- A. Soient V et W deux \mathbb{R} -espaces vectoriels avec dim V = n, dim W = m, 0 < n < m, $\varphi : V \to W$ et $\psi : W \to V$ deux applications linéaires.
 - 1. Dire si φ peut être injective, surjective, bijective.
 - 2. Même question pour ψ .
 - 3. Dire quelles sont les compositions possibles parmi $\varphi \circ \varphi$, $\varphi \circ \psi$, $\psi \circ \varphi$, $\psi \circ \psi$.
 - 4. Supposons que $\psi \circ \varphi = 0$ (resp. $\varphi \circ \psi = 0$). Quelle relation y a-t-il entre $\ker \psi$ et im φ ? (resp. entre $\ker \varphi$ et im ψ).
 - 5. On considère $\varphi \circ \psi$: montrer qu'elle n'est pas un isomorphisme (on pourra montrer qu'elle n'est pas injective).
 - 6. Supposons que $\psi \circ \varphi$ soit un isomorphisme de V: montrer que
 - i) φ est injective;
 - ii) ψ est surjective;
 - iii) im $\varphi \cap \ker \psi = 0$.
 - 7. Montrer que le vice-versa est vrai aussi, c-à-d si φ est injective, ψ est surjective et im $\varphi \cap \ker \psi = 0$, alors la composition $\psi \circ \varphi$ est un isomorphisme de V:
 - i) montrer que $\psi \circ \varphi$ est injective (on pourra montrer que $\ker(\psi \circ \varphi) = 0$)
 - ii) soient v_1, \ldots, v_n une base de V: montrer que $(\psi \circ \varphi)(v_1), \ldots, (\psi \circ \varphi)(v_n)$ sont indépendants.
 - iii) en déduire que $\psi \circ \varphi$ est surjective et conclure.
- B. On pose maintenant $n=2, m=3, V=\mathbb{R}^2, W=\mathbb{R}^3$,

$$\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \qquad \psi: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \longmapsto \begin{pmatrix} x_1 - x_2 \\ x_1 \\ -2x_1 + x_2 \end{pmatrix} \qquad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longmapsto \begin{pmatrix} x_2 - x_3 \\ 2x_1 \end{pmatrix}$$

- 1. Écrire les matrices M de φ et N de ψ dans les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .
- 2. Calculer MN. Que représente MN par rapport à φ et ψ ?
- 3. Déterminer le rang de $\varphi \circ \psi$ et trouver une base de son novau.
- 4. Calculer NM. Que représente NM par rapport à φ et ψ ?
- 5. Montrer que $\psi \circ \varphi$ est un isomorphisme.
- 6. Trouver, si elles existent, deux bases W_1 , W_2 de \mathbb{R}^3 telles que

$$M_{\mathcal{W}_1,\mathcal{W}_2}(\varphi \circ \psi) = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}$$