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Abstract

This paper is concerned with the well posedness of the Cauchy
problem for first order symmetric hyperbolic systems in the sense of
Friedrichs. The classical theory says that if the coefficients of the sys-
tem and if the coefficients of the symmetrizer are Lipschitz continuous,
then the Cauchy problem is well posed in L2. When the symmetrizer
is Log-Lipschtiz or when the coefficients are analytic or quasi-analytic,
the Cauchy problem is well posed C∞. In this paper we give coun-
terexamples which show that these results are sharp. We discuss both
the smoothness of the symmetrizer and of the coefficients.
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1 Introduction

This paper is concerned with the well posedness of the Cauchy problem for
first order symmetric hyperbolic systems in the sense of Friedrichs [Fr1],
who proved that if the coefficients of the system and if the coefficients of
the symmetrizer are Lipschitz continuous, then the Cauchy problem is well
posed in L2. This has been extended to hyperbolic systems which admits
Lipschitzean microlocal symmetrizers (see [Me]).

The main objective of this paper is to discuss the necessity of these
smoothness assumptions and to provide new counterexamples to the well
posedness. In the spirit of [CS2, CoNi], we make a detailed analysis of
systems in space dimension one, with coefficients which depend only on
time. Even more, we concentrate our analysis on 2× 2 system

(1.1) Lu := ∂tu+

(
a(t) b(t)
c(t) d(t)

)
∂xu = ∂tu+A(t)u.

The symbol is assumed to be strongly hyperbolic or uniformly diagonalizabe,
which means that there is a bounded symmetrizer S(t), with S−1 is bounded,
which is a definite positive and such that S(t)A(t) is symmetric. This is
equivalent to the condition that there is δ > 0 such that

(1.2) δ
(
(a− d)2 + b2 + c2

)
≤ 1

4
(a− d)2 + bc.

If the symmetrizer S and the coefficients are Lipschitz continuous then the
Cauchy problem is well posed in L2. Indeed, in this case, solutions on
[0, T ]× R of Lu = f satisfy

(1.3)
∥∥u(t)

∥∥
L2 ≤ C

(∥∥u(0)
∥∥
L2 +

∥∥Lu∥∥
L2

)
with

C = C0 exp
(∫ T

0
|∂tS(s)|ds

)
.

Lipschitz smoothness of the symmetrizer is almost necessary for the well
posedness in L2, even for very smooth coefficients:
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Theorem 1.1. For all modulus of continuity ω such that t−1ω(t) → +∞
as t → 0, there is a system (1.1) with coefficients in ∩s>1G

s([0, T ]), with a
symmetrizer satisfying

(1.4)
∣∣S(t)− S(t′)

∣∣ ≤ Cω(|t− t′|)

such that the Cauchy problem is ill posed in L2 in the sense that there is no
constant C such that the estimate (1.3) is satisfied.

Here and below, we denote by Gs([0, T ]] the Gevrey class of functions
of order s. They are C∞ functions f such that, for some constant C which
depends on f , there holds

∀j ∈ N,
∥∥∂jt f∥∥L∞ ≤ Cj+1(j!)s.

This theorem extends to systems a similar result obtained in [CiCo] for
the strictly hyperbolic wave equation

(1.5) ∂2
t u− a(t)∂2

xu = f.

Indeed, there is a close parallel between the energy |∂tu|2 +a(t)|∂xu|2 for the
wave equation and (S(t)u, u) for the system, and in this case, the smoothness
of S(t) plays a role analogue to the smoothness of a. For the wave equation,
when a is Log-Lipschitz, i.e. admits the modulus of continuity ω(t) = t| ln t|,
the Cauchy problem is well posed in C∞ with a loss of derivatives propor-
tional to time ([CDGS]). An intermediate cases between Lipschitz and Log-
Lipschitz, that is when (t| ln t|)−1ω(t) → 0 and t−1ω(t) → +∞, then the
loss of derivative is effective but is arbitrarily small on any interval ([CiCo]).
The proof of these results extends immediately to systems (1.1) where the
smoothness of the symmetrizer plays the role of the smoothness of the co-
efficient a.

The next result extends to systems the result in [CDGS, CS2] showing
that the Log-Lipschitz smoothness of the symmetrizer is a sharp condition
for the well posedness in C∞, even for C∞ coefficients:

Theorem 1.2. For all modulus of continuity ω satisfying (t| ln t|)−1ω(t)→
+∞ as t→ 0, there are systems (1.1), with C∞ coefficients, with symmetriz-
ers which satisfy the estimate (1.4) such that the Cauchy problem is ill posed
in C∞, meaning that for all n and all T > 0, there is no constant C such
that the estimate

(1.6) ‖u‖L2 ≤ C‖Lu‖Hn

is satisfied for all u ∈ C∞0 ([0, T ]× R).
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In [CoNi] the question of the well posedness of the Cauchy problem is
considered under the angle of the smoothness of the coefficients alone. In
this aspect, the analysis is related to the analysis of the weakly hyperbolic
wave equation (1.5) (see citeCJS). If the coefficients are C∞, the problem is
well posed in all Gevrey classes Gs, but the well posedness in C∞ is obtained
only when the coefficients are analytic or belong to a quasi-analytic class.
Indeed, the next theorem shows that this is sharp.

Theorem 1.3. There are example of systems (1.1) on [0, T ]×R, with uni-
formly hyperbolic symbols and coefficients in the intersection of the Gevrey
classes ∩Gs for s > 1, admitting continuous symmetrizers, such that the
Cauchy problem is ill posed in C∞.

This theorem improves the similar result obtained in [CoNi] where the
counterexample had coefficients in ∩Gs for s > 2. The same construction
can be used to provide a similar improvement to the known result in [CS1]
for the wave equation:

Theorem 1.4. There are nonnegative functions a ∈ ∩s>1G
s([0, T ]), such

that the Cauchy problem for the weakly hyperbolic wave equation (1.5) is ill
posed in C∞.

The theorems above show that the smoothness of both the coefficients and
the symmetrizer play a role in the well posedness in C∞. The next theorem
is a kind of interpolation between the two extreme cases of Theorem 1.2 and
Theorem 1.3:

Theorem 1.5. For all s > 1 and µ < 1− 1/s, there are example of systems
(1.1) on [0, T ] × R, with uniformly hyperbolic symbols, coefficients in the
Gevrey classes Gs, symmetrizer in the Hölder space Cµ, and such that the
Cauchy problem is ill posed in C∞.

This leaves open the question of the well posedness in C∞ when the
coefficients belong to Gs and the symmetrizer to Cµ when µ+ 1/s ≥ 1.

We end this introduction by several remarks about symmetrizers or 2×2
system (1.1). For simplicity, we assume that the coefficients are real. Write

A(t) =
1

2
trA(t)Id +A1(t).

Then A2
1 = hId with h = 1

4(a− d)2 + bc satisfying (1.2). In particular,

Σ(t) = A∗1(t)A1(t) + h(t)Id
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is a symmetrizer for A in the sense that Σ and ΣA = 1
2(trA)Σ + hA∗1 + hA1

are symmetric. In general, Σ is not a symmetrizer in the sense of Friedrichs,
since it is not uniformly positive definite, unless h > 0, which means that
the system is strictly hyperbolic. More precisely, Σ ≈ hId. But Σ has the
same smoothness as the coefficients of A.

On the other hand, since the system is uniformly diagonalizable, there
are bounded symmetrizers Σ1(t) which are uniformly positive definite. For
instance h−1Σ is a bounded symmetrizer. More generally, writing

(1.7)
1

2
(a− d) = h

1
2a1, b = b1h

1
2 , c = c1h

1
2 ,

one has a2
1 + b1c1 ≥ δ(a2

1 + b21 + c2
1) ≥ δ > 0 and the symmetrizer are of the

form

(1.8) Σ1 =

(
α β
β γ

)
with 2a1β = b1α− c1γ.

Therefore there is a cone of positive symmetrizers of dimension 2. Their
smoothness depend on the smoothness of a1, b1, c1, that is of h−

1
2A1. There

might be better choices than others. For instance, if the system is symmetric,
Σ1 = Id is a very smooth symmetrizer. Our discussion below concerns the
smoothness of both Σ and Σ1 and their possible interplay.

2 The counterexamples

We consider systems of the form

(2.1) LU := ∂tU +

(
0 a(t)
b(t) 0

)
∂xU.

with a and b real. We always assume that it is uniformly strongly hyperbolic,
that is that σ = a/b > 0 and 1/σ are bounded. Our goal is to contradict
the estimates (1.3) and (1.6). We contradict the analogous estimates which
are obtained by Fourier transform in x, and more precisely, we construct
sequences of functions uk, vk and fk in C∞([0, T ]), vanishing near t = 0,
satisfying

(2.2) ∂tuk + ihka(t)vk = fk, ∂tvk + ihkb(t)uk = 0

with hk → +∞ and such that

(2.3)
∥∥fk∥∥L2/

∥∥(uk, vk)
∥∥
L2 → 0 as k →∞
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in the first case or, for all j and l ,

(2.4)
∥∥hjk∂ltfk∥∥L2/

∥∥(uk, vk)
∥∥
L2 → 0 as k →∞

in the second case. Moreover, the support of these function is contained
in an interval Ik = [tk, t

′
k] with 0 < tk < t′k and t′k → 0, showing that the

problem is ill posed on any interval [0, T ] with T > 0.

2.1 Exponentially amplified solutions of the wave equation

In this section we review and adapt the construction of [CS2]. The key
remark is that the function wε(t) = e−εφ(t) cos t satisfies

(2.5) ∂2
twε + αεwε = 0

if

(2.6) φ(t) =

∫ t

0
(cos s)2ds, αε(t) = 1 + 2ε sin 2t− ε2(cos t)4.

The important property of the wε is their exponential decay at +∞. More
precisely

e
1
2
εtwε(t) = e

1
4
ε sin 2t cos t is 2πperiodic

and

(2.7) wε(t+ 2π) = e−επwε(t).

Next, one symmetrizes and localizes this solution. More precisely, con-
sider χ ∈ C∞(R), supported in ] − 7π, 7π[, odd, equal to 1 on [−6π,−2π]
and thus equal to −1 on [2π, 6π], and such that for all t, 0 ≤ χ(t) ≤ 1 and
|∂tχ(t)| ≤ 1. For ν ∈ N, let

(2.8) Φν(t) =

∫ t

0
χν(s)(cos s)2ds, χν(t) = χ(t/ν).

For ε > 0, wε,ν(t) = eεΦν(t) cos t satisfies

(2.9) ∂2
twε,ν + αε,νwε,ν = 0

where

(2.10)
αε,ν(t) = 1 + εχν sin 2t− εΦ′′ν − (εΦ′ν)2

= 1 + 2εχν sin 2t− εχ′ν(cos t)2 − ε2χ2
ν(cos t)4.
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For ε ≤ ε0 = 1/10 and for all ν

(2.11) |αε,ν − 1| ≤ 1

2

and we always assume below that the condition ε ≤ ε0 is satisfied. We note
also that αε,ν = 1 for |t| ≥ 7νπ since χν vanishes there.

The final step is to localize the solution in [−6νπ, 6νπ]. Introduce an
odd cut off function ζ(t) supported in ]− 6π, 6π[ and equal to 1 for |t| ≤ 4π
and let

(2.12) w̃ε,ν(t) = ζ(t/ν)wε,ν(t).

It is supported in [−6νπ, 6νπ] and equal to wε,ν on [−4νπ, 4νπ]. Then

(2.13) fε,ν = ∂2
t w̃ε,ν + αε,νw̃ε,ν = 2ν−1ζ ′(t/ν)∂twε,ν + ν−2ζ ′′(t/ν)wε,ν

is supported in [−6νπ,−4νπ] ∪ [4νπ, 6νπ].

Lemma 2.1. For all j, there is a constant Cj such that for all ε ≤ ε0 and
all ν ≥ 1

(2.14)
∥∥∂jt fε,ν∥∥L2 ≤ Cjν−1e−ενπ

∥∥w̃ε,ν∥∥L2 .

Proof. By symmetry, it is sufficient to estimate fε,ν for t ≥ 0, that is on
[4νπ, 6νπ]. On [2νπ, 6νπ], χν = −1, hence Φν − φ is constant and

wε,ν(t) = cν,εwε(t), cν,ε = eεΦν(2νπ).

Moreover, on this interval αε,ν = αε is bounded with derivatives bounded
independently of ε , and hence∥∥∂jt fε,ν∥∥L2 ≤ Cjν−1cν,ε

∥∥(wε, ∂twε)
∥∥
L2([4νπ,6νπ])

.

By (2.7), this implies∥∥∂jt fε,ν∥∥L2 ≤ Cjν−1cν,εe
−ενπ∥∥(wε, ∂twε)

∥∥
L2([2νπ,4νπ])

.

On the other hand ∥∥wε,ν∥∥L2 ≥ cν,ε
∥∥wε∥∥L2([2νπ,4νπ])

.

Therefore it is sufficient to prove that there is a constant C such that for all
ν and ε: ∥∥(wε, ∂twε)

∥∥
L2([2νπ,4νπ])

≤ C
∥∥wε∥∥L2([2νπ,4νπ])

.
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Using again (2.7), one has

∥∥(wε, ∂twε)
∥∥2

L2([2νπ,4νπ])
=

ν−1∑
k=0

e−2(εk+ν)π
∥∥(wε, ∂twε)

∥∥2

L2([0,2π])

and ∥∥wε∥∥2

L2([2νπ,4νπ])
=

ν−1∑
k=0

e−2(εk+ν)π
∥∥wε∥∥2

L2([0,2π])
.

On [0, 2π] the H1 norm of the wε are uniformly bounded while their L2

norm remain larger than a positive constant.

2.2 Construction of the coefficients and of the solutions

For k ≥ 1, let ρk = k−2. We consider intervals Ik = [tk, t
′
k] and Jk = [t′k, tk−1]

of the same length ρk = t′k − tt = tk−1 − t′k, starting at t0 = 2
∑∞

k=1 ρk, and
thus such that tk → 0.

The functions a and b are defined on ]0, t0] as follows: we fix a function
β ∈ C∞(R) supported in ]0, 1[ and with sequences εk, νk and δk to be chosen
later on,

(2.15)
on Ik :

{
a(t) = δkαεk,νk

(
− 8πνk + 16π(t− tk)νk/ρk

)
,

b(t) = δk

on Jk : a(t) = b(t) = δk + (δk−1 − δk)β
(
(t− t′k)/ρk

) .

Because αε,ν = 1 for |t| ≥ 7νπ, the coefficient a = δk near the end points
of Ik. The use of the function β on Jk makes a smooth transition between
δk and δk−1. Therefore, a and b are C∞ on ]0, t0]. The coefficients will be
chosen so that they extend smoothly up to t = 0.

This is quite similar to the choice in [CoNi], except that we introduce a
new sequence εk, which is crucial to control the Hölder continuity of σ = a/b.

We use the family (2.12) to construct solutions of the system supported
in Ik, for k large. On Ik, b is constant and the equation (2.2) reads

(2.16) ∂tuk + ihkδkαkvk = fk, ∂tvk + ihkδkuk = 0,

with
αk(t) = αεk,νk

(
− 8πνk + 16π(t− tk)νk/ρk

)
.

Therefore, a C∞ solution of (2.2) supported in Ik is

(2.17)
uk(t) = i∂tw̃εk,νk

(
− 8πνk + 16π(t− tk)νk/ρk

)
vk(t) = w̃εk,νk

(
− 8πνk + 16π(t− tk)νk/ρk

)
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with

(2.18) fk(t) = 16iπ(νk/ρk)fεk,νk
(
− 8πνk + 16π(t− tk)νk/ρk

)
provided that

(2.19) hk = 16πνk/ρkδk.

3 Properties of the coefficients

We always assume that

(3.1) εk ≤ ε0, εkνk → +∞, δk → 0.

3.1 Conditions for blow up

Lemma 3.1. If

(3.2) (ρk)
−1e−εkνkπ → 0,

then the blow up property in L2 (2.3) is satisfied.

Proof. By Lemma 2.1 ∥∥fk∥∥L2 ≤ Cρ−1
k e−εkνkπ

∥∥vk∥∥L2 .

Lemma 3.2. If

(3.3)
1

εkνk
ln(hkνk/ρk)→ 0,

then the blow up property in C∞ (2.4) is satisfied.

Proof. By Lemma 2.1 one has∥∥∂lthjkfk∥∥L2/
∥∥(uk, vk)

∥∥
L2 ≤ Clν−1

k hjk(16πνk/ρk)
l+1e−εkνkπ.

This tends to 0 if

εkνkπ − j lnhk − (l + 1) ln(νk/ρk)→ +∞.

If (3.3) is satisfied, this is true for all j and l.
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3.2 Smoothness of the coefficients

Lemma 3.3. If

(3.4) ln(νk/ρk)/| ln(δkεk)| → 0

then the functions a and b are C∞ up to t = 0.

Proof. a and b are O(δk) and thus converge to 0 when t→ 0. Moreover, for
j ≥ 1,

|∂jt a| ≤ Cj

{
δkεk(νk/ρk)

j on Ik,

δkρ
−j
k on Jk.

The worst situation occurs on Ik and the right hand side is bounded if

j ln(νk/ρk)− | ln(δkεk)|

is bounded from above. This is true for all j under the assumtion (3.4),
implying that a is C∞ on [0, t0]. The proof for b is similar and easier.

Next, we investigate the possible Gevrey regularity of the coefficients.
For that we need make a special choice of the cut-off functions χ and β
which occur in the construction of a and b. We can choose them in a class
contained in ∩s>1G

s and containing compactly supported function, (see e.g.
[Ma]). We choose them such that there is a constant C such that for all j

(3.5) sup
t

(∣∣∂jtχ(t)
∣∣+
∣∣∂jt β(t)

∣∣) ≤ Cj+1j!(ln j)2j .

Lemma 3.4. If (3.5) is satisfied, then for j ≥ 1

(3.6)

sup
t∈Ik∪Jk

(∣∣∂jt a(t)
∣∣+
∣∣∂jt b(t)∣∣) ≤

Kj+1δkεk

(
(νk/ρk))

j + (1/ρk)
jj!(ln j)2j

)
.

Proof. On Ik we take advantage of the explicit form (2.10) of αε,ν : it is a
finite sum of sin and cos with coefficients of the form χ(t/ν). Scaled on Ik,
each derivative of the trigonometric functions yields a factor νk/ρk, while the
derivatives of χνk have only a factor 1/ρk. Since χ′ and χ2 satisfy estimates
similar to (3.5), we conclude that a satisfies∣∣∂jt a(t)

∣∣ ≤ εkδkKj
∑
l≤j

(νk/ρk)
j−lC l+1l!(ln l)2l

implying the estimate (3.6) on Ik. On Ik, b is constant. On Jk things are
clear by scaling since the coefficients are functions of β((t− t′k)/ρk).
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To estimate quantities such as δk(νk/ρk)
j we use the following inequali-

ties for a > 0 and x ≥ 1

(3.7) e−xxa ≤ aa

and

(3.8) e−e
x
xa ≤

{
| ln a|a when a ≥ e
1 when a ≤ e.

Corollary 3.5. Suppose that δk = e−ηk and that for s > s′ > 1

(3.9) (νk/ρk) ≤ Cηsk, (1/ρk)
j ≤ Cηs′−1

k .

Then the coefficients belong to the Gevrey class Gs.
If for some p > 0 and q > 0,

(3.10) ηk ≥ ek
q
, (νk/ρk) ≤ Ckpηk

then the coefficients belong to ∩s>1G
s.

Proof. We neglect εk and only use the bound εk ≤ ε0. In the first case, we
obtain from (3.7) that

δk(νk/ρk)
j ≤ e−ηk(Cηk)

sj ≤ (C ′j)js, δk(1/ρk)
j ≤ (C ′′j)j(s

′−1)

implying that
|∂jt (a, b)| ≤ Kj+1jsj .

In the second case, combining (3.7) and (3.8)

e−ηk(νk/ρk)
j ≤ C ′jjj kpje−

1
2
ηk ≤ C ′′jjj(1 + ln j)pj/q.

Using again (3.8) for the second term, we obtain that

|∂jt (a, b)| ≤ Kj+1jj(ln j)rj

with r = max{p, 4}/q. In particular, the right hand side is estimated by
Kk+1
s jjs for all s > 1, proving that the functions a and b belong to ∩s>1G

s.
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3.3 Smoothness of the symmetrizer

Lemma 3.6. Suppose that ω is a continuous and increasing function on
[0, 1] such that t−1ω(t) is decreasing. If

(3.11) εk ≤ ω(ρk/νk)

then σ = a/b satisfies

(3.12)
∣∣σ(t)− σ(t′)

∣∣ ≤ Cω(|t− t′|).

In particular, if µ ≤ 1 and

(3.13) lim sup
k

εk(νk/ρk)
µ < +∞

then σ is Hölder continuous of exponent µ. If

(3.14) εk(νk/ρk) ≤ C ln(νk/ρk)
θ

then ω(t) = t| ln t|θ is a modulus of continuity for σ.

Proof. On Jk, σ̃ = σ − 1 vanishes and on Ik

σ̃ = εkαεk,νk(−8πνk + 16π(t− tk)νk/ρk),

and thus

(3.15) |σ̃| ≤ Cεk, |∂tσ̃| ≤ Cεkνk/ρk.

Hence, for t and t′ in Ik,∣∣σ̃(t)− σ̃(t′)
∣∣ ≤ Cεk min{1, |t− t′|νk/ρk}.

If ρk/νk ≤ |t− t′| we use the first estimate and∣∣σ̃(t)− σ̃(t′)
∣∣ ≤ Cεk ≤ Cω(ρk/νk) ≤ Cω(|t− t′|).

If |t−t′| ≤ ρk/νk we use the second estimate and the monotonicity of t−1ω(t)∣∣σ̃(t)− σ̃(t′)
∣∣ ≤ Cεk(νk/ρk)|t− t′| ≤ C(νk/ρk)ω(ρk/νk)|t− t′| ≤ Cω(|t− t′|).

This shows that (3.12) is satisfied when t and t′ belong to the same interval
Ik.

If t belong to Ik and t′ ∈ Jk, then σ̃(t′) = σ̃(t′k) = 0 and

|σ̃(t)− σ̃(t′)| ≤ Cω(|t− t′k|) ≤ Cω(|t− t′|).
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Similarly, if t < t′ and t and t′ do not belong to the same Ik ∪ Jk, there
are end points tj and tl such that tj ≤ t ≤ tj−1 ≤ tl ≤ t′ ≤ tl−1. Since σ̃
vanishes at the endpoints of Ik and on Jk,

|σ̃(t)− σ̃(t′)| ≤ C|σ̃(t)− σ̃(tj)|+ |σ̃(t)− σ̃(tj)|
≤ Cω(|t− tj−1) + Cω(|tl − t′|) ≤ Cω(|t− t′|)

and the lemma is proved.

4 Proof of the theorems

We now adapt the choice of the the parameters εk, νk and δk so that the
coefficients and the symmetrizer satisfy the properties stated in the different
theorems. We will choose two increasing functions, f and g, on {x ≥ 1} and
define εk and δk in terms of νk through the relations:

(4.1) εkνk/ρk = f(νk/ρk), δk = e−ηk , ηk = g(νk/ρk).

Recall that ρk = k−2. The sequence of integers νk will be chosen to converge
to +∞ and thus νk/ρk → +∞. The conditions (3.1) are satisfied if at +∞:

(4.2) f(x)� x, g(x)→ +∞.

Here φ(x) � ψ(x) means that ψ(x)/φ(x) → ∞. In particular, the first
condition implies that εk → 0 so that the condition ε ≤ ε0 is certainly
satisfied if k is large enough.

One has
| ln(δkεk)| = ηk + ln(νk/ρk) + ln f(νk/ρk)

Hence, by Lemma 3.3, the coefficients a and b are C∞ when

(4.3) lnx� g(x)� x.

since with (4.2) it implies that | ln(δkεk)| ∼ ηk � ln(νk/ρk).

4.1 Proof of Theorem 1.1

Given the modulus of continuity ω, we choose f(x) = xω(x−1). The assump-
tion on ω is that f is increasing and f(x)→ +∞ at infinity. The spirit of the
theorem is that f can grow to infinity as slowly as one wants. Lemma 3.6
implies that ω is a modulus of continuity for σ = a/b. By Lemma 3.1, the
blow up property (2.3) occurs when

k2e−k
−2f(k2νk)π → 0.
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This condition is satisfied if νk satisfies

(4.4) f(k2νk) ≥ k3,

Let f1(x) = min{f(x), lnx}. We choose g(x) = x/f1(x) and νk such that

2k3 ≤ f1(k2νk) ≤ 4k3.

Note that this implies (4.4). We show that the conditions (3.10) are satisfied
with p = q = 3 and C = 4 and a suitable choice of νk, so that by Corollary 3.5
the coefficients belong to ∩s>1G

s and the theorem is proved.
Indeed, since f1(k2νk) ≤ 4k3, the condition νk/ρk ≤ 4k3ηk is satisfied.

Moreover, since ln(k2νk) ≥ 2k3,

νk ≥ k−2e2k3 ≥ ek3 .

for k large.

4.2 Proof of Theorem 1.2

The proof is similar. Given the modulus of continuity ω, we choose f(x) =
xω(x−1). The assumption on ω is now that

(4.5) lnx� f(x).

The spirit of the theorem is now that f(x)/ lnx can grow to infinity as slowly
as one wants. By Lemma 3.6, ω is a modulus of continuity for σ = a/b.

By Lemma 3.2, the blow up property (2.4) is satisfied if

lnhk = ηk + ln(νk/ρk) + ln(16π)� εkνk

that is if

(4.6) ρkf(νk/ρk)� g(νk/ρk) + ln(νk/ρk).

Let ψ(x) = f(x)/ lnx and g(x) =
√
ψ(x) lnx. Then

ψ(x)� 1, lnx� g(x)� f(x).

Therefore, the condition (4.6) is satisfied when ρk
√
ψ(νk/ρk)→ +∞ and for

that it is sufficient to choose νk such that

(4.7) ψ(k2νk) ≥ k5.

The condition g(x) � lnx implies that the coefficients are C∞ and the
theorem is proved.
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4.3 Proof of Theorem 1.5

With s > 1 and 0 < µ < 1− 1/s, we choose

(4.8) g(x) = x1/s � f(x) = x1−µ.

The choice of f implies that σ = a/b ∈ Cµ. The choice of g implies that

νk/ρk ≤
(
g(νk/ρk)

)s
= ηsk.

With s′ ∈]1, s[, the condition

ρ−1
k ≤ η

s′−1
k

is satisfied when k2 ≤ (k2νk)
(s′−1)/s, that is when

(4.9) νk ≥ k2p, p = (1 + s− s′)/(s′ − 1).

In this case, Corollary 3.5 implies that the coefficients a and b belong to the
Gevrey class Gs.

The blow up property (2.4) is satisfied when (4.6) holds, that is when

k−2(k2νk)
1−µ � (k2νk)

1/s,

which is true if

νk ≥ k2q, q = (µ+ 1/s)/(1− µ− 1/s).

Therefore, if νk ≥ k2 max{p,q}, the system satisfies the conclusions of Theo-
rem 1.5.

4.4 Proof of Theorem 1.3

The analysis above shows that if one looks for coefficients in ∩s>1G
s, one

must choose g and thus f , close to x. We choose here

g(x) = x/(lnx)2 � f(x) = x/ lnx� x

Since f(x)/x→ 0 at infinity, the symmetrizer is continuous up to t = 0 but
in no Cµ for all µ > 0.

The ill posedness in C∞ is again garantied by the condition (4.6), that
is ln(k2νk)� k2. In particular, it is satisfied when

(4.10) νk ≥ ek
3
.
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By Corollary 3.5, to finish the proof of Theorem 1.3, is is sufficient to show
that one can choose νk satisfying (4.10) and such that νk/ρk ≤ 4k6ηk. This
condition reads ln(k2νk) ≤ 2k3, or

νk ≤ k−2e2k3

which is compatible with (4.10) if k is large enough.

4.5 Proof of Theorem 1.4

Let a ∈ ∩s>1G
s denote the coefficient constructed for the proof of Theorem

(1.3). The definition (2.15) shows that a ≥ 0 and indeed a > 0 for t > 0.
The functions vk defined at (2.17) are supported in Ik and are solutions of
the wave equation (1.5) with source term fk and we have shown that∥∥hjk∂ltfk∥∥L2/

∥∥vk∥∥L2 → 0 as k →∞.

References

[CiCo] M.Cicognani, F.Colombini, Modulus of continuity of the coeffi-
cients and loss of derivatives in the strictly hyperbolic Cauchy
problem, J. Differential Equations 221 (2006), pp 143–157.

[CDGS] F.Colombini, E.De Giorgi, S.Spagnolo, Sur les équations hyper-
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