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Abstract

We consider the Boyd-Kadomstev system modeling laser plasma interaction. This Bril-
louin interaction couples the propagation of two laser beams, the incoming and the backscat-
tered waves, with an ion acoustic wave which propagates at a much slower speed. The ratio
ε between the plasma sound velocity and the (group) velocity of light is small, with typical
value of order 10−3. In this paper, we make a rigorous analysis of the behavior of solutions
as ε → 0. This problem can be cast in the general framework of fast singular limits for hy-
perbolic systems. The main new point which is addressed in our analysis is that the singular
relaxation term present in the equation is a nonlinear first order system.

1 Introduction

We are concerned with the following non linear hyperbolic system

(1.1)


ε∂tu+ ∂xu = −wv
ε∂tv − ∂xv = wu
∂tw + ∂xw = uv

on a one-dimension spatial domain [0, L], with initial data

(1.2) u(0, x) = u0(x), v(0, x) = 0, w(0, x) = w0(x),

and boundary data

(1.3) u(t, 0) = uin(t), v(t, L) = 0, w(t, 0) = 0,

This system, called the the Boyd-Kadomtsev system, has been addressed to model the wave
interaction in plasmas, [8] and [3]. It was first introduced to describe weak plasma turbulence
and next used in the framework of laser-plasma interaction, in which case the three unknown u =
u(t, x), v = v(t, x) and w = w(t, x) correspond to the space-time envelope of the main laser wave,
the backscattered laser wave due to Brillouin instability and the ion acoustic wave respectively.
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The boundary value uin(t) corresponds to the incoming laser field. In this framework, the
observation time scale T is smaller than the characteristic time of variation of the incoming
laser energy |uin(t)|2. This would yield to consider that the incoming energy is almost constant
with respect to time t. However, in the present paper, we carry out the analysis assuming only
that uin ∈ L∞(0, T ) and ∂tuin ∈ L∞([0, T ]). On the other hand, the parameter ε corresponds to
the ratio between the plasma sound velocity and the (group) velocity of light. It assumed to be
very small with rexpect to 1, its typical value in applications is in the order of 10−3. The main
subject of this paper is to make a detailed analysis of the behavior of the solutions of (1.1) (1.2)
(1.3) as ε tends to 0.

Of course when dealing with realistic simulations one has to address three-dimension geom-
etry and to account for diffraction, refraction phenomena as well as macroscopic hydrodynamic
effects (see [2], [15], [17], for such models). We recall in appendix a glance of the derivation
of the models which are handled for such simulations (see also [19], [4], [5] for mathematical
justifications and [6], [7], [13] for systematic and rigorous derivation of geometric optics models).
For example in the HERA code (cf. [12]) or the PF3D code (cf. [2]), the modelling is based on
a system of the following type

(1.4)


ε∂tu+ ∂xu+ iα∆⊥u = −Γwv + iβ0(1− Γ)u
ε∂tv − ∂xv + iα∆⊥v = Γwu+ iβ0(1− Γ)v
∂tw + ∂xw + (η + iω)w = Γuv − w∂xlogΓ

where ∆⊥ is the Laplace operator in the direction transverse to x and where α, ω, η and β0

are real constants and Γ a smooth real function which close to 1 and related to the macroscopic
variation of the electron density. Moreover, in realistic models, the initial value of the ion acoustic
wave is a small random noise; here we assume that this initial value is a known quantity w0

which does not depend on the parameter ε. It may be a crude approximation, nevertheless it is
a first stage in order to understand the mathematical structure of the problem and to give ideas
for efficient numerical schemes for solving system (1.4).

Therefore, we mean the Boyd-Kadomtsev system is sufficient to exhibit most of the difficulties
of the three-wave coupling phenomena. For this system, notice first that if w0 = 0, we get a trivial
solution which is v = w = 0 and u solution of the simple advection equation ε∂tu + ∂xu = 0.
This trivial solution is of course unstable; this fact is related to the Brillouin instability.

Notice that the following balance relations are crucial for expressing the physical energy
conservation:

(1.5)


i) ε∂t(|u|2 + |v|2) + ∂x(|u|2 − |v|2) = 0,

ii) ∂t(|w|2 + ε|u|2) + ∂x(|w|2 + |u|2) = 0,
iii) ∂t(|w|2 − ε|v|2) + ∂x(|w|2 + |v|2) = 0,

Up to our knowledge, except for the work [16] on solitons (on the full space) there is no convincing
published mathematical work related to this system.

We first show that for a fixed value of ε (satisfying 0 < ε ≤ 1), this semi-linear hyperbolic
initial-boundary value problem is well-posed in L2 and in L∞ (see theorem 2.1).

By proving this result, one checks that the backscattered energy |v(t, 0)|2 is such that
ε|v(t, 0)|2 is bounded by a constant (depending on the final time T ). But from a physical
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point of view, it is natural that the backscattered energy cannot be larger than the incoming
one. In order to get such a bound, we are led to study the natural asymptotic problem obtained
by setting ε equal to zero, which corresponds to an infinite speed of light.

This limiting system reads as

(1.6) ∂xu∗ = −w∗v∗, −∂xv∗ = w∗u∗ ∂tw∗ + ∂xw∗ = u∗v∗

with boundary data

(1.7) u∗(t, 0) = uin(t), v∗(t, L) = 0, w∗(t, 0) = 0.

and an initial condition on w only

(1.8) w∗(0, x) = w0(x).

We will show (cf. Theorem 3.2) that this system is well-posed in L∞ and that the backscattered
energy |v∗(t, 0)|2 satisfies the natural bound

(1.9) |v∗(t, 0)|2 ≤ |uin(t)|2

The main objective of the paper is to prove the convergence of the solutions (uε, vε, wε) of the full
system (1.1)(1.2)(1.3) to the solutions of the limiting problem. This is a singular perturbation
problem, with quadratic coupling terms.

Notice that, in general, the solution of the limit problem, does not satisfy the initial condition
(u∗, v∗)|t=0 = (u0, 0) at t = 0; instead (u∗, v∗)|t=0 satisfy{

∂xu∗|t=0 = −w0v∗|t=0, −∂xv∗|t=0 = w0u∗|t=0

u∗|t=0(0) = uin|t=0, v∗|t=0(L) = 0.

This indicates that the solution with ε > 0 has a small initial layer in the variables (u, v) to
match the initial condition (1.3) to the functions (u∗|t=0, v∗|t=0). The main result we want to
prove is the following

Theorem 1.1 (cf.Theorem 4.1). Suppose that the initial data u0, w0 are in H1(0, L) and satisfy
the corner conditions (2.1). Then the solutions (uε, vε, wε) of (1.1) (1.2) (1.3) converges in
[L2([0, T ]× [0, L])]3 to (u∗, v∗, w∗) the solution of (1.6) (1.7) (1.8).

From a physical point of view this result means, that the backscattered laser intensity
|vε(t, x)|2 of the initial problem may be approximated (after a small initial layer) by the backscat-
tered laser intensity corresponding to an infinite speed of light which satisfies the natural bound
(1.9).

Another motivation for this study comes from numerical issues. Indeed, for three-dimension
parallel numerical codes dealing with laser-plasma interaction and based on system like (1.4),
the time discretization is performed up to now in an explicit way, using a classical upwind
difference scheme to solve the propagation equations for u and v. This leads to a sub-cycling
technique with a time step δt constrained by the criterium δt ≤ εδx; that is to say δt is very
small if compared to the characteristic time of the Brillouin instability growing and of course
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of the characteristic time of the macroscopic hydrodynamic evolution which is in the order of
thydro = δx. So it would be interesting to propose a time implicit method for the solution of
the equations for u and v, handling the time derivative ε∂tu and ε∂tv as perturbative terms
(as it is done for classical propagation equations without coupling terms ε∂tu + ∂xu + iα∆⊥u
=iβ(1− Γ)u, cf. [1] for example). Our analysis validates this approach and we refer to [20] for
a proposition of implementation of this idea.

The equation (1.1) can be recast in the form

(1.10) ∂tU + L0(U) +
1
ε
L1(U) = 0

with

U =

uv
w

 , L0(U) =

 0
0

∂xw − uv

 , L1(U) =

 ∂xu+ wv
−∂xv − wv

0

 .

Written in this form, the problem falls into the category of fast singular limits or relaxation
problems, see e.g. [9, 21, 14] and the references therein. Compared to the mentioned papers,
the main new difficulty is that the relaxation term L1(U) is a nonlinear differential system.
Using the conservations (1.5), one easily gets uniform bounds for the solutions (see the following
section). With them, one can extract subsequences which converge weakly. To prove that the
limit satisfy the expected limiting system (1.6), the difficulty is to pass to the weak limit in the
quadratic terms. With a bit of compensated compactness, there is no difficulty for the terms
wv and wu. But the term vu is highly nontrivial. In addition, the easy first bounds are not
sufficient to pass to the limit in the initial conditions, reflecting again the presence of an initial
layer.

The heuristic argument for the proof of the main theorem is general to relaxation problems:
- The fast evolution ∂tU+ 1

εL1(U) = 0 brings the initial data to a stationary (with respect to
the fast time t/ε) solution of L1(U) = 0. After reducing the problem to homogeneous boundary
conditions, the main point is to analyze the linear problem

(1.11) ∂s

(
u
v

)
+
(
∂xu+ wv
−∂xv − wv

)
= 0.

where w is given and independent of the fast time s = t/ε. One shows that the energy of
solutions of this system (with homogeneous boundary conditions) decays exponentially with
respect to s.

- Next, the decay of energy result is extended to solutions of (1.11) when w is slowly varying
with s. This proves that the invariant manifold M of solutions of L1(U) = 0 is attractive for
the fast evolution.

- Using sufficiently good uniform a priori bounds for the solutions, we can use the properties
above to prove that the dynamics of solutions of (1.1) is close to the projected dynamic on M,
that is (1.6).

The outline of the paper is the following. First we give a priori estimates for the solutions
of the Boyd-Kadomtsev system(1.1) (1.2) (1.3) and we show that it is well-posed. The second
section is devoted to prove the existence and uniqueness of solution of the limiting system. In
the third one, we prove the main result.
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2 The full system

In the sequel of the paper, we assume that the corner compatibility conditions holds

(2.1) u0(0) = uin|t=0, w0(0) = 0.

According to (1.5) we get the basic estimates

ε∂t(‖u‖2L2
x

+ ‖v‖2L2
x
) + (|u(t, L)|2 + |v(t, 0)|2) = |uin|2,

∂t(‖w‖2L2
x

+ ε ‖u‖2L2
x
) + (|u(t, L)|2 + |w(t, L)|2) = |uin|2,(2.2)

∂t(‖w‖2L2
x
− ε ‖v‖2L2

x
) + |w(t, L)|2 = |v(t, 0)|2.

Here and in the sequel we set L2
x = L2(0, L) and L∞x = L∞(0, L). Let Ω = [0, T ]× [0, L]. We

introduce the three velocities c1 = ε−1, c2 = −ε−1, c3 = 1 and define the operators

Ki = ∂t + ci∂x.

The first main result is the following

Theorem 2.1. If the data u0, w0 are in L∞x and satisfy the corner conditions (2.1), the IBV
problem (1.1) (1.2) (1.3) has a unique solution (u, v, w) = (uε, vε, wε) such that K1u,K2v,K3w
are in L2(Ω). Moreover it belongs to [C0(0, T ;L2

x)]3 and (L∞(Ω))3.

The first subsection is devoted to the existence of a solution (uε, vε, wε) of system (1.1)(1.2)(1.3)
in a L2 framework. In the second one, if the initial data are in L∞x , we prove bounds of the solu-
tions in L2(Ω), L∞(Ω) and L2(0, T ;L∞x ).In the last one, with the hypothesis u0, w0 ∈ H1(0, L),
we show that the derivatives ∂xuε, ∂xvε, ∂xwε, ∂twε are bounded in L2(Ω) uniformely with re-
spect to ε which will be usefull for the asymptotic analysis (cf theo. 2.7).

2.1 Existence and uniqueness in L2 framework.

Denote a1 = −ε−1, a2 = ε−1, a3 = 1. Let us address the original system with general initial
values (u0, v0, w0) in (L2

x)3; it reads as

K1u = a1vw, u(0, .) = u0, u(t, 0) = uin

K2v = a2uw, v(0, .) = v0, v(t, L) = 0(2.3)
K3w = a3vu, w(0, .) = w0, w(t, 0) = 0

In this subsection, ε is fixed and the constants may depend on ε. For a final time denoted by τ,
let us introduce the following spaces

Vτ1 = {u = u(t, x), s. t. K1u ∈ L2(0, τ ;L2
x), u(0, .) ∈ L2

x, u(., 0) ∈ L2(0, τ)},

endowed with the norms
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‖u‖Vτ1 = ‖K1u‖L2(0,τ ;L2
x) + ‖u(0, .)‖L2

x
+ ‖u(., 0)‖L2(0,τ)

and the analogous for Vτ2 and Vτ3 , with K1 replaced by K2 and K3 (and the corresponding
boundary condition in L for Vτ2 ).

We first have the following local existence result.

Proposition 2.2. Assume that the initial values (u0, v0, w0) are in L2
x. Then, there is a unique

solution (u, v, w) in VT1 ×VT2 ×VT3 of problem (2.3). Moreover (u, v, w) belongs to (C(0, T ;L2
x))3.

The proof is based the following general result inspired by the one stated in L1 framework
in [23].

Lemma.(Compensated integrability) There exists a constant C0 such that for all τ and for
all functions u, v in Vτ1 × Vτ2 we get

‖uv‖2L2(0,τ ;L2
x) ≤ C0

[
αu + τ ‖K1u‖2L2(0,τ ;L2

x)

] [
αv + τ ‖K2v‖2L2(0,τ ;L2

x)

]
with αu = ‖u(., 0)‖2L2(0,τ) + ‖u0‖2L2

x
and αv = ‖v(., L)‖2L2(0,τ) + ‖v0‖2L2

x
.

The same result holds for the other products uw and vw (and for the products uv,wv). Of
course the constant C0 depends on the velocities ci occuring in the operators Ki, that is to say
on ε.

Proof.
Denote f = K1u, we have

u(t, x) = u0(x− c1t)1x>c1t + uin(
c1t− x
c1

)1x<c1t +
∫ t

0
f(t− s, x− c1s)ds

Then we get for all t < τ,

|u(t, x)|2 ≤ 2
(
|u0(x− c1t)|1x>c1t + |uin(

c1t− x
c1

)|1x<c1t
)2

+ 2τF (x− c1t),

with F (y) =
∫ t

0 |f(y + c1s, s)|2ds, that is to say |u(t, x)|2 ≤ φu(x − c1t) where the function φu
defined on [−c1τ, L] is given by

φu(σ) = 2|u0(σ)|21σ>0 + 2|uin(− σ
c1

)|21σ<0 + 2τF (σ)

Moreover we see that

‖φu‖L1
x
≤ 2αu + 2τ ‖K1u‖2L2(0,τ,L2

x) , αu = ‖u0‖2L2
x

+ ‖u(., 0)‖2L2
t
.

By the same way, we get |v(t, x)|2 ≤ φv(x− c2t) with φv such that for all t ≤ τ

‖φv‖L1
x
≤ 2αv + 2τ ‖K2v‖2L2(0,τ,L2

x) , αu = ‖v0‖2L2
x

+ ‖u(., L)‖2L2
t
.

Now with the new variables y = (x − c1t) and y′ = (x − c2t) using the fact that dxdt =
|c1 − c2|−1dydy′, we get
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∫ ∫
|u(t, x)|2|v(t, x)|2dxdt ≤

∫ ∫
|c1 − c2|−1φu(y)φv(y′)dydy′ ≤ |c1 − c2|−1 ‖φu‖L1

x
‖φv‖L1

x

and the result follows. �
Proof of the proposition.
Denote in the sequel U = {u, v, w}. Define the space L2,τ = (L2(0, τ, L2

x))3 endowed by the
norm ‖U‖L2,τ = supi ‖Ui‖L2(0,τ,L2

x). Denote F(U) = {a1vw, a2uv, a3uv} andKU = {K1U1,K2U2,K3U3}.
Existence for τ small enough,.
It is based on a fixed point algorithm. Let us denote by U0 = (u0, v0, w0) the solution of

problem (2.3) without the quadratic right hand side terms and define the sequence Un+1 =
(un+1, vn+1, wn+1) by

KUn+1 = F(Un)
Un+1(0, .) = {u0, v0, w0}
un+1(t, 0) = uin, vn+1(t, L) = 0, wn+1(t, 0) = 0.

According to the previous lemma, we see that

‖F(U)‖2L2,τ ≤ C2
1

[
A+ τ ‖KU‖2L2,τ

]2

with A = sup
(
‖u0‖2L2

x
, ‖v0‖2L2

x
, ‖w0‖2L2

x

)
+ ‖u(., 0)‖2L2(0,T ). Since KUn+1= F(Un), the se-

quence qn = ‖KUn‖L2,τ satisfies q0 ≤ A and

C−1
1 qn+1 ≤ A+ τq2

n

But for τ small enough, the equation τq2 − C−1
1 q + A = 0 admits positive roots; denote by C2

the smallest one. Therefore we get qn = ‖KUn‖L2,τ ≤ C2 for all n.
Now, for fixed initial and boundary values, address the mapping KUn 7→ KUn+1. The

previous lemma says that, for τ small enough, it is a strictly contraction mapping for the norm
‖·‖L2,τ , so the sequence KUn converges to some element G in L2,τ . We may define U the solution
of KiUi = Gi whith the same initial and boundary as above and we have KiUni → KiUi in L2,τ .
So the previous lemma implies limnF(Un) = F(U), therefore G = F(U) and KU = F(U), i.e.
U = {u, v, w} is solution to (2.3).

Uniqueness.
Assume that there exist two solution U , Û ; they satisfy KU = F(U) and KÛ= F(Û). Then,

setting Ũ=Û − U , we get

|KiŨi| ≤ |ai|
(
|UjŨj′ |+ |ŨjÛj′ |

)
, with (j, j′) 6= i

Acording to previous lemma, since the initial and boundary values of Ũ are zero, we get∥∥∥KiŨi
∥∥∥2

L2
t,x

≤ |ai|C0

[
τ
∥∥∥KŨ∥∥∥2

L2,τ
(αu + τ ‖KU‖2L2,τ ) + τ

∥∥∥KŨ∥∥∥2

L2,τ
(αu + τ

∥∥∥KÛ∥∥∥2

L2,τ
)
]
.
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Thus Ũ = 0 for τ small enough.

Global existence
Indeed, according to the conservation law (2.2), we see that the solution (u, v, w) defined on

a local time interval may be extented up to the final time τ = T . Since the right hand sides
F(U)i belong to L2(0, T ;L2

x), classical semi-group arguments imply that the solution U is in
(C(0, T ;L2

x))3. �
With the help of the point i) of proposition 2.6 below, this achieves the proof of theorem 2.1.

2.2 Estimates in L∞

We now make a stronger assumption on the initial data: u0 and w0 belong to L∞x . Let (u, v, w)
the solution to the system (1.1) (1.2) (1.3), it is in (C(0, T ;L2

x))3.

Proposition 2.3. There is a constant C independent of ε, such that

(2.4) ‖w‖L∞(Ω) ≤ C.

For proving this bound, we first look for estimates of u and v along the characteristics of
∂t + ∂x. Consider a point P = (t, x) ∈ Ω. The backward characteristics hit the boundary at
points Pu, Pv and Pw. From now on, the various constants C do not depend on ε.

Lemma 2.4. If min{εx, ε(L− x)} ≤ t ≤ T , then∫
[PwP ]

(1− ε)|u|2dt ≤ C

∫
[PwP ]

(1 + ε)|v|2dt ≤ C

Proof (i) Define the points O = (0, 0) and L = (0, L). It x ≤ t, integrate the balance relation
(1.5-ii) over the quadrangle OPwPPu; we get∫

[PwP ]
(1− ε)|u|2dt+

∫
[PuP ]

(1− ε)|w|2dx ≤ C

Integrate the first conservation law on the triangle PwPvP or the quadrangle PwLPvP :∫
[PwP ]

(1 + ε)|v|2dt+ ε

∫
[PvP ]

2|u|2dx ≤
∫

[PwP ]
(1− ε)|u|2dt+ C

(ii) When t ≤ x, this is similar. �
Proof of Proposition 2.3.
Integrating along the characteristics of ∂t + ∂x

w(P ) = w0(Pw) +
∫

[PwP ]
uvdt′

thus
|w(P )| ≤ C. �
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Lemma 2.5. There is C depending only on the L∞ norms of the data, such that

(2.5) sup
x0∈[0,L]

‖u( ·, x0)‖L2
t

+ ‖v( ·, x0)‖L2
t
≤ C.

In particular, there is another constant C such that

(2.6) ‖u‖L2(Ω) ≤ C, ‖v‖L2(Ω) ≤ C

In addition,
√
εu and

√
εv are uniformly bounded in C0(0, T ;L2([0, L])): there is a constant C

such that

(2.7) sup
t∈[0,T ]

‖u(t, · )‖L2
x

+ ‖v(t, · )‖L2
x
≤ Cε−

1
2 .

Proof. Repeat the proof of Lemma 2.4 integrating the same conservation laws over the
rectangles {0 ≤ t ≤ T, 0 ≤ x ≤ x0} and {0 ≤ t ≤ T, x0 ≤ x ≤ L} respectively to obtain bounds
for ‖u(·, x0)‖2L2 and ‖w(·, x0)‖2L2 first, and next of ‖v(·, x0)‖2L2 .

Similarly, integrating over [0, t]× [0, L] the conservation laws give control of w(t, ·),
√
εu(t, ·)

and
√
εv(t, ·) in L2

x. �
The next result improve the estimates above.

Proposition 2.6. The solution of problem (u, v, w) of system (1.1) (1.2) (1.3) is such that
i)
√
εu and

√
εv are bounded in L∞(Ω).

ii) u and v are uniformly bounded in L2(0, T ;L∞x ), i.e. there is a constant C∫ T

0

(
‖u(t, · )‖2L∞x + ‖v(t, · )‖2L∞x

)
dt ≤ C.

Proof. Consider the transport equation ε∂tu + ∂xu = wv. As above, integrating along
characteristic we find that

|u(t, x)| ≤ 1x<t/ε|uin(t− εx)|+ 1x>t/ε ‖u0‖∞ + |
∫ t/ε

0
wv(t− εs, x− s)ds| ≤M(t− εx)

where

M(σ) = 1σ>0|uin(σ)|+ 1σ<0‖u0‖L∞ + ‖w‖L∞
∫ L

0
|1Ωv(σ + εy, y)|dy

Note that M(σ) = 0 for σ ≥ T and σ ≤ −εL. The integral of |1Ωf | over the characteristic is
launched from the boundary point (σ, 0) (truncated to the rectangle if necessary). In particular,
according to (2.7) we get

M(σ) ≤ C0 + ‖w‖L∞ sup
t
‖v(t, · )‖L2

x
≤ C + ‖w‖L∞C1ε

−1/2

Then point i) follows.
Moreover M ∈ L2 with norm

‖M‖L2(R) ≤ ‖uin‖L2([0,T ]) +
√
εL‖u0‖L∞ +

√
L‖w‖L∞‖v‖L2(Ω).
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Similarly
|v(t, x)| ≤ N(t− ε(L− x))

with N ∈ L2(R), supported in [−εL, T ]. Integrating once more along the characteristic, yields

|u(t, x)| ≤ C0 + ‖w‖L∞
∫ x

0 |1Ωv(t− εx+ εy, y)|dy
≤ C0 + ‖w‖L∞

∫ x
0 N(t− εx+ 2εy − εL)dy.

Therefore, to get the point ii), it suffices to show that the function φ defined by φ(t) =
supx

∫ x
−xN(t− εL+ εz)dz is in L2(0, T ) (and the analogous for v). But we have

(2.8) φ(t+ εL) = sup
x

∫ x

−x
N(t+ εz)dz ≤ 1

ε

∫ Lε

−Lε
N(t+ s)ds ≤ 2LN∗(t).

where we have introduced the maximal function N∗ of N :

(2.9) N∗(t) = max
ρ

1
2ρ

∫ ρ

−ρ
N(t+ s)ds,

By a classical harmonic analysis result (see for example [10]) we have

(2.10) ‖N∗‖L2 ≤ C4‖N‖L2 ,

implies that φ(.) is in L2(0, T ). �

2.3 Estimates for derivatives

Theorem 2.7. Assume that u0 and w0 are in H1([0, L]), uin ∈ H1([0, T ]) and satisfy the corner
conditions (2.1). Then the solutions given by Theorem 2.1 belong to [C0(0, T ;H1([0, L])) ∩
C1(0, T ;L2([0, L]))]3.

Moreover, there are uniform bounds for ∂xu, ∂xv, ∂xw , ε∂tu , ε∂tv in L∞x ([0, L];L2
t ([0, T ]))

thus in L2(Ω). Moreover there are uniform bounds for ∂tw in L∞x ([0, L];L1
t ([0, T ])) and in

L1
t (0, T ;L2

x([0, L])).

Lemma 2.8. u1 = (∂x − ε∂t)u and w1 = (∂x − ε∂t)w are bounded in L∞x ([0, L];L2
t ([0, T ])).

Moreover, w1 is also bounded in L∞t ([0, T ];L2
x([0, L])).

Proof. Differentiate the first and third equations with respect to ∂x − ε∂t:

(2.11)
{
ε∂tu1 + ∂xu1 = −vw1 + |w|2u,
∂tw1 + ∂xw1 = vu1 − |u|2w.

The initial-boundary values
u1(0, x) = 2∂xu(0, x) + wv(0, x) = 0,
u1(t, 0) = −2ε∂tuin(t)− wv(t, 0) = −2ε∂tuin(t)
w1(0, x) = (1 + ε)∂xw0(x)− εuv(0, x)
w1(t, 0) = −(1 + ε)∂twin(t) + uinv(t, 0)
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are uniformly bounded in L2 by the assumptions on the data and the L2 bound for v|x=0 in
given by Lemma 2.5. The equations imply that

∂t(ε|u1|2 + |w1|2) + ∂x(|u1|2 + |w1|2) = |w|2(∂x − ε∂t)|u|2 − |u|2(∂x − ε∂t|w|2),

hence:

∂t(ε|u1|2 + |w1|2) + ∂x(|u1|2 + |w1|2) + (∂x − ε∂t)(|u|2|w|2) = 4Re |w|2uu1.

Integrate this identity over the quadrangle OP ′PQ, where P = (t, x), P ′ = (0, x), Q = (t, 0)
and O = (0, 0). Then∫ t

0
(|u1|2 + |w1|2)(t′, x)dt′ +

∫ x

0

(
ε|u1|2 + |w1|2

)
(t, x′)dx′ +

∫ t

0
|u|2|w|2(t′, x)dt′

+
∫ x

0
ε|u|2|w|2(0, x′)dx′ =

∫ t

0
(|u1|2 + |w1|2)(t′, 0)dt′ +

∫ x

0
(ε|u1|2 + |w1|2)(0, x′)dx′

+
∫ t

0
|u|2|w|2(t′, 0)dt′ +

∫ x

0
ε|u|2|w|2(t, x′)dx′ +

∫∫
4Re |w|2uu1(t′, x′)dt′dx′

The boundary terms in the right hand side are bounded. Moreover, w is bounded in L∞.
Therefore∫ t

0
(|u1|2 + |w1|2)(t′, x)dt′ +

∫ x

0
|w1|2(t, x′)dx′

≤ C + Cε

∫ x

0
|u(t, x′)|2dx′ + C

∫∫
|u||u1|(t′, x′)dt′dx′.

By Lemma 2.5, the second term in the right hand side is bounded. We already have a bound for
u in L∞x (L2

t ), thus we can absorb the double integral from the right to the left using Gronwall’s
lemma, and conclude that∫ t

0
(|u1|2 + |w1|2)(t′, x)dt′ +

∫ x

0
|w1(t, x′)|2dx′ ≤ C.

This proves the lemma.

Lemma 2.9. v2 = (∂x + ε∂t)v and w2 = (∂x + ε∂t)w are bounded in L∞x ([0, L];L2
t ([0, T ]), thus

in L2(Ω).

Proof. Differentiate the second and third equations with respect to ∂x + ε∂t:

(2.12)
{

(∂x − ε∂t)v2 = −uw2 + |w|2v,
(∂x + ∂t)w2 = uv2 − |v|2w.

The initial-boundary values are

(2.13)


v2(0, x) = 2∂xv(0, x) + wu(0, x) = w0u0,
v2(t, L) = 2ε∂tv(t, L)− wu(t, L) = −wu(t, L)
w2(0, x) = (1− ε)∂xw(0, x) + εuv(0, x) = (1− ε)∂xw0(x)
w2(t, L) = (ε− 1)∂tw(t, L)− uv(t, L) = 1+ε

1−εw1(t, L)
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are bounded in L2 since we know that w ∈ L∞, u|x=L ∈ L2 and w1|x=L =∈ L2.
The equations imply that

∂t(|w2|2 − ε|v2|2) + ∂x(|v2|2 + |w2|2) = |w|2(∂x + ε∂t)|v|2 − |v|2(∂x + ε∂t|w|2)

Hence:
∂t(|w2|2 − ε|v2|2) + ∂x(|v2|2 + |w2|2) + (∂x + ε∂t)(|v|2|w|2) = 4Re |w|2vv2

Given P = (t, x) ∈ Ω, integrate this identity over the rectangle P ′O′Q′P , where P ′ = (0, x),
Q′ = (t, L) and O′ = (0, L). Then∫ t

0
(|v2|2 + |w2|2)(t′, x)dt′ +

∫ L

x
ε|v2(t, x′)|2dx′ +

∫ L

x
|w2(0, x′)|2dx′

+
∫ t

0
|v|2|w|2(t′, x)dt′ +

∫ L

x
ε|v|2|w|2(0, x′)dx′

=
∫ t

0
(|v2|2 + |w2|2)(t′, L)dt′ +

∫ L

x
|w2(t, x′)|2dx′ +

∫ L

x
ε|v2(0, x′)|2dx′

+
∫ t

0
|v|2|w|2(t′, L)dt′ +

∫ L

x
ε|v|2|w|2(t, x′)dx′ −

∫∫
4Re |w|2vv2(t′, x′)dt′dx′

In the right hand side, the second boundary integral is controlled by (2.13). The third vanishes,
the fourth is bounded since we know that w is bounded in L∞ and that

√
εv(t, ·) is bounded in

L2. Moreover,

w2 =
1− ε
1 + ε

w1 +
2ε

1 + ε
uv

By Lemma 2.8 we have a bound for w1(t, ·) in L2, and by Lemma 2.5 and Proposition 2.6 we
have a uniform bound for the L2 norm of εuv(t, ·). Therefore, the integrals∫ L

x
|w2(t, x′)|2dx′

are uniformly bounded. Therefore, we end up with an inequality of the form∫ t

0
(|v2|2 + |w2|2)(t′, x)dt′ ≤ C +M

∫ t

0

∫ L

x
|v||v2|(t′, x′)dt′dx′

We already have a bound for v in L∞x (L2
t ). We conclude using Gronwall’s lemma.

3 The limiting problem

For a given function W ∈ L∞([0, L]) and for a given constant uin ∈ C, we first address the
following stationary system on [0, L] satisfied by (u, v)

(3.1) ∂xu+Wv = 0, ∂xv +Wu = 0

with the boundary conditions

(3.2) u(0) = uin, v(L) = 0.

Since this problem is linear, it suffices to consider the case where uin = 1.
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Proposition 3.1. For all W ∈ L∞([0, L]), the problem (3.1) (3.2) with uin = 1 has a unique
solution (u, v) = Y(W ) in [L∞x ]2. It satisfies

(3.3) ‖u‖L∞x ≤ exp(
√
L ‖W‖L2

x
), ‖v‖L∞x ≤ exp(

√
L ‖W‖L2

x
)

(3.4) |v(t, 0)| ≤ 1

Moreover, for all w∞ > 0, there exists C(w∞) such that for two functions W, W̃ whose norms
in L∞(0, L) are smaller than w∞, we have

(3.5)
∥∥Y(W )− Y(W̃ )

∥∥
[L∞x ]2

≤ C(w∞)
∥∥W − W̃∥∥

L2
x

Notice that
∂x(|u(x)|2 − |v(x)|2) = 0

so that there is a conserved quantity

(3.6) µ = |u(x)|2 − |v(x)|2.

is constant. From the boundary values, we see that 0 ≤ µ ≤ |uin|2 and (3.4) holds. The proposi-
tion may be proved by using the auxiliary function z = uv which satisfies ∂xz = W

√
µ2 + 4|z|2,

but we present a more direct proof (following an idea of [22]).
Proof.
Let us denote

b(x) = −
∫ x

0
W (s)ds, B(x) = |b(x)|

If A(x) denote the matrix

A(x) =
(

0 b(x)
b(x) 0

)
,

we have (A(x))2 = IB(x)2. Moreover, we see that the matrix eA(x) defined by

eA = 1 + A + ..
1
n!

An... = (1 +
1
2
B2 + ..

1
(2p)!

B2p + ...)1 + (1 +
1
3!
B2 + ..

1
(2p+ 1)!

B2p + ..)A

Then the system

∂x

(
u
v

)
+
(

0 W

W 0

)(
u
v

)
= 0

has a solution which reads as(
u(x)
v(x)

)
= cosh(B(x))

(
1
v0

)
+

sinh(B(x))
B(x)

(
v0b(x)
b(x)

)
To get v(L) = 0, we must have v0 = v0

W = − tanh(B(L))b(L)/B(L), thus, the solution of
the system (3.1)(3.2) is given by

u(x) = cosh(B(x)) + v0
W b(x) sinh(B(x))/B(x),

v(x) = cosh(B(x))v0
W + b(x) sinh(B(x))/B(x).
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They satisfy (3.3). Moreover we check that if W, W̃ < w∞, the functions b(x), sinh(B(x))/B(x),

cosh(B(x)) and tanh(B(x)) are Lipschitz continuous from L2 into L∞ with respect to W with
a coefficient depending only on w∞. Thus v0

W is also Lipschitz continuous and u and v are
Lipschitz continuous from L2 into L∞.�

In the sequel, for all bounded function W , if (u, v) = Y(W ), we denote

Λ(W ) = uv

By linearity, the solution of (3.1) (3.2) is (u, v) = uinY(W ). Thus, for bounded functions
(u∗, v∗, w∗) on [0, T ]× [0, L], problem (1.6) (1.7) (1.8) may read as

(u∗(t), v∗(t)) = uin(t)Y(w∗(t)),(3.7)
(∂t + ∂x)w∗ = |uin|2Λ(w∗), w∗|t=0 = w0, w∗(t, 0) = 0.(3.8)

Thus, it remains to solve (3.8).

Theorem 3.2. For w0 in L∞x , the problem (1.6) (1.7) (1.8) has a unique solution (u∗, v∗, w∗)
in [L∞([0, T ]× [0, L])]3. It satisfies for all t

|v∗(t, 0)| ≤ |uin(t)|

We first prove a local in time existence theorem and next conclude using uniform a priori
bounds.

Lemma 3.3. For any w0 in L∞x , there exists a time tf depending only on ‖w0‖L∞, ‖uin‖L∞
and L such that the equation

(3.9) (∂t + ∂x)w = |uin|2Λ(w), w|x=0 = 0, w|t=0 = w0.

has a solution w belonging to L∞([0, tf ]× [0, L]).

Proof. Denote Tt the semi-group corresponding to the advection (∂t+∂x) with the homogeneous
boundary condition in x = 0. It is a contraction in Lp for all p. One solves the equation

(3.10) W (t) = Ttw0 +
∫ t

0
Tt−s

(
|uin|2Λ(W (s))

)
ds := Ttw0 + T (W )(t)

by Picard’s fixed point theorem.
By (3.3), ∥∥Λ(W )(t)

∥∥
L∞x
≤ exp(2

√
L‖W (t)‖L2

x
)|uin|,

therefore, if Y (t) = 2
√
Lsups<t‖W (s)‖L∞x , we get

∥∥T (W )
∥∥
L2
x
≤ t
√
L‖uin‖2L∞exp(Y (t)); and

there exists C such that
Y (t) ≤ C + 2tL‖uin‖2L∞exp(Y (t)).

So for t small enough, Y (t) is bounded and there exists aconstant w∞, such that sups<t‖W (s)‖L∞x ≤
w∞. Moreover, Proposition 3.1 implies that for W and W̃ with L∞ norm bounded by w∞, there
is C(w∞) such that

(3.11)
∥∥T (W )(t)− T (W̃ )(t)

∥∥
L∞x
≤ t‖uin‖2L∞C(w∞)‖W − W̃‖L∞([0,t]×[0,L]).
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From here, it is clear that if tf is small enough, the mapping W 7→ Ttw0 +T (W )(t) is Lipschitz
continuous from the ball of center Ttw0 and radius 1 in L∞([0, tf ] × [0, L]) into itself, with
Lipschitz constant < 1, implying the existence of a fixed point in this ball.

Proof of Theorem 3.2 .
A priori estimates. Assume that there exists a solution w∗ of (3.8), then multiplying (3.8)

by w and integrating with respect to the space variable, we have

∂t ‖w∗(t)‖2L2 + |w∗(t, L)|2 = 2
∫

Re(u∗v∗w∗)dx

But, integrating (1.6) over [0, L], we get 2Re
∫

(u∗v∗w∗)dx = −
∫
∂x|u∗|2 ≤ |uin|2; so we get

(3.12) ‖w∗(t)‖L2 ≤ ‖w0‖L2 + T‖uin‖2L∞ ,

Next, according to (3.3) we have for all t ≤ T

‖u∗(t)‖L∞ ≤ exp(
√
L(‖w0‖L2 + T‖uin‖2L∞)), ‖v∗(t)‖L∞ ≤ exp(

√
L(‖w0‖L2 + T‖uin‖2L∞)).

Therefore there exists w∞ depending only on ‖w0‖L2 and L such that

(3.13) ‖w∗(t)‖L∞ ≤ w∞.

Uniqueness. Assume that there exist two solutions w and w̃ satisfying ‖w(t)‖L∞ , ‖w̃(t)‖L∞ ≤
w∞ and

(∂t + ∂x)w = |uin|2Λ(w), (∂t + ∂x)w̃ = |uin|2Λ(w̃),

with vanishing boundary condition at x = 0. Using that (w − w̃)(t) =
∫ t

0 Tt−τ (Λ(w̃ + ζ) −
Λ(w̃))(τ)dτ , we get

|(w − w̃)(t, x)| ≤ ‖uin‖2L∞
∫ t

0
‖Λ(w)− Λ(w̃))‖L∞ dτ

The Lipschitz continuity of Λ implies that

(3.14) ‖(w − w̃)(t)‖L2 ≤
√
LC(w∞)

∫ t

0
‖(w − w̃)(s)‖L2 ds,

and uniqueness follows from Gronwall’s lemma.
Existence. By Lemma 3.3 one knows that for tf small enough, but depending only on the

L∞ norms of the data and L, there exists a solution w∗(t) ∈ L∞([0, tf ]× [0, L]). By the a priori
bound (3.13), the norm of w(tf ) in L∞([0, L]) is bounded by a constant, which depends only on
the data, so that the solution can be continued to [0, T ].

The bound of |v∗(t)| comes from (3.4).
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4 Asymptotic analysis

In the sequel we use the following generic notations for the sake of conciseness: U(t, x) =(
u(t, x)
v(t, x)

)
whose value is in C2; for w in C and U in C2. Let w⊥U denote the vector

w⊥U = w⊥
(
u
v

)
=
(

wv
−wu

)
.

For all bounded function w, consider the operator

MwU =
(

∂xu+ wv
−∂xv − wu

)
Therefore the original system (1.1) (1.2) (1.3) is equivalent to find wε and U ε = (uε, vε) satisfying

(4.1) ε∂tU
ε +MwεU

ε = 0

with initial and boundary conditions

(4.2) uε|t=0 = u0, vε|t=0 = 0; uε(t, 0) = uin, vε(t, L) = 0.

and

(4.3) ∂tw
ε + ∂xw

ε = uεvε, wε|t=0 = w0, wε(t, 0) = 0.

The aim of this section is to prove the

Theorem 4.1 (Main result). Suppose that the initial data u0, w0 are in H1(0, L) and satisfy
the corner conditions (2.1). Let (uε, vε, wε) be solutions of (1.1) (1.2) (1.3) .

(i) The (uε, vε) are bounded in L∞t ([0, T ];L2
x([0, L])) and in L2

t ([0, T ];L∞x ([0, L])). Moreover,
(∂xuε, ∂xvε) and (ε∂tuε, ε∂tvε) are bounded in L2([0, T ]× [0, L]);

(ii) The wε are bounded in L∞([0, T ]× [0, L]) ∩H1([0, T ]× [0, L]);
(iii) (uε, vε, wε) converges in [L2([0, T ] × [0, L])]3 to (u∗, v∗, w∗) the solution of (1.6) (1.7)

(1.8).

The proof has several ingredients:
1) We first prove a preliminary result concerning systems like (4.1). Resolving the bound-

ary conditions, we are led to consider systems of the form

(4.4) ε∂tU +MWU = 0, u(0) = v(L) = 0,

where W is slowly varying in time. The main result is the exponential decay of the energy of
solutions, that is of order O(e−γt/ε).

2) Next we apply this result to (4.1) to prove uniform L∞ bounds in time for U ε = (uε, vε).
Using the equation (4.3) and the known estimates for wε, this implies that the family {wε} is
bounded in H1([0, T ]× [0, T ]).

3) Therefore, there are subsequences which converge strongly to w∗ in L2(Ω). Using the
decay of energy once more, we show that U ε converges strongly to U∗ which satisfies ε∂tU∗ +
Mw∗U∗ = 0, with the right boundary conditions. Hence (U∗, w∗) is a solution of the limiting
problem. By uniqueness of this solution (U∗, w∗), this implies that the full family (U ε, wε)
converges.
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4.1 The fast system; exponential decay of energy.

For a given potential W ∈ C([0, T ];L2
x([0, L])), denote by EεW (t, s)V the value U(t) of the solution

at time t (larger than or equal to s) of the equation

(4.5) ε∂tU +MWU = 0, U |τ=s = V

with initial data V ∈ [L2
x]2 and boundary conditions u(t, 0) = 0, v(t, L) = 0. The conservation

∂t(|u|2 + |v|2) + ε−1∂x(|u|2 − |v|2) = 0 and the boundary conditions immediately imply that

(4.6) ‖EεW (t, s)V ‖L2([0,L]) ≤ ‖V ‖L2([0,L]).

The linear mapping EεW (t, s) satisfies the group property EεW (t, s′)EεW (s′, s) = EεW (t, s). In par-
ticular, if W is a bounded potential independant of time, EεW (t, 0) is a continuous contraction
semi-group on L2([0, L]).

Theorem 4.2. Given constants C0 and C1, there are C and γ > 0 such that for all W satisfying

(4.7) ‖W‖L∞([0,T ]×[0,L]) ≤ C0 ‖W‖H1([0,T ]×[0,L]) ≤ C1,

then for all ε ∈]0, 1], all 0 ≤ s ≤ t ≤ T :

‖EεW (t, s)‖L(L2
x;L2

x) ≤ Ce−γ(t−s)/ε

To prove the result, it is sufficient to show that there is δ < 1, such that

(4.8) ‖EW (s+ 2εL, s)‖L(L2;L2) ≤ δ

for all s ∈ [0, T − 2εL] and all W in the given bounded subset of L∞ ∩ H1(Ω). To prove this
estimate, stretch and change time t = s+ετ , so that the function Ũ(τ) = EW (s+ετ, s)V, satisfies

(4.9) ∂τ Ũ +MaŨ = 0, Ũ|τ=0 = V

with unchanged homogeneous boundary conditions and

a(τ, x) = W (s+ ετ, x)

Note that when W satisfies (4.7) then a remains bounded in L∞ ∩H1(Ω0) where Ω0 = [0, 2L]×
[0, L]. Therefore, the Theorem follows from the next lemma where one takes s = 0.

Lemma 4.3. Given a bounded subset in L∞ ∩H1(Ω0), there is δ < 1 such that for all a in this
bounded set , the solution Ũ of (4.9) satisfies

‖Ũ(2L)‖L2([0,L]) ≤ δ‖Ũ(0)‖L2([0,L]).

Proof. The conservation ∂τ (|ũ|2 + |ṽ|2) + ∂x(|ũ|2 − |ṽ|2) = 0 implies that

‖Ũ(T )‖2L2([0,L]) = ‖Ũ|τ=0‖2L2([0,L]) − ‖ũ(·, L)‖2L2([0,2L]) − ‖ṽ(·, 0)‖2L2([0,2L]).
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Hence, it is sufficient to prove that there is C such that for all a in the given bounded susbset
of L∞ ∩H1(Ω0), the solution Ũ of (4.9) satisfies:

‖Ũ|τ=0( . )‖2L2([0,L]) ≤ C
(
‖ũ(·, L)‖2L2([0,2L]) + ‖ṽ(·, 0)‖2L2([0,2L])

)
.

If not, there are sequences an, Un such that

‖Un|t=0‖L2 = 1,(4.10)
‖un(·, L)|L2([0,T ]) + ‖vn(·, 0)‖L2([0,T ]) → 0.(4.11)

Extracting a subsequence if necessary, we can assume that Un converges weakly to a limit U in
L2 and that an converges weakly to a in L∞∩H1 and strongly in Hσ for all σ < 1. In particular,
this implies the following strong convergence:

(4.12) an → a in L∞t ([0, 2L];L2
x([0, L]).

Therefore, anvn and anun converge weakly to av and au respectively. Hence, we can pass to the
weak limit in the equations

(4.13)
{
∂τu

n + ∂xu
n = −anvn,

∂τv
n − ∂xvn = anun,

to find that U satisfies

(4.14)
{
∂τu+ ∂xu = −av
∂τv − ∂xv = au

The right hand sides in (4.13) are bounded in L2, implying that the traces on the boundary are
well defined and moreover that Un|x=0 ⇀ U|x=0 weakly, with similar results for the traces on
x = L and t = 0. With (4.11) this implies the strong convergence of the traces on the lateral
boundaries:

(4.15) Un|x=0 → U|x=0 = 0 and Un|x=L → U|x=L = 0 in L2([0, 2L]).

Thus, U and Un are weak=strong solutions of (4.9) with potential a and an respectively.
This implies the conservation law

(∂τ − ∂x)|vn − v|2 = fn := 2Re a(un − u)(vn − v) + (an − a)un(vn − v).

Integrating over the the triangle ∆ := {0 ≤ t, 0 ≤ x, t+ x ≤ L} yields:

(4.16) ‖(vn − v)|t=0‖2L2([0,L]) = ‖(vn − v)|x=0‖2L2([0,L]) −
∫

∆
fndtdx.

The classical energy estimates for (4.9) imply that Un, U and thus Un − U are bounded in
L∞t (L2

x). By Proposition 2.6 they are also bounded in L2
t (L
∞
x ). Thus un(vn − v) is bounded in

L1
t (L
∞
x ) and by (4.12), this implies that

(4.17) (an − a)un(vn − v)→ 0 in L1(Ω).
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Moreover, (un − u)(vn − v) is bounded in L1
tx. Since (∂t + ∂x)(un − u) and (∂t − ∂x)(vn − v)

are bounded in L2
t,x by basic compensated compactness, the product (un− u)(vn− v) converges

in the sense of distributions to 0. This implies that∫
∆
a(un − u)(vn − v)dtdx→ 0,

∫
∆
fndtdx→ 0.

With (4.15) and (4.16), this implies that vn|t=0 converges strongly in L2. Similarly, un|t=0

converges strongly in L2. Hence, by (4.10)

‖U |t=0‖L2 = 1.

Therefore the contradiction which implies Lemma 4.3 and Theorem 4.2 is a consequence of the
next Lemma 4.4.

Lemma 4.4. Suppose that W ∈ L∞([0, T ] × [0, L]) and U ∈ L2([0, T ] × [0, L]) satisfies ∂τU +
MWU = 0, U|x=0 = 0 and U|x=L = 0. If T > L, then U = 0.

Proof. By hyperbolicity in the x direction, and local uniqueness of the Cauchy problem with
data on x = 0, U = 0 on the triangle ∆1 = {0 ≤ x ≤ L, x ≤ t ≤ T − x}. Similarly, U = 0 on the
triangle ∆2 = {0 ≤ x ≤ L,L− x ≤ t ≤ T − L+ x}. Because T > L, the two triangles intersect,
and their union contain a neighborhood of the line t = T/2. Therefore, by uniqueness of the
Cauchy problem in time for the boundary value problem (4.5), U = 0.

4.2 The initial layer and uniform L∞ bounds for u and v.

Theorem 4.5. Suppose that the initial data u0, w0 are in H1(0, L) and satisfy the corner con-
ditions (2.1). Let (uε, vε, wε) be solutions of (1.1) (1.2) (1.3) . Then uε and vε are bounded in
L∞(0, T ;L2([0, L])) for ε ∈]0, 1

2 ].

Proof. We study the fast system (4.1) considering wε as known and using the estimates proved
in Sections 2 and 3. The idea is that after a small initial layer, U ε(t) is close to U ε(t) =
uin(t)Y(wε(t)) which, for all t, is the stationary solution of

(4.18) Mwε(t)U
ε(t) = 0

with the boundary conditions

(4.19) u(t, 0) = uin(t), v(t, L) = 0.

According to Proposition 3.1, ‖U ε(t)‖L2
x

is uniformely bounded.
Denote now Ũ the solution of

(4.20) ε∂tŨ +Mw0Ũ = 0

with homogeneous boundary conditions ũε(t, 0) = ṽε(t, L) = 0 and initial conditions

Ũ ε(0) = −uinY(w0) = (−u(0, .),−v(0, .))

19



( Ũ is like an initial layer).According to Theorem 4.2 we get

(4.21) ‖Ũ(t)‖L2
x

= ‖uin‖L∞‖Eεw0
(t, 0)Y(w0)‖L2

x
≤ Ce−γt/ε.

Therefore, to prove the theorem, it is sufficient to show that U ] = U ε − U ε − Ũ is bounded
in L∞(0, T ;L2

x)). U ] satisfies

(4.22) ε∂tU
] +MwεU

] = F ε,

with homogneneous boundary conditions u](t, 0) = v](t, L) = 0 and initial conditions u](0, x) =
u0(x), v](0, x) = 0, and

(4.23) F ε = −ε∂tU ε − (wε − w0)⊥Ũ ε =
(
−ε∂tuε − (wε − w0)ṽ
−ε∂tvε + (wε − w0)ũ

)
.

Classical energy estimates for solutions of (4.22) with homogeneous boundary conditions, imply
that for all t0 ≤ T

‖U ](t0)‖L2
x
≤ ‖u0‖L2

x
+

1
ε

∫ t0

0
‖F ε(t)‖L2

x
dt

Therefore, it remains to show that there is C such that for all ε ∈]0, 1
2 ]

(4.24)
∫ T

0
‖F ε(t)‖L2

x
dt ≤ Cε

The first term in F ε is

ε∂tY(wε(t)) = ε lim
h

1
h

[
uin(t+ h)Y(wε(t+ h))− uin(t)Y(wε(t))

]
.

By Theorem 2.1, the wε are uniformly bounded in L∞ and therefore Proposition 3.1 implies
that for some constant C independent of ε:

ε‖∂tU ε(t)‖L2
x
≤ εC

(
‖∂twε(t)‖L2

x
+ |∂tuin(t)|

)
.

The second term in F ε is (wε − w0)⊥Ũ . By (4.21) and the L∞ bounds for wε, it satisfies

‖(wε − w0)⊥Ũ t)‖L2 ≤ Ce−γt/ε.

Integrating these two estimates over [0, T ] imply (4.24) and the theorem follows.

Corollary 4.6. Under the assumptions of the theorem, uεvε belongs to a bounded set in L2([0, T ]×
[0, L]). Moreover ∂twε is bounded in L2([0, T ]× [0, L]) and wε is bounded in H1([0, T ]× [0, L]).

Proof. By Proposition 2.6, uε is bounded in L2
t (L
∞
x ). The theorem asserts that vε is bounded

in L∞t (L2
x). Thus uεvε is bounded in L2([0, T ]× [0, L]).

By Theorem 2.7, ∂xwε is bounded in L2(Ω) and therefore ∂twε = −∂xwε + uεvε is bounded
in L2(Ω).
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4.3 Strong convergence. End of proof of Theorem 4.1

Therefore the products uεvε, vεwε and uεwε are uniformely bounded in L2(Ω). To finish the
proof of Theroem 4.1 it suffices to prove the convergence of a subsequence of the solutions
(uε, vε, wε) of (4.1)(4.2)(4.3):

(4.25) (uε, vε, wε)→ (u∗, v∗, w∗), in [L2([0, T ]× [0, L])]3.

Indeed, knowing this strong convergence, we can pass to the limit in the quadratic terms in
the equations and therefore (u∗, v∗, w∗) is a solution of (1.6)(1.7) (1.8). By uniqueness of the
solution of the limit problem, this implies the convergence of the full family.

Proof of (4.25). The wε are bounded in L∞([0, T ] × [0, L]) ∩H1([0, T ] × [0, L]), thus there is
a subsequence which converges to a function w∗ strongly in C([0, T ], L2([0, L])). In particular
w∗|t=0 = w0. Denote U∗(t) the vector function which solves for all t the system

Mw∗(t)U∗ = 0, u∗(0) = uin, v∗(L) = 0.

The proof of the strong convergence of U ε is parallel to the proof of Theorem 4.5. We use the
same vector function U ε(t) = uin(t)Y(wε(t)) as above, it satisfies:

Mwε(t)U
ε = 0.

According to Proposition 3.1, there exists C such that

‖Y(wε(t))− Y(w∗(t))‖[L2
x]2 ≤ C‖wε(t)− w∗(t)‖L2

x
∀t ≤ T,

and hence U ε(t) converges strongly to U∗ in L2
t,x.

To describe the initial layer, introduce the solution Ũ ε = Eεwε(t, 0)
(
U ε|t=0 − U

ε
|t=0

)
of

ε∂tŨ
ε +MwεŨ

ε = 0, Ũ ε|t=0 = U ε|t=0 − U
ε
|t=0, ũ(t, 0) = ṽ(L, t) = 0.

Theorem 4.2 and Corollary 4.6 imply that there exist C and γ > 0 such that for all ε and all
t ∈ [0, T ]:

‖Ũ ε(t)‖[L2
x]2 ≤ Ce−γt/ε

Let U ε] = U ε − U ε − Ũ ε. It satisfies

(4.26) ε∂tU
ε
] +MwεU

ε
] = −ε∂tU ε

with homogneneous boundary and initial conditions. Therefore, by Duhamel’s principle,

U ε] (t) = −
∫ t

0
EW (t, s)(∂tU ε)(s)ds = −

∫ t

0
EW (t, s)∂t

[
uinY(wε(s))

]
ds

Since ∂tY(wε(t)) = limh→0
1
h [Y(wε(t+h))−Y(wε(t))], according to uniform bound of ‖wε‖L∞t,x

21



and to Proposition 3.1, we have

‖∂tY(wε(t))‖L2
x
≤ C(w∞)‖∂twε(t)‖L2

x

By corollary 4.6, one knows that ‖∂twε(t)‖L2
x

is in L2(0, T ). Thus, thanks to theorem 4.2,
there exists a positive constant γ such that

‖U ε] (t)‖L2
x
≤ C

∫ t

0
e−γ(t−s)/ε (‖∂twε(s)‖L2

x
+ |∂tuin(s)|

)
ds

≤ C

(∫ t

0
e−2γs/εds

)1/2 (
‖∂twε‖L2

t,x
+ ‖∂tuin‖L2

t

)
=
√
εC
(
‖∂twε‖L2

t,x
+ C ′

)
.

Therefore, U ε(t) converges strongly to U∗(t) = uin(t)Y(w∗) in L2
x for all t and (4.25) holds.

The proof of the main theorem is now complete.

5 Appendix. A physical glance on the three-wave coupling.

Several physical phenomena may occur when high power laser beams propagates in hot plasmas.
Different typical lengths may be found which are related to these different phenomena: the
typical length Lpl of variation of the mean density of the plasma; the typical length Ll of
variation of the amplitude of the laser intensity, 2πLl is in the order of the width of the speckles
(which are hot spots of light in the laser beam) and of course the laser wave length in the vacuum
2π/k0.

Generally one has 2π/k0 � 2πLl � Lpl; for example, for the high power intensity laser
beam, the wave length is equal to a fraction of one micron, Ll is typically of order of one micron
(then k0Ll ≈ 10 ) and Lpl is larger than 100 microns.

Beside the absorption by the plasma, since the refraction index of the plasma depends on its
density, there is refraction of light at the macroscopic level (characterized by Lpl); there is also
refraction of light at the scale of the width of the speckles (characterized by Ll) which produces
a self-focusing of these speckles; at the scale of the width of the speckles, the diffraction of the
laser light has to be taken into account. Here we address only the coupling between the main
laser wave and an ion acoustic wave which creates the so called stimulated Brillouin backscattered
laser wave. Moreover in these plasmas, the ion acoustic waves propagates with a speed which is
in the order of 10−3 of the speed of light.

The derivation of the coupling model has been performed for a long time but it is quite
tricky; for a recent physical introduction to this three-wave coupling modeling, see for example
[2],[12],[18] (see also [19] for an mathematical introduction to this derivation). We only give the
outlines of this derivation.

So, we first explain how from a basic detailled model (based on (5.1) ) we may derive a
model where three waves are accounted for: an ion acoustic wave (which is a perturbation of
ion density N), the main laser wave which travels forwards, the back-scattered laser wave which
travels backwards. Secondly, we focus on simplifications of this system in order to obtain the
so-called standard decay model which is the three-wave coupling system we address in this paper.
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First coupling model.
Denote by c, the speed of light. The laser pulsation is ω0 = ck0. It is classical to use the

dimensionless electron density normalized with the critical density (defined by q−2
e ω0

2ε0me where
qe, me denote the electron charge and mass and ε0 the vacuum permeability). One assumes here
that the electron density it quite constant that is to say it satisfies (where the mean value Nref

is stricly smaller than 1 and in pratice less than 0.5)

N(t,x) = Nref(1 + n(t,x)), n� 1.

The laser wave is represented by the electromagnetic field Ψ = Ψ(t,x) satisfying the following
wave equation (derived from the full Maxwell ones)

(5.1)
∂2

∂t2
Ψ− c2∆Ψ + ω2

p(1 + n)Ψ = 0

where
ω2
p = ω2

0Nref

The laser beam is assumed to travel in the fixed direction characterized by the unit vector
eb, denote z = x.eb. One introduces E = E(t,x) the space-time envelope of the field corre-
sponding to the main wave traveling in the direction eb and Φ(t,x) the one corresponding to
the backscattered wave; they are complex functions and are slowly varying with respect to the
time and space variables x

Ψ(t,x) =
[
E(t,x)eikpz−iω0t + c.c

]
+
[
Φ(t,x)e−ikpz−iω0t + c.c.

]
,

where kp solves the dispersion relation (obtained without the perturbation n), that is to say

kp =
1
c

√
ω2

0 − ω2
p = k0

√
1−Nref.

Denote cg = c
√

1−Nref the so-called group velocity and β0 = ω2
p

2ω0
. The two waves satisfiy

the paraxial equations obtained by assuming that k−1
p and ω−1

0 are small enough compared to
the characteristic values of the space and time variation of E and Φ

∂

∂t
E + cg∂zE −

ic

2k0
∆⊥E = −iβ0ne

−2ikpzΦ

∂

∂t
Φ− cg∂zΦ−

ic

2k0
∆⊥Φ = −iβ0ne

2ikpzE

where the diffraction terms i∆⊥E and i∆⊥Φ correspond to a diffusion in the directions
transverse to the main propagation z; in the sequel we does not account for these transverse
effects. Notice that the quantity n is highly oscillating with respect to the space variable (see
below) thus terms like β0nE and β0nΦ which appear theoreticaly in the expansion of the first
and second equation respectively are also highly oscillating with respect to the spacee and so
they have to be withdrawn.

23



The laser field produce a ponderomotive force in the plasma which is proportional to∇|Ψ|2,so
neglecting the transverse phenomena, it reduces to a term proportional to 2ikpEΦe2ikpz; it
generates a wave, called ion acoustic wave corresponding to the wave number ks = 2kp. Therefore
for plasma response, the simplest model is the following (qcs corresponds to the plasma velocity
of the ion acoustic wave)

∂

∂t
n+ cs∂zq = 0,

∂

∂t
q + cs∂zn+ 2νLq = −γpc−1

s (iksEΦeiksz + c.c.).

the term of the form νLq is related to the Landau damping effect and γp is a constant depeding
only of the characteristic of the plasma ions. Then, neglecting as above the term ∇Φ with
respect to iksΦ, we check that the density fluctuation n satisfies

∂2

∂t2
n− c2

s∂
2
zn+ 2νL

∂

∂t
n = γpk

2
s(e

ikszEΦ + c.c.)

Notice, in the propagation equation for the laser field E, when one evaluates the coupling term
ne−ikszΦ, the component of n corresponding to e−iksz is highly oscillating (with respect to the
space variable) thus it has to be neglected. Therefore we only adress the other component
corresponding to eiksz and in sequel we address the system

∂

∂t
n+ cs∂zq = 0,(5.2)

∂

∂t
q + cs∂zn+ 2νLq = −γpc−1

s iksEΦeiksz(5.3)

We now take the space envelope M (which is not highly oscillating with respect to space),
i.e. we set

M(t, z) = n(t, z)e−iksz

thus the previous system is equivalent to the following equation for M

(5.4)
∂2

∂t2
M − c2

s(∂z + iks)2M + 2νL
∂

∂t
M = −γpk2

sEΦ

After neglecting also the term nE which is highly oscillating, we get for the propagation
equation for E

∂

∂t
E + cg∂zE = −iβ0MΦ

By the same way, we get for Φ

∂

∂t
Φ− cg∂zΦ = −iβ0ME

These two equations coupled with (5.4) make up the so-called modified decay model for the
Brillouin instability. Of course, it has to be supplemented by initial conditions E(0, .),Φ(0, .),M(0, .)
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and boundary conditions on both sides of the simulation interval for M and on the sides z = 0
and z = L for E and Φ.

The standard decay model.
The derivation of this model is based on a linearization so we assume first that the field E

is constant and in a second step we reintroduce the variation of E.
First step. The field E is assumed to be constant, the previous system consists only in (5.4)

and the propagation equation for the backscattered wave Φ(
∂

∂t
− cg∂z

)
Φ = −iβ0ME

This is a linear system which couples M and Φ; the point is to determine the unstable modes.
So we may address this system on the whole space (z ∈ R). We are aimed at replacing this
linear system satisfied by M,Φ by a simpler one where the density fluctuation satisfies a first
order one. Thus we introduce

m(z) = e−iksz
n(z) + q(z)

2
, s(z) = e−iksz

n(z)− q(z)
2

One may show the coupling between s and Φ is stable; thus if we neglect s with respect to
m,we get the following system for m and Φ

∂

∂t
m+ cs(iks + ∂z)m+ νLm = −iγpks

2cs
EΦ(5.5) (

∂

∂t
− cg∂z

)
Φ = −iβ0mE(5.6)

One may show that from the stabilty analysis it is equivalent to the one satisfied by M and Φ.
For the density fluctuation, we get the following approximation.

(5.7) n(t, z) = Re(eikszm(t, z))

Second step. We now go back to the general case where E is not constant; then one supplements
(5.5)(5.6) with the evolution equation for the wave E and we get the so-called standard decay
model

∂tE + cg∂zE = −iβ0mΦ
∂tΦ− cg∂zΦ = −iβ0mE,(5.8)

∂tm+ cs(iks + ∂z)m = −iγpks
2cs

EΦ

Notice that in this system, the two characteristic speeds cg and cs occur, which are respec-
tively in the order of the light speed and the sound speed. The quadratic coupling terms in the
right hand side correspond to the coupling between the three waves. Of course if the plasma is
not homogeneous, there are supplementary terms corresponding to the variation of the plasma
density (see the introduction). But in the case when the plasma is homogeneous and all the
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transverse effects are neglected , it is this system which has to be addressed, see for example [2],
[11].

So the main mathematical difficulties may be seen on this system; it is posed on a fixed
interval [0, zmax] and it is supplemented with the following natural boundary conditions

(5.9) E(t, 0) = αin, Φ(t, zmax) = 0, m(t, 0) = 0.

If the initial values of m and Φ are zero, then Φ(t) = m(t) = 0 is a trivial solution. For
getting a non trivial solution for (5.8), it sufficient to have m(0, .) equal to a small random noise
(or to address a boundary condition on M by setting m(t, 0) equal to a small random noise).

Dimensionless form of the system
Introduce the dimensionless functions as follows. Denoting αref a charactersitic value of αin,

if we define Ê, Φ̂, m̂ by

E = Êαref, Φ = Φ̂αref, m = −im̂αref

cs

√
2γp

1−Nref

Nref
.

and if we set

γ0 = αref
k0

cs

√
γp
2
Nref, ε =

cs
cg
,

then, the previous system reads

∂tÊ +
cs
ε
∂zÊ = −cs

ε
γ0m̂Φ̂,

∂tΦ̂−
cs
ε
∂zΦ̂ =

cs
ε
γ0m̂Êp,

∂tm̂+ cs(iks + ∂z)m̂+ νLm̂ = csγ0ÊpΦ̂.

One can check that the good characteristic time is given by 1/γ0, then we define the dimen-
sionless time and space variables

t′ = γ0t, x = zγ0/cs, η = νL/γ0.

So let us perform the change of notations :

Ê(t, z) = Ep(t′, x), Φ̂(t, z) = Em(t′, x), m̂(t, z) = W (t′, x).

and we get the following dimensionless system :

(ε∂t′ + ∂x)Ep = −EmW,
(ε∂t′ − ∂x)Em = EpW,

∂t′W + (iks + ∂x)W + ηW = EpEm.

Lastly we set

Ep(t, x) = e−i(t
′−εx)ks/2u, Em(t, x) = ei(t

′+εx)ks/2v, W (t, x) = w(t, x)e−it
′ks .
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Then writing t instead of t′, the previous system reads as

(ε∂t + ∂x)u = −wv,(5.10)
(ε∂t − ∂x)v = wv(5.11)

(∂t + ∂x)w + ηw = uv,(5.12)

This system which we call Boyd-Kadomstev system is supplemented with the boundary condi-
tions

u(T, 0) = uin, v(t, L) = 0, w(t, 0) = 0.

where |uin| is in the order of 1. Notice that w(t, 0) may be also a function of t which is small
compared to 1. Of course initial conditions have also to be prescribed, for instance

u(0, .) = u0, v(0, .) = 0, w(0, .) = w0

where u0 and w0 are bounded functions; in general the L∞-norm of u0 is in the order of 1 and
the one of w0 is much smaller than 1. From a mathematical point of view, the problem with
η = 0 is more difficult, so we have chosen to study the Boyd-Kadomstev system it that case.
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