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Abstract

In this paper we study the well-posedness of the Cauchy problem for first order hyperbolic systems with
constant multiplicities and with low regularity coefficients depending just on the time variable. We consider
Zygmund and log-Zygmund type assumptions, and we prove well-posedness in H∞ respectively without
loss and with finite loss of derivatives. The key to obtain the results is the construction of a suitable
symmetrizer for our system, which allows us to recover energy estimates (with or without loss) for the
hyperbolic operator under consideration. This can be achievied, in contrast with the classical case of
systems with smooth (say Lipschitz) coefficients, by adding one step in the diagonalization process, and
building the symmetrizer up to the second order.

Mathematical Subject Classification (2010): 35L45 (primary); 35B45, 35B65 (secondary).

Keywords: hyperbolic system with constant multiplicities, Zygmund and log-Zygmund conditions,
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1 Introduction

The present paper is devoted to the analysis of the well-posedness of the Cauchy problem related
to a first order hyperbolic system,

(1) Pu(t, x) := ∂tu(t, x) +
n∑
j=1

Aj(t, x) ∂ju(t, x) ,

under low regularity assumptions on its coefficients. Here, (t, x) ∈ [0, T ]×Rn for some fixed time
T > 0 and integer n ≥ 1, the vectors u(t, x) and Pu(t, x) belong to Rm for some m ≥ 1, and the
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Aj(t, x)’s are m×m real-valued matrices, which will be assumed to be non-Lipschitz with respect
to the time variable.

This study represents a natural extension of the investigation about the well-posedness in
Sobolev classes for the scalar wave operator

(2) Wu(t, x) := ∂2
t u(t, x) −

n∑
j,k=1

∂j
(
ajk(t, x) ∂ku(t, x)

)
,

under the hypothesis of symmetry, boundedness and strict hyperbolicity. Namely, this means that
ajk = akj for any 1 ≤ j, k ≤ n, and that there exist two positive constants 0 < λ0 ≤ Λ0 such that,
for any (t, x) ∈ [0, T ]× Rn and any ξ ∈ Rn,

λ0 |ξ|2 ≤
n∑

j,k=1

ajk(t, x) ξj ξk ≤ Λ0 |ξ|2 .

In [18], Hurd and Sattinger proved that, if the coefficients of operator W are Lipschitz con-
tinuous in time, and even just bounded with respect to x, then the related Cauchy problem is
well-posed in the energy space H1 × L2. The result extends to higher regularity Sobolev spaces
if more smoothness in space variables is assumed for the ajk’s.

After [18], a large number of works have been devoted to recover well-posedness for opera-
tors with non-Lipschitz coefficients, possibly compensating this lack of smoothness with suitable
hypotheses with respect to x.

In work [6], Colombini, De Giorgi and Spagnolo considered the case ajk = ajk(t), and they
introduced an integral log-Lipschitz assumption: there exists a constant C > 0 such that, for any
ε ∈ ]0, T ], one has

(3)
∫ T−ε

0
|ajk(t+ ε) − ajk(t)| dt ≤ C ε log

(
1 +

1

ε

)
.

Under this condition, they were able to prove an energy estimate for W with a fixed loss of
derivatives: there exists a constant δ > 0 such that, for all s ∈ R, the inequality

sup
0≤t≤T

(
‖u(t)‖Hs+1−δ + ‖∂tu(t)‖Hs−δ

)
≤(4)

≤ Cs

(
‖u(0)‖Hs+1 + ‖∂tu(0)‖Hs +

∫ T

0
‖Wu(t)‖Hs−δ dt

)
holds true for all u ∈ C2([0, T ];H∞(Rn)), for some constant Cs depending only on s. In particular,
such an estimate implies the well-posedness of the Cauchy problem for W , but just in the space
H∞, due to the loss of regularity involving u.

Let us immediately point out that, under a (stronger) pointwise log-Lipschitz condition, in-
stead, one can get a loss of derivatives which increases in time: δ in estimate (4) is replaced by
β t, for some constant β > 0 depending just on the coefficients of W .

Moreover, in [5] Cicognani and Colombini proved, by construction of explicit counterexamples,
a classification of the relation between modulus of continuity of the ajk’s and loss of derivatives in
the energy estimates. This result in particular implies the sharpness of estimate (4) (actually, of
its time-dependent version under the pointwise hypothesis), when one just looks at the modulus
of continuity of the coefficients.

The recent work [24] by Tarama changed the point of view where looking at this problem from.
There, again in the case ajk = ajk(t), the author introduced conditions on the second variation of
the coefficients, rather than on their modulus of continuity (i.e. the first variation). In particular,
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he considered integral Zygmund and log-Zygmund conditions, which read (with ` = 0 for the
former, ` = 1 for the latter):

(5)
∫ T−ε

ε
|ajk(t+ ε) + ajk(t− ε) − 2 ajk(t)| dt ≤ C ε log`

(
1 +

1

ε

)
,

for some constant C > 0 and for all ε ∈ ]0, T/2[ . Note that these assumptions are weaker than the
respective ones involving the first difference of the ajk’s; on the other hand, they are related (for
regular functions) to the second derivative, so they set in a different context (in particular, the
result of [5] doesn’t apply). Tarama proved an energy estimate with no loss of derivatives in any
Sobolev spaces Hs ×Hs−1 in the Zygmund instance, and an estimate with fixed loss, analogous
to (4), in the log-Zygmund one.

Let us come back to the case of the hyperbolic system P defined by (1) and let us assume that
P is strictly hyperbolic or hyperbolic with constant multiplicities: for the correct definitions, we
refer to Section 2. For the time being, it’s enough to keep in mind that both these assumptions
imply that the m×m matrix

A(t, x, ξ) :=
n∑
j=1

ξj Aj(t, x)

is diagonalizable at any point (t, x, ξ) ∈ [0, T ]× Rn × Rn.
As said before, we want to extend the analysis performed for the wave operator W . As a

matter of fact, the context is analogous to the one for second order hyperbolic equations: if the
coefficients are Lipschitz continuous both in time and space variables, then the Cauchy problem
for P is well-posed in the energy space L2. For such a result, one can refer to [15], Chapter 7,
or to [21], Chapter 7, and the references therein. In the former textbook, the result is proved
(actually for symmetric systems) by use of a vanishing viscosity argument; in the latter, instead,
it is proved resorting to techniques coming from paradifferential calculus, in view of applications
to the non-linear case (developed in the following chapter).

As for symmetric systems, it’s worth mentioning paper [1] by Bahouri and Chemin: there the
authors were able to prove that the phenomenon of loss of derivatives in the energy estimates,
that we mentioned above for the wave operator W , occurs also for the special case of transport
equations with L1

t (LLx) coefficients (where we denoted with LL the class of log-Lipschitz func-
tions). Moreover, they applied their result to the study of the homogeneous incompressible Euler
equations; we refer to work [14] by Danchin and Paicu for another application, in the context of
the Boussinesq system. We also refer to paper [12] by Danchin for further estimates (with and
without loss of derivatives) for transport and transport-diffusion equations in Besov spaces.

This having been said, let us explain the main ideas of the arguments used in [21] (see also
Chapters 2 and 3 of the same book) for the study of general hyperbolic systems with constant mul-
tiplicities under Lipschitz regularity hypothesis. The main issue is to construct a scalar product
with respect to which the matrix symbol A is self-adjoint: this can be done by use of the projection
operators over the eigenspaces related to A. In fact, hyperbolicity with constant multiplicities
implies microlocal symmetrizability, in the sense of Métivier (see [21], Chapter 7).

Definition 1.1. System (1) is microlocal symmetrizable if there exists a m×m matrix S(t, x, ξ),
homogeneous of degree 0 in ξ, such that:

• ξ 7→ S(t, x, ξ) is C∞ for ξ 6= 0;

• (t, x) 7→ S(t, x, ξ) is W 1,∞ for (t, x) ∈ [0, T ]× Rn;

• for any point (t, x, ξ), the matrix S(t, x, ξ) is self-adjoint;

• there exists a constant λ > 0 such that S(t, x, ξ) ≥ λ Id for any (t, x, ξ);
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• for any point (t, x, ξ), the matrix S(t, x, ξ)A(t, x, ξ) is self-adjoint.

The matrix valued function S is called a symmetrizer for system (1).

Once a symmetrizer for P is found, then, roughly (the dependence on x of the Aj ’s makes
things technically more complicated), one can define the energy as the L2 norm of u with respect
to this scalar product. Thanks to Lipschitz regularity assumptions, differentiation in time and
Gronwall’s lemma easily allow one to find energy estimates.

In the present paper, we will deal with just time-dependent matrices Aj , under the condition
of hyperbolicity with constant multiplicities. We will assume Zygmund and log-Zygmund type
hypothesis, in the same spirit of those considered by Tarama in paper [24], even if, in general, the
pure integral one, i.e. (5), will be precluded to us.

In the Zygmund instance, we will prove energy estimates with no loss of derivatives for P ,
which imply the well-posedness of the Cauchy problem in Hs for any s ∈ R. In the log-Zygmund
case, instead, we will show energy estimates with time-depedent loss of derivatives, which are still
suitable to recover the well-posedness of the Cauchy problem, but only in the space H∞.

In order to prove the results, we will combine the technique for systems we have just explained,
with ideas coming from the analysis of second order equations (2), which actually go back to paper
[6]. So, first of all we regularize the coefficients by convolution with a smoothing kernel. Then, we
pass to the phase space by Fourier transform and, at any point (t, ξ), we construct a symmetrizer
for the approximated system, which will be smooth in time. Nevertheless, due to the low regularity
assumptions on the coefficients, we need to introduce a second step in the diagonalization process,
and add a lower order term to our symmetrizer. On the one hand, thanks to the second term, we
can compensate the bad behaviour of the time derivative (in the energy estimates) of the principal
part of the symmetrizer. On the other hand, linking the approximation parameter with the dual
variable (following the original idea of [6]) we are able to control the loss coming from the time
derivative of the second part (which, we recall, is of lower order).

Let us spend a few words on how constructing the symmetrizer. As we mentioned before,
in the smooth case, if we denote by Πj the projection operators over the eigenspace Ej , the
symmetrizer S is defined by S :=

∑
j Π∗j Πj . By analogy, in our context the principal part S0 of

the symmetrizer will be defined by a similar formula, but we will need to introduce a “suitable”
self-adjoint operator Σ0

j acting on the corresponding eigenspace. Then, we will add a lower order
term S1: for each j, it will introduce “suitable” corrections in the eigenspace Ej , coming from the
other eigenspaces Ek for k 6= j, via operators Σ1

jk : Ek → Ej such that
(
Σ1
jk

)∗
= Σ1

kj . In formula,
we will have

S0 :=
∑
j

Π∗j Σ0
j Πj and S1 :=

∑
j

∑
k 6=j

Π∗jΣ
1
jk Πk .

In both last two sentences above, “suitable” has to be read in function of the cancellations we want
to produce in the energy estimates. The first and main step is to find the Σ0

j ’s: we will reconduct
this issue to the problem of solving a system of ODEs in low regularity Zygmund classes. Notice
that, in particular, we will be below the regularity required by classical existence theory for ODEs.
Nonetheless, by use of tools from Littlewood-Paley theory, we will be able to find approximate
solutions to our ODE system, up to a (smooth) remainder which can be easily controlled in terms
of the energy. Once the Σ0

j ’s are built, a simple algebraic relation allow us to find also the Σ1
jk’s.

We point out here that the constructed S0 will have the same Zygmund regularity of the Aj ’s,
since the Σ0

j ’s will, while S1 will have one degree less of smoothness, because its definition will
involve one time derivative of the original coeffcients.

Let us remark that adding a lower order term in the symmetrizer can be compared with the
choice of Tarama, in [24], of modifing the definition of the classical energy associated to a wave
operator W by introducing a lower order part. Nonetheless, we can transform the wave equation
(2) into a system and apply the machinery we have just explained (see also Section 5): then, the
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“system-energy” doesn’t coincide completely with the original energy defined by Tarama, even if
the result one can obtain is the same. We note here that, in the particular case of systems coming
from an equation, the integral condition (5) is enough to find the result (see also Remarks 2.4
and 4.5).

At this point, it’s interesting to notice also the analogy of our construction of the symmetrizer
with the two-steps diagonalization performed in [10] by Colombini, Del Santo and Reissig, still in
dealing with the wave operator W .

Let us conclude the introduction by pointing out that Zygmund classes can be characterized
as special (possibly logarithmic) Besov spaces: as mentioned before about the construction of the
Σ0
j ’s, in our analysis we will largely exploit Littlewood-Paley theory and “logarithmic paradiffer-

ential calculus” (see Section 3).

Before going on, let us give a brief overview of the paper.
In the next section, we will give the basic definitions and we will state the main results, namely

energy estimates with and without loss and well-posedness of the Cauchy problem for L in suitable
Sobolev spaces.

In Section 3 we will introduce the tools, mainly from Fourier Analysis, we need in our study.
In particular, we will recall the basic points of the Littlewood-Paley theory, extending the classical
construction to logarithmic behaviours.

Section 4 is devoted to the proof of the statements. In particular, we will detail the construction
of a symmetrizer for our system and the computations in order to get energy estimates.

Finally, in Section 5 we will give a concrete example to illustrate our technique. We will come
back to the wave equation (2), we will transform it into a system and we will perform the analysis
we developed in the previous sections. At the end, we will recover the same results Tarama proved
in [24], showing however a slightly different proof.

In the Appendix we will postpone the proofs of some technical results.

Notations

Before going on, let us introduce some notations.
First of all, given two vectors v and w in Cm, we will denote by v ·w the usual scalar product

in Cm and by |v| the usual norm of a vector in Cm:

v · w =
m∑
j=1

vj wj and |v|2 = v · v .

On the contrary, given a infinite-dimensional Banach space X, we will denote by ‖ · ‖X its
norm and, if it’s Hilbert, by ( · , · )X its scalar product. Tipically, for us X = L2(Rn;Rm) or
Hs(Rn;Rm).

We will also set Mm(R) the set of all m ×m matrices whose components are real numbers,
and we will denote by | · |M its norm:

|A|M := sup
|v|=1
|Av| ≡ sup

|v|≤1
|Av| ≡ sup

v 6=0

|Av|
|v|

.

With standard notations, we will denote by D = diag (d1 . . . dm) the diagonal matrix having as
elements the numbers dj , and with A = (v1 | . . . | vm) the matrix having vj as j-th column vector.
We finally set B = (w1 − . . . − wm) the matrix having twk as k-th line vector.
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2 Basic definitions and main results

For m ≥ 1, let us consider the m×m linear first order system

(6) Lu(t, x) = ∂tu(t, x) +
n∑
j=1

Aj(t) ∂ju(t, x)

defined on a strip [0, T ]×Rn, for some time T > 0 and n ≥ 1. We suppose u(t, x) ∈ Rm and, for
all 1 ≤ j ≤ n, the matrices Aj(t) ∈Mm(R).

We define the symbol A associated to the operator L: for all (t, ξ) ∈ [0, T ]× Rn,

(7) A(t, ξ) :=
n∑
j=1

ξj Aj(t) .

Then, for all (t, ξ), A(t, ξ) is an m ×m matrix which has real-valued coefficients. We denote by(
λj(t, ξ)

)
1≤j≤m ⊂ C its eigenvalues at any point (t, ξ).

Remark 2.1. Note that A(t, ξ) is homogeneous of degree 1 in ξ, and this property is inherited
by the eigenvalues. As a matter of facts, for any γ > 0,

A(t, ξ)v(t, ξ) = λ(t, ξ)v(t, ξ) =⇒ A(t, γξ)v(t, ξ) = γλ(t, ξ)v(t, ξ) ;

this relation shows in particular that

v(t, γξ) = v(t, ξ) and λ(t, γξ) = γλ(t, ξ) .

Let us introduce the following definitions (see e.g. [21], Chapter 2).

Definition 2.2. (i) We say that system (6) is strictly hyperbolic if, for all t ∈ [0, T ] and all
ξ 6= 0, the eigenvalues of A(t, ξ) are all real and distinct:(

λj
)

1≤j≤m ⊂ R and λj 6= λk for j 6= k .

(ii) System (6) is said instead to be hyperbolic with constant multiplicities if, for all t ∈ [0, T ] and
all ξ 6= 0, the eigenvalues of A(t, ξ) are real and semi-simple, with constant multiplicities.

We recall that a (possibly complex) eigenvalue is called semi-simple if its algebraic and geo-
metric multiplicities coincide; a matrix is semi-simple if it is diagonalizable in the complex sense.
Then, assuming the system to be hyperbolic with constant multiplicities means that A(t, ξ) is
diagonalizable at any point (t, ξ), its eigenvalues are real and their multiplicities don’t change in
t nor in ξ.

We will always assume our system to be hyperbolic with constant multiplicities. Let us note
that, in particular, under this hypothesis we have

(
λj(t, ξ)

)
1≤j≤m ⊂ R.

Let us turn our attention to the coefficients of L. In the whole paper, we will suppose that,
for all 1 ≤ j ≤ n, the matrix-valued functions Aj belong to L∞:

(8)
∥∥Aj∥∥L∞([0,T ];Mm(R))

:= sup
[0,T ]

∣∣Aj(t)∣∣M ≤ K0 .

In a first time, let us assume that they satisfy a Zygmund regularity condition: there exist a
p ∈ [1,+∞] and a constant Kz > 0 such that, for all 1 ≤ j ≤ n and all 0 < τ < T/2,

(9)
∥∥Aj( · + τ) + Aj( · − τ) − 2Aj( · )

∥∥
Lp([τ,T−τ ];Mm(R))

≤ Kz τ .

Note that this condition tells us that each component of the matrices Aj verifies the same integral
Zygmund condition (as real-valued functions on [0, T ]).

Let us point out that, as we will see in Section 3, if p > 1 then condition (9) already implies
the boundedness property (8).

Under this hypothesis, it’s possible to prove an energy estimate with no loss of derivatives for
our operator L.
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Theorem 2.3. Let us consider the first-order system (6), and let us assume it to be hyperbolic
with constant multiplicities. Suppose moreover that the coefficients

(
Aj
)

1≤j≤n satisfy the Zygmund
condition (9), for some p ∈ ]1,+∞].

Then, for all s ∈ R, there exist positive constants C1, C2 (just depending on s and on Kz)
such that the estimate

(10) sup
t∈[0,T ]

‖u(t)‖Hs ≤ C1 e
C2 T

(
‖u(0)‖Hs +

∫ T

0

∥∥Lu(τ)
∥∥
Hs dτ

)
holds true for any u ∈ C1([0, T ];H∞(Rn;Rm)).

Remark 2.4. We point out that in the previous statement, as well as in Theorem 2.6 below, in
general p has to be strictly greater than 1. We will be clearer about this point in Subsection 4.1,
where we will construct a symmetrizer for L.

However, as we will see in Section 5, in the particular case of systems coming from a second
order scalar equation, the weakest condition p = 1, combined with the additional L∞ assumption
(8), is still suitable to recover energy estimates.

From the previous result, it immediately follows the well-posedness issue of the Cauchy prob-
lem related to operator L.

Theorem 2.5. Under the hypothesis of Theorem 2.3, for any s ∈ R the Cauchy problem for L,

(CP )

{
Lu = f

u|t=0 = u0 ,

is well-posed in Hs(Rn;Rm), globally on [0, T ].
In particular, (CP ) is well-posed in the space H∞ with no loss of derivatives.

Now, let us consider the weaker log-Zygmund condition: there are a p ∈ [1,+∞] and a positive
constant K`z such that, for all 1 ≤ j ≤ n and all 0 < τ < T/2, one has

(11)
∥∥Aj( · + τ) + Aj( · − τ) − 2Aj( · )

∥∥
Lp([τ,T−τ ];Mm(R))

≤ K`z τ log

(
1 +

1

τ

)
.

Again this condition tells us that each component of the matrices Aj verifies the same integral
log-Zygmund condition.

Under this lower regularity assumption, we are able to prove an energy estimate with a finite
loss of derivatives.

Theorem 2.6. Let us consider the first-order system (6), and assume it to be hyperbolic with
constant multiplicities. Suppose moreover that the coefficients

(
Aj
)

1≤j≤n satisfy the log-Zygmund
condition (11), for some p ∈ ]1,+∞].

Then, for all s ∈ R, there exist a positive constants C1, C2 (depending on s and on K`z) and
a β̃ > 0 (depending just on K`z) such that, setting

β(t) := β̃ tγ , with γ =
1

p′
= 1 − 1

p
,

then the estimate

(12) sup
t∈[0,T ]

‖u(t)‖Hs−β(t) ≤ C1 e
C2 T

(
‖u(0)‖Hs +

∫ T

0

∥∥Lu(τ)
∥∥
Hs−β(T )+β(T−τ) dτ

)
holds true for any u ∈ C1

(
[0, T ];H∞(Rn;Rm)

)
.
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Let us stress again the fact that, in general, we do have p > 1. Moreover, in this instance
condition (11) is still enough to recover the boundedness of the coefficients (8).

Remark 2.7. The loss in the right-hand side of (12) is due to the Lp hypothesis with logarithmic
behaviour (11), and it appears a little bit strange, also because it is not suitable for iterations in
time, apart from the case p = +∞ (see Theorem 2.8 below).

We will come back later on this question (see Remark 4.4) when proving the previous estimate.
For the moment, let us note that, if related to the case of scalar second order hyperbolic equations,
such a loss represents the intermediate instance between the fixed loss under an integral log-
Zygmund condition (see paper [24]) and the time-dependent one for its pointwise counterpart (see
e.g. [7] and [8]).

As noticed in the previous remark, in the case p = +∞ one can recover a linear in time loss
of derivatives in the energy estimates. Such an estimate is suitable for iterations in time.

Theorem 2.8. Let us consider the first-order system (6), and assume it to be hyperbolic with
constant multiplicities. Suppose moreover that the coefficients

(
Aj
)

1≤j≤n satisfy the log-Zygmund
condition (11) for p = +∞.

Then, for all s ∈ R, there exist positive constants C1, C2 (depending on s and on K`z) and a
β̃ > 0 (depending just on K`z) such that the estimate

(13) sup
t∈[0,T ]

‖u(t)‖
Hs−β̃t ≤ C1 e

C2 T

(
‖u(0)‖Hs +

∫ T

0

∥∥Lu(τ)
∥∥
Hs−β̃τ dτ

)
holds true for any u ∈ C1

(
[0, T ];H∞(Rn;Rm)

)
.

From Theorem 2.6, it immediately follows the well-posedness issue of the Cauchy problem
related to the operator L, but just in the space H∞, due to the finite loss of derivatives.

Theorem 2.9. Under the hypothesis of Theorem 2.6, the Cauchy problem (CP ) for L is well-posed
in the space H∞(Rn;Rm) with a finite loss of derivatives.

3 Tools

We collect here some notions and results which turn out to be useful in our proof.
In a first time we will recall some basic facts on Littlewood-Paley theory. For the sake of

completeness we will work on the general instance of Rd, with d ≥ 1.
Then, for reasons which will be clear in Subsection 3.2, we will need to introduce the class of

“logarithmic Besov spaces” and to develop paradifferential calculus in this framework. It must be
said, however, that this study involves no special difficulties, and it can be performed as in the
classical case.

This having been done, we will focus on the instance d = 1: we will introduce the Zyg-
mund classes and we will provide a full characterization for them by use of the previous tools.
Fundamental results about solving ODEs in Zygmund spaces will close this section.

3.1 Littlewood-Paley theory

Let us first define the so called “Littlewood-Paley decomposition”, based on a non-homogeneous
dyadic partition of unity with respect to the Fourier variable. We refer to [2] (Chapter 2), paper
[3] and [21] (Chapters 4 and 5) for the details.

So, fix a smooth radial function χ supported in the ball B(0, 2), equal to 1 in a neighborhood
of B(0, 1) and such that r 7→ χ(r e) is nonincreasing over R+ for all unitary vectors e ∈ Rd. Set
ϕ (ξ) = χ (ξ)− χ (2ξ) and ϕj(ξ) := ϕ(2−jξ) for all j ≥ 0.
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The dyadic blocks (∆j)j∈Z are defined by1

∆j := 0 if j ≤ −1, ∆0 := χ(D) and ∆j := ϕ(2−jD) if j ≥ 1.

We also introduce the following low frequency cut-off:

Sju := χ(2−jD)u =
∑
k≤j

∆ku for j ≥ 0.

Throughout the paper we will use freely the following classical property: for any u ∈ S ′, the
equality u =

∑
j ∆ju holds true in S ′.

Let us also mention the so-called Bernstein’s inequalities, which explain the way derivatives
act on spectrally localized functions.

Lemma 3.1. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any
couple (p, q) in [1,+∞]2 with p ≤ q and any function u ∈ Lp, we have, for all λ > 0,

supp û ⊂ B(0, λR) =⇒ ‖∇ku‖Lq ≤ Ck+1 λ
k+d

(
1
p
− 1
q

)
‖u‖Lp ;

supp û ⊂ {ξ ∈ Rd | rλ ≤ |ξ| ≤ Rλ} =⇒ C−k−1 λk‖u‖Lp ≤ ‖∇ku‖Lp ≤ Ck+1 λk‖u‖Lp .

Let us recall the characterization of (classical) Sobolev spaces via dyadic decomposition: for
all s ∈ R there exists a constant Cs > 0 such that

(14)
1

Cs

+∞∑
ν=0

22νs ‖uν‖2L2 ≤ ‖u‖2Hs ≤ Cs

+∞∑
ν=0

22νs ‖uν‖2L2 ,

where we have set uν := ∆νu.
This property was then generalized in [11] to logarithmic Sobolev spaces, which naturally come

into play in the study of hyperbolic operators with low regularity coefficients (at this purpose, see
also [8] and [9]).

Let us set Π(D) := log(2 + |D|), i.e. its symbol is π(ξ) := log(2 + |ξ|).

Definition 3.2. For all α ∈ R, we define the space Hs+α log as the space Π−αHs, i.e.

f ∈ Hs+α log ⇐⇒ Παf ∈ Hs ⇐⇒ πα(ξ)
(
1 + |ξ|2

)s/2
f̂(ξ) ∈ L2 .

We have the following dyadic characterization of these spaces (see [21], Proposition 4.1.11),
which generalizes property (14).

Proposition 3.3. Let s, α ∈ R. A u ∈ S ′ belongs to the space Hs+α log if and only if:

(i) for all k ∈ N, ∆ku ∈ L2(Rd);

(ii) set δk := 2ks (1 + k)α ‖∆ku‖L2 for all k ∈ N, the sequence (δk)k belongs to `2(N).

Moreover, ‖u‖Hs+α log ∼ ‖(δk)k‖`2.

It turns out that also Zygmund classes can be characterized in terms of Littlewood-Paley
decomposition as particular Besov spaces (see the next subsection). We will broadly exploit this
fact in proving our results.

However, for reasons which appear clear in the sequel, we need to introduce logarithmic
functional spaces, in the same spirit of the ones of Definition 3.2, and to develop paradifferential
calculus in this new framework.

1Throughout we agree that f(D) stands for the pseudo-differential operator u 7→ F−1(f Fu).
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3.1.1 Logarithmic Besov spaces

We introduce now the class of logarithmic Besov spaces. We quote and prove here just the basic
results we will need in our computations; we refer to [16] for more properties. Let us point
out that, essentially, everything works as in the classical case, with just slight extensions of the
statements and slight modifications in the arguments of the proofs.

We start with a definition.

Definition 3.4. Let s and α be real numbers, and 1 ≤ p, r ≤ +∞. The non-homogeneous
logarithmic Besov space Bs+α log

p,r is defined as the subset of tempered distributions u for which

‖u‖
Bs+α log
p,r

:=
∥∥∥(2js (1 + j)α ‖∆ju‖Lp

)
j∈N

∥∥∥
`r
< +∞ .

First of all, let us show that the previous definition is independent of the choice of the cut-off
functions defining the Littlewood-Paley decomposition.

Lemma 3.5. Let C ⊂ Rd be a ring, (s, α) ∈ R2 and (p, r) ∈ [1,+∞]2. Let (uj)j∈N be a sequence
of smooth functions such that

supp ûj ⊂ 2j C and
∥∥∥(2js (1 + j)α ‖uj‖Lp

)
j∈N

∥∥∥
`r
< +∞ .

Then u :=
∑

j∈N uj belongs to Bs+α log
p,r and

‖u‖
Bs+α log
p,r

≤ Cs,α

∥∥∥(2js (1 + j)α ‖uj‖Lp
)
j∈N

∥∥∥
`r
.

Proof. By spectral localization, we gather that there exists a n0 ∈ N such that ∆kuj = 0 for all
|k − j| > n0. Therefore

‖∆ku‖Lp ≤
∑

|j−k|≤n0

‖∆kuj‖Lp ≤ C
∑

|j−k|≤n0

‖uj‖Lp .

From these relations it immediately follows that

2ks (1 + k)α ‖∆ku‖Lp ≤ C
∑

|j−k|≤n0

2(k−j)s (1 + k)α

(1 + j)α
2js (1 + j)α ‖uj‖Lp .

Now, as very often in the sequel, we use the fact that

(15)
(1 + k)

(1 + j)
≤ 1 + |k − j| .

Hence, we get
2ks (1 + k)α ‖∆ku‖Lp ≤ C (θ ∗ δ)k ,

where we have set (here IA denote the characteristic function of the set A)

θh := 2hs (1 + h)|α| I[0,n0](h) and δj := 2js (1 + j)α ‖uj‖Lp .

Passing to the `r norm and applying Young’s inequality for convolutions complete the proof.

So, Definition 3.4 makes sense. Of course, for α = 0 we get the classical Besov classes Bs
p,r.

Recall that, for all s ∈ R+\N, the space Bs
∞,∞ coincides with the Hölder space Cs. If s ∈ N,

instead, we set Cs∗ := Bs
∞,∞, to distinguish it from the space Cs of the differentiable functions with

continuous partial derivatives up to the order s. Moreover, the strict inclusion Csb ↪→ Cs∗ holds,
where Csb denotes the subset of Cs functions bounded with all their derivatives up to the order s.
Finally, for s < 0, the “negative Hölder space” Cs is defined as the Besov space Bs

∞,∞.

10



Let us point out that for any k ∈ N and p ∈ [1,+∞], we have the following chain of continuous
embeddings:

Bk
p,1 ↪→W k,p ↪→ Bk

p,∞ ,

where W k,p denotes the classical Sobolev space of Lp functions with all the derivatives up to the
order k in Lp. However, for all s ∈ R, we have the equivalence Bs

2,2 ≡ Hs, as stated by relation
(14), and Proposition 3.3 tells us that this is still true when considering the logarithmic case.

Generally speaking, logarithmic Besov spaces are intermediate classes of functions between
the classical ones. As a matter of fact, we have the following result.

Proposition 3.6. The space Bs1+α1 log
p1,r1 is continuously embedded in the space Bs2+α2 log

p2,r2 whenever
1 ≤ p1 ≤ p2 ≤ +∞ and one of the following conditions holds true:

• s2 = s1 − d (1/p1 − 1/p2) , α2 ≤ α1 and 1 ≤ r1 ≤ r2 ≤ +∞ ;

• s2 = s1 − d (1/p1 − 1/p2) and α1 − α2 > 1 ;

• s2 < s1 − d (1/p1 − 1/p2) .

Proof. As in the classical case, these properties are straightforward consequences of Bernstein’s
inequalities. As a matter of fact, considering for a while the first instance, and just the case
r1 = r2 = 1 thanks to the embeddings of `r spaces, we can write

(16)
+∞∑
j=0

2js2 (1 + j)α2 ‖∆ju‖Lp2 ≤ C

+∞∑
j=0

2js1 (1 + j)α1 ‖∆ju‖Lp1 (1 + j)α2−α1 2js̃ ,

where we have set
s̃ = s2 − s1 − d

(
1

p1
− 1

p2

)
.

Now, in the first instance we have s̃ = 0 and α2 − α1 ≤ 0, and the conclusion follows.
For the proof of the second part, it’s enough to consider the endpoint case r2 = 1, r1 = +∞.

Again, the result issues from (16), with s̃ = 0 and α1 − α2 > 1.
The last sentence can be proved in the same way, again in the limit instance r2 = 1, r1 = +∞,

noting that s̃ < 0, and this behaviour is stronger than the logarithmic one.

Now we want to consider the action of Fourier multipliers on non-homogeneous logarithmic
Besov spaces. First of all, we have to give a more general definition of symbols.

Definition 3.7. A smooth function f : Rd −→ R is said to be a Sm+δ log-multiplier if, for all
multi-index ν ∈ Nd, there exists a constant Cν such that

∀ ξ ∈ Rd ,
∣∣∂νξ f(ξ)

∣∣ ≤ Cν
(
1 + |ξ|

)m−|ν|
logδ

(
1 + |ξ|

)
.

Proposition 3.8. Let m, δ ∈ R and f be a Sm+δ log-multiplier.
Then for all real numbers s and α and all (p, r) ∈ [1,+∞]2, the operator f(D) maps Bs+α log

p,r

into B(s−m)+(α−δ) log
p,r continuously.

Proof. According to Lemma 3.5, it’s enough to prove that, for all j ≥ 0,

2(s−m)j (1 + j)α−δ ‖f(D) ∆ju‖Lp ≤ C 2js (1 + j)α ‖∆ju‖Lp .

Let us deal with low frequencies first. Take a θ ∈ D(Rd) such that θ ≡ 1 in a neighborhood of
suppχ: passing to the phase space, it’s easy to see that f(D) ∆0u = (θf)(D)∆0u. As F−1(θf) ∈
L1, Young’s inequality for convolutions gives us the desired estimate for j = 0.
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Now we focus on high frequencies and we fix a j ≥ 1. Noticing that the function ϕ̃j :=
ϕj−1 + ϕj + ϕj+1 is equal to 1 on the support of ϕj , with easy computations we get the equality

f(D) ∆ju = 2jd Fj(2
j · ) ∗ ∆ju ,

where, denoted ϕ̃ = ϕ0 + ϕ1 + ϕ2, we have set

Fj(x) =
1

(2π)d

∫
Rd
eix·ξ f(2jξ) ϕ̃(ξ) dξ .

Let us prove that Fj ∈ L1. For all N ∈ N, we can write

(1 + |x|2)N Fj(x) =
1

(2π)d

∫
Rdξ
eix·ξ (Id −∆ξ)

N

(
f(2jξ) ϕ̃(ξ)

)
dξ

=
∑

|β|+|γ|≤2N

Cβ,γ
(2π)d

2j|β|
∫
Rdξ
eix·ξ (∂βf)(2jξ) (∂γϕ̃)(ξ) dξ .

In fact, the integration is not performed on the whole Rd, but only on the support of ϕ̃, which
is a ring R := {c ≤ |ξ| ≤ C}, independent of j. Therefore, recalling the definition of Sm+δ log-
multiplier, we gather

(1 + |x|2)N |Fj(x)| ≤ Cd,N 2jm (1 + j)δ ,

which implies that, for N big enough, Fj ∈ L1(Rdx) and ‖Fj‖L1 ≤ C 2mj (1 + j)δ. Young’s
inequality for convolution leads then to the result.

Let us conclude this part with two technical lemmas, which will be immediately useful in the
next paragraph.

We start with a characterization of logarithmic Besov spaces in terms of the low frequencies
cut-off operators. This will be relevant in analysing continuity properties of the paraproduct
operator.

Lemma 3.9. Fix (s, α) ∈ R2 and (p, r) ∈ [1,+∞]2, and let u ∈ S ′ given.

(i) If the sequence
(
2js (1 + j)α ‖Sju‖Lp

)
j∈N belongs to `r, then u ∈ Bs+α log

p,r and

‖u‖
Bs+α log
p,r

≤ C
∥∥∥(2js (1 + j)α ‖Sju‖Lp

)
j∈N

∥∥∥
`r
,

for some constant C > 0 depending only on s and α, but not on u.

(ii) Suppose u ∈ Bs+α log
p,r , with s < 0. Then the sequence

(
2js (1 + j)α ‖Sju‖Lp

)
j∈N ∈ `r, and∥∥∥(2js (1 + j)α ‖Sju‖Lp

)
j∈N

∥∥∥
`r
≤ C̃ ‖u‖

Bs+α log
p,r

,

for some constant C̃ > 0 depending only on s and α.

(iii) In the endpoint case s = 0, one can only infer, for any α ≤ 0,∥∥∥∥∥
(

(1 + j)α ‖Sju‖Lp
)
j∈N

∥∥∥∥∥
`∞

≤ C̃ ‖u‖
B0+α log
p,1

.

Proof. From the definitions, we have ∆j = Sj+1 − Sj . So we can write:

2js (1 + j)α ‖∆ju‖Lp ≤ 2js (1 + j)α
(
‖Sj+1u‖Lp + ‖Sju‖Lp

)
12



≤ 2(j+1)s (2 + j)α ‖Sj+1u‖Lp
(1 + j)α

(2 + j)α
2−s + 2js (1 + j)α ‖Sju‖Lp .

By Minowski’s inequality, we get the first part of the statement.
On the other hand, using the definition of the operator Sj , we have

2js (1 + j)α ‖Sju‖Lp ≤ 2js (1 + j)α
∑
k≤j−1

‖∆ku‖Lp

≤
∑
k≤j−1

2(j−k)s (1 + j)α

(1 + k)α
2ks (1 + k)α ‖∆ku‖Lp

≤ C (θ ∗ δ)j ,

where we have argued as in proving Lemma 3.5, setting

θh := 2hs (1 + h)|α| and δk := 2ks (1 + k)α ‖∆ku‖Lp .

Then, in the case s < 0, the sequence (θh)h ∈ `1; hence, Young’s inequality for convolution gives
us the result.

For the case s = 0, α ≤ 0, we argue as before and we write

(1 + j)α ‖Sju‖Lp =
∑
k≤j−1

(1 + k)−α

(1 + j)−α
(1 + k)α ‖∆ku‖Lp

≤
∑
k≤j−1

j−α

(1 + j)−α
(1 + k)α ‖∆ku‖Lp ;

this relation allows us to conlude, passing to the `∞ norm with respect to j.

The second lemma, instead, will be useful for the analysis of the remainder operator in the
Bony’s paraproduct decomposition.

Lemma 3.10. Let B be a ball of Rd, and the couple (p, r) belong to [1,+∞]2. Let s > 0 and
α ∈ R. Let (uj)j∈N be a sequence of smooth functions such that

supp ûj ⊂ 2jB and
(
2js (1 + j)α ‖uj‖Lp

)
j∈N ∈ `r .

Then the function u :=
∑

j∈N uj belongs to the space Bs+α log
p,r . Moreover, there exists a

constant C, depending only on s and α, such that

‖u‖
Bs+α log
p,r

≤ C
∥∥∥(2js (1 + j)α ‖uj‖Lp

)
j∈N

∥∥∥
`r
.

In the endpoint case s = 0, one can just infer, for any α ≥ 0,

‖u‖
B0+α log
p,∞

≤ C

∥∥∥∥∥
(

(1 + j)α ‖uj‖Lp
)
j∈N

∥∥∥∥∥
`1

.

Proof. We have to estimate ‖∆ku‖Lp ≤
∑

j ‖∆kuj‖Lp .
From our hypothesis on the support of each ûj , we infer that there exists an index n0 ∈ N

such that ∆kuj ≡ 0 for all k > j + n0. Therefore, arguing as already done in previous proofs,

2ks (1 + k)α ‖∆ku‖Lp ≤
∑

j≥k−n0

2(k−j)s (1 + k)α

(1 + j)α
2js (1 + j)α ‖uj‖Lp

≤
∑

j≥k−n0

2(k−j)s (1 + |k − j|)|α| 2js (1 + j)α ‖uj‖Lp .
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So, under the hypothesis s > 0, we can conclude thanks to Young’s inequality for convolutions.
In the second case s = 0 and α ≥ 0, it’s enough to notice that, as k ≤ j + n0,

1 + k

1 + j
≤ 1 + n0 =⇒ 2ks (1 + k)α ‖∆ku‖Lp ≤ (1 + n0)α

∑
j≥k−n0

(1 + j)α ‖uj‖Lp .

Taking then the `∞ norm with respect to k gives us the result also in this instance.

3.1.2 Paradifferential calculus in logarithmic classes

We now reconsider classical paradifferential calculus results, namely about paraproducts and
compositions, in the new logarithmic framework.

Thanks to Littlewood-Paley decomposition, given two tempered distributions u and v, formally
one can write the product u v =

∑
j,k ∆ju∆kv. Now, due to the spectral localization of cut-off

operators, we have the following Bony’s decomposition (which was introduced in paper [3]):

(17) u v = Tuv + Tvu + R(u, v) ,

where we have defined the paraproduct and remainder operators respectively as

Tuv :=
∑
j

Sj−2u∆jv and R(u, v) :=
∑
j

∑
|k−j|≤2

∆ju∆kv .

Let us immediately note that the generic term Sj−2u ∆jv is spectrally supported in a dyadic
annulus 2j C̃, while, for all fixed j,

∑
k ∆ju∆kv is spectrally localized in a ball 2jB. We stress the

fact that both C̃ and B are fixed, and they don’t depend on j.
We start with the continuity properties of the paraproduct operator.

Theorem 3.11. Let (s, α, β) ∈ R3 and t > 0. Let also (p, r, r1, r2) belong to [1,+∞]4.
The paraproduct operator T maps L∞ × Bs+α log

p,r in Bs+α log
p,r , and B−t+β log

∞,r2 × Bs+α log
p,r1 in

B
(s−t)+(α+β) log
p,q , with 1/q := min {1 , 1/r1 + 1/r2}. Moreover, the following estimates hold:

‖Tuv‖Bs+α log
p,r

≤ C ‖u‖L∞ ‖∇v‖B(s−1)+α log
p,r

‖Tuv‖B(s−t)+(α+β) log
p,q

≤ C ‖u‖
B−t+β log
∞,r2

‖∇v‖
B

(s−1)+α log
p,r1

.

Moreover, the second inequality still holds true if t = 0, when β ≤ 0 and r2 = +∞.

Proof. As remarked above, the generic term Sj−2u∆jv is spectrally supported in the ring 2j C̃,
for some fixed ring C̃. Hence, thanks to Lemma 3.5, it’s enough to estimate its Lp norm.

Applying Lemma 3.9 gives us the conclusion.

Let us now state some properties of the remainder operator.

Theorem 3.12. Let (s, t, α, β) ∈ R4 and (p1, p2, r1, r2) ∈ [1,+∞]4 be such that

1

p
:=

1

p1
+

1

p2
≤ 1 and

1

r
:=

1

r1
+

1

r2
≤ 1 .

(i) If s+ t > 0, then there exists a constant C > 0 such that, for any (u, v) ∈ Bs+α log
p1,r1 ×Bt+β log

p2,r2

we have
‖R(u, v)‖

B
(s+t)+(α+β) log
p,r

≤ C ‖u‖
Bs+α log
p1,r1

‖v‖
Bt+β log
p2,r2

.

(ii) If s+ t = 0, α+ β ≥ 0 and r = 1, then there exists a C > 0 such that the inequality

‖R(u, v)‖
B

0+(α+β) log
p,∞

≤ C ‖u‖
Bs+α log
p1,r1

‖v‖
Bt+β log
p2,r2

holds true for any (u, v) ∈ Bs+α log
p1,r1 ×Bt+β log

p2,r2 .
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Proof. We can write R(u, v) =
∑

j Rj , where we have set

Rj :=
∑
|h−j|≤2

∆ju∆hv .

As already pointed out, each Rj is spectrally localized on a ball of radius proportional to 2j .
Hence, from Lemma 3.10 and Hölder’s inequality we immediately infer the first estimate.

In the second case, we apply the second part of Lemma 3.10. As a matter of fact, the following
inequality holds true for all k ≥ 0:

(1 + k)α+β ‖∆kR(u, v)‖Lp ≤ C
∑

j≥k−n0

(1 + j)α ‖∆ju‖Lp1 (1 + j)β ‖∆jv‖Lp2 ,

where, for simplicity, instead of the full Rj , we have considered only the term ∆ju∆jv, the other
ones being similar.

The theorem is completely proved.

We conclude this part with a result on left composition by smooth functions: it generalizes
Proposition 4 of [13] to the logarithmic setting. As the proof is quite technical, we postpone it to
the Appendix.

Theorem 3.13. Let I ⊂ R be an open interval and F : I −→ R a smooth function. Fix a
compact subset J ⊂ I, (p, r) ∈ [1,+∞]2 and (s, α) ∈ R2 such that s > 0, or s = 0, α > 1 and
r = +∞.

Then there exists a constant C > 0 such that, for all functions u which are supported in J and
with ∇u ∈ B(s−1)+α log

p,r , one has ∇(F ◦ u) ∈ B(s−1)+α log
p,r and

‖∇ (F ◦ u)‖
B

(s−1)+α log
p,r

≤ C ‖∇u‖
B

(s−1)+α log
p,r

.

Remark 3.14. We remark that this statement differs from the classical one (see Chapter 2 of
[2] for instance), as we are looking at the regularity of the gradient of F ◦ u, rather than at the
regularity of F ◦ u itself. In fact, this little difference is more adapted to our case.

Note also that other extensions (in the same spirit of those in [2], Paragraph 2.8.2) of the
previous theorem, under finer assumptions on the function f , are possible, but they go beyond
the aims of the present paper.

3.2 Zygmund spaces

Littlewood-Paley decomposition provides us also with a description of Zygmund and log-Zygmund
classes. Before entering into the details, let us recall the “classical” case when p = +∞.

Definition 3.15. A function g ∈ L∞(Rd) is said to be log-Zygmund continuous, and we write
g ∈ LZ(Rd), if the quantity

|g|LZ,∞ := sup
z,y∈Rd, 0<|y|<1

 |g(z + y) + g(z − y) − 2 g(z)|

|y| log
(

1 + 1
|y|

)
 < +∞ .

We set ‖g‖LZ := ‖g‖L∞ + |g|LZ,∞.
The space Z(Rd) of Zygmund continuous functions is defined instead by the condition

|g|Z,∞ := sup
z,y∈Rd, 0<|y|<1

(
|g(z + y) + g(z − y) − 2 g(z)|

|y|

)
< +∞ ,

and, analogously, we set ‖g‖Z := ‖g‖L∞ + |g|Z,∞.
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More in general, one can define Zygmund classes based on Lp conditions, as follows.

Definition 3.16. Let p ∈ [1,+∞]. We define the space Zp(Rd) as the set of f ∈ Lp(Rd) such
that there exists a constant C > 0 for which∥∥f( · + y) + f( · − y) − 2 f( · )

∥∥
Lp(Rd)

≤ C |y|

for all y ∈ Rd with |y| < 1. We denote by |f |Zp the smallest constant C for which the previous
inequality is true, and we set ‖f‖Zp := ‖f‖Lp + |f |Zp .

Similarly, the space LZp is the set of f ∈ Lp(Rd) such that, for some constant C > 0,

∥∥f( · + y) + f( · − y) − 2 f( · )
∥∥
Lp(Rd)

≤ C |y| log

(
1 +

1

|y|

)
for all y ∈ Rd with |y| < 1. We then set |f |LZp the smallest constant C for which the previous
inequality is true, and ‖f‖LZp := ‖f‖Lp + |f |LZp .

Obviously, for any p ∈ [1,+∞], one has Zp ⊂ LZp.
Let us recall that Z ≡ B1

∞,∞ (see e.g. [4], Chapter 2, for the proof), while the space LZ
coincides with the logarithmic Besov space B1−log

∞,∞ (see for instance [8], Section 3). Exactly as for
the L∞ instance, the following proposition holds true (for the proof, see e.g. [17], Section 2).

Proposition 3.17. For any p ∈ [1,+∞], the classes Zp(Rd) and LZp(Rd) coincide, respectively,
with the Besov spaces B1

p,∞(Rd) and B1−log
p,∞ (Rd).

Then, keeping in mind Theorems 3.11 and 3.12 about paraproduct and remainder operators,
we immediately infer the following result.

Corollary 3.18. For any p ∈ [1,+∞], the spaces L∞ ∩ Zp and L∞ ∩ LZp are algebras.

Let us also recall that, in the classical L∞ instance, the Zygmund space Z is continuously
embedded in the space of log-Lipschitz functions, and the analogous holds true also for the log-
Zygmund class LZ (see [8], Section 3). Next lemma generalize this property to the Lp setting:
the proof is analogous to the classical one (see e.g. Proposition 2.107 of [2], or Lemma 3.13 of [8]
for the logarithmic case), so we omit it.

Lemma 3.19. Let f ∈ Zp or f ∈ LZp, for some p ∈ [1,+∞].
Then, setting ` = 0 in the former instance and ` = 1 in the latter one, there exists a constant

C > 0 such that, for all y ∈ RN , |y| < 1, one has

‖f( · + y) − f( · )‖Lp ≤ C |y| log1+`

(
1 +

1

|y|

)
.

3.2.1 The case d = 1

From now on, we will restrict our analysis to the 1-dimensional case, which is definetely the only
one we are interested in.

Thanks to the characterization provided by Proposition 3.17, we get the following property.

Corollary 3.20. Let d = 1 and fix a p ∈ ]1,+∞].
Then the spaces Zp and LZp are algebras continuously embedded in L∞.

Proof. In view of Corollary 3.18, it’s enough to prove the embedding in L∞, of course just for the
logarithmic class.

As 1− 1/p > 0, from Proposition 3.6 we infer B1−log
p,∞ ↪→ Bs

∞,1, for some 0 < s < 1− 1/p (in
fact, the loss is logarithmic), and this space is clearly embedded in L∞.
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Remark 3.21. Let us stress that the previous statement is not true for p = 1.

Now, given a Zygmund function, we can smooth it out by convolution. So, let us fix a
p ∈ [1,+∞] and take a f ∈ Zp(R) or f ∈ LZp(R).

Given an even function ρ ∈ C∞0 (R), 0 ≤ ρ ≤ 1, whose support is contained in the interval
[−1, 1] and such that

∫
ρ(t) dt = 1, we define the mollifier kernel

ρε(t) :=
1

ε
ρ

(
t

ε

)
∀ ε ∈ ]0, 1] .

Then, for all ε ∈ ]0, 1] we set

(18) fε(t) := (ρε ∗ f) (t) =

∫
Rs
ρε(t− s) f(s) ds .

Let us state some properties about the family of functions we obtain in this way: the following
proposition generalizes the approximation results given in [8] and [9] in the L∞ instance.

Proposition 3.22. Let p ∈ [1,+∞] and f belong to Zp or LZp.
Then (fε)ε is a bounded family in Zp or LZp respectively.
Moreover, there exists a constant C > 0, depending only on |f |Zp or |f |LZp , such that the

following inequalities hold true for all ε ∈ ]0, 1]:

‖fε − f‖Lp ≤ C ε log`
(

1 +
1

ε

)
(19)

‖∂tfε‖Lp ≤ C log1+`

(
1 +

1

ε

)
(20)

∥∥∂2
t fε(t)

∥∥
Lp
≤ C

1

ε
log`

(
1 +

1

ε

)
,(21)

where ` = 0 or 1 if f ∈ Zp or f ∈ LZp respectively.

Proof. It’s easy to see that (18) can be rewritten as

fε(t) = ρ̂ε(Dt)f(t) = F−1
τ

(
ρ̂(ετ) f̂(τ)

)
(t) ,

where we have set â = Fta the Fourier transform of a with respect to t, τ the dual variable and
F−1
τ the inverse Fourier transform.
Now, we notice that ρ̂(ετ) is a Fourier multiplier, so it commutes with the operators ∆ν of a

Littlewood-Paley decomposition (again, with respect to t), and that, for any ε ∈ ]0, 1],

‖ρ̂(ε · )‖L∞ = ‖ρ̂‖L∞ ≤ C ‖ρ‖L1 .

Moreover, as ρ ∈ C∞0 , then ρ̂ ∈ S (where S denotes the Schwartz class); this implies, in particular,∥∥∥τα ∂βτ ρ̂(ε · )
∥∥∥
L∞
≤ Cα,β ε

|β| .

Therefore, ρ̂(ετ) is a S0+0 log-multiplier (in the sense of Definition 3.7), uniformly in ε; then, by
Propositions 3.8 and 3.17, if f ∈ Zp we get that also fε ∈ Zp and

‖fε‖Zp ≤ C ‖f‖Zp .

The same arguments apply when working in the space LZp.
Now, let us focus in the case p < +∞, the only new one.
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Using the fact that ρ is even and has unitary integral, we can write

fε(t) − f(t) =
1

2 ε

∫
ρ
(s
ε

) (
f(t+ s) + f(t− s) − 2f(t)

)
ds .

Then, we take the Lp norm: thanks to Minkowski’s inequality (see e.g. [2], Chapter 1), we obtain

‖fε − f‖Lp ≤
1

2 ε

∫
[−ε,ε]

ρ(s/ε) ‖f( · + s) + f( · − s) − 2f( · )‖Lp ds .

At this point, estimate (19) immediately follows, using also the fact that the function s 7→
s log` (1 + 1/s) is increasing in [0, 1] both for ` = 0 and ` = 1.

For (21) we can argue in the same way, recalling that ρ′′ is even and that
∫
ρ′′ = 0.

We have to pay attention to the estimate of the first derivative. As
∫
ρ′ ≡ 0, one has

∂tfε(t) =
1

ε2

∫
|s|≤ε

ρ′
(s
ε

) (
f(t− s)− f(t)

)
ds .

Now, we apply Minkowski’s inequality, as before, and we use Lemma 3.19. Estimate (20) then
follows noticing that the function s 7→ s log2(1 + 1/s) is increasing in [0, s0], for some s0 < 1
(and in [s0, 1] it remains strictly positive).

The proposition is now completely proved.

Remark 3.23. The previous proposition states that the integral hypothesis on the Zygmund
function f gives a control on the corresponding integral norms of the approximating family fε.

Actually, in Corollary 3.20 we have shown that, for p > 1, the embeddings Zp ↪→ LZp ↪→ Cσ
hold true, for some 0 < σ < 1−1/p. Then, arguing as in the last part of the proof, we immediately
infer also pointwise controls: for any t,∣∣fε(t) − f(t)

∣∣ ≤ C εσ |f |LZp and
∣∣∂tfε(t)∣∣ ≤ C

ε1−σ |f |LZp

(and analogous for the Zp instance). This property obviously extends to matrix-valued functions.

We conclude this part with fundamental ODE results. The first one mainly states that, in our
functional framework, we can solve the equation

f ′ = g

only in an approximate way: we can’t find an exact primitive of g in the Zygmund classes.
The problem is the control of the low frequencies, and it’s very much linked with Bernstein’s
inequalities.

Proposition 3.24. (i) If f ∈ B1
p,∞ or B1−log

p,∞ , then ∂tf ∈ B0
p,∞ or B0−log

p,∞ respectively.

(ii) Let g ∈ B0
p,∞ or B0−log

p,∞ . Then there exists f ∈ B1
p,∞ or B1−log

p,∞ respectively, such that

r := ∂tf − g ∈ B∞p,∞ :=
⋂
s∈R

Bs
p,∞ .

Moreover, if we have a bounded family (gε)ε ⊂ B0
p,∞ or B0−log

p,∞ , then also the correspond-
ing family of solutions (fε)ε and of remainders (rε)ε are bounded sets in their respective
functional spaces.
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Proof. The first property is a straightforward consequence of Bernstein’s inequalities. So, let us
focus on the second statement.

In order to cut off the low frequencies, we fix a function θ ∈ C∞(Rτ ) such that θ ≡ 0 in a
neighborhood of 0 and θ ≡ 1 for |τ | ≥ 1. We then define f in the phase space by the formula

f̂(τ) :=
1

i τ
θ(τ) ĝ(τ) .

First of all, we want to prove that f belongs to the right space.
We start noticing that, for any ν ≥ 1, we have ϕ̃ν := ϕν−1 + ϕν + ϕν+1 ≡ 1 on the support

of ϕν (recall that ϕ0 ≡ ϕ, see the beginning of Subsection 3.1); hence, we infer the equality

(22) ϕν(τ) f̂(τ) =
1

i τ
θ(τ) ϕ̃ν(τ)ϕν(τ) ĝ(τ) .

However, due to the properties of θ, for any ν ≥ 2 we have θ ϕ̃ν ≡ ϕ̃ν . So, let us define the
function ψ̂ ∈ C∞0 (and vanishing near the origin) by the formula

ψ̂(τ) :=
1

i τ
ϕ̃1(τ) .

Taking the inverse Fourier transform of relation (22), for any ν ≥ 2 we find

(23) ∆νf = 2−ν ψν ∗ ∆νg ,

where ψ̂ν is given by ψ̂ν(τ) := ψ̂ (2−ν τ), which trivially implies ψν(t) = 2ν ψ (2νt).
Let us now consider low frequencies. Again from (22) we find

ϕ1(τ) f̂(τ) =
1

i τ
θ(τ) ϕ̃1(τ)ϕ1(τ) ĝ(τ) and χ(τ) f̂(τ) =

1

i τ
θ(τ) χ̃(τ)χ(τ) ĝ(τ) ,

where we introduced another cut-off function χ̃, supported in (say) the ball B(0, 2) and equal to
1 on the support of χ (introduced at the beginning of Subsection 3.1).

From these relations and (23), taking into account the properties of g, θ, ϕ̃1 and χ̃, we
immediately get that f belongs to the right Zygmund class.

Now, to prove the regularity of the remainder term, it’s enough to observe that

r := ∂tf − g =
(
θ − 1

)
g ∈ B0

p,∞ (or B0−log
p,∞ )

has compact spectrum, hence it belongs to any Bs
p,r for any s ∈ R and any r ∈ [1,+∞].

Finally, from the previous proof (see also relation (23) for f) one gathers

‖f‖B1
p,∞
≤ C ‖g‖B0

p,∞
and ‖r‖Bsp,∞ ≤ Cs ‖g‖B0

p,∞
.

Then, the last sentence immediately follows.

Note that the previous construction provides us with a linear continuous operator

(24) J : B0−` log
p,∞ −→ B1−` log

p,∞

(as usual, ` = 0 or ` = 1 if we are in the Zygmund or in the log-Zygmund instance respectively)
such that Ju is an approximated primitive of u:

(25) ∂tJu − u ∈ B∞p,∞ .

The construction of J depends just on the smooth function θ we fix at the beginning, and it
is easy to see that its norm is given by

max

{
‖ψ‖L1 ,

∥∥∥∥F−1

(
1

τ
θ(τ) ϕ̃1(τ)

)∥∥∥∥
L1

,

∥∥∥∥F−1

(
1

τ
θ(τ) χ̃(τ)

)∥∥∥∥
L1

}
.

For any µ ∈ N, let us now set θµ(τ) := θ
(
2−µ τ

)
and define the operator Jµ following the

previous construction, but using θµ instead of θ. Obviously, properties (24) and (25) holds true
also for Jµ.
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Lemma 3.25. For any µ ≥ 5, the operator Jµ maps continuously B0
p,∞ into B1

p,∞, and its norm
‖Jµ‖L(B0

p,∞→B1
p,∞) is independent of µ.

For any fixed 0 < s < 1, instead, ‖Jµ‖L(B0
p,∞→Bsp,∞) ≤ C 2−µ(1−s).

The same holds true in logarithmic classes.

Proof. Arguing as before, for any ν ∈ N we arrive at the formula

ϕν(τ) f̂(τ) =
1

i τ
θ(2−µτ) ϕ̃ν(τ)ϕν(τ) ĝ(τ) .

By spectral localization, there exists a νµ = µ+ 2 such that, if ν > νµ then θ(2−µτ) ϕ̃ν(τ) ≡
ϕ̃ν(τ), and there exists a νµ = µ− 3 such that θ(2−µτ) ϕ̃ν(τ) ≡ 0 for ν < νµ.

Hence, for ν > νµ formula (23) holds true, and from it we infer the estimate

(26) ‖∆νf‖Lp ≤ 2−ν ‖ψ‖L1 ‖∆νg‖Lp .

For νµ ≤ ν ≤ νµ, instead, we have the equality

(27) ∆νf = 2−ν ψ̃ν,ν−µ ∗ ∆νg ,

where we have set F
(
ψ̃ν,ν−µ

)
(τ) = F

(
ψ̃1,ν−µ

)
(2−ν τ), with

F
(
ψ̃1,ν−µ

)
(τ) :=

1

i τ
θ(2ν−µτ) ϕ̃1(τ) .

In other words, for any ν, the Fourier transform of ψ̃ν,ν−µ is the rescaled of the Fourier transform
of a fixed ψ̃1,ν−µ: actually, this function doesn’t depend neither on ν nor on µ, but just on their
difference −3 ≤ ν − µ ≤ 2. Then, the contribution to the norm of the operator Jµ comes from
the L1 norms of a finite number of terms:

F
(
ψ̃1,−3

)
, F

(
ψ̃1,−2

)
. . . F

(
ψ̃1,2

)
.

Therefore, for any νµ ≤ ν ≤ νµ, by (27) we get

(28) ‖∆νf‖Lp ≤ 2−ν ‖ψ̃1,ν−µ‖L1 ‖∆νg‖Lp ,

and the norm of each ψ̃1,ν−µ doesn’t depend on ν, neither on µ.
From (26) and (28) it’s easy to get the conclusion.

Working component by component, the previous lemma extends to the case of matrix valued
functions. Hence, we can generalize Proposition 3.24 to the case of first order systems of ODEs.

Proposition 3.26. Let k ∈ N and let M ∈ B0
p,∞
(
R ; Mk(R)

)
.

Then, for any X0 ∈ Rk, there exists a vector X ∈ B1
p,∞
(
R ; Rk

)
such that X(0) = X0 and

∂tX − MX ∈ B∞p,∞
(
R ; Rk

)
.

The same statement holds true in logarithmic Zygmund classes.

Proof. By (25), it’s enough to solve the “integral” equation

(29) X = Jµ
(
MX

)
+ X0

where µ ∈ N will be chosen later on.
We apply the classical Picard iteration scheme. Let us define X0 := X0 and, for any n ∈ N,

Xn+1 := Jµ
(
M Xn

)
+ X0 .
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By (24) and Theorems 3.11 and 3.12, it’s easy to see that
(
Xn
)
n
⊂ B1

p,∞.
We claim now that

(
Xn
)
n
is a Cauchy sequence in the space Bs

p,∞, for a fixed 1/p < s < 1
and for µ large enough. As a matter of facts, by definition of Xn and Lemma 3.25, for any n ∈ N
we have ∥∥Xn+1 − Xn

∥∥
Bsp,∞

=
∥∥Jµ(M (Xn − Xn−1)

)∥∥
Bsp,∞

≤
∥∥Jµ∥∥L(B0

p,∞→Bsp,∞)
‖M‖B0

p,∞

∥∥Xn − Xn−1
∥∥
Bsp,∞

≤ C 2−µ(1−s) ‖M‖B0
p,∞

∥∥Xn − Xn−1
∥∥
Bsp,∞

and from this estimate we infer the claim.
Therefore, there exists a unique X ∈ Bs

p,∞ such that Xn → X in this space, and then X
solves equation (29). Using again (24) and the properties of paraproduct and remainder operators,
we see that, actually, X ∈ B1

p,∞. Finally, we have that ∂tX −MX = ∂tJµ
(
MX

)
−MX belongs

to B∞p,∞ by (25).

Remark 3.27. Notice that, whenever we change µ ∈ N, we get a different solution X(µ) to
equation (29) with initial datum X0: actually, by construction these solutions coincide for low
enough and high enough frequencies. However, from Lemma 3.25 we get that their B1

p,∞ norm is
independent of µ: then, thanks to the embedding Bs

p,∞ ↪→ L∞ for a fixed 1/p < s < 1, we can
write ∥∥∥X(µ) − X0

∥∥∥
L∞

≤ C 2−µ(1−s) ‖M‖B0
p,∞

∥∥∥X(µ)
∥∥∥
Bsp,∞

≤ C 2−µ(1−s) ‖M‖B0
p,∞

∥∥∥X(µ)
∥∥∥
B1
p,∞
≤ C ′ 2−µ(1−s) ,

where C ′ doesn’t depend on µ.

4 Proof of the main results

Let us now tackle the proof of our main results about energy estimates.
The key will be to build a symmetrizer for our operator L. However, in contrast with the

classical case, we have to add one step and continue the construction up to the second order, due
to the low regularity of the coefficients Aj .

We immediately point out that, up to extend our coefficients out of the interval [0, T ], we can
suppose that they are defined on the whole line R. So, the analysis we performed in the pervious
section applies.

By hypothesis of hyperbolicity with constant multiplicities, at any point (t, ξ) ∈ [0, T ] × Rn
we can fix a basis

(
rj(t, ξ)

)
1≤j≤m of (real-valued normalized) eigenvectors of A(t, ξ), we can order

the eigenvalues in a decreasing way,

λ1(t, ξ) ≥ . . . ≥ λm(t, ξ) ,

and we can write A(t, ξ) = P (t, ξ) Λ(t, ξ)
(
P−1

)
(t, ξ), where we have set

Λ(t, ξ) := diag
(
λ1(t, ξ) , . . . , λm(t, ξ)

)
and P (t, ξ) :=

(
r1(t, ξ) | . . . | rm(t, ξ)

)
.

Remark 4.1. By linear operators perturbation theory, the hyperbolicity with constant multi-
plicities implies that the λj ’s are analytic functions of the elements of the matrix, and so are
the eigenprojectors Πk’s. The eigenvectors, instead, preserve the same regularity of the initial
coefficients only locally: in fact, if we choose an eigenbasis

(
rj(0, ξ)

)
1≤j≤m at t = 0, then at any

t we can extract a basis of eigenvectors from the family
(
Πk(t, ξ) rj(0, ξ)

)
j,k

.
One can refer e.g. to Chapter 2 of [19] or to Appendix 3.I of [23] for a more in-deep analysis

of the problem.
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By previous remark, the λj ’s and the vectors rj ’s inherit (at least locally) the Zygmund
regularity of the coefficients of the matrix symbol A(t, ξ). Notice that the local regularity in time
is enough for our scopes, due to the local characterization of the Zygmund spaces (recall Definition
3.16, and see inequality (46) below). As for the dual variable, instead, we will need no special
smoothness, as we will work at any fixed ξ ∈ Rn.

We now smooth out the coefficients of Λ and P by convolution with respect to time, as
explained by formula (18), and we get the two matrices Λε := diag (λ1,ε . . . λm,ε) and Pε :=
(r1,ε| . . . |rm,ε).

Note that, by the properties of the convolution, we obtain

λ1,ε(t, ξ) ≥ . . . ≥ λm,ε(t, ξ)

(where the multiplicities are preserved), while the rj,ε’s are still linearly independent, at least
for small ε (recall that the set of invertible matrices is open in Mm(R)). Finally, thanks to
Proposition 3.22, the λj,ε’s and the rj,ε’s have the same Zygmund regularity (with respect to t)
as A, uniformly in ε.

Therefore, if we define, for any ε ∈ ]0, 1], any t ∈ R and any ξ ∈ Rn,

(30) Aε(t, ξ) := Pε(t, ξ) Λε(t, ξ) (Pε)
−1 (t, ξ) ,

then Aε(t, ξ) is still hyperbolic with constant multiplicities (by construction), it preserves the
Zygmund regularity with respect to time (by Corollary 3.20) and it approximates the original
matrix A(t, ξ) in the sense of Proposition 3.22.

Note that, by construction, the line vectors of Qε := (Pε)
−1, which we’ll call t`j,ε, are left-

eigenvectors for Aε, i.e. they are eigenvectors of the adjoint matrix A∗ε(t, ξ):

(31) t`j,ε(t, ξ) · Aε(t, ξ) = λj,ε(t, ξ)
t`j,ε(t, ξ)

for all ε, t and ξ. Moreover, by definition we have

(32) `j,ε(t, ξ) · rk,ε(t, ξ) = δjk ,

where we have denoted by δjk the Kronecker delta.

4.1 Construction of the symmetrizer

We present here the key to the proof of the energy estimates: the construction of a symmetrizer
for operator L. Actually, for any ε, we will find a symmetrizer for the regularized symbol Aε(t, ξ),
defined by relation (30), in order to deal with smooth functions, that we can differentiate in time.

We point out here that we will work at any fixed ξ 6= 0.

In view of what we said before, we define

(33) Sε(t, ξ) := S0
ε (t, ξ) + |ξ|−1 S1

ε (t, ξ) ,

where S0
ε and S1

ε are two self-adjoint matrices we have to build up in a suitable way. We point out
here that the role of S1

ε is to kill the bad terms coming from the time derivatives of the elements
of S0

ε in the energy estimates. On the other side, as the second term is of lower order, the time
derivatives of S1

ε will be easily controlled in terms of the energy.
We start by proving the following statement.

Lemma 4.2. Assume the hypothesis of Theorem 2.3 (or Theorem 2.6), fix ξ 6= 0 and define the
approximate matrix symbol Aε by relation (30).

There exist two families of m × m real-valued self-adjoint matrices, which are smooth with
respect to t and such that:
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•
(
S0
ε

)
ε
is bounded in B1

p,∞ (or B1−log
p,∞ respectively);

• the S0
ε ’s are uniformly positive definite: S0

εv · v ≥ C|v|2 for any v ∈ Cm, for a constant
C > 0 depending just on the functional norms of the coefficients of operator L;

•
(
S1
ε

)
ε
is bounded in B0

p,∞ (or B0−log
p,∞ respectively).

Moreover, for any ε ∈ ]0, 1], the matrices S0
ε and S1

ε satisfy the relation

(34) ∂tS
0
ε û · û + 2 Re

(
−i |ξ|−1 S1

εAεû · û
)

= Rεû · û ,

where the family of remainders
(
Rε
)
ε
is bounded in L∞

(
[0, T ];Mm(R)

)
.

Proof. For notation convenience, from now on we will drop out the dependence on ε, even if we
will always work with smoothed matrices, vectors and coefficients.

Let us write S0 and S1 in the form (recall that we have defined Q = P−1)

S0 = Q∗Σ0Q and S1 = Q∗Σ1Q ,

where Σ0 and Σ1 are two suitable self-adjoint matrices, to be found. In particular, we will
construct them such that Σ0 is real-valued, while Σ1 is pure imaginary.

Notice that, for any v ∈ Cm,

2Re
(
−i |ξ|−1 S1Av · v

)
= 2Re

(
−i |ξ|−1Q∗Σ1 ΛQv · v

)
= |ξ|−1

(
−iQ∗Σ1ΛQv · v + −iQ∗Σ1ΛQv · v

)
= i |ξ|−1

(
−Q∗Σ1ΛQv · v + Q∗ΛΣ1Qv · v

)
,

where, in the last step, we passed to the adjoint and we used the properties of the scalar product.
Using this last relation, we can rewrite the left-hand side of equation (34) in the form

∂tS
0û · û + 2 Re

(
−i |ξ|−1 S1Aû · û

)
= Q∗GQ û · û ,

where, setting Θ := ∂tQQ
−1 = ∂tQP and [A,B] = AB − BA the commutator between two

operators, we have defined

(35) G := ∂tΣ
0 + Σ0 Θ + Θ∗Σ0 + i |ξ|−1

[
Λ,Σ1

]
.

Therefore, we are going to construct Σ0 and Σ1 in order to satisfy the relation G = 0 in an
approximate way.

Strictly hyperbolic case. Let us consider for a while the strictly hyperbolic case, i.e. all the
λj ’s are distinct. In this case, we impose Σ0 diagonal.

We will proceed in two steps: first of all, we will use Σ0 to cancel out the diagonal terms of
G, and then Σ1 to put also the other elements to 0.

Before going on, some notations are in order. We set

Σ0 = diag
(
σj
)

1≤j≤m and Σ1 =
(
σ̃jk
)

1≤j,k≤m ;

recall that, by our requirements, Σ1 is null on the diagonal: σ̃jj = 0. We denote also G =
(
gjk
)
j,k

and Θ =
(
θjk
)
j,k

. Note that all these matrices, except Σ1, are real-valued.

(i) G ∼ 0: diagonal elements
Let us read equation (35) on the diagonal terms: for any 1 ≤ j ≤ m we find

gjj = ∂tσj + 2σj θjj = 0 .
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In order to solve this equation, we set σj(t) = exp
(
ωj(t)

)
, with σj(0) = 1: then, recalling also the

definition of Θ, we are reconducted to the ODEs (for any j)

(36) ∂tωj = −2 θjj = −2 ∂t`j · rj = −2
m∑
h=1

∂tqjh phj ,

with the initial condition ωj(0) = 0.
As already pointed out, the qjk’s and pjk’s both belong to B1

p,∞ (under hypothesis (9)) or
B1−log
p,∞ (under hypothesis (11)). So, thanks to the embedding B0

p,∞ ↪→ B
−1/p
∞,∞ (or the analogous one

in the logarithmic instance) and to Theorems 3.11 and 3.12 (recall also that p > 1 by assumption),
it’s easy to see that the right-hand side of (36) belongs to B0

p,∞ (or B0−log
p,∞ respectively).

Then, by Proposition 3.24, we can find an approximate solution of (36): there exist functions
ωj ∈ B1

p,∞ (or B1−log
p,∞ rispectively) and ρj ∈ B∞r,∞ such that

∂tωj + 2 θjj = ρj .

So, the matrix Σ0 is determined. Notice that there exists a constant K such that Σ0 ≥ KId .
(ii) G ∼ 0: terms out of the diagonal
Let us now consider equation (35) out of the diagonal. For any j 6= k we easily get

(37) gjk = σj θjk + σk θkj + i |ξ|−1 (λj − λk) σ̃jk .

We want a more explicit formula. Differentiating relation (31) with respect to time, we find

t∂t`j (A − λj) + t`j (∂tA − ∂tλj) = 0 .

We now evaluate it on the right eigenvector rk, with k 6= j: keeping in mind (32), we arrive to
the following expression:

(38) (λk − λj) ∂t`j · rk + `j ∂tArk = 0 =⇒ θjk =
1

λj − λk
`j ∂tArk .

Putting this formula into (37), one immediately gathers, for any j 6= k,

(39) σ̃jk =
i |ξ|

(λj − λk)2

(
σj `j ∂tArk − σk `k ∂tArj

)
.

Note that, by Remark 2.1, each σ̃jk is a homogeneous function of degree 0 in ξ.
The symmetrizer is now completely determined in the case of strict hyperbolicity.

The case of multiplicities bigger than 1. Recall that we denoted by mh the multiplicity of
the eigenvalue λh: then, the matrix Λ is block diagonal, and each block is the mh ×mh matrix
λhId , i.e.

λj = λh for all jh ≤ j ≤ jh +mh − 1 ,

where jh =
∑h−1

l=1 ml.
So, we will define Σ0 to be zero out of the diagonal blocks: Σ0 :=

(
σjk
)
j,k

, with

(j, k) 6∈ [jh, jh +mh − 1]2 for all h =⇒ σjk = 0 .

Σ1 =
(
σ̃jk
)
j,k

, instead, will be taken with all 0’s in these blocks.
As done before, let us first annihilate the diagonal blocks of G (up to a remainder). Take j:

for some h, j ∈ [jh, jh +mh − 1]. Then, for k in the same interval, we will have

(40) gjk = ∂tσjk +

jh+mh−1∑
l=jh

(
σjl θlk + θlj σkl

)
.
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It’s possible to see that the condition gjk = 0, for such a range of j and k, is equivalent to a
system of first order ODEs

(41) ∂tX = MX ,

where the vector X contains the σjk’s, while the coefficients of the matrixM are sums of elements
of Θ. Hence, M ∈ B0

p,∞ (or B0−log
p,∞ in the logarithmic instance). Then, applying Proposition 3.26,

we can solve (41) with the initial condition σjk(0) = δjk: there exist
(
σjk
)
jk
⊂ B1

p,∞ (or B1−log
p,∞ )

and
(
ρjk
)
jk
⊂ B∞p,∞ such that

∂tσjk +

jh+mh−1∑
l=jh

(
σjl θlk + θlj σkl

)
= ρjk .

Notice that, by equation (40), it’s easy to see that Σ0 is symmetric. Moreover, by Remark
3.27, we can solve (41) for µ large enough, such that Σ0 remains a strictly positive matrix for all
(t, ξ): for any v ∈ Cm,

Σ0v · v ≥ |v|2 −
∣∣(Σ0 − Id

)
v · v

∣∣ ≥ (1 − C ′ 2−µ(1−s)
)
|v|2 ,

where 1/p < s < 1 is the index we fixed in Proposition 3.26.
Let us now work on the terms out of the diagonal blocks. Fix j ∈ [jh, jh + mh − 1] and

k ∈ [jh′ , jh′ +mh′ − 1], with h 6= h′. Then (37) becomes

gjk =

jh′+mh′−1∑
l=jh′

θlj σlk +

jh+mh−1∑
l=jh

σjl θlk + i |ξ|−1σ̃jk
(
λh′ − λh

)
.

If we replace now the values of θjk given by (38), it’s easy to see that a formula like (39) still
holds true. In particular, Σ1 is self-adjoint and homogeneous of degree 0 in ξ 6= 0.

So, let us sum up what we have found.
Thanks to the previous computations, we constructed approximated matrices Sε of the form

(33). Notice that S0
ε and S1

ε fulfill relation (34), with the remainder defined by the matrix
Rε := diag

(
ρj,ε exp

(
ωj,ε
))

1≤j≤m in the strictly hyperbolic case, and Rε :=
(
ρjk,ε

)
j,k

in the one
with constant multiplicities.

We point out also that the family
(
S0
ε

)
ε
is bounded in B1

p,∞ (or B1−log
p,∞ ),

(
S1
ε

)
ε
is bounded in

B0
p,∞ (or B0−log

p,∞ respectively) and, thanks to Theorem 3.13 and embeddings, (Rε)ε is bounded in
the space L∞.

Lemma 4.2 is completely proved.

We now link the approximation parameter with the dual variable, following the original idea
of paper [6]: we set

(42) ε = |ξ|−1 .

Note that, in this way, we will restrict to the case of high frequencies, more precisely to |ξ| ≥ 1.
However, for low frequencies it’s easy to get the desired estimates (see the next subsection).

Then, the matrix symbol S1/|ξ|, defined by (33), is a microlocal symmetrizer for the approxi-
mated system

Lεu = ∂tu +

n∑
j=1

Aj,ε(t) ∂ju .

More precisely, we have the following proposition.
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Proposition 4.3. Let us define Sε by equation (33), with S0
ε and S1

ε given by Lemma 4.2 and ε
given by the choice (42).

Then, S1/|ξ| enjoys the following properties:

• S1/|ξ| is self-adjoint;

• for any t and |ξ| ≥ R0 (for a R0 > 0 just depending on the constants Kz in (9) and K`z in
(11) for the Zygmund and log-Zygmund instances respectively), it’s self-adjoint, uniformly
bounded and (uniformly) positive definite: there exist constants 0 < K1 ≤ K2 such that, for
any v ∈ Cm,

K1 |v|2 ≤ S1/|ξ|v · v ≤ K2 |v|2 ;

• for all (t, ξ), the matrix S0
1/|ξ|(t, ξ)A1/|ξ|(t, ξ) is self-adjoint.

Proof. The proposition is an immediate consequence of Lemma 4.2.
Notice that, in the lower bound K1|v|2 ≤ S1/|ξ|v · v, we used Remark 3.23 to control from

below the time derivatives which appear in S1.

Notice that the present notion of microlocal symmetrizability differs from the one of Definition
1.1 in the regularity we require with respect to time (here, we don’t have uniform Lipschitz
continuity) and in the requirement that SA is self-adjoint (this is true, in our case, just for the
highest order part S0).

4.2 Energy estimates

We are now ready to prove the energy estimates.
First of all, by Fourier transform we pass to the phase space, where system (6) reads

(43) L̂u(t, ξ) = ∂tû(t, ξ) + i A(t, ξ) · û(t, ξ) .

So, we define the approximate energy in the Fourier variable:

(44) Eε(t, ξ) := Sε(t, ξ)û(t, ξ) · û(t, ξ) ,

where the approximated symmetrizer Sε is given by (33).
Recall that we have fixed ε = 1/|ξ| in (42). Nevertheless, for convenience we will keep, for the

moment, the notation with ε.
Recall also that we will work with |ξ| ≥ R0. However, in the case |ξ| ≤ R0 energy estimates

immediately follow: it’s enough to take the scalar product (in Rm) of equation (43) by û, to use
the bound (8) for the Aj ’s (thanks to Corollary 3.20), and to apply Gronwall’s lemma after an
integration in time.

So, let us come back to the energy Eε. Due to Proposition 4.3, Corollary 3.20 and taking into
account again Remark 3.23, it’s easy to see that, for any t and |ξ| ≥ R0,

Eε(t, ξ) ∼ |û(t, ξ)|2 .

Now, we differentiate the energy with respect to time: using also the fact that Sε is self-adjoint,
it’s easy to get the equality

∂tEε = ∂tSεû · û + 2 Re (Sε∂tû · û) .

We then exploit equation (43) and definition (33), and we arrive to

∂tEε = ∂tS
0
ε û · û + |ξ|−1 ∂tS

1
ε û · û + 2 Re (− i Sε(A−Aε)û · û) +

+ 2 Re
(
SεL̂u · û

)
+ 2 Re

(
−i S0

εAεû · û
)

+ 2 Re
(
−i |ξ|−1 S1

εAεû · û
)
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By construction, S0
ε and S1

ε satisfy relation (34). Moreover, S0
ε Aε is self-adjoint; so, for any

v ∈ Cm, the quantity S0
εAεv · v belongs to R. Hence, the previous relation becomes

(45) ∂tEε = 2Re
(
SεL̂u · û

)
+ 2Re

(
− i Sε(A−Aε)û · û

)
+ Rε û · û + |ξ|−1∂tS

1
ε û · û .

Let us deal with the first term. As Sε is self-adjoint and positive definite, it defines a scalar
product, for which Cauchy-Schwarz inequality applies:∣∣∣2 Re

(
SεL̂u · û

)∣∣∣ ≤ (
SεL̂u · L̂u

)1/2
(Sεû · û)1/2

≤ C
∣∣∣L̂u(t, ξ)

∣∣∣ (Eε(t, ξ))1/2 .
Using again boundedness and positivity of Sε, the second term can be bounded as follows:

|2Re (− i Sε(A−Aε)û · û)| ≤ C
∣∣A−Aε∣∣MEε(t, ξ) .

Recall that both A and Aε are homogeneous of degree 1 in ξ.
As pointed out before, the coefficients of the third term are bounded, both under the Zygmund

and the log-Zygmund hypothesis. Then we find

|Rε û · û| ≤ C Eε(t, ξ) .

Finally, for the last element of (45) we just use the properties of Sε to write∣∣∂tS1
ε û · û

∣∣ ≤ C
∣∣∂tS1

ε

∣∣
M |û|

2 ≤ C
∣∣∂tS1

ε

∣∣
M Eε .

Therefore, by (45) and the previous bounds we infer the inequality

(46) ∂tEε(t, ξ) ≤ C
(∣∣∣L̂u(t, ξ)

∣∣∣ (Eε(t, ξ))1/2 +
(
1 + |A−Aε|M + |ξ|−1

∣∣∂tS1
ε (t, ξ)

∣∣
M
)
Eε(t, ξ)

)
.

Starting from this relation, if we define eε(t, ξ) :=
(
Eε(t, ξ)

)1/2 and

Φ(t, ξ) := C

(
t+

∫ t

0

(
|ξ|−1

∣∣∂tS1
ε (τ, ξ)

∣∣
M + |A(τ, ξ)−Aε(τ, ξ)|M

)
dτ

)
,

Gronwall’s inequality immediately entails, for any t ∈ [0, T ],

(47) eε(t, ξ) ≤ e
∫ t
0 Φ(τ,ξ)dτ eε(0, ξ) +

∫ t

0
e
∫ t
τ Φ(s,ξ)ds

∣∣∣L̂u(τ, ξ)
∣∣∣ dτ .

Now we set γ = 1/p′ and we apply Hölder’s inequality to the time integral in the exponential
term: hence we find

|ξ|−1

∫ t

0

∣∣∂tS1
ε (τ, ξ)

∣∣
M dτ ≤ C |ξ|−1 tγ

∥∥∂tS1
ε ( · , ξ)

∥∥
Lp([0,T ];Mm(R))∫ t

0
|A−Aε|M dτ ≤ C |ξ| tγ sup

1≤j≤n
‖Aj −Aj,ε‖Lp([0,T ];Mm(R)) .

Recalling the definition of S1
ε , we can see that, in total, we have two time derivatives: they can

act on two different terms, or on the same. In any case, we can apply Proposition 3.22 (with
ε = 1/|ξ|), which leads us to

|ξ|−1

∫ t

0

∣∣∂tS1
ε (τ, ξ)

∣∣
M dτ ≤ C tγ log` (1 + |ξ|) ,
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where, as usual, ` = 0 under the Zp hypothesis and ` = 1 in the LZp case. Again by Proposition
3.22, we get also ∫ t

0
|A−Aε|M dτ ≤ C tγ log` (1 + |ξ|) .

Putting this control into (47), we finally get, for all t ∈ [0, T ] and all |ξ| ≥ 1,

|û(t, ξ)| ≤ C eC t
(
|ξ|` β̃ tγ |û(0, ξ)| +

∫ t

0
|ξ|` β̃ (t−τ)γ

∣∣∣L̂u(τ, ξ)
∣∣∣ dτ) ,

for some suitable positive constants C and β̃. Taking the L2 norm (or the Hs norm, for any s)
with respect to ξ completes the proof.

Remark 4.4. As noticed in Remark 2.7, an inequality like (47) would be suitable for iterations in
time. However, we have to make the Lp norm appear to control the behaviour of the coefficients,
and this gives the strange factor tγ . Then, for log-Zygmund coefficients we cannot improve the
inequality in Theorem 2.6.

Note also that this is not the case for Zygmund coefficients, or for p = +∞.

Remark 4.5. We remarked several times the fact that p has to be bigger than 1. We used the
condition p > 1 in these occasions:

• for the embeddings Zp ↪→ L∞ and LZp ↪→ L∞, and actually in (pointwise) Hölder classes
(recall also Remark 3.23);

• to have fg ∈ B0−log
p,∞ for f ∈ B1−log

p,∞ and g ∈ B0−log
p,∞ : this property is not true, in general,

if p = 1 (recall Theorems 3.11 and 3.12).

In particular, p > 1 is fundamental to recover the equivalence between our energy and the classical
one, and to construct the symmetrizer solving the corresponding ODEs.

5 An application: the case of the wave equation

As an application of the previous results, let us consider the case of the second order scalar
equations, for simplicity in the case of space dimension n = 1.

We will also show that, in this instance, the restriction p > 1 is not necessary: energy estimates,
with or without loss, hold true also for p = 1. This is in accordance with the results in [24].

So, let α(t) ∈ L∞, 0 < α∗ ≤ α ≤ α∗ and suppose that α ∈ B1
p,∞ or B1−log

p,∞ , for some
p ∈ [1,+∞]. We consider the wave operator

(48) Wu(t, x) := ∂2
t u(t, x) − α(t) ∂2

xu(t, x) .

If we now set

U(t, x) :=

(
−∂xu
∂tu

)
, LU(t, x) :=

(
0

Wu

)
and A(t) :=

(
0 1

α(t) 0

)
,

then (48) is equivalent to the first order system

LU(t, x) = ∂tU(t, x) + A(t) ∂xU(t, x) .

For convenience, let us assume α to be smooth, and forget about the convolution and the
approximation index ε in the notations. We also set α = a2, with a ≥ a∗ > 0.
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An easy computation shows us that the eigenvalues and respective (normalized) eigenvectors
of the matrix A(t, ξ) = ξA(t) are

λ±(t, ξ) := ± a(t) ξ and r±(t, ξ) :=
(
1 + a2

)−1/2 (
1 , ±a

)
.

Therefore, choosing λ+ as the first eigenvalue, we find the matrices of change of basis:

P :=
1√

1 + a2

(
1 1

a(t) −a(t)

)
and Q := P−1 =

√
1 + a2

2

(
1 1/a(t)

1 −1/a(t)

)
.

We also set `± :=
(√

1 + a2/2
) (

1 , ±1/a
)
. Note that, as already pointed out in the general

computations, they are indeed left eigenvectors of the matrix A.
We now perform straightforward computations, and we get

∂t`± =
a ∂ta

2
√

1 + a2

(
1 , ± 1

a

)
+

√
1 + a2

2

(
0 , ∓ ∂ta

a2

)
.

These expressions allow us to find the matrix Θ := ∂tQP , and then Σ0 and Σ1. We start
with the diagonal elements:

θ11 = ∂t`+ · r+ =
a ∂ta

1 + a2
− ∂ta

2a

=
1

2
∂t log

(
1 + a2

a

)
θ22 = ∂t`− · r− = θ11 .

Thanks to these relations, the ODE (36) can be explicitly solved in an exact way: for j = 1 or 2,

∂tωj = −2 θjj = ∂t log

(
a

1 + a2

)
=⇒ ωj = log

(
a

1 + a2

)
.

Therefore, we find σ1 = σ2 = a/(1 + a2) and

Σ0 =
a

1 + a2
Id =⇒ S0 = Q∗Σ0Q =

1

2

(
a 0

0 1/a(t)

)
.

Notice that, thanks to the additional L∞ hypothesis, for any p ∈ [1,+∞] then S0 is always
well-defined and bounded, and its elements have the same Zygmund regularity as α.

Let us now construct the second part of the symmetrizer: due to the properties of Σ1, it’s
enough to find σ̃12. We use formula (39): easy computations lead us to

`− ∂tAr+ = − ∂ta ξ and `+ ∂tAr− = ∂ta ξ ,

which imply the following expression for σ̃12:

σ̃12 =
i ξ

(λ+ − λ−)2

(
σ+ `+ ∂tAr− − σ2 `− ∂tAr+

)
=

−i ∂ta
2 a (1 + a2)

.

Finally, recalling that σ̃21 = σ̃12, it’s immediate to get the matrix S1:

S1 = Q∗Σ1Q =
i ∂ta

4 a2

(
0 1

−1 0

)
.
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In the end, the energy associated to u becomes

E(t, ξ) = Sû · û =
1

2

(
a(t) |ξ|2 |û|2 +

1

a(t)
|∂tû|2 +

∂ta

2 a2
Re (∂tû · û)

)
,

which slightly differs from the one used by Tarama in [24]. From now on, the computations can
be performed as in the general case, explained in the previous section, and they allow us to find
the same results of [24].

We stress again the fact that the previous construction can be performed for any p ∈ [1,+∞].

A Appendix – Proof of Theorem 3.13

We show here the proof of Theorem 3.13. We will follow the main steps of Proposition 4 in [13],
based on Meyer’s paralinearization method, performing suitable modifications, in order to adapt
the arguments to the logarithmic instance.

First of all, we introduce the telescopic series

+∞∑
j=2

Fj , with Fj := F (Sj+1u) − F (Sju) ,

where we adopted the same notations of Subsection 3.1.

Lemma A.1. Under the hypotheses of Theorem 3.13, the series
∑

j Fj converges to F (u) −
F (S2u) in S ′. Moreover one has

(49) Fj = mj ∆ju , where mj :=

∫ 1

0
F ′(Sju + σ∆ju) dσ .

Proof. Equality (49) is a straightforward consequence of the mean value theorem. So, it’s enough
to prove the convergence of the series.

Hence, for any fixed N ≥ 2, let us estimate∥∥∥∥∥∥F (u) − F (S2u) −
N∑
j=2

Fj

∥∥∥∥∥∥
Lp

= ‖F (u) − F (SN+1u)‖Lp ≤ ‖u − SN+1u‖Lp
∥∥F ′∥∥

L∞
.

Let us suppose s > 0 and r < +∞ for a while. Notice that, as ∇u ∈ B(s−1)+α log
p,r ,

(50) lim
N→+∞

∑
j≥N

2j(s−1)r (1 + j)αr ‖∆j∇u‖rLp = 0 .

Thanks to spectral localization, we have u − SN+1u =
∑

j≥N+1 ∆ju; then, by Bernstein
inequalities we infer

‖u − SN+1u‖Lp ≤
∑

j≥N+1

‖∆ju‖Lp(51)

≤ C
∑

j≥N+1

2j(s−1) (1 + j)α ‖∆j∇u‖Lp 2−js (1 + j)−α .

We now apply Hölder inequality for series, and relation (50) allows us to conclude.
If r = +∞, instead, we apply Proposition 3.6 to reconduct ourselves to the previous case with

a different s′ > 0. If s = 0, instead, we use the fact that α > 1 in (51).
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Remark A.2. Starting from inequality (51), it’s easy to see that the previous statement is still
true even if s = 0 and α > 0, under the additional assumption that αr′ > 1, with r′ defined by
the relation 1/r′ + 1/r = 1.

Let us now quote Lemma 2.63 of [2].

Lemma A.3. Let g : R2 −→ R smooth, and set mj(g) := g(Sju , ∆ju) for all j ∈ N.
Then, for any u ∈ L∞ and any ν ∈ Nd, there exists a positive constant Cν = Cν(g, ‖u‖L∞)

such that, for any j ∈ N,
‖mj(g)‖L∞ ≤ Cν 2j|ν| .

Finally, we need the following lemma. Recall that, for s ≥ 0, [s] denotes the biggest integer
smaller than or equal to s.

Lemma A.4. Let s > 0, α ∈ R and (p, r) ∈ [1,+∞]2.
There exists a positive constant Cs,α such that, for any sequence (uj)j∈N of smooth functions

which satisfy (
sup

|ν|≤[s]+1

(
2j(s−|ν|) (1 + j)α ‖∂νuj‖Lp

))
j

∈ `r(N) ,

then u :=
∑

j uj belongs to Bs+α log
p,r and

‖u‖
Bs+α log
p,r

≤ Cs,α

∥∥∥∥∥∥
(

sup
|ν|≤[s]+1

(
2j(s−|ν|) (1 + j)α ‖∂νuj‖Lp

))
j

∥∥∥∥∥∥
`r

.

If s = 0, α > 0 and r = 1 one can just infer

‖u‖
B0+α log
p,∞

≤ Cα

∥∥∥∥∥∥
(

sup
|ν|≤1

(
2−j|ν| (1 + j)α ‖∂νuj‖Lp

))
j

∥∥∥∥∥∥
`1

.

Proof. For any j ∈ N, we have to estimate

2js (1 + j)α ‖∆ju‖Lp ≤ 2js (1 + j)α

∥∥∥∥∑
k<j

∆juk

∥∥∥∥
Lp

+

∥∥∥∥∑
k≥j

∆juk

∥∥∥∥
Lp

 .

Let us focus on the second term: as ‖∆juk‖Lp ≤ C ‖uk‖Lp , we have

2js (1 + j)α
∥∥∥∥∑
k≥j

∆juk

∥∥∥∥
Lp
≤ C

∑
k≥j

2s(j−k)

(
1 + j

1 + k

)α
(1 + k)α 2ks ‖uk‖Lp(52)

≤ C
∑
k≥j

2−s(k−j) (1 + |k − j|)|α| δk ,

where we have denoted δk := sup|ν|≤[s]+1

(
(1 + k)α 2k(s−|ν|) ‖∂νuk‖Lp

)
.

On the other hand, for k < j (and then j ≥ 1), from Bernstein inequalities we infer

‖∆juk‖Lp ≤ C 2−j([s]+1) sup
|ν|=[s]+1

‖∂νuk‖Lp .

Therefore, we can write

(53) 2js (1 + j)α
∥∥∥∥∑
k<j

∆juk

∥∥∥∥
Lp
≤ C

∑
k<j

2(k−j)([s]+1−s)
(

1 + j

1 + k

)α
δk .
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Putting together estimates (52) and (53), we end up with the inequality

2js (1 + j)α ‖∆ju‖Lp ≤ C (a ∗ δ)j ,

where we have defined δ = (δk)k and a = (ak)k, with

ak = (1 + k)|α|
(

2−ks + 2−k([s]+1−s)
)
.

This concludes the proof of the lemma when s > 0.
If s = 0, it’s enough to notice that, in (52), as k ≥ j,(

1 + j

1 + k

)α
≤ C ,

while the term 2−x(1 + x)α, arising in (53), can be obviously bounded by a constant.

Let us come back to the proof of Theorem 3.13. By Lemma A.1, we have the decomposition

F (u) − F (S2u) =

+∞∑
j=2

Fj ,

where Fj is given by (49).

Remark A.5. Due to spectral localization, in every term ∆ju (with j ≥ 2) of the relations in
(49), we can replace u by u− S0u, with

‖u − S0u‖Bs+α log
p,r

≤ C ‖∇u‖
B

(s−1)+α log
p,r

.

As a first step, we want to prove that F (u)− F (S2u) ∈ Bs+α log
p,r : thanks to Lemma A.4, it’s

enough to prove that (
sup

|ν|≤[s]+1

(
2j(s−|ν|) (1 + j)α ‖∂νFj‖Lp

))
j

∈ `r(N) .

If we set g(ζ, ω) =
∫ 1

0 F
′(ζ + σω)dσ, by Leibniz formula and Lemma A.3 we infer

‖∂νFj‖Lp ≤
∑
µ≤ν

Cν,µ 2j|µ|Cµ(F ′, J) 2j(|ν|−|µ|) ‖∆ju‖Lp

≤ Cν(F ′, J) 2j|ν| ‖∆ju‖Lp .

Hence, from this inequality and Remark A.5, we get

2j(s−|ν|) (1 + j)α ‖∂νFj‖Lp ≤ Cν(F ′, J) cj ‖∇u‖B(s−1)+α log
p,r

,

where ‖cj‖`r = 1.
So, we have proved that F (u)− F (S2u) ∈ Bs+α log

p,r , with

‖F (u) − F (S2u)‖
Bs+α log
p,r

≤ C ‖∇u‖
B

(s−1)+α log
p,r

.

This implies, in particular, that its gradient is in B(s−1)+α log
p,r .

Now we notice that
∇
(
F (S2u)

)
= F ′(S2u)∇S2u

belongs to Lp with all its derivatives. In fact, this easily follows from the chain rule and Leibniz
formula, keeping in mind that u ∈ L∞ and ∇S2u ∈ Lp with all its derivatives.

From this fact, by embeddings we gather that ∇
(
F (S2u)

)
∈ B(s−1)+α log

p,r , and then also ∇(F ◦
u) belongs to the same space.

This completes the proof of Theorem 3.13.
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