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123 av. Albert Thomas,
87000, Limoges, France
Email: gaborit@unilim.fr

Abstract— In this paper we introduce a new probabilistic lattice-
based bounded homomorphic encryption scheme. For this scheme
the sum of two encrypted messages is the encryption of the sum
of two messages and the scheme is able to preserve a vector space
structure of the message. The size of the public key is rather large
≈ 3Mb but the encryption and the decryption operations are very
fast (of the same speed order than NTRU). The homomorphic
operation, i.e. the addition of ciphertexts is dramatically fast
compared to homomorphic schemes based on group theory like
Paillier or Elgamal.

I. INTRODUCTION

In 1982, Goldwasser and Micali proposed the first prob-
abilistic cryptosystem and defined the adequate notion of
security for this type of scheme: the notion of semantic
security. After this system, based on quadratic residuosity,
many probabilistic schemes following the same principle have
been proposed: chronologically by Benaloh, Naccache and
Stern, Okamoto and Uchiyama, and at last, the most achieved
system has been proposed by Paillier, and then generalized by
Damgård and Jurik (see [1] for all references).

All these schemes use quotients of Z. Their one-wayness
is based on factoring and their semantic security is based on
distinguishing prime residues. A specially interesting property
of these schemes is that they are homomorphic. Indeed, if
ci is a valid encryption of mi, with i ∈ {1, 2}, one can
publicly compute a valid ciphertext of the message m1 + m2.
For these schemes, this is done by computing the modular
multiplication c1c2, whose cost is a quadratic function of
the modulus size. This property has many applications, for
example, the systems of Paillier and Damgård and Jurik can
be used to design electronic vote systems [1], for Private
Information Retrieval [2], or for building Mix-nets [3].

In this paper we propose a new lattice based encryption
system with bounded homomorphic property (in the sense that
the number of possible homomorphic operations, even if large,
is bounded). This scheme has a large public key but has the
following features: 1) the scheme is the first non number theory
based with homomorphic property which preserves vectorial
structure, 2) the scheme is faster by an order 100-1000 than
previously known homomorphic schemes, 3) the scheme is the
first homomorphic scheme truly additive for both the message
and the encryption.

More precisely our scheme operates over vectors instead
of integers. We will say that a cryptosystem is (`, r, N)-
homomorphic if two conditions are met. First, a plaintext mes-
sage will be a N -tuple of elements of a ring of characteristic r.

Second, up to ` publicly computed ciphertexts can be combined
to get a valid ciphertext. For example, Paillier’s cryptosystem
is (∞, NRSA, 1)-homomorphic. This property offers flexibility
as one can adjust the parameters N, r and ` in order to fit
very different applications. For example, for a multi-candidate
election system with N candidates and r voters, a voter will
vote for the ith candidate by encrypting a N -tuple of the form
(0, 0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the ith position. It
is easy to extend this process to more complex vote protocols
like party list elections where voters choose for candidates that
belong to the same set out of several sets.

Our scheme is based on noisy lattices and is very efficient
from a computational point of view, as well for encryption as
for decryption, and specially for the homomorphic operation
which is a simple addition in a vector space over a finite field.
This scheme is based on the same assumptions and problems as
the Private Information Retrieval protocol presented in [4] by
Aguilar and Gaborit. In particular, we prove that our scheme is
semantically secure in the standard model under one of these
assumption, where as this level of security is not achieved
by NTRU (indistinguishability is only possible in the random
oracle model, cf. [5]).

II. DESCRIPTION OF THE SCHEME

A. High-level overview

The encryption scheme we propose relies on the simple idea
of controlled noise addition. The main idea is to start from a
secret random N×2N matrix M of rank N over a field GF (p)
and to hide the subspace it represents. This matrix is used to
generate a set of different matrices obtained by multiplication
on the left side by invertible random matrices. These matrices
(which can also be seen as lattices by joining pI2N for I2N

the identity 2N × 2N matrix) are disturbed by the user by the
introduction of noise in half of the matrices’ columns (as shown
in figure 1) to obtain respectively softly disturbed matrices
(SDMs) and a hardly disturbed matrices (HDM).

The public key is composed of one HDM and n SDMs. To
encrypt a vector, the user multiplies it by the HDM. Then,
for each of the SDMs he generates a random vector with
small coordinates and multiplies it by the corresponding matrix.
Finally, he adds all the results. The encrypted message is hence
an element of the hidden subspace added with the (large)
noise induced by the encrypted message and the (small) noise
induced by the SDMs. Using the knowledge of the hidden
subspace matrix and the position of the unmodified columns



Fig. 1. Scheme overview.

of the HDM and SDMs, one can recover the noise associated
to the encrypted message. From it, one separates the hard
noise induced by the encrypted message from the smaller noise
induced by the SDMs.

The scheme uses the same kind of idea as for the lattice-
based NTRU cryptosystem: one considers a vector space over a
field GF (p) where the key idea is to control an error by keep-
ing it non altered by any modular operation. The homomorphic
properties of the scheme come directly from additive properties
of the lattices. More particularly, the addition of two encrypted
messages is the sum of two vectors of the hidden subspace
plus two hard noises induced by the encrypted messages and
two small noises induced by the SDMs. Choosing ad hoc
parameters ensures that the small noise remains distinguishable
from the hard noise.

B. Key generation

The scheme will have five global integer parameters: N ,
the number of coordinates of the plaintext vectors, r the
characteristic of the ring over which they are constructed, `
the maximum number of homomorphic operations that can be
done, n, the number of SDMs used for the public key, and
εmax, an upper bound for the coordinates of the random vectors
used to insert noise.

Key generation

1) Note l0 = n × N × εmax + (N − 1) × r and set q as
2× l0 × (2` + 1) and p as a prime such that p = q × r + ε
with ε < l0.

2) Generate A and B, two random N×N matrices over GF (p)
such that A is invertible, and note M = [A|B].

3) For each i ∈ {0, 1, . . . , n}, compute a matrix M
′′
i = [Ai|Bi]

by multiplying M to the left by a random invertible matrix
Pi.

4) Generate the random scrambling matrix ∆ as a N × N
diagonal invertible matrix over GF (p).

5) For each i ∈ {1, . . . , n} generate a soft noise matrix Di, a
N×N random matrix over {−1, 1}, and compute the softly
disturbed matrix M

′
i = [Ai|Bi + Di∆].

6) Generate D0, the hard noise matrix, by:
• generating a soft noise matrix;
• replacing each diagonal term by q.

7) Compute the hardly disturbed matrix M
′
0 = [A0|B0+D0∆].

8) Choose a random permutation of columns P(·) and compute
Mi = P(M

′
i ) for i ∈ {0, 1, . . . , n}.

9) The n + 1 matrices {M0, . . . , Mn} compose the public key
and the private key is the permutation P(·), the hidden

matrix M , and the scrambling matrix ∆.

As Aguilar and Gaborit propose in [4], instead of multiplying
each soft and hard noise matrix by the noise scrambling matrix
in this protocol, it would be computationally more efficient to
generate each column i of the noise matrices as a random set
over {−δi, δi}, noting δ1, . . . , δN , the diagonal terms of the noise
scrambling matrix. To highlight the difference between soft noise
and hard noise matrices and ease the protocol comprehension,
we have decided to separate this in two steps, even if in a real
implementation only one step would have to be done. Similarly,
the random permutation P(·) would not be applied to each matrix
M

′
i , but directly to M at the end of step two, and all the disturbing

process would be done taking into account this initial permutation.

C. Encryption
To encrypt, one considers a message vector m in ZN

r . The
encryption is done in the following way: first one multiplies the
message m by the HDM M0. Then, one disturbs this result by
adding soft noise vectors. One selects n random vectors ri, with
coordinates smaller than εmax. One then adds the soft noise
vectors riMi to mM0 to get the encrypted message.

Encryption

1) Input: a message m ∈ ZN
r .

2) For each i ∈ {1, . . . , n} construct randomly the disturbing
vectors ri in ZN

εmax
.

3) Return c = mM0 +
Pn

i=1 riMi.

Of course, if the message is not a vector, two options are
possible. One can maximize the transmission factor by splitting the
message m in a vector of N log(r)-bit integers (m1, . . . , mN ) or
preserve the homomorphic property by using just one coordinate
and ensuring that r > m.

The encryption can be seen as a linear action on the message
disturbed by the addition of the noise vectors induced by the ri’s
and the Mi’s. The encrypted message is a vector c of dimension
2N over GF (p).

D. Decryption
To recover the message m, the user will operate in two phases.

First, he will recover the noise included in the vector (steps 1 and
2 of the Encryption protocol), and then he will unscramble and
filter out this noise to obtain the message (steps 3 to 5).

Decryption

1) Input: a ciphertext c ∈ GF (p)2N .
2) Compute the non-permuted noisy vector c′ = P−1(c).
3) Retrieve e = c′D − c′UA−1B, the scrambled noise, c′U and

c′D being resp. the undisturbed and disturbed halves of c′.
4) Compute the unscrambled noise e′ = e∆−1.
5) For each e′j in e′ = [e′1 · · · e′N ], compute e′′j = e′j − µ

with µ := e′j mod q if (e′j mod q) < q/2 and µ := (e′j
mod q)− q, else.

6) For each j ∈ {1 · · ·N}, compute mj := e
′′
j q−1.

7) Return m = (m1, . . . , mN ).

In the first step, the random column permutation is undone.
Then, the N first coordinates of the vector and the initial matrix
M are used to obtain what the N last coordinates (which have been

2



disturbed) should be without noise. These values are subtracted to
the noisy ones and the scrambled noise is obtained (step 2).

This noise is composed of soft and hard noise, but it cannot be
directly filtered because it was scaled up by the noise scrambling
matrix. In step 3 the noise is therefore unscrambled. Finally, in step
4 the soft noise is filtered out, and in step 5 each coordinate is
divided by the hard noise factor to obtain the message coordinates
mi.

By lack of space we do not give the precise proof of the
correctness of the scheme but it relies on the fact that we choose
parameters so that the action of the noise is controlled.

E. Homomorphic property
We begin this subsection with a formal definition of the concept

of an (`, r, N)-homomorphic scheme introduced in the introduc-
tion.

Definition 1: A (`, r, N)-homomorphic public-key encryption
scheme. A probabilistic public-key encryption scheme will be
(`, r, N)-homomorphic if its probabilistic encryption algorithm,
Enc, and its decryption algorithm, Dec, satisfy the following
conditions:

• The inputs of Enc are the elements of (MN , +), where M is
an additive group with r elements. The algorithm Enc outputs
an element of C, the ciphertext set.

• There is a public operation on C, denoted ⊕, such that for
all k ≤ ` and for all k-tuple (m1, m2, . . . , mk) of elements
of MN ,

Dec(Enc(m1)⊕Enc(m2)⊕· · ·⊕Enc(mk)) = m1+m2+· · ·+mk.

Note that with this definition, Enc(m1) ⊕ · · · ⊕ Enc(mk) can
be distinct from all the outputs of Enc(m1 + · · · + mk), i.e. no
randomness use in Enc on the input m1 + · · · + mk can lead to
this value.

Theorem 2: The previous protocol is (`, r, N)-homomorphic.

Proof. Our protocol is intrinsically additive. Indeed, a ciphertext
generated with the public key is of the form c = vMP +
m[0|qIn]∆P + s∆P mod p, for a given vector v ∈ ZN

p , a
plaintext m ∈ ZN

r , and a soft noise vector s in ZN
l0

,1 M, P, q, p
and l0 being scheme parameters. Thus, when two such ciphertexts
are added we obtain

c+c′ = (v+v′)MP +(m+m′)[0|qIn]∆P +(s+s′)∆P mod p.

Parameter p has been chosen such that rq = p + ε with ε ∈ ZN
l0

.
Thus, if m+m′ > r we have (m+m′)q = (m+m′−r)q +p+ ε
and therefore, c + c′ equals

(v + v′)MP + (m + m′ mod r)[0|qIn]∆P + s′′∆P mod p

with s′′ ∈ ZN
3l0

. If ` additions of ciphertexts are done, s′′ will be
in ZN

(2`+1)×l0
. As q = 2 × l0 × (2` + 1), the soft noise can be

filtered out and the ciphertext decrypted. �

III. SECURITY

The security of our scheme can be separated in three parts.
A first part is the structural security which permits to break
completely the system by finding the private key, a second part is
message security (or one-wayness) and the third part is semantic
security.

1If the ciphertext results from the addition of two ciphertexts, the
coordinates of s may be larger.

A. Structural security

The structural security of our scheme can be related to the
Hidden Lattice Problem, this problem is introduced in [4], the
security of this problem is also studied in [4]. By lack of space
we do not recall this problem extensively here and refer to the
previous references, where it is shown that this problem can be
related to NP-complete coding problems like [6] and that the best
known attack against this problem is exponential in N , typically`2N

N

´
. Moreover it is also shown that lattice based attacks are very

unlikely to be usable to solve this problem.

B. One-wayness against Chosen Plaintext Attack

Besides the structural security of our scheme which is studied
in other papers, we now focus on specific security aspects of our
scheme. We begin with a definition of a general problem, CKVP,
to which the one-wayness of our scheme is related.

Definition 3 (Computational Knapsack Vector Problem): Let
pv be a large prime number. Let e and r be two integers
with e < r < pv . Consider a set of rv different matrices,
M0, M1, . . . , Mrv , of size kv × nv . Let c be an element of the
subset(

mM0 +

rvX
i=1

riMi, m ∈ Zkv
r , ri ∈ Zkv

e , i ∈ {1, . . . , rv}
)

,

of GF (pv)nv . Determine m in this expression.

Clearly, this problem is a generalization of the well known
Knapsack problem: determine the expression of a given integer
as a linear combination with small coefficients of a given basis.
Breaking the one-wayness of our scheme can be reduced to an
instance of CKVP with pv = p, e = εmax, rv = n, kv = N ,
and nv = 2N . Therefore, the assumption associated to the one-
wayness of our scheme is that there exists no family of circuits with
polynomially bounded size in N and log p able to solve CKVP with
non-negligible advantage for the subset of instances associated to
our scheme. We define it as the Computational Knapsack Vector
Problem Assumption (CKVPA).

In opposition to the case of structural attacks, LLL is very
natural in the case of breaking one-wayness due to the similarity
of CKVP with the traditional Knapsack problem. Indeed, the
encryption of a message m = (m1, · · · , mN ) with a set of
random vectors ri = (ri1, · · · , riN ) for i ∈ {1, · · · , n} can be
seen as the linear action of the matrix M resulting from the
row concatenation of the matrices M0, M1, . . . , Mn over the large
vector x = (m1, · · · , mN , r11, · · · , r1N , · · · , rn1, · · · , rnN ). We
obtain:

c = xM,

and deduce straightforwardly that the vector x is included in one
of the vectors of the lattice of dimension (n+1)N and determinant
p2N generated by :

LHLP =

2666666666666666666666666664

1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1
0 · · · 0 0

M0
...

Mn

c
p 0 · · · · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · · · · 0 p

3777777777777777777777777775
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Hence if the norm of x is small it is possible to recover it (and
therefore the message m) by a lattice based attack.

Estimation of the attack cost: One major difficulty of LLL
based attacks is to estimate the cost of recovering a shortest
vector of a lattice. Indeed, for some parameters it is easy to prove
that the computational cost is polynomial, but the probability of
finding a shortest vector is very low. When the parameters are
adjusted to have a reasonable chance of finding a shortest vector,
evaluating the computational cost is hard, and heuristics seem
to show that this complexity is far worse than polynomial. The
NTRU cryptosystem has developed researches on this particular
area. One of the difficulties is that the cost of the attack depends
on ”how” short is a short vector. Recall that the norm of a vector
x = (x1, . . . , xn) is defined by:

‖x‖ =

vuut nX
1

x2
i

the Gaussian heuristic [7] stands that the minimum norm µ(L)
(the norm of the shortest vector) of a random lattice of dimension
dim(L) and determinant det(L) satisfies:

µ(L) ≈
r

dim(L)

2πe
det(L)1/ dim(L)

This result gives an a priori estimation of the expected minimum
norm of a lattice. Now, we consider the problem of finding by
LLL a shortest vector. Even if there is no theoretical result on
this, heuristics and researchers of this research field (see [8], [9])
seem to confirm that finding by LLL a shortest vector of a lattice
very close to the Gaussian heuristic has a complexity at least in
2d/6 (see [10] and [7] for a more precise heuristic) for d the
dimension of the lattice. On the other hand, if the norm of the
shortest vector is smaller than the Gaussian heuristic by a strong
factor, the computational cost can be drastically smaller.

For instance, experiments on the NTRU lattices, where one
searches for a shortest vector very close to the Gaussian heuristic,
show that it possible to find a shortest vector up to dimension
200−250 (which corresponds to the heuristic of ≈ 245 operations),
but that it is difficult beyond. In particular, NTRU recommends
to use lattices of dimension at least 500 for their system. These
orders of magnitude have also been observed on knapsack cryp-
tosystems [10]. In fact, the only lattice based system for which it
was possible to find shortest vectors for dimensions greater than
300 was the GGH system for which Nguyen could find shortest
vectors up to dimension 350 [11], but it corresponds to the case
where the shortest vector had a strong dividing factor compared
to the Gaussian heuristic.

The HLP lattice has a structure similar to the knapsack lattice
and the tests we realized have shown that computational complex-
ity for dimensions up to 200 with HLP lattices is similar to the
one of NTRU and knapsack lattices.

Even if the research on lattices and cryptology is recent (about
20 years) this area has been relatively stable and for instance
the challenges proposed by NTRU (www.ntru.com) have not been
broken. It is interesting to remark that a similar situation holds
for error-correcting codes, where finding the minimum weight of a
code is (as far as we know) polynomial, but depends exponentially
on the actual weight of the searched codeword. For a random
code there is an equivalent notion of the Gaussian heuristic: the
Gilbert-Varshamov bound, and searching for a codeword which has
a ratio to the expected Gilbert-Varshamov bound divides the time

for finding it by the same factor. Although the similarity may not
be exactly the same, it is not surprising that searching for a shortest
vector far below the Gaussian heuristic takes far less computation.

In term of security for our system, we have to choose our
parameters such that the vector x has norm at least of the same
order than the Gaussian heuristic and a public key such that
(n+1)×N is at least 500. For N = 50 this leads to a public key
with one HDM and nine SDMs.

C. Semantic security against Chosen Plaintext Attack
In this subsection, we analyze the indistinguishability of our

scheme. Due the homomorphic property of the cryptosystem, the
problem of determining if a ciphertext c is an encryption of m or an
encryption of m′ can be reduced to the problem of distinguishing
an encryption of (0, . . . , 0) from a random element of GF (p)2N

(by subtracting from c an encryption of m). Therefore, we define
a general problem, DKVP, to which the semantic security of our
scheme is related.

Definition 4 (Decision Knapsack Vector Problem): Let pv be a
large prime number. Let e an integer with e < pv . Consider a
set of rv different matrices, M1, . . . , Mrv , of size kv × nv . Let
c be an element of GF (pv)nv , determine if c can be expressed
as a linear combination, c =

Prv
i=1 riMi, where ri ∈ Zkv

e for all
i ∈ {1, . . . , rv}.

Breaking the semantic security of our scheme can be reduced
to an instance of DKVP with pv = p, e = εmax, rv = n,
kv = N , and nv = 2N . Therefore, the assumption associated to
the semantic security of our scheme is that there exists no family
of circuits with polynomially bounded size in N and log p able
to solve DKVP with non-negligible advantage for the subset of
instances associated to our scheme. We define it as the Decision
Knapsack Vector Problem Assumption (DKVPA). By lack of space
we omit the details of the proof.

D. Parameters
1) Parameters and security: Our system is based on 4 pa-

rameters: l, r, N and p. Our system is very versatile, the only
constraints are on its security and parameters have to be chosen
to satisfy a good security. There are two main type of attacks to
be protected from. The structural security and the chosen plaintext
attack. To resist the structural attack one must choose N ≥ 50, this
parameter assures that searching for the non disturbed columns is
of order

`2N
N

´
≥

`100
50

´
≈ 2100. In order to resist an attack on a

characterization of a set of N columns by finding non invertible
square N×N submatrix, one has to take p ≥ 260 since in that case
finding one such submatrix has a cost of 280 operations: 1/p ≈ 260

(the probability of finding a non invertible random matrix on
GF (p)) times 220 the cost of computing one determinant.

The second type of attack against which the system has to be
secured is the lattice based attack. The lattice LHLP (say L in the
following) has determinant p2N and its expected minimal norm
µ(L) is hence by the Gaussian heuristic:

µ(L) ≈
r

dim(L)

2πe
det(L)1/ dim(L) =

r
N(n + 3)

2πe
p

2
n+3 .

We saw that the search for short vectors very close to this expected
bound had a heuristic complexity in 2dim(L)/6 hence first we
must choose our parameters so that dim(L) = (n + 3)N ≥
500 and second the norm of the target vector has to be very
close to the expected value of µ(L). The target vector is x =
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(m1, · · · , mN , r11, · · · , rnN , 0, · · · , 0) of length (n + 3)N . One
can suppose that the mi can be zero, hence since εmax

2
≤ mi ≤

εmax, one deduces: ‖x‖ ≥
q

n( εmax
2

)2 =
√

n εmax
2

.
Hence we should choose εmax such that:r

N(n + 3)

πe
p

2
n+3 ≈

√
nN

εmax

2

Eventually we obtain εmax
2

≥
q

2(n+3)
nπe

≈ 0.5
q

n+3
n

p2/(n+3).
Notice that at the difference from NTRU when having a norm

too high may induce decryption failures, we do not have this
problem here, since we are still able to decrypt by the conditions
on .

2) Examples of parameters: We focus on three types of
applications. Application in which one wants to preserve a vector
space structure (over GF (2) for instance), a second application
in which one wants to add on a given coordinate 0 or 1 (a
voting system) and eventually an application in which one wants
to optimize the transmission rate and when one do not want to use
homomorphic properties. In the following we choose parameters
which satisfy the conditions of the system. To have a good lattice
security we choose n = 9 for the three following examples, which
gives a lattice of dimension 600 for the lattice based attack.

• Example 1: Preservation of a binary vector space structure, a
(2, 238, 50)-homomorphic scheme.

Considering GF (2) gives r = 2. Suppose one wants to be able
to do 238 addition of encrypted messages over GF (2)N . One can
take p ≈ 260, from which one deduces εmax = 1024. One then
obtains: l0 = 9.50.1024 + 50.2 ≈ 219, q = 221.238(forl = 238)
and eventually p ≈ 260.

• Example 2: Voting scheme, a (230, 230, 50)-homomorphic
scheme.

Suppose one adds only 0 or 1, for 230 voters. Each coordinate
corresponds to a special candidate for the vote (here N = 50).
We can take εmax = 214, l0 = 9.50.214 + 50.1 (in this special
case one adds only 0 or 1 rather than r), q = 221.230 = 251 and
eventually p ≈ 281.

• Example 3: Optimization of the transmission rate, a
(230, 1, 50)-homomorphic scheme.

Suppose one wants to optimize the transmission rate then one
do not use the homomorphic properties of the scheme (l = 1),
and proceed as usually by encrypting blocks of messages. In this
case we want the ratio r

p
to be the highest possible. Suppose we

take a large ring with r = 230 one can then take p = 280 and
εmax = 214. In that case the transmission rate is 1

2
Log2(r)
Log2(p)

= 3
16

.

3) Performances and security: Our system is very fast, in
particular adding two encrypted messages is the cost of an addition
in 2N ∗Log2(p) bits which gives respectively 6000,8000 and 8000
bits addition.

The size of the public is 2N2(n + 1)Log2(p) which gives
respectively 3Mb, 4Mb and 4Mb.

The encryption speed is the cost of (n+1)N additions of vectors
of lengths 2N and Log2(p) bits which gives respectively plus the
cost of multiplying by the random vectors with Log2(εmax) bits,
hence respectively 225, 226 and 226 bits operations. (Notice that
these times may be divided by an order 10 if one chooses the
random values r closed to a power of 2).

The decryption speed is the cost of a multiplication of two N×
N matrices with elements in GF (p): 2N2.Log(2, p)2 respectively
224, 225 and 226 operations.

The security of three examples, is respectively at least 280, 2100

and 2100.

IV. CONCLUSION

In this paper we presented a new lattice based homomorphic
scheme faster than previously known schemes based on number
theory, which moreover has the specificity to preserve vectorial
structure. A natural question for which a complete treatment is
beyond the scope of this short article is whether it is possible to
find this homomorphic property in other lattice based schemes. The
fastest lattice based cryptosystem is the NTRU cryptosystem, for
this system it appears possible to have the additive homomorphic
property but the number of possible homomorphic operations
should be small compared to the system we introduced, since there
is the risk of constructing spurious keys and since one wants to
resist LLL based attack for both a message and the sum of several
encrypted messages. Another scheme is the Regev scheme and
its generalization [12], in that case it is also possible to obtain
the same type of homomorphic properties but the large expansion
factor makes it difficult to use in practice.
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