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Abstract. In this paper, we build, in a generic way, two asymmetric
cryptosystems with a careful study of their security. We present first an
additively homomorphic scheme which generalizes, among others, the
Paillier cryptosystem, and then, another scheme, built from a deter-
ministic trapdoor function. Both schemes are proved semantically se-
cure against chosen plaintext attacks in the standard security model and
modify versions can be proved secure against adaptive chosen ciphertext
attacks.

By implementing these constructions with quotients of Z, elliptic curves
and quadratic fields quotients we get some cryptosystems yet described
in the past few years and provide variants that achieve higher levels of
security than the original schemes. In particular, using quadratic fields
quotients, we show that it is possible to build a new scheme secure against
adaptive chosen ciphertext attacks in the standard security model.
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1 Introduction

In 1984, Goldwasser and Micali have designed the first probabilistic cryptosystem
and defined the adequate notion of security for this type of scheme: the notion
of semantic security. After this system, based on quadratic residuosity, many
probabilistic schemes built from the same principle have been proposed: chrono-
logically by Benaloh ([Ben88]), Naccache and Stern ([NS98]), Okamoto and
Uchiyama ([OU98]) and at last, the most achieved system have been proposed
by Paillier ([Pai99]) and then generalized by Damg̊ard and Jurik (cf. [DJ01]),
allowing to encrypt larger messages. All these schemes use quotients of Z, their
one-wayness is based on factoring and their semantic security is based on the
hardness of distinguishing some powers. Moreover, these schemes are additively
homomorphic, i. e., if we got a multiplicative group structure on the ciphertexts
set and an additive one on the plaintexts set, then, if ci is a valid encryption of
mi, with i ∈ {1, 2}, c1c2 is a valid ciphertext of m1+m2. This property has many
applications, for example the systems of Paillier and Damg̊ard and Jurik can be



used to design electronic vote systems (cf. [BFP+01,Jur03]), for Private Informa-
tion Retrieval (cf. [Lip05]), or for building Mix-nets (cf. [NSNK06,Jur03]). At the
present time, the Paillier and Damg̊ard-Jurik cryptosystems are almost the only
schemes that are additively homomorphic and practical. The system of Paillier
has also been adapted in elliptic curves over Z/n2Z by Galbraith in [Gal02].
Another finite group, simpler than elliptic curves over finite ring can be used to
adapt this system: the group of norm 1 quadratic integers modulo n, where n is
an RSA integer (this adaptation was only briefly sketched in [Cas07]).

A fast and non-homomorphic variant of the Paillier scheme has been pro-
posed by Catalano, Gennaro et al. in [CGH+01], and later adapted in elliptic
curves by Galindo, Mart́ın et al. (cf. [GMMV03]) and again in quadratic fields
quotients in [Cas07]. These schemes can also be seen like probabilistic variants
of deterministic trapdoor functions: respectively RSA, KMOV (cf. [KMOV92])
and LUC (cf. [SL93]).

In this paper, we propose two generic constructions that capture the ideas
of all these schemes. In section 2, we show how to build a generic homomorphic
encryption trapdoor whose semantic security is based on the hardness of the
problem of distinguishing kth powers of a group, for a well-chosen integer k.
Note that this construction is essentially known as it is a direct generalization of
the Paillier scheme. We include it here for completeness as a formal exposition is
not known by the author. Then, in section 3, we modify the previous construction
in order to get more efficient schemes. This will result in a method to build a
probabilistic trapdoor function from a deterministic trapdoor function which
satisfies some properties.

For each construction, we do a careful study of both one-wayness and se-
mantic security. For the first one, we begin with a scheme secure against chosen-
plaintext attacks (the homomorphic schemes can not be secure against chosen-
ciphertext attacks because of their obvious malleability) and then we show that
we can modify this construction to use universal hash proof systems (cf. [CS02])
in order to build an IND-CCA2 scheme in the standard model. The second con-
struction can be viewed as a simple way to transform a deterministic trapdoor
function into an encryption primitive IND-CPA secure in the standard model
against a decision problem relative to the properties of the deterministic trap-
door function used. We also present a variant IND-CCA2 secure in the random
oracle model by using standard techniques.

In section 4, we apply these generic constructions in quotients of Z, elliptic
curves and quadratic fields quotients. By doing this, we will see that a large
number of probabilistic schemes proposed these last years can be considered as
applications of the generic constructions. This study also leads to an historical
treatment of probabilistic encryption based on factoring. With quadratic fields
quotients, the application of the generic construction of section 2 leads to a
concise but detailed description of the practical homomorphic cryptosystem only
briefly sketched at the end of [Cas07]. Moreover, we will show that this scheme
can be transformed to build an IND-CCA2 secure cryptosystem in the standard
model.
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Notations: In all the paper, G will denote a finite multiplicative abelian group,
k a nonnegative integer and g an element of G of order k. We will denote |G|
the order of the group G. Let Gk be the subgroup of kth power of G. We will
suppose that k

∣

∣ |G| and denote λ := |G| /k. Moreover, we will suppose that λ
and k are coprime. Given a group element h, 〈h〉 will denote the group generated
by h.

Given an integer i, |i|2 will denote the size of i in bits, i. e., |i|2 := ⌊log2 k⌋+1.
We will denote by n an RSA integer, i. e., n will be the product of two distinct

odd primes p and q, large enough, such that the factorization of n is infeasible
in reasonable time (i. e., |n|2 ≥ 1024).

For two algorithmic problems A and B, we will denote A
P⇐= B whenever

A is polynomial-time reducible to B, and A
P⇐⇒ B whenever the two problems

are polynomial-time equivalent.

2 Additively Homomorphic Trapdoor Function

Let us first state a straightforward result of group theory.

Theorem 1. Let G be a finite multiplicative abelian group, k a nonnegative
integer such that k divides |G| and that k and λ := |G| /k are coprime, then

1. the order of Gk is λ;
2. the order of the quotient group G/Gk is k;
3. Gk =

{

x ∈ G, xλ = 1
}

;
4. If g is an element of G of order k then G/Gk is cyclic and G/Gk = 〈π(g)〉

where π denotes the canonic surjection π : G→ G/Gk.

Proof (sketch). We use the decomposition of G in a direct sum of cyclic groups,
and the fact that in a cyclic group of order n, the equation xk = 1 has zero or
gcd(n, k) roots. As a consequence, there are k kth roots of unity in G and the
kernel of the map x 7→ xk has order k. This proves 1. and 2.; to prove 3. and 4.,
one uses the fact that λ and k are coprime. ⊓⊔

From this theorem, one can also deduce that Gλ has order k and that Gλ is
actually the subgroup of kth roots of unity of G. Note that g will be a generator
of Gλ, i. e., Gλ = 〈g〉. One can see that there is an isomorphism:

Gλ × Gk ∼−→ G.

The evaluation of this isomorphism if easy: one simply multiply the two elements.
The decomposition of an element of G in a product of a kth root of unity by a kth

power is less obvious, unless one knows the values of λ and k. As these integers

are coprime, there exists µ and ν such that µλ + νk = 1 and c =
(

cµ
)λ(

cν
)k

.
In the following, we are going to use this isomorphism to build the trapdoor
function. Before that, we define a decision problem.
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Definition 1. We will call the decision residuosity problem of degree k in G,
and will denote ResG,k,g, the following problem: Given c an element of G and g
an element of order k1, decide whether c ∈ Gk or not.

We want to build an homomorphic encryption whose semantic security is
based on the difficulty of the decision residuosity problem of degree k in G. This
construction will generalize, among others, the system of Paillier (cf. [Pai99])

where G =
(

Z/n2Z
)×

with n an RSA integer and k = n.

Public Key The group G, the integer k and the element g will be public.
Plaintext messages will be the elements of Z/kZ. We will suppose known an
efficient algorithm to generate random elements of Gk, and an efficient algorithm
to compute the discrete logarithm to base g in 〈g〉.

Encryption Primitive

EG,k,g :

{

Z/kZ −→ G
m 7−→ gmρ

where ρ is a random element of Gk.
According to Theorem 1, 4., if π denotes the canonic surjection π : G →

G/Gk, π(g) is a generator of the quotient group G/Gk. So if c ∈ G is an encryp-
tion of m ∈ Z/kZ, we will have

m = log π(g)

(

π(c)
)

.

As a consequence, the decryption function associated to EG,k,g will be a surjective
morphism from (G,×) to (Z/kZ, +), and a cryptosystem based on the EG,k,g

primitive will be additively homomorphic. As the scheme is homomorphic, it
also enjoys the “self-blinding” property: given c an encryption of m, one can
produce another valid ciphertext c′ of m by computing c′ := cρ′, where ρ′ is a
random element of Gk.

Private Key and Decryption Algorithm The integer λ is a trapdoor for the
EG,k,g function. Let c ← EG,k,g(m). There exists an element ρ ∈ Gk such that
c = gmρ. According to Theorem 1, 3., cλ = gmλ. Thanks to the public algorithm
for the discrete logarithm problem in 〈g〉, we can recover mλ in the ring Z/kZ,
and them m, as λ and k are coprime.

One-Wayness Let us define a new computational problem.

1 This condition is technical, in order to prove the equivalence in Theorem 3. We will
see that in practice, (cf. section 4), given G and k, it will be easy to find an element
of order k in G.
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Definition 2. Given c an element of G we will call the residuosity class of
degree k of c the element m of Z/kZ such that m = log π(g)

(

π(c)
)

. We will
denote ClassG,k,g, the problem of computing the residuosity class of degree k of
elements of G.

A scheme built from the EG,k,g function will be one-way if and only if the
ClassG,k,g problem is hard. It is easy to see that this problem is random self-
reducible (so all the instances of the problem have the same complexity) and does
not depend of the choice of the element g of order k, thanks to the properties of
the discrete logarithm.

In the decryption algorithm, we have seen that one can decrypt an encryption
c = gmρ of m thanks to the knowledge of λ. It is also possible to decrypt c by
computing the element x of G such that xk ≡ c (mod Gλ). Note that x is indeed
unique modulo Gλ = 〈g〉, the subgroup of kth roots of unity. As

m = logπ(g)

(

π(c)
)

= logπ(g)

(

π(c/xk)
)

,

and as c/xk is an element of Gλ = 〈g〉, one can recover m by computing the
discrete logarithm of c/xk to base g in 〈g〉. As a consequence of the existence
of this decryption process, we define another computational problem in order to
analyse the ClassG,k,g problem.

Definition 3. We will denote C–RSAG,k, the following problem: Given c an
element of G, find x such that xk ≡ c (mod Gλ).

Remark 1. If one knows how to manipulate the elements of G/Gλ and to lift
them in G, the C–RSAG,k problem is equivalent to the problem of the local
inversion of the automorphism x 7→ xk of G/Gλ, which is a generalization of the
RSA function (G/Gλ has order λ which is prime to the exponent k).

If one knows λ, i. e., the order of G, one can solve the C–RSAG,k problem:
given c ∈ G, the element

x := ck−1 mod λ

verifies xk ≡ c (mod Gλ). As a consequence, we can state the following theorem
which generalizes Theorem 1 and 2 of [Pai99].

Theorem 2. Let G be a finite multiplicative abelian group, k a nonnegative
integer such that k divides |G| and that k and |G| /k are coprime, and let g be
an element of G of order k. We have the following reductions:

ClassG,k,g
P⇐=

(

C–RSAG,k ∧ Dlog 〈g〉

)

P⇐=
(

OrderG ∧ Dlog 〈g〉

)

.

where Dlog 〈g〉 denotes the discrete logarithm problem in 〈g〉 and OrderG the
problem of computing |G|.

Remark 2. The problem Dlog 〈g〉 appears in the previous theorem for complete-
ness, but in practice, as we said earlier, we will hope that this problem is easy
in order to be able to decrypt efficiently.
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Semantic Security

Theorem 3. Let G be a finite multiplicative abelian group, k a nonnegative
integer such that k divides |G| and that k and |G| /k are coprime, and let g be
an element of G of order k. An encryption scheme built from the EG,k,g primitive
is semantically secure against Chosen-Plaintext Attacks if and only there exists
no polynomial algorithm to solve the decision residuosity problem of degree k in
G.

Proof. To prove that a scheme is semantically secure, one can use the “real or
random property”: i. e., prove that no polynomial time algorithm can distinguish
an encryption of a chosen message, m, from an encryption of a random message.
In our construction, an encryption of a random message is a random element of
G. So we have to distinguish a random element of G from an encryption of m.
As the scheme is homomorphic, this is equivalent to distinguish encryption of 0
in G, that is an element of Gk, in G. ⊓⊔

Generation of random elements of Gk To generate random elements of Gk,
one can just take at random elements of G and raise them to the power of k.
If one can work in the quotient group G/Gλ and lift the elements of this group
in G, one can also use the isomorphism G/Gλ → Gk, x 7→ xk. The encryption
function becomes:

E ′G,k,g :

{

Z/kZ × G/Gλ ∼−→ G
(m , ρ) 7−→ gmρk

It is trivial to see that E ′G,k,g is a group isomorphism.

Remark 3. If one can not generate random elements of G or random elements
of G/Gλ, a solution to generate elements of Gk is to publish an element ρ of
Gk of high order and to generate others kth powers by raising ρ to a random
power. Note that in this case, the semantic security of the scheme relies on a
slightly different problem: the decision problem of distinguishing the elements of
〈ρ〉 in G.

IND-CCA2 variant in the standard model The system of Paillier, generalized
by the previous construction, has been used in [CS02] to build an IND-CCA2

cryptosystem in the standard security model by an application of a general
framework built from a subset membership problem and some projective hash
families. Our construction with the decision residuosity problem can be easily
adapted to fit the framework of [CS02] with only one extra hypothesis. We refer
the reader to [CS02] for definitions.

Suppose that the group G is cyclic. Denote H = Hom(G, G). Then, from the
example 7.4.2 in [CS02], one can prove that the group system G := (H, G, Gk, G)
is diverse and that the projective hash family derived from G is 1/p̃-universal
where p̃ is the smallest prime dividing λ (Theorem 2 of [CS02]). With this, we get
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an 1/p̃-universal hash proof system (UHPFS). Following the general construction
of [CS02], from this UHPFS, one can build a scheme that is IND-CCA2 secure
in the standard model, providing that p̃ is sufficiently large, and assuming the
hardness of the decision residuosity problem.

3 Non-homomorphic Trapdoor Function

In this section, we change the previous construction in order to reduce the en-
cryption and decryption costs. The idea is to replace the most costly step of the
encryption process: the evaluation of the function x 7→ xk. This exponentiation
will be replaced by a function f , cheaper to evaluate. This idea corresponds to
the scheme of [CGH+01], which uses a function built from the RSA function.
By doing this, we will loose the homomorphic property.

We have to build the function f in order to still have an efficient way to
decrypt. In the previous section, we saw that if was possible to decrypt by
inverting the automorphism x 7→ xk of G/ 〈g〉. We are going to replace this
automorphism by a known determinist trapdoor function f , permutation of a
subset of G/ 〈g〉. The function f will be built from f . As a consequence, the
construction of this section will enable oneself to build a probabilistic trapdoor
function from a determinist one.

Construction of f We suppose that we know a trapdoor permutation f of
a subset Λ of G/ 〈g〉. In this section, π will denote the canonical surjection
G → G/ 〈g〉. We suppose that π is computable at low cost for anyone who
knows G and g.

We define Ω := π−1(Λ) and Λ, a subset of Ω such that Λ be a representative
set of Λ, i. e., π(Λ) = π(Ω) = Λ and π is a bijection from Λ to Λ. We suppose
that it is easy to find the unique representative of a class of Λ in Λ. Let f be a
function from Λ to Ω such that the following diagram commutes:

Λ
f

≀
�

Ω G

π

Λ ∼

f

Λ G/ 〈g〉

Public Key The group G, the integer k and the element g will be public.
Plaintext messages will be the elements of Z/kZ. We will suppose known an
efficient algorithm that returns random elements of Λ, an efficient algorithm
to evaluate the function f , and an efficient algorithm to compute the discrete
logarithm to base g in 〈g〉.
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Encryption Primitive

EG,f,g :

{

Z/kZ × Λ −→ Ω
(m , ρ) 7−→ gmf(ρ)

It is easy to see that EG,f,g is well defined as 〈g〉 f(Λ) = Ω and bijective:
suppose that gm1f(ρ1) = gm2f(ρ2) then π

(

f(ρ1)
)

= π
(

f(ρ2)
)

. As π ◦ f = f ◦ π,
π ◦ f is bijective so ρ1 = ρ2. As a consequence, m1 = m2 in Z/kZ.

Private Key and Decryption Algorithm The private key is the trapdoor
that allows to invert f . Let c ∈ Ω be a ciphertext. To decrypt c, we have to
recover m ∈ Z/kZ such that there exists ρ ∈ Λ such that c = gmf(ρ). We have
π(c) = π ◦ f(ρ) = f ◦ π(ρ). With the private key we recover π(ρ) and then its
representative ρ ∈ Λ. Then, by computing c/f(ρ) we get gm and then m thanks
to the algorithm for the discrete logarithm problem in 〈g〉.

One-Wayness Let us give the definition of the problem on which relies the
one-wayness of a scheme built from the EG,f,g primitive.

Definition 4. We will denote ClassG,f,g the following problem: given c an ele-
ment of Ω, find m ∈ Z/kZ such that there exists ρ in Λ such that c = gmf(ρ).

Now we define two others problems and we give a theorem that links the
three problems.

Definition 5. We will denote HenselG,g−f the following problem: given c an
element of Λ = π(Ω), find the element c of Ω such that c = f(ρ) where ρ is the
element of Λ such that c = π(f(ρ)). We will denote Inv−f the problem of local
inversion of the trapdoor f , i. e., given c an element of Λ, find ρ in Λ such that
c = f (ρ).

Theorem 4. Let G be a finite multiplicative abelian group, k a nonnegative
integer, g an element of G of order k, Λ a subset of G/ 〈g〉, Λ a representative
set of Λ in G and f a trapdoor permutation of Λ. We denote π the canonic
surjection from G to G/ 〈g〉 and f a function from Λ to Ω := π−1(Λ) such that
π ◦ f = f ◦ π. We have the following relations:

ClassG,f,g
P⇐⇒

(

HenselG,g−f ∧ Dlog 〈g〉

)

P⇐=
(

Inv−f ∧ Dlog 〈g〉

)

where Dlog 〈g〉 denotes the discrete logarithm problem in 〈g〉.

Proof. We prove the left equivalence, the reduction on the right will follow from
the decryption algorithm. Suppose that we have two oracles that solve respec-
tively the HenselG,g−f and Dlog 〈g〉 problems. Let c be an element of Ω. We
want to recover m ∈ Z/kZ in the decomposition c = gmf(ρ) with ρ ∈ Λ. We
have π(c) = π

(

f(ρ)
)

. We give π(c) to the oracle for the HenselG,g−f problem.

8



We get the element c′ of Ω such that c′ = f(ρ). Given c/c′, the oracle for the
Dlog 〈g〉 problem returns m.

For the opposite way, we have an oracle that solve the ClassG,f,g problem.
If g′ is an element of 〈g〉, we take a random element ρ in Λ. By giving g′f(ρ)
to the oracle, we get m, the discrete logarithm of g′ to base g. Suppose now
that we have an element c, of Λ, for which we want to solve the HenselG,g−f
problem. We take m′ at random in Z/kZ. We denote c the element of Λ such
that π(c) = c. We give gm′

c ∈ Ω to the oracle (note that it is a random query
for the oracle). We then get from the oracle the element m of Z/kZ such that
gm′

c = gmf(ρ) with ρ element of Λ. As π(gm′

c) = c = π
(

f(ρ)
)

, the element

gm′−mc is a correct answer to the HenselG,g−f problem. ⊓⊔

Remark 4. This theorem establishes that the security of a system built from the
EG,f,g primitive relies on the security of the trapdoor f . For the Catalano et al.
scheme, (cf. [CGH+01] and section 4), an instance of this construction in which
f is the classic RSA function, the result of [CNS02] states that the equivalence
actually holds. Unfortunately, the proof of this result uses intrinsic properties of
the RSA function and can not be exploited for the generalized case.

Semantic Security

Definition 6. Let us denote ResG,f,g, the problem of distinguishing the ele-
ments of f(Λ) in Ω.

Theorem 5. An encryption scheme built from the EG,f,g primitive is semanti-
cally secure against Chosen-Plaintext Attacks if and only there exists no polyno-
mial algorithm that solve the decision ResG,f,g problem.

Proof. A scheme built from the construction of the previous section, and a
scheme built from EG,f,g shares a similar property:

(c← EG,f,g(m)) ⇐⇒
(

c

gm
∈ f(Λ)

)

.

As a consequence, the proof of Theorem 3 can be easily adapted. ⊓⊔

IND-CCA2 variant in the ROM Using standard techniques, one can modify the
EG,f,g primitive to make it resistant against adaptive chosen-ciphertext attacks
in the random oracle model. One can simply add h(m, ρ) to the ciphertext,
where h is an hash function viewed like a random oracle. One can also use the
Fujisaki-Okamoto conversion (cf. [FO99]) in order to reduce the ciphertexts size.

4 Applications

We will use the constructions of sections 2 and 3 in algebraic groups over
(Z/nsZ)× where s is a nonnegative integer. RSA integers will allow to use the
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group order as a trapdoor. This would lead to an historical of probabilistic cryp-
tography based on factoring.

The idea of working modulo ns with s > 1 is due to Paillier (cf. [Pai99])
and Damg̊ard and Jurik (cf. [DJ01]) for the case s > 2. As we shall see in the
following, this enables oneself to meet the hypothesis of the generic construction:
the subgroup of nth roots of unity of the group considered will be the kernel of the
reduction modulo n, and its elements will be easy to describe. As a consequence,
we will exhibit an element g of order n such that the discrete logarithm problem
in 〈g〉 is easy.

4.1 Schemes in Quotients of Z

The first probabilistic cryptosystem, proposed by Goldwasser and Micali in
1984 (cf. [GM84]) is very similar to the generic construction explained in section
2. Its semantic security is based on a well-known problem, the quadratic resid-
uosity problem (i. e., k = 2), but its expansion is awful as one bit is encrypted
with |n|2 bits.

G = (Z/nZ)
×
, k prime, k | ϕ(n), Benaloh (88) The cryptosystem of

Goldwasser-Micali has been generalized by Benaloh in [Ben88]. The group G is
now (Z/nZ)×, the integer k is an odd prime such that k divides ϕ(n) and k does
not divide λ := ϕ(n)/k. Let g be an element of order k, to encrypt an element
m ∈ Z/kZ, one uses the encryption primitive EG,k,g defined in section 2: an

encryption of m is gmrk where r is a random element of (Z/nZ)
×

. The drawback
of this system is that k has to be small because there is no particular algorithm
for computing discrete logarithms in 〈g〉. As a consequence, the expansion of the
system, |n|2 / |k|2 remains high.

G = (Z/nZ)
×
, k smooth, k | ϕ(n), Naccache-Stern (98) Naccache and

Stern have improved in [NS98] the previous system. They still use G = (Z/nZ)
×

but k is chosen smooth. This leads to a more efficient algorithm for computing
discrete logarithms in 〈g〉 by using the Pohlig-Hellman algorithm. Naccache and
Stern state that the expansion can be reduced to 4.

Okamoto and Uchiyama have proposed in [OU98] to work modulo n = p2q.
The following system is an improvement of their proposal.

G =
(

Z/n2Z
)×

, k = n, Paillier (99) The system of Paillier (cf. [Pai99]) cor-

responds to an application of the EG,k,g encryption function with G =
(

Z/n2Z
)×

,
and k = n. If we suppose that gcd(n, ϕ(n)) = 1, as |G| = nϕ(n), k divides |G|
and k is prime to λ := |G| /k = ϕ(n). One can see that the subgroup Gλ of G, the
subgroup of nth roots of unity, is the kernel of the surjective homomorphism:
(

Z/n2Z
)× → (Z/nZ)×. As a consequence, this subgroup is a cyclic group of
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order n, generated by g :≡ 1 + n (mod n2). Moreover, the discrete logarithm
problem in 〈g〉 is trivial as for all i ∈ Z/nZ, gi ≡ 1 + in (mod n2). To encrypt,
one can use the isomorphism E ′G,k,g defined in section 2. The encryption function
is thus the isomorphism:

{

Z/nZ × (Z/nZ)×
∼−→

(

Z/n2Z
)×

(m , r) 7−→ gmrn

where m is the plaintext and r a random element. The trapdoor is ϕ(n), i. e.,
the factorization of n, and the decryption algorithm is the application of the
generic algorithm described in section 2. The expansion of this system is 2.

An IND-CCA2 variant of this scheme has been designed by Cramer and Shoup
in [CS02]. As previously said, this variant can also be obtained from the con-
struction of section 2, if the group G is cyclic. One can have a cyclic group by
choosing Sophie Germain primes for p and q: with this choice there exists a cyclic

group of order nϕ(n)/2 in
(

Z/n2Z
)×

, isomorphic to Z/nZ × (Z/nZ)+, where

(Z/nZ)
+

is the subgroup of elements of
(

Z/n2Z
)×

that have a positive Jacobi
symbol (see [CS02] subsection 8.2 for details).

Damg̊ard and Jurik have proposed in [DJ01] a generalization of the Paillier

cryptosystem. They work in the group G =
(

Z/ns+1Z
)×

with s > 1 and k =
ns. One obtains a system that allows oneself to encrypt messages of arbitrary
length (by increasing s). This can have many applications (cf. [DJ01,Jur03]).
The expansion of this scheme is 1 + 1/s.

G =
(

Z/n2Z
)×

, f = RSA, Catalano et al. (01) In [CGH+01], Catalano,
Gennaro et al. have proposed a probabilistic encryption scheme presented like a
fast variant of the Paillier cryptosystem. With the help of the generic construc-
tion of section 3, one can also see this scheme as a probabilistic version of the

RSA cryptosystem. Let G =
(

Z/n2Z
)×

, and g ≡ 1 + n (mod n2). The quotient

group G/ 〈g〉 is isomorphic to (Z/nZ)
×

. We denote respectively Ω and Λ, the
sets of elements of G and G/ 〈g〉, i. e.,

Ω :=
{

r ∈ N, 0 < r < n2, gcd(r, n) = 1
}

,

and
Λ := {r ∈ N, 0 < r < n, gcd(r, n) = 1} .

With the notation of section 3, one actually has Λ := Λ, and the set Λ is
a representative set of the classes of Ω modulo n. Let e be an integer prime to
ϕ(n), the RSA function, f : x 7→ (xe mod n) is a permutation of Λ. This function
is lifted from Λ to Ω by considering f : x 7→ (xe mod n2), so that π ◦ f = f ◦ π.
To encrypt, we use the EG,f,g primitive and we obtain the following encryption
function:

{

Z/nZ × Λ −→ Ω
(m , r) 7−→ gmre mod n2

11



where m is the plaintext and r a random element. The decryption is done has
described in section 3: one reduces the ciphertext modulo n and recover r by
inverting the RSA function, thanks to the knowledge of d, the inverse of e modulo
ϕ(n), the trapdoor of the function f .

Remark 5. The previous scheme can be generalized by taking G =
(

Z/ns+1Z
)×

with s > 1, in order to decrease the expansion. One has to redefine the set Ω
accordingly and to lift f in f : x 7→ xe mod ns+1.

One can apply the non-homomorphic construction of section 3, with all
the known trapdoor functions of Z/nZ, e. g., Demytko’s (cf. [Dem94]) or LUC
(cf. [SL93]). Note that with the LUC function, one gets a scheme already pro-
posed in [Cas07].

4.2 Schemes in Elliptic Curves over Z/ns+1Z

Both constructions can be applied in elliptic curves. This leads respectively to the
systems of Galbraith (cf. [Gal02]) and Galindo, Mart́ın et al. (cf. [GMMV03]).

G = E/(Z/ns+1Z), k = ns, Galbraith (02) In [Gal02], Galbraith has
adapted the Damg̊ard and Jurik scheme (and hence the Paillier scheme) in el-
liptic curves. This homomorphic scheme can also be viewed as an application of
the EG,k,g primitive of section 2. The group G is the group of points of an elliptic
curve over Z/ns+1Z, i. e., the set of elements (X : Y : Z) of P2(Z/ns+1Z) such
that

Y 2Z = X3 + aXZ2 + bZ3,

where a and b are two elements of Z/ns+1Z such that 4a3 + 27b2 is invertible.
We denote this group Ea,b/(Z/ns+1Z) (See [Gal02] for more details on elliptic
curves over rings).

One can prove that the order of this group is ns |Ea,b/(Z/nZ)|. By taking
k = ns, and supposing that ns is prime to λ := |Ea,b/(Z/nZ)|, one can apply the
generic construction. The tricky part of this adaptation is to find an element g of
G of order ns such that the discrete logarithm problem is easy in 〈g〉. Once again,
we look for g in the kernel of the reduction modulo n from Ea,b/(Z/ns+1Z) to
Ea,b/(Z/nZ). One can see that the element g := (n : 1 : n3 + an7 + bn9 + · · · )
is of order ns and that discrete logarithms are easy to compute in 〈g〉 (again
see [Gal02] for details on this element g, on the subgroup 〈g〉 and how to compute
the group law in this subgroup and in G).

To encrypt a message m of Z/nsZ, one use the EG,k,g primitive of section 2:

a ciphertext for m is a point of the form m.g + P where P is a random “nsth

power”. To produce a such P , as it is difficult to produce an element of the curve
without knowing the factorization of n, one can not take a random element of
G or of Ea,b/(Z/nZ) and take it to the “power” ns. Hence, we use the method

exposed in Remark 3: a nsth

power is part of the public key.

12



A drawback of this scheme is its cost as one has to do costly scalar mul-
tiplications in elliptic curve over a huge base ring (as the security is based on
factorization and not on the discrete logarithm problem, we can not reduce the
size of this ring).

G = E/(Z/n2Z), f = KMOV , Galindo et al. (03) In [GMMV03],
Galindo, Mart́ın et al. have proposed a non-homomorphic scheme based on the
KMOV trapdoor permutation (cf. [KMOV92]). This scheme is not a direct adap-
tation of the generic construction of section 3 as the KMOV function is not a
permutation of a subset of a group. Indeed, the KMOV function is a permutation
of the set

{

(x, y) ∈ Z/nZ× Z/nZ,
(

y2 − x3
)

∈ (Z/nZ)
×

}

,

and maps (x, y) to e.(x, y), where the scalar multiplication is performed on the
elliptic curve E0,y2−x3/(Z/nZ) where e is prime to (p + 1)(q + 1) and p and q
are chosen congruent to 2 modulo 3 (it is hard to take points on a fixed curve
without knowing p and q). So, one has to apply the generic construction with
a group G that depends on the plaintext message. One define ad hoc subsets Λ
and Ω of Z/n2Z and lift the KMOV function from Λ to Ω by computing e.(x, y)
in a curve modulo n2. See [GMMV03] for more details.

Again, one can generalize this scheme by working modulo ns with s > 2.

4.3 Additively Homomorphic Scheme in Quadratic Fields Quotients

In this subsection, we apply the generic construction of section 2 in another
finite group, not widely used in cryptography, the group of norm 1 elements of
a quadratic field modulo n. We will obtain the system only briefly sketched at
the end of [Cas07].

Definition 7. Let ∆ be a non-square integer, and a an odd integer prime to ∆.
We will denote (O∆/aO∆)

∧
the group of norm one elements of O∆/aO∆, where

O∆ denotes the ring of integers of Q(
√

∆). We will denote ϕ∆(a) the order of
the group (O∆/aO∆)

∧
.

We refer the reader to [Cas07] for the basic properties of this group. We only
recall that exponentiation can be efficiently computed in this group by using
the Lucas sequence, and that if n is prime to ∆, then for s > 1, the order of
(

O∆/ns+1O∆

)∧
is

ϕ∆(ns+1) = ns ϕ∆(n) = ns

(

p−
(

∆

p

)) (

q −
(

∆

q

))

,

where
(

∆
p

)

denotes the well-known Legendre symbol. Moreover, note that the

group (O∆/psO∆)∧ is cyclic (the same holds modulo qs).
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G =
(

O∆/n2O∆

)∧

, k = n, We apply the construction of section 2 with

G =
(

O∆/n2O∆

)∧
, where ∆ is a non-square integer prime to n. The order of

G is n ϕ∆(n), so we set k = n and λ = ϕ∆(n) and suppose that k and Λ are
coprime.

Element of order n: As previously seen, we look for an element of order n
in the kernel of the reduction modulo n from

(

O∆/n2O∆

)∧
to (O∆/nO∆)

∧
.

This reduction is surjective by the Hensel Lemma. The element g ≡ 1 + n
√

∆
(mod n2) is a generator of this kernel and g is indeed of order n as gr ≡ 1+nr

√
∆

(mod n2) for all integer r. As a consequence of this expression of gr, the discrete
logarithm problem in 〈g〉 is easy.

kth powers generation: To simplify, we suppose that ∆ is neither a square modulo
p nor modulo q. It is easy to see that the map α 7→ α/α from (O∆/nO∆)

×
to

(O∆/nO∆)
∧

is surjective and that its kernel is (Z/nZ)
×

. As a consequence, the
map

Ψ : r 7→ r +
√

∆

r −
√

∆
=

r2 + ∆

r2 −∆
+

2r

r2 −∆

√
∆,

from Z/nZ to (O∆/nO∆)∧ is well-defined, injective and is almost surjective (we
only miss 1 and elements that allow to factor n (elements different from 1 and
that are congruent to 1 modulo p or 1 modulo q). Moreover, the map β 7→ βn

from (O∆/nO∆)∧ to Gn is an isomorphism. As a consequence, the map

Z/nZ→ Gn : r 7→ Ψ(r)n,

is still injective and almost surjective.

Encryption function: The encryption function is

{

Z/nZ × (Z/nZ)
× −→ G

(m , r) 7−→ gmΨ(r)n

where m is the plaintext and r a random element, and the public key is (n, ∆)
where n = pq is an RSA integer, ∆ is a non-square integer, prime to n and ∆ is
neither a square modulo p nor modulo q.

Decryption algorithm: The trapdoor is λ = ϕ∆(n). The decryption algorithm
is the same as the generic one. Note that it can be sped up by using Chinese
remaindering (this is true for all the others schemes presented in this paper).

Security: The one-wayness of the scheme is based on the ClassG,k,g problem
and the reductions of Theorem 2 hold. The semantic security is based on the the
difficulty of distinguishing the elements of Gn in G (As the map r 7→ Ψ(r)n is in-
jective and almost surjective, almost all the element of Gn can be produced. The
ones that are not produced are either easy to distinguish or allow to factor n).
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Expansion: The cryptosystem expansion is 4, a priori, but can be reduced to
3. One defines a lifting L of the elements of (O∆/nO∆)

∧
in

(

O∆/n2O∆

)∧
.

Then, an element α of
(

O∆/n2O∆

)∧
is represented by the couple (k, α mod n) ∈

Z/nZ× (O∆/nO∆)
∧

with k such that α = (1 + n
√

∆)k L(α mod n). Note that
the computation of this representation (by using the Hensel Lemmma) only costs
a few multiplications and one inversion. This method can also be applied for the
system of Galbraith.

Comparison with others additively homomorphic systems: In the following table,
we compare this system with the Paillier and Galbraith schemes. The unity of
complexity is the cost of a multiplication modulo n. We use the following esti-
mations: a multiplication modulo n2 costs as much as 3 multiplications modulo
n (by using radix n representation), a multiplication modulo p2 costs as much as
a multiplication modulo n and three multiplications modulo p as much as a mul-
tiplication modulo n. An inversion modulo n costs as much as 10 multiplications
modulo n. We have used Chinese remaindering for all the schemes.

Cryptosystem Paillier Galbraith QF scheme

Group
(

Z/n2Z
)×

E/(Z/n2Z)
(

O∆/n2O∆

)∧

Encryption 9
2 |n|2 + 1 35 |n|2 + 3 9 |n|2 + 20

Decryption 3
2 |n|2 + 5

3 21 |n|2 + 5
3 3 |n|2 + 4

3

We see that the scheme in quadratic fields is much more faster than the
system that uses elliptic curves, thanks to efficient exponentiation using Lucas
sequences. This scheme complexity is not far from the Paillier cryptosystem (the
factor two is inherited from the respective costs of exponentiation in Z/n2Z and

in
(

O∆/n2O∆

)∧
). As a result, this scheme is still practical.

If all the schemes are based on factorization, from Theorem 2, we see that
the intermediate problems on which the one-wayness of the schemes are based
are not the same. For Paillier, it is the RSAn problem i. e., the inversion of the
map x 7→ xn in (Z/nZ)

×
. For the presented scheme, it is the adaptation of this

problem in (O∆/nO∆)
∧
, i. e., the inversion of the map α 7→ αn. We do not know

if one problem is easier than the other (as the only known way to solve them is to
factor n), but this scheme brings some diversity as the Paillier scheme is almost
the only practical additively homomorphic scheme known. Another advantage
of this scheme is that one has more choice for the public key than for the Paillier
scheme: one can choose freely the modulus n and the discriminant ∆.

Generalization: This scheme can also be generalized by working modulo ns+1

with s > 1 in order to encrypt messages of Z/nsZ. One has only to find an ele-
ment g of order ns and an efficient algorithm for the discrete logarithm problem.
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One can see that the following element:

g := n
√

∆ + 1 +
1

2
∆n2 − 1

23
∆2n4 +

1

24
∆3n6 − 5

27
∆4n8 + · · ·

obtained by successive applications of the Hensel Lemma is indeed of order
ns. Given gk, one can still compute the discrete logarithm k at low cost, by
computing recursively k mod n2, k mod n4, . . .

IND-CCA2 variant of this scheme: Similarly to the Paillier cryptosystem, one
can design a variant that is IND-CCA2 in the standard model. A cyclic group
is obtained in the same way, by using primes p and q such that (p − (∆/p))/2
and (q − (∆/q))/2 are both primes. Then, one obtains a subgroup of order
n ϕ∆(n)/2. Note that some optimisations used by Cramer and Shoup in [CS02]
to get compact ciphertexts for the adaptation of the Paillier scheme can also be

done here as
(

O∆/n2O∆

)∧
is very similar to

(

Z/n2Z
)×

.

5 Conclusion

We have proposed two generic constructions that generalize many probabilistic
cryptosystems already proposed. This process helps to capture the ideas behind
these schemes. In particular, we have seen that the efficient homomorphic cryp-
tosystem proposed in the group of norm 1 elements of a quadratic field is very
similar to the Paillier scheme and can serve to construct an IND-CCA2 secure
system in the standard model, which is a rare object. We hope that these generic
constructions will help to propose new probabilistic cryptosystems. One possible
domain of application could be class groups of quadratic orders such as those
used in the NICE cryptosystem (cf. [PT00]).
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