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Abstract

In this paper we study the Cauchy problem for second order strictly
hyperbolic operators of the form

Lu:= Y 0y (a;x0y,u) + Y _{bjdy,u+ 9y, (cju)} +du = f,

4,k=0 =0

when the coefficients of the principal part are not Lipschitz continu-
ous, but only “Log-Lipschitz” with respect to all the variables. This
class of equation is invariant under changes of variables and therefore
suitable for a local analysis. In particular, we show local existence,
local uniqueness and finite speed of propagation for the noncharacter-
istic Cauchy problem. This provides an invariant version of a previous
paper of the first author with N.Lerner [6]. We also give an application
of the method to a continuation theorem for nonlinear wave equations
where the coefficients above depend on u: the smooth solution can be
extended as long as it remains Log-Lipschitz.
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On consideére le probleme de Cauchy pour des équations d’onde stricte-
ment hyperboliques:

Lu:= Y 0y (a;r0yu) + > _{bjoyu+ 0y, (cju)} + du = f,
4,k=0 j=0

quand les coefficients de la partie principale sont seulement “Log-Lipschitz”
en toutes les variables. Cette classe d’équation est invariante par change-
ment de variables et est donc une classe naturelle pour une étude locale in-
trinseque. En particulier, on montre 'existence locale, I'unicité locale et la
vitesse finie de propagation pour le probleme de Cauchy non caractéristique.
donnant une version invariante d’un résultat antérieur du premier auteur
avec N.Lerner [6]. Pour les équations non linéaires ou les coefficients ci-
dessus dépendent de u, la méthode d’ estimations permet de montrer que
les solutions régulieres se prolongent en solutions régulieres aussi longtemps
qu’elles restent Log-Lipschitz.

1 Introduction

In this paper we study the well-posedness of the Cauchy problem for sec-
ond order strictly hyperbolic equations whose coefficients are not Lipschitz
continuous:

(1.1) Lu:= Z dy, (a;jkOy,u) + Z{bjayju + 0y, (cju)} +du = f.

In Section 6, we will present an application of the methods developed for
the analysis of the Cauchy problem to nonlinear wave equations, where the
various coeflicients above depend on w. It is known that the smooth solution
can be extended as long as they remains Lipschitz continuous. We prove that
this condition can we weakened, and that smooth solution remain smooth
as long as they remain Log-Lipschitz. We refer to Section 6 for a precise
result and focus now on the analysis of the Cauchy problem.

The question of the well posedness of the Cauchy problem for the wave
equation with nonsmooth coefficients has already been studied in the case
that the second order part has the special form, in coordinates y = (¢, z):

(1.2) a2 — Z O, (k0 0)
g.k=1



and the Cauchy data are given on the space-like hyperplane {t = 0}. In this
case, when the coefficients depend only on the time variable ¢, F. Colombini,
E. De Giorgi and S. Spagnolo ([5]) have proved that the Cauchy problem is
in general ill-posed in C'*° when the coefficients are only Holder continuous
of order o < 1, but is well-posed in appropriate Gevrey spaces. This has
been extended to the case where the coefficients are Holder in time and
Gevrey in z ([14, 8]). Moreover, it is also proved in [5] that the Cauchy
problem is well posed in C'*° when the coefficients, which depend only on
time, are “Log-Lipschitz” (in short LL) : recall that a function a of variables
y is said to be LL on a domain €2 if there is a constant C' such that

(1.3) la(y) — a(y)] < Cly — /| (1+Logly — ¥/||)

for all y and ¢/ in Q. In [5], it is proved that for LL coefficients depending
only on t and for initial data in the Sobolev spaces H® x H*~!, the solution
satisfies

(1.4) u(t,”) € HM duu(t,-) e H1M

with A depending only on the LL norms of the coefficients and the constants
of hyperbolicity. In particular, there is a loss of smoothness as time evolves
and this loss does occur in general when the coefficients are not Lipschitz
continuous, and is sharp, as shown in [3].

The analysis of the C'* well-posedness has been extended by F. Colom-
bini and N. Lerner ([6]) to the case of equations, still with principal part
(1.2), whose coefficients also depend on the space variables x. They show
that the Cauchy problem is well-posed if the coefficients are LL in time
and C* in z. They also study the problem under the natural assumption
of isotropic LL smoothness in (¢,2z). In this case one has to multiply LL
functions with distributions in H®. This is well defined only when |s| < 1.
Therefore, one considers initial data in H* x H*! with 0 < s < 1, noticing
that further smoothness would not help. Next, the loss of smoothness (1.4)
forces us to limit ¢ to an interval where 0 < s — A¢, yielding only local in
time existence theorems. We also refer to [6] for further discussions on the
sharpness of LL smoothness.

However, the local uniqueness of the Cauchy problem and the finite
speed of propagation for local solutions are not proved in [6]. The main
goal of this paper is to address these questions. Classical methods such
as convexification, leads one to consider general equations (1.1) with LL
coefficients in all variables. However, the meaning of the Cauchy problem for
such equations is not completely obvious: as mentioned above, the maximal



expected smoothness of the solutions is H® with s < 1 and their traces
on the initial manifold are not immediately defined. More importantly, in
the general theory of smooth operators, the traces are defined using partial
regularity results in the normal direction; in our case, the limited smoothness
of the coefficients is a source of difficulties. It turns out that when s < %, one
cannot in general define the traces of all the first order derivatives of u, but
only the Neumann trace relative to the operator, using a weak formulation
of the traces.

Assumption 1.1. L is a second order operator of the form (1.1) on a
neighborhood 2 of y, with coefficients a; i, € LL(S), b; and c; in C*(S2), for
some « 6]%, 1[ and d € L>=(Q2). ¥ is a smooth hypersurface through y and
L is strictly hyperbolic in the direction conormal to X.

Shrinking € if necessary, we assume that ¥ is defined by the equation
{¢ = 0} with ¢ smooth and dy # 0. We consider the one-sided Cauchy
problem, say on the component Q. = QN {p > 0}. We use the Sobolev
spaces H*(Q2N {¢ > 0} for s € R. As usual, we say that v € H} (2N {p >
0}), if for any relatively compact open subset €21 of €, the restriction of u to
Q1 N{p > 0} belongs to H*(QN{p > 0}). Similarly, u € HZ,,,,(2N{p > 0})
if ue H*(Q2 N {p > 0}) has compact support in QN {y > 0}.

The adjoint operator

n

(1.5) Ly = Z By (@5 £0y;v) — Z{@jaij + 8y, (bjv)} + dv

4,k=0 =0

has the same form as L. For w and v smooth, v compactly supported in
QN {p >0}, one has the (formal) identity

!/
(1.6)  (Lu, v)LQ(m) — (u, L*U)LQ(M = (NVU,U)LQ(E) — (u, Ny )LQ(E)
where
Nyu = Z vk(ajx05u)s,
i,k
(1.7) -
Nyv = Z v;(@; k0Kv)|5 Z 1/] |Z
3k J
and v = (vp,...,vq) # 0 is conormal to ¥ and the d-integration form on %

is chosen accordingly. .



Lemma 1.2. i) For all s €]1 —a,1 4+ af and u € H} (2N {¢ > 0}),
all the terms entering in the definition of Lu and L*u are well defined as
distributions in HS_Q(Q N{e > 0}).

it) For all s €]3,1+ o and u € Hy, (2N {p > 0}), the traces Nyu and

_3
N)u are well defined in in Hlsoc2 (XNQ).

Proof. This is due to multiplicative properties (see [6] and Corollary 3.6):
-Ifo €l -1,1[, a € LL(Q) and v € H] (2N {p > 0}), then av €
loc(Q n {()0 2 0}
-Ifo €]l —ao,af,a € C*Q) and v € HY (2N {p > 0}), then av €
loc(Q N {‘P > 0}) OJ

Next, we recall that the subspace of functions with compact support

in Q4 is dense in H?(Qy) when |o| < 3; moreover, for 0 < ¢ < % and
for v € H?() the pairing (u,v)r2(q) for v € L? extends as the duality
(U, v) o x g—o . With this remark in mind, the identity (1.6) holds for smooth

functions:

Lemma 1.3. For s €]3, 1+ af, u € Hj, (2N {p > 0}) and v € HS,,,,,
{¢ > 0}), there holds

<Lu, v>

Qn

—<U, L*'U>H(f><H*cr
= (Nl,u, ng)

H-9xH°
(1.8) — (Dgu, NL’U)

L2(%) L2(%)

with o = s — 3 €]0, %[ and Dyu = Uy

Proof. 1t is sufficient to remark that for o € [0, 5[, the Green’s formula

(05, 9) oo = =050 oy + (Vi Dz, D) 1o,
is satisfied for u € H: (2N {p > 0}) and v € HL 7 (@0 {p > 0}) O

Proposition 1.4. Let D(L;H®) = {uv € H} (QNn{yp > 0}) : Lu €
L (2N {e > 0})}. The operator Nx, and Ds; have unique extensions to
Uss1—a D(L; H?) such that
z) Forall s €]l —« a[ Ny, [resp. Dx] is continuous from D(L; H®) into
HiH(E09) frsp. Hi (200) ]

i) for all 8 €]1 — a, 2[ such that s’ < s and allv € Hgorjp(ﬂﬂ {¢ >0})
there holds

(Lu, v) 12 —<u, L*v>HS/ CH—
= <]\7V’U,7 DZU> _3 3_s — <DZ’U’7N1///U>H57 !’

S 1 —S
H° 2xH?2 2xH?2

(1.9)



This proposition is proved in Section 5. Note that by Lemma 1.2, for
v e HZS, L*v € Hy, and that u € Hj, if s/ < s. Moreover, Dyv €
3 g 3_ 1o 1
Hemp C Homp and NLv € Hzmp C Homp.
With this Proposition, the Cauchy problem with source term in L? and
solution in H®, s > 1 — o, makes sense.

Theorem 1.5 (Local existence). Consider s > 1 — o and a neigborhood w
of y in B. Then there are s' €]1 — a, af and a neighborhood Q' of y in R1*™
such that for all Cauchy data (ug,u1) in H*(w) x H* Y (w) near y and all
f e LY N {p > 0}) the Cauchy problem a

(1.10) Lu= f, Dzu = Uup, Ngu = ui,
has a solution u € H¥ (' N {p > 0}).

Theorem 1.6 (Local uniqueness). If s > 1 —a and u € H*(QN{p > 0})
satisfies

(1.11) Lu=0, Dsu=0, Nsu=0
then uw = 0 on a neighborhood of y in QN {p > 0}.

Remark 1.7. If the coefficients of the first order term L; (see (2.3)) are
also LL, the statements above are true with a = 1 since the coefficients are
then C* for all « < 1. If the b; are C'“ and the c; are C?, the conditions
are 1 — @ < a and the limitation on s is 1 — & < s.

Remark 1.8. Theorem 1.6 implies that if w is in H® and satisfies Lu = 0
near y and if u vanishes on {¢ < 0}, then u vanishes on a neighborhood
of y (Eee Section 5.2). Moreover, this local propagation of zero across any
spa?:e—like manifold implies finite speed of propagation by classical arguments
which we do not repeat here. In particular, if ' N {¢ > 0} is contained in
the domain of dependence of w, there is existence and uniqueness for the

Cauchy problem (1.10) in ' N {¢ > 0}.

The proof of these results is given in Section 5 below. Because all the hy-
potheses are invariant under smooth changes of coordinates, we can assume
that in the coordinates y = (¢, ), the initial surface is {¢ = 0}, and in these
coordinates, we prove the existence and uniqueness theorems. We deduce
them from similar results on strips |0, T[xR"™ and there, the main part of
the work is to prove good energy estimates for (weak) solutions. In this
framework, the results of Theorem 1.5 are improved, by using non isotropic



spaces, and by making a detailed account of the loss of spatial smoothness
as time evolves, as in [5, 6]. The precise results are stated in section 2 below
and are proved in section 4 using the paradifferential calculus of J.-M. Bony,
whose LL-version is presented in section 3.

2 The global in space problem

In this section we denote by (¢, x) the space-time variables. On Q = [0, Tp] x
R™ consider a second order hyperbolic differential operator

(2.1) Lu = Lau+ Liu+du

with

(22) Ly = Owod+ Y (010;0n; + 0u;a;0) — Y O, kOuy,
j=1 j,k=1

n
(23) L1 = b0+ Oico+ Y (b;; + uycy).
j=1
The coefficients satisfy on ©Q = [0, Tp] x R™

(2.4) aj = akj, o, aj, aji € L>(Q)NLL(Q),
(25) bo, co, bj, cj € LOO(Q) N CQ(Q),
(2.6) de (),

for some o €]3,1[. Recall that the space LL is defined by (1.3), the semi
norm |la||rz being the best constant C in (1.3). In addition, for « €]0, 1],
C*“ denotes the usual Holder space, equipped with the norm

/
a\y) —aly
(27) ||a”0a = HQHLOC + sup L/(Ocﬂ
y#y’ |y -y |
When o = 1, this defines the norm ||a|| s in the space of Lipschitz functions.

We assume that L is hyperbolic in the direction dt, which means that
there are 99 > 0 and 6; > 0 such that for all (¢,z,¢) € [0,Tp] x R™ x R”

a;a
(2.8) aot,x) > 0o, > (aje+ 25)E& > du ¢l
1<j,k<n o

We denote by Ape, Apr, and B constants such that for all indices

(2.9)  llao, a5, ajkll L) < AL, lao, aj, ajkllLr) < AL,
(2.10) [bo, €0, b ¢jllca(a) < B, ldll () < B.



2.1 Giving sense to the Cauchy problem

Consider the vector fields

(2.11) X =apdy + Y _ ajo; = aoY.
j=1

Formal computations immediately show that the second order part of L can
be written

(2.12) Lou = ZXu — Lou
with
n 5 n
(2.13) Zv=0w+» 0y (av),  Lou= Y 0 (d;r0s,u),
=1 k=1

ajr = a;k + ajar/ag, and a; = a;/ag. Consequently, it follows that

(2.14) Lu = (Z +bo)(X 4 co)u — Lou + Liu+ du
with
(2.15) Liw= bjogu+ Y d(Eu)
j=1 j=1
and

bozbo/ao, bj:bj—boaj, 5]':Cj—dj00, d:d—COEQ.

The next lemma shows that these identities are rigorous under minimal
smoothness assumption on wu.

Lemma 2.1. Suppose that uw € HP(]0,T[) x R™) for some p €]1 — a, .
Then cu, Xu and Liu belong to HP~1(]0,T[) x R™). Moreover Lou is well
defined as a distribution in HP~2(]0, T[xR™).

Proof. u and its space-time derivatives (Oyu, 9;,u) belong to H r=1. Follow-
ing [6], their multiplication by a bounded LL function belong to the same
space (see also Corollary 3.6). This shows that all the individual terms
present in the definition of Xu belong to H?~! and those occurring in Lou
and ZXu are well defined in H”~? in the sense of distributions.



Next we recall that the multiplication (b,u) — bu is continuous from
C* x H® to H® when |s| < a. This implies that the terms bOu and 0(cu)
that occur in Liu and Lyu belong to H?~! since p €]1 — a, af.

The last term du is in L2, thus in H?~!, since ¢ € L™ and u € L.

The identity (2.12) is straightforward from (2.2) since all the algebraic
computations make sense by the preceding remarks. O

Next we need partial regularity results in time, showing that the traces
of u and Xu at t = 0 are well defined, as distributions, for solutions of
Lu = f. This is based on the remark that this equation is equivalent to the
system

(2.16) {ZU+§0U:E2u—f/1U—CZU+f,
Yu+ éou =v/ag

with ¢y = cg/ag. The important remark is that, for this system, the co-
efficients of 9y, both for u and v, are equal to 1, thus smooth. Using the
notation Y = 0; +Y, Z = 0, + Z, the system reads

O = —Zv — bgv — Lou — Lyu — du + f,
(2.17) {t 0 2 1 f

ou=—-Yu-+ v/ay.

Lemma 2.2. Suppose that p €]1 — a,af and u € HP(]0,T[xR™) is such
that Lu € L'([0,T]; HP~Y(R™)). Then u € L*([0,T]; H?(R™)) and O €
L2([0, T); HP~Y(R™)). Therefore, u € C°([0, T); H?~2 (R™)).
Moreover, Xu € L2([0,T]); H*~Y(R")) and Xu € C([0, T]; H?~3 (R™)).
In particular, the traces u—g and Xuy—g are well defined in Hp_%(R")
and HP~2 (R™), respectively.

Proof. a) We use the spaces H** of Hormander ([7], chapter 2), which are
defined on R as the spaces of temperate distributions such that their
Fourier transform 4 satisfies (1+724[€[2)%/2(14|¢|2)¥/24 € L2. The spaces
on [0,T] x R™ are defined by restriction. In particular, H%* ([0, 7] x R") =
L2([0,T]; H¥ (R™)). Recall that O; maps H*% to H** ! and that

(2.18) we HY  oue H ' = yemgsts1

b) For u € H”, the first derivatives of w, Ju, as well as Lyu, Xu and
v belong to H"’*1~: Hf’*l’(i, as well as their multiplication by a LL or C¢
coefficient. Thus Lou and Zv belong to H°~5~1 and

(2.19) Ow=f+g, f=LueL'(0,T;H"), ge H1L



Let
vo(t) :/ f(t/)dt' € C’O(HP’l).
0

In particular, v € L?(]0,T[; H*~') = HO*~! ¢ HP=10 since p —1 < 0.
Thus, v — vy € HP10 and dy(v —vg) = g € HP~L7L. By (2.18) v — v €
Hr~t ¢ H%~1 since p > 0.

Next, reasoning for fixed time and then taking L? norms we note that the
multiplication by a LL or C® function maps L2(]0, T[; H*~') = H%*~! into
itself. Thus, by the second equation of (2.17), dyu = —Yu + v/ag € HOP~ L.
This finishes the proof of the first part of the lemma.

¢) In particular, it implies that v = Xu + bou € H% 1. Thus, Zv
and Lyu which involve multiplication by C* or LL function, followed by a
spatial derivative, belong to H%?~2. Therefore, the equation implies that
in (2.19) g € H%~2. Thus applying (2.18) to v — vy € H*~1 implies
that v — vy € HW*~2 C CO([O,T];H“%(R”)). Since [p — 3| < a and
u € C°[0,T7; Hp_%(R”)), the product byu belongs to C°([0, T7; Hp_%(]R”)).
Since v is also in this space, we conclude that Xu € C°([0, T); Hp_%(]R”)).

O

Remark 2.3. If p > %, then the multiplication by LL functions maps H =3

into itself and we can conclude that d;u € C°([0,T7; Hf“%(]R”)), as well as
all the first derivatives of u, so that their traces at ¢ = 0 are well defined.
When p < %, the continuity of d,u is not clear. However, the trace of Xu has
an intrinsic meaning, as a consequence of Proposition 1.4 (see Section 5).

Lemma 2.2 allows us to consider the Cauchy problem
(220) Lu = fv Ujt=0 = U0, Xu|t:0 = uz,

when f € LY([0,T); H?(R™)) and u € |J H?(]0,T]) x R™).

p>—a p>l—a

2.2 The main results
We first state uniqueness for the Cauchy problem:

Theorem 2.4. Ifu €| H?(]0,T[) x R™) satisfies

p>l—a
(221) Lu = 0, U|t:0 = 07 Xu|t=0 =0

then v = 0.

10



As in [5, 6], we prove existence of solutions in Sobolev spaces having
orders decreasing in time. The proper definition is given as follows. The
operators

(2.22) ID| and A :=Log(2+|D|)

are defined by Fourier transform, associated to the Fourier multipliers |¢|
and Log(2 + [¢]) respectively.

Definition 2.5. i) H*(R") or H® denotes the usual Sobolev space on R™.
H531°9 gnd H5~3%9 denote the spaces A"3H® and A3 H respectively.

i) Given parameters o and X, we denote by Cy x(T') the space of functions
u such that for all to € [0,T], u € CO([0, o], HT 7o),

i) Ha:t%log,)\(T) denotes the spaces of functions u on [0,T] with values
i the space of temperate distributions in R™ such that

(2.23) (1+|D])"MAE2u(t, ) € LA([0, T]; LA(R™)).

i) Lo \(T) denotes the space of functions u on [0, T with values in the
space of temperate distributions in R™ such that

(2.24) (1+ (D)7 Mu(t,-) € L'([0, T); L*(R™)).
CoA(T) is equipped with the norm

(2.25) sup ||u(t)|| gro—rt-
t€[0,T]
The norms in H 41, 1(T) and L, A(T) are given by (2.23) and (2.24).
2 I’
Equivalently, H_ Liog, \(T') and L, »(T) are the completions of C§°([0, T x
R™) for the norms

T 1
2 2
(2.26) ||uHHo‘i%log,)\(T) = </O ||u(t)”Ha7)\t:t%logdt) :
and
T
(2.07) llle, yory = /O e —s

Theorem 2.6. Fiz 0 < 0; in |1 —a,af. Then there are A > 0 and K > 0,
which depend only on the constants Ap~, Arp, B, 8y, 01, 0 and 01, given
by (2.8), (2.9) and (2.10), such that for

0, — 0

(2.28) T = min{7y, 3 }

11



uy € HO(R"), u; € H9R") and f = fi + fo with fi € L_g\(T) and
fa € H—o—%log,)\(T)f the Cauchy problem (2.20), has a unique solution u €
Ci—o(T) ﬁH1_9+%log7)\(T) with Oyu € C_g \(T') ﬂH_H%log’)\(T). Moreover,
it satisfies

sup [Ju(t)| 5 -o-ae + sup [|8cu(t)][7 o s
0<t'<t 0<t'<t

t
+/O (”“(t/)”zrwﬂ%l% + Hatu(t’)|’2707M,+%l09>dt/
(2.29)

< K{luol3o + 3

t 2 t 5
/
IO Naaese )+ IR ooy}

Note that for t € [0,7], 1 — 6 — Xt > 1—60; > 1— «, so that f €
LY([0,T); H%) with 6; < 62 < a. Similarly, v € L*([0,T]); H*~%) and
O € L2([0,T]; H=%) implying that v € H'~%([0,T] x R"). Therefore, we
are in a situation where we have given sense to the Cauchy problem.

Remark 2.7. This is a local in time existence theorem since the life span
(2.28) is limited by the choice of A\. Thus the dependence of Ay on the
coefficient is of crucial importance. In case of Lipschitz coeflicients, there is
no loss of derivatives; this would correspond to A = 0. Using the notations
in (2.9) (2.10) and (2.8), the analysis of the proof below shows that there is
a function K(-) such that one can choose

Arr
2. = K
( 30) A min{&o, (51} 0(

ALoo
)

revealing the importance of the LL-norms of the coefficients and the role
of the hyperbolicity constant d1/dp. In particular, it depends only on the
second order part of operator L.

Remark 2.8. A closer inspection of the proof, also shows that if the coeffi-
. . . N "o /] "
c1§nts o/f th/e p,rlmpa.l part_ of L ar.e (ap, aj, aj7k2,—”(a0”+ g, a; —i—gj , aj:k —i—aj:k)
with (ay, aj, a’ ;) Lipschitz continous and (ag,a,af,) Log Lipschitz, with
LL norm bounded by A/, one can replace Az, by A7, in the definition of

A. In particular if instead of (1.3) the coefficients satisfy

(2.31) la(y) — a(y)] < Cw(ly —y])

12



with a modulus of continuity w such that

(2.32) im <) _
=0+ ¢|Loge]

they can be approximated by Lipschitz functions with errors arbitrarily small
in the LL norm. This can be done by usual mollifications, which will preserve
the L*° bounds Ar~ and keep uniform hyperbolicity constants dy and Jj.
As a consequence, A can be taken arbitrarily small, yielding global in time
existence with arbitrarily small loss of regularity (see Theorem 2.1 in [3]
when the coefficients depend only on time).

3 Paradifferential calculus with LL coefficients

In this section we review several known results on paradifferential calculus
and give the needed extensions to the case of Log-Lipschitz coefficients.

3.1 The Paley-Littlewood analysis
Introduce x € C§°(R), real valued, even and such that 0 < xy <1 and
(31) X =1 forfg <11, x(6) =0 for|g >19.

For k € Z, introduce i (§) := X(Q_kf), Xk(x) its inverse Fourier transform
with respect to £ and the operators

Sku = Xg *u = Xk(Dg)u,

(3.2)
Ao = S(), and for k > 1 Ak = Sk - Sk—l'

We note that Ay and Sy are self adjoint. Moreover, by evenness, Xy, is real,
so that Ap and Sy preserve reality. For all temperate distributions u one
has

(3.3) uw=>_ Apu.
k>0
The next propositions immediately follow from the definitions.

Proposition 3.1. Consider s € R. A temperate distribution u belongs to
H*(R™) [resp. HSi%l"g] if and only if
i) for all k € N, Agu € L2(RY).
ii) the sequence 0 = QkSHAkuHLZ(Rd) [resp. Ok = (k+1)i%2k8”AkUHL2(Rd)/
belongs to /*(N).
Moreover, the norm of the sequence 0y, in €? is equivalent to the norm of
u in the given space.

13



Proposition 3.2. Consider s € R and R > 0. Suppose that {uy}ren is a
sequence of functions in L*>(R%)such that:
i) the spectrum of ug is contained in {|{| < R} and for k > 1 the
spectrum of uy is contained in {% 2k < )¢ < RQk}.
ii) the sequence §y, = QkSHUkHLz(Rd) [resp. 0 = (k“‘l)i%kaHAkuHLz(Rd)/
belongs to £%(N).
Then u =" uy, belongs to H*(R?) [resp. HSi%log]. Moreover, the norm
of the sequence 6y in (% is equivalent to the norm of u in the given space.
When s > 0, it is sufficient to assume that the spectrum of uy is contained

in {|¢] < R2%}.
Next we collect several results about the dyadic analysis of LL spaces.

Proposition 3.3. There is a constant C such that for all a € LL(R™) and
all integers k > 0

(3.4) |Aral e~ < Ck27Fal| L.

Moreover, for all k >0

(3.5) la = SkallLee < C(k +1)allLL

(3.6) ISkalluip < C(llallze + (k + Dlalue).
If a €]0,1] and a € C*(R™), then

(3.7) |Akall L < C27%|al|ce.

Proof. Sj is a convolution operator with Y which is uniformly bounded in
L'. Thus

(3.8) [Skallze < Cllal|zee.

Moreover, since the integral of 0;X} vanishes
0;(Ska)(z /ank a(z —y) — a(z))dy.
Using the LL smoothness of a yields

(3.9) IV Sallz= < Clk+ 1llallze.

This implies (3.6). The proof of (3.4) is similar (cf [6]). The third estimate
is classical. ]

14



3.2 Paraproducts

Following J.-M. Bony ([2]), for N > 3 one defines the para-product of a and
u as

(3.10) Tévu = Z Sp_na Apu
k=N

The remainder RN u is defined as
(3.11) RNu = au — TNu.

The next proposition extends classical results (see [2, 13]) to the case of
LL coeflicients and Log Sobolev spaces.

Proposition 3.4. i) For a € L*® and s € R, TN continuously maps H® to
H® and H**319 to Fst3log, Moreover, the operator norms are uniformly
bounded for s in a compact set.

i) Ifa € L°NLL and N' > N > 3, TN — TN maps H* 219 into
HSH*%IOQ, for all s € R.

i) If a € L*° N LL, N > 3 and s €]0,1[, RY

Liog -
N maps H=5+219 into
1
Hl—s—§log7 and

(3.12) 1R ul < Cllallzzull

Hlfsf%log — H75+%log

with C uniformly bounded for s in a compact subset of 10, 1].

Proof. The first statement is an immediate consequence of (3.8) and Propo-
sitions 3.1 and 3.2.
Next, TC{VU - TL{V/’U, = Zk v, with v, = (Sk,Na - Sk_N/a) Aru. By
Proposition 3.3
vkl 22 < C(k+ 1)27" || Agull 2.
With Proposition 3.2, this implies 7).
To prove iii) we can assume that N = 3. Then

(3.13) R,u = Z Apa Sp_su + Z Z AjaAgu.

k>3 ko |k—j|<2

Ifue H_s"'%log, then

1A ullLe <

278
.
R
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with {e;} € £2. We note that the sequence

VEFT
=S YEE olbig,

(3.14) : £j
jgk‘/]+1

is also in £2 with
€Il < Clljlle

with C' uniformly bounded when s in a compact subset of |0, +oco]. Thus

2ks

Si_sull72 < e
[Sk—sull 2 < ok

with {&}} € ¢2. Therefore,
|Ara Sp_sul|p2 < CVE+1 267Dkl

Proposition 3.2 implies that the first sum in (3.13) belongs to H1-s=3l0g,
Similarly,

H 3 AjaAkuHLQ < OVE T 126Dk

lk—j|<2

with {e/} € ¢2. Now the spectrum of AjaA u is contained in the ball
{|¢] < 2%*3}; because 1—s > 0, Proposition 3.2 implies that the second sum
in (3.13) also belongs to H 1—s—3log , and the norm is uniformly bounded
when s remains in a compact subset of [0, 1]. O

Remark 3.5. By ii) we see that the choice of N > 3 is essentially irrelevant
in our analysis, as in [2]. To simplify notation, we make a definite choice of
N, for instance N = 3, and use the notation 7, and R, for TN and RY.

Corollary 3.6. The multiplication (a,u) — au is continuous from (L% N
LL) x H*%9 to {5009 for s €] —1,1] and 6 € {—3,0, 3}

Proof. (see [6]) Property iii) says that R, is smoothing by almost one deriva-
tive in negative spaces, and therefore, for all o €] — 1, 1[ it maps H? to H
for all o/ > max {0, 0} such that o/ < min {o + 1,1}. Combining this obser-
vation with 4), the corollary follows. O

In particular, we note the following estimate

(3.15) laull oy y10g < C(llallzoellull o g0 + llallollullzs)-
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Proposition 3.7. Consider ¢ = /(1 + [£]?) and ¥(§) a symbol of degree m
on R™. Denote by Q = /(1 — A) and U the associated operators. If a €

L>*NLL, then the commutator [Q~°W,T,| maps H—5+3109 jnto F1-m—3log
and

(3.16) Q™Y TaJull 1110y < CllallLr lull oy 310,
with C uniformly bounded for s € [0,1] and ¥ in a bounded set.

Proof. We use Theorem 35 of [4], which states that if H is a Fourier multi-
plier with symbol & of degree 0 and if a is Lipschitzean, then

I, alds,ull 2 < Cl|Vaall o ull2-
For k > 0, writing Agu as sum of derivatives, this implies that
(3.17) ILH, a)Aul| > < C27F||V,a o [|[Agul| 2.

with C independent of £ and H, provided that the symbol h remains in a
bounded set of symbols of degree 0.

We now proceed to the proof of the proposition. Since ¥ and ) commute
with Ag, one has

(3.18) [Q°T, TuJu=>_[Q°¥, Sk_sa] Aju.
k>3

Moreover, since the spectrum of Sp_salpu is contained in the annulus
2F=1 < |¢] < 2F+2 it follows that

(3.19) [QiS\I/, Sk,ga]Ak = 2k(m75) [Hk, Sk,ga}Ak
where the symbol of Hy is
he(€) = 2077 ()i () (2756

and ¢ supported in a suitable fixed annulus. Note that the family {hy} is
bounded in the space of symbols of degree 0, uniformly in k, s € [0,1] and
1 in a bounded set of symbols of degree m. By (3.17), it follows that

|[Hx, Sk-sa] Agull 2 < C25" 7D VS) _sallpe | Agul| 2.
Together with (3.9) and Proposition 3.1, this implies that for u € H_S’L%log,
1Q°¥, Sk—sa]Agul| < C(k + 1)|lallLr [|Agullre2.

Using Proposition 3.2, the estimate (3.16) follows. O
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Proposition 3.8. Ifa € L™ N LL is real valued, then (Ta — (Ta)*)am]. and
Oz, (Ta — (Ta)*) map H5+3109 jnto {57319 and satisfy
1(Ta = (Ta)") Oy ull o310y < Cllallzr Jul

10, (Ta — (Ta)")ul < Cllallze ull

Hs—%log —

H5+%log 9

(3.20)

Hs+%log .

Proof. The Sia are real valued, since a is real, and the Ay are self adjoint,
thus

(To)u =) Ap((Sk—sa)u).
k=3

Therefore, one has
(Ta = (Ta)*) = [Sk-3a, Ak] = > [Sk—3a, ATy

where W}, is a Fourier multiplier with symbol ¥y, = ¥(27%¢) and 1 is sup-
ported in a suitable annulus. Using again [4] (see (3.17)) yields

I[Sk-sa; Ak]0r; Vpul[ 2 < C(k + 1)llall L] Vrul L2,

and a similar estimate when the derivative is on the left of the commutator.
Since the spectrum of [Si_3a, Ax]¥xu is contained in a annulus of size ~ 2%,
this implies (3.20). O

Proposition 3.9. Ifa and b belong to LN LL, then (TaTb—Tab)ﬁxj maps
H+319 into H~3°9 gnd

|| (TaTb - Tab)aa:ju”

Hs—%lng

(3.21)
< C(llallzelbllze + Iolcelallze ) ol oo

Proof. By Proposition 3.4, it is sufficient to prove the estimate for any para-
product TV. One has

TVTN Oy =3 3 Seona Ag(Sionb M),
k>N I>N

In this sum, terms with |l —k| < 2 vanish, because of the spectral localization
of S;_nbA0,;. The commutators [Ay, S;—nb] contribute to terms which are
estimated as in (3.18):

I[Ak, Si-Nb] A0z ull 2 < C(k + 1)|bllr (| Al 2.
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If N is large enough, the spectrum of the corresponding term is contained
in a annulus of size ~ 2¥ and hence the commutators contribute to an error
term in (3.21). Therefore, it is sufficient to estimate

(3.22) >3 (Sk_NaSl_Nb - Sk_N(ab)>Ak Ay u.
k>N I>N

Again, only terms with |l — k| < 2 contribute to the sum. Using (3.5), one

has .
la = Sp-nallze < C(k+1)27%al|LL,

16— Si=nbl| e < C(k + 1)27%|b]| L1,
|ab — Si_n(ab)|| L < C(k +1)27"||ab]|| L.
Thus
1Sk N@S)—Nb—Sk_n(ab)|| poc
< C(k+1)27"(llallLLllbl o + llall Lo |[bllzL)-

Since the terms in the sum (3.22) have their spectrum in annuli of size ~ 2

this implies that this sum belongs to HO=31°9 wwhen u € HOJF%IOQ, with an
estimate similar to (3.21). O

3.3 Positivity estimates

The paradifferential calculus sketched above is well adapted to the analy-
sis of high frequencies but does not take into account the low frequencies.
For instance, the positivity of the function a does not imply the positivity
of the operator T, in L2, only the positivity up to a smoothing operator.
However, in the derivation of energy estimates, such positivity results are
absolutely necessary. To avoid a separate treatment of low frequencies, we
introduce modified paraproducts for which positivity results hold (we could
also introduce weighted paraproducts as in [10, 11, 12]).

Consider a nonnegative integer v and define the modified paraproducts

(3.23) Plu= Z Smax{v,k—3y0 Agu = S,aS,1ou + Z Sra Apisu.
k=0 k=v

Then

v+2 v

(3.24) Plu—Tou=Y_ >  AjaAwu
k=0 j=max{0,k—2}
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and
o
(3.25) au — Plu = Z Aja Sjyou.
Jj=v+1

The difference (3.24) concerns only low frequencies, and therefore the results
of Propositions 3.7,3.8 and 3.9 are valid if one substitutes P? in place of
T,, at the cost of additional error terms. In particular, (3.24) and (3.25)
immediately imply the following estimates:

Lemma 3.10. i) There is a constant C such that for all v, a € L™ and all
u e L?,

(3.26)  [[(P = Ta)Oz;ull 2 + (|02, (P = Ta)ull 2 < C2%|[a] o< [Jull 22

ii) There is a constant Cy such that for all v for all a € LL and all
ue L?,

(3.27) law — PYullr2 < Cov2™"|lal| L [[ull £2-

We will also use the following extension of Proposition 3.8:

Proposition 3.11. If a € L™ N LL is real valued, then (P} — (PY)*)0.,
and Oy, (Pé’ — (P;)*) map HO+3009 jnto O399 and

I(Pe = (P)7) O ull o310y < Cllallr(llull os 310 + Vilullz2),
10z, (Py — (Py)")ull < Cllalle(Jlul +|ull2).

HO—%log — HO-Q—%log

(3.28)

Proof. One has

(PY = (PY)*)Ou;u =[Sy, Syi2)On i+ > [Ska, Apy3)0au.

k>v

The sum over k is treated exactly as in the proof of Proposition 3.8 and
contibutes to the same error term. Using again Theorem 35 of [4], the L?
norm of the first term is estimated by

ClIVaSyallellull 2 < C(v + Dllal Lllul 2

and contibutes to the second error term in (3.28). When the derivative is
on the left, the proof is similar. O

Moreover, a comparison of PYu with au immediately implies the follow-
ing positivity estimate.
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Corollary 3.12. There is a constant cg, such that for any positive LL-
function a such that § = mina(z) > 0, all v such that V277 < cod/|lal|LL,
and u € L*(R"),

5
(3.29) Re(Pyu,u) 2 > 5 lulfa.

Here, (-,-)z2 denotes the scalar product in L?. This estimate extends to
vector valued functions v and matrices a, provided that a is symmetric and
positive.

3.4 The time dependent case

In the sequel we will consider functions of (¢,z) € [0,7] x R™, considered as
functions of ¢ with values in various spaces of functions of x. In particular
we denote by T, the operator acting for each fixed ¢ as Tj) :

(3.30) (Tuu)(t) = 3 Sps(Da)a(t) Ar(Dy)ult).
k=3

The Propositions 3.4, 3.7, 3.8 and 3.9 apply for each fixed t. There are
similar definitions for the modified paraproducts P; further, Lemma 3.10
and Corollary 3.12 apply for fixed t.

When a is a Lipschitz function of ¢, the definition (3.30) immediately
implies that

(3.31) 01, To] = Toras [0, Pyl = P

When a is only Log Lipschitz this formula does not make sense, since 0;a
is not defined as a function. The idea, already used in [5, 6], is that it is
sufficient to commute 0; with time regularization of a. In our context, this
simply means that in (3.30), we will replace the term Si_za, which is a
spatial regularization of a, by a space-time regularization, namely Sy_sag
where ag is a suitable time mollification of a. We now give the details for
PV, as we will need them in the next section.
Introduce the mollifiers

(3.32) Ik (t) = 255(2"t)

where 7 € C5°(R) is non negative, with integral over R equal to 1.
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Definition 3.13. Given a € L*° N LL([0,Tp] x R™), define

(3.33) ak(t,x) = gp %p a = /jk(t — s)a(s,z)ds

where a is the LL extension of a given by

(3.34) a(t,z) =a(0,z), t<0, a(t,x) = a(Ty,z), t=>To.
Next, for fized t, the operator Jgg(t) is defined by
(3.35) ﬁ;’(t)u = S,a,S,12u + Z Skar Agysu.

k=v

We denote by PV the operator acting on functions of (t,z) by (PYu)(t) =
P;’(t)u(t).

Proposition 3.14. Let a € L*NLL([0,To] xR™). Then for eacht € [0, Tp),

the operators Ry(t) = (Pa”(t) - P:(t))(?mj, R2(t)~: azj(P;’(t) - P:(t)), Rs(t) =

((BYp))* = Ply)0zys Ralt) = 0o, ((PYy))* = BYy), and Rs(t) = [Dy, PY(1)

a
map HO*309 jnto HO=3199 and there is a constant C such that for allt €
[0,T0] and for k=1,...,5,

(3.36) 1Reull o yi0g < Cllallr(llull yos 30 + viullz2)-

Proof. a) First, we recall several estimates from [6]. For a € LL([0, Tp] x R™)
the difference a — a;, satisfies

(3.37) la(t,z) — ap(t,z)| < C(k + 1)27k||a||LL,
(3.38) |Orar(t, )| < C(k+1)allLL.

with C' independent of ¢t and z. In particular, we note that
(3.39) 1Sk (a(t) — ar(t))l|lze < C(k+1)27"a] LL-
b) In accordance with (3.35), for [ = 1,2,5, we split R; in two terms

(3.40) Ri(t)u = Bju + Hu, Hpu= Z Wi

k>v

with Bju spectrally supported in the ball of radius 2¥** and with wj, spec-
trally supported in an annulus |¢| ~ 2¥. For Ry,

Biu = Sy(a(t) —ay(t)) Syr20:,u, wy = Sk(a(t) — ar(t)) Apy30:;u.
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With (3.39), this implies that
[Brullz < C(v + 1)l el L2

and

lwillrz < C(k +1)llallLrl| Ap+sull 12,
implying that
< Cllallzzliull ;o1 3100-

For Rs, the analysis is similar. One has
Bou = 0, (Su(a(t) — ay(t)) Spqou), wi = Oz; (Sk(a(t) — ak(t)) Apisu).

Thanks to the spectral localization, the estimates for Bou and wj are the
same as in the case of R;, implying that

(3.41) [1Baul[r2 < C(v + Dlallrlull 2
(3.42) [ Haull o310y < CllallLellu]

HO+3los”
c) For k =5 we write (3.40) with
Bsu = S,(0ray, (1)) Apiou, wg = Sp(Orar(t)) Agisu.
Thus the estimates (3.38) imply

[Bsull L2 < C(v + 1)l Lellul L
[Hsull o110, < CllallLrl[ull o4 3100-
c) One has

Rs3(t) = Ri(t) + R3(t) + (( () — P;(t))axj'

The third term is estimated in Proposition 3.11. The operators R; and

R; = B3+ H; are estimated in part b), implying that Rs satisfies (3.36) for

k = 3. The proof for Ry = Ry = R} + R + Oy, ((P:(t))* — Pa”(t)) is similar.
This finishes the proof of the Proposition. O

Lemma 3.15. There is a constant Cy such that for any a € LL([0, Tp] xR™),
u € L2(R™), v >0 and all t € [0,Tp], one has

(3.43) la(tyu — Pyl 2 < Cov2™"|lall o [[ull -
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Proof. We have

" oo

au — PYu = (a — Sya,)Sytou + Z(a — Srag) Agysu.
k=v
Combining (3.5) and (3.39), we see that
la(t) = Skax ()| < Ck27"|allLL
This implies (3.43). 0
The lemma immediately implies the following positivity estimate.

Corollary 3.16. There is a constant cy, such that for any positive LL-
function a such that 6 = mina(t,z) > 0, all v such that v27" < ¢od/|lallLL,
and u € L*(R"),

. 0
(344) Re(Pa(t)u, u)LQ(R") > 5”“”%%]1@”)

The same result holds for vector valued functions u and definite positive
square matrices a.

Finally, we quote the following commutation result which will be needed
in the next section.

Proposition 3.17. Suppose that a € LL([0,Ty] x R™). Then A%[ﬁa”(t), A%]
A%]A% are bounded in L? and satisfy

and [P;(t),

s, 1 ~, 1L
A2 [Py, AZull e + ([P, AZJAZul| 2
< C(W27lal|rr + vlal o) ull L2

Proof. Thanks to the spectral localization, the low frequency part S,a,S,+2
in PY contributes to terms whose L? norm is bounded by

Cv|lu|rz.

The commutator with the high frequency part reads

Z[A%, Skak]Ak+3u.

k>v

We argue as in the proof of Proposition 3.7 and write

(3.45) [A%, Skak}A]H_g =(k+ 1)% [Hk, Skzak]Ak-i-?)
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where the symbol of Hy, is hi(§) = (k+ 1)_%(Log(2+ |§]))%<p(2*k§) and ¢ is
supported in a suitable fixed annulus. Note that the family {h;} is bounded
in the space of symbols of degree 0. By (3.17), one has

|[H, Ska(®]A2 Agygull 2 < C(k +1)27F Vo Skar(t) | oo | Apul| 2.

Since V;Siar = (V4 Ska)* gk, its L norm is bounded by Ck||al|rr. Adding
up, and using the spectral localization, these terms contribute a function
whose L? norm is bounded by Cv227"|a|| L ||ul 12

When A2 is on the left of the commutator, the analysis is similar. [

4 Proof of the main results

4.1 The main estimate

We consider the operator (2.1) with coefficients which satisfy (2.4), (2.5)
and (2.6). We fix 6§ < 01 in |1 — o, o, and with A to be chosen later, we
introduce the notation

(4.1) s(t) =0+ tA.
Recall that

6 — 6
(4.2) T = min {Tp, IA ).

Note that for t € [0,T7], s(t) remains in [0, 0] C]1 — o, a].
We will consider solutions of the Cauchy problem

(4.3) Lu=f, wup=o=u, Xuy=o=u

with

(4'4) u < Hl—@-{—%log,)\(T)? atu € H—@—&—%log,)\(T)v
(4.5) ug € H9R"), w € HYR"),

Note that if v and f satisfy (4.4) and (4.6), then

(4.7) ue L2([0,T); H%), 0w e L*([0,T); H™%),
(4.8) feL([0,T); H%)

for all 05 €]61, af, so that the meaning of the Cauchy condition is clear.
The main step in the proof of Theorem 2.6 is the following:
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Theorem 4.1. There is a A\g > 0 of the form (2.30) such that for A > Xg
there is a constant K such that: for all f, uy and uy satisfying (4.5) (4.6),
and all u satisfying (4.4) solution of the Cauchy problem (4.3), then

(4.9) u e 6179’)\<T), oy € Cfg’)\(T)
and u satisfies the energy estimate (2.29).

This theorem contains two pieces of information : first an energy esti-
mate for smooth u, see Propositions 4.3 and 4.4. By a classical argument,
smoothing the coefficients and passing to the limit, this estimate allows for
the construction of weak solutions, see Section 5.2. The second piece of in-
formation contained in the theorem is a “weak=strong” type result showing
that for data as in the theorem, any (weak) solution w satisfying (4.4) is
the limit of smooth (approximate) solutions, in the norm given by the left
hand side of the energy estimate, implying that u satisfies the additional
smoothness (4.9) and the energy estimate. This implies uniqueness of weak
solutions.

The idea is to get an energy estimate by integration by parts, from the
analysis of

(4.10) 2Re(Lu, e 27 (1 — A,) 5 Xu)

where (-,-) denotes the L? scalar product in R" extended to the Hermitian
symmetric duality H? x H~7 for all 0 € R, and A, denote the Laplace op-
erator on R?%. This extends the analysis of [6] where X = d;. The parameter
~v is chosen at the end to absorb classical error terms (present for Lipschitz
coefficients) while the parameter A which enters in the definition of s(t), is
chosen to absorb extra error terms coming from the loss of smoothness of
the coefficients.

To prove Theorem 4.1, the first idea would be to mollify the equation.
However, the lack of smoothness of the coefficients does not allow us to
use this method directly and we cannot prove that the weak solutions are
limits of exact smooth solutions. Instead, the idea is to write the equation
as a system (2.16) for (u,v) and mollify this system. This leads to the
consideration of the equations:

(4.11) {Zv+l~)~ov:ﬂ2u—l~}1u—c§u+f,
Yu+ éou =v/ag +g.

In this form, the commutator of spatial mollifiers with 9, are trivial, and

we can prove that weak solutions of (4.11) are limits of smooth solutions,

(u®,v®) with ¢° # 0, which thus do not correspond to exact solutions u° of

(4.3).
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Notations. It isimportant for our purpose to keep track of the dependence
of the various constants on the Log-Lipschitz norms. In particular we will
use the notations do, d; of (2.8) and Az, Are, B of (2.9) (2.10). To simplify
the exposition, we will denote by C, Ky and K constants which may vary
from one line to another, C' denoting universal constants depending only
on the paradifferential calculus; K depending also on Ape/dg; K, still
independent of the parameters (v, ¢), but dependent also on dy, d1, 6y, 61
and the various norms of the coefficients.

4.2 Estimating v

First, we give estimates that link v and J,u.

Lemma 4.2. Suppose that u satisfies (4.4). Then v = Xu + cou belongs to
the space H_g, 1,0 \(T) C L%([0,T); H=%) and for almost all t,
2 b

H'U(t) ”Hfs(t)+%log SCALOO (Hu(t) HHlf.s(t)Jr%log + Hatu(t) ||Hfs(t)+%lag)

(4.12)
+C(Are + B) ([[u(®)ll s + 10cu(t)]] -5

C
”atu(t) ||H—s(t)+%log S‘[(OHILL(I(:) HHl—s(tH—%log + 570 ||U(t) ||H—S(t)+%log

+ K ([u@®)ll s + 0@l g—)-

(4.13)

There are similar estimates in the spaces H® without the %log.
If in addition Lu = f with f satisfying (4.6), then Oy € L'([0,T]; H~171).

Proof. a) First, we note that the multiplication (a,u) — au is continuous
from (L N LL)([0,T] x R™) x H—G—i—%log,)\(T) to H—@—I—%log,)\(T)‘ Indeed,
the corresponding norm estimate of the product is clear for smooth u, from
(3.15) integrated in time. The claim follows by density. In particular, this
shows that agpdiu and the a;0,;u belong to H79+%log,)\(T)' Similarly, the
estimate

(4.14) [bu(@)] < COlbu(®)]| gri-sr < Cllblloa[u@)]| gra-se

s+ glog =

implies that cou € H_y, 1;,, \(T). Therefore v € H_g,1,, \(T) and the
2 ’ 2 )
estimate (4.12) holds. The proof of (4.13) is similar, noting that

1 d a c
j 0
8tu:—”u—E —jﬁm].u——u.
ao — o ao
]:
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b) As in the proof of Lemma 2.2, we see that the equation implies that
d ~ ~ ~ ~
ov=f— Z Oz, (@jv) — bov + Lou — Liu — du.
j=1

The conservative form of Ly and the multiplicative properties above show
that

8%‘(&]‘”)7 iw € H—Q—l—i—%log,)\(T) C Lz([O,T];H_l_‘%),

Similarly, Lu and byv belong to H_H%log,)\(T) and thus to L2([0, T]; H~%).

The last term @ is in L2. Therefore, ;v — f € L?([0,T]; H~'~%). Since
f € LY([0,T]; H=%) for 65 €]01, ], the lemma follows. O

Next, we give a-priori estimates in the space H_y, 1;,. (1) N C_gx(T)
2 b
for smooth solutions of

We define the operators
(4.16) (Qu)(t) = (1= Ag) 5 2u(t),  (Qy0)(t) = e ™(Qu)(1).

Proposition 4.3. Suppose that v € L*([0,T]; H') and 0yv € L'([0,T}]; L?).
Then the functions v,(t) := Qv belong to C°([0,T], L?) and satisfy

t
o (£)]122 +2 / 1y + ALY 20 ()] 2.t

t
(4.17) < / (Z + E)o(t'), Q2(E)o(t))) dt’ + ||y (0)]2,
t
+ / F(tdt
0
with
A p
(418)  F() < Ko e N ) e + K o)

Proof. a) Since v € L([0,T]; H') and d,v € L'([0,T]; L?), we have

(4.19) Qv = Qv — (v + AMN)Qv € L'([0,T]; L?)
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as immediately seen using the spatial Fourier transform. Moreover, v, =
Qv € C°([0,T); L?) and satisfies the following identity

t
s (®)]22 — [0 ()22 = 2Re /0 (DiQv, Q)

Thus,

t t
2Re/ <8tv,Q3v> dt’ = 2Re/ (Q~O, Qyv) dt’
(4.20) 0 0

t
= [loy )72 = oy (0)]1Z2 + 2/0 17+ AN) 20, () |2t

b) Next we consider the terms 0,;(a;v). We note that they belong to
L?([0,T); H=9) for all ¢ > 0. In particular, since s(t) > 6 > 0, we note that
the pairing

0z, (a;v), Q3v)

is well defined. We give an estimate for

¢
2Re [ (0., (@0), QRu)d
0
using the decomposition
ajv = T;ljv + R@jv.
By Proposition 3.4 it follows
HRaj,U(t)HHlfs(t)fflog — CHG’] HLLHU( )HHfs(tH*%log
since s(t) € [0, 0] C]0, 1[. Moreover,
1200w yr0n < CE 2 O, 1
Thus
(0, Ra, v (t), Q5 o) < 1Ray 0 1 amao—310g 1Q5.0 s d10s
S CH&j||LL6_2’Yt||’U(t)||Z—s(t)+%log'

It remains to consider

Re(0y, T5,v, Q%v) = Re(Q~0:,;T5,v, Qyv)
= Re<8$jTaj Q'yvv Q'YU> + Re<8zj [Q’yv T&j]va Q’YU>'

29



Note that these computations make sense because v(t) € H! and all the
pairings are well defined. Proposition 3.7 implies that

110 [@, T Jo ()l 110 < Ce—”’tllég‘IILLHU(t)lLs(tH%zog
and therefore
(421)  [{O0;[Qn, T, ]v(t), Qyu(D))] < ClldjIILLe’WIIv(t)\IZ,S@H%M-
Next, for v, (t) € H>7% we have

2Re(0:; T, vy,vy) = Re((0z; T, — ng_@mj)vw,vv)
= Re((Ta; — T7,) 0z, vy, vy) + Re([0s;, 15,10z, vy, vy)-

Using Propositions 3.8 and 3.7, one can bound both terms by the right hand
side of (4.21). Adding up, we have proved that

t t
2Re [ (0., (@), Q20) ] < Claslue [ e AVt
0 0

c) The zero-th order term is clearly a remainder, and the multiplicative
properties imply that

[(Cov(t), @u() < K[v(®) -0
d) We note that

laj/aollee < llajllec|lll1/acllLe + |lajl|z|/||1/aollLL
< Arr n Ar=Arr < QAL‘X’ALL7
= % 2 S 8

since dp < ap < Are. Using identity (4.20) and the estimates of parts b)
and c), implies (4.17) and so the proof of the Lemma is complete. O

4.3 Estimating V, u

We now get estimates of V,u from the analysis of

(4.22) —2Re(Lyu, Q2 Xu) = — Y 2Re(0y, (d)k0, 1), Q% Xu)
jk=1
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Proposition 4.4. Suppose that u € L?([0,T]; H?) with O,u € L*([0,T); H').
Then uy == Qu € C°([0,T), H') and

1 t
30001 Vot (Ol + [ 803+ A2 (¢t
0

(4.23) . .
< — 2Re/0 (Lau, Q2v) dt' + C A7 ||V (0)]|7 +/0 E(t)dt,
where
[E)] <
(4.24) KOALLALOOe_ZW(HU(t)Hiﬂ—s(tw%l(zg + 513|Xu(t)||§{_s(t>+§mg)

+ Ke " (u®)l o0 + 1 Xu®)IF-u0)-

To simplify the exposition, we note here that all the dualities (-, -) written
below make sense, thanks to the smoothness assumption on u. This will not
be repeated at each step. Moreover, in the proof below, we assume that u
itself is smooth (in time).

Proof. a) We first perform several reductions. Using #ii) of Proposition 3.4,
one shows that

(0, (@ kO, ), Q2 X ) = (O, (Ts, Oy u), Q2 Xu) + E
with
(425)  BO] < CllagliolOnu®],on pun | QXU e
Since ||@;xllrr < KoArr < KoAppApe/do, E1 satisfies (4.24). Similarly,

(0x; (Ta ;, O, 1), Q%Xu} = (02, Q~ T, Oz u, Qy Xu)+

= (Ox; 15, ,,0z),Qru, Qv Xu) + Eo
where E5 also satisfies (4.25), and hence (4.24).
b) Next we write
Xu = Tg,0u + ZTa].(?zju +7r

and

IrO1 o ti00 < CALLURO 13100 + 10D, 3100)
FOBJu(t)| j1-s0.

31



Therefore, r contributes to an error term E3 = (0, T, 5,00, Qyu, Qyr r) such
that
‘Eg(t)’ S 6_2’YtK0ALOO Hu(t) HHlfs(t)Jr%log Hr(t) HHlfs(t)f%log .

Using (4.13) in the estimate of 7, we see that

|B5(t)| < e " KoAp~App|u(t)|

Hlfs(t)+%log

1
(N g1 ton + 52 1Kt 1
+ Kl 1w + K| X))

and hence satisfies (4.24).
c) Consider now the term
(02, Ta, 1,0, Qyut, Qry Ty Oru) = —(T5; , Oy Qrtty O; QT Ot
= —(T&, 00, @y, Tag Or; QOpu) + Ey
—(( ao) Ta kaku'yu axJQ'yatu> + FEy
Ty T, O, Qyt; O, Qy0u) + Ey + Es
—~(Tapa; 1, Oz, Qryu, Oz, QOru) + By + E5 + Fg

where F4, F5 and Eg are estimated by Proposition 3.7, 3.8 and 3.9 respec-
tively. They all satisfy

B ()] < Ce Alul)l 1—aors y1oo 10O sty 0o

with A = ||a;kllzrllaollze + ||ajkllzellaol|r < KoAp~Apr. Again using
(4.13) to replace dyu by Xwu, one shows that these errors satisfy (4.24).
Similarly

<8 TCLJ kaku’yu7 Q'yTal 8:Elu>
= _<Tal&j,k81‘k Q’Yu7 axlaxj Q'yu> + E7

where FEr satisfies

(4.26) |E7(t)] < Ce™ M KgApe App|ju(t)]?

Hl—s(t)+%log

thus (4.24).
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d) Introduce the notation
(4.27) wj = Oy, Qru.
Because a; = ay,;, we have

Re<Talaj,kwk’ Owwj) + R6<Tazf1k,j wj, O, W)
= Re<((Tazdj,k)*aﬂ»’z - 8I1Tal@j,k)wk7 wj> = Ey

Using Propositions 3.8 and 3.7, one shows that Fg satisfies
[Es(t)] < Cllaws il Lollw; (O] o4 1100 [0k 01 1100

and therefore Eg also satisfies (4.26) thus (4.24).

e) It remains to consider the sum
n
(4.28) S:=Re Y (Th,, 0u, Qqtt, ; QyOpu)
Ji.k=1
with b; 1, = apa;r = aoa; + ajai. By the strict hyperbolicity assumption
(2.8), it follows for all £ € R™
n
> bkt 2)E8 > oo l¢)*.
jk=1

Therefore, we can use Corollary 3.16. Since ||b; x|z < 2Ar~Arr, there
exists an integer v, with

(4.29) = SRS

such that for all t € [0, Tp] and (w1, ..., wy) in L?(R™), the following estimate
is satisfied

noo 5061
(4.30) Re Y (B ywhswj) > = lwllz:
jok=1

From now on we fix such a v and use the notation P, in place of P .
Using Lemma 3.10 and Proposition 3.14, we see that

10, Ty 10 = 02, oy 0kl o 3100 < Cllbs e (0wl o yiog + Klleogllz)
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Therefore
n

S=Re > (P, 0, Qyu, 0, Q,00u) + Eo
gik=1

where

|Bo(t)] < Ce™ byl Lollul e oo 10— 1o

T+ e K ()| o |0 g1
Using (4.13), implies that Eg satisfies (4.24). N N
Next, we use Proposition 3.14 to replace 0, P, , by %8%. (Po,, + (ij,k)*)
at the cost of an error Ejg similar to Ey.
At this stage, we commute ), and J; as in (4.19). Using the notation
(4.27), yields

25 =" Re((By,, + (B, )" )wi, Orw;)
jik=1
(4.31) + Z Re((Py,, + (P, )" )wk, w))
7,k=1

+A > Re((By,, + (By,,)"w, Aw;) + 2By + 21

We denote by S', S? and S the sums on the right hand side.
f) The symmetry b;, = by ; implies the identity

d < ~
St = pn Z Re(Py, , wi, wj) + B
k=1

where

1= Z Re<[13bjyk7at]wk7wj>
jk=1

is estimated using Proposition 3.14:

|Ev(t)] < Clbj el (Jw
< Ce b,

Ol os giog + VIl L2) 10O o4 100

(
)

Lot

(O] 1 - g + V1)

”Hl—s(t)-&-llog
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and therefore satisfies (4.24). Moreover,
Re(ﬁbjykwk,/\wﬁ = Re(ﬁbj’kA%wk, A%wj) + Re(A%[A%,ﬁbj’k,]wk, wj)

Re((]gbjyk)*wk, ij> = Re(A%wk, ﬁbj‘k/\%wﬁ + Re(wk, [ﬁ’bjyk,A%]A%wﬁ.

We use Proposition 3.17 to estimate the commutators and

n
53 =2 Z Re(ﬁbjykA%wk,A%wﬂ + E1o
Jk=1

where
|Ero(t)] < K|lw(t)[172 < Kllu(t)||F-sc)-

Summing up, we have shown that up to an error which satisfies (4.24),
the quantity (4.22) under consideration is equal to

d & B n B
7 Z Re(Py, , wk, wj) +7 Z 2Re(Py, , wi, w;)
(4.32) jk=1 k=1

+2 3" 2Re(By,  Azwy, AZwy).
jik=1
By (4.30), the last two sums are larger than or equal to 5051Hw(t)H%2 and

dod1||w(t) ||12q o1 110,> TESPectively. Similarly, integrating the first term between
2 o

0 and t and using (4.30) gives control of %Hw(t) |12, finishing the proof of
(4.23). O

4.4 A-priori estimates for the solutions of (4.11)

The proof of Theorem 4.1 is based on a-priori estimates for smooth solutions
of the system (4.11).

Theorem 4.5. There are A\g > 0 of the form (2.30) and 7o such that for
A > Ao and v > g the following is true:

for allu € L*([0,T); H?) and v € L?([0,T); H') with O,u € L*([0,T); H')
and O € LY([0,T); L?) and for all parameters X\, v and all t < T, the
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following holds:

!
—2t (,5 81lu(t)|? + [Jo(®)]1? )
sup e 001 ]||u (! v(t st
0<ti<t 9 || ( )HHI (t") || ( )HH (")

t
+5051/0 o2t ()\||u(t’)‘|2175<t,)+%log +7|’U(t/)||?{1_s(t'))dt’
t
433+ [ TN ey + )
t
< e u0) o + [00) oo + 2Re [ (f. QRv)
0

t

+K/O 672’% ”g(tl)H1—s(t)—%logHu(t/)Hl—s(t)—‘r%logdt/?
with f = Zv+byv— Lou+Lyu+du € LY([0,T]; H' ), g = Yu+cou—v/ag €
L2([0,T); HY) for all o/ < a.

Proof. We compute the integral over [0,¢] of Re(f, Q%v). Proposition 4.3

takes care of the first term 2Re(Zv + l;ov, Q?Yv>. We split the second term
into three pieces

(Lou, Q2v) = (Lou, Q3 Xu) — (Lau, Q% (aog)) + (Lau, Q3 (cou))

and use Proposition 4.4 for the first piece. The multiplicative properties
imply that

’<i2u(t)a Q%(aog)(tm SKHg(t)Hlfs(t)félong’Qu(t) H—lfs(t)Jr%log
S‘[(Hg(t)H173(75)7%l0gHu(t) ||1fs(t)+%log’

and B s
[(Lau(t), Q% (cou) (t))| <K [lult)|l1— s | Law(t) ]| —1— s
<K [lu(®)} -

Next, using the multiplicative properties stated in Corollary 3.6 for the
products b;j8,,;u and d;,(¢ju), and the embedding L?* € H™* for the term
du, we see that

I(Zaw + du) ()| s < Klfu(®)]] g1-sco-

Thus ~ -
(L1 + d)ult), Q30(t))| <K lu(t) |15l -scr

<K (Ju®l g + 0@ 50)-
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Proposition 4.4 gives an estimate of V,u. We also need an estimate for u.
The identity (4.20) applied to u yields

2
7s(t/)+%log + ’YHu(t/) HH*S(t’) )dt/

t
O+ [ A,

t
= s (O + 2Re | (01 Qe

Next, we use the inequality
(@, Q3u)| < C (w1 F1-coy + 1071 -o0)-
In addition, we note that the second equation in (4.11) yields
10| fr-1-s0r < K (0@ F-st0r + @) 7o) + 19O 10

We add the various estimates and use Propositions 4.3 and 4.4 to obtain
a final estimate. On the left hand side we have

o (1

@3 swp e (God ) + 1))
! 2yt! 2 2

@35) 4y [ o) B + [0 )Y

t
(4.36) +>\/0 o~ 27t (5051||u(t')||21_s(t/)+%zog + Hv(t/)||i[_s(t,)+%log)dt/.
On the right hand side, we find the initial data
(4.37) C AL oo [[u(0)[[ 71—y + 10(0)[1-s(0)
the contribution of f
t
(4.39) 2Re [ (), Qe
0

an estimated contribution of g

t
(439) K/O 6_27t Hg(t,)||1fs(t)f%log||u(t/)||1fs(t’)+%logdt,a
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and two types of “remainders”:

t
ot 1
(4.40) KoALLALoo/O o2t (Hu(t’)”i{lis(t,H%log—l-%||v7(t’)Hi{ﬁ(t,yr%log)dtl

and
t
(4.41) K /0 2 (fug ()1 + ()2, )t
If
ArrArs ArrAre
(4.42) A> 2K EEEE and A > 2K PEECEE
3001 52

the term in (4.40) can be absorbed by (4.36). Note that this choice of A is
precisely the choice announced in (2.30), with a new function Ky of Ape /dp.
Finally, if « is large enough, the term (4.41) is absorbed by (4.35), finishing
the proof of the main estimate (4.33). O

4.5 Proof of Theorem 4.1

From now on, we assume that A > A\g and v > ¢ are fixed, so that the
estimate (4.33) holds. Consider u, f, ug and u; satisfying the equation (4.3)
and the smoothness assumptions (4.4), (4.5), (4.6). Consider v = Xu+ cou,
which by Lemma 4.2 satisfies

(4.43)  vEH_g 1, Owe L([0,T]; H70), g =o€ HY,

with vo = aoje—ou1 + X ajj1=00z,u0 + cop—ouo- In particular, (u,v, f) and
g = 0 satisfy (4.11).
We mollify u and v and introduce, for € > 0,

(4.44) ue = Jou, ve=Jow with Jo=(1—eA,)" L.
For all ¢ > 0, (4.4) and (4.43) imply that

u. € L*([0,T], H?), O € L*([0,T], HY),
v. € L¥([0,T], HY),  8w. € L'([0,T],L?),

(see (4.7)). Moreover, using the spatial Fourier transform, one immediately
sees that u. converges to u in Hy_g(7") and v, converges to v in H_g (7).
Define

fe=2Zve + i)OUs - i/2us + f/lus + Jusa

ge = Yu. + éoue — ve/ap.
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Lemma 4.6. Assumptions (4.4) and (4.6) imply that f- = fie + fo. with
fie = fiin LogA(T) and foe — fo in Hfo%log,)\(T)' Moreover, g. — 0
in Hl—@—%log,)\(T)'

Taking this lemma for granted, we finish the proof of Theorem 4.1. We
use the estimate (4.33) for (u,v:), together with the estimates

|(fe(1), @) < Ce™ (|| Fre(®)ll s l[v= (Ol 20
12O e oo 10O, a0yt 100)

and

t t
\/ (fe, Qu)dt'| < C(/ e (||f1,5(t’)\|H,S<t/)dt’> sup e 7" [lve (") || y—scer
0 0

0<t/'<t
1 1
—2~t 2 2( ot 2 2
+C<€ vt Hfz,a(t/)HH_s(t/)—%logdt/) (e vt H”a(t/)\|H—s<t’>+%log)dt/) .
This implies that there is a K such that for all € > 0, one has

sup Hus(t/)|’?{173(t') + sup Hvs(t/)nips(t')
0<t'<t 0<t’'<t

t
[ (O, IO, ) 7
(4.45)

t
< K{ 00 s + IO+ [ 10O,y

t 2 t
[ MAeOlr?) + [ 12’ -y}

In addition, there are similar estimates for the differences (us —ucr, ve —ver).
Since u(0) = J-up and v.(0) = Jovy converge to ug and vy in H'=50) and
H~%0) respectively, the estimate implies that u. is a Cauchy sequence in
Hi_p(T) and in CO([0,t]; H'=*®) for all ¢ € [0,T]. Therefore, the limit u
in Hi_\(T) also belongs to C1_g (7). Similarly, v. is a Cauchy sequence
in H_gA(T) and in C°([0,t]; H=*®) for all t € [0,T] and v € C;_gA(T). In
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addition, we can pass to the limit in (4.45) proving that

sup |lw@)|%, _..n + sup |lv(E)]?,_
ogt’th s Ogt};tﬂ 5=

t
2 2
+/0 (H“(t')HHlfs@fH%zog+H”(t')IIHfsm%zog)dt’

(4.46)

< K{”“OH?{lfs(m + [lvoll 3o

t 2 t 9
(L MAOaer@t) + [ RO, oyt

Using the equation Yu + éou = v/ag and the estimate (4.13) of Lemma 4.2
to bound the time derivative d;u, we see that dyu € C_g x(T) and that the
energy estimate (2.29) is satisfied.

Therefore, it remains only to prove the lemma.

Proof of Lemma 4.6. By assumption (4.6), f = f1 + f2 and J.fi — f1 in

L_ogA(T)and Jofo — foin H_y_14,, ,(T). Therefore, it is sufficient to prove
2 9

that the commutators

[Za J€]U1 [I:Qa JE]U
[b0><]€]v7 [Ll,Jg]U, [dv J&]“?

converge to 0 in H_g »(7") and that the commutators
[Ya JE]U7 [605 Ja]uy [1/(10, JE]U

converge to 0 in Hi_g x(T"). We note that J. commutes with 0, in Z and Y.
Thanks to (4.4) (4.43) and to the conservative form of Z and Lxg, we see
that there are four types of commutators to consider :

la, JoJw — 0 in Hi_g(T), when

(4.47) :
a€ L*®NLL([0,T] x RY), we H_G’)\(T)’
(4.48) b, JJw =0 in H_g(T), when
| be C(0,T] x RY), w e H_gx(T),
(4.49) lc, JeJw — 0 in Hy_g(T), when

ce Oa([O7T] X Rd)7 w e HI—O,A(T)a
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[d, JeJw — 0 in H_g (1), when

(4.50) .
de LOO([O,T] x R ), w e Hl_g’A(T).

The first commutators [a, J:| = [Tg, Je] + Ra, J: — J-R, are uniformly
bounded from H_gx(T") to Hi_g(T): this is true for the first term by
Proposition 3.7, since the J. form a bounded family of operators of de-
gree 0; for the last two terms, this follows from Proposition 3.4. Moreover,
[a, JoJw — 0 in L%([0,T]; H?) for all ¢ < 1, and thus also in Hj_g , when
w is smooth and a € L*>° N LL. By density, this implies (4.47).

For the commutators (4.48), we note that they are uniformly bounded
from H_g A(T) to H_gx(T). This is true for both terms bJ; and J.b since
s(t) remains in a compact subset of [0, «[. Because [b, J-|w converges to zero
in L2([0,T); H°) for all o < a, when w is smooth and b € L> N LL, the
convergence in (4.48) follows. The proof for (4.49) is similar.

Finally, we note that [d, JoJw — 0 in L?([0,T] x R%), hence in H_g \(T)
when d € L>®([0,T] x R?) and w € L?(]0,T] x RY), thus in particular when
w e 'Hlfg’)\(T). ]

4.6 Existence and uniqueness

Proof of Theorem 2.4.
Assume that v € H*(]0, T[xR") with s €]1 — a, ], T < Tp, and satisfies

(4.51) Lu=0, uy—=0, Xuy—g=0.

We want to prove that u = 0.

Fix § < 0; in ]1 — o, with 1 — 0 < s. Let A and 7" be the parameter
and time associated to them by Theorem 4.1. Note that they depend only
on 6, 61, the norms Ay~ and Ay in (2.9) and the constants of hyperbolicity
dp and d; in (2.8).

From Lemma 2.2, we know that u € L2([0,T]; H*(R")) and Ou €
L2([0,T); H*~Y(R™)) and therefore, on [0,7"] x R™, u € H1_9+%l097A and
atu S H—@-{—%log,
ergy estimate (2.29) on [0,7”], and since the right hand side vanishes, u = 0
for t < T’. By a finite number of iterations, u vanishes for ¢t < T. O

) since s > 1 — 6 — At. By Theorem 4.1, u satisfies the en-

Proof of Theorem 2.6.

On [0,Ty] x RY, the coefficients of Lo can be approximated in L™ and
C? for all o < 1 by C* functions which are uniformly bounded in L and
in LL, in such a way that the hyperbolicity condition (2.8) remains satisfied.
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Similarly, the coeffficients of L; can be approximated in L*° and C* for all
o/ < a by smooth functions which are uniformly bounded in C®. Further,
the coefficient ¢ can be approximated in Ll20 . by functions uniformly bounded
in L. This defines operators L with C° coefficients which satisfy (2.8),
(2.9) and (2.10) uniformly in € and converge to the coefficients of L in the
sense described above.

We fix the parameter A > Ao, where A\ is given by Theorem 4.1. Recall
that T is then given by (4.2). Consider Cauchy data ug € H'=% and u; €
H~% and a source term f = fi + fo with f; € L_g (T)and f € H—@—%log,)\'
We can approximate these data in the corresponding spaces by C'*° functions
ug, ui , fi and f5, compactly supported in x. The strictly hyperbolic
problems with smooth coefficients and smooth data

(4.52) Lw = fi+f3, wp=o=up X“up—o=1u]
have a unique smooth solution u®, compactly supported in x.

By Theorem 4.1, the energy estimate (2.29) is satisfied with a constant
K independent of . Therefore the family {u°} is bounded in H;_4, Liog Ao
thus in L2([0, T], H'~91) and the families {0;uf} and {X*®u®} are bounded in
’H_9+%log7/\, hence in L2([0,T], H%). Therefore, extracting a subsequence

if necessary, uf converges to a limit u, weakly in L?([0,T], H'~%) and in
HY([0,T], H%). Moreover, u € H179+%log7)\ and dyu € H—9+%log,>\' There
is no difficulty in passing to the limit in the equation in the sense of distri-
butions: all the products are well defined and involve one strong and one
weak convergence. Thus Lu = f.

The weak convergence in L2([0, T], H' =% )N H'([0, T], H~%) implies the

strong convergence in C°([0,T7; H, l;fl) and therefore the convergence of uf,_

to uji—o in Hl_ofl. Therefore, uj;—o = up.

Using the equation as in Lemma 2.2, we prove that the family v* =
X®u® + cgu®, which converges weakly to v = Xu + cou, is bounded in

— —1— . 79

L%([0,T], H%)YnH'([0,T], H~'~%). Thus Ul converges to v in H,_ .
Hence v;—g = u1 + cojp—ouo implying that Xu;_o = u;.

By Theorem 4.1 the solution u also belong to Ci_g x with dyu € Ci1_g
and satisfies the energy estimate (2.29). O

5 Local results

We consider the equation (1.1) together with an initial hypersurface ¥ sat-
isfying Assumption 1.1. This section contains the proofs of Proposition 1.4
and Theorems 1.5 and 1.6.
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5.1 Change of coordinates. Traces

Consider a smooth change of variables y = x(y) and for a function u let @
denote u o x. Then

(8y,u) o x = Z%kayk = O (Wxi) — (D Optp)
k k

with ¢, = (Oy,¢x) 0 x) and ¢ = x~'. Thus
(5.1) Lu = Li

where L has the same form as L and satisfies Assumption 1.1.

If v(y) is conormal to ¥, then 7(§) = X' (y)v(x(§)) is conormal to ¥ =
X~ 1(¥). Using the notations (1.7), for smooth functions, the Neumann
traces associated to (L, v) and (L, 7), are linked by the relation

(5.2) (N,u) o x = Ny

The Green’s formula (1.9) can be transported by Y, taking into account the
Jacobian factors:

(5.3) (fv g)L2(Q+) = (ﬁ Jg)L2(ﬁ+)

with J = | det x’|. This relations extends to the duality H*x H* for |s| < 3.
In particular, comparing the Green’s formula for L and L tested on smooth

functions implies that :
(5.4) (E) (J3) = JL*v
(5.5) N.(JT) = Ju N
where Jy, is the Jacobian of X5+
As a corollary, the statement of Proposition 1.4 is invariant by smooth

changes of variables and therefore can be proved in any suitable system of
coordinates.

Proof of Proposition 1.4.

1=

_ _3
a) Uniqueness. We prove that if uy € Hlsoc2 and u; € Hlsoc2 satisfy

<u1,ng>Hs 3 3 . — <u0,N’Zv> 1 1..=0

T2xH2™ H°"2xH27*

for all s’ €]1 — «, 1[ such that s’ < s and all v € Hfonjp(Q N{y > 0}), then
Uug = Ul = 0.
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It is sufficient to prove that for vy and v; in C§°(Q2 N X), there is v €
Cyt(Q) such that v, = vg and N,v = v;. This can be done in local
coordinates y = (¢, ) where ¥ = {¢t = 0} and this amounts to solve

Vjt=0 = Vo0, A= = gov1 + Zgjaxjvo + hvo

where go, ..., gq belong to LL(2) and h belongs to C*(12).

b) Existence. According to the discussion above we may assume that we
are working in coordinates y = (¢,x) such that y = (0,0) and ¥ = {t = 0}.
The conormal direction is ¥ = A(z)dt and the Neumann trace for smooth
functions is:

Nou =\ (Xu)|t:0

where X is the vector field (2.11).

Let s €]1 — a,af. For u € Hi (2N {t > 0}) such that Lu € L*(Q).
Local versions of Lemmas 2.1 and 2.2 imply that for 7" > 0 small and w
relatively compact in QN {t = 0}

(5.6) uwe H»710,T[xw)),  Xue HY72(]0,T[xw)).

Indeed, the proofs are identical, using local multiplicative properties and
local versions of the spaces H®%. The trace operator w — wii—o has a

unique extension as a bounded operator from H?(]0, T[xw) to HU+%(w).

Therefore, the traces uj;—o and Xuj—y are well defined in H s=% and H* 3
respectively. We show that, in these coordinates, Green’s formula (1.9) holds
with

(5.7) Dsu = ujy—o, Nyu = M Xu)j—o-

This follows immediately by integration by parts, the only difficulty is
to check that at each step we have enough smoothness to justify the com-
putations. We sketch here the main points of the discussion. First, recall
that for w € H»* and v € H»177 compactly supported in [0, T'[xw:

(58) <atw7 U>L2(O') = _<w7 8tU>L2(U+1) + <w|t=07 v|t=O>HU+% XH*%faﬂ
and for w € H%°*! and v € H%~° compactly supported in [0, T[xw:
(5.9) <amjw,v>L2(a) = —(w, axjv>L2(g+1)

where (-, -)12(,) denotes the duality L2([0,T),H°) x L([0,T); H=°) and
the traces are taken in the sense indicated above.
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Consider v € Hggnf;([o,T[xw), where s’ €]1 — o, 1[ with s’ < s. Us-

ing (5.6), (5.8), (5.9) and the multiplicative properties of functions in LL-
functions and H?, one obtains that

(ZXus0) 1 (ogy = (XU Z70) 1oy + (KUi=0,Vi=0) e § | -0
= <YU,EOZ*'U>L2(S_1) + <Xu\t:0a U\t:0>

3 3 .
H° " 2xH2"°
(recall the definitions (2.11) and (2.13) of X, Y and Z). Let w = apZ*v €
H'=5 Because 1 — s >0 and ¢’ < s, w € H* 5" ¢ HO1=5_ Therefore,

(@j0u,u, w>L2(371) = —(u, 0, (@, v) >L2(s)

The term (dyu,w) is more delicate since dyw € H~* and s > 0. However,
as in Lemma 1.3, one can use the duality H* ({t > 0}) x H=¥ ({t > 0}) for
0<s < iandforue H* !andwe HL s (5.8) can be extended as

comp>

(510) <8tu, w>L2(s—1) = —<u7 6tw>Hsfo,S/ + <U|t:0, U)‘t:0>HS+% XH%757
noticing that the trace w—g belongs to H> ¢ H2~.

_ Repeated use of (5.9) implies that for the tangential second order part
Lo defined in (2.13), there holds

<E2U’U>L2(s_2) = (u, @Q)*“>L2(s)'

First order terms are treated similarly, and summing up we get that

(L“v“)L2({t>0} - <”7 L*U>H5’({t>0})><H*5'({t>0})

5.11
(5:11) = (Xuj—0, Vjt=0) — (=0, X' vjt—o)

3 3 1 1
H 2 xH3* H 2 xHZ®

In the computations above, the underlying measure in {t = 0} is the Lebesque
measure dz. The surface measure associate to the conormal Adt as in (1.6)
is A~!dz. This proves that the identity (1.6) is proved with Dy and N,
given by (5.7), as claimed. O

5.2 Local existence

Choose ®, a smooth map from R to Q, with ®(y) = y on a smaller
neighborhood €7 and ®(y) = 0 for y large enough. Changing the coeffi-
cients acoording to the rule a®(y) = a(®(y)) we obtain an operator L* which
coincides with L on €, satisfies the regularity conditions (2.4) to (2.6), and
the hyperbolicity conditions (2.8) globally on R!*™,
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Fix s > 1 — a. Without loss of generality for the statement of Theo-
rem 1.5, we can assume that s < a. We are going to apply Theorem 2.6 to
the operator L with = 1 —s €]1 —, a[. Choosing 61 €]6, o], this theorem
provides us with A and T'= (0; — 0)/X. We fix Q' = Q1 N {Jt| < T}.

Suppose that ug and u; are Cauchy data in H*(w) and H*!(w) re-
spectively, on a neighborhood w of 0 in R™. There are restrictions to w
of functions ug € H*(R™) and u% € H* Y(R") respectively. Suppose that
f e L2(YN{t > 0}). We extend it, for instance by 0, to f# € L2([0,T] x R™).
By Theorem 2.6, the Cauchy problem

= ug» (Xﬁuﬁ)hf:(] = Uq

(5.12) Laf = ff uf

has a solution uf on [0, 7] x R™, which belongs in particular to L?([0, T]; H*')
with s1 = 1 — 6; and such that d,u € L2([0,T]; H**~'). In particular,
uf € H*1([0,T] x R™) and by restriction to Q' defines a solution of (1.10).

5.3 Local uniqueness

To prove Theorem 1.6, we first reduce the problem to proving a theorem of
propagation of zero across the surface {t = 0}.

Lemma 5.1. Suppose that s >1— « and u € H*(Q N {t > 0}) satisfies
(5.13) Lu=0, wuu—=0, Xuy_=0.

Then the extension u. of u by 0 for t < 0 satisfies

(5.14) ue € H® and Lue =0

on a neighborhood 1y of 0.

Proof. 1f the coefficients were smooth, this would be immediate. We check
that we have enough smoothness to extend the result to our case.

We can assume that Q =| — T, T[xw. From Lemma 2.2 (localized
in space) we know that u € L2([0,T); Hi (w)), thus its extension u. €
L2([-T,T); Hy .(w)). Moreover, dyu € L*([0,T]; Hi.'(w)) and by assump-
tion uj;—g = 0. Therefore, dyu, is the extension of dyu by 0 and thus belongs

to L2([-T,T); H: - (w)). In particular, u, € HS (] —T,T[xw).

loc loc

Let v = Xutcou € L*([0,T); HS ' (w)) and let v, € L*([-T,T); H: }(w))

loc loc
denote its extension by 0. The first step implies that Xwu, is the extension

of Xu and therefore v, = Xu, + cou.. Write the equation as

(5.15) o = P(u,v)
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where P involves only spatial derivatives (see (2.17)). Morever, we have
seen in the proof of Lemma 2.2 that P(u,v) € L%([0,T]; Hj ?(w)). Since by
assumption the trace of v vanishes, this implies that 0;v. is the extension by 0
of Oyv, thus the extension of P(u,v), that is P(ue, ve). Since ve = Xue+coue,

this means that u. satisfies the equation on Q =] — T, T'[xw. O]

We now finish the proof of Theorem 1.6. We suppose that uv € H*(Q2 N
{t > 0}) satisfies (5.13), with s > 1 — o and we denote by u, its extension
by 0 for ¢t < 0. We use the classical convexification method, and consider
the change of variables

(5.16) (t,x) — (£, %) t=t+|z|? Z=u,

which maps the past {t < 0} to {f < |#|?}. Thus there is Ty > 0 such
that the function @ deduced from wu. is defined for ¢ < Ty and vanishes for
t < |Z|?. Moreover, decreasing Tp if necessary, the operator L deduced from
L is defined on a neighborhood € of the origin which contains the closed
lens D = {|#|?> <t < Tp} and La = 0 on QN {t < Tp}. Now we extend the
coefficients of L, as above, and obtain a new operator L¥, defined on R*",

satisfying the assumptions of section 2, and equal to L on a neighborhood
of D. Therefore, on | — oo, To[xR"

(5.17) Li=0, @eH*, gz =0

Since @ vanishes in the past, the traces u—_. and X ﬁﬂ‘t:_a vanish for all
€ > 0. Therefore, Theorem 2.4 applied to the Cauchy problem for Lf with
initial time —e implies that @ = 0 for all (£,%) such that ¢ < Tp. Hence
u = 0 on a neighborhood of the origin.

6 Application : a blow-up criterion for nonlinear
equations

6.1 Statement of the result

In coordinates y = (¢, x), we consider a nonlinear wave equation:

O (ao(u)dpu) + Z O (a;(u)dy,u) 4 Oq,; (a;(u)dpu)

(6.1) . = .
=3 00 (a5 (0)00,0) + 4 (bol) + 3 By (b5 () = ).
7,k=1 j=1
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Assumption 6.1. The coefficients are smooth functions of u € R. Mor-
ever, for all fized u, the polynomial agT? +2 a;TE — Y aj k€& s strictly
hyperbolic in the direction dt.

The Cauchy problem for (6.1) with initial data
(6.2) U|t:0 = Uup, 8t’LL|t:0 = Uy,

is well posed for ug € H¥(R") and u; € H¥"'(R") when s > % + 1. The so-
lution u belongs to C°([0, T, H*)NC* ([0, T]; H*~!). By uniqueness, there is
a maximal time of existence T* and u € C°([0, T*[; H*) N C1([0, T*[; H*~1).
Moreover, there is a classical blow-up criterion for the creation of singulari-
ties:

Theorem 6.2. For s > 5 +1 and data up € H®, u1 € H51, if the mazimal
time of existence is finite, then

(6.3) USS;LPT* H“( )HL H i )HL o0

See e.g. [1] for an extensive discussion of blow-up for solutions of wave
equations or [9] for general first order quasilinear systems. Our goal is to
show that one can replace the Lipschitz norm in (6.3) by a LL -norm.

Theorem 6.3. For s > 5 + 1 and data ug € H®, uy € Hs1 if T* < +o0,
then

(6.4) sup

0<t<T™ HuHL""([O,ﬂxR") T H“HLL([O,t]an) = +o0.

The proof of Theorem 6.2 is based on the estimate :

Theorem 6.4. For s > 5 +1, M € R and Ty > 0 given, there is a constant
C, such that if T < Ty and u € CO([0,T[; H*)NC* ([0, T[; H*~) is a solution
of (6.1) such that

6.5 ¢ O u®), . <M

(6.5) OE?ETH“( Moo + [|Oeau(®)]

then

(6.6) sup ||u()|| e + [|00u(®)]| jreer < O ([Juol] o + [Jur]] gror)-
o<t<T

Similarly, the proof of Theorem 6.3 is based on the following estimate :
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Theorem 6.5. For s > %—i— 1 and K € R, there are constants T} > 0,
Cy and X\ such that such that if u € C°([0,T[; H*) N CY([0,T[; H*!) is a
solution of (6.1) such that

(6.7) OzltlET HuHLOO([O,t}X]R”) + HUHLL([O,t}x]R”) =K
then, for t < min{T,T}},
(6:8)  [u® pra-ne + [0u®) | gre-sone < Cr((Juo]| o + [l o)

Proof of Theorem 6.3 assuming Theorem 6.5.
It is sufficient to prove that if u € C°([0,T[; H®) N C*([0, T[; H*~!) sat-
isfies (6.7) then,

6.9 ¢ Bl |
( ) OiltlETHu( )HHS + H tu( )HHS—l < +0o0

implying that the solution can be continued after 7'
Fix s1 €]1 + 5, s[. Decreasing T, we can assume that 71 < (s — s1)/\.
Then (6.8) and the Sobolev imbedding theorem imply that

sup [u(®)]| oo + [[Or0(®)| oo < CEE) (o]l g + [[a]] )
0<t<Ty

where C'(K') depends only on K. Therefore, Theorem 6.4 implies that

o <C(K
S0 () s+ 90) s < OO

][ g )-
The important point is that 77 depends only on K. One can repeat the

analysis for the Cauchy problem with initial time 77 arbitrarily close to T7,
and after a finite number of iterations , this implies (6.9). O]

6.2 Proof of the nonlinear estimate

We write the equation as a system

o + Z Oa, (@5 (u)v) — Z Ou, (@ k 0, 0)

(6.10) =t k=1
== 0q; (bj(w)) + F(u)
j=1
(6.11) 8tu+Zdj(u)8xju+l~)o(u) =v/ag
j=1



with

dj = aj/ao, CNLj,k = a5k + leak, b() = bo/ao, bj = bj — ajb().

Introduce a dyadic partition of unity in space, > Ax(D;) = Id, as in
(3.3). The first step in the proof Theorem 6.5 is an estimate of Agdyu and
Akv:

Proposition 6.6. There is a constant C (T, K) such that ifu € C°([0, T[; H®)N
CH([0,T[; H5~1) is a solution of (6.1) which satisfies (6.7), then for all k > 0
and t € [0,T1:

(6.12) |SkOu(t)|| ;o + || Skv ()] oo < C(T, K)(k +1).

This estimate is proved in the next subsection. Taking it for granted, we
finish the proof of (6.8).

We use the para-differential calculus introduced in Section 3. The para-
linearization procedure is based upon the following result.

Lemma 6.7. Cfiven s > s1 > 0, there is a constant C such that for o €
[s1,5], a € H'T2"9(R") and v such that

(6.13) sup(k + 1) 7| Sk oo < K
k>0

there holds av — T,v € H“‘élog(R”) and

(6.14) [|lav — Tyo| < CK||a|

Ho'f%log HU+%log

Proof. There holds av — T,v = > wy, with wy, = AgaSkiov. The spectrum
of wy, is contained in the ball {|¢| < 2¥+4} and

|wkl|,. < CK(k+ 1)22 7% |al|

Hs+%log
with {e;}x in the unit ball of /2. O
We also use the following nonlinear estimates :

Lemma 6.8. Suppose that u € HU+%l°9(R") N L*(R"™) and a is a C™
function on R such that a(0) = 0. Then a(u) € Hs+%log(]R") and

(6.15) ol ot i < Ol ] o s
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Proof of Theorem 6.5.

Consider a solution v € CO([0,T[; H*) NC*([0, T[; H*~!) of (6.1) satisfy-
ing (6.5). Fix s1 €]¢ + 1, s|. We show that there is are constants C' and C,
which depends only on K, such that for all A > 0 and ¢ < min{7, *5* }:

)| 5yese + 0[5
O (T T RO
< o (. + o)
£ 01 [ (s + 0 s )

Choosing A > (1, this implies (6.8).

(6.16)

a) We use the para-differential calculus as in Section 4. In addition
to the quantization T, we use the modified operators P/ (3.23). Using
Corollary 3.12, we can fix v and § > 0 depending only on K, such that for
all t € [0,7] and w = (wy,...,w,) € CFCR"):

(6.17) Re Z (Pl;;k(t)wkawj)LZ > 5”“’”%}
k=1

with bj , = ao(u)a;x(u).

From now on we fix such a v and use the notation P, in place of P} .
Lemma 3.10 can be extended to all values of o and there is a constant C'
such that for all t € [0,7] and o € [s1, s]:

(6.18) 1(Pa = Ta)wl| o+ < C27|al| oo [[w]| e
Similarly
(6.19) 1(Pa = Ta)u; || os110g < C27 @l zoe [0]] ok g10g-

Using Proposition 3.3 for the spatial derivatives 9, u and Proposition 6.6
for v, we deduce from the lemmas above that

n
(6.20) v = Py, 0u+ Z Py;0p,u+g
j=1

where a; stands for a;(u) and
(6:21) (8] oo 310 < COO (1Ot s o + 10O sy )

o1



In particular, this implies that

6.22) [0 o1 < OO (|0 o s + [08)] 1)

Hv(t) HHs—l—)\t+%log

(6.23)
S O(K) (Haﬁu(t)’ Hs—l—At-&-%log + Hu(t)‘ Hs—At-&-%log) ‘
Similarly,
n
(6.24) O+ Y Pidou=P, v+ g

Jj=1

where a; = a;j(u) and

+ Hv(t)‘

Hs—l—/\t-&-%log) .

(6.25) g1l e oy < CO) ([Jut)

Hs—/\t-ﬁ—%log

With (6.35), this implies that g; also satisfies an estimate similar to (6.21).
Another consequence is that

626) (00 rose < OO ([ gvoss + 1) rs)-

H@{u,(t) HHsflfktﬁ»%log

(6.27)
S C(K) (H'U(t) HHsflfhtwL%log + Hu(t) HHsfktJf%log) .

In the same vein,

n n
(6.28) O+ 0uPayv— Y On,Pa, Ouyu=f
J=1 Jk=1
with
(629) Hf(t)‘ Hs—l—At—%log S C(K) Hu(t)‘ Hs+)\t+%log‘

b) Multiply the equation (6.28) by (1—A,)2~ 1=y and integrate over
R™. Using Proposition 3.8 to bound the terms (Paj Oz, (I—Aw)z(sflf)‘t)v) 25
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implies that
oL Lo PRV [T e
—2Re( > 0n,Ps,, Oty (1 — Ag)2 M)

J,k=1

<C|f@

(6.30) L

,U(t)HHsflf)\Jr%log

+ CHU(t) Hi[sflf)\bk%log .

HHsflf)\f%lag

where C depends only on K.

c) Multiply the equation (6.11) and (1 — A,)2¢=A) 39, Py, 0q,u.
Using Propositions 3.8 and 3.9,

—Re( Y 0x, P, Onu, (1 — Ay)*E M)

L2
jk=1
n
=Re( Y Paga, Oty (1 — A2)*C 0,0, 1), + B
jk=1

where

E(t) < CR) ([|0as®)][3e1-xes on + [[008) [ 3e-res 1 )

By Lemmas 6.10 and 6.11 below, the coefficients b; ;(u) = ag(u)a;i(u) sat-
isfy estimates similar to (6.12)

HSké?t i, kHLOC <(k+1)C(K).
Therefore Pp,p, , is of order Log(D) and

2Re( Y Paga, Ot (1 — A0)* 0,0, 1)
G k=1

d . -
—Re Z ij’kwk”wj)LQ + 2)\( Z ij,kwkawj)lg + By

dt , :
7,k=1 7,k=1

where F; satisfies an estimate similar to E, w; = (1 — Am)(S*)‘t)ﬁmju and

1
w; = (In(1 — Ay))2w;.
Substituting these estimates in (6.30), integrating between 0 and ¢ and
using (6.17) implies (6.16) and the theorem follows. O
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Notes on the proof of Theorem 6.4.

The proof of this theorem is quite similar, but much simpler, using the
para-differential calculus with no logarithmic loss when the coefficients are
Lipschitz continuous. O

6.3 Proof of Proposition 6.6

For a C! function a bounded with bounded derivatives on [0, 7] x R", in-
troduce the norm:

(6.31) al| 5 = sup(k + D)~ H|Sk(Dz)a| oo oy xcny:

Lemma 6.9. There is a constant C' such that if a = {a;,a;k,b;, c} is a set
of CL N WL functions on [0,T] x R™ satisfying

d n
(6.32) 0fao =Y 0, (Ora; +bj) + > 0n,0u,a s + Oibo +c,
j=1 k=1
then
(6.33) [Braol| z < C(HaHLOO([O,T]XR") + HaHLL([O,T}XR")>'

Proof. a) Introducing a partition of unity, it is sufficient to prove the result
when the functions are defined and compactly supported in [0, +oo] and
| — 00, T]. The two cases are similar, so we assume that the functions are
defined for ¢ > 0.

Consider the extension operator

a(t, ) t>0,

(6.34)  Pa(t,z) = { aa(—t,x) + Ba(—=2t,x) +ya(=3t,z), t<0

with
a+B8+y=1, a+28+3y=-1, a+46+9y=1,

so that Ppa, 0;Pya and 0?Pya are continuous at ¢t = 0 when a is C? on
{t > 0}. Moreover

8tP0a = Plﬁta, (3tP1b = PQ@tb,
where P, and P, are similar extension operators. Then, the equation (6.32)

can be extended to R, with Pyag in place of ag, Pya; in place of aj, Praj
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in place of a;, etc. Because the extensions operators preserve continuity at
t = 0, there is a constant C' such that

HPl“HLoc(RHd) = CHCLHLOO({tZO})’ HPlaHLL(RHd) = CHGHLL({tEO})'

Hence it is sufficient to prove the lemma when the functions are defined on
R4, which we now assume.

b) In addition to the partition of unity Id = Y  Ag(D,) consider a
similar partition of unity in time: Id = 7 A} (D;). By Proposition 3.3,

HSI,JSPataOHLOO(RHd) <Clp+ UH“HLL(RHd)'
Similarly, for ¢ > p there holds

HAizspataxjajHLoo <Clg+ 1)2pHajHLL’
HA;Spaxk&cjajk HLOO <C(p+ 1)2pHaj7k

‘LL'

Finally, using the equation (6.32) and similar estimates for the other func-
tions, we see that for ¢ > p:

|88y 0] sy < CK2”
For ¢ > p, the spectral localization of Afl implies that
1A 8,5 a0]| . < C2| A 028,00, . < CE 2?4,

Therefore, writing that S,0;a0 = S,5,0;a0 +Zq>p A Spoiap and adding the
estimates above, one obtains (6.33). O

To complete the proof of Proposition 6.6 we need the following estimates:

Lemma 6.10. Let F be s smooth function on R and let a € W1H>°(]0,T] x
R™). Then F(a) € Wh*°([0,T] x R") and

(6.35) HF(G)HLL < C(llallze) HaHLL'

Lemma 6.11. Let a € Wh*°([0,T] x R") and b € L>=([0,T] x R%). Then

(6.36) lab]|z < C(llall jo + llall o) [o]] -

95



Proof. The proof of (6.35) is immediate from the definition of the LL semi-
norm.
To prove (6.36) write

Sp(ab) = Sp(Sk+2aSkrad) + > > Sp(Apaigh).
p=k+3 |g—p|<2
The first term satisfies
15k (Sk+20Sk14D) || oo < Cl[Skt2a| ool Shrab]| oo < Ok + Dfa]| e 0] -
Next, note that for |p — ¢| < 2,

I5k(ApaAD)|| o < CllApal| o [[Aghl] o < Clp+1)%277fal| [[5] -
Adding up for p > k + 3, this implies (6.36). O
Proof of Proposition 6.6.

Let Ag, A; and A;j be smooth functions on R, vanishing at the origin,

with derivative equal to ag, a; and a; j respectively. Then for C°([0, T]; H*)N
CL([0,T); H*~1) solutions the equation (6.1) reads:

92 Ao (u +§p@@ﬁ }:@QW%A)

Jj=1 k=1

) + 37 0, (b (W) = F(u).

(6.37)

and A;(u) are C! and their L and LL

By Lemma 6.10, the Ag(u), A;(u)
). Therefore, by Lemma 6.9 there is a constant

norms are bounded by C(K
C(T, K) such that
10 Ao (u HZ < C(T,K).

Since

3tu = 8,5Ao(u),

b
ao(u)
Lemma 6.11 implies that
||, < C(T. K).
Proposition 3.3 implies that
19;ull 2 < Cllull ..

Therefore, with Lemma 6.11 this implies that v also satisfies the estimate
(6.12) and the proof is now complete. O
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