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Le problème de Cauchy pour les équations d’onde à coefficients non
Lipschtziens; application au prolongement de solutions d’équations d’ondes
non linéaires.

Abstract

In this paper we study the Cauchy problem for second order strictly
hyperbolic operators of the form

Lu :=
n∑

j,k=0

∂yj

(
aj,k∂yk

u
)

+
n∑

j=0

{bj∂yju+ ∂yj (cju)}+ du = f,

when the coefficients of the principal part are not Lipschitz continu-
ous, but only “Log-Lipschitz” with respect to all the variables. This
class of equation is invariant under changes of variables and therefore
suitable for a local analysis. In particular, we show local existence,
local uniqueness and finite speed of propagation for the noncharacter-
istic Cauchy problem. This provides an invariant version of a previous
paper of the first author with N.Lerner [6]. We also give an application
of the method to a continuation theorem for nonlinear wave equations
where the coefficients above depend on u: the smooth solution can be
extended as long as it remains Log-Lipschitz.
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On considère le problème de Cauchy pour des équations d’onde stricte-
ment hyperboliques:

Lu :=
n∑

j,k=0

∂yj
(
aj,k∂yku

)
+

n∑
j=0

{bj∂yju+ ∂yj (cju)}+ du = f,

quand les coefficients de la partie principale sont seulement “Log-Lipschitz”
en toutes les variables. Cette classe d’équation est invariante par change-
ment de variables et est donc une classe naturelle pour une étude locale in-
trinsèque. En particulier, on montre l’existence locale, l’unicité locale et la
vitesse finie de propagation pour le problème de Cauchy non caractéristique.
donnant une version invariante d’un résultat antérieur du premier auteur
avec N.Lerner [6]. Pour les équations non linéaires où les coefficients ci-
dessus dépendent de u, la méthode d’ estimations permet de montrer que
les solutions régulières se prolongent en solutions régulières aussi longtemps
qu’elles restent Log-Lipschitz.

1 Introduction

In this paper we study the well-posedness of the Cauchy problem for sec-
ond order strictly hyperbolic equations whose coefficients are not Lipschitz
continuous:

(1.1) Lu :=
n∑

j,k=0

∂yj
(
aj,k∂yku

)
+

n∑
j=0

{bj∂yju+ ∂yj (cju)}+ du = f.

In Section 6, we will present an application of the methods developed for
the analysis of the Cauchy problem to nonlinear wave equations, where the
various coefficients above depend on u. It is known that the smooth solution
can be extended as long as they remains Lipschitz continuous. We prove that
this condition can we weakened, and that smooth solution remain smooth
as long as they remain Log-Lipschitz. We refer to Section 6 for a precise
result and focus now on the analysis of the Cauchy problem.

The question of the well posedness of the Cauchy problem for the wave
equation with nonsmooth coefficients has already been studied in the case
that the second order part has the special form, in coordinates y = (t, x):

(1.2) ∂2
t −

n∑
j,k=1

∂xj
(
aj,k∂xku

)
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and the Cauchy data are given on the space-like hyperplane {t = 0}. In this
case, when the coefficients depend only on the time variable t, F. Colombini,
E. De Giorgi and S. Spagnolo ([5]) have proved that the Cauchy problem is
in general ill-posed in C∞ when the coefficients are only Hölder continuous
of order α < 1, but is well-posed in appropriate Gevrey spaces. This has
been extended to the case where the coefficients are Hölder in time and
Gevrey in x ([14, 8]). Moreover, it is also proved in [5] that the Cauchy
problem is well posed in C∞ when the coefficients, which depend only on
time, are “Log-Lipschitz” (in short LL) : recall that a function a of variables
y is said to be LL on a domain Ω if there is a constant C such that

(1.3) |a(y)− a(y′)| ≤ C|y − y′|
(

1 +
∣∣Log|y − y′|

∣∣)
for all y and y′ in Ω. In [5], it is proved that for LL coefficients depending
only on t and for initial data in the Sobolev spaces Hs×Hs−1, the solution
satisfies

(1.4) u(t, ·) ∈ Hs−λt, ∂tu(t, ·) ∈ Hs−1−λt

with λ depending only on the LL norms of the coefficients and the constants
of hyperbolicity. In particular, there is a loss of smoothness as time evolves
and this loss does occur in general when the coefficients are not Lipschitz
continuous, and is sharp, as shown in [3].

The analysis of the C∞ well-posedness has been extended by F. Colom-
bini and N. Lerner ([6]) to the case of equations, still with principal part
(1.2), whose coefficients also depend on the space variables x. They show
that the Cauchy problem is well-posed if the coefficients are LL in time
and C∞ in x. They also study the problem under the natural assumption
of isotropic LL smoothness in (t, x). In this case one has to multiply LL
functions with distributions in Hs. This is well defined only when |s| < 1.
Therefore, one considers initial data in Hs ×Hs−1 with 0 < s < 1, noticing
that further smoothness would not help. Next, the loss of smoothness (1.4)
forces us to limit t to an interval where 0 < s − λt, yielding only local in
time existence theorems. We also refer to [6] for further discussions on the
sharpness of LL smoothness.

However, the local uniqueness of the Cauchy problem and the finite
speed of propagation for local solutions are not proved in [6]. The main
goal of this paper is to address these questions. Classical methods such
as convexification, leads one to consider general equations (1.1) with LL
coefficients in all variables. However, the meaning of the Cauchy problem for
such equations is not completely obvious: as mentioned above, the maximal
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expected smoothness of the solutions is Hs with s < 1 and their traces
on the initial manifold are not immediately defined. More importantly, in
the general theory of smooth operators, the traces are defined using partial
regularity results in the normal direction; in our case, the limited smoothness
of the coefficients is a source of difficulties. It turns out that when s ≤ 1

2 , one
cannot in general define the traces of all the first order derivatives of u, but
only the Neumann trace relative to the operator, using a weak formulation
of the traces.

Assumption 1.1. L is a second order operator of the form (1.1) on a
neighborhood Ω of y, with coefficients aj,k ∈ LL(Ω), bj and cj in Cα(Ω), for
some α ∈]1

2 , 1[ and d ∈ L∞(Ω). Σ is a smooth hypersurface through y and
L is strictly hyperbolic in the direction conormal to Σ.

Shrinking Ω if necessary, we assume that Σ is defined by the equation
{ϕ = 0} with ϕ smooth and dϕ 6= 0. We consider the one-sided Cauchy
problem, say on the component Ω+ = Ω ∩ {ϕ > 0}. We use the Sobolev
spaces Hs(Ω ∩ {ϕ > 0} for s ∈ R. As usual, we say that u ∈ Hs

loc(Ω ∩ {ϕ ≥
0}), if for any relatively compact open subset Ω1 of Ω, the restriction of u to
Ω1∩{ϕ > 0} belongs to Hs(Ω∩{ϕ > 0}). Similarly, u ∈ Hs

comp(Ω∩{ϕ ≥ 0})
if u ∈ Hs(Ω ∩ {ϕ > 0}) has compact support in Ω ∩ {ϕ ≥ 0}.

The adjoint operator

(1.5) L∗v :=
n∑

j,k=0

∂yk
(
aj,k∂yjv

)
−

n∑
j=0

{cj∂yjv + ∂yj (bjv)}+ dv

has the same form as L. For u and v smooth, v compactly supported in
Ω ∩ {ϕ ≥ 0}, one has the (formal) identity

(1.6)
(
Lu, v

)
L2(Ω+)

−
(
u, L∗v

)
L2(Ω+)

=
(
Nνu, v

)
L2(Σ)

−
(
u,N ′νv

)
L2(Σ)

where

(1.7)

Nνu =
∑
j,k

νk(aj,k∂ju)|Σ,

N ′νv =
∑
j,k

νj(aj,k∂kv)|Σ −
∑
j

νj
(
(bj + cj)v

)
|Σ

and ν = (ν0, . . . , νd) 6= 0 is conormal to Σ and the d-integration form on Σ
is chosen accordingly. .
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Lemma 1.2. i) For all s ∈]1 − α, 1 + α[ and u ∈ Hs
loc(Ω ∩ {ϕ ≥ 0}),

all the terms entering in the definition of Lu and L∗u are well defined as
distributions in Hs−2

loc (Ω ∩ {ϕ ≥ 0}).
ii) For all s ∈]3

2 , 1 + α[ and u ∈ Hs
loc(Ω ∩ {ϕ ≥ 0}), the traces Nνu and

N ′νu are well defined in in H
s− 3

2
loc (Σ ∩ Ω).

Proof. This is due to multiplicative properties (see [6] and Corollary 3.6):
- If σ ∈] − 1, 1[, a ∈ LL(Ω) and v ∈ Hσ

loc(Ω ∩ {ϕ ≥ 0}), then av ∈
Hσ
loc(Ω ∩ {ϕ ≥ 0}).

- If σ ∈] − α, α[, a ∈ Cα(Ω) and v ∈ Hσ
loc(Ω ∩ {ϕ ≥ 0}), then av ∈

Hσ
loc(Ω ∩ {ϕ ≥ 0}).

Next, we recall that the subspace of functions with compact support
in Ω+ is dense in Hσ(Ω+) when |σ| < 1

2 ; moreover, for 0 ≤ σ < 1
2 and

for u ∈ Hσ(Ω+) the pairing (u, v)L2(Ω) for v ∈ L2 extends as the duality
〈u, v〉Hσ×H−σ . With this remark in mind, the identity (1.6) holds for smooth
functions:

Lemma 1.3. For s ∈]3
2 , 1 + α[, u ∈ Hs

loc(Ω ∩ {ϕ ≥ 0}) and v ∈ Hs
comp(Ω ∩

{ϕ ≥ 0}), there holds

(1.8)

〈
Lu, v

〉
H−σ×Hσ−

〈
u, L∗v

〉
Hσ×H−σ

=
(
Nνu,DΣv

)
L2(Σ)

−
(
DΣu,N

′
νv
)
L2(Σ)

with σ = s− 3
2 ∈]0, 1

2 [ and DΣu = u|Σ.

Proof. It is sufficient to remark that for σ ∈ [0, 1
2 [, the Green’s formula〈

∂ju, v
〉
H−σ×Hσ = −

〈
u, ∂jv

〉
Hσ×H−σ +

(
νjDΣu,DΣv

)
L2(Σ)

is satisfied for u ∈ H1−σ
loc (Ω ∩ {ϕ ≥ 0}) and v ∈ H1−σ

comp(Ω ∩ {ϕ ≥ 0})

Proposition 1.4. Let D(L;Hs) = {u ∈ Hs
loc(Ω ∩ {ϕ ≥ 0}) : Lu ∈

L2
loc(Ω ∩ {ϕ ≥ 0})}. The operator NΣ and DΣ have unique extensions to⋃
s>1−αD(L;Hs) such that

i) For all s ∈]1−α, α[, NΣ [resp. DΣ] is continuous from D(L;Hs) into

H
s− 3

2
loc (Σ ∩ Ω) [resp. H

s− 1
2

loc (Σ ∩ Ω) ].
ii) for all s′ ∈]1− α, 1

2 [ such that s′ ≤ s and all v ∈ H2−s′
comp(Ω ∩ {ϕ ≥ 0})

there holds

(1.9)

(
Lu, v

)
L2−

〈
u, L∗v

〉
Hs′×H−s′

=
〈
Nνu,DΣv

〉
Hs− 3

2×H
3
2−s
−
〈
DΣu,N

′
νv
〉
Hs− 1

2×H
1
2−s

.
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This proposition is proved in Section 5. Note that by Lemma 1.2, for
v ∈ H2−s′

comp, L
∗v ∈ H−s

′
comp and that u ∈ Hs′

loc if s′ ≤ s. Moreover, DΣv ∈

H
3
2
−s′

comp ⊂ H
3
2
−s

comp and N ′Σv ∈ H
1
2
−s′

comp ⊂ H
1
2
−s

comp.
With this Proposition, the Cauchy problem with source term in L2 and

solution in Hs, s > 1− α, makes sense.

Theorem 1.5 (Local existence). Consider s > 1 − α and a neigborhood ω
of y in Σ. Then there are s′ ∈]1−α, α[ and a neighborhood Ω′ of y in R1+n

such that for all Cauchy data (u0, u1) in Hs(ω) × Hs−1(ω) near y and all
f ∈ L2(Ω′ ∩ {ϕ > 0}) the Cauchy problem

(1.10) Lu = f, DΣu = u0, NΣu = u1,

has a solution u ∈ Hs′(Ω′ ∩ {ϕ > 0}).

Theorem 1.6 (Local uniqueness). If s > 1 − α and u ∈ Hs(Ω ∩ {ϕ > 0})
satisfies

(1.11) Lu = 0, DΣu = 0, NΣu = 0

then u = 0 on a neighborhood of y in Ω ∩ {ϕ ≥ 0}.

Remark 1.7. If the coefficients of the first order term L1 (see (2.3)) are
also LL, the statements above are true with α = 1 since the coefficients are
then Cα for all α < 1. If the bj are Cα and the cj are Cα̃, the conditions
are 1− α̃ < α and the limitation on s is 1− α̃ < s.

Remark 1.8. Theorem 1.6 implies that if u is in Hs and satisfies Lu = 0
near y and if u vanishes on {ϕ < 0}, then u vanishes on a neighborhood
of y (see Section 5.2). Moreover, this local propagation of zero across any
space-like manifold implies finite speed of propagation by classical arguments
which we do not repeat here. In particular, if Ω′ ∩ {ϕ ≥ 0} is contained in
the domain of dependence of ω, there is existence and uniqueness for the
Cauchy problem (1.10) in Ω′ ∩ {ϕ ≥ 0}.

The proof of these results is given in Section 5 below. Because all the hy-
potheses are invariant under smooth changes of coordinates, we can assume
that in the coordinates y = (t, x), the initial surface is {t = 0}, and in these
coordinates, we prove the existence and uniqueness theorems. We deduce
them from similar results on strips ]0, T [×Rn and there, the main part of
the work is to prove good energy estimates for (weak) solutions. In this
framework, the results of Theorem 1.5 are improved, by using non isotropic
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spaces, and by making a detailed account of the loss of spatial smoothness
as time evolves, as in [5, 6]. The precise results are stated in section 2 below
and are proved in section 4 using the paradifferential calculus of J.-M. Bony,
whose LL-version is presented in section 3.

2 The global in space problem

In this section we denote by (t, x) the space-time variables. On Ω = [0, T0]×
Rn consider a second order hyperbolic differential operator

(2.1) Lu = L2u+ L1u+ du

with

L2 = ∂ta0∂t +
n∑
j=1

(∂taj∂xj + ∂xjaj∂t)−
n∑

j,k=1

∂xjaj,k∂xk ,(2.2)

L1 = b0∂t + ∂tc0 +
n∑
j=1

(bj∂xj + ∂xjcj).(2.3)

The coefficients satisfy on Ω = [0, T0]× Rn

aj,k = ak,j , a0, aj , aj,k ∈ L∞(Ω) ∩ LL(Ω),(2.4)
b0, c0, bj , cj ∈ L∞(Ω) ∩ Cα(Ω),(2.5)

d ∈ L∞(Ω),(2.6)

for some α ∈]1
2 , 1[. Recall that the space LL is defined by (1.3), the semi

norm ‖a‖LL being the best constant C in (1.3). In addition, for α ∈]0, 1[,
Cα denotes the usual Hölder space, equipped with the norm

(2.7) ‖a‖Cα = ‖a‖L∞ + sup
y 6=y′

|a(y)− a(y′)|
|y − y′|α

.

When α = 1, this defines the norm ‖a‖Lip in the space of Lipschitz functions.
We assume that L is hyperbolic in the direction dt, which means that

there are δ0 > 0 and δ1 > 0 such that for all (t, x, ξ) ∈ [0, T0]× Rn × Rn

(2.8) a0(t, x) ≥ δ0,
∑

1≤j,k≤n
(aj,k +

ajak
a0

)ξjξk ≥ δ1 |ξ|2.

We denote by AL∞ , ALL and B constants such that for all indices

‖a0, aj , aj,k‖L∞(Ω) ≤ AL∞ , ‖a0, aj , aj,k‖LL(Ω) ≤ ALL,(2.9)
‖b0, c0, bj , cj‖Cα(Ω) ≤ B, ‖d‖L∞(Ω) ≤ B.(2.10)
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2.1 Giving sense to the Cauchy problem

Consider the vector fields

(2.11) X = a0∂t +
n∑
j=1

aj∂xj = a0Y.

Formal computations immediately show that the second order part of L can
be written

(2.12) L2u = ZXu− L̃2u

with

(2.13) Zv = ∂tv +
n∑
j=1

∂xj (ãjv), L̃2u =
n∑

j,k=1

∂xj
(
ãj,k∂xku

)
,

ãj,k = aj,k + ajak/a0, and ãj = aj/a0. Consequently, it follows that

(2.14) Lu = (Z + b̃0)(X + c0)u− L̃2u+ L̃1u+ d̃u

with

(2.15) L̃1u =
n∑
j=1

b̃j∂xju+
n∑
j=1

∂xj (c̃ju)

and

b̃0 = b0/a0, b̃j = bj − b̃0aj , c̃j = cj − ãjc0, d̃ = d− c0c̃0.

The next lemma shows that these identities are rigorous under minimal
smoothness assumption on u.

Lemma 2.1. Suppose that u ∈ Hρ(]0, T [) × Rn) for some ρ ∈]1 − α, α[.
Then cu, Xu and L1u belong to Hρ−1(]0, T [) × Rn). Moreover L2u is well
defined as a distribution in Hρ−2(]0, T [×Rn).

Proof. u and its space-time derivatives (∂tu, ∂xju) belong to Hρ−1. Follow-
ing [6], their multiplication by a bounded LL function belong to the same
space (see also Corollary 3.6). This shows that all the individual terms
present in the definition of Xu belong to Hρ−1 and those occurring in L2u
and ZXu are well defined in Hρ−2 in the sense of distributions.
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Next we recall that the multiplication (b, u) 7→ bu is continuous from
Cα × Hs to Hs when |s| < α. This implies that the terms b∂u and ∂(cu)
that occur in L1u and L̃1u belong to Hρ−1 since ρ ∈]1− α, α[.

The last term du is in L2, thus in Hρ−1, since c ∈ L∞ and u ∈ L2.
The identity (2.12) is straightforward from (2.2) since all the algebraic

computations make sense by the preceding remarks.

Next we need partial regularity results in time, showing that the traces
of u and Xu at t = 0 are well defined, as distributions, for solutions of
Lu = f . This is based on the remark that this equation is equivalent to the
system

(2.16)

{
Zv + b̃0v = L̃2u− L̃1u− d̃u+ f,

Y u+ c̃0u = v/a0

with c̃0 = c0/a0. The important remark is that, for this system, the co-
efficients of ∂t, both for u and v, are equal to 1, thus smooth. Using the
notation Y = ∂t + Ỹ , Z = ∂t + Z̃, the system reads

(2.17)

{
∂tv = −Z̃v − b̃0v − L̃2u− L̃1u− d̃u+ f,

∂tu = −Ỹ u+ v/a0.

Lemma 2.2. Suppose that ρ ∈]1 − α, α[ and u ∈ Hρ(]0, T [×Rn) is such
that Lu ∈ L1([0, T ];Hρ−1(Rn)). Then u ∈ L2([0, T ];Hρ(Rn)) and ∂tu ∈
L2([0, T ];Hρ−1(Rn)). Therefore, u ∈ C0([0, T ];Hρ− 1

2 (Rn)).
Moreover, Xu ∈ L2([0, T ];Hρ−1(Rn)) and Xu ∈ C0([0, T ];Hρ− 3

2 (Rn)).
In particular, the traces u|t=0 and Xu|t=0 are well defined in Hρ− 1

2 (Rn)
and Hρ− 3

2 (Rn), respectively.

Proof. a) We use the spaces Hs,s′ of Hörmander ([7], chapter 2), which are
defined on R1+n as the spaces of temperate distributions such that their
Fourier transform û satisfies (1+τ2 + |ξ|2)s/2(1+ |ξ|2)s

′/2û ∈ L2. The spaces
on [0, T ]× Rn are defined by restriction. In particular, H0,s′([0, T ]× Rn) =
L2([0, T ];Hs′(Rn)). Recall that ∂xj maps Hs,s′ to Hs,s′−1 and that

(2.18) u ∈ Hs,s′ , ∂tu ∈ Hs,s′−1 ⇒ u ∈ Hs+1,s′−1.

b) For u ∈ Hρ, the first derivatives of u, d̃u, as well as L̃1u, Xu and
v belong to Hρ−1 = Hρ−1,0, as well as their multiplication by a LL or Cα

coefficient. Thus L̃2u and Z̃v belong to Hρ−1,−1 and

(2.19) ∂tv = f + g, f = Lu ∈ L1(]0, T [;Hρ−1), g ∈ Hρ−1,−1.
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Let

v0(t) =
∫ t

0
f(t′)dt′ ∈ C0(Hρ−1).

In particular, v ∈ L2(]0, T [;Hρ−1) = H0,ρ−1 ⊂ Hρ−1,0, since ρ − 1 ≤ 0.
Thus, v − v0 ∈ Hρ−1,0 and ∂t(v − v0) = g ∈ Hρ−1,−1. By (2.18) v − v0 ∈
Hρ,−1 ⊂ H0,ρ−1 since ρ ≥ 0.

Next, reasoning for fixed time and then taking L2 norms we note that the
multiplication by a LL or Cα function maps L2(]0, T [;Hρ−1) = H0,ρ−1 into
itself. Thus, by the second equation of (2.17), ∂tu = −Ỹ u+ v/a0 ∈ H0,ρ−1.
This finishes the proof of the first part of the lemma.

c) In particular, it implies that v = Xu + b0u ∈ H0,ρ−1. Thus, Z̃v
and L̃2u which involve multiplication by Cα or LL function, followed by a
spatial derivative, belong to H0,ρ−2. Therefore, the equation implies that
in (2.19) g ∈ H0,ρ−2. Thus applying (2.18) to v − v0 ∈ H0,ρ−1 implies
that v − v0 ∈ H1,ρ−2 ⊂ C0([0, T ];Hρ− 3

2 (Rn)). Since |ρ − 1
2 | < α and

u ∈ C0([0, T ];Hρ− 1
2 (Rn)), the product b̃0u belongs to C0([0, T ];Hρ− 1

2 (Rn)).
Since v0 is also in this space, we conclude that Xu ∈ C0([0, T ];Hρ− 3

2 (Rn)).

Remark 2.3. If ρ > 1
2 , then the multiplication by LL functions maps Hρ− 3

2

into itself and we can conclude that ∂tu ∈ C0([0, T ];Hρ− 3
2 (Rn)), as well as

all the first derivatives of u, so that their traces at t = 0 are well defined.
When ρ ≤ 1

2 , the continuity of ∂tu is not clear. However, the trace of Xu has
an intrinsic meaning, as a consequence of Proposition 1.4 (see Section 5).

Lemma 2.2 allows us to consider the Cauchy problem

(2.20) Lu = f, u|t=0 = u0, Xu|t=0 = u1,

when f ∈
⋃
ρ>−α L

1([0, T ];Hρ(Rn)) and u ∈
⋃
ρ>1−αH

ρ(]0, T [)× Rn).

2.2 The main results

We first state uniqueness for the Cauchy problem:

Theorem 2.4. If u ∈
⋃
ρ>1−αH

ρ(]0, T [)× Rn) satisfies

(2.21) Lu = 0, u|t=0 = 0, Xu|t=0 = 0

then u = 0.
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As in [5, 6], we prove existence of solutions in Sobolev spaces having
orders decreasing in time. The proper definition is given as follows. The
operators

(2.22) |D| and Λ := Log(2 + |D|)

are defined by Fourier transform, associated to the Fourier multipliers |ξ|
and Log(2 + |ξ|) respectively.

Definition 2.5. i) Hs(Rn) or Hs denotes the usual Sobolev space on Rn.
Hs+ 1

2
log and Hs− 1

2
log denote the spaces Λ−

1
2Hs and Λ

1
2Hs respectively.

ii) Given parameters σ and λ, we denote by Cσ,λ(T ) the space of functions
u such that for all t0 ∈ [0, T ], u ∈ C0([0, t0], Hσ−λt0).

iii) Hσ± 1
2
log,λ(T ) denotes the spaces of functions u on [0, T ] with values

in the space of temperate distributions in Rn such that

(2.23) (1 + |D|)σ−λtΛ±
1
2u(t, ·) ∈ L2([0, T ];L2(Rn)).

iv) Lσ,λ(T ) denotes the space of functions u on [0, T ] with values in the
space of temperate distributions in Rn such that

(2.24) (1 + |D|)σ−λtu(t, ·) ∈ L1([0, T ];L2(Rn)).

Cσ,λ(T ) is equipped with the norm

(2.25) sup
t∈[0,T ]

‖u(t)‖Hσ−λt .

The norms in Hσ± 1
2
log,λ(T ) and Lσ,λ(T ) are given by (2.23) and (2.24).

Equivalently, Hσ± 1
2
log,λ(T ) and Lσ,λ(T ) are the completions of C∞0 ([0, T ]×

Rn) for the norms

(2.26) ‖u‖H
σ± 1

2 log,λ
(T ) =

(∫ T

0
‖u(t)‖2

Hσ−λt± 1
2 log

dt
) 1

2
.

and

(2.27) ‖u‖Lσ,λ(T ) =
∫ T

0
‖u(t)‖Hσ−λtdt.

Theorem 2.6. Fix θ < θ1 in ]1− α, α[. Then there are λ > 0 and K > 0,
which depend only on the constants AL∞, ALL, B, δ0, δ1, θ and θ1, given
by (2.8), (2.9) and (2.10), such that for

(2.28) T = min{T0,
θ1 − θ
λ
}
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u0 ∈ H1−θ(Rn), u1 ∈ H−θ(Rn) and f = f1 + f2 with f1 ∈ L−θ,λ(T ) and
f2 ∈ H−θ− 1

2
log,λ(T ), the Cauchy problem (2.20), has a unique solution u ∈

C1−θ,λ(T )∩H1−θ+ 1
2
log,λ(T ) with ∂tu ∈ C−θ,λ(T )∩H−θ+ 1

2
log,λ(T ). Moreover,

it satisfies

(2.29)

sup
0≤t′≤t

‖u(t′)‖2
H1−θ−λt′ + sup

0≤t′≤t
‖∂tu(t′)‖2

H−θ−λt′

+
∫ t

0

(
‖u(t′)‖2

H1−θ−λt′+1
2 log

+ ‖∂tu(t′)‖2
H−θ−λt

′+1
2 log

)
dt′

≤ K
{
‖u0‖2H1−θ + ‖u1‖2H−θ

+
( ∫ t

0
‖f1(t′)‖H−θ−λt′dt

′
)2

+
∫ t

0
‖f2(t′)‖2

H−θ−λt
′− 1

2 log
dt′
}
.

Note that for t ∈ [0, T ], 1 − θ − λt ≥ 1 − θ1 > 1 − α, so that f ∈
L1([0, T ];H−θ2) with θ1 < θ2 < α. Similarly, u ∈ L2([0, T ];H1−θ1) and
∂tu ∈ L2([0, T ];H−θ1) implying that u ∈ H1−θ1([0, T ]× Rn). Therefore, we
are in a situation where we have given sense to the Cauchy problem.

Remark 2.7. This is a local in time existence theorem since the life span
(2.28) is limited by the choice of λ. Thus the dependence of λ0 on the
coefficient is of crucial importance. In case of Lipschitz coefficients, there is
no loss of derivatives; this would correspond to λ = 0. Using the notations
in (2.9) (2.10) and (2.8), the analysis of the proof below shows that there is
a function K0(·) such that one can choose

(2.30) λ =
ALL

min{δ0, δ1}
K0

(AL∞
δ0

)
,

revealing the importance of the LL-norms of the coefficients and the role
of the hyperbolicity constant δ1/δ0. In particular, it depends only on the
second order part of operator L.

Remark 2.8. A closer inspection of the proof, also shows that if the coeffi-
cients of the pricipal part of L are (a0, aj , aj,k) = (a′0 +a′′0, a

′
j +a′′j , a

′
j,k+a′′j,k)

with (a′0, a
′
j , a
′
j,k) Lipschitz continous and (a′′0, a

′′
j , a
′′
j,k) Log Lipschitz, with

LL norm bounded by A′′LL, one can replace ALL by A′′LL in the definition of
λ. In particular if instead of (1.3) the coefficients satisfy

(2.31) |a(y)− a(y′)| ≤ Cω(|y − y′|)

12



with a modulus of continuity ω such that

(2.32) lim
ε→0+

ω(ε)
ε|Logε|

= 0,

they can be approximated by Lipschitz functions with errors arbitrarily small
in the LL norm. This can be done by usual mollifications, which will preserve
the L∞ bounds AL∞ and keep uniform hyperbolicity constants δ0 and δ1.
As a consequence, λ can be taken arbitrarily small, yielding global in time
existence with arbitrarily small loss of regularity (see Theorem 2.1 in [3]
when the coefficients depend only on time).

3 Paradifferential calculus with LL coefficients

In this section we review several known results on paradifferential calculus
and give the needed extensions to the case of Log-Lipschitz coefficients.

3.1 The Paley-Littlewood analysis

Introduce χ ∈ C∞0 (R), real valued, even and such that 0 ≤ χ ≤ 1 and

(3.1) χ(ξ) = 1 for |ξ| ≤ 1.1 , χ(ξ) = 0 for |ξ| ≥ 1.9 .

For k ∈ Z, introduce χk(ξ) := χ
(
2−kξ

)
, χ̃k(x) its inverse Fourier transform

with respect to ξ and the operators

(3.2)
Sku := χ̃k ∗ u = χk(Dx)u ,

∆0 = S0, and for k ≥ 1 ∆k = Sk − Sk−1.

We note that ∆k and Sk are self adjoint. Moreover, by evenness, χ̃k is real,
so that ∆k and Sk preserve reality. For all temperate distributions u one
has

(3.3) u =
∑
k≥0

∆ku .

The next propositions immediately follow from the definitions.

Proposition 3.1. Consider s ∈ R. A temperate distribution u belongs to
Hs(Rn) [resp. Hs± 1

2
log] if and only if

i) for all k ∈ N, ∆ku ∈ L2(Rd).
ii) the sequence δk = 2ks‖∆ku‖L2(Rd) [resp. δk = (k+1)±

1
2 2ks‖∆ku‖L2(Rd)]

belongs to `2(N).
Moreover, the norm of the sequence δk in `2 is equivalent to the norm of

u in the given space.

13



Proposition 3.2. Consider s ∈ R and R > 0. Suppose that {uk}k∈N is a
sequence of functions in L2(Rd)such that:

i) the spectrum of u0 is contained in {|ξ| ≤ R} and for k ≥ 1 the
spectrum of uk is contained in

{
1
R 2k ≤ |ξ| ≤ R 2k

}
.

ii) the sequence δk = 2ks‖uk‖L2(Rd) [resp. δk = (k+1)±
1
2 2ks‖∆ku‖L2(Rd)]

belongs to `2(N).
Then u =

∑
uk belongs to Hs(Rd) [resp. Hs± 1

2
log]. Moreover, the norm

of the sequence δk in `2 is equivalent to the norm of u in the given space.
When s > 0, it is sufficient to assume that the spectrum of uk is contained

in
{
|ξ| ≤ R 2k

}
.

Next we collect several results about the dyadic analysis of LL spaces.

Proposition 3.3. There is a constant C such that for all a ∈ LL(Rn) and
all integers k > 0

(3.4) ‖∆ka‖L∞ ≤ Ck2−k‖a‖LL.

Moreover, for all k ≥ 0

‖a− Ska‖L∞ ≤ C(k + 1)‖a‖LL(3.5)

‖Ska‖Lip ≤ C
(
‖a‖L∞ + (k + 1)‖a‖LL

)
.(3.6)

If α ∈]0, 1[ and a ∈ Cα(Rn), then

(3.7) ‖∆ka‖L∞ ≤ C2−αk‖a‖Cα .

Proof. Sk is a convolution operator with χ̃k which is uniformly bounded in
L1. Thus

(3.8) ‖Ska‖L∞ ≤ C‖a‖L∞ .

Moreover, since the integral of ∂jχ̃k vanishes

∂j(Ska)(x) =
∫
∂jχ̃k(y)

(
a(x− y)− a(x)

)
dy.

Using the LL smoothness of a yields

(3.9) ‖∇Ska‖L∞ ≤ C(k + 1)‖a‖LL.

This implies (3.6). The proof of (3.4) is similar (cf [6]). The third estimate
is classical.
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3.2 Paraproducts

Following J.-M. Bony ([2]), for N ≥ 3 one defines the para-product of a and
u as

(3.10) TNa u =
∞∑
k=N

Sk−Na ∆ku

The remainder RNa u is defined as

(3.11) RNa u = au− TNa u.

The next proposition extends classical results (see [2, 13]) to the case of
LL coefficients and Log Sobolev spaces.

Proposition 3.4. i) For a ∈ L∞ and s ∈ R, TNa continuously maps Hs to
Hs and Hs± 1

2
log to Hs± 1

2
log. Moreover, the operator norms are uniformly

bounded for s in a compact set.
ii) If a ∈ L∞ ∩ LL and N ′ ≥ N ≥ 3, TNa − TN

′
a maps Hs+ 1

2
log into

Hs+1− 1
2
log, for all s ∈ R.

iii) If a ∈ L∞ ∩ LL, N ≥ 3 and s ∈]0, 1[, RNa maps H−s+
1
2
log into

H1−s− 1
2
log, and

(3.12) ‖RNa u‖H1−s− 1
2 log
≤ C‖a‖LL‖u‖

H−s+
1
2 log

with C uniformly bounded for s in a compact subset of ]0, 1[.

Proof. The first statement is an immediate consequence of (3.8) and Propo-
sitions 3.1 and 3.2.

Next, TNa u − TN
′

a u =
∑

k vk with vk = (Sk−Na − Sk−N ′a) ∆ku. By
Proposition 3.3

‖vk‖L2 ≤ C(k + 1)2−k‖∆ku‖L2 .

With Proposition 3.2, this implies ii).
To prove iii) we can assume that N = 3. Then

(3.13) Rau =
∑
k≥3

∆ka Sk−3u+
∑
k

∑
|k−j|≤2

∆ja∆ku.

If u ∈ H−s+
1
2
log, then

‖∆ju‖L2 ≤
2js√
j + 1

εj
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with {εj} ∈ `2. We note that the sequence

(3.14) ε̃k =
∑
j≤k

√
k + 1√
j + 1

2(j−k)sεj

is also in `2 with
‖ε̃k‖`2 ≤ C‖εj‖`2

with C uniformly bounded when s in a compact subset of ]0,+∞]. Thus

‖Sk−3u‖L2 ≤
2ks√
k + 1

ε′k

with {ε′k} ∈ `2. Therefore,

‖∆ka Sk−3u‖L2 ≤ C
√
k + 1 2(s−1)kε′k.

Proposition 3.2 implies that the first sum in (3.13) belongs to H1−s− 1
2
log.

Similarly, ∥∥∥ ∑
|k−j|≤2

∆ja∆ku
∥∥∥
L2
≤ C
√
k + 1 2(s−1)kε′′k.

with {ε′′k} ∈ `2. Now the spectrum of ∆ja∆ku is contained in the ball
{|ξ| ≤ 2k+3}; because 1−s > 0, Proposition 3.2 implies that the second sum
in (3.13) also belongs to H1−s− 1

2
log, and the norm is uniformly bounded

when s remains in a compact subset of [0, 1[.

Remark 3.5. By ii) we see that the choice of N ≥ 3 is essentially irrelevant
in our analysis, as in [2]. To simplify notation, we make a definite choice of
N , for instance N = 3, and use the notation Ta and Ra for TNa and RNa .

Corollary 3.6. The multiplication (a, u) 7→ au is continuous from (L∞ ∩
LL)×Hs+δlog to Hs+δlog for s ∈]− 1, 1[ and δ ∈ {−1

2 , 0,
1
2}.

Proof. (see [6]) Property iii) says that Ra is smoothing by almost one deriva-
tive in negative spaces, and therefore, for all σ ∈]− 1, 1[ it maps Hσ to Hσ′

for all σ′ > max {σ, 0} such that σ′ < min {σ + 1, 1}. Combining this obser-
vation with i), the corollary follows.

In particular, we note the following estimate

(3.15) ‖au‖
Hs+1

2 log
≤ C

(
‖a‖L∞‖u‖

Hs+1
2 log

+ ‖a‖LL‖u‖Hs

)
.
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Proposition 3.7. Consider q =
√

(1 + |ξ|2) and ψ(ξ) a symbol of degree m
on Rn. Denote by Q =

√
(1−∆) and Ψ the associated operators. If a ∈

L∞ ∩LL, then the commutator [Q−sΨ, Ta] maps H−s+
1
2
log into H1−m− 1

2
log

and

(3.16) ‖[Q−sΨ, Ta]u‖
H1−m− 1

2 log
≤ C‖a‖LL ‖u‖

H−s+
1
2 log

with C uniformly bounded for s ∈ [0, 1] and ψ in a bounded set.

Proof. We use Theorem 35 of [4], which states that if H is a Fourier multi-
plier with symbol h of degree 0 and if a is Lipschitzean, then

‖[H, a]∂xju‖L2 ≤ C‖∇xa‖L∞ ‖u‖L2 .

For k > 0, writing ∆ku as sum of derivatives, this implies that

(3.17) ‖[H, a]∆ku‖L2 ≤ C2−k‖∇xa‖L∞ ‖∆ku‖L2 .

with C independent of k and H, provided that the symbol h remains in a
bounded set of symbols of degree 0.

We now proceed to the proof of the proposition. Since Ψ and Q commute
with ∆k, one has

(3.18) [Q−sΨ, Ta]u =
∑
k≥3

[Q−sΨ, Sk−3a]∆ku.

Moreover, since the spectrum of Sk−3a∆ku is contained in the annulus
2k−1 ≤ |ξ| ≤ 2k+2, it follows that

(3.19) [Q−sΨ, Sk−3a]∆k = 2k(m−s)[Hk, Sk−3a]∆k

where the symbol of Hk is

hk(ξ) = 2k(s−m)q−s(ξ)ψ(ξ)ϕ(2−kξ)

and ϕ supported in a suitable fixed annulus. Note that the family {hk} is
bounded in the space of symbols of degree 0, uniformly in k, s ∈ [0, 1] and
ψ in a bounded set of symbols of degree m. By (3.17), it follows that

‖[Hk, Sk−3a]∆ku‖L2 ≤ C2k(m−s−1)‖∇Sk−3a‖L∞ ‖∆ku‖L2 .

Together with (3.9) and Proposition 3.1, this implies that for u ∈ H−s+
1
2
log,

‖[Q−sΨ, Sk−3a]∆ku‖ ≤ C(k + 1)‖a‖LL ‖∆ku‖L2 .

Using Proposition 3.2, the estimate (3.16) follows.
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Proposition 3.8. If a ∈ L∞ ∩ LL is real valued, then
(
Ta − (Ta)∗

)
∂xj and

∂xj
(
Ta − (Ta)∗

)
map Hs+ 1

2
log into Hs− 1

2
log and satisfy

(3.20)
‖
(
Ta − (Ta)∗

)
∂xju‖Hs− 1

2 log
≤ C‖a‖LL ‖u‖

Hs+1
2 log

,

‖∂xj
(
Ta − (Ta)∗

)
u‖

Hs− 1
2 log
≤ C‖a‖LL ‖u‖

Hs+1
2 log

.

Proof. The Ska are real valued, since a is real, and the ∆k are self adjoint,
thus

(Ta)∗u =
∞∑
k=3

∆k

(
(Sk−3a)u

)
.

Therefore, one has(
Ta − (Ta)∗

)
=
∑

[Sk−3a,∆k] =
∑

[Sk−3a,∆k]Ψk

where Ψk is a Fourier multiplier with symbol ψk = ψ(2−kξ) and ψ is sup-
ported in a suitable annulus. Using again [4] (see (3.17)) yields

‖[Sk−3a,∆k]∂xjΨku‖L2 ≤ C(k + 1)‖a‖LL‖Ψku‖L2 ,

and a similar estimate when the derivative is on the left of the commutator.
Since the spectrum of [Sk−3a,∆k]Ψku is contained in a annulus of size ≈ 2k,
this implies (3.20).

Proposition 3.9. If a and b belong to L∞∩LL, then
(
TaTb−Tab

)
∂xj maps

Hs+ 1
2
log into Hs− 1

2
log and

(3.21)
‖
(
TaTb − Tab

)
∂xju‖Hs− 1

2 log

≤ C
(
‖a‖LL‖b‖L∞ + ‖b‖LL‖a‖L∞

)
‖u‖

Hs+1
2 log

.

Proof. By Proposition 3.4, it is sufficient to prove the estimate for any para-
product TN . One has

TNa T
N
b ∂xju =

∑
k≥N

∑
l≥N

Sk−Na ∆k

(
Sl−Nb ∆l∂xju

)
.

In this sum, terms with |l−k| ≤ 2 vanish, because of the spectral localization
of Sl−Nb∆l∂xj . The commutators [∆k, Sl−Nb] contribute to terms which are
estimated as in (3.18):

‖[∆k, Sl−Nb]∆l∂xju‖L2 ≤ C(k + 1)‖b‖LL ‖∆lu‖L2 .
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If N is large enough, the spectrum of the corresponding term is contained
in a annulus of size ≈ 2k and hence the commutators contribute to an error
term in (3.21). Therefore, it is sufficient to estimate

(3.22)
∑
k≥N

∑
l≥N

(
Sk−NaSl−Nb− Sk−N (ab)

)
∆k ∆l∂xju.

Again, only terms with |l − k| ≤ 2 contribute to the sum. Using (3.5), one
has

‖a− Sk−Na‖L∞ ≤ C(k + 1)2−k‖a‖LL,
‖b− Sl−Nb‖L∞ ≤ C(k + 1)2−k‖b‖LL,

‖ab− Sk−N (ab)‖L∞ ≤ C(k + 1)2−k‖ab‖LL.

Thus

‖Sk−NaSl−Nb−Sk−N (ab)‖L∞

≤ C(k + 1)2−k
(
‖a‖LL‖b‖L∞ + ‖a‖L∞‖b‖LL

)
.

Since the terms in the sum (3.22) have their spectrum in annuli of size ≈ 2k,
this implies that this sum belongs to H0− 1

2
log when u ∈ H0+ 1

2
log, with an

estimate similar to (3.21).

3.3 Positivity estimates

The paradifferential calculus sketched above is well adapted to the analy-
sis of high frequencies but does not take into account the low frequencies.
For instance, the positivity of the function a does not imply the positivity
of the operator Ta in L2, only the positivity up to a smoothing operator.
However, in the derivation of energy estimates, such positivity results are
absolutely necessary. To avoid a separate treatment of low frequencies, we
introduce modified paraproducts for which positivity results hold (we could
also introduce weighted paraproducts as in [10, 11, 12]).

Consider a nonnegative integer ν and define the modified paraproducts

(3.23) P νa u =
∞∑
k=0

Smax{ν,k−3}a ∆ku = SνaSν+2u+
∞∑
k=ν

Ska ∆k+3u.

Then

(3.24) P νa u− Tau =
ν+2∑
k=0

ν∑
j=max{0,k−2}

∆ja ∆ku
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and

(3.25) au− P νa u =
∞∑

j=ν+1

∆ja Sj+2u.

The difference (3.24) concerns only low frequencies, and therefore the results
of Propositions 3.7, 3.8 and 3.9 are valid if one substitutes P νa in place of
Ta, at the cost of additional error terms. In particular, (3.24) and (3.25)
immediately imply the following estimates:

Lemma 3.10. i) There is a constant C such that for all ν, a ∈ L∞ and all
u ∈ L2,

(3.26) ‖(P νa − Ta)∂xju‖L2 + ‖∂xj (P νa − Ta)u‖L2 ≤ C2ν‖a‖L∞ ‖u‖L2 .

ii) There is a constant C0 such that for all ν for all a ∈ LL and all
u ∈ L2,

(3.27) ‖au− P νa u‖L2 ≤ C0ν2−ν‖a‖LL ‖u‖L2 .

We will also use the following extension of Proposition 3.8:

Proposition 3.11. If a ∈ L∞ ∩ LL is real valued, then
(
P νa − (P νa )∗

)
∂xj

and ∂xj
(
P νa − (P νa )∗

)
map H0+ 1

2
log into H0− 1

2
log and

(3.28)
‖
(
P νa − (P νa )∗

)
∂xju‖H0− 1

2 log
≤ C‖a‖LL

(
‖u‖

H0+1
2 log

+ ν‖u‖L2

)
,

‖∂xj
(
P νa − (P νa )∗

)
u‖

H0− 1
2 log
≤ C‖a‖LL

(
‖u‖

H0+1
2 log

+ ν‖u‖L2

)
.

Proof. One has(
P νa − (P νa )∗

)
∂xju = [Sνa, Sν+2]∂xju+

∑
k≥ν

[Ska,∆k+3]∂xju.

The sum over k is treated exactly as in the proof of Proposition 3.8 and
contibutes to the same error term. Using again Theorem 35 of [4], the L2

norm of the first term is estimated by

C‖∇xSνa‖L∞‖u‖L2 ≤ C(ν + 1)‖a‖LL‖u‖L2

and contibutes to the second error term in (3.28). When the derivative is
on the left, the proof is similar.

Moreover, a comparison of P νa u with au immediately implies the follow-
ing positivity estimate.
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Corollary 3.12. There is a constant c0, such that for any positive LL-
function a such that δ = min a(x) > 0, all ν such that ν2−ν ≤ c0δ/‖a‖LL,
and u ∈ L2(Rn),

(3.29) Re
(
P νa u, u

)
L2 ≥

δ

2
‖u‖2L2 .

Here, (·, ·)L2 denotes the scalar product in L2. This estimate extends to
vector valued functions u and matrices a, provided that a is symmetric and
positive.

3.4 The time dependent case

In the sequel we will consider functions of (t, x) ∈ [0, T ]×Rn, considered as
functions of t with values in various spaces of functions of x. In particular
we denote by Ta the operator acting for each fixed t as Ta(t) :

(3.30) (Tau)(t) =
∞∑
k=3

Sk−3(Dx)a(t) ∆k(Dx)u(t).

The Propositions 3.4, 3.7, 3.8 and 3.9 apply for each fixed t. There are
similar definitions for the modified paraproducts P νa ; further, Lemma 3.10
and Corollary 3.12 apply for fixed t.

When a is a Lipschitz function of t, the definition (3.30) immediately
implies that

(3.31) [∂t, Ta] = T∂ta, [∂t, P νa ] = P ν∂ta.

When a is only Log Lipschitz this formula does not make sense, since ∂ta
is not defined as a function. The idea, already used in [5, 6], is that it is
sufficient to commute ∂t with time regularization of a. In our context, this
simply means that in (3.30), we will replace the term Sk−3a, which is a
spatial regularization of a, by a space-time regularization, namely Sk−3ak
where ak is a suitable time mollification of a. We now give the details for
P ν , as we will need them in the next section.

Introduce the mollifiers

(3.32) k(t) = 2k(2kt)

where  ∈ C∞0 (R) is non negative, with integral over R equal to 1.
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Definition 3.13. Given a ∈ L∞ ∩ LL([0, T0]× Rn), define

(3.33) ak(t, x) = k ∗t ã =
∫
k(t− s)ã(s, x)ds

where ã is the LL extension of a given by

(3.34) ã(t, x) = a(0, x), t ≤ 0, ã(t, x) = a(T0, x), t ≥ T0.

Next, for fixed t, the operator P̃ νa(t) is defined by

(3.35) P̃ νa(t)u = SνaνSν+2u+
∞∑
k=ν

Skak ∆k+3u.

We denote by P̃ νa the operator acting on functions of (t, x) by (P̃ νa u)(t) =
P̃ νa(t)u(t).

Proposition 3.14. Let a ∈ L∞∩LL([0, T0]×Rn). Then for each t ∈ [0, T0],
the operators R1(t) = (P νa(t) − P̃

ν
a(t))∂xj , R2(t) = ∂xj (P

ν
a(t) − P̃

ν
a(t)), R3(t) =(

(P̃ νa(t))
∗ − P̃ νa(t)

)
∂xj , R4(t) = ∂xj

(
(P̃ νa(t))

∗ − P̃ νa(t)), and R5(t) = [Dt, P̃
ν
a ](t)

map H0+ 1
2
log into H0− 1

2
log and there is a constant C such that for all t ∈

[0, T0] and for k = 1, . . . , 5,

(3.36) ‖Rku‖
H0− 1

2 log
≤ C‖a‖LL

(
‖u‖

H0+1
2 log

+ ν‖u‖L2

)
.

Proof. a) First, we recall several estimates from [6]. For a ∈ LL([0, T0]×Rn)
the difference a− ak satisfies

|a(t, x)− ak(t, x)| ≤ C(k + 1)2−k‖a‖LL,(3.37)
|∂tak(t, x)| ≤ C(k + 1)‖a‖LL.(3.38)

with C independent of t and x. In particular, we note that

(3.39) ‖Sk(a(t)− ak(t))‖L∞ ≤ C(k + 1)2−k‖a‖LL.

b) In accordance with (3.35), for l = 1, 2, 5, we split Rl in two terms

(3.40) Rl(t)u = Blu+Hlu, Hlu =
∑
k≥ν

wk

with Blu spectrally supported in the ball of radius 2ν+4 and with wk spec-
trally supported in an annulus |ξ| ≈ 2k. For R1,

B1u = Sν(a(t)− aν(t)) Sν+2∂xju, wk = Sk(a(t)− ak(t)) ∆k+3∂xju.
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With (3.39), this implies that

‖B1u‖L2 ≤ C(ν + 1)‖a‖LL‖u‖L2

and
‖wk‖L2 ≤ C(k + 1)‖a‖LL‖∆k+3u‖L2 ,

implying that
‖H1u‖

H0− 1
2 log
≤ C‖a‖LL‖u‖

H0+1
2 log

.

For R2, the analysis is similar. One has

B2u = ∂xj
(
Sν(a(t)− aν(t)) Sν+2u

)
, wk = ∂xj

(
Sk(a(t)− ak(t)) ∆k+3u

)
.

Thanks to the spectral localization, the estimates for B2u and wk are the
same as in the case of R1, implying that

‖B2u‖L2 ≤ C(ν + 1)‖a‖LL‖u‖L2(3.41)
‖H2u‖

H0− 1
2 log
≤ C‖a‖LL‖u‖

H0+1
2 log

.(3.42)

c) For k = 5 we write (3.40) with

B5u = Sν(∂taν(t)) ∆ν+2u, wk = Sk(∂tak(t)) ∆k+3u.

Thus the estimates (3.38) imply

‖B5u‖L2 ≤ C(ν + 1)‖a‖LL‖u‖L2

‖H5u‖
H0− 1

2 log
≤ C‖a‖LL‖u‖

H0+1
2 log

.

c) One has

R3(t) = R1(t) +R∗2(t) +
(
(P νa(t))

∗ − P νa(t)

)
∂xj .

The third term is estimated in Proposition 3.11. The operators R1 and
R∗2 = B∗2 +H∗2 are estimated in part b), implying that R3 satisfies (3.36) for
k = 3. The proof for R4 = R∗3 = R∗1 +R2 + ∂xj

(
(P νa(t))

∗ − P νa(t)

)
is similar.

This finishes the proof of the Proposition.

Lemma 3.15. There is a constant C0 such that for any a ∈ LL([0, T0]×Rn),
u ∈ L2(Rn), ν ≥ 0 and all t ∈ [0, T0], one has

(3.43) ‖a(t)u− P̃ νa(t)u‖L2 ≤ C0ν2−ν‖a‖LL ‖u‖L2 .
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Proof. We have

au− P̃ νa u = (a− Sνaν)Sν+2u+
∞∑
k=ν

(a− Skak) ∆k+3u.

Combining (3.5) and (3.39), we see that

‖a(t)− Skak(t)‖L∞ ≤ Ck2−k‖a‖LL.

This implies (3.43).

The lemma immediately implies the following positivity estimate.

Corollary 3.16. There is a constant c0, such that for any positive LL-
function a such that δ = min a(t, x) > 0, all ν such that ν2−ν ≤ c0δ/‖a‖LL,
and u ∈ L2(Rn),

(3.44) Re
(
P νa(t)u, u

)
L2(Rn)

≥ δ

2
‖u‖2L2(Rn).

The same result holds for vector valued functions u and definite positive
square matrices a.

Finally, we quote the following commutation result which will be needed
in the next section.

Proposition 3.17. Suppose that a ∈ LL([0, T0]× Rn). Then Λ
1
2 [P̃ νa(t),Λ

1
2 ]

and [P̃ νa(t),Λ
1
2 ]Λ

1
2 are bounded in L2 and satisfy

‖Λ
1
2 [P̃ νa(t),Λ

1
2 ]u‖L2 + ‖[P̃ νa(t),Λ

1
2 ]Λ

1
2u‖L2

≤ C
(
ν22−ν‖a‖LL + ν‖a‖L∞

)
‖u‖L2 .

Proof. Thanks to the spectral localization, the low frequency part SνaνSν+2

in P̃ νa contributes to terms whose L2 norm is bounded by

Cν‖u‖L2 .

The commutator with the high frequency part reads∑
k≥ν

[Λ
1
2 , Skak]∆k+3u.

We argue as in the proof of Proposition 3.7 and write

(3.45) [Λ
1
2 , Skak]∆k+3 = (k + 1)

1
2 [Hk, Skak]∆k+3
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where the symbol of Hk is hk(ξ) = (k+1)−
1
2 (Log(2+ |ξ|))

1
2ϕ(2−kξ) and ϕ is

supported in a suitable fixed annulus. Note that the family {hk} is bounded
in the space of symbols of degree 0. By (3.17), one has

‖[Hk, Ska(t)]Λ
1
2 ∆k+3u‖L2 ≤ C(k + 1)2−k‖∇xSkak(t)‖L∞‖∆ku‖L2 .

Since ∇xSkak = (∇xSka)∗k, its L∞ norm is bounded by Ck‖a‖LL. Adding
up, and using the spectral localization, these terms contribute a function
whose L2 norm is bounded by Cν22−ν‖a‖LL‖u‖L2 .

When Λ
1
2 is on the left of the commutator, the analysis is similar.

4 Proof of the main results

4.1 The main estimate

We consider the operator (2.1) with coefficients which satisfy (2.4), (2.5)
and (2.6). We fix θ < θ1 in ]1 − α, α[, and with λ to be chosen later, we
introduce the notation

(4.1) s(t) = θ + tλ.

Recall that

(4.2) T = min
{
T0,

θ1 − θ
λ

}
.

Note that for t ∈ [0, T ], s(t) remains in [θ, θ1] ⊂]1− α, α[.
We will consider solutions of the Cauchy problem

(4.3) Lu = f, u|t=0 = u0, Xu|t=0 = u1

with

(4.4) u ∈ H1−θ+ 1
2
log,λ(T ), ∂tu ∈ H−θ+ 1

2
log,λ(T ),

(4.5) u0 ∈ H1−θ(Rn), u1 ∈ H−θ(Rn),

(4.6) f = f1 + f2, f1 ∈ L−θ,λ(T ), f2 ∈ H−θ− 1
2
log,λ(T ),

Note that if u and f satisfy (4.4) and (4.6), then

u ∈ L2([0, T ];H1−θ1), ∂tu ∈ L2([0, T ];H−θ1),(4.7)
f ∈ L1([0, T ];H−θ2)(4.8)

for all θ2 ∈]θ1, α[, so that the meaning of the Cauchy condition is clear.
The main step in the proof of Theorem 2.6 is the following:

25



Theorem 4.1. There is a λ0 ≥ 0 of the form (2.30) such that for λ ≥ λ0

there is a constant K such that: for all f , u0 and u1 satisfying (4.5) (4.6),
and all u satisfying (4.4) solution of the Cauchy problem (4.3), then

(4.9) u ∈ C1−θ,λ(T ), ∂tu ∈ C−θ,λ(T )

and u satisfies the energy estimate (2.29).

This theorem contains two pieces of information : first an energy esti-
mate for smooth u, see Propositions 4.3 and 4.4. By a classical argument,
smoothing the coefficients and passing to the limit, this estimate allows for
the construction of weak solutions, see Section 5.2. The second piece of in-
formation contained in the theorem is a “weak=strong” type result showing
that for data as in the theorem, any (weak) solution u satisfying (4.4) is
the limit of smooth (approximate) solutions, in the norm given by the left
hand side of the energy estimate, implying that u satisfies the additional
smoothness (4.9) and the energy estimate. This implies uniqueness of weak
solutions.

The idea is to get an energy estimate by integration by parts, from the
analysis of

(4.10) 2Re〈Lu, e−2γt(1−∆x)−s(t)Xu〉

where 〈·, ·〉 denotes the L2 scalar product in Rn extended to the Hermitian
symmetric duality Hσ ×H−σ for all σ ∈ R, and ∆x denote the Laplace op-
erator on Rd. This extends the analysis of [6] where X = ∂t. The parameter
γ is chosen at the end to absorb classical error terms (present for Lipschitz
coefficients) while the parameter λ which enters in the definition of s(t), is
chosen to absorb extra error terms coming from the loss of smoothness of
the coefficients.

To prove Theorem 4.1, the first idea would be to mollify the equation.
However, the lack of smoothness of the coefficients does not allow us to
use this method directly and we cannot prove that the weak solutions are
limits of exact smooth solutions. Instead, the idea is to write the equation
as a system (2.16) for (u, v) and mollify this system. This leads to the
consideration of the equations:

(4.11)

{
Zv + b̃0v = L̃2u− L̃1u− d̃u+ f,

Y u+ c̃0u = v/a0 + g.

In this form, the commutator of spatial mollifiers with ∂t are trivial, and
we can prove that weak solutions of (4.11) are limits of smooth solutions,
(uε, vε) with gε 6= 0, which thus do not correspond to exact solutions uε of
(4.3).
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Notations. It is important for our purpose to keep track of the dependence
of the various constants on the Log-Lipschitz norms. In particular we will
use the notations δ0, δ1 of (2.8) and ALL, AL∞ , B of (2.9) (2.10). To simplify
the exposition, we will denote by C, K0 and K constants which may vary
from one line to another, C denoting universal constants depending only
on the paradifferential calculus; K0 depending also on AL∞/δ0; K, still
independent of the parameters (γ, ε), but dependent also on δ0, δ1, θ0, θ1

and the various norms of the coefficients.

4.2 Estimating v

First, we give estimates that link v and ∂tu.

Lemma 4.2. Suppose that u satisfies (4.4). Then v = Xu+ c0u belongs to
the space H−θ+ 1

2
log,λ(T ) ⊂ L2([0, T ];H−θ1) and for almost all t,

(4.12)
‖v(t)‖

H−s(t)+
1
2 log
≤CAL∞

(
‖u(t)‖

H1−s(t)+ 1
2 log

+ ‖∂tu(t)‖
H−s(t)+

1
2 log

)
+C(ALL +B)

(
‖u(t)‖H1−s(t) + ‖∂tu(t)‖H−s(t)

)
,

(4.13)
‖∂tu(t)‖

H−s(t)+
1
2 log
≤K0‖u(t)‖

H1−s(t)+ 1
2 log

+
C

δ0
‖v(t)‖

H−s(t)+
1
2 log

+K
(
‖u(t)‖H1−s(t) + ‖v(t)‖H−s(t)

)
.

There are similar estimates in the spaces Hs without the 1
2 log.

If in addition Lu = f with f satisfying (4.6), then ∂tv ∈ L1([0, T ];H−1−θ1).

Proof. a) First, we note that the multiplication (a, u) 7→ au is continuous
from (L∞ ∩ LL)([0, T ] × Rn) × H−θ+ 1

2
log,λ(T ) to H−θ+ 1

2
log,λ(T ). Indeed,

the corresponding norm estimate of the product is clear for smooth u, from
(3.15) integrated in time. The claim follows by density. In particular, this
shows that a0∂tu and the aj∂xju belong to H−θ+ 1

2
log,λ(T ). Similarly, the

estimate

(4.14) ‖bu(t)‖
H−s(t)+

1
2 log
≤ C‖bu(t)‖H1−s(t) ≤ C‖b‖Cα‖u(t)‖H1−s(t)

implies that c0u ∈ H−θ+ 1
2
log,λ(T ). Therefore v ∈ H−θ+ 1

2
log,λ(T ) and the

estimate (4.12) holds. The proof of (4.13) is similar, noting that

∂tu =
1
a0
v −

d∑
j=1

aj
a0
∂xju−

c0

a0
u.
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b) As in the proof of Lemma 2.2, we see that the equation implies that

∂tv = f −
d∑
j=1

∂xj (ãjv)− b̃0v + L̃2u− L̃1u− d̃u.

The conservative form of L̃2 and the multiplicative properties above show
that

∂xj (ãjv), L̃2u ∈ H−θ−1+ 1
2
log,λ(T ) ⊂ L2([0, T ];H−1−θ1).

Similarly, L̃1u and b̃0v belong to H−θ+ 1
2
log,λ(T ) and thus to L2([0, T ];H−θ1).

The last term ũ is in L2. Therefore, ∂tv − f ∈ L2([0, T ];H−1−θ1). Since
f ∈ L1([0, T ];H−θ2) for θ2 ∈]θ1, α[, the lemma follows.

Next, we give a-priori estimates in the space H−θ+ 1
2
log,λ(T ) ∩ C−θ,λ(T )

for smooth solutions of

(4.15) (Z + c̃0)v = ϕ, v|t=0 = v0.

We define the operators

(4.16) (Qv)(t) = (1−∆x)−s(t)/2v(t), (Qγv)(t) = e−γt(Qv)(t).

Proposition 4.3. Suppose that v ∈ L2([0, T ];H1) and ∂tv ∈ L1([0, T ];L2).
Then the functions vγ(t) := Qγv belong to C0([0, T ], L2) and satisfy

(4.17)

‖vγ(t)‖2L2 + 2
∫ t

0
‖(γ + λΛ)1/2vγ(t′)‖2L2dt

′

≤2
∫ t

0
〈(Z + c̃0)v(t′), Q2

γ(t′)v(t′)〉 dt′ + ‖vγ(0)‖2L2

+
∫ t

0
F (t′)dt′

with

(4.18) F (t′) ≤ K0
ALL
δ0
‖e−γt′Λ1/2v(t′)‖2

H−s(t′)
+K‖v(t′)‖2

H−s(t′)
.

Proof. a) Since v ∈ L2([0, T ];H1) and ∂tv ∈ L1([0, T ];L2), we have

(4.19) ∂tQγv = Qγ∂tv − (γ + λΛ)Qγv ∈ L1([0, T ];L2)
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as immediately seen using the spatial Fourier transform. Moreover, vγ =
Qγv ∈ C0([0, T ];L2) and satisfies the following identity

‖vγ(t)‖2L2 − ‖vγ(0)‖2L2 = 2Re
∫ t

0
〈∂tQγv,Qγv〉 dt′.

Thus,

(4.20)
2Re

∫ t

0
〈∂tv,Q2

γv〉 dt′ = 2Re
∫ t

0
〈Qγ∂tv,Qγv〉 dt′

= ‖vγ(t)‖2L2 − ‖vγ(0)‖2L2 + 2
∫ t

0
‖(γ + λΛ)1/2vγ(t′)‖2L2dt

′

b) Next we consider the terms ∂xj (ãjv). We note that they belong to
L2([0, T ];H−σ) for all σ > 0. In particular, since s(t) ≥ θ > 0, we note that
the pairing

〈∂xj (ãjv), Q2
γv〉

is well defined. We give an estimate for

2Re
∫ t

0
〈∂xj (ãjv), Q2

γv〉dt′,

using the decomposition

ãjv = Tãjv +Rãjv.

By Proposition 3.4 it follows

‖Rãjv(t)‖
H1−s(t)− 1

2 log
≤ C‖ãj‖LL‖v(t)‖

H−s(t)+
1
2 log

since s(t) ∈ [θ, θ1] ⊂]0, 1[. Moreover,

‖Q2
γv(t)‖

Hs(t)+ 1
2 log
≤ Ce−2γt‖v(t)‖

H−s(t)+
1
2 log

.

Thus

|〈∂xjRãjv(t), Q2
γ,εv(t)〉| ≤ ‖Rãjv(t)‖

H1−s(t)− 1
2 log
‖Q2

γ,εv(t)‖
Hs(t)+ 1

2 log

≤ C‖ãj‖LLe−2γt‖v(t)‖2
H−s(t)+

1
2 log

.

It remains to consider

Re〈∂xjTãjv,Q2
γv〉 = Re〈Qγ∂xjTãjv,Qγv〉

= Re〈∂xjTãjQγv,Qγv〉+ Re〈∂xj [Qγ , Tãj ]v,Qγv〉.
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Note that these computations make sense because v(t) ∈ H1 and all the
pairings are well defined. Proposition 3.7 implies that

‖〈∂xj [Qγ , Tãj ]v(t)‖0− 1
2
log ≤ Ce

−γt‖ãj‖LL‖v(t)‖−s(t)+ 1
2
log

and therefore

(4.21) |〈∂xj [Qγ , Tãj ]v(t), Qγv(t)〉| ≤ C‖ãj‖LLe−2γt‖v(t)‖2
H−s(t)+

1
2 log

.

Next, for vγ(t) ∈ H2−θ1 , we have

2Re〈∂xjTãjvγ ,vγ〉 = Re〈(∂xjTãj − T ∗ãj∂xj )vγ , vγ〉
= Re〈(Tãj − T ∗ãj )∂xjvγ , vγ〉+ Re〈[∂xj , Tãj ]∂xjvγ,, vγ〉.

Using Propositions 3.8 and 3.7, one can bound both terms by the right hand
side of (4.21). Adding up, we have proved that

∣∣2Re
∫ t

0
〈∂xj (ãjv), Q2

γv〉 dt′
∣∣ ≤ C‖ãj‖LL ∫ t

0
‖e−γt′Λ1/2v(t′)‖2

H−s(t)dt
′.

c) The zero-th order term is clearly a remainder, and the multiplicative
properties imply that

|〈c̃0v(t), Q2
γv(t)〉 ≤ K‖v(t)‖2

H−s(t) .

d) We note that

‖aj/a0‖LL ≤ ‖aj‖LL‖‖1/a0‖L∞ + ‖aj‖L∞‖‖1/a0‖LL

≤ ALL
δ0

+
AL∞ALL

δ2
0

≤ 2
AL∞ALL

δ2
0

,

since δ0 ≤ a0 ≤ AL∞ . Using identity (4.20) and the estimates of parts b)
and c), implies (4.17) and so the proof of the Lemma is complete.

4.3 Estimating ∇xu

We now get estimates of ∇xu from the analysis of

(4.22) −2Re〈L̃2u,Q
2
γXu〉 = −

n∑
j,k=1

2Re〈∂xj (ãj,k∂xku), Q2
γXu〉
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Proposition 4.4. Suppose that u ∈ L2([0, T ];H2) with ∂tu ∈ L2([0, T ];H1).
Then uγ := Qγu ∈ C0([0, T ], H1) and

(4.23)

1
2
δ0δ1‖∇xuγ(t)‖2L2 +

∫ t

0
δ0δ1‖(γ + λΛ)1/2∇xuγ(t′)‖2L2dt

′

≤− 2Re
∫ t

0
〈L̃2u,Q

2
γv〉 dt′ + CA2

L∞‖∇xuγ(0)‖2L2 +
∫ t

0
E(t′)dt′,

where

(4.24)

|E(t)| ≤

K0ALLAL∞e
−2γt

(
‖u(t)‖2

H1−s(t)+ 1
2 log

+
1
δ2

0

‖Xu(t)‖2
H−s(t)+

1
2 log

)
+Ke−2γt

(
‖u(t)‖2

H1−s(t) + ‖Xu(t)‖2
H−s(t)

)
.

To simplify the exposition, we note here that all the dualities 〈·, ·〉 written
below make sense, thanks to the smoothness assumption on u. This will not
be repeated at each step. Moreover, in the proof below, we assume that u
itself is smooth (in time).

Proof. a) We first perform several reductions. Using iii) of Proposition 3.4,
one shows that

〈∂xj (ãj,k∂xku), Q2
γXu〉 = 〈∂xj (Tãj,k∂xku), Q2

γXu〉+ E1

with

(4.25) |E1(t)| ≤ C‖ãj,k‖LL‖∂xku(t)‖
H−s(t)+

1
2 log
‖Q2

γXu(t)‖
Hs(t)+ 1

2 log
.

Since ‖ãj,k‖LL ≤ K0ALL ≤ K0ALLAL∞/δ0, E1 satisfies (4.24). Similarly,

〈∂xj (Tãj,k∂xku), Q2
γXu〉 = 〈∂xjQγ,εTãj,k∂xku,QγXu〉+

= 〈∂xjTãj,k∂xkQγu,QγXu〉+ E2

where E2 also satisfies (4.25), and hence (4.24).

b) Next we write

Xu = Ta0∂tu+
∑

Taj∂xju+ r

and

‖r(t)‖
H1−s(t)− 1

2 log
≤ CALL

(
‖u(t)‖

H1−s(t)+ 1
2 log

+ ‖∂tu(t)‖
H−s(t)+

1
2 log

)
+CB‖u(t)‖H1−s(t) .
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Therefore, r contributes to an error term E3 = 〈∂xjTãj,k∂xkQγu,Qγr〉 such
that

|E3(t)| ≤ e−2γtK0AL∞‖u(t)‖
H1−s(t)+ 1

2 log
‖r(t)‖

H1−s(t)− 1
2 log

.

Using (4.13) in the estimate of r, we see that

|E3(t)| ≤ e−2γtK0AL∞ALL‖u(t)‖
H1−s(t)+ 1

2 log(
‖u(t)‖

H1−s(t)+ 1
2 log

+
1
δ0
‖Xu(t)‖

H−s(t)+
1
2 log

+K‖u(t)‖H1−s(t) +K‖Xu(t)‖H−s(t)
)

and hence satisfies (4.24).

c) Consider now the term

〈∂xjTãj,k∂xkQγu,QγTa0∂tu〉 = −〈Tãj,k∂xkQγu, ∂xjQγTa0∂tu〉
= −〈Tãj,k∂xkQγu, Ta0∂xjQγ∂tu〉+ E4

= −〈(Ta0)∗Tãj,k∂xkQγu, ∂xjQγ∂tu〉+ E4

= −〈Ta0Tãj,k∂xkQγu, ∂xjQγ∂tu〉+ E4 + E5

= −〈Ta0ãj,k∂xkQγu, ∂xjQγ∂tu〉+ E4 + E5 + E6

where E4, E5 and E6 are estimated by Proposition 3.7, 3.8 and 3.9 respec-
tively. They all satisfy

|Ek(t)| ≤ Ce−2γtA‖u(t)‖
H1−s(t)+ 1

2 log
‖∂tu(t)‖

H−s(t)+
1
2 log

.

with A = ‖ãj,k‖LL‖a0‖L∞ + ‖ãj,k‖L∞‖a0‖LL ≤ K0AL∞ALL. Again using
(4.13) to replace ∂tu by Xu, one shows that these errors satisfy (4.24).

Similarly

〈∂xjTãj,k∂xkQγu,QγTal∂xlu〉
= −〈Talãj,k∂xkQγu, ∂xl∂xjQγu〉+ E7

where E7 satisfies

(4.26) |E7(t)| ≤ Ce−2γtK0AL∞ALL‖u(t)‖2
H1−s(t)+ 1

2 log

thus (4.24).
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d) Introduce the notation

(4.27) wj = ∂xjQγu.

Because ãj,k = ãk,j , we have

Re〈Talãj,kwk, ∂xlwj〉+ Re〈Talãk,jwj , ∂xlwk〉
= Re〈((Talãj,k)∗∂xl − ∂xlTalãj,k)wk, wj〉 := E8

Using Propositions 3.8 and 3.7, one shows that E8 satisfies

|E8(t)| ≤ C‖alãj,k‖LL‖wj(t)‖
H0+1

2 log
‖wk(t)‖

H0+1
2 log

and therefore E8 also satisfies (4.26) thus (4.24).

e) It remains to consider the sum

(4.28) S := Re
n∑

j,k=1

〈Tbj,k∂xkQγu, ∂xjQγ∂tu〉

with bj,k = a0ãj,k = a0aj,k + ajak. By the strict hyperbolicity assumption
(2.8), it follows for all ξ ∈ Rn

n∑
j,k=1

bj,k(t, x)ξjξk ≥ δ0δ1|ξ|2.

Therefore, we can use Corollary 3.16. Since ‖bj,k‖LL ≤ 2AL∞ALL, there
exists an integer ν, with

(4.29)
2ν

ν
≈ AL∞ALL

δ
,

such that for all t ∈ [0, T0] and (w1, . . . , wn) in L2(Rn), the following estimate
is satisfied

(4.30) Re
n∑

j,k=1

〈P νbj,k(t)wk, wj〉 ≥
δ0δ1

2
‖w‖2L2

From now on we fix such a ν and use the notation Pb in place of P νb .
Using Lemma 3.10 and Proposition 3.14, we see that

‖∂xjTbj,kwk − ∂xj P̃bj,kwk‖H0− 1
2 log
≤ C‖bj,k‖LL

(
‖wk‖

H0+1
2 log

+K‖wk‖L2

)
33



Therefore

S = Re
n∑

j,k=1

〈P̃bj,k∂xkQγu, ∂xjQγ∂tu〉+ E9

where

|E9(t)| ≤ Ce−2γt‖bj,k‖LL‖u(t)‖
H1−s(t)+ 1

2 log
‖∂tu(t)‖

H−s(t)+
1
2 log

+ e−2γtνK‖u(t)‖H1−s(t)‖∂tu(t)‖
H−s(t)+

1
2 log

.

Using (4.13), implies that E9 satisfies (4.24).
Next, we use Proposition 3.14 to replace ∂xj P̃bj,k by 1

2∂xj (P̃bj,k +(P̃bj,k)∗)
at the cost of an error E10 similar to E9.

At this stage, we commute Qγ and ∂t as in (4.19). Using the notation
(4.27), yields

(4.31)

2S =
n∑

j,k=1

Re〈(P̃bj,k + (P̃bj,k)∗)wk, ∂twj〉

+ γ
n∑

j,k=1

Re〈(P̃bj,k + (P̃bj,k)∗)wk, wj〉

+ λ

n∑
j,k=1

Re〈(P̃bj,k + (P̃bj,k)∗)wk,Λwj〉+ 2E9 + 2E10.

We denote by S1, S2 and S3 the sums on the right hand side.

f) The symmetry bj,k = bk,j implies the identity

S1 =
d

dt

n∑
j,k=1

Re〈P̃bj,kwk, wj〉+ E11

where

E11 =
n∑

j,k=1

Re〈[P̃bj,k , ∂t]wk, wj〉

is estimated using Proposition 3.14:

|E11(t)| ≤ C‖bj,k‖LL
(
‖w(t)‖

H0+1
2 log

+ ν‖w‖L2

)
‖w(t)‖

H0+1
2 log

≤ Ce−2γt‖bj,k‖LL‖u(t)‖
H1−s(t)+ 1

2 log(
‖u(t)‖

H1−s(t)+ 1
2 log

+ ν‖u(t)‖H1−s(t)
)
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and therefore satisfies (4.24). Moreover,

Re〈P̃bj,kwk,Λwj〉 = Re〈P̃bj,kΛ
1
2wk,Λ

1
2wj〉+ Re〈Λ

1
2 [Λ

1
2 , P̃bj,k , ]wk, wj〉

Re〈(P̃bj,k)∗wk,Λwj〉 = Re〈Λ
1
2wk, P̃bj,kΛ

1
2wj〉+ Re〈wk, [P̃bj,k ,Λ

1
2 ]Λ

1
2wj〉.

We use Proposition 3.17 to estimate the commutators and

S3 = 2
n∑

j,k=1

Re〈P̃bj,kΛ
1
2wk,Λ

1
2wj〉+ E12

where
|E12(t)| ≤ K‖w(t)‖2L2 ≤ K‖u(t)‖2

H1−s(t) .

Summing up, we have shown that up to an error which satisfies (4.24),
the quantity (4.22) under consideration is equal to

(4.32)

d

dt

n∑
j,k=1

Re〈P̃bj,kwk, wj〉+ γ

n∑
j,k=1

2Re〈P̃bj,kwk, wj〉

+ λ
n∑

j,k=1

2Re〈P̃bj,kΛ
1
2wk,Λ

1
2wj〉.

By (4.30), the last two sums are larger than or equal to δ0δ1‖w(t)‖2L2 and
δ0δ1‖w(t)‖2

H0+1
2 log

, respectively. Similarly, integrating the first term between

0 and t and using (4.30) gives control of δ0δ1
2 ‖w(t)‖L2 , finishing the proof of

(4.23).

4.4 A-priori estimates for the solutions of (4.11)

The proof of Theorem 4.1 is based on a-priori estimates for smooth solutions
of the system (4.11).

Theorem 4.5. There are λ0 ≥ 0 of the form (2.30) and γ0 such that for
λ ≥ λ0 and γ ≥ γ0 the following is true:

for all u ∈ L2([0, T ];H2) and v ∈ L2([0, T ];H1) with ∂tu ∈ L2([0, T ];H1)
and ∂tv ∈ L1([0, T ];L2) and for all parameters λ, γ and all t ≤ T , the
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following holds:

(4.33)

sup
0≤t′≤t

e−2γt′
(1

2
δ0δ1‖u(t′)‖2

H1−s(t′) + ‖v(t′)‖2
H−s(t′)

)
+ δ0δ1

∫ t

0
e−2γt′(λ‖u(t′)‖2

H1−s(t′)+ 1
2 log

+ γ‖u(t′)‖2
H1−s(t′))dt

′

+
∫ t

0
e−2γt′(λ‖v(t′)‖2

H−s(t
′)+ 1

2 log
+ γ‖v(t′)‖2

H−s(t′)
)dt′

≤ CA2
L∞‖u(0)‖2H1−θ + ‖v(0)‖2H−θ + 2Re

∫ t

0
〈f,Q2

γv〉 dt′

+K

∫ t

0
e−2γt′‖g(t′)‖1−s(t)− 1

2
log‖u(t′)‖1−s(t)+ 1

2
logdt

′,

with f = Zv+b̃0v−L̃2u+L̃1u+d̃u ∈ L1([0, T ];Hα′−1), g = Y u+c̃0u−v/a0 ∈
L2([0, T ];Hα′) for all α′ < α.

Proof. We compute the integral over [0, t] of Re〈f,Q2
γv〉. Proposition 4.3

takes care of the first term 2Re〈Zv + b̃0v,Q
2
γv〉. We split the second term

into three pieces

〈L̃2u,Q
2
γv〉 = 〈L̃2u,Q

2
γXu〉 − 〈L̃2u,Q

2
γ(a0g)〉+ 〈L̃2u,Q

2
γ(c0u)〉

and use Proposition 4.4 for the first piece. The multiplicative properties
imply that

|〈L̃2u(t), Q2
γ(a0g)(t)〉| ≤K‖g(t)‖1−s(t)− 1

2
log‖L̃2u(t)‖−1−s(t)+ 1

2
log

≤K‖g(t)‖1−s(t)− 1
2
log‖u(t)‖1−s(t)+ 1

2
log,

and
|〈L̃2u(t), Q2

γ(c0u)(t)〉| ≤K‖u(t)‖1−s(t)‖L̃2u(t)‖−1−s(t)

≤K‖u(t)‖21−s(t).

Next, using the multiplicative properties stated in Corollary 3.6 for the
products b̃j∂xju and ∂xj (c̃ju), and the embedding L2 ⊂ H−s for the term
d̃u, we see that

‖(L̃1u+ d̃u)(t)‖H−s(t) ≤ K‖u(t)‖H1−s(t) .

Thus
|〈(L̃1 + d̃)u(t), Q2

γv(t)〉| ≤K‖u(t)‖1−s(t)‖v(t)‖−s(t)
≤K

(
‖u(t)‖21−s(t) + ‖v(t)‖2−s(t)

)
.
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Proposition 4.4 gives an estimate of ∇xu. We also need an estimate for u.
The identity (4.20) applied to u yields

e−2γt‖u(t)‖2
H−s(t) +

∫ t

0
e−2γt′(λ‖u(t′)‖2

H−s(t
′)+ 1

2 log
+ γ‖u(t′)‖2

H−s(t′)
)dt′

= ‖uγ(0)‖2
H−s(0) + 2Re

∫ t

0
〈∂tu,Q2

γu〉dt′.

Next, we use the inequality

|〈∂tu,Q2
γu〉| ≤ C

(
‖u(t)‖2

H1−s(t) + ‖∂tu(t)‖2
H−1−s(t)

)
.

In addition, we note that the second equation in (4.11) yields

‖∂tu(t)‖H−1−s(t) ≤ K
(
‖v(t)‖2

H−s(t) + ‖u(t)‖2
H−s(t)

)
+ ‖g(t)‖2

H−1−s(t) .

We add the various estimates and use Propositions 4.3 and 4.4 to obtain
a final estimate. On the left hand side we have

(4.34) sup
0≤t′≤t

e−2γt′
(1

2
δ0δ1‖u(t′)‖2

H1−s(t′) + ‖v(t′)‖2
H−s(t′)

)

(4.35) +γ
∫ t

0
e−2γt′

(
δ0δ1‖u(t′)‖2

H1−s(t′) + ‖v(t′)‖2
H−s(t′)

)
dt′

(4.36) +λ
∫ t

0
e−2γt′

(
δ0δ1‖u(t′)‖2

H1−s(t′)+ 1
2 log

+ ‖v(t′)‖2
H−s(t

′)+ 1
2 log

)
dt′.

On the right hand side, we find the initial data

(4.37) CA2
L∞‖u(0)‖2

H1−s(0) + ‖v(0)‖2
H−s(0) ,

the contribution of f

(4.38) 2Re
∫ t

0
〈f(t′), Qγv(t′)〉dt′,

an estimated contribution of g

(4.39) K

∫ t

0
e−2γt′‖g(t′)‖1−s(t)− 1

2
log‖u(t′)‖1−s(t′)+ 1

2
logdt

′,
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and two types of “remainders”:

(4.40) K0ALLAL∞

∫ t

0
e−2γt′

(
‖u(t′)‖2

H1−s(t′)+ 1
2 log

+
1
δ2

0

‖vγ(t′)‖2
H−s(t

′)+ 1
2 log

)
dt′

and

(4.41) K

∫ t

0
e−2γt′

(
‖uγ(t′)‖2

H1−s(t′) + ‖v(t′)‖2
H−s(t′)

)
dt′.

If

(4.42) λ ≥ 2K0
ALLAL∞

δ0δ1
and λ ≥ 2K0

ALLAL∞

δ2
0

the term in (4.40) can be absorbed by (4.36). Note that this choice of λ is
precisely the choice announced in (2.30), with a new function K0 of AL∞/δ0.
Finally, if γ is large enough, the term (4.41) is absorbed by (4.35), finishing
the proof of the main estimate (4.33).

4.5 Proof of Theorem 4.1

From now on, we assume that λ ≥ λ0 and γ ≥ γ0 are fixed, so that the
estimate (4.33) holds. Consider u, f , u0 and u1 satisfying the equation (4.3)
and the smoothness assumptions (4.4), (4.5), (4.6). Consider v = Xu+ c0u,
which by Lemma 4.2 satisfies

(4.43) v ∈ H−θ+ 1
2
log, ∂tv ∈ L1([0, T ];H−1−θ1), v|t=0 = v0 ∈ H−θ,

with v0 = a0|t=0u1 +
∑
aj |t=0∂xju0 + c0|t=0u0. In particular, (u, v, f) and

g = 0 satisfy (4.11).
We mollify u and v and introduce, for ε > 0,

(4.44) uε = Jεu, vε = Jεv with Jε = (1− ε∆x)−1.

For all ε > 0, (4.4) and (4.43) imply that

uε ∈ L2([0, T ], H2), ∂tuε ∈ L2([0, T ], H1),
vε ∈ L2([0, T ], H1), ∂tvε ∈ L1([0, T ], L2),

(see (4.7)). Moreover, using the spatial Fourier transform, one immediately
sees that uε converges to u in H1−θ,λ(T ) and vε converges to v in H−θ,λ(T ).

Define

fε = Zvε + b̃0vε − L̃2uε + L̃1uε + d̃uε,

gε = Y uε + c̃0uε − vε/a0.
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Lemma 4.6. Assumptions (4.4) and (4.6) imply that fε = f1,ε + f2,ε with
f1,ε → f1 in L−θ,λ(T ) and f2,ε → f2 in H−θ− 1

2
log,λ(T ). Moreover, gε → 0

in H1−θ− 1
2
log,λ(T ).

Taking this lemma for granted, we finish the proof of Theorem 4.1. We
use the estimate (4.33) for (uε, vε), together with the estimates

|〈fε(t), Q2
γv(t)〉| ≤ Ce−2γt

(
‖f1,ε(t)‖H−s(t)‖vε(t)‖H−s(t)
+ ‖f2,ε(t)‖

H−s(t)−
1
2 log
‖vε(t)‖

H−s(t)+
1
2 log

)
and∣∣ ∫ t

0
〈fε, Q2

γv〉dt′
∣∣ ≤ C(∫ t

0
e−γt

′(‖f1,ε(t′)‖H−s(t′)dt
′
)

sup
0≤t′≤t

e−γt
′‖vε(t′)‖H−s(t′)

+C
(
e−2γt′‖f2,ε(t′)‖2

H−s(t
′)− 1

2 log
dt′
) 1

2
(
e−2γt′‖vε(t′)‖2

H−s(t
′)+ 1

2 log

)
dt′
) 1

2
.

This implies that there is a K such that for all ε > 0, one has

(4.45)

sup
0≤t′≤t

‖uε(t′)‖2H1−s(t′) + sup
0≤t′≤t

‖vε(t′)‖2H−s(t′)

+
∫ t

0

(
‖uε(t′)‖2

H1−s(t′)+ 1
2 log

+ ‖vε(t′)‖2
H−s(t

′)+ 1
2 log

)
dt′

≤ K
{
‖uε(0)‖2

H1−s(0) + ‖vε(0)‖2
H−s(0) +

∫ t

0
‖gε(t′)‖2

H1−s(t)− 1
2 log

dt′

+
( ∫ t

0
‖f1,ε(t′)‖H−s(t′)dt

′
)2

+
∫ t

0
‖f2,ε(t′)‖2

H−s(t
′)− 1

2 log
dt′
}
.

In addition, there are similar estimates for the differences (uε−uε′ , vε−vε′).
Since uε(0) = Jεu0 and vε(0) = Jεv0 converge to u0 and v0 in H1−s(0) and
H−s(0), respectively, the estimate implies that uε is a Cauchy sequence in
H1−θ,λ(T ) and in C0([0, t];H1−s(t)) for all t ∈ [0, T ]. Therefore, the limit u
in H1−θ,λ(T ) also belongs to C1−θ,λ(T ). Similarly, vε is a Cauchy sequence
in H−θ,λ(T ) and in C0([0, t];H−s(t)) for all t ∈ [0, T ] and v ∈ C1−θ,λ(T ). In
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addition, we can pass to the limit in (4.45) proving that

(4.46)

sup
0≤t′≤t

‖u(t′)‖2
H1−s(t′) + sup

0≤t′≤t
‖v(t′)‖2

H−s(t′)

+
∫ t

0

(
‖u(t′)‖2

H1−s(t′)+ 1
2 log

+ ‖v(t′)‖2
H−s(t

′)+ 1
2 log

)
dt′

≤ K
{
‖u0‖2H1−s(0) + ‖v0‖2H−s(0)

+
( ∫ t

0
‖f1(t′)‖H−s(t′)dt

′
)2

+
∫ t

0
‖f2(t′)‖2

H−s(t
′)− 1

2 log
dt′
}
.

Using the equation Y u+ c̃0u = v/a0 and the estimate (4.13) of Lemma 4.2
to bound the time derivative ∂tu, we see that ∂tu ∈ C−θ,λ(T ) and that the
energy estimate (2.29) is satisfied.

Therefore, it remains only to prove the lemma.

Proof of Lemma 4.6. By assumption (4.6), f = f1 + f2 and Jεf1 → f1 in
L−θ,λ(T ) and Jεf2 → f2 in H−θ− 1

2
log,λ(T ). Therefore, it is sufficient to prove

that the commutators

[Z, Jε]v, [L̃2, Jε]u
[b̃0, Jε]v, [L̃1, Jε]u, [d̃, Jε]u,

converge to 0 in H−θ,λ(T ) and that the commutators

[Y, Jε]u, [c̃0, Jε]u, [1/a0, Jε]v

converge to 0 in H1−θ,λ(T ). We note that Jε commutes with ∂t in Z and Y .
Thanks to (4.4) (4.43) and to the conservative form of Z and L̃∗2, we see
that there are four types of commutators to consider :

(4.47)
[a, Jε]w → 0 in H1−θ,λ(T ), when

a ∈ L∞ ∩ LL([0, T ]× Rd), w ∈ H−θ,λ(T ),

(4.48)
[b, Jε]w → 0 in H−θ,λ(T ), when

b ∈ Cα([0, T ]× Rd), w ∈ H−θ,λ(T ),

(4.49)
[c, Jε]w → 0 in H1−θ,λ(T ), when

c ∈ Cα([0, T ]× Rd), w ∈ H1−θ,λ(T ),
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(4.50)
[d, Jε]w → 0 in H−θ,λ(T ), when

d ∈ L∞([0, T ]× Rd), w ∈ H1−θ,λ(T ).

The first commutators [a, Jε] = [Ta, Jε] + Ra, Jε − JεRa are uniformly
bounded from H−θ,λ(T ) to H1−θ,λ(T ): this is true for the first term by
Proposition 3.7, since the Jε form a bounded family of operators of de-
gree 0; for the last two terms, this follows from Proposition 3.4. Moreover,
[a, Jε]w → 0 in L2([0, T ];Hσ) for all σ < 1, and thus also in H1−θ,λ, when
w is smooth and a ∈ L∞ ∩ LL. By density, this implies (4.47).

For the commutators (4.48), we note that they are uniformly bounded
from H−θ,λ(T ) to H−θ,λ(T ). This is true for both terms bJε and Jεb since
s(t) remains in a compact subset of [0, α[. Because [b, Jε]w converges to zero
in L2([0, T ];Hσ) for all σ < α, when w is smooth and b ∈ L∞ ∩ LL, the
convergence in (4.48) follows. The proof for (4.49) is similar.

Finally, we note that [d, Jε]w → 0 in L2([0, T ]× Rd), hence in H−θ,λ(T )
when d ∈ L∞([0, T ]× Rd) and w ∈ L2([0, T ]× Rd), thus in particular when
w ∈ H1−θ,λ(T ).

4.6 Existence and uniqueness

Proof of Theorem 2.4.
Assume that u ∈ Hs(]0, T [×Rn) with s ∈]1−α, α[, T ≤ T0, and satisfies

(4.51) Lu = 0, u|t=0 = 0, Xu|t=0 = 0.

We want to prove that u = 0.
Fix θ < θ1 in ]1 − α, α[ with 1 − θ < s. Let λ and T ′ be the parameter

and time associated to them by Theorem 4.1. Note that they depend only
on θ, θ1, the norms AL∞ and ALL in (2.9) and the constants of hyperbolicity
δ0 and δ1 in (2.8).

From Lemma 2.2, we know that u ∈ L2([0, T ];Hs(Rn)) and ∂tu ∈
L2([0, T ];Hs−1(Rn)) and therefore, on [0, T ′] × Rn, u ∈ H1−θ+ 1

2
log,λ and

∂tu ∈ H−θ+ 1
2
log,λ since s > 1 − θ − λt. By Theorem 4.1, u satisfies the en-

ergy estimate (2.29) on [0, T ′], and since the right hand side vanishes, u = 0
for t < T ′. By a finite number of iterations, u vanishes for t < T .

Proof of Theorem 2.6.
On [0, T0] × Rd, the coefficients of L2 can be approximated in L∞ and

Cα
′

for all α′ < 1 by C∞ functions which are uniformly bounded in L∞ and
in LL, in such a way that the hyperbolicity condition (2.8) remains satisfied.
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Similarly, the coeffficients of L1 can be approximated in L∞ and Cα
′

for all
α′ < α by smooth functions which are uniformly bounded in Cα. Further,
the coefficient c can be approximated in L2

loc by functions uniformly bounded
in L∞. This defines operators Lε with C∞ coefficients which satisfy (2.8),
(2.9) and (2.10) uniformly in ε and converge to the coefficients of L in the
sense described above.

We fix the parameter λ ≥ λ0, where λ0 is given by Theorem 4.1. Recall
that T is then given by (4.2). Consider Cauchy data u0 ∈ H1−θ and u1 ∈
H−θ and a source term f = f1 +f2 with f1 ∈ L−θ,λ(T ) and f2 ∈ H−θ− 1

2
log,λ.

We can approximate these data in the corresponding spaces by C∞ functions
uε0, uε1 , f ε1 and f ε2 , compactly supported in x. The strictly hyperbolic
problems with smooth coefficients and smooth data

(4.52) Lεuε = f ε1 + f ε2 , uε|t=0 = uε0, Xεuε|t=0 = uε1

have a unique smooth solution uε, compactly supported in x.
By Theorem 4.1, the energy estimate (2.29) is satisfied with a constant

K independent of ε. Therefore the family {uε} is bounded in H1−θ+ 1
2
log,λ,

thus in L2([0, T ], H1−θ1) and the families {∂tuε} and {Xεuε} are bounded in
H−θ+ 1

2
log,λ, hence in L2([0, T ], H−θ1). Therefore, extracting a subsequence

if necessary, uε converges to a limit u, weakly in L2([0, T ], H1−θ1) and in
H1([0, T ], H−θ1). Moreover, u ∈ H1−θ+ 1

2
log,λ and ∂tu ∈ H−θ+ 1

2
log,λ. There

is no difficulty in passing to the limit in the equation in the sense of distri-
butions: all the products are well defined and involve one strong and one
weak convergence. Thus Lu = f .

The weak convergence in L2([0, T ], H1−θ1)∩H1([0, T ], H−θ1) implies the
strong convergence in C0([0, T ];H−θ1loc ) and therefore the convergence of uε|t=0

to u|t=0 in H−θ1loc . Therefore, u|t=0 = u0.
Using the equation as in Lemma 2.2, we prove that the family vε =

Xεuε + cε0u
ε, which converges weakly to v = Xu + c0u, is bounded in

L2([0, T ], H−θ1)∩H1([0, T ], H−1−θ1). Thus vε|t=0 converges to v|t=0 in H−θ1loc .
Hence v|t=0 = u1 + c0|t=0u0 implying that Xu|t=0 = u1.

By Theorem 4.1 the solution u also belong to C1−θ,λ with ∂tu ∈ C1−θ,λ
and satisfies the energy estimate (2.29).

5 Local results

We consider the equation (1.1) together with an initial hypersurface Σ sat-
isfying Assumption 1.1. This section contains the proofs of Proposition 1.4
and Theorems 1.5 and 1.6.
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5.1 Change of coordinates. Traces

Consider a smooth change of variables y = χ(ỹ) and for a function u let ũ
denote u ◦ χ. Then

(∂yju) ◦ χ =
∑
k

ψ′j,k ∂ỹk ũ =
∑
k

∂ỹk
(
ψ′j,kũ

)
−
(∑

k

∂ỹkψ
′
j,k

)
ũ

with ψ′j,k = (∂yjψk) ◦ χ
)

and ψ = χ−1. Thus

(5.1) L̃u = L̃ũ

where L̃ has the same form as L and satisfies Assumption 1.1.
If ν(y) is conormal to Σ, then ν̃(ỹ) = tχ′(y)ν(χ(ỹ)) is conormal to Σ̃ =

χ−1(Σ). Using the notations (1.7), for smooth functions, the Neumann
traces associated to (L, ν) and (L̃, ν̃), are linked by the relation

(5.2) (Nνu) ◦ χ = Ñν̃ ũ.

The Green’s formula (1.9) can be transported by χ, taking into account the
Jacobian factors:

(5.3)
(
f, g
)
L2(Ω+)

=
(
f̃ , Jg̃

)
L2(eΩ+)

with J = | detχ′|. This relations extends to the duality Hs×H−s for |s| < 1
2 .

In particular, comparing the Green’s formula for L and L̃ tested on smooth
functions implies that :

(L̃)∗(Jṽ) = JL̃∗v(5.4)

Ñ ′ν̃(Jṽ) = JΣÑ ′νv(5.5)

where JΣ is the Jacobian of χ|eΣ.
As a corollary, the statement of Proposition 1.4 is invariant by smooth

changes of variables and therefore can be proved in any suitable system of
coordinates.

Proof of Proposition 1.4.

a) Uniqueness. We prove that if u0 ∈ H
s− 1

2
loc and u1 ∈ H

s− 3
2

loc satisfy〈
u1, DΣv

〉
Hs− 3

2×H
3
2−s
−
〈
u0, N

′
Σv
〉
Hs− 1

2×H
1
2−s

= 0

for all s′ ∈]1− α, 1
2 [ such that s′ ≤ s and all v ∈ H2−s′

comp(Ω ∩ {ϕ ≥ 0}), then
u0 = u1 = 0.
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It is sufficient to prove that for v0 and v1 in C∞0 (Ω ∩ Σ), there is v ∈
C1+α

0 (Ω) such that v|Σ = v0 and N ′νv = v1. This can be done in local
coordinates y = (t, x) where Σ = {t = 0} and this amounts to solve

v|t=0 = v0, ∂tv|t=0 = g0v1 +
∑

gj∂xjv0 + hv0

where g0, . . . , gd belong to LL(Ω) and h belongs to Cα(Ω).

b) Existence. According to the discussion above we may assume that we
are working in coordinates y = (t, x) such that y = (0, 0) and Σ = {t = 0}.
The conormal direction is ν = λ(x)dt and the Neumann trace for smooth
functions is:

Nνu = λ (Xu)|t=0

where X is the vector field (2.11).
Let s ∈]1 − α, α[. For u ∈ Hs

loc(Ω ∩ {t ≥ 0}) such that Lu ∈ L2(Ω+).
Local versions of Lemmas 2.1 and 2.2 imply that for T > 0 small and ω
relatively compact in Ω ∩ {t = 0}

(5.6) u ∈ H1,s−1(]0, T [×ω)), Xu ∈ H1,s−2(]0, T [×ω)).

Indeed, the proofs are identical, using local multiplicative properties and
local versions of the spaces Hs,s′ . The trace operator w 7→ w|t=0 has a
unique extension as a bounded operator from H1,σ(]0, T [×ω) to Hσ+ 1

2 (ω).
Therefore, the traces u|t=0 and Xu|t=0 are well defined in Hs− 1

2 and Hs− 3
2

respectively. We show that, in these coordinates, Green’s formula (1.9) holds
with

(5.7) DΣu = u|t=0, Nνu = λ(Xu)|t=0.

This follows immediately by integration by parts, the only difficulty is
to check that at each step we have enough smoothness to justify the com-
putations. We sketch here the main points of the discussion. First, recall
that for w ∈ H1,σ and v ∈ H1,−1−σ compactly supported in [0, T [×ω:

(5.8)
〈
∂tw, v

〉
L2(σ)

= −
〈
w, ∂tv

〉
L2(σ+1)

+
〈
w|t=0, v|t=0

〉
Hσ+1

2×H−
1
2−σ

,

and for w ∈ H0,σ+1 and v ∈ H0,−σ compactly supported in [0, T [×ω:

(5.9)
〈
∂xjw, v

〉
L2(σ)

= −
〈
w, ∂xjv

〉
L2(σ+1)

where 〈 · , · 〉L2(σ) denotes the duality L2([0, T ], Hσ) × L2([0, T ];H−σ) and
the traces are taken in the sense indicated above.
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Consider v ∈ H2−s′
comp([0, T [×ω), where s′ ∈]1 − α, 1

2 [ with s′ ≤ s. Us-
ing (5.6), (5.8), (5.9) and the multiplicative properties of functions in LL-
functions and Hσ, one obtains that〈

ZXu, v
〉
L2(s−2)

=
〈
Xu,Z∗v

〉
L2(s−1)

+
〈
Xu|t=0, v|t=0

〉
Hs− 3

2×H
3
2−s

,

=
〈
Y u, a0Z

∗v
〉
L2(s−1)

+
〈
Xu|t=0, v|t=0

〉
Hs− 3

2×H
3
2−s

,

(recall the definitions (2.11) and (2.13) of X, Y and Z). Let w = a0Z
∗v ∈

H1−s′ . Because 1− s′ ≥ 0 and s′ ≤ s, w ∈ H0,1−s′ ⊂ H0,1−s. Therefore,〈
ãj∂xju,w

〉
L2(s−1)

= −
〈
u, ∂xj

(
ãj v

)〉
L2(s)

The term 〈∂tu,w〉 is more delicate since ∂tw ∈ H−s
′

and s′ > 0. However,
as in Lemma 1.3, one can use the duality Hs′({t ≥ 0})×H−s′({t ≥ 0}) for
0 ≤ s′ < 1

2 and for u ∈ H1,s−1 and w ∈ H1−s′
comp, (5.8) can be extended as

(5.10)
〈
∂tu,w

〉
L2(s−1)

= −
〈
u, ∂tw

〉
Hs′×H−s′ +

〈
u|t=0, w|t=0

〉
Hs+1

2×H
1
2−s

,

noticing that the trace w|t=0 belongs to H
1
2
−s′ ⊂ H

1
2
−s.

Repeated use of (5.9) implies that for the tangential second order part
L̃2 defined in (2.13), there holds〈

L̃2u, v
〉
L2(s−2)

=
〈
u, (L̃2)∗v

〉
L2(s)

.

First order terms are treated similarly, and summing up we get that

(5.11)

(
Lu,v

)
L2({t>0} −

〈
u, L∗v

〉
Hs′ ({t>0})×H−s′ ({t>0})

=
〈
Xu|t=0, v|t=0

〉
Hs− 3

2×H
3
2−s
−
〈
u|t=0, X

′v|t=0

〉
Hs− 1

2×H
1
2−s

In the computations above, the underlying measure in {t = 0} is the Lebesque
measure dx. The surface measure associate to the conormal λdt as in (1.6)
is λ−1dx. This proves that the identity (1.6) is proved with DΣ and Nν

given by (5.7), as claimed.

5.2 Local existence

Choose Φ, a smooth map from R1+n to Ω, with Φ(y) = y on a smaller
neighborhood Ω1 and Φ(y) = 0 for y large enough. Changing the coeffi-
cients acoording to the rule a](y) = a(Φ(y)) we obtain an operator L] which
coincides with L on Ω1, satisfies the regularity conditions (2.4) to (2.6), and
the hyperbolicity conditions (2.8) globally on R1+n.
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Fix s > 1 − α. Without loss of generality for the statement of Theo-
rem 1.5, we can assume that s < α. We are going to apply Theorem 2.6 to
the operator L] with θ = 1−s ∈]1−α, α[. Choosing θ1 ∈]θ, α[, this theorem
provides us with λ and T = (θ1 − θ)/λ. We fix Ω′ = Ω1 ∩ {|t| < T}.

Suppose that u0 and u1 are Cauchy data in Hs(ω) and Hs−1(ω) re-
spectively, on a neighborhood ω of 0 in Rn. There are restrictions to ω
of functions u]0 ∈ Hs(Rn) and u]1 ∈ Hs−1(Rn) respectively. Suppose that
f ∈ L2(Ω′∩{t > 0}). We extend it, for instance by 0, to f ] ∈ L2([0, T ]×Rn).
By Theorem 2.6, the Cauchy problem

(5.12) L]u] = f ], u]|t=0 = u]0, (X]u])|t=0 = u]1

has a solution u] on [0, T ]×Rn, which belongs in particular to L2([0, T ];Hs1)
with s1 = 1 − θ1 and such that ∂tu ∈ L2([0, T ];Hs1−1). In particular,
u] ∈ Hs1([0, T ]× Rn) and by restriction to Ω′ defines a solution of (1.10).

5.3 Local uniqueness

To prove Theorem 1.6, we first reduce the problem to proving a theorem of
propagation of zero across the surface {t = 0}.

Lemma 5.1. Suppose that s > 1− α and u ∈ Hs(Ω ∩ {t > 0}) satisfies

(5.13) Lu = 0, u|t=0 = 0, Xu|t=0 = 0.

Then the extension ue of u by 0 for t < 0 satisfies

(5.14) ue ∈ Hs and Lue = 0

on a neighborhood Ω1 of 0.

Proof. If the coefficients were smooth, this would be immediate. We check
that we have enough smoothness to extend the result to our case.

We can assume that Ω =] − T, T [×ω. From Lemma 2.2 (localized
in space) we know that u ∈ L2([0, T ];Hs

loc(ω)), thus its extension ue ∈
L2([−T, T ];Hs

loc(ω)). Moreover, ∂tu ∈ L2([0, T ];Hs−1
loc (ω)) and by assump-

tion u|t=0 = 0. Therefore, ∂tue is the extension of ∂tu by 0 and thus belongs
to L2([−T, T ];Hs−1

loc (ω)). In particular, ue ∈ Hs
loc(]− T, T [×ω).

Let v = Xu+c0u ∈ L2([0, T ];Hs−1
loc (ω)) and let ve ∈ L2([−T, T ];Hs−1

loc (ω))
denote its extension by 0. The first step implies that Xue is the extension
of Xu and therefore ve = Xue + c0ue. Write the equation as

(5.15) ∂tv = P (u, v)
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where P involves only spatial derivatives (see (2.17)). Morever, we have
seen in the proof of Lemma 2.2 that P (u, v) ∈ L2([0, T ];Hs−2

loc (ω)). Since by
assumption the trace of v vanishes, this implies that ∂tve is the extension by 0
of ∂tv, thus the extension of P (u, v), that is P (ue, ve). Since ve = Xue+c0ue,
this means that ue satisfies the equation on Ω =]− T, T [×ω.

We now finish the proof of Theorem 1.6. We suppose that u ∈ Hs(Ω ∩
{t > 0}) satisfies (5.13), with s > 1 − α and we denote by ue its extension
by 0 for t < 0. We use the classical convexification method, and consider
the change of variables

(5.16) (t, x) 7→ (t̃, x̃) t̃ = t+ |x|2, x̃ = x,

which maps the past {t < 0} to {t̃ < |x̃|2}. Thus there is T0 > 0 such
that the function ũ deduced from ue is defined for t̃ < T0 and vanishes for
t̃ < |x̃|2. Moreover, decreasing T0 if necessary, the operator L̃ deduced from
L is defined on a neighborhood Ω̃ of the origin which contains the closed
lens D = {|x̃|2 ≤ t ≤ T0} and L̃ũ = 0 on Ω̃ ∩ {t < T0}. Now we extend the
coefficients of L̃, as above, and obtain a new operator L], defined on R1+n,
satisfying the assumptions of section 2, and equal to L̃ on a neighborhood
of D. Therefore, on ]−∞, T0[×Rn

(5.17) L]ũ = 0, ũ ∈ Hs, ũ|{t̃<|x̃|2} = 0.

Since ũ vanishes in the past, the traces ũ|t=−ε and X]ũ|t=−ε vanish for all
ε > 0. Therefore, Theorem 2.4 applied to the Cauchy problem for L] with
initial time −ε implies that ũ = 0 for all (t̃, x̃) such that t̃ < T0. Hence
u = 0 on a neighborhood of the origin.

6 Application : a blow-up criterion for nonlinear
equations

6.1 Statement of the result

In coordinates y = (t, x), we consider a nonlinear wave equation:

(6.1)

∂t
(
a0(u)∂tu

)
+

n∑
j=1

∂t
(
aj(u)∂xju

)
+ ∂xj

(
aj(u)∂tu

)
−

n∑
j,k=1

∂xj
(
aj,k(u)∂xku

)
+ ∂t

(
b0(u)) +

n∑
j=1

∂xj (bj(u)) = F (u).
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Assumption 6.1. The coefficients are smooth functions of u ∈ R. Mor-
ever, for all fixed u, the polynomial a0τ

2 + 2
∑
ajτξj −

∑
aj,kξjξk is strictly

hyperbolic in the direction dt.

The Cauchy problem for (6.1) with initial data

(6.2) u|t=0 = u0, ∂tu|t=0 = u1,

is well posed for u0 ∈ Hs(Rn) and u1 ∈ Hs−1(Rn) when s > n
2 + 1. The so-

lution u belongs to C0([0, T ], Hs)∩C1([0, T ];Hs−1). By uniqueness, there is
a maximal time of existence T ∗ and u ∈ C0([0, T ∗[;Hs)∩C1([0, T ∗[;Hs−1).
Moreover, there is a classical blow-up criterion for the creation of singulari-
ties:

Theorem 6.2. For s > n
2 +1 and data u0 ∈ Hs, u1 ∈ Hs−1, if the maximal

time of existence is finite, then

(6.3) sup
0≤t<T ∗

∥∥u(t)
∥∥
L∞

+
∥∥∂t,xu(t)

∥∥
L∞

= +∞.

See e.g. [1] for an extensive discussion of blow-up for solutions of wave
equations or [9] for general first order quasilinear systems. Our goal is to
show that one can replace the Lipschitz norm in (6.3) by a LL -norm.

Theorem 6.3. For s > n
2 + 1 and data u0 ∈ Hs, u1 ∈ Hs−1, if T ∗ < +∞,

then

(6.4) sup
0≤t<T ∗

∥∥u∥∥
L∞([0,t]×Rn)

+
∥∥u∥∥

LL([0,t]×Rn)
= +∞.

The proof of Theorem 6.2 is based on the estimate :

Theorem 6.4. For s > n
2 + 1, M ∈ R and T0 > 0 given, there is a constant

C, such that if T ≤ T0 and u ∈ C0([0, T [;Hs)∩C1([0, T [;Hs−1) is a solution
of (6.1) such that

(6.5) sup
0≤t<T

∥∥u(t)
∥∥
L∞

+
∥∥∂t,xu(t)

∥∥
L∞
≤M

then

(6.6) sup
0≤t<T

∥∥u(t)
∥∥
Hs +

∥∥∂tu(t)
∥∥
Hs−1 ≤ C

(∥∥u0

∥∥
Hs +

∥∥u1

∥∥
Hs−1

)
.

Similarly, the proof of Theorem 6.3 is based on the following estimate :
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Theorem 6.5. For s > n
2 + 1 and K ∈ R, there are constants T1 > 0,

C1 and λ such that such that if u ∈ C0([0, T [;Hs) ∩ C1([0, T [;Hs−1) is a
solution of (6.1) such that

(6.7) sup
0≤t<T

∥∥u∥∥
L∞([0,t]×Rn)

+
∥∥u∥∥

LL([0,t]×Rn)
≤ K

then, for t < min{T, T1},

(6.8)
∥∥u(t)

∥∥
Hs−λt +

∥∥∂tu(t)
∥∥
Hs−1−λt ≤ C1

(∥∥u0

∥∥
Hs +

∥∥u1

∥∥
Hs−1

)
.

Proof of Theorem 6.3 assuming Theorem 6.5.
It is sufficient to prove that if u ∈ C0([0, T [;Hs) ∩ C1([0, T [;Hs−1) sat-

isfies (6.7) then,

(6.9) sup
0≤t<T

∥∥u(t)
∥∥
Hs +

∥∥∂tu(t)
∥∥
Hs−1 < +∞.

implying that the solution can be continued after T .
Fix s1 ∈]1 + n

2 , s[. Decreasing T1, we can assume that T1 ≤ (s − s1)/λ.
Then (6.8) and the Sobolev imbedding theorem imply that

sup
0≤t<T1

∥∥u(t)
∥∥
L∞

+
∥∥∂t,xu(t)

∥∥
L∞
≤ C(K)

(∥∥u0

∥∥
Hs +

∥∥u1

∥∥
Hs−1

)
,

where C(K) depends only on K. Therefore, Theorem 6.4 implies that

sup
0≤t<T1

∥∥u(t)
∥∥
Hs +

∥∥∂tu(t)
∥∥
Hs−1 ≤ C

(
K,
∥∥u0

∥∥
Hs ,
∥∥u1

∥∥
Hs−1

)
.

The important point is that T1 depends only on K. One can repeat the
analysis for the Cauchy problem with initial time T ′1 arbitrarily close to T1,
and after a finite number of iterations , this implies (6.9).

6.2 Proof of the nonlinear estimate

We write the equation as a system

∂tv +
n∑
j=1

∂xj
(
ãj(u)v

)
−

n∑
j,k=1

∂xj
(
ãj,k∂xku

)
= −

n∑
j=1

∂xj
(
b̃j(u)

)
+ F (u)

(6.10)

∂tu+
n∑
j=1

ãj(u)∂xju+ b̃0(u) = v/a0(6.11)
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with

ãj = aj/a0, ãj,k = aj,k + ãjak, b̃0 = b0/a0, b̃j = bj − aj b̃0.

Introduce a dyadic partition of unity in space,
∑

∆k(Dx) = Id, as in
(3.3). The first step in the proof Theorem 6.5 is an estimate of ∆k∂tu and
∆kv:

Proposition 6.6. There is a constant C(T,K) such that if u ∈ C0([0, T [;Hs)∩
C1([0, T [;Hs−1) is a solution of (6.1) which satisfies (6.7), then for all k ≥ 0
and t ∈ [0, T [:

(6.12)
∥∥Sk∂tu(t)

∥∥
L∞

+
∥∥Skv(t)

∥∥
L∞
≤ C(T,K)(k + 1).

This estimate is proved in the next subsection. Taking it for granted, we
finish the proof of (6.8).

We use the para-differential calculus introduced in Section 3. The para-
linearization procedure is based upon the following result.

Lemma 6.7. Given s > s1 > 0, there is a constant C such that for σ ∈
[s1, s], a ∈ Hσ+ 1

2
log(Rn) and v such that

(6.13) sup
k≥0

(k + 1)−1
∥∥Skv∥∥L∞ ≤ K

there holds av − Tav ∈ Hσ− 1
2
log(Rn) and

(6.14)
∥∥av − Tav∥∥

Hσ− 1
2 log
≤ CK

∥∥a∥∥
Hσ+1

2 log

Proof. There holds av − Tav =
∑
wk with wk = ∆kaSk+2v. The spectrum

of wk is contained in the ball {|ξ| ≤ 2k+4} and∥∥wk∥∥L2 ≤ CK(k + 1)
1
2 2−ksεk

∥∥a∥∥
Hs+1

2 log

with {εk}k in the unit ball of `2.

We also use the following nonlinear estimates :

Lemma 6.8. Suppose that u ∈ Hσ+ 1
2
log(Rn) ∩ L∞(Rn) and a is a C∞

function on R such that a(0) = 0. Then a(u) ∈ Hs+ 1
2
log(Rn) and

(6.15)
∥∥a(u)

∥∥
Hσ+1

2 log
≤ C

(
‖u‖L∞

)∥∥a∥∥
Hσ+1

2 log
.
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Proof of Theorem 6.5.
Consider a solution u ∈ C0([0, T [;Hs)∩C1([0, T [;Hs−1) of (6.1) satisfy-

ing (6.5). Fix s1 ∈]d2 + 1, s[. We show that there is are constants C and C1,
which depends only on K, such that for all λ > 0 and t ≤ min{T, s−s1λ }:

(6.16)

∥∥u(t)
∥∥2

Hs−λt +
∥∥∂tu(t)

∥∥2

Hs−1−λt

+ λ

∫ t

0

(∥∥u(t′)
∥∥2

Hs−λt+1
2 log

+
∥∥∂tu(t′)

∥∥2

Hs−1−λt+1
2 log

)
dt′

≤ C
(∥∥u(0)

∥∥2

Hs +
∥∥∂tu(0)

∥∥2

Hs−1

)
+ C1

∫ t

0

(∥∥u(t′)
∥∥2

Hs−λt+1
2 log

+
∥∥∂tu(t′)

∥∥2

Hs−1−λt+1
2 log

)
dt′.

Choosing λ ≥ C1, this implies (6.8).

a) We use the para-differential calculus as in Section 4. In addition
to the quantization Ta we use the modified operators P νa (3.23). Using
Corollary 3.12, we can fix ν and δ > 0 depending only on K, such that for
all t ∈ [0, T ] and w = (w1, . . . , wn) ∈ C∞0 (Rn):

(6.17) Re
n∑

j,k=1

(
P νbj,k(t)wk, wj

)
L2 ≥ δ‖w‖2L2

with bj,k = a0(u)ãj,k(u).
From now on we fix such a ν and use the notation Pb in place of P νb .

Lemma 3.10 can be extended to all values of σ and there is a constant C
such that for all t ∈ [0, T ] and σ ∈ [s1, s]:

(6.18) ‖(Pa − Ta)w‖Hσ+1 ≤ C2ν‖a‖L∞ ‖w‖Hσ .

Similarly

(6.19) ‖(Pa − Ta)∂xj‖Hσ± 1
2 log
≤ C2ν‖a‖L∞ ‖w‖

Hσ± 1
2 log

.

Using Proposition 3.3 for the spatial derivatives ∂xju and Proposition 6.6
for v, we deduce from the lemmas above that

(6.20) v = Pa0∂tu+
n∑
j=1

Paj∂xju+ g

where aj stands for aj(u) and

(6.21)
∥∥g(t)

∥∥
Hs−λt− 1

2 log
≤ C(K)

(∥∥∂tu(t)
∥∥
Hs−1−λt+1

2 log
+
∥∥u(t)

∥∥
Hs−λt+1

2 log

)
.
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In particular, this implies that

(6.22)
∥∥v(t)

∥∥
Hs−1−λt ≤ C(K)

(∥∥∂tu(t)
∥∥
Hs−1−λt +

∥∥u(t)
∥∥
Hs−λt

)
,

(6.23)

∥∥v(t)
∥∥
Hs−1−λt+1

2 log

≤ C(K)
(∥∥∂tu(t)

∥∥
Hs−1−λt+1

2 log
+
∥∥u(t)

∥∥
Hs−λt+1

2 log

)
.

Similarly,

(6.24) ∂tu+
n∑
j=1

Pãj∂xju = Pa−1
0
v + g1

where ãj = ãj(u) and

(6.25)
∥∥g1(t)

∥∥
Hs−λt− 1

2 log
≤ C(K)

(∥∥u(t)
∥∥
Hs−λt+1

2 log
+
∥∥v(t)

∥∥
Hs−1−λt+1

2 log

)
.

With (6.35), this implies that g1 also satisfies an estimate similar to (6.21).
Another consequence is that

(6.26)
∥∥∂tu(t)

∥∥
Hs−1−λt ≤ C(K)

(∥∥v(t)
∥∥
Hs−1−λt +

∥∥u(t)
∥∥
Hs−λt

)
,

(6.27)

∥∥∂tu(t)
∥∥
Hs−1−λt+1

2 log

≤ C(K)
(∥∥v(t)

∥∥
Hs−1−λt+1

2 log
+
∥∥u(t)

∥∥
Hs−λt+1

2 log

)
.

In the same vein,

(6.28) ∂tv +
n∑
j=1

∂xjPãjv −
n∑

j,k=1

∂xjPãj,k∂xku = f

with

(6.29)
∥∥f(t)

∥∥
Hs−1−λt− 1

2 log
≤ C(K)

∥∥u(t)
∥∥
Hs+λt+1

2 log
.

b) Multiply the equation (6.28) by (1−∆x)2(s−1−λt)v and integrate over
Rn. Using Proposition 3.8 to bound the terms

(
Pãj∂xjv, (1−∆x)2(s−1−λt)v

)
L2 ,
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implies that

(6.30)

d

dt

∥∥v(t)
∥∥2

Hs−1−λt + 2λ
∥∥v(t)

∥∥2

Hs−1−λt+1
2 log

−2Re
( n∑
j,k=1

∂xjPãj,k∂xku, (1−∆x)2(s−λt)v
)
L2

≤ C
∥∥f(t)

∥∥
Hs−1−λ− 1

2 log

∥∥v(t)
∥∥
Hs−1−λ+1

2 log

+ C
∥∥v(t)

∥∥2

Hs−1−λt+1
2 log

.

where C depends only on K.

c) Multiply the equation (6.11) and (1 − ∆x)2(s−λt)∑ ∂xjPãj,k∂xku.
Using Propositions 3.8 and 3.9,

−Re
( n∑
j,k=1

∂xjPãj,k∂xku, (1−∆x)2(s−λt)v
)
L2

=Re
( n∑
j,k=1

Pa0ãj,k∂xku, (1−∆x)2(s−λt)∂t∂xju
)
L2 + E

where

E(t) ≤ C(K)
(∥∥∂tu(t)

∥∥2

Hs−1−λt+1
2 log

+
∥∥u(t)

∥∥2

Hs−λt+1
2 log

)
.

By Lemmas 6.10 and 6.11 below, the coefficients bj,k(u) = a0(u)ãj,k(u) sat-
isfy estimates similar to (6.12)∥∥Sk∂tbj,k∥∥L∞ ≤ (k + 1)C(K).

Therefore P∂tbj,k is of order Log(D) and

2Re
( n∑
j,k=1

Pa0ãj,k∂xku, (1−∆x)2(s−λt)∂t∂xju
)
L2

=
d

dt
Re
( n∑
j,k=1

Pbj,kwk, wj
)
L2 + 2λ

( n∑
j,k=1

Pbj,kw̃k, w̃j
)
L2 + E1

where E1 satisfies an estimate similar to E, wj = (1 − ∆x)(s−λt)∂xju and

w̃j =
(

ln(1−∆x)
) 1

2wj .
Substituting these estimates in (6.30), integrating between 0 and t and

using (6.17) implies (6.16) and the theorem follows.
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Notes on the proof of Theorem 6.4.
The proof of this theorem is quite similar, but much simpler, using the

para-differential calculus with no logarithmic loss when the coefficients are
Lipschitz continuous.

6.3 Proof of Proposition 6.6

For a C1 function a bounded with bounded derivatives on [0, T ] × Rn, in-
troduce the norm:

(6.31)
∥∥a∥∥Z = sup

k≥0
(k + 1)−1

∥∥Sk(Dx)a
∥∥
L∞([0,T ]×Rn)

.

Lemma 6.9. There is a constant C such that if a = {aj , aj,k, bj , c} is a set
of C1 ∩W 1,∞ functions on [0, T ]× Rn satisfying

(6.32) ∂2
t a0 =

d∑
j=1

∂xj
(
∂taj + bj

)
+

n∑
j,k=1

∂xj∂xkaj,k + ∂tb0 + c,

then

(6.33)
∥∥∂ta0

∥∥
Z ≤ C

(∥∥a
∥∥
L∞([0,T ]×Rn)

+
∥∥a
∥∥
LL([0,T ]×Rn)

)
.

Proof. a) Introducing a partition of unity, it is sufficient to prove the result
when the functions are defined and compactly supported in [0,+∞[ and
] −∞, T ]. The two cases are similar, so we assume that the functions are
defined for t ≥ 0.

Consider the extension operator

(6.34) P0a(t, x) =
{
a(t, x) t ≥ 0,
αa(−t, x) + βa(−2t, x) + γa(−3t, x), t ≤ 0

with
α+ β + γ = 1, α+ 2β + 3γ = −1, α+ 4β + 9γ = 1,

so that P0a, ∂tP0a and ∂2
t P0a are continuous at t = 0 when a is C2 on

{t ≥ 0}. Moreover

∂tP0a = P1∂ta, ∂tP1b = P2∂tb,

where P1 and P2 are similar extension operators. Then, the equation (6.32)
can be extended to R1+n, with P0a0 in place of a0, P1aj in place of aj , P2aj,k
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in place of aj,k etc. Because the extensions operators preserve continuity at
t = 0, there is a constant C such that∥∥Pla∥∥L∞(R1+d)

≤ C
∥∥a∥∥

L∞({t≥0}),
∥∥Pla∥∥LL(R1+d)

≤ C
∥∥a∥∥

LL({t≥0}).

Hence it is sufficient to prove the lemma when the functions are defined on
R1+d, which we now assume.

b) In addition to the partition of unity Id =
∑

∆k(Dx) consider a
similar partition of unity in time: Id =

∑
∆′p(Dt). By Proposition 3.3,∥∥S′pSp∂ta0

∥∥
L∞(R1+d)

≤ C(p+ 1)
∥∥a∥∥

LL(R1+d)
.

Similarly, for q > p there holds∥∥∆′qSp∂t∂xjaj
∥∥
L∞
≤ C(q + 1)2p

∥∥aj∥∥LL,∥∥∆′qSp∂xk∂xjajk
∥∥
L∞
≤ C(p+ 1)2p

∥∥aj,k∥∥LL.
Finally, using the equation (6.32) and similar estimates for the other func-
tions, we see that for q > p:∥∥∆′qSp∂

2
t a0

∥∥
L∞(R1+d)

≤ CKq2p.

For q > p, the spectral localization of ∆′q implies that∥∥∆′q∂tSpa0

∥∥
L∞
≤ C2−q

∥∥∆′q∂
2
t Spa0

∥∥
L∞
≤ CKq2p−q.

Therefore, writing that Sp∂ta0 = S′pSp∂ta0 +
∑

q>p ∆′qSp∂ta0 and adding the
estimates above, one obtains (6.33).

To complete the proof of Proposition 6.6 we need the following estimates:

Lemma 6.10. Let F be s smooth function on R and let a ∈ W 1,∞([0, T ]×
Rn). Then F (a) ∈W 1,∞([0, T ]× Rn) and

(6.35)
∥∥F (a)

∥∥
LL
≤ C(‖a‖L∞)

∥∥a∥∥
LL
.

Lemma 6.11. Let a ∈W 1,∞([0, T ]× Rn) and b ∈ L∞([0, T ]× Rd). Then

(6.36)
∥∥ab∥∥Z ≤ C(∥∥a∥∥L∞ +

∥∥a∥∥
LL

)∥∥b∥∥Z .
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Proof. The proof of (6.35) is immediate from the definition of the LL semi-
norm.

To prove (6.36) write

Sk(ab) = Sk(Sk+2aSk+4b) +
∑
p≥k+3

∑
|q−p|≤2

Sk(∆pa∆qb).

The first term satisfies∥∥Sk(Sk+2aSk+4b)
∥∥
L∞
≤ C

∥∥Sk+2a
∥∥
L∞

∥∥Sk+4b
∥∥
L∞
≤ C(k + 1)

∥∥a∥∥
L∞

∥∥b∥∥Z .
Next, note that for |p− q| ≤ 2,∥∥Sk(∆pa∆qb)

∥∥
L∞
≤ C

∥∥∆pa
∥∥
L∞

∥∥∆qb
∥∥
L∞
≤ C(p+ 1)22−p

∥∥a∥∥
LL

∥∥b∥∥Z .
Adding up for p ≥ k + 3, this implies (6.36).

Proof of Proposition 6.6.
Let A0, Aj and Aj,k be smooth functions on R, vanishing at the origin,

with derivative equal to a0, aj and aj,k respectively. Then for C0([0, T ];Hs)∩
C1([0, T ];Hs−1) solutions the equation (6.1) reads:

(6.37)

∂2
tA0(u) +

n∑
j=1

2∂t∂xjAj(u)−
n∑

j,k=1

∂xj∂xkAj,k(u)

∂t
(
b0(u)) +

n∑
j=1

∂xj (bj(u)) = F (u).

By Lemma 6.10, the A0(u), Aj(u) and Aj,k(u) are C1 and their L∞ and LL
norms are bounded by C(K). Therefore, by Lemma 6.9 there is a constant
C(T,K) such that ∥∥∂tA0(u)

∥∥
Z ≤ C(T,K).

Since
∂tu =

1
a0(u)

∂tA0(u),

Lemma 6.11 implies that ∥∥∂tu∥∥Z ≤ C(T,K).

Proposition 3.3 implies that∥∥∂xju∥∥Z ≤ C∥∥u∥∥LL.
Therefore, with Lemma 6.11 this implies that v also satisfies the estimate
(6.12) and the proof is now complete.
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