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1 Introduction

In [Br1], M.D.Bronštein proved that the roots of hyperbolic polynomials

(1.1) p(t, τ) = τm +
m∑
k=1

pk(t)τ
m−k.

which depend on t varying in some interval I ⊂ R, are locally Lipschitz func-
tions of t, if the coefficients pk are Cr functions of t and the multiplicity of
the roots does not exceed r; more importantly, he also proved that the roots
are locally uniformly Lipschitz if p depends also continuously of parameters
varying in a compact set.

His proof is based on delicate inequalities between the coefficients pk
implied by hyperbolicity. The goal of this note is to give a different and
simpler proof, based on an induction on the degree. We will also drop
compactness, to keep only uniform bounds of coefficients in W r,∞.

This result is crucial in the proof of other estimates that M.D.Bronštein
proved in his other paper [Br2], on the well posedness in Gevrey spaces
of hyperbolic equations. We will also quickly discuss these estimates in
the last section of this note, as they are indeed equivalent to the Lispchitz
smoothness of the roots.

To fix the notations, we make the following assumption.

Assumption 1.1. For t ∈ I := [−T, T ], p(t, ·) is a monic hyperbolic poly-
nomial of degree m, which means that it has only real roots which denote by
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λ1(t) ≤ . . . ≤ λm(t). We assume that their multiplicity is less than or equal
to r ∈ {1, . . . ,m}. We further assume that all the coefficients pk belong to
the space W r,∞(I) and that

∀k ∈ {1, . . . ,m}, ‖pk‖W r,∞(I) ≤ R,(1.2)

∀t ∈ I, ∀τ, ,
r∑
j=0

|∂jτp(t, τ)| ≥ δ > 0.(1.3)

Here W r,∞(I) denotes the space of functions in L∞ with derivatives up
to order r in L∞. This is the space of Cr−1 functions such that the (r−1)-th
derivative satisfies a Lipschitz condition. The condition (1.3) is a quantitive
way to express that the multiplicities of the roots do not exceed r.

Theorem 1.2. For all T1 < T , there is a constant K which depends on T ,T1,
R, δ and m, such that for all family of polynomials p(t, ·) which satisfies the
Assumption 1.1 one has for all t ∈ [−T1, T1]:

(1.4) p(t, τ) = 0 ⇒ |∂tp(t, τ)| ≤ K|∂τp(t, τ)|.

Moreover, for all j = 1, . . . ,m and t and t′ in [−T1, T1]:

(1.5) |λj(t)− λj(t′)| ≤ K|t− t′|.

The property (1.4) is stated in Lemma 4 of [Br1], as an intermediate step
in the proof of the Lipschitz estimate. The equivalence of (1.4) and (1.5)
for strictly hyperbolic polynomials is immediate, since the implicit function
theorem implies that the roots roots λj and that

∂tλj(t) = −∂tp(t, λj)/∂τp(t, λj).

Approximating p by strictly hyperbolic polynomials, immediately implies
the equivalence of (1.4) and (1.5) (see Lemma 2.5 below an the discussion
which follows).

To prove (1.4) at t0, we will make several reductions. When r < m,
we will factorize p, on an interval of length which depends only on R and
δ, into products of polynomials of degree at most r, and thus the general
case follows from the case where we take r = m. Note that in this case, the
condition (1.3) is trivial since ∂mτ p(t, τ) = m!. Moreover, by translation and
dilatation in t, the key estimate is the following:
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Proposition 1.3. For all R, there is a constant K which depends on R and
m, such that for all family of polynomials p(t, ·) on [−1, 1] which satisfies

(1.6) ∀k ∈ {1, . . . ,m}, ‖pk‖Wm,∞([−1,1]) ≤ R,

then

(1.7) p(0, τ) = 0 ⇒ |∂tp(0, τ)| ≤ K|∂τp(0, τ)|.

This proposition is proved by induction on m in Section 3 and the proof
of Theorem 1.2 is completed in Section 4. Additional remarks are given in
the last Section 5. Before starting the proof we collect in Section 2 several
preliminary lemmas which will be needed later on.

Remark 1.4. The Lipschitz regularity of the root stated in Theorem 1.2 is
local in ]− T, T [ and in general, does not extend to the boundary, as shown
by the example p(t, τ) = τ2 − t on [0, 1]. The estimates are not valid at
t = 0.

Remark 1.5. The condition on the W r,∞ norm of the coefficients is sharp,
in the sense that it cannot be replaced by W s,∞ with s < r. For r = m = 2,
this is seen on the example p(t, τ) = τ2 − a(t) where one can choose a ≥ 0
in W s,∞ with s < 2 and

√
a not Lipschitz. This can be extended in the

following way.

Proposition 1.6. For all m ≥ 2 and ε > 0, there are hyperbolic polynomials
(1.1) with coefficients pk in Cm−ε([−1, 1]) such that there is a root λj(t)
which is not Lipschitz continuous near the origin.

The proof is given in Section 4 below.

2 Preliminaries

In this section, we gather several elementary lemmas which will be useful
during the proof.

2.1 Sets of hyperbolic polynomials

Denote by Pm the set of monic polynomials

(2.1) p(τ) = τm +

m−1∑
k=0

pm−kτ
k =

m∏
j=1

(τ − λj)
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and we identify p with (p1, . . . , pm) ∈ Cm. In particular we use the norm
|p| = max |pk| on Pm. It is also natural to introduce the quantity

(2.2) 〈p〉 = max |pk|1/k,

since for all ρ > 0,

(2.3) pρ(τ) = ρmp(τ/ρ) ⇒ 〈pρ〉 = ρ〈p〉.

Moreover, the roots satisfy

(2.4) ∀j, |λj | ≤ 2〈p〉

since

0 = |p(λj)| ≥ |λj |m
(

1−
m−1∑
k=0

(
〈p〉/|λj |

)m−k)
and the parenthesis is positive when 〈p〉/|λj | < 1/2.

We denote by Hm the set of hyperbolic polynomials, that is polynomials
with only reals roots λj . We label them in nondecreasing order. For p ∈ Hm,
the coefficients pk are real. LetHm0 denote the subset of polynomials p ∈ Hm
such that the coefficient p1 vanishes. In this case, the roots λj satisfy

(2.5) p1 =
∑

λj = 0, p2 = −1

2

∑
λ2j ≤ 0.

This implies that forall k > 2, |pk| ≤ mk|2p2|k/2, or in short

(2.6) p ∈ Hm0 ⇒ 〈p〉 ≤ m|2p2|
1
2 .

2.2 Smooth factorisation

Our proof relies on the factorization of polynomials and a good control of
the factors. It is convenient to introduce the following terminology.

Definition 2.1. We say that there is an holomorphic factorization on a a
neighborhood O of p ∈ Pm if there are holomorphic mappings from φj from
O to Pmj , for j = 1, . . . , l, with 1 ≤ mj < m, such that for all p ∈ O,

(2.7) p(τ) = p1(τ) . . . pl(τ), pj = φj(p).

Recall first the following local result.
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Lemma 2.2. Suppose that p ∈ Pm can be factorized as p1 . . . pl with pj ∈
Pmj with 1 ≤ mj < m with non common roots. Then, there is a neighbor-
hood O and a holomorphic factorization on O with φj(p) = pj. Moreover,
if p is hyperbolic, all the factors φj(p) are hyperbolic.

Proof. Consider sets Dj which contains of all the roots of aj and such that

Dj ∩Dk = ∅ for j 6= k. For p in a neighborhood O of p, p does not vanish
on ∪∂Dj and by Rouché’s theorem p has mj roots in Dj , which yields the
decomposition p = p1 . . . pl. Moreover, the symmetric functions of the roots
of pj are given by

σk(p
j) =

1

2iπ

∫
∂Dj

∂τp(τ)

p(τ)
τkdτ.

Thus they are holomorphic functions of the coefficients of p. Thus the co-
efficients of pj , which are polynomials of the σk(p

j), are also holomorphic
functions of the coefficients of p, proving the first part of the lemma.

Because the roots of pj are roots of p, it is clear that if p is hyperbolic
then all the pj are hyperbolic.

Corollary 2.3. Suppose that K is a compact subset of Pm of polynomials
with roots of multiplicity at mots r < m. Then there is ρ > 0 such that
for all p ∈ K, there is an analytic factorization on the ball of center p and
radius ρ in polynomials pj of degree mj ≤ r.

Proof. By assumption and the lemma, there is an analytic factorization on
a neighborhood of all p ∈ K. By compactness, there is ρ > 0 such that one
can cover K by balls Bj of radius ρ such that there is analytic factorization
on the ball B̃j of radius 2ρ with the same center. All p is contained in one

of the Bj and the ball of center ρ and radius ρ is contained in B̃j .

In particular, we will use the following corollary.

Corollary 2.4. For R > 0, there is ρ > 0 such that for all p ∈ Hm0 such
that

(2.8) |p| ≤ R, |p
2
| ≥ 1.

there is an analytic factorization p = p1p2 on the ball of center p and radius
ρ.

Proof. Denote by K the set of polynomials in Hm0 which satisfy (2.8). The
roots of p ∈ K satisfy

∑
λj = 0 and

∑
λ2j ≥ 2. Therefore there is at

least one positive root and at least one negative root, which shows that the
multiplicities of the roots is strictly less than m.

5



2.3 Approximation by strictly hyperbolic polynomials

Recall the following result proved by W.Nuij [Nuij] .

Lemma 2.5. If p ∈ Hm and ε 6= 0, then pε = (1 + ε∂τ )mp has m distinct
real roots.

For the sake of completeness we sketch the proof. Let p =
∏

(τ − µj)rj
where the µ1 < . . . < µl are distinct. The roots of p+ ε∂τp are the multiple
roots µj of p, with multiplicity decreased by one, and the zeros of f(τ) = 1+
ε
∑
rj/(τ −µj), which vanishes in each interval ]µj , µj+1[ and in −]−∞, µ1[

or in ]µl,+∞[ depending on the sign of ε. Hence p+ ε∂τp has m real roots
counted with their multiplicity and the maximal multiplicity is decreased by
one. Iterating m times, all the roots are real and simple.

2.4 Estimates for functions of one real variable

On intervals I ⊂ R and for integers r ≥ 1, we consider the spaces W r,∞(I)
of functions of class Cr−1 such that the (r − 1)-th derivative is Lipschitz
continuous on I. We give below two elementary lemmas.

Lemma 2.6. There is a consant C which depends only on m such that for
all a ∈Wm,∞([−1, 1]]) and j ≤ m:

(2.9)
∥∥∂jt a∥∥L∞ ≤ C(∥∥a∥∥L∞ +

∥∥∂mt a∥∥L∞).
Proof. Intregratingm times from 0 to t we see that the function b ∈Wm,∞([0, 1])
such that ∂mt b = ∂mt a, ∂jt b(0) = 0 for j < m, is bounded and

‖∂jt b‖L∞ ≤ ‖∂mt a‖L∞ .

Moreover, the function a − b is a polynomial of degree less than m and
therefore its coefficients are bounded by its L∞ norm, and there is a constant
C which depends only on m such that

‖∂jt (a− b)‖L∞ ≤ C‖a− b‖L∞ ≤ C
(
‖a‖L∞ + ‖∂mt a‖L∞

)
.

The lemma follows.

Lemma 2.7. For all nonnegative a ∈W 2,∞([−1, 1]) one has

(2.10) |t| ≤ θ
√
a(0)/M ⇒ 1

2
a(0) ≤ a(t) ≤ 2a(0),

where M = ‖a‖W 2,∞([−1,1]) and θ = (
√

5− 2).
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Proof. Recall first that for nonnegative functions a ∈W 2,∞([−1, 1]):

(2.11) |∂ta(0)| ≤ max
{

(2a(0)‖∂2t a‖L∞)
1
2 , 2a(0)

}
≤ 2M

1
2a(0)

1
2 .

The first estimate follows from the inequality which is valid for all s ∈ [−1, 1]:

0 ≤ a(s) ≤ a(0) + s∂ta(0) +
1

2
s2M2

with M2 = ‖∂2t a‖L∞ . If |∂ta(0)| ≤ M2 we can choose s = −∂ta(0)/M2 and
we find that |∂ta(0)|2 ≤ 2M2|a(0)|. If |∂ta(0)| ≥ M2, we take s = ±1 to
obtain that

0 ≤ a(0)− |∂ta(0)|+ 1

2
M2 ≤ 0 ≤ a(0)− 1

2
|∂ta(0)|

and thus |∂ta(0)| ≤ 2a(0).
Hence, with δ =

√
a(0), one has

|a(t)− δ2| ≤ 2|t|
√
Mδ +

1

2
t2M ≤ 1

2
δ2

if |t| ≤ (
√

5− 2)δ/
√
M proving the lemma.

3 The main induction

In this section we prove Proposition 1.3 by induction on m, the case m = 1
being trivial. So we assume that m ≥ 2 and that the proposition is proved
for polynomials of degree less than m. More precisely, we assume that for
all R1, there is K1 such that for all family of monic hyperbolic polynomials
{q(t, ·), t ∈ [−1, 1]} of degree ≤ m − 1 with Wm−1,∞ coefficients and such
that

(3.1) ∀k, ‖qk‖Wm−1,∞([−1,1]) ≤ R1,

one has

(3.2) q(0, τ) = 0 ⇒ |∂tq(0, τ)| ≤ K1|∂τq(0, τ)|.

We fix R > 0 and we look for K such that (1.7) is satisfied for all family of
polynomials p(t, ·) ∈ Hm which satisfy (1.6).
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We first consider families of hyperbolic polynomials in Hm0 .

Proposition 3.1. Given R, there is K such that for all family of hyperbolic
polynomials {p(t, ·) ∈ Hm0 , t ∈ [−1, 1]}, which satisfies the bound (1.6), the
property (1.7) is satisfied.

Proof. a) Because p(t, ·) ∈ Hm0 , we know that p2(t) ≤ 0. If p2(0) = 0
then, because m ≥ 2, ∂tp2(0) = 0 and |p2(t)| ≤ 1

2R|t|
2. Hence by (2.6) all

the coefficients satisfy pk(t) = O(|t|k). In particular, τ = 0 is the unique
root of p(0, ·) and therefore the estimate is trivially true since ∂τp(0, 0) =
∂tp(0, 0) = 0.

From now on we assume that p2(0) < 0 and we set δ =
√
−p2(0)/2 > 0.

b) Let ρ = (
√

5 − 2)
√

(2/R). By Lemma (2.7), for |t| ≤ ρδ one has
δ2 ≤ −p2(t) ≤ 4δ2. Note that the interval [−ρδ, ρδ] is contained in [−1, 1]
since δ ≤

√
R/2. By (2.6), the coefficients of p satisfy

(3.3) ∀t ∈ [−ρδ, ρδ], |pk| ≤ Cδk

where C depends only on m. For s ∈ [−1, 1], introduce the polynomial

(3.4) q(s, τ) = δ−mp(sρδ, δτ) = τm +

m∑
k=2

qk(s)τ
m−k

the coefficients of which are

(3.5) qk(s) = δ−kpk(ρδs).

The estimate

(3.6) ‖qk‖L∞([−1,1] ≤ C

follow from (3.3). Moreover,

(3.7) |∂ms qk(s)| ≤ ρmδm−k‖∂mt pk‖L∞ ≤ R′,

where R′ depends only on R. Here we crucially use that the order of deriva-
tion is larger than or equal to k, so that the exponent of δ is nonnegative.

By Lemma 2.6 one can interpolate between (3.6) and (3.7) and there is
R′ which depends only on R and m such that

(3.8) ∀j ≤ m,∀s ∈ [−1, 1], |∂jt qk(s)| ≤ R′.

Moreover, by construction

(3.9) −q2(s) = −δ−2p2(sρδ) ≥ 1.

Summing up, we have proved that the q(s, ·) are hyperbolic polynomials in
Hm0 for s ∈ [−1, 1], which satisfy uniform bounds (3.8), and the additional
condition −q2(s) ≥ 1.
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c) By Corollary 2.4 there is ρ > 0, which depends only on R′, and an
analytic factorization q = q1q2 on the ball centered at q(0, ·) of radius ρ.
The condition |q(s, ·)− q(0, ·)| = maxk |qk(s)− qk(0)| ≤ ρ is satisfied on the
interval |s| ≤ ρ/R′, and hence, there is T > 0, T ≤ 1, depending only on R′

and m, such that for s ∈ [−T, T ]

(3.10) q(s, τ) = q1(s, τ)q2(s, τ).

Moreover, the coefficients of q1 and q2 are analytic functions of the coeffi-
cients of q and there is R′′ such that their coefficients satisfy

∀j ≤ m,∀s ∈ [−T, T ], , |∂jt qlk(s)| ≤ R′′.

Consider then q̃l(s, τ) = q(sT, τ) defined for |s| ≤ 1. Then, there is R1,
depending only on R and m, such that the q̃l are of degree less than m and
satisfy the estimates (3.1) of the induction hypothesis. Therefore, there is
K1 which depends only on R1 and m such that the polynomials q̃1 and q̃2

satisfy (3.2). Therefore, the ql satisfy (3.2) with the constant K1/T . At
the roots of q1 one has ∂tq = ∂tq

1q2 and ∂τq = ∂τq
1q2. There is a similar

and symmetric result at the roots of q2. Because q1 and q2 have no root in
common, this implies that

(3.11) q(0, τ) = 0 ⇒ |∂tq(0, τ)| ≤ K1/T |∂τq(0, τ)|.

d) From the definition (3.4) of q, we see that q(0, τ) = 0 is equivalent
to p(0, δτ) = 0 and that

∂sq(0, τ) = δ1−mρ∂tp(0, δτ), ∂τq(0, τ) = δ1−mp(0, δτ).

Hence (3.11) implies that at roots of p(0, τ) = 0

(3.12) |∂tp(t0, τ)| ≤ K1/Tρ |∂τp(t0, τ)|.

This shows that (1.7) is satisfied with the constant K = K1/Tρ which
depends only on R and m.

We now relax the condition p1 = 0 and finish the proof of Proposition 1.3.

Proposition 3.2. Given R, there is K such that for all family of hyperbolic
polynomials {p(t, ·) ∈ Hm, t ∈ [−1, 1]}, which satisfies the bound (1.6), the
property (1.7) is satisfied.
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Proof. Consider

(3.13) p̃(t, τ) = p(τ + p1(t)/m).

The polynomials p̃(t, ·) all belong to Hm0 : one has p̃1 = 0 and the other
coefficients are

p̃k =

k∑
l=0

(m−l
m−k

)
(−p1/m)k−lpl.

Thus, by (1.2),
|∂jt p̃k(t)| ≤ R1

where R1 depends only on R and m. Thus, by Proposition 3.1, there is K1,
depending only on R1, such that

p̃(0, τ) = 0 ⇒ |∂tp̃0, τ)| ≤ K1|∂τ p̃(0, τ)|.

Because

∂tp̃(t, τ) = ∂tp(t, τ + p1/m) +
1

m
∂tp1(t) ∂τp(t, τ + p1/m)

the estimate (1.7) follows with K = K1 +R/m.

The proof of Proposition 1.3 is now complete.

4 Proof of Theorem 1.2

4.1 Proof of (1.4)

Recall the notations. The polynomials are defined for |t| ≤ T and we want
to prove (1.4) for |t0| ≤ T1, where T1 < T are given. By translation, we can
always assume that t0 = 0 and that the polynomials are defined on the fixed
interval |t| ≤ T − T1. By dilation, we can further assume that T − T1 ≥ 1,
and therefore, the estimate (1.4) immediately follows from Proposition 3.2
when r = m.

We now consider the case r < m. In addition to the uniform bound (1.2)
of the W r,∞ norm of the coefficients, we assume (1.3). Again it is sufficient
to prove the estimate for t0 = 0 and T > 0, R and δ are fixed. Consider the
compact set K ⊂ Hm of polynomials with coefficients bounded by R and
satisfying

(4.1) min
τ∈R

r∑
j=0

|∂jτp(τ)| ≥ δ.
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This is a compact set of polynomials with roots of mulitplicity ≤ r. By
Corollary 2.3, there is ρ which depends only on K, that is on R and δ, such
that there is an holomorphic factorisation p = p1 . . . pl for |p − p(0, ·)| ≤ ρ.
Hence, for |t| ≤ ρ/R, there is a factorisation

p(t, τ) = p1(t, τ) . . . pl(t, τ)

where the coefficients of pj are holomorphic functions of the coefficients of
p. Therefore, there is R1, which depends only on R and δ, such that the
W r,∞ norms of the coefficients of the pj are bounded by R1. Moreover, the
pj are hyperbolic of degree at most r. Hence, by the first step, there is K1

such that

(4.2) pj(0, τ) = 0 ⇒ |∂tpj(0, τ)| ≤ K1|∂τpj(0, τ)|.

This implies (1.4) with K = K1R
l−1
1 .

4.2 Proof of (1.5)

As already said, (1.4) and (1.5) are equivalent when p is strictly hyperbolic.
By Lemma 2.5, pε = (1 + ε∂τ )m ∈ Hm and the W r,∞ norm of its coefficients
is uniformly bounded if ε ∈ [0, 1[. Moreover, decreasing δ if necessary, the
property (1.3) remains satisfied uniformly in ε for ε small. Hence, there is
a constant K such that the property (1.4) is satisfied for all pε. Hence, for
ε > 0 small, the roots of pε are simple and satisfy on [−T1, T1]

|λε,j(t)− λε,j(t′)| ≤ K|t− t′|.

The roots are continuous functions of ε and hence (1.5) follows.

4.3 Proof of Proposition 1.6

Consider a strictly hyperbolic polynomial q(τ) with 0 as a root:

(4.3) q(τ) = τm +
m−1∑
k=1

qm−kτ
k.

In particular, qm−1 = ∂τq(0) 6= 0. There is δ > 0 such that for all real
a ∈ [−δ, δ], q(τ) + a is strictly hyperbolic, with roots µ1(a) < . . . < µm(a)
which are analytic in a. One of them, say µj , vanishes at a = 0 and ∂aµj(0) =
−1/qm−1 6= 0. Therefore, decreasing δ if necessary, there is c > 0 such that

(4.4) |a| ≤ δ ⇒ |∂aµj(a)| ≥ c.
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For t ∈ [−1, 1], consider the polynomial

p(t, a, τ) = tm(q(τ/t) + a) = τm +
m−1∑
k=1

tm−kqm−kτ
k + tma.

It is hyperbolic and its roots are tµl(a). In particular, for t > 0, one has
λj(t, a) = tµj(a). Now we chose a = a(t) = δ cos(t−α) with 0 < α < 1/m.
The coefficients p1, . . . , pm−1 of p(t, a(t), ·) are smooth, and the last one
pm(t) = δtm cos(t−1−α) belongs to the Hölder class Cm−mα. On the other
hand, the t derivative of its j-th root is

µj(a(t)) + αδt−α sin(t−α) ∂aµj(a(t)),

which by (4.4) is not bounded as t→ 0.

5 Bronštein estimates for hyperbolic polynomials

In [Br2], M.D Bronštein proved the well posed-ness of the Cauchy prob-
lem in Gevrey spaces for a hyperbolic operator P (t, x,Dt, Dx) , using the
construction of a parametrix for e−tγ(Dx) Petγ(Dx) , with principal symbol
q = 1/P (t, x, τ − iγ(ξ), ξ). The key step is to prove that q is a good symbol,
and this relies on the following estimates.

Theorem 5.1. Suppose that {p(t, ·), t ∈ [−T, T ]} is a family of hyperbolic
polynomials which satisfies Assumption 1.1. Then, for all T1 < T there is
a constant C such that for k ≤ m and l ≤ r, one has for t ∈ [T1, T1] and
τ ∈ C with |Im τ | ≤ 1

(5.1) |Im τ |k+l
∣∣∂kτ ∂ltp(t, τ)

∣∣ ≤ C |p(τ, a)|.

This theorem essentially rephrases the Proposition 2 of [Br2]. What we
want to emphasize here is that these estimates are equivalent to (1.4) (1.5)
so that Theorems 1.2 and 5.1 are somehow equivalent.

The estimates of the τ derivatives are classical, using that

(5.2) |p(t, τ)| ≥ c|Im τ |r

and that m!
k! ∂

k
τ p is monic and hyperbolic with maximal multiplicity at most

r − 1.
The estimates of the derivatives with respect to the parameter t are

proved by induction on the degreem using the following lemma which follows
from (1.4) (1.5). This lemma is implicit in [Br2] at the bottom of page 92,
but it is sufficiently important to be stated on its own.
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Lemma 5.2. Under Assumption 1.1, given T1 < T , there is ε1 > 0 such
that for |ε| ≤ ε1 q = ∂τp+ε∂tp is hyperbolic with roots of multiplicity ≤ r−1.

Proof. For the convenience of the reader we recall the essence of Bronštein’s
proof. Write

(5.3) p(τ, a) = τm +
m∑
k=1

pk(a)τm−k =
m∏
j=1

(τ − λj(a)).

Because p is monic, q is of degree ≤ m− 1 and the coefficient of τm−1 is

(5.4) a(t) = m+ ε∂ap1(t)

Thus there is ε1 > 0 depending only on R, such that for ε ≤ ε1, a ≥ 1
2m

and q is of degree m− 1.
Suppose that µ1 < . . . < µn are the distinct roots of p(t0, ·) with multi-

plicity rj . For k ≤ rj − 1, µj is a root of ∂k−1τ p(t0, ·) and thus (1.4) implies
that there is K, which depends only on T1 and on the bounds R and δ such
that

(5.5) |∂t∂k−1τ p(t0, µj)| ≤ K|∂kτ p(t0, µj)|.

In particular, if rj > 1, µj is a root of ∂τp(t0, ·), thus of ∂tp(t0, ·) and q(t0, ·),
of multiplicity ≥ rj − 1. Moreover (5.5) implies that when τ → µj ,

|∂tp(t0, τ)| ≤
(
K +O

(
|τ − µj |)

)
|∂τp(t0, τ)|.

Therefore, if |ε|K < 1, q(t0, τ)/∂τp(t0, τ) > 0 for τ close to µj .
On ]µj , µj+1[, p(t0, ·) has a constant sign, and ∂τp(t0, ·) has opposite sign

near the ends µj and µj+1. By the remark above, near the ends, q(t0, ·) has
the same sign as ∂τp(t0, ·), provided that |ε|K < 1. Thus q(t0, ·) has opposite
sign near the ends and q has also a root in the interval ]µj , µj+1[. Because q
is of degree m− 1, this implies that q(t0, ·) has only real roots: the µj with
multiplicity rj − 1 and one simple root in each of the interval ]µj , µj+1[.

Proof of Theorem 5.1. We proceed by induction on l.
a) If l = 0, denoting by λj the roots of p, one has

∂kτ p/p =
∑
|I|=k

∏
j∈I

(τ − λj)−1,

where I denotes subsets of {1, . . . ,m} and |I| is the number of elements in
it. The estimate follows since |τ − λj | ≥ |Im τ |.
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b) Similarly, if l = 1, (∂kτ ∂tp)/p is a sum of terms

∇λj′
∏
j∈I

(τ − λj)−1

with |I| = k + 1. The estimate follows, knowing the estimate of ∇λj′ from
Theorem 1.2.

c) Suppose now that the estimate has been proved up to derivatives of
order l − 1. Consider the polynomial

q =
1

a

(
∂τp+ ε∂ap

)
, a = m+ ε∂tp1.

By Lemma 5.2, q is monic and hyperbolic, and for T2 ∈]T1, T [ and ε small,
depending only on R and δ, l the family {q(t, ·), t ∈ [−T2, T2]} satisfies the
Assumption 1.1 for some constants R1 and δ1 which depend only on R and
δ. Hence, one can apply the induction hypothesis to q and conclude that∣∣∂kτ ∂l−1t q(τ, a)

∣∣ ≤ C|Im τ |−k−l+1|q(τ, a)| ≤ C|Im τ |−k−|α||p(τ, a)|,

since, by step b),
|q| ≤ C|Im τ |−1|p|.

One has similar estimates for aq, since a is smooth, and for ∂τp by the
induction hypothesis, thus∣∣ε∂kτ ∂ltp(τ, a)

∣∣ . |Im τ |−k−|α||p(τ, a)|

and the estimate is proved at the order l.

Remark 5.3. Theorems 1.2 and (5.1) are closely related. We have used
the former to prove the latter, but the converse is also true : if the estimates
(5.1) are satisfied, then the main estimate of (1.4) is satisfied. Indeed, it is
sufficient to assume that

γ |∂tp(t0, τ − iγ)| ≤ K1|p(t0, τ − iγ)|.

At a root τ0 of p(t0, τ0) = 0, the right hand side is γ |∂τp(t0, τ0| + O(γ2).
Thus dividing out by γ and letting γ tend to 0 implies that

|∂tp(t0, τ0)| ≤ K1|∂τp(t0, τ0)|.

Remark 5.4. When p(τ, ξ) is polynomial in (τ, ξ) the estimates (5.1) are
proved in a completely different way in [Hör] Theorem 12.4.6, using real al-
gebraic geometry. Bronštein’s theorem is much more general since it applies
when the coefficient are only Cr functions of the parameters.
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Remark 5.5. The estimates (5.1) have another formulation. Introduce

(5.6) p̃(t, s, τ) =

r∑
l=0

1

l!
sl∂ltp(t, τ).

Then, (5.1) implies that for |s| . |Im τ |,

(5.7) |p̃(t, s, τ)| . |p(t, τ)|

and that there is δ > 0 such that for |s| ≤ δ|Im τ |,

(5.8)
1

2
|p(t, τ)| ≤ |p̃(t, s, τ)| ≤ 2|p(t, τ)|.

Note that (5.7) is indeed equivalent to (5.1) for k = 0, since there is a
constant C such that for all polynomial and all γ > 0, q(s) =

∑
l≤r qls

l one
has

C−1 sup γl|ql| ≤ sup
|s|≤γ

|q(s)| ≤ C sup γl|ql|

A direct proof of (5.7) and (5.8) is given in [CNR].
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