 1] with d⊥ = t+ 2 required during an encoding

1 Code [7, 3] Hamming code [7, 4, 3] 5

2 Extended Hamming code [8, 4, 4] 8

3 Code [21, 10] C21 [21, 11, 5] 48

4 Shortened Golay code [22, 11, 6] 44

5 Code [23, 11] Golay code [23, 12, 7] 64

6 Extended Golay code [24, 12, 8] 72

Table 1. List of binary codes

generation of k random values over Fq and only L additions, where L is given in
Table 1 and depends on the number of 1s in the generator matrix considered. For
this encoding step, there is no multiplication by constant values of Fq unlike in
Shamir’s scheme. The addition and scalar multiplication of a secret are computed
on each of the n shares, so n operations are needed. Squaring also consists in
squaring the n shares. Secure multiplication is done with Algorithm 3. The vector
λ̂ is defined over F2, so only n multiplications in Fq are required.

From Table 1, we note that the number of shares n of our tth-order masking
scheme is important compared to a perfect scheme such as Shamir’s. For example
for t = 3, we need n = 20 shares and with a perfect masking only 4. To improve
the performance of our masking method, a solution is to consider an underling
self-dual or self-orthogonal code over F4 instead of F2 if F4 ⊂ Fq. Indeed, as
we can see in [GO03] such codes provide a better ratio n/t. With such a code
the generator matrix has now its coefficients in F4 = {0, 1, w, w + 1} ⊂ Fq. As
a result the encoding procedure requires some multiplications by w. However,
unlike in Shamir’s scheme, here only one constant value, i.e., w is manipulated
and the products wx, x ∈ Fq can be precomputed in a table.

In Table 2, we give a list of optimal codes over F4 and indicate the number of
additions and the number of low-cost multiplications with w required during an
encoding procedure. As with Table 1, the code used in our masking scheme is a
self-dual or a self-orthogonal code over Fq built from the generator matrix of the
code given in the table. With these codes, we lose the advantage of the low-cost
squaring operation: the secure squaring now requires a re-encoding procedure as
described in Remark 2. However the complexity of raising a sensitive variable to
the power 4 is still small. Indeed by adapting Lemma 1, we can show that for
any codeword c ∈ C, we have c4 ∈ C.

4.2 Improvement of Secure Multiplication

During a secure multiplication (Algorithm 3), the most expensive step is the re-

encoding process from Ĉ to C where n calls are done to the encoding procedure.
In order to reduce the complexity of this algorithm, we show that this number
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t
Code C over F4 Dual code C⊥ encoding

[n+ 1, k + 1] with d⊥ = t+ 2 add mult with w

1 Extended quadratic residue code XQR(3) [4, 2, 3] 4 2

3 Code [11, 5] Quadratic residue code QR(11) [11, 6, 5] 25 5

4 Extended quadratic residue code XQR(11) [12, 6, 6] 32 6

5 Code [19, 9] Quadratic residue code QR(19) [19, 10, 7] 69 9

Table 2. List of codes over F4

of calls can be decreased. This modified algorithm will still be tth-order SCA
secure with t = d⊥ − 2.

After the multiplication of two share vectors of s and s′, we obtain a share
vector (c1c

′
1, . . . , cnc

′
n) of ss′ corresponding to a codeword of Ĉ. If we add the

vector (c1c
′
1, . . . , cnc

′
n) and a random share vector of 0 in Ĉ, then we obtain a

random5 share vector in Ĉ of ss′ denoted w = (w1, . . . , wn). Furthermore, Ĉ gives

a secret sharing scheme with (d̂⊥−2)−privacy. Assuming that e = d̂⊥−d⊥ > 0,
we combine (e+ 1) elements of w giving a share vector

w̃ =

(
e+1∑
i=1

λ̂iwi, we+2, . . . wn

)

associated to a linear code Ĉ∗ of length n − e. By construction, the vector
λ̂∗ = (1, λ̂e+2, . . . , λ̂n) is a recombination vector of this code if (λ̂1, . . . , λ̂n) is

a recombination vector of Ĉ . The algorithm is still tth-order SCA secure if we
re-encode the coordinates of this share vector w̃ instead of w. Indeed, suppose
that an adversary has access to a subset of t shares of this vector w̃. If the first
coordinate is not in this subset, the adversary has no information on the secret
as the scheme is at least t−private. If he knows the first coordinate he has less
information than with w1, w2, . . . , we+1 and t−1 others shares, i.e., with d̂⊥−2
shares, so he has again no information on the secret.

Therefore, only n− e shares can be re-encoded during the secure multiplica-
tion procedure as described in Algorithm 4.

This improvement can be applied for each linear code with d̂⊥ > d⊥. In
particular, the squared codes Ĉ associated to the codes given in Tables 1 and 2
are the parity check codes of length n+1 and have d̂⊥ = n+1, so only n−e = t+1
shares have to be re-encoded in Step 5. Similarly, for Shamir’s secret sharing
scheme by taking n = 2k + 1, then we have that t = k, d⊥ = k + 2 and the
squared code Ĉ associated is the Reed-Solomon code of parameters [2k+2, 2k+1],

so d̂⊥ = 2k + 2. Therefore n− e = t+ 1.

5 If this step is omitted, the vector y = c ∗ c′ of Ĉ may not have (d̂⊥− 2)−privacy. For
example, if s = s′ and the two input share vectors are equals, y ∈ C2 and as C2 = C
in our proposal, this vector has only (d⊥ − 2)−privacy.
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Algorithm 4 Improvement of Secure Multiplication
Inputs: C a [n+ 1, k + 1]q linear code
(c1, . . . cn) and (c′1, . . . , c

′
n) two share vectors respectively of s and s′

λ̂ a recombination vector of Ĉ and e = d̂⊥ − d⊥ > 0
Output: (z1, . . . , zn) a share vector of ss′

Function: SecMult((c1, . . . cn), (c′1, . . . c
′
n))

1. (w1, . . . , wn)← (c1c
′
1, . . . , cnc

′
n) + encodingĈ(0)

2. (w1, . . . , wn)← (λ̂1w1, . . . , λ̂e+1we+1, we+2, . . . , wn)

3. For i = 1 to e do

4. we+1 ← we+1 + wi

5. (z1, . . . , zn)← re-encoding Ĉ∗ 7→C((1, λ̂e+2, . . . , λ̂n), (we+1, . . . , wn))

6. Return (z1, . . . , zn)

4.3 Code Switching to Perform Efficient Linear Operations

To compensate the additional number of shares needed by the fact that our codes
are non-MDS, we propose a solution to reduce the number of shares used during
linear operations, still achieving a tth-order masking. Let us consider the masking
scheme using a code C built from Table 1. Thanks to the underlying binary
structure, it is possible to efficiently re-encode the share vectors of C to an MDS
code C? for linear operations (additions and scalar multiplications). This simply
consists in considering only the shares involved in the reconstruction, namely
the t+ 1 shares corresponding to the non-zero coordinates of the recombination
vector. As a result, the MDS code C? corresponds to Boolean masking. Hence
all linear operations can be implemented with the same complexity as Boolean
masking. At the end of the linear operations, when a multiplication has to be
done, each share will be re-encoded to form a new share vector corresponding
to a codeword of C.

This method can be adapted for a masking scheme using the codes C of Table
2. At the end of the multiplication procedure, the shares of a vector of Ĉ are
re-encoded into C? (instead of C) to form a share vector of length t + 1. This
code is used during the linear operations and then a re-encoding is applied so as
to fall back on a codeword of C when another multiplication is needed.

4.4 Comparison with Other Masking Schemes

We summarize in Table 3 the cost of secure operations when we use our tth-
order masking schemes derived from the codes of Table 1 (resp. from the codes
of Table 2) denoted by our masking scheme F2 (resp. our masking scheme F4)
using the improvements proposed in subsections 4.2 and 4.3.

In this table, rand indicates the number of random elements to generate,
add and mult correspond to the numbers of additions and multiplications in the
finite field Fq. By mult with w, we indicate the number of small multiplications
with the constant w ∈ F4 which can be performed with a look-up table. We also
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give the cost of masked operations for Boolean masking using the multiplication
procedure described in [RP10] and for Shamir’s secret sharing scheme using
the multiplication procedure of [GM11,PR11]. For the multiplication procedure
(denoted by Mult. of share vectors) with Shamir’s scheme, the cost of polynomial
evaluations may be lowered by using the discrete Fourier transform as described
in [CPR12].

According to this table, our masking procedure is dramatically more efficient
that Shamir’s secret sharing scheme. When n behaves as a linear function of t,
our solution is asymptotically the most efficient since the secure multiplication
procedure needs a number of field multiplications linear in t while a quadratic
number is needed for the Boolean masking scheme. In the next section, we com-
pare these methods for securing AES, with concrete parameters.

Our Masking Scheme F2 Our Masking Scheme F4

Add. with a constant 1 add

Add. of share vectors t+ 1 add

Mult. with a constant t+ 1 mult

Mult. of share vectors

(n− 1) + k(t+ 1) rand (n− 1) + k(t+ 1) rand
[(t+ 1)(L+ n− 1) [(t+ 1)(L+ n− 1)

+2n− 1] add +2n− 1] add
n mult n mult

(t+ 1)L′ mult. with w

Square of share vectors t+ 1 squares

Boolean Masking Shamir Masking
[RP10] [GM11,PR11]

Add. with a constant 1 add t+ 1 add

Add. of share vectors t+ 1 add

Mult. with a constant t+ 1 mult

Mult. of share vectors

t(t+ 1)/2 rand t(2t+ 1) rand
2t(t+ 1) add t(2t2 + 2t) add
(t+ 1)2 mult (2t+ 1)2 mult

2t+ 1 polynomial
evaluations:

(2t+ 1)× (t2 + t)add
(2t+ 1)× (t2 + t)
mult with const

Square of share vectors t+ 1 squares

Remarks: n and k corresponds to the parameters of the [n+ 1, k + 1] codes given in
Table 1 and 2. L and L’ refer respectively to the number of additions and low-cost
multiplication with w for encoding given in Table 1 and 2.

Table 3. Complexity of masked operations against tth-order SCA
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5 Application to AES

In this section, we apply our masking scheme to design a secure implementa-
tion of AES against tth-order SCA and compare its performance with Boolean
masking [RP10] and Shamir’s secret sharing scheme [GM11,PR11].

The AES [FIP01] is a block cipher algorithm which operates on a 4×4 bytes
state. The bytes are viewed as elements of F28 = F2[x]/(x8+x4+x3+x+1). Dur-
ing encryption, four transformations are involved. AddRoundKey is an addition
between the state and the round key, SubBytes is a nonlinear transformation,
ShiftRows and MixColumns are linear transformations.

In the following, we describe the implementation of our tth-order masking on
all the AES transformations.

5.1 Secure Implementation of Linear AES Transformations

To secure the linear transformations (AddRoundKey, ShiftRows, MixColumns)
against tth-order SCA, we propose to apply Boolean masking. More precisely,
we consider the [t + 2, t + 1] parity check code C? over F28 constructed from
the generator matrix given by (2). Each element of the state is shared into t+ 1
elements of F28 with the encoding procedure described in subsection 3.2. Hence
all linear AES transformations can be performed share by share as for Boolean
masking. As a result the masking of this transformation is as efficient as the
method of [RP10]. More precisely, AddRoundKey requires 16× (t+ 1) additions
in F28 and MixColumns requires 4 × 15 × (t + 1) additions and 4 × 4 × (t + 1)
multiplications by the constant {0x02} which can be performed by a look-up
table.

5.2 Secure Implementation of SubBytes Transformation

The nonlinear SubBytes transformation is the composition of two functions: the
nonlinear calculation of the inverse in F28 and an affine transformation over
F2, denoted Af . To secure the computation of the inverse in F28 , one uses the
fact that this operation can be defined as X 7→ X254. As shown in [RP10], this
exponentiation requires a lower bound of 4 multiplications and 7 squares over
F28 :

X254 = [(X2X)4(X2X)]16(X2X)4X2 . (3)

At the beginning of the SubBytes Transformation, we apply the code switch-
ing method of subsection 4.3. More precisely, each coordinate of the share vectors
of the short code C? are re-encoded in a code C selected from Table 1 or 2. Then,
the entire secure inversion is performed in this code with formula (3).

For the codes of Table 1, the square procedure require n squares performed
share by share. Secure multiplications are done with Algorithm 4. For the codes
of Table 2, the map X 7→ X4 can be computed efficiently share by share. The
square procedure now needs a re-encoding procedure as described in Remark
2. For this reason, with these codes, we perform the first operation (i.e., the
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computation of the share vector of X2) with the short parity check code C?

before switching code to C.
Finally, we need to apply the affine transformation Af which can be decom-

posed as X 7→ A(X) + b where A is linear over F2 and b is a constant byte. The
function A being linear over F2 (and not F28), we propose to compute this step
by switching code to the parity check code C?. Hence as for Boolean masking
(cf [RP10]), this transformation requires roughly only t + 1 times the cost of a
single A evaluation which is performed by using a look-up table.

5.3 Implementation Results and Comparisons

In order to give an idea of the global complexity of our masking scheme, we
give in Table 4 estimations of the number of cycles needed for different imple-
mentations of a tth-order masking of the AES Sbox for t ∈ {1, . . . , 6}. These
estimations are based on 8051 assembly language with a 8-bit smartcard CPU.
In such an environment, generation of a random byte requires 2 cycles, an ad-
dition requires 1 cycle, a secure multiplication over F28 implemented by using
so-called log/alog tables (see for instance [DR02]) requires roughly 20 cycles,
and an access to a look-up table (describing the square operations, the multi-
plication with w and the affine transformation) requires 3 cycles. In particular
the magnitude of complexity estimations given in Table 4 has been confirmed
by a real implementation of our proposal, with the two first codes of Table 1, to
design a first and second-order secure implementation.

Scheme \ Order t 1 2 3 4 5 6

Boolean masking [RP10] 0.4 0.9 1.5 2.4 3.4 4.6
Shamir [GM11,PR11] 1.3 4.8 11.6 22.7 39.3 62.3

Our masking scheme F2 0.8 1.1 3.8 4.3 5.3 6.2
Our masking scheme F4 0.5 - 2.2 2.9 5.7 -

Table 4. Estimation of timing for a secure AES Sbox on an 8-bit smartcard (in thou-
sands of cycles)

From Table 4, we can see that, as t grows, our approach becomes more and
more efficient than the method proposed in [GM11,PR11] using Shamir’s secret
sharing scheme. Furthermore we can remark that the cost of our method is
very close to the method using Boolean masking described in [RP10]. However
a security flaw in this method has been very recently announced in [CPRR13]
where the authors proposed a new solution. For future work, it will be interesting
to compare our proposal to this solution and to see if some ideas using the
framework of error correcting codes introduced in our work can be adapted to
this solution to devise a more efficient masking of AES.
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6 Conclusion

In this paper, we have presented a new high-order masking scheme and an appli-
cation to the AES cipher. The masking scheme relies on secret sharing based on
carefully chosen non-MDS linear codes and is significantly more efficient than
the methods that rely on Shamir’s secret sharing scheme. As a result, when
applied to the secure implementation of AES, our masking scheme is a more
attractive alternative to Boolean masking than Shamir’s scheme. Moreover, the
comparison given by Table 4 shows that the efficiency of our proposal is very
close to Boolean masking and it could open new perspectives in masking scheme
design.
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