
MULTIDIMENSIONAL VISCOUS SHOCKS I: DEGENERATE
SYMMETRIZERS AND LONG TIME STABILITY

OLIVIER GUES, GUY MÉTIVIER, MARK WILLIAMS, KEVIN ZUMBRUN

Abstract. We use energy estimates to study the long time stability of multidimensional planar
viscous shocks ψ(x1) for systems of conservation laws. Stability is proved for both zero mass and
nonzero mass perturbations, and some of the results include rates of decay in time. Shocks of any
strength are allowed, subject to an appropriate Evans function condition. The main tools are a
conjugation argument that allows us to replace the eigenvalue equation by a problem in which the
x1 dependence of the coefficients is removed, and degenerate Kreiss-type symmetrizers designed to
cope with the vanishing of the Evans function for zero frequency.
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Part 1. Introduction

In this paper we study the long time stability of multidimensional planar viscous shocks with
energy estimates. We introduce degenerate symmetrizers as the main new tool for proving the
estimates.
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1. Guide to the paper

1.1. Ideal shocks and viscous shocks. Consider a system of conservation laws

ut +
d∑

j=1

f j(u)xj = 0,(1.1)

where u, f j ∈ Rn, and a planar (ideal) shock (UR, UL, s) moving in the x1 direction with speed s.
This means that the triple (UR, UL, s) is constant and satisfies

s[U ]− [f1(U)] = 0,(1.2)

where [U ] = UR−UL. Condition (1.2), known as the Rankine-Hugoniot condition, is necessary and
sufficient for the function u defined by

u =

{
UR, x1 > st

UL, x1 < st
(1.3)

to be a weak solution of (1.1) in Rd+1
t,x .

Redefining x1, f
1 as x̃1 = x1 − st and f̃1(u) = f1(u) − su, we can and will henceforth assume

s = 0.
Consider also a corresponding system of viscous conservation laws

ut +
d∑

j=1

f j(u)xj = �u,(1.4)

where

�u =
d∑

j=1

∂2
xju,

and a steady state solution ψ(x1) connecting the endstates UR, UL:

lim
x1→+∞

ψ(x1) = UR, lim
x1→−∞

ψ(x1) = UL.(1.5)

Note that ψ satisfies the travelling wave ODE

ψ′ = f1(ψ)− f1(UL).(1.6)

It is easy to check that the Rankine-Hugoniot condition is a necessary condition for the existence
of such a ψ. ψ is variously referred to as a connection, a profile, and a viscous shock.

1.2. Nonlinear stability. We wish to understand the stability of the profile ψ(x1) under mul-
tidimensional perturbations. Let A denote some set of admissible perturbations to be specified
later.

Definition 1.1. For v0 ∈ A let u(x, t) be the solution to the system (1.4) with initial data at t = 0
given by

u0(x) = ψ(x1) + εv0(x).(1.7)

We say that ψ is nonlinearly stable with respect to perturbations in A if there exists an ε0 > 0
(depending on |v0|A) such that for ε ≤ ε0, the solution u(x, t) exists for all time and

|u(x, t)− ψ(x1)|L∞(x) → 0 as t→∞.(1.8)
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1.3. The eigenvalue equation. Let Aj(x1) = df j(ψ(x1)) and x′ = (x2, . . . , xd). (Later, we’ll
switch to a more convenient (x, y) = (x1, x

′) notation.) After a transfer of initial data to forcing
carried out in section 2, the key step turns out to be the proof of good estimates for the linear
problem

(a) ut + (A(x1)u)x1 +
d∑

j=2

Aj(x1)∂ju−�u = f

(b) u|t=0 = 0.

(1.9)

Because of the initial condition, if we extend u and f by zero into t < 0, the extensions satisfy
(1.9) on R1+d. We may Laplace transform in time and Fourier transform in (t, x′) to obtain the
eigenvalue equation for û(x1, λ, ξ

′):

ûx1x1 − (A1(x1)û)x1 − s(x1, λ, ξ
′)û = f̂(x1, λ, ξ

′)(1.10)

where (τ, ξ′) is dual to (t, x′), λ = iτ + γ with γ ≥ 0 and

s(x1, λ, ξ
′) =

d∑
j=2

Aj(x1)iξj + λI + |ξ′|2I.

The existence of “eigenvalues” λ in the unstable half-space 
λ > 0, that is, values of λ for which
there exist nontrivial solutions û(x1, λ, ξ

′) of (1.10) (with f̂ = 0) decaying at both ±∞ , is easily
seen to rule out any useful stability estimate for (1.9) (see Remark 2.4). In section 2 we recall the
definition of the Evans function D(λ, ξ′) corresponding to the viscous profile ψ. This function is a
Wronskian of solutions to the homogeneous version of (1.10) with the property that eigenvalues of
(1.10) in 
λ > 0 correspond to zeros of D(λ, ξ′).

It is easy to check that ψ′(x1) itself is a solution of the eigenvalue equation when (λ, ξ′) = (0, 0)
(differentiate (1.6) twice), so the Evans function (suitably extended) vanishes at (λ, ξ′) = (0, 0).
One of the main hypotheses of this paper is that D vanishes to precisely first order at (0, 0) and
has no other zeros in 
λ ≥ 0. This is stated precisely as assumption (H4) in section 2.

The same Evans assumption has already been shown to imply long time stability of viscous
profiles in the 1D case in [KK] for zero-mass perturbations and [ZH], [Z2] for general perturbations,
and in the multiD case in [Z1] (for general perturbations). We say more about the relation of [KK]
and [Z1] to this work below.

We also mention the earlier work [Go] in which stability under zero mass perturbations was
proved for sufficiently weak (i.e., small amplitude) shocks in 1D, and [Go2] in which the stability
of weak planar shock solutions for viscous scalar multiD conservation laws was demonstrated.

Remark 1.1. Recent work by Freistühler and Szmolyan [FS] and independently by Plaza and Zum-
brun [PZ] shows that (H4) holds for sufficiently weak Lax shocks, under the mild structural as-
sumptions of symmetrizability plus strict concavity/convexity of the characteristic associated with
the shock.

1.4. Reformulation as a doubled boundary problem. Rewrite the second order n× n eigen-
value equation as a 2n× 2n first order system on Rx1 depending on frequency (λ, ξ′):

(
û
v̂

)
x

=
(
A1(x1) I
s(x1, λ, ξ

′) 0

) (
û
v̂

)
+

(
0

f̂(x1, λ, ξ
′)

)
,(1.11)



4 OLIVIER GUES, GUY MÉTIVIER, MARK WILLIAMS, KEVIN ZUMBRUN

or

Ux1 = GU + F(1.12)

for short.

Notation 1.1. If f(x1) is any function defined on R, define f± for x1 ≥ 0 by

f+(x1) = f(x1)

f−(x1) = f(−x1).
(1.13)

Now on x1 ≥ 0 let

U(x, λ, ξ′) = (U+,U−)

G(x, λ, ξ′) =
(
G+ 0
0 −G−

)
,

F =
(
F+

−F−

)
, and

ΓU = U+ − U−.

(1.14)

Note that U(x1, λ, ξ
′) satisfies (1.12) on R if and only if U satisfies the 4n×4n first order system

on x1 ≥ 0:

Ux1 −G(x1, λ, ξ
′)U = F on x1 ≥ 0

ΓU = 0 on x1 = 0.
(1.15)

The boundary condition in (1.15) just expresses the continuity of U (in (1.12)) at x1 = 0. Usually,
we’ll drop the script notation and write U = (U+, U−).

Having rewritten the eigenvalue equation as a boundary problem on half-space, we are now in
a position to use the machinery of Kreiss symmetrizers to prove energy estimates. But the most
serious obstacle remains, namely, the dependence of G on x1. Trouble is caused, for example, by
the fact that as x1 varies from −∞ to +∞, one of the eigenvalues of A1(x1) changes sign (the kth
eigenvalue if the inviscid shock is a k shock).

1.5. Conjugation. To deal with the x1 dependence we use a tool introduced in [MZ]. Observe that
since the x1 dependence of G enters only through the profile ψ(x1), there is a well-defined limiting
problem corresponding to (1.15) which is obtained simply by letting x1 → +∞ in G. Call the limit
matrix G(∞, λ, ξ′). One can replace (1.15) with a constant coefficient problem by constructing a
matrix W (x1, λ, ξ

′) with the properties

W (x1, λ, ξ
′) = I +O(e−θx1), θ > 0

∂x1W = G(x1)W (x1)−W (x1)G(∞).
(1.16)

The substitution U =WV then transforms the problem (1.15) into

Vx1 −G(∞, λ, ξ′)V =W−1F

Γ̃(x1, λ, ξ
′)V = 0 on x1 = 0,

(1.17)

where Γ̃(x1, λ, ξ
′)V = ΓW (x1, λ, ξ

′)V . Thus, estimates for (1.17) imply estimates for (1.15).
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1.6. Degenerate symmetrizers. Kreiss symmetrizers have long [K] been used to obtain L2 es-
timates for hyperbolic boundary problems with nonvanishing Lopatinski determinants. In [MZ]
the use of such symmetrizers was extended to the Dirichlet problem for “hyperbolic + viscos-
ity” operators and applied to study the stability of multiD viscous Dirichlet boundary layers, a
situation where the Lopatinski determinant is nonvanishing. Standard symmetrizers adapted to
hyperbolic-parabolic operators are recalled in section 5.

The linear algebraic preparation needed for the construction of both standard and degenerate
symmetrizers is given in part 2.

As we’ve seen, the Evans function in the viscous shock problem vanishes for zero frequency.
When the eigenvalue problem on the whole space is reformulated as a doubled boundary problem
on a half space, the vanishing of the Evans function translates into vanishing of the Lopatinski
determinant for the boundary problem (1.17).

In section 7 of this paper we construct degenerate symmetrizers to cope with the degeneracy of the
Lopatinski determinant in the viscous shock problem. The Lopatinski determinant is nonvanishing
for frequencies bounded away from zero, so most of our efforts are focused on the small frequency
region. The critical estimate for (1.17) is the small frequency estimate (8.12), where the norm is
an L2(x1) norm, the functions U , F depend on (x1, λ, ξ

′), and ρ = |λ, ξ′|. Note that the estimate
is quite singular at ρ = 0.

1.7. Zero mass perturbations. Our first application of this estimate is a proof of the long time
stability of multiD planar shocks under zero mass perturbations in dimensions ≥ 3. This means we
take v0(x) in (1.7) of the form

v0 = div V(1.18)

for sufficiently well-behaved V (see assumption (H5)).
There is no restriction on the size of the shocks, but they are required to satisfy the Evans

assumption (H4). To deal with the singularity at ρ = 0 in the main estimate (8.12), we are led to
introduce mixed norms corresponding to the space L2(x1, L

1(t, x′)) (x1 = 0 is the boundary). We
are then able to carry out in higher dimensions the strategy used in [KK] for handling zero mass
perturbations in 1D, with our mixed norm playing the role of their L1 norm. The strategy uses
the zero mass assumption to write the forcing in divergence form (Remark 2.2). First one solves
an auxiliary problem (10.3), and then reduces to considering a problem with ρF forcing (10.5).
Clearly, such forcing is advantageous in the region where ρ is small. A more detailed description
of this strategy is given at the beginning of section 9. The full linear stability estimate for (1.9) in
this case is (taking f = div F)

|u, ut, ux′ |L2(t,x) + |ux1 |L2(t,x) ≤ C(|F|L2(x1,L1(t,x′)) + |F|L2(t,x)).(1.19)

This is (10.1). The zero mass result is Theorem 4.1.

1.8. Nonzero mass perturbations. Let |τ, ξ′| = r ≤ ρ. Since Lebesgue measure in d dimensional
(τ, ξ′) space is

dτdξ′ = rd−1drdω,

the mixed norm argument used to prove (8.22) works more easily in higher dimensions: rd−1 cancels
the singularity at ρ = 0 in the main estimate (8.12). In fact, for d ≥ 5 more general perturbations
not in divergence form can be handled by an argument that is simpler than the one just described.
There is no need to consider an auxiliary problem. In place of (1.19) the estimate for (1.9) is now

|u, ut, ux′ |L2(t,x) + |ux1 |L2(t,x) ≤ C(|f |L2(x1,L1(t,x′)) + |f |L2(t,x)).(1.20)
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Observe that there is a gain of two derivatives in (1.19) but a gain of only one in (1.20). The result
for nonzero mass perturbations in d ≥ 5 is Theorem 4.3.

1.9. L1−L2 estimates. Of course, one wants to prove nonlinear stability for nonzero mass pertur-
bations in all dimensions d ≥ 2. However, the small frequency estimate of part 3, (8.12), does not
appear adequate to handle the problem of long time stability under nonzero mass perturbations
in space dimensions 2, 3, and 4. Thus, we are led in part three to prove more refined L1 − L2

estimates by a combination of degenerate symmetrizer and duality arguments. As far as we know
these are the first L1−L2 estimates for a multiD hyperbolic-parabolic boundary problem. Previous
attempts had been foiled by the presence of glancing modes. Indeed, such modes present the main
obstacle to be overcome in section 11. The bounds we obtain by our symmetrizer estimates match
those obtained by direct integration of the pointwise resolvent kernel bounds obtained by explicit
computation in [Z].

In section 11 we define an adjoint doubled boundary problem dual to the original forward prob-
lem, and observe that L2 −L∞ estimates for the dual problem are equivalent to L1 −L2 estimates
for the forward problem. Section 11 is devoted to the proof of L2 − L∞ estimates for the dual
problem. In order to obtain these estimates we must add the structural assumption (H6) of [Z1]
that the glancing set associated with the shock have constant rank; see our (H6) below.

In place of (1.20) we obtain for nonzero mass perturbations in dimensions d ≥ 3:

|u, ut, ux′ |L2(t,x) + |ux1 |L2(t,x) ≤ C(|f |L1(t,x) + |f |L2(t,x)).(1.21)

The corresponding nonlinear stability result in d ≥ 3 is Theorem 4.4.
The passage from the linear stability estimates (1.19), (1.20), (1.21) to the corresponding non-

linear stability results in Theorems 4.1, 4.3,and 4.4 is in each case by an argument similar to the
scheme in [KK]. These arguments are given in sections 9 and 10.

The endgame in dimension 2 seems to require a special argument similar to the one in [Z1].
This is given in section 12. The corresponding nonlinear stability result is Theorem 4.5. Here, the
inverse Laplace transform is estimated on a parabolic contour 
λ = −C−1(|ξ′|2 + |�λ|2), rather
than the flat contour 
λ = 0 considered in [KK], to take into account the additional decay due to
diffusion in the parabolic case. By contrast, the [KK] endgame takes into account (and requires)
only estimates like those in the hyperbolic case, which for general (nonzero mass) perturbations
are sufficient in large enough dimension, but fail in dimensions one and two.

1.10. Assessment. The stability of multiD planar shocks has already been carefully studied in
[Z1] by construction of Green’s functions. [Z1] proves long time stability under nonzero mass
perturbations and gives rates of decay in time. Apart from the fact that in Theorems 4.1 and
4.3 we are able to do without the structural assumption (H6) of [Z1], we believe that the main
interest of the long time stability results here lies in the new methods used to obtain them, which
apart from their independent interest also illuminate and unify previous theory. In particular,
Theorem 4.2 gives a natural extension to multidimensions of the zero-mass approach of [KK] and,
in combination with Theorem 4.5, clarifies the relation of this approach to the one used in [Z1]
to treat general perturbations; Theorem 4.4 shows that the approach of [KK] can succeed also for
general perturbations in sufficiently high dimensions d ≥ 3. Moreover, in contrast to the Green’s
function methods of [Z1], the conjugation and degenerate symmetrizer arguments can be readily
extended to curved shocks with the aid of pseudodifferential operators. Indeed, in the sequel
[GMWZ2] we apply such arguments to give a rigorous justification of the small viscosity limit for
curved multiD shocks.



MULTI-D VISCOUS SHOCKS I 7

2. Assumptions

2.1. Assumptions on the equations.
(H1): f j ∈ C∞(Rn,Rn).
(H2):

∑d
j=1 df

j(UR,L)ξj has simple real eigenvalues for ξ ∈ Rd \ 0
(strict hyperbolicity of UR,L).

Observe that (H2) implies

the eigenvalues β of − i
d∑

j=1

df j(UR,L)ξj − |ξ|2 satisfy 
β = −|ξ|2.(2.1)

2.2. Assumption on the shock.
(H3) (UR, UL, s) satisfies the Lax shock inequalities [L].

Remark 2.1. 1. (H3) implies the eigenvalues of df1(UR,L) are nonzero, so x1 = 0 is noncharac-
teristic. Let k (resp. l) be the number of positive (resp. negative) eigenvalues of df1(UR) (resp.
df1(UL)). Then (H3) implies

k + l = n− 1.(2.2)

2. The hyperbolicity hypothesis can be weakened, and more general viscosities and types of
shocks can be handled by the methods here. In particular, (H2) may be weakend to allow the case
of nonstrictly hyperbolic but constant multiplicity systems with stable viscosity matrices treated
in [MZ]. Also, (H3) may be weakened to allow also overcompressive shocks as in [Z1]; see Remark
10.1 below. (As described in [Z1], undercompressive shocks require a slightly different treatment.)
Since most of the difficulties are already present under the above simple assumptions, we’ll work
with these in order to lighten the exposition. We plan to treat more general situations in a future
work.

An important consequence of (H3) is:

Proposition 2.1. ψ decays at exponential rate to its endstates. There exist positive constants C, β
such that

|ψ(x1)− UR| ≤ Ce−βx1 for x1 > 0

|ψ(x1)− UL| ≤ Ceβx1 for x1 < 0.
(2.3)

Proof. Since the eigenvalues of df1(UR,L) are nonzero, the center manifold of (1.6) at the rest points
UR,L is trivial.

2.3. Reduction to a forward problem. Consider the problem

ut +
d∑

j=1

f j(u)xj = �u,

u|t=0 = ψ(x1) + εv0(x),

(2.4)

and look for u(x, t) of the form

u(x, t) = ψ(x1) + εv(x, t).(2.5)

Write

f j(ψ + εv) = f j(ψ) + εAj(x1)v + ε2gj(ψ, v, ε), for j = 1, . . . , d,(2.6)
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where

Aj(x1) = df j(ψ(x1)),(2.7)

and note that gj is a smooth function of its arguments satisfying

|gj(ψ, v, ε)| ≤ CM |v|2 for |v| ≤M.(2.8)

Usually, we’ll set A(x1) ≡ A1(x1). In view of Proposition 2.1 the matrices Aj(x1) decay exponen-
tially to their limiting values at ±∞.

The problem satisfied by v(x, t) is then

vt + (A(x1)v)x1 +
d∑

j=2

Aj(x1)∂jv + ε
d∑

j=1

(gj(ψ, v, ε))xj = �v

v|t=0 = v0.

(2.9)

Next, as in [KK] to obtain a problem with zero initial data we look for v(x, t) = ũ + e−tv0(x).
Drop the tilde on u, suppress the harmless ε dependence in gj , and write

gj(ψ, u+ e−tv0) = gj(ψ, e−tv0) +Bj(x, t)u+ hj(x, t, u),(2.10)

where

Bj(x, t) = ∂ugj(ψ, e−tv0)

|hj(x, t, u)| ≤ CM |u|2 when |v0, u| ≤M.
(2.11)

The problem satisfied by u can now be written

ut + (A(x1)u)x1 +
d∑

j=2

Aj(x1)∂ju+ εdivx(B(x, t)u) + εdivx(h(x, t, u)) =

�u+ e−tv0 − divxA(x, t)− εdivx(g(ψ, e−tv0)) + divx(e−t∇xv0),

u|t=0 = 0

(2.12)

where

A(x, t) = (A1(x1)e−tv0, . . . , Ad(x1)e−tv0)

B(x, t)u = (B1(x, t)u, . . . , Bd(x, t)u), etc.
(2.13)

Remark 2.2. Note that if v0 = divxV for some V = (V1, . . . , Vd), the problem (2.12) takes the
following form with conservative forcing:

ut + (A(x1)u)x1 +
d∑

j=2

Aj(x1)∂ju+ εdivx(B(x, t)u) + εdivx(h(x, t, u)) =

�u+ divxF(x, t)

u|t=0 = 0,

(2.14)

where

F = e−tV −A− εg(ψ, e−tv0) + e−t∇xv0.(2.15)
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In Part 2 we obtain energy estimates for the following linear problem corresponding to (2.12):

(a) ut + (A(x1)u)x1 +
d∑

j=2

Aj(x1)∂ju−�u = f

(b) u|t=0 = 0.

(2.16)

2.4. Evans function. We’ll work mostly in frequency variables so we change notation, replacing
(x1, x2, . . . , xd) by (x, y2, . . . , yd) and letting (τ, η) be dual to (t, y). We will Laplace transform in t
and set λ = iτ + γ, where γ ≥ 0.

Extend u and f in (2.16) by zero in t < 0 and take Fourier-Laplace transforms in (t, y) to get
the eigenvalue equation:

ûxx − (A(x)û)x − s(x, λ, η)û = f̂(x, λ, η)(2.17)

where

s(x, λ, η) =
d∑

j=2

Aj(x)iηj + λI + |η|2I.

Next rewrite this as a 2n× 2n first-order system on R depending on frequency(
û
v̂

)
x

=
(
A(x) I
s(x, λ, η) 0

) (
û
v̂

)
+

(
0

f̂(x, λ, η)

)
,(2.18)

or

Ux = GU + F(2.19)

for short.

Notation 2.1. 1. Set ζ = (τ, γ, η). We’ll sometimes write (with slight abuse) ζ = (λ, η) and
f(λ, η) = f(ζ).

2. Introduce polar coordinates

ζ = ρζ̂, where ζ̂ = (τ̂ , γ̂, η̂) and ζ̂ ∈ Sd.(2.20)

We’ll always take γ ≥ 0, so define Sd
+ = Sd ∩ {γ̂ ≥ 0}.

Remark 2.3. Observe that smooth functions f(ζ) of ζ ∈ Rd+1 can be rewritten as smooth functions
f(ζ̂, ρ) with (ζ̂, ρ) ∈ Sd × R+. However, when f(ζ̂, 0) is not constant on Sd, the function f(ζ)
corresponding to f(ζ̂, ρ) is not continuous at ζ = 0.

In order to define the Evans function we recall the following Lemma from [ZS]:

Lemma 2.1. For η ∈ Rd−1, 
λ > 0, there exist bases of solutions

{UR
1 , · · · ,UR

n }, {UL
1 , · · · ,UL

n }(2.21)

of (2.19) with F = 0, spanning the stable/unstable manifolds at x = +∞/−∞, respectively, such
that

D(λ, η) ≡ det(UR
1 , · · · ,UR

n ,UL
1 , · · · ,UL

n )|x=0(2.22)

is analytic in (λ, η) and continuously extendible to 
λ = 0.

Definition 2.1. D is called the Evans-Lopatinski determinant (or Evans function for short) for
the problem (2.19). Here and henceforth we always normalize the columns appearing in (2.22) so
that they of are of size ∼ 1 for ρ near 0.
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Remark 2.4. 1. Note that nonvanishing of D in 
λ > 0 is necessary even for linearized stability.
Linear dependence implies existence of a solution U = (û, v̂) to the homogeneous problem decaying
at both ±∞, and thus of an exponentially unstable solution ŵ(x, t, η) = eλtû(x, λ, η) of (2.16)(a)
with f = 0.

2. In ρ > 0 we may write D(ζ) = D(ζ̂, ρ). In [ZS] Lemma 5.1 it is shown that D(ζ̂, ρ) is
analytic in {γ̂ > 0, ρ > 0}. In view of Remark 7.1 below, D and Dρ are continuously extendible to
{γ̂ ≥ 0, ρ ≥ 0}. In addition Proposition 5.3 of [ZS] implies

D(ζ̂, ρ) = Cβ∆(ζ̂)ρ+ o(ρ)(2.23)

as ρ → 0, for some C �= 0. Here β is nonvanishing if and only if the stable/unstable manifolds
for UR/UL of the travelling wave ODE (1.6) are transverse at the connection ψ. ∆(ζ̂) is the
Lopatinski-Kreiss-Majda determinant for the ideal shock problem linearized at (UR, UL, s).

The computation giving (2.23) shows that

D(ζ̂, ρ) ∈ C(Sd
+, C

1(R+)).(2.24)

3. The vanishing of D(ζ̂, 0) reflects the fact that at ρ = 0 the homogeneous version of (2.19) has
the solution U = (φ, 0), where φ = ψ′ (differentiate (1.6) twice). This solution is fast-decaying at
both ±∞. It will be convenient later to normalize

UR
1 (x, ζ̂, 0) = UL

n (x, ζ̂, 0) = (φ(x), 0).(2.25)

4. Lemma 2.1 follows from the Gap Lemma of [GZ] and Proposition 5.1 below.

2.5. Assumption on the viscous profile.
(H4) D(ζ̂, ρ) vanishes to precisely first order at ρ = 0 (where it must vanish) for all ζ̂ ∈ Sd

+, and
has no other zeros in Sd

+ × R+.

Remark 2.5. In view of the above remarks D(ζ̂, ρ) vanishes to precisely first order at ρ = 0 if and
only if both β �= 0 and ∆(ζ̂) �= 0 on Sd

+.

2.6. Admissible perturbations.

Notation 2.2. Consider v(x, y) defined for (x, y) ∈ Rd.
1. 〈v〉22;p =

∑
|α|≤p |∂α(x,y)v(x, y)|2L2(x,y)).

2. 〈v〉2(2,1);p =
∑
|α|≤p |∂α(x,y)v(x, y)|2L2(x,L1(y))

3. 〈v〉1;p =
∑
|α|≤p |∂α(x,y)v(x, y)|L1(x,y).

Remark 2.6. We caution the reader not to confuse the above notation with the commonly used
W k,p notation for Sobolev spaces, where k is an order of differentiation and p an Lp exponent.

In each of our three main theorems we’ll use perturbations from one of the following admissible
classes.



MULTI-D VISCOUS SHOCKS I 11

Definition 2.2. For p ∈ {0, 1, 2, . . . } define the sets of perturbations AI
p, AII

p , AIII
p by

AI
p = {v0(x, y) = div(x,y)V, where V = (V1, . . . , Vd)

satisfies 〈V 〉2;p+2 + 〈V 〉(2,1);2 <∞}
AII

p = {v0(x, y) : 〈v0〉2;p+2 + 〈v0〉(2,1);2 <∞}
AIII

p = {v0(x, y) : 〈v0〉2;p+2 + 〈v0〉1;2 <∞}.
AIV

p = {v0(x, y) = div(x,y)V, where V = (V1, . . . , Vd)

satisfies 〈V 〉2;p+2 + 〈V 〉1;2 <∞}.
AV = {v0(x, y) : 〈v0〉∞;0 + 〈v0〉1;0 <∞}.

(2.26)

2.7. Assumption on the perturbation v0. Each theorem will make one of the following as-
sumptions:

(H5)I v0 ∈ AI
p for some p > d

2 .
(H5)II v0 ∈ AII

p for some p > d
2 .

(H5)III v0 ∈ AIII
p for some p > d

2 .
(H5)IV v0 ∈ AIV

p for some p > d
2 .

(H5)V v0 ∈ AV .

3. Auxiliary assumption on the shock

In parts of our treatment of nonzero mass perturbations, we shall have to augment the above
assumptions with an additional structural assumption (H6) as in [Z1] (also called (H6) there). Let
(ξ, τ, η) denote (real) variables dual to (x, t, y).

Notation 3.1. Let A(±∞) = limx→±∞A(x) and define Aj(±∞), j = 2, . . . , d similarly. Let the
matrix symbols of the linearized invisicid limiting operators be

L±(ξ, τ, η) = iτI +A(±∞)iξ +
d∑

j=2

Aj(±∞)iηj(3.1)

and the corresponding scalar symbols

p±(ξ, τ, η) = detL±(ξ, τ, η).(3.2)

Definition 3.1. Define the glancing set G to be the set of (τ, η) ∈ Rd \ 0 such that for at least one
choice of sign the equation p±(ξ, τ, η) = 0 has a real root ξ of multiplicity ≥ 2.

Clearly, at any point (τ0, η0) ∈ G at least one real root ξ of p±(ξ, τ, η) = 0, has a branch
singularity. (The degree of singularity with respect to τ (η held fixed) is equal to the integer s in
(3.5) below.)

The hyperbolicity assumption (H2) implies there exist real functions τ±1 (ξ, η), . . . , τ±n (ξ, η), smooth
and homogeneous of degree one in (ξ, η) �= 0, such that

τ1 < · · · < τn and

p±(τ, ξ, η) = (τ − τ±1 (ξ, η)) · · · (τ − τ±n (ξ, η)).
(3.3)

If (τ0, η0) ∈ G, there exist ξ0 and for at least one choice of sign a τ±j (with j uniquely determined
by the choice of ± and (ξ0, τ0, η0)) such that (dropping ±)

τ0 = τj(ξ0, η0), and

∂ξτj(ξ0, η0) = 0.
(3.4)
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Moreover, the multiplicity of ξ0 as a root of p(ξ0, τ0, η0) = 0, and thus the degree of singularity
(with respect to τ) of the associated branch point, is equal to s (2 ≤ s ≤ n) if and only if

∂kξ τj(ξ0, η0) = 0, for k = 1, . . . , s− 1, but

∂sξτj(ξ0, η0) �= 0.
(3.5)

Note that this implies at the same time that ∂ξτj(·, η0) has no roots nearby ξ0 other than ξ0 itself.
Clearly, (3.5) and the implicit function theorem imply that for any such (τ0, ξ0, η0) and function

τj , there exists a function ξ(η) such that locally near (ξ0, η0)

∂s−1
ξ τj(ξ, η) = 0 precisely when ξ = ξ(η).(3.6)

Note that ξ(η) is smooth and homogeneous of degree one away from η = 0. We can now state the
auxiliary assumption (H6):

(H6) For any (τ0, η0) ∈ G, corresponding root ξ0 of multiplicity s, and functions τj and ξ(η) as
above, we have

∂kξ τj(ξ(η), η) = 0 for k = 1, . . . , s− 1 and η near η0.(3.7)

In other words ξ0 persists as a root ξ(η) of multiplicity s of

p(ξ(η), τj(ξ(η), η), η) = 0

for η near η0, and (by the remark below (3.5)) there are no other nearby roots of multiplicity > 1.
A compactness argument using the fact that G is a closed conic set shows that under the as-

sumption (H6) all such branch singularities are confined to a finite union of surfaces

τ = τj,l(η) ≡ τj(ξl(η), η)
on which the singularity (with respect to τ) has order equal to sl, the multiplicity of the root ξl(η);
this is the version of (H6) stated in [Z1]. We’ll usually relabel and replace the double index j, l by
a single index as in τ = τk(η). Note that graphs τk may well intersect.

Remark 3.1. 1. The statements of this subsection require only slight modification when the as-
sumption of strict hyperbolicity (H2) is relaxed to the following more general hypothesis of [Z1],
[MZ]:

(H2’):
∑d

j=1 df
j(UR,L)ξj has semisimple real eigenvalues of constant multiplicity for ξ ∈ Rd \ 0

(nonstrict hyperbolicity with constant multiplicity).
In this case the multiplicity of ξ0 as a root of p(ξ0, τ0, η0) = 0 is some integer multiple of s as in

(3.5).
2. Condition (H6) is automatic in the cases d = 1, 2 and also in any dimension for rotationally

invariant problems. In 1D the glancing set is empty. In the 2D case the homogeneity of τj and
its derivatives implies that the ray through (ξ0, η0) is the graph of ξ(η) and that (H6) holds there.
(H6) also clearly holds if no real root ξ of p(ξ, τ, η) = 0 has multiplicity > 2, in particular in the
case that all eigenvalues τj(ξ, η) are linear or convex/concave in their dependence on ξ.

3. In the equations of gas dynamics and MHD, all characteristics are linear combinations of
(ξ, η) and |ξ, η|, hence the above results show that (H6) is valid whenever the constant multiplicity
assumption (H2’) applies. Thus, we see that (H6), though mathematically restrictive, nonetheless
allows important physical applications.

4. The word glancing is used in Definition 3.1 since null bicharacteristics of p through points
(ξ, τ, η) with ξ a root of multiplicity ≥ 2 run parallel to x = 0.
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5. In [Z1], there were made besides (H6) two additional auxiliary assumptions (H5) (different
from our (H5) here) and (H7); however, these hold automatically in the case of uniform stability
considered here (uniform inviscid stability, in the language of the reference). Thus, within the
context under consideration, we make here exactly the same assumptions as were made in [Z1], and
will obtain the same results, though by quite different techniques.

4. Main results

Recall the definition of nonlinear stability of the viscous profile ψ with respect to a family of
perturbations (Definition 1.1).

Theorem 4.1 (zero mass, d ≥ 3). Assume (H1),(H2),(H3),(H4), and(H5)I , where the number of
space dimensions is d ≥ 3. Then the viscous profile ψ is nonlinearly stable with respect to AI

p.

Theorem 4.2 (zero mass, d ≥ 1). Assume (H1),(H2),(H3),(H4),(H5)IV , and (H6), where the num-
ber of space dimensions is d ≥ 1. Then the viscous profile ψ is nonlinearly stable with respect to
AIV

p .

Theorem 4.3 (nonzero mass, d ≥ 5). Assume (H1),(H2),(H3),(H4), and
(H5)II , where the number of space dimensions is d ≥ 5. Then the viscous profile ψ is nonlinearly
stable with respect to AII

p .

Theorem 4.4 (nonzero mass, d ≥ 3). Assume (H1),(H2),(H3),(H4),(H5)III , and (H6), where the
number of space dimensions is d ≥ 3. Then the viscous profile ψ is nonlinearly stable with respect
to AIII

p .

Theorem 4.5 (nonzero mass, d ≥ 2). Assume (H1),(H2),(H3),(H4),(H5)V , and (H6), where the
number of space dimensions is d ≥ 2. Then the viscous profile ψ is nonlinearly stable with respect to
AV . Moreover, the perturbation u decays in Lp, p ≥ 2 at the rate |u|p(t) ≤ C(p, d)(1 + t)−

d−1
2

(1− 1
p
)

of a (d− 1)-dimensional heat kernel, where C(p, d) is monotone increasing in p, finite for p <∞,
and uniformly bounded for d ≥ 3.

Remark 4.1. 1. Clearly, Theorem 4.5 implies Theorem 4.4; however, we shall prove them by rather
different arguments, and so we maintain the distinction for easy referencing.

2. The nonzero mass case for d = 1 is treated by estimation of Green’s functions in [ZH], [Z2].
3. We can drop (H6) in the above theorems when d = 1 or 2 (Remark 3.1.2).
4. (H1) can be weakened to f j ∈ C

[d]
2

+5(Rn,Rn) for Theorems 4.1–4.4 and f j ∈ C2 for Theorem
4.5.

Part 2. Algebraic preparation

5. Doubling and conjugation

As explained in the introduction, we want to rewrite the 2n × 2n system (2.19) on R as an
equivalent 4n×4n “doubled” boundary problem on x ≥ 0. We have (with (x, y) in place of (x1, x

′))

Ux −G(x, λ, η)U = F
ΓU = 0 on x = 0,

(5.1)

where in the ± notation (1.1),
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U(x, λ, η) = (U+,U−)

G(x, λ, η) =
(
G+ 0
0 −G−

)
,

F =
(
F+

−F−

)
, and

ΓU = U+ − U−.

(5.2)

Recall, for x ≥ 0

G±(x, λ, η) =
(
A(±x) I
s(±x, λ, η) 0

)
(5.3)

Henceforth, we’ll drop the script notation and write U = (U+, U−).

Remark 5.1. Both here and in the sequel [GMWZ2] there are several advantages to working with
the doubled boundary problem. Instead of having two distinct limiting problems (as x → ±∞),
after doubling we have just one (5.13). This will allow us to conjugate the original problem on the
whole line to a single constant coefficient problem on x ≥ 0. The doubled boundary formulation
allows one readily to construct high order approximate solutions for the small viscosity problem
with prepared data ([GW]). Perhaps most important, we are now in a position to use the machinery
of Kreiss-type symmetrizers to prove energy estimates.

The limiting constant coefficient problem plays an essential role in our analysis, and we must
first understand the spectral properties of the limiting matrix:

G(∞, λ, η) =
(
G+(∞, λ, η) 0

0 −G−(∞, λ, η)

)
,(5.4)

where

G±(∞, λ, η) = lim
x→+∞

G±(x, λ, η) =
(
A(±∞) I
s(±∞, λ, η) 0

)
.

Proposition 5.1 (Spectral properties of G(∞, λ, η), [Z],[ZS]).
1. When ρ > 0 and γ ≥ 0, G(∞, λ, η) has 2n eigenvalues counted with multiplicities in 
µ > 0 and
2n eigenvalues in 
µ < 0.

2. G(∞, 0, 0) has 0 as a semisimple eigenvalue of multiplicity 2n. The nonvanishing eigenvalues
( fast modes) are those of A(+∞) (k positive, n − k negative) and −A(−∞) (l positive, n − l
negative).

3. Consider the multiple zero eigenvalue of G(∞, ζ̂, 0) (polar coordinates). For γ̂ > δ > 0, this
eigenvalue splits for ρ > 0 small into k + l = n− 1 slow decaying modes

µ = cδρ+O(ρ2) where 
cδ < 0(5.5)

and (n− k) + (n− l) = n+ 1 slow growing modes (
cδ > 0).

Here “decaying” and “growing” refer to the corresponding exponential solutions eµxv.

Proof. (1) We focus on G+(∞, λ, η); a parallel argument handles −G−(∞, λ, η).
Note that µ is an eigenvalue of G+(∞, λ, η) if and only if

[µ2 − |η|2 − µA(+∞)− i
d∑
2

Aj(+∞)ηj − λ]v = 0(5.6)
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for some nonzero v. Setting µ = iη1, η1 ∈ R yields

det[−|η1, η|2 − i
d∑
1

Aj(+∞)ηj − λ] = 0,(5.7)

which by (2.1) has no solution with 
λ ≥ 0, except for (η1, η) = 0, λ = 0. Thus, there are no
eigenvalues with 
µ = 0 when ρ > 0, γ ≥ 0, and the number of eigenvalues in each of 
µ > 0 and

µ < 0 is constant then. We may choose τ = 0, η = 0 and γ large to obtain an obvious count.

(2) This is clear since G+(∞, 0, 0) =
(
A(+∞) I

0 0

)
.

(3) Consider the characteristic equation in polar coordinates (drop the hats)

[µ2 − ρ2|η|2 − µA(+∞)− iρ
d∑
2

Aj(+∞)ηj − ρλ]v = 0,(5.8)

and posit the expansions

µ = cρ+O(ρ2), v = r +O(ρ).(5.9)

Compare terms of order ρ to obtain

(cA(+∞) + i
d∑
2

Aj(+∞)ηj + λ)r = 0, or[
c+

(
i

d∑
2

Aj(+∞)ηj + λ

)
A(+∞)−1

]
A(+∞)r = 0.

(5.10)

Thus, c is an eigenvalue of −(i
∑d

2Aj(+∞)ηj + λ)A(+∞)−1, which by hyperbolicity has no center
manifold for γ > 0. So the stable/unstable roots 
c < 0/
c > 0 separate to first order in ρ. They
may be counted by setting η = 0, and using the fact that A(+∞) has k positive eigenvalues.

The conjugation argument is based on the following lemma [MZ]:

Lemma 5.1. Let Ω = {(λ, η) : |λ, η| ≤ C, γ ≥ 0}. There is a matrix W (x, λ, η) defined and smooth
on [0,∞)× Ω such that

(a) W−1 is uniformly bounded and there is a θ > 0 such that

W (x, λ, η) = I +O(e−θx).(5.11)

(b) W satisfies

∂xW = G(x)W (x)−W (x)G(∞).(5.12)

The proof involves an application of the Gap Lemma [GZ] to the operator adG(∞) = [G(∞), ·].
The substitution U =WV transforms the equation (5.1) into

Vx −G(∞, λ, η)V =W−1F

Γ̃(x, λ, η)V = 0 on x = 0,
(5.13)

where Γ̃(x, λ, η)V = ΓW (x, λ, η)V . Thus, estimates for (5.13) imply estimates for (5.1).
We’ll refer to W as the MZ conjugator.
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6. Block structure and standard symmetrizers

6.1. Block structure. In this subsection we present some results for the viscous shock problem
whose proofs are essentially identical to results in [MZ] for the viscous Dirichlet problem. We’ll
recall or sketch some proofs and otherwise refer the reader to [MZ]. G(∞) is the limiting 4n× 4n
constant coefficient matrix defined in (5.4). Recall ζ = (τ, γ, η).

Lemma 6.1. There is a C∞ invertible matrix T (ζ) defined on a neighborhood of ζ = 0 such that
T−1G(∞)T has the block diagonal form

T−1G(∞)T =


PR 0 0 0
0 HR 0 0
0 0 PL 0
0 0 0 HL

 ≡ G1(∞),(6.1)

where HR, HL, PR, and PL are C∞ functions of ζ satisfying

HR(0) = 0, HL(0) = 0, PR(0) = A(+∞), PL(0) = −A(−∞)

HR(ζ) = −s(+∞, ζ)A(+∞)−1 +O(|ζ|2)
HL(ζ) = s(−∞, ζ)A(−∞)−1 +O(|ζ|2),

(6.2)

and

T (0) =


I −A(+∞)−1 0 0
0 I 0 0
0 0 I A(−∞)−1

0 0 0 I

 .(6.3)

The eigenvalues of PR(ζ) and PL(ζ) satisfy |
µ| > C > 0 on some neighborhood of ζ = 0.

Proof. We give the argument for the G+(∞, ζ) block in (5.4), the other block being treated similarly.
Proposition 5.1 (including its proof) shows that for small |ζ|, the eigenvalues of G+(∞, ζ) may be

grouped into n fast modes and n slow modes (fast and slow having been defined in that Proposition).
The nonvanishing (i.e., fast) eigenvalues are those of A(+∞), so there is a smooth family of matrices
TR(ζ) defined for ζ small such that

T−1
R G+(∞, ζ)TR =

(
PR 0
0 HR

)
,(6.4)

where HR(0) = 0, PR(0) = A(+∞). TR is of course not uniquely determined, but it may be chosen
such that

TR(0) =
(
I −A(+∞)−1

0 I

)
.(6.5)

This together with a direct perturbation computation shows that the eigenvalues of G+(∞, ζ) close
to 0 correspond to a matrix of the form HR(ζ) given in (6.2).

The eigenvalues of PR(ζ) have the stated property since the eigenvalues of A(+∞) are nonvan-
ishing.

Remark 6.1. 1. Observe that the matrix −s(+∞, ζ)A(+∞)−1 appeared already in the last para-
graph of the proof of Proposition 5.1.

2. Our expressions for T (0) and HR(ζ) differ slightly from the corresponding expressions in
Lemma 2.7 of [MZ]. For example, A(+∞)−1 occurs to the right of −s(+∞, ζ) in (6.2) instead of
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to the left as in [MZ]. This is because our reduction to a first order system leads to G(x, λ, η) as in
(2.18), while the corresponding matrix in [MZ] (in our notation) is(

0 I
s A

)
.

In the following Proposition we use the polar coordinate notation introduced in (2.20). Set

HR(ζ) = ρĤR(ζ̂, ρ)(6.6)

and do similiarly for HL(ζ). Conjugation by a constant coefficient matrix T1 (with only zeros and
ones) changes G1 in (6.1) to T−1

1 G1T1 =

G2(∞, ζ) =


PR 0 0 0
0 PL 0 0
0 0 HR 0
0 0 0 HL

(6.7)

Proposition 6.1 (Block structure). For all ζ̂ with γ̂ ≥ 0 there is a neighborhood ω of (ζ̂, 0) in
Sd × R+ and there are C∞ matrices T2(ζ̂, ρ) on ω such that T−1

2 G2T2 has the following block
diagonal structure

T−1
2 G2T2 =

P+(ζ) 0 0
0 P−(ζ) 0
0 0 HB(ζ̂, ρ)

 ≡ GB(∞).(6.8)

Here the eigenvalues of P+ (resp. P−) belong to a compact set in 
µ > 0 (resp. 
µ < 0) and in
addition


P+ =
1
2
(P+ + P ∗+) ≥ cI and −
P− ≥ cI on ω(6.9)

for some c > 0.
We have HB(ζ̂, ρ) = ρĤB(ζ̂, ρ) with

ĤB(ζ̂, ρ) =

Q1 · · · 0
...

. . .
...

0 · · · Qp

 (ζ̂, ρ).(6.10)

The blocks Qk are νk × νk matrices which satisfy one of the following conditions:
i) 
Qk is positive definite.
ii) 
Qk is negative definite.
iii) νk = 1, 
Qk = 0 when γ̂ = ρ = 0, and ∂γ̂(
Qk)∂ρ(
Qk) > 0.
iv) νk > 1, Qk has purely imaginary coefficients when γ̂ = ρ = 0, there is µk ∈ R such that

Qk(ζ̂, 0) = i


µk 1 0

0 µk
. . . 0

. . . . . . 1
· · · µk

 ,(6.11)

and the lower left corner a of Qk satisfies ∂γ̂(
a)∂ρ(
a) > 0.
Moreover, the matrix T2 can be taken of the form

T2(ζ̂, ρ) =
(
TP (ζ) 0

0 TH(ζ̂, ρ)

)
,(6.12)

for C∞ functions TP and TH (recall Remark 2.3).
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Sketch of proof. The ability to choose TP (ζ) conjugating the (PR, PL) block in G2 to the (P+, P−)
block in GB follows directly from the nonvanishing of the eigenvalues of PR, PL as described in
Proposition 6.1.

The blocks HR and HL are conjugated separately to block structure as in [MZ]. Thus, there is a
k0 such that the blocks Q1, . . . , Qk0 in ĤB correspond toHR, while blocks Qk0+1, . . . , Qp correspond
to HL.

The argument in [MZ] is a modification of the classic perturbation argument of Kreiss [K], the
difference being that now the perturbation is performed with respect to the parameters γ̂ and ρ,
instead of just γ̂ as in [K]. A key point, here as in [MZ], is that the assumptions on the original
parabolic system, in particular (2.1), imply that the derivatives appearing in (iii) and (iv) above
are nonzero and of the same sign. In [K] there was one derivative to consider, ∂γ̂
Qk (resp. ∂γ̂
a),
and this was nonzero as a consequence of his strict hyperbolicity assumption. The sign condition
in (iii) and (iv) allows one to construct symmetrizers by a small modification of the ansatz used
in [K]. (An extra term is added to the kth block of the symmetrizer corresponding to the extra ρ
parameter.)

Definition 6.1. Blocks satisfying condition (iv) in the above theorem will be referred to as glancing
blocks. These correspond to coalescing eigenvalues.

6.2. Decompositions of C4n. The conjugation of G(∞, ζ) to block structure induces decompo-
sitions of C4n that are important in the construction of the symmetrizer.

Definition 6.2. For ζ �= 0 let F±(ζ) denote the direct sum of the generalized eigenspaces of
G(∞, ζ) corresponding to eigenvalues µ with ±
µ > 0.

By Proposition 5.1 the spaces F±(ζ) each have dimension 2n and

C
4n = F+(ζ)⊕ F−(ζ),(6.13)

but the projections are generally not locally uniformly bounded with respect to ζ. Indeed, if the
basepoint X0 = (ζ̂, 0) in Proposition 6.1 is such that ĤB(X0) has one or more glancing blocks, the
projections do blow up near X0.
F±(ζ) do not vary continuously near ζ = 0, so it is better to write F±(ζ̂, ρ), where ζ̂ ∈ Sd

and (initially) ρ > 0. In [Z1] it is shown that these spaces vary smoothly (even analytically) in
{ρ > 0, γ̂ > 0}. In addition, they extend continuously to {ρ ≥ 0, γ̂ ≥ 0} (this can be seen by
arguing as in [CP], Chapter 7). For ρ > 0, F±(ζ̂, ρ) are the spaces of boundary values at x = 0 of
growing (resp., decaying) solutions of

Ux −G(∞, ζ)U = 0 on x ≥ 0.

For T, T1, T2 as defined earlier in this section, set T = TT1T2 and observe that the block
form (6.8) of GB(∞) = T −1G(∞)T corresponds to a partition of the vectors U = T −1V =
(u+, u−, u1, . . . , up). Denote by αj the number of eigenvalues of Qj with 
µ < 0 for γ̂ > 0 (or
ρ > 0), and write

uj = (uj−, uj+)(6.14)

where uj− consists of the first αj components of uj .
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Next set
UP+ = (u+, 0, 0, . . . , 0)

UP− = (0, u−, 0, . . . , 0)

UH+ = (0, 0, (0, u1+), . . . , (0, up+))

UH− = (0, 0, (u1−, 0), . . . , (up−, 0)),

(6.15)

and write

U = UP+ + UP− + UH+ + UH−

U± = UP± + UH±

UP = UP+ + UP−

UH = UH+ + UH− .

(6.16)

Corresponding to (6.15) we have the decomposition

C
4n = EP+ ⊕ EP− ⊕ EH+ ⊕ EH− ,(6.17)

where EP+ is the subspace of all vectors of the form (u+, 0, 0, . . . , 0), etc..
Proposition 5.1 shows these subspaces have dimensions

dimEP+ = k + l = n− 1

dimEP− = (n− k) + (n− l) = n+ 1

dimEH+ = (n− k) + (n− l) = n+ 1
dimEH− = k + l = n− 1.

(6.18)

Applying T (ζ̂, ρ) to (6.17) we obtain the smooth decomposition with uniformly bounded projec-
tions

C
4n = FP+(ζ̂, ρ)⊕ FP−(ζ̂, ρ)⊕ FH+(ζ̂, ρ)⊕ FH−(ζ̂, ρ),(6.19)

where FP+ = T (ζ̂, ρ)EP+, etc..
Recall that T is C∞ and defined locally near some basepoint X0 = (ζ̂, 0) ∈ Sd

+ × R+. Block by
block analysis (see [CP], Chapter 7, Remark 3.6) using the special form (6.11) of Q(X0) shows that

FP−(X0)⊕ FH−(X0) = F−(X0)(6.20)

where F−(ζ̂, ρ) is the continuous extension to Sd
+ × R+ of the space introduced in Definition 6.2.

Remark 6.2. 1. We stress that the analogue of (6.20) is not true for F+(X0). It is clear that such a
property would be inconsistent with the fact that the projections in (6.19) are uniformly bounded
near X0, while those in (6.13) are generally not.

2. If the basepoint X0 is such that none of the blocks Qk(X0) in (6.10) are glancing, then (6.20)
remains true for (ζ̂, ρ) near X0. Otherwise (6.20) is not necessarily true for nearby points distinct
from X0.

More precisely, we can decompose FH−(ζ̂, ρ) by blocks in the obvious way

FH−(ζ̂, ρ) =
p⊕

j=1

FHj−(ζ̂, ρ).(6.21)
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Here

FHj−(ζ̂, ρ) = T (ζ̂, ρ)EHj− ,(6.22)

where EHj− is the subspace of EH− consisting of all vectors of the form (0, 0, 0, . . . , (uj−, 0), 0, . . . ).
We have

FHj−(X0) ⊂ F−(X0),(6.23)

but the same is not necessarily true for nearby points different from X0 when the Qj block is
glancing.

In constructing degenerate symmetrizers we sometimes need a decomposition for which properties
like (6.23) hold in a full neighborhood of the basepoint. For this we need a further conjugation, this
time by a matrix T3(ζ̂, ρ) that is generally not C∞ but merely continuous. The following Lemma
is essentially Lemma 2.6 of [K].

Lemma 6.2. Let Qk in (6.10) be a glancing block of size νk. There exists a unitary matrix
TQk(ζ̂, ρ), defined in a neighborhood of X0 and with uniformly bounded inverse, such that TQk(X0) =
I and

T−1
QkQkTQk(ζ̂, ρ) =


κk1 ∗ · · · ∗ ∗
0 κk2 ∗ · · · ∗
...

...
. . . . . .

...
0 · · · · · · κkνk−1 ∗
0 · · · · · · 0 κkνk

 .(6.24)

TQk can be chosen so that for γ̂ > 0 the eigenvalues κkj with 
κkj < 0 stand in the first rows. TQk
is C∞ in ρ > 0 but just continuous up to ρ = 0.

Definition 6.3. Define T3 to be a block diagonal matrix with the same number and size of blocks
as GB(∞), where each glancing block Qk of GB is replaced by TQk , and each nonglancing block of
GB is replaced by an identity matrix of the same size.

Using T3 we obtain a slight modification of the decomposition (6.17)

C
4n = EP+ ⊕ EP− ⊕ EH+,c(ζ̂, ρ)⊕ EH−,c(ζ̂, ρ),
U = UP+ + UP− + UH+,c + UH−,c .

(6.25)

where EH±,c(ζ̂, ρ) = T3(ζ̂, ρ)EH± . The subscript “c” is a reminder that T3 is merely continuous up
to ρ = 0.

Apply T = TT1T2 to this decomposition to obtain a continuous decomposition near (6.19)

C
4n = FP+(ζ̂, ρ)⊕ FP−(ζ̂, ρ)⊕ FH+,c(ζ̂, ρ)⊕ FH−,c(ζ̂, ρ),(6.26)

where FH±,c(ζ̂, ρ) = T (ζ̂, ρ)EH±,c(ζ̂, ρ). Here again the projections are uniformly bounded.
In place of (6.20) we now have

FP−(ζ̂, ρ)⊕ FH−,c(ζ̂, ρ) = F−(ζ̂, ρ)(6.27)

for (ζ̂, ρ) in a neighborhood of X0.
Corresponding to (6.23) we have

FHj−,c(ζ̂, ρ) ⊂ F−(ζ̂, ρ)(6.28)

near X0, where

FHj−,c(ζ̂, ρ) = T (ζ̂, ρ)T3(ζ̂, ρ)EHj− .(6.29)
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Definition 6.4. Let EHj− be as in (6.22) and similarly define EHj+ . Denote the images of these
spaces under T3(ζ̂, ρ) by EHj−,c and EHj+,c respectively. Thus, we have decompositions

EH± =
p⊕

j=1

EHj±

EH±,c =
p⊕

j=1

EHj±,c ,

(6.30)

EHj = EHj+ ⊕ EHj− = EHj+,c(ζ̂, ρ)⊕ EHj−,c(ζ̂, ρ),(6.31)

and with obvious notation
UHj = UHj+ + UHj−

UHj = UHj+,c + UHj−,c .
(6.32)

6.3. Standard symmetrizers. The n×n second order initial value problem we begin with leads
to a 4n× 4n doubled first order boundary problem on x ≥ 0.

Recall the doubled boundary problem (5.1)

Ux −G(x, λ, η)U = F
ΓU = 0 on x = 0,

(6.33)

where Γ is a 2n× 4n matrix giving the doubled boundary conditions.
MZ conjugation usingW (x, ζ) (Lemma 5.1) transforms G(x, ζ) to the constant coefficient matrix

G(∞, ζ), and further conjugation using T = TT1T2 leads to GB(∞) as in Proposition 6.8. In place
of (6.33) we must now study

Ux −GB(∞, ζ̂, ρ)U = F

Γ1(ζ̂, ρ)U = 0 on x = 0,
(6.34)

where Γ1 = ΓWT .
Here we wish to illustrate the use of Kreiss symmetrizers to prove estimates (especially in the low

frequency region) in a simpler situation where Γ1 is replaced by an artificial boundary condition
Γa that satisfies the uniform Lopatinski condition near the basepoint X0.

Let F−(ζ̂, ρ) be the 2n−dimensional continuous extension of the decaying generalized eigenspace
for G(∞, ζ) defined before, and set

E−,c(ζ̂, ρ) = T −1
F−(6.35)

which is the same as EP− ⊕ EH−,c(ζ̂, ρ) in the notation of (6.25).

Definition 6.5. A boundary operator Γa(ζ̂, ρ) depending continuously on (ζ̂, ρ) is said to satisfy
the uniform Lopatinski condition at X0 = (ζ̂, 0) ∈ Sd

+ × R+ if there exists C > 0 such that

|Γa(X0)u| ≥ C|u|(6.36)

for u ∈ E−,c(X0).

Remark 6.3. 1. By continuity of Γa and E−,c, if Γa satisfies the uniform Lopatinski condition at
X0, it satisfies (6.36) uniformly in a neighborhood of X0.

2. Let

E− = EP− ⊕ EH− ,(6.37)
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the summands on the right being as in (6.17). Since T3(X0) = I, T3 is continuous at X0, and
E−,c = T3E−, if Γa satisfies the uniform Lopatinski condition at X0 we also have

|Γa(ζ̂, ρ)u| ≥ C|u|(6.38)

for u ∈ E− uniformly near X0.
3. Γ1 in (6.34) fails to satisfy the uniform Lopatinski condition at X0 (see Corollary 7.1). This

degeneracy forces us to be careful in Part 2 (Lemma 7.1, e.g.) about the distinction between E−,c
and E−, since it prevents us from simply arguing by continuity as above to justify interchanging
these two spaces.

The symmetrizer for the problem
Ux −GB(∞)U = F
ΓaU = g on x = 0

(6.39)

is a 4n× 4n matrix constructed by blocks in a neighborhood of X0

S(ζ̂, ρ) =


S+(ζ)

S−(ζ)
S1(ζ̂, ρ)

. . .
Sp(ζ̂, ρ)

 ,(6.40)

where the S±, Sj are C∞ functions of their arguments. We’ll sometimes write

S =
(
SP

SH

)
,(6.41)

where in fact SP can be taken to be simply

SP =
(
CI

−I

)
(6.42)

for some large C > 0.
In the following discussion U = U(x, ζ), 〈 , 〉 denotes the inner product in C4n,

(U(x, ζ), V (x, ζ)) ≡
∫ ∞

0
〈U(x, ζ), V (x, ζ)〉dx,(6.43)

and
|U |2 = |U(x, ζ)|L2(x)

|U | = |U(0, ζ)|.(6.44)

In [MZ] the Sj are constructed so that S = S∗, with interior estimates

(Re SGB(∞)UP , UP ) ≥ C|UP |22
(Re SGB(∞)UHj , UHj ) ≥ (γ + ρ2)|UHj |22,

(6.45)

as well as boundary estimates

(a) (SUP , UP ) ≥ C|UP+ |2 − |UP− |2

(b) (SUHj , UHj ) ≥ C|UHj+ |2 − |UHj− |2
(6.46)

both holding uniformly near the basepoint X0.
Assuming Γa satisfies the uniform Lopatinski condition at X0 we have

|U−|2 ≤ C|ΓaU−|2 ≤ C(|ΓaU |2 + |U+|2)(6.47)
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at X0 and in fact uniformly near X0 in view of Remark 6.3(2).
Using the previous two estimates we obtain

(SU,U) ≥ C|U+|2 − |U−|2 = C|U+|2 + |U−|2 − 2|U−|2

≥ C|U+|2 + |U−|2 − C1(|ΓaU |2 + |U+|2)
≥ C2|U+|2 + |U−|2 − C1|ΓaU |2,

(6.48)

provided C was big enough.
From (6.45), (6.48), and the identity

−〈SU(0), U(0)〉 =
∫ ∞

0
∂x〈SU,U〉dx = (2
SGBU,U) + 2
(SF,U),(6.49)

we obtain the [MZ]-type estimate

(|UP |22 + (γ + ρ2)|UH |22) + |U |2 ≤

C

(
|FP |22 +

1
(γ + ρ2)

|FH |22
)

+ C|ΓaU |2,
(6.50)

uniformly near X0. Here we’ve used

|(SF,U)| ≤ (Cδ|FP |22 + δ|UP |22) +
(

Cδ

(γ + ρ2)
|FH |22 + δ(γ + ρ2)|UH |22

)
.(6.51)

7. Evans function for the doubled boundary problem

In this section we’ll show how the first order vanishing of the Evans function D(ζ) for the 2n×2n
system (2.19) on R implies a degenerate Lopatinski condition for the 4n × 4n doubled boundary
problem (5.1)

Ux −G(x, ζ)U = F
ΓU = 0 on x = 0,

(7.1)

where U = (U+, U−) and ΓU = U+−U−. We should mention that whenever U represents a solution
to (7.1), the notation U± is that of (5.2), so

U+ = (U1, . . . , U2n), U− = (U2n+1, . . . , U4n).

The U± notation of (6.16) is reserved for solutions U to the problem (∂x −GB).
The Evans function for (7.1), D(ζ̂, ρ), is a determinant that measures the degree of linear depen-

dency between two 2n−dimensional subspaces of C4n; namely, ker Γ and E−(ζ̂, ρ). The latter space
is defined for γ̂ > 0, ρ > 0 as the space of boundary values at x = 0 of decaying solutions to the
homogeneous problem

Ux −G(x, ζ)U = 0.(7.2)

Like F−(ζ̂, ρ) (recall Definition (6.2)), E−(ζ̂, ρ) has a continuous extension to γ̂ ≥ 0, ρ ≥ 0. In fact
it is easy to check that we have

E−(ζ̂, ρ) =W (0, ζ̂, ρ)F−(ζ̂, ρ),(7.3)

where W is the MZ conjugator of Lemma 5.1.
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Remark 7.1. The individual functions UR,L
j (x, ζ̂, ρ) appearing in the definition of D(ζ) are locally

analytic in (ζ̂, ρ) on {γ̂ > 0, ρ > 0}. This is a consequence of a standard contraction mapping
argument [Co] together with the corresponding fact for solutions to the systems obtained from
(2.19) by taking limits as x → ±∞. This argument also shows that the individual solutions
corresponding to fast decaying modes extend analytically to {γ̂ ≥ 0, ρ ≥ 0}. The fast decaying
solutions are independent of ζ̂ at ρ = 0, and so extend smoothly as functions of ζ as well.

Since the subspace E−(ζ̂, ρ) has a continuous extension to {γ̂ ≥ 0, ρ ≥ 0}, we can if necessary
redefine the individual solutions UR,L

j corresponding to slowly decaying modes so that they have
continuous extensions to γ̂′ ≥ 0, ρ ≥ 0. Henceforth, we assume this has been done.

Using Notation 1.1 we set for x ≥ 0

UR
j+(x, ζ̂, ρ) = UR

j (x, ζ̂, ρ)

UL
j−(x, ζ̂, ρ) = UL

j (−x, ζ̂, ρ).
(7.4)

Let φ(x) as before be the derivative of the profile ψ. Let e1 ∈ C2n be the unit vector

e1 =
(φ(0), 0)
|φ(0)| ,(7.5)

and extend to an orthonormal basis e1, . . . , e2n of C2n.

Definition 7.1. 1. Define the Evans function for the doubled boundary problem (∂x−G,Γ) (7.1)
as the 4n× 4n determinant

D(ζ̂, ρ) = det
(
e1 · · · e2n UR

1+ · · · UR
n+ 0 · · · 0

e1 · · · e2n 0 · · · 0 UL
1− · · · UL

n−

)
|x=0.(7.6)

2. Recalling the normalization (2.25) we set

E−,φ(ζ̂, ρ) = span
(
UR

1+

UL
n−

)
|(0,ζ̂,ρ).(7.7)

For ε > 0 fixed denote by Ec
−,φ,ε(ζ̂, ρ) any complementary subspace in E−(ζ̂, ρ) varying continuously

with (ζ̂, ρ) such that

E−(ζ̂, ρ) = E−,φ(ζ̂, ρ)⊕ Ec
−,φ,ε(ζ̂, ρ)(7.8)

with uniformly bounded projections for 0 ≤ ρ ≤ ε.
Proposition 7.1. 1. Let D(ζ̂, ρ) be the Evans function defined in Lemma 2.1. Then

D(ζ̂, ρ) = (−1)nD(ζ̂, ρ).(7.9)

2. Under the Evans assumption (H4) we have
(a) For any choice of 0 < δ < R there is a constant Cδ,R such that when δ ≤ ρ ≤ R,

|Γu| ≥ Cδ,R|u| for u ∈ E−(ζ̂, ρ).(7.10)

(b) There exist positive constants C1, C2, δ such that

C1ρ|u| ≤ |Γu| ≤ C2ρ|u| for u ∈ E−,φ(ζ̂, ρ)(7.11)

for 0 ≤ ρ ≤ δ.
(c) For Ec

−,φ,ε(ζ̂, ρ) as in (7.8) there exists C > 0 such that

|Γu| ≥ C|u| for u ∈ Ec
−,φ,ε(ζ̂, ρ)(7.12)

for 0 ≤ ρ ≤ ε.
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(d) For any choice of R > 0 there is a constant CR such that for 0 ≤ ρ ≤ R,

|Γu| ≥ CRρ|u| for u ∈ E−(ζ̂, ρ).(7.13)

Proof. 1. Let us denote the matrix in (7.6) by M. Perform the row operation of subtracting the
first row of M (which has 2n components) from the second to see (7.9).

2a. The assumption (H4) implies Γu is nonvanishing for nonzero u ∈ E−(ζ̂, ρ) when ρ > 0. The
existence of Cδ,R thus follows by continuity and compactness.

2b. Perform a column operation to replace the last column of M by
(
UR

1+

UL
n−

)
, and call the

resulting matrix M1. Observe that since these fast modes depend analytically on ρ we have(
UR

1+

UL
n−

)
(0, ζ̂, ρ) =

(
(φ(0), 0)
(φ(0), 0)

)
+

(
c1(ζ̂)
c2(ζ̂)

)
ρ+O(ρ2).(7.14)

Recall the definition of e1 and use linearity of the determinant in the last column to see that if the
coefficient c1 − c2 were to vanish for some ζ̂, then (H4) would be violated. Since

Γ
(
UR

1+

UL
n−

)
= UR

1+ − UL
n−,(7.15)

this gives (7.11).
2c. Let v1(ζ̂, ρ), . . . , v2n(ζ̂, ρ) be the last 2n columns of the matrix M1 defined above. These

vectors form a basis for E−(ζ̂, ρ). Any vector in Ec
−,φ,ε(ζ̂, ρ) has the form of a linear combination

with coefficients depending continuously on (ζ̂, ρ)

w =
2n∑
j=1

cj,ε(ζ̂, ρ)vj .(7.16)

Set c′ε = (c1,ε, . . . , c2n−1,ε). The condition that the projections in (7.8) are uniformly bounded
implies there is an ε0 > 0 such that

|c′ε(ζ̂, ρ)| ≥ ε0|c2n,ε(ζ̂, ρ)|,(7.17)

for 0 ≤ ρ ≤ ε.
In view of (H5) we just need to show that Γw is nonvanishing at ρ = 0 for w as in (7.16), (7.17)

with |(c′ε, c2n,ε)| = 1, since (7.12) then follows by continuity and compactness. Suppose Γw = 0 at
(ζ̂, 0) for some such w. Because of (7.17) some cj,ε with j ≤ 2n− 1, say c1,ε, satisfies

|c1,ε(ζ̂, ρ)|2 ≥
1
2
· min(1

2 ,
ε20
2 )

2n− 1
(7.18)

for ρ near 0. Since Γw = 0 at ρ = 0 and w(ζ̂, ρ) is continuous we have

w(ζ̂, ρ) =
(
a
a

)
(ζ̂) + o(1).(7.19)

Write vj = (vj+, vj−), use column operations to replace v1 in M1 by w, and call the resulting
matrix M2 = (

e1 · · · e2n a(ζ̂) + o(1) v2+ · · · v2n−1,+ (φ(0), 0) +O(ρ)
e1 · · · e2n a(ζ̂) + o(1) v2− · · · v2n−1,− (φ(0), 0) +O(ρ)

)
.(7.20)

(7.18) implies |detM2(ζ̂, ρ)| ≥ C|detM1(ζ̂, ρ)| for some C > 0 uniformly near (ζ̂, 0). But

detM2(ζ̂, ρ) = O(ρ)o(1) as ρ→ 0.(7.21)
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This contradicts the assumed vanishing of detM = detM1 to exactly first order at ρ = 0.

2d. For any fixed (ζ̂, ρ) let u∗ =
(
u+(ζ̂, ρ)
u−(ζ̂, ρ)

)
∈ E−(ζ̂, ρ) be an element where the minimum

min
|u|=1,u∈E−(ζ̂,ρ)

|Γu|(7.22)

is attained. At the cost of modifying D(ζ̂, ρ) by a nonvanishing factor α(ζ̂, ρ) of size ∼ 1, we can
redefine the last 2n columns of M so that u∗ appears in (say) the (2n+ 1)st column of M. Next
perform column operations to replace u∗ by(

u+(ζ̂, ρ)− u−(ζ̂, ρ)
0

)
=

(
Γu∗

0

)
.(7.23)

This shows that |D(ζ̂, ρ)| ≤ C|Γu∗|, so (H4) implies the result.

Next we need to rephrase these estimates in terms of the coordinates for the problem (∂x−GB,Γ1)
(6.30). Recall the decompositions of U ∈ C4n given in (6.16) and (6.25)

U = UP+ + UP− + UH+ + UH−

U = UP+ + UP− + UH+,c + UH−,c ,
(7.24)

and set
U− = UP− + UH− ∈ E−
U−,c = UP− + UH−,c ∈ E−,c(ζ̂, ρ).

(7.25)

Define the one dimensional subspace EP1−(ζ̂, ρ) of EP− by

E−,φ =WT EP1− ,(7.26)

and for ε > 0 fixed, choose a smoothly varying complementary subspace EP2−,ε such that

EP− = EP1−(ζ̂, ρ)⊕ EP2−,ε(ζ̂, ρ)
UP− = UP1− + UP2−,ε

(7.27)

with uniformly bounded projections for 0 ≤ ρ ≤ ε. Then

Ec
−,φ,ε ≡WT (EP2−,ε ⊕ EH−,c)(7.28)

is a choice that works in (7.8).
The next corollary is then an immediate consequence of Proposition 7.1. Here and henceforth,

we’ll often suppress in the notation the dependence of operators and spaces on (ζ̂, ρ). Recall
Γ1 = ΓWT .

Corollary 7.1. There exist positive constants C1, . . . , C4 and δ0 such that for 0 ≤ ρ ≤ δ0
(a) C1ρ|UP1,− | ≤ |Γ1UP1,− | ≤ C2ρ|UP1,− |
(b) |Γ1(UH−,c + UP2,−,ε)| ≥ C3(|UH−,c |+ |UP2,−,ε |)
(c) |Γ1U−,c| ≥ C4ρ|U−,c|.

(7.29)

These estimates hold uniformly near the basepoint X0.

Part (a) of the Corollary shows that Γ1 fails to satisfy the uniform Lopatinski condition near
X0. The following Lemma, which gives a more precise version of (7.29)(c), is essential for the
construction of degenerate symmetrizers.
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Lemma 7.1. There exists a constant δ > 0 such that for ρ sufficiently small we have

|Γ1U−,c| ≥ δ(|UH−,c |+ ρ|UP− |).(7.30)

uniformly near X0.

Proof. We’ll deduce (7.30) from the stronger inequality (7.31) below. We have in view of (7.29)(a,b)

|Γ1U−,c| = |Γ1UH−,c + Γ1UP1,− + Γ1UP2,−,ε |
≥ C(|UH−,c |+ |UP2,−,ε |)− Cρ|UP1,− |.

Adding a sufficiently small multiple of this inequality to the inequality (7.29)(c)

|Γ1U−,c| ≥ Cρ|U−,c| = Cρ(|UH−,c |+ |UP1,− |+ |UP2,−,ε |),
we obtain for ρ small

|Γ1U−,c| ≥ δ(|UH−,c |+ ρ|UP1,− |+ |UP2,−,ε |),(7.31)

which implies (7.30).

Part 3. Zero mass perturbations

8. Degenerate symmetrizer for small frequencies

We are now in a position to construct a degenerate symmetrizer for the problem

Ux −GB(∞, ζ)U = F
Γ1U = g on x = 0,

(8.1)

where Γ1 = ΓWT . We’ll use the same notation for pairings and norms as in the earlier discussion
of the problem (∂x −GB,Γa), and shall focus mainly on the new points.

As before we construct a symmetrizer S = S∗ of the form (6.40) for GB(∞) working block by
block. Let

S =
(
SP 0
0 SH

)
.(8.2)

The main difference here is that we take the SP block to be degenerate

SP =
(
CI 0
0 −ρ2

)
,(8.3)

where the two subblocks have sizes n− 1 and n+ 1 respectively (recall (6.18)).
The construction of the SH block proceeds just as before, except that now in place of (6.46)(b)

we need

(SUHj , UHj ) ≥ C|UHj+,c |2 − |UHj−,c |2(8.4)

uniformly near the basepoint X0. Here UHj±,c is as in (6.32). This can be arranged by the usual
procedure (see [CP], Chapter 7 or [K]). Summing (8.4) gives

(SUH , UH) ≥ C|UH+,c |2 − |UH−,c |2.(8.5)

Thus, we obtain interior estimates

(Re SGB(∞)UP , UP ) ≥ C|UP+ |22 + ρ2|UP− |22
(Re SGB(∞)UH , UH) ≥ (γ + ρ2)|UH |22,

(8.6)

as well as boundary estimates
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(SUP , UP ) ≥ C|UP+ |2 − ρ2|UP− |2

(SUH , UH) ≥ C|UH+,c |2 − |UH−,c |2,
(8.7)

uniformly near X0.
Now, Lemma 7.1 implies

|UH−,c |2 + ρ2|UP− |2 ≤ C|Γ1U−,c|2 ≤ C(|Γ1U |2 + |U+,c|2),(8.8)

where U+,c = UP+ + UH+,c . Using (8.7) and (8.8) we obtain for ρ small

(SU,U) ≥ C|U+,c|2 − (|UH−,c |2 + ρ2|UP− |2)
= C|U+,c|2 + (|UH−,c |2 + ρ2|UP− |2)− 2(|UH−,c |2 + ρ2|UP− |2)
≥ C|U+,c|2 + |UH−,c |2 + ρ2|UP− |2 − C1(|Γ1U |2 + |U+,c|2)
≥ C2|U+,c|2 + |UH−,c |2 + ρ2|UP− |2 − C1|Γ1U |2

≥ C3(|U+|2 + |UH− |2) + ρ2|UP− |2 − C1|Γ1U |2

(8.9)

provided C was big enough.
In addition we have

|(SF,U)| ≤ |(SFP+ , UP+)|+ |(SFP− , UP−)|+ |(SFH , UH)|
≤ (Cδ|FP+ |22 + δ|UP+ |22) + ρ2(Cδ|FP− |22 + δ|UP− |22)

+
(

Cδ

(γ + ρ2)
|FH |22 + δ(γ + ρ2)|UH |22

)
.

(8.10)

Plugging these estimates into the usual symmetrizer argument (recall (6.49)), we obtain after
absorbing terms in the usual way the key small frequency estimate

(|UP+ |22 + ρ2|UP− |22 + (γ + ρ2)|UH |22)
+ (|U+|2 + |UH− |2 + ρ2|UP− |2) ≤

C

(
|FP+ |22 + ρ2|FP− |22 +

1
(γ + ρ2)

|FH |22
)

+ C|Γ1U |2
(8.11)

uniformly near X0.
Assuming Γ1U = 0 as in (6.30), we deduce immediately from (8.11) our main estimate with F

as forcing

|U |22 ≤ C
|F |22

ρ2(γ + ρ2)
.(8.12)

In particular with ρF forcing we obtain

|U |22 ≤ C
|F |22

(γ + ρ2)
.(8.13)

In the midfrequency region an argument identical to that for the nondegenerate problem (6.39)
gives

|U |22 ≤ C|F |22.(8.14)

In this region the same estimate on traces as in (6.50) also holds.
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Remark 8.1. 1. Direct calculation using the explicit pointwise bounds on the resolvent kernel
obtained in [Z1] reveals that bounds (8.11) and (8.14) are sharp.

2. Using (7.31) in place of (7.30) we obtain instead of (8.9) the more precise estimate

((S + Γ∗1Γ1)U,U) ≥ C(|U+|2 + |UH− |2 + |UP2,−,ε |2) + ρ2|UP1,− |2.(8.15)

This refinement is put to important use in [GMWZ2].

Remark 8.2. In view of the close relation between small-viscosity and low-frequency limits (see,
e.g., discussion in Section 1.3 of [Z1] or Section 12 of [GMWZ2]), it is interesting to compare
the small-frequency bounds (8.11) to the standard inviscid bounds of, e.g., [M2], [Met3], which
involve an additional variable ϕ(x′, t) recording shock location. Formally replacing this term ϕ in
the estimate for the inviscid problem with a viscous layer ϕ(x′, t)ψ′(x) ∼ ψ(x + ϕ(x′, t)) − ψ(x),
we obtain a slightly sharpened version of (8.11) which could have been obtained by segregating
degenerate decaying parabolic modes in our analysis. However, we cannot make conclusions in the
other direction by the present approach; that is, our bounds are consistent with but do not (quite)
imply the inviscid ones. To recover the inviscid from viscous bounds would require the additional
step of tracking viscous shock location, an extension we intend to pursue in future work.

8.1. Mixed norm estimate. Note that (8.13) implies both

|U |22 ≤
C

ρ2
|F |22 and

γ|U |22 ≤ C|F |22.
(8.16)

Let’s work with the first now. Recall |U |2 is the L2(x) norm, and define V and H by U =
V̂ (x, τ, γ, η), F = Ĥ, γ > 0. Suppose now that d ≥ 3 and that U and F are supported in ρ < δ.

(8.16) gives

|U |22 ≤
C

|τ, η|2 |F |
2
2.(8.17)

Integrate (8.17) dτdη (dimension of (τ, η) space is ≥ 3) to get

|e−γtV |2L2(x,t,y) ≤
∫

C

|τ, η|2 |Ĥ(x, τ, γ, η)|2L2(x)dτdη.(8.18)

But

|Ĥ(x, τ, γ, η)| ≤ C|H(x, t, y)|L1(t,y),(8.19)

so

|Ĥ(x, τ, γ, η)|2L2(x) ≤ C
∫
|H(x, t, y)|2L1(t,y)dx

≡ |H|2L2(x,L1(t,y)).

(8.20)

Plug this into (8.18) to get

|e−γtV |2L2(x,t,y) ≤
∫
|τ,η|<δ

C

|τ, η|2 |H|
2
L2(x,L1(t,y))dτdη ≤ C|H|2L2(x,L1(t,y).(8.21)

Let γ → 0 to get

|V |2L2(x,t,y) ≤ C|H|2L2(x,L1(t,y)).(8.22)
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8.2. Summary. Tracing back U (8.1)→ U (2.19)→
(
û
v̂

)
(2.18), we have proved the following es-

timates for L2 solutions û(x, λ, η) of

ûxx − (A(x)û)x − s(x, λ, η)û = ρf̂(x, λ, η).(8.23)

Proposition 8.1. Let δ > 0 and M >> δ.
(a) For û as in (8.23) and δ > 0 sufficiently small, we have

|û|22 + |ûx|22 ≤ C
|f̂ |22

(γ + ρ2)
for ρ = |λ, η| ≤ δ.(8.24)

(b) For δ ≤ ρ ≤M
|û|22 + |ûx|22 ≤ C|f̂ |22.(8.25)

Observe that since ρ is bounded in Proposition 8.1, we are free to multiply the left sides of the
inequalities (8.24) and (8.25) by ρK for any K ≥ 0. Thus, estimate (8.22) and Proposition 8.1
imply the following Proposition.

Let χS(τ, γ, η), χM , and χL be smooth cutoffs supported respectively in ρ ≤ δ, δ/2 ≤ ρ ≤ M ,
and M − 1 ≤ ρ, such that

χS + χM + χL = 1.(8.26)

When we write χ(D)u we mean the function whose Fourier-Laplace transform is

χ(τ, γ, η)û(x, τ, γ, η).(8.27)

Here û is the Fourier transform of e−γtũ, where ũ is the extension of u by 0 into t < 0.

Proposition 8.2. (a) Suppose d ≥ 3. For u(x, t, y) as in (8.23) we have

|χS(D)(u, uy)|L2(x,t,y) + |χS(D)ux|L2(x,t,y) ≤ C|f |L2(x,L1(t,y)).(8.28)

(b) For d ≥ 1

|χM (D)(u, uy)|L2(x,t,y) + |χM (D)ux|L2(x,t,y) ≤ C|f |L2(x,t,y).(8.29)

9. Large frequency estimate

In the large frequency region, ρF forcing gives a worse estimate than F forcing, and just plug-
ging ρF into (6.50) is not helpful here (nor do the constants C in the estimate remain uniformly
bounded). Instead, one must take advantage of the fact that behavior for ρ large is dominated by
parabolic effects to obtain estimates by a different technique.

In [MZ], this was carried out by a rescaling argument combined with appropriate symmetrizers,
to which we could appeal here as well. Instead, we give an alternative argument similar to one in
[KKP], based on direct integration by parts against the second order equation, which recovers the
same results. We don’t use a symmetrizer (more correctly, we take S = I); just pair with û(x, λ, η)
and integrate by parts in the second order eigenvalue equation

ûxx − (A(x)û)x − s(x, λ, η)û = F̂x + iηĜ.(9.1)

(Of course, the function F in (9.1) is different from that in the previous section.) Here λ = iτ+γ
and

s(x, λ, η) =
d∑

j=2

Aj(x)iηj + λI + |η|2I.



MULTI-D VISCOUS SHOCKS I 31

Dropping hats, in the usual way one gets

(λ+ |η|2)|u|22 + |ux|22 = H(u, ux, F,G)(9.2)

where

|H| ≤ C|u|2|ux|2 + |F |2|ux|2 + |G|2|η||u|2 + C|η||u|22.(9.3)

Take the modulus of each side of (9.2) (note γ > 0), and absorb |ux|22 and |η|2|u|22 from the right
to give, for some new constant,

(|τ |+ γ + |η|2)|u|22 + |ux|22 ≤ C(|u|22 + |F |22 + |G|22).(9.4)

By taking ρ big and absorbing C|u|22 we obtain

(|τ |+ γ + |η|2)|u|22 + |ux|22 ≤ C|F,G|22, for γ > 0.(9.5)

Putting hats back and summarizing, we have shown that

(|τ |+ γ + |η|2)|û|22 + |ûx|22 ≤ C|F̂ , Ĝ|22, for γ > 0(9.6)

when û is supported in ρ ≥M forM sufficiently large. Thus, letting γ → 0 and applying Parseval’s
formula, we get an estimate with no exponential weights

|u, uy, ut|L2(x,t,y) + |ux|L2(x,t,y) ≤ C|F,G|L2(x,t,y).(9.7)

Since cutoffs χL commute right through the eigenvalue equation (9.1), we have proved the fol-
lowing Proposition.

Proposition 9.1. Suppose u satisfies

(a)ut + (A(x)u)x +
d∑

j=2

Aj(x)∂ju−�u = Fx + divyG

(b)u|t=0 = 0.

(9.8)

If M is sufficiently large, then for χL supported in ρ ≥M ,

|χL(D)(u, uy, ut)|L2(x,t,y) + |χL(D)ux|L2(x,t,y) ≤ C|F,G|L2(x,t,y).(9.9)

Here u, F , and G in (9.8)(a) have been extended by zero into t < 0 and, because of the initial
condition u|t=0 = 0, the extensions satisfy (9.8)(a) for all t.

10. Linear and nonlinear stability

Proof of Theorem 4.1. The proof of this theorem will extend over the next few subsections.

10.1. Strategy. Our first goal in this section is to prove the following estimate for solutions u to
(9.8) in space dimensions d ≥ 3:

|u, ut, uy|L2(x,t,y) + |ux|L2(x,t,y) ≤ C(|F,G|L2(x,L1(t,y)) + |F,G|L2(x,t,y)).(10.1)

Clearly, it remains to treat only χS(D)u and χM (D)u. Accordingly, for the rest of this discussion,
we restrict attention to |(τ, γ, η)| uniformly bounded.

As in [KK] let û = ŵ + û1, where ŵ(x, λ, η) satisfies

ŵxx − (A(x)ŵ)x = F̂x, |ŵ|2 <∞.(10.2)
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This piece integrates to

ŵx −A(x)w = F̂ (x, λ, η)(10.3)

This is the auxiliary problem for which we obtain a solution satisfying the following L2

|ŵ|L2(x) ≤ C|F̂ |L2(x).(10.4)

Next, û1 = û− ŵ satisfies

û1xx − (A(x)û1)x − s(x, λ, η)û1 = sŵ + iη · Ĝ, |û1|2 <∞.(10.5)

The right side of (10.5) qualifies as “ρF” forcing, so we may apply Proposition 8.1 and the
estimate (10.4) to establish

|û|L2(x) ≤ C(|û1|L2(x) + |ŵ|L2(x)) ≤
C(|F̂ |L2(x) + |Ĝ|L2(x))

(γ + ρ2)
.(10.6)

By the calculation (8.21)–(8.22), this yields

Proposition 10.1. (a) Suppose d ≥ 3. For u1(x, t, y) as in (10.5) we have

|χS(D)(u1, u1y)|L2(x,t,y) + |χS(D)u1x|L2(x,t,y) ≤ C|F,G|L2(x,L1(t,y)).(10.7)

(b) For d ≥ 1

|χM (D)(u1, u1y)|L2(x,t,y) + |χM (D)u1x|L2(x,t,y) ≤ C|F,G|L2(x,t,y).(10.8)

To complete the proof of (10.1), we just need to show (10.4).

10.2. Auxiliary problem. In the problem (10.3) the matrix A(x) is independent of frequency.
To prove the L2 estimate (10.4), we consider the n× n system on R

wx −A(x)w = f(x),(10.9)

and show that there is a solution satisfying

|w|L2(x) ≤ C|f |L2(x).(10.10)

This implies there is a solution to (10.3) satisfying

|ŵ(x, λ, η)|L2(x) ≤ C|F̂ (x, λ, η)|L2(x),(10.11)

with C independent of frequency, which will give (10.4).
Consider the doubled 2n× 2n boundary problem on x ≥ 0 equivalent to (10.9)

(a)Wx −A(x)W = F(x)

(b) BW = 0 on x = 0,
(10.12)

where
W (x) = (w+(x), w−(x)),

A(x) =
(
A+(x) 0

0 −A−(x)

)
,

F(x) = (f+(x),−f−(x)), and
BW = w+ − w−.

(10.13)
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Let E−(0) be the space of boundary values of decaying solutions of (10.12)(a) when F = 0.
Hypothesis (H3) together with classical ODE results [Co]) implies

dim E−(0) = (n− k) + (n− l) = n+ 1.(10.14)

On the other hand kerB has dimension n. A basis for it is

{E1, . . . , En}, where Ej = (ej , ej),(10.15)

and the ej are the standard basis vectors of Cn.
Hypothesis (H4) implies kerB and E−(0) have a one dimensional intersection spanned by

P = (φ(0), φ(0)).(10.16)

We now define an augmented boundary condition B̃ with the property that

C
2n = ker B̃ ⊕ E−(0).(10.17)

Some component of φ(0), say the first, is not zero. Let W1 denote the first component of W . Then
we may simply set

B̃W = (W1, w+ − w−) ∈ Cn+1,(10.18)

so that (10.17) holds.
Now we can estimate solutions to

Wx −A(x)W = F(x)

B̃W = 0 on x = 0,
(10.19)

using an idea of [MZ]. Note that any solution of (10.19) is also a solution of (10.12).
Construct as in [MZ] a conjugator C(x) on x ≥ 0 satisfying

C−1 is uniformly bounded,

C(x) = Id+O(e−βx) for some β > 0,

Cx(x) = A(x)C(x)− C(x)A(∞).

(10.20)

Setting W = CV transforms (10.19) into

Vx −A(∞)V = H
B̃V = 0 on x = 0,

(10.21)

where H = C−1F and B̃ = B̃C. The properties of C imply immediately that an estimate for (10.21)
gives an estimate for (10.19).

Since C preserves the decomposition (10.17), it is now an easy matter to construct a symmetrizer
for (10.21) and to obtain

|V |L2(x) ≤ C|H|L2(x).(10.22)

Thus, W = CV satisfies

|W |L2(x) ≤ C|F|L2(x)(10.23)

and estimate (10.10) follows.

Remark 10.1. The improved bounds available for divergence forcing are connected with the fact [Z1]
that the only quantities conserved by the linearized equations are those afforded by conservation
of mass, a property which holds also for overcompressive but not for undercompressive shocks.
Recall, in the notation of (2.2), with k+ H = n+ r, r ≥ 2 corresponds to the overcompressive case,
r = 1 to the Lax case, and r ≤ 0 to the undercompressive case. Likewise, it is readily seen that the
auxiliary equation construction of [KK] goes through essentially unchanged for the overcompressive
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case, where the augmented boundary condition B̃ again has r extra constraints (now > 1), to yield
the same bounds as in the Lax case. Thus, we may obtain as in [Z1] the same nonlinear stability
results in the overcompressive as in the Lax case. The auxiliary equation construction fails in the
undercompressive case, however; indeed, this case is essentially different, as discussed further in
[Z1], [Z2].

10.3. Linear stability.

Notation 10.1. 1. |v(t, y)|L2
T (t,y) is the L2 norm on [0, T ]× Rn−1

y .
2. |u|22;p =

∑
|α|≤p |∂α(x,y)u(x, t, y)|2L2(x,t,y).

3. |u|2(2,1);p =
∑
|α|≤p |∂α(x,y)u(x, t, y)|2L2(x,L1(t,y))

4. |u|22;p,T =
∑
|α|≤p |∂α(x,y)u(x, t, y)|2L2(x,L2

T (t,y))
.

5. |u|2(2,1);p,T =
∑
|α|≤p |∂α(x,y)u(x, t, y)|2L2(x,L1

T (t,y))

6. |u|(∞,2);p,T =
∑
|α|≤p |∂α(x,y)u(x, t, y)|L∞(x,L2

T (t,y)).

The proof of nonlinear stability depends on the following estimates for solutions of

(a)ut + (A(x)u)x +
d∑

j=2

Aj(x)∂ju−�u = Fx + divyG

(b)u|t=0 = 0.

(10.24)

Proposition 10.2 (Main Linear Estimate).

(a)|u|2;1 + |ut|2;0 ≤ C(|F,G|(2,1);0 + |F,G|2;0)
(b)|u|2;p+1 + |ut|2;p ≤ Cp(|F,G|(2,1);0 + |F,G|2;p)
(c)|u|2;p+1,T + |ut|2;p,T ≤ Cp(|F,G|(2,1);0,T + |F,G|2;p,T )

(10.25)

A key point is that C is independent of T and there are no exponential weights in the norms.

Proof. Estimate (a) is (10.1), whose proof has just been completed.
(c) follows from (b) and the fact that the future does not affect the past.
Care is needed in the proof of (b) because our basic estimate is asymmetric; there is a mixed

norm on the right but not the left (the argument of [KK] is incomplete here, but can be fixed by
an argument like the following one). Note that if one just differentiates (10.24) with respect to x
and applies (10.25)(a), there is no way to absorb the mixed norm of terms like (A′(x)u)x that get
thrown on the right as forcing.

Recall that u, F , and G in (10.24)(a) have been extended by zero into t < 0 and, because of the
initial condition u|t=0 = 0, the extensions satisfy (10.24)(a) for all t.

1. Let χ(τ, η) be a smooth cutoff function supported in |τ, η| ≤ C for C to be chosen sufficiently
large. Since χ has bounded support in the frequency variables,

|χ(D)∂kt ∂
α
y (u, ux)|2;0 ≤ C|u, ux|2;0,(10.26)

so we immediately obtain from (10.25)(a)

|χ(D)∂kt ∂
α
y (u, ux)|2;0 ≤ C(|F,G|(2,1);0 + |F,G|2;0).(10.27)

2. Note that χ(D) commutes right through (10.24)(a), and that

|χ(D)f(x, t, y)|(2,1);0 ≤ C|f |(2,1);0, since

|χ(D)g(t, y)|L1(t,y) ≤ C|g(t, y)|L1(t,y).
(10.28)

The latter inequality is easily seen by writing χ(D)g as a convolution.
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Thus, after solving for χ(D)uxx using the equation (10.24)(a), we can use the estimates (10.27)
and (10.28) to get

|χ(D)∂αy uxx|2;0 ≤ C(|F,G|(2,1);0 + |F,G|2;1).(10.29)

3. Differentiating the equation (10.24)(a) with respect to x and using the estimates (10.27) and
(10.29) gives for |α|+ l ≤ p+ 1

|χ(D)∂αy ∂
l
xu|2;0 ≤ C(|F,G|(2,1);0 + |F,G|2;p).(10.30)

Here one estimates terms involving x derivatives of order k by using the equation to express them
as sums of terms involving x derivatives of order ≤ k − 1 which have already been estimated.

As before we can insert ∂kt in the left sides of (10.29) and (10.30).
4. Next consider the region where |τ, η| is big. Here we need a different argument. In this

region we have the pure L2 estimates (9.6) and (9.7) with no mixed norms. We can differentiate
(10.24)(a) with respect to x or y and apply Proposition 9.1 to the differentiated problem, after
observing that conservative forcing is maintained. For example, differentiate (10.24)(a) once with
respect to x to get

(ux)t + (A(x)ux)x +
d∑

j=2

Aj(x)∂jux −�ux =

Fxx + divyGx −

A′(x)u)x +
d∑

j=2

(A′j(x)u)yj

 .(10.31)

Apply Proposition 9.1 to obtain

|(1− χ(D))uxx|2;0 ≤ C|F,G|2;1.(10.32)

Continuing in this way we obtain for |α|+ l ≤ p+ 1

|(1− χ(D))∂αy ∂
l
xu|2;0 ≤ C|F,G|2;p.(10.33)

5. In the same way we obtain for |α|+ l ≤ p

|(1− χ(D))∂αy ∂
l
xut|2;0 ≤ C|F,G|2;p.(10.34)

6. Use (10.30), (10.33), and (10.34) to get for |α|+ l ≤ p+ 1

|∂αy ∂lxu|2;0 ≤ C(|F,G|(2,1);0 + |F,G|2;p),(10.35)

and for |α|+ l ≤ p

|∂αy ∂lxut|2;0 ≤ C(|F,G|(2,1);0 + |F,G|2;p),(10.36)

This gives (b).
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10.4. Nonlinear long time stability. First, let’s rewrite the error equation (2.14) in the (x, t, y)
notation as

ut + (A(x)u)x +
d∑

j=2

Aj(x)∂yju+ εdiv(B(x, t, y)u) + εdiv(h(x, t, y, u))

= �u+ div((F,G)(x, t, y))

u|t=0 = 0.

(10.37)

In order to complete the proof of Theorem 4.1 we need to show that for ε small enough, the
solution to (10.37) exists for all time and satisfies

|u(x, t, y)|L∞(x,y) → 0 as t→∞.(10.38)

Local existence in time is well-known. We use an argument similar to the one in [KK], except that
we have the mixed norm in place of their L1 norm.

For p > d
2 (d is the number of space dimensions) set

Ep = Cp(|F,G|(2,1);0 + |F,G|2;p).(10.39)

Assumption (H5)I on v0 implies Ep <∞.
For Tε sufficiently small the solution of (10.37) satisfies

|u|2;p+1,Tε + |ut|2;p,Tε ≤ Ep + 1.(10.40)

In fact, let’s suppose now that Tε in (10.40) is the maximal Tε for which (10.40) holds. We’ll
show that for ε small enough

Tε =∞.(10.41)

In turn this implies (10.38).
We now consider εdiv(B(x, t, y)u) + εdiv(h(x, t, y, u)) as part of the forcing, and apply the main

linear estimate to obtain
|u|2;p+1,Tε + |ut|2;p,Tε ≤

Cp(|(F,G) + εBu+ εh|(2,1);0,Tε + |(F,G) + εBu+ εh|2;p,Tε)
≤ Ep + Cε(|Bu|(2,1);0,Tε + |Bu|2;p,Tε + |h|(2,1);0,Tε + |h|2;p,Tε).

(10.42)

Since we have local existence, all we need to do is show that each of the four terms

|Bu|(2,1);0,Tε , |Bu|2;p,Tε , |h|(2,1);0,Tε , |h|2;p,Tε(10.43)

is bounded by some function f(Ep).

Notation 10.2. (a) For k ∈ {1, 2, 3, . . . } let ∂k denote the collection of operators ∂α(x,y) with |α| = k
(α is a multi-index). Sometimes ∂k is used to denote a particular member of this collection. Set
∂0φ = φ.

(b) For k ∈ {1, 2, 3, . . . } denote by ∂〈k〉φ the set of products of the form (∂α1φi1) · · · (∂αrφir)
where 1 ≤ r ≤ k, α1 + · · ·αr = k, αi ≥ 1. Set ∂〈0〉φ = 1.

(c) Set |v|∞,T = |v|L∞([0,T ]×Rd), |v|∞ = |v|L∞([0,∞]×Rd).
(d) Φ = Φ(x, t, y, u) will always denote a smooth function of its arguments with the property

that |Φ| ≤ CM when |u| ≤M . It may change from line to line.
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Lemma 10.1 (Moser inequality). For p ∈ {0, 1, 2, 3, . . . } let α1+ · · ·+αr ≤ p, αi ∈ {0, 1, 2, 3, . . . }.
Suppose |vi|2;p,T + |vi|∞,T <∞. Then there exists C independent of T such that

|(∂α1v1) · · · (∂αrvr)|2;0,T ≤ C
r∑

i=1

|vi|2;p,T (
∏
j �=i

|vi|∞,T ).

Lemma 10.2.

|uv|2(2,1);0,T ≤ |u|2(∞,2);0,T |v|22;0,T .(10.44)

Proof. Write down the definition of the left side, apply Cauchy-Schwartz in (t, y), and pull out
|u|2(∞,2);0,T from the dx integral.

As a final preliminary step, note that Assumption (H5) implies

|e−tv0(x, y)|2;p <∞,(10.45)

so by (10.40), (10.45), and Sobolev inequalities and we have

(a) |u|L∞([0,Tε]×Rd) ≤ f(Ep)

(b) |u|(∞,2);p,Tε ≤ f(Ep)

(c) |e−tv0|∞ <∞.
(10.46)

First we show

|h|2;p,Tε ≤ f(Ep).(10.47)

Let k ≤ p. Recall using (2.10) that h(x, t, y, u) = H(ψ, e−tv0, u)u2 (obvious notation), so |∂kh|2;0,Tε
is a sum of terms of the form

|Φ∂〈j〉(e−tv0)∂〈l〉u∂mu∂nu|2;0,Tε ,(10.48)

where l +m+ n ≤ k. Use the Moser inequality (with (10.40),(10.45),(10.46)) to see that (10.48)≤
f(Ep).

This gives (10.47). The treatment of |Bu|2;p,Tε is similar.
Next we show

|h|(2,1);0,Tε ≤ f(Ep).(10.49)

Using the same expression for h as before and applying Lemma 10.2 we have

|h|(2,1);0,Tε = |Hu2|(2,1);0,Tε ≤ |u|(∞,2);0,Tε |Hu|2;0,Tε ≤ f(Ep),(10.50)

where the last inequality follows from (10.40) and (10.46). This proves (10.49).
The term |Bu|(2,1);0,Tε is, again, similar, so this completes the proof that for ε small enough,

Tε =∞. Thus, the proof of Theorem 4.1 is finished.

Proof of Theorem 4.2.
Consider again the linear problem (9.8) with divergence form forcing.

1. Linear estimates. In section 12 (see Corollary 12.1 below) we prove by a different argument
that uses (H6) the following estimate for solutions u to (9.8) for all dimensions d ≥ 1:

|u, uy, ut|2;0 + |ux|2;0 ≤ C(|F,G|1;0 + |F,G|2;0).(10.51)

As before, repetition of the proof of Proposition 10.2 gives

|u|2;p+1,T + |ut|2;p,T ≤ Cp(|F,G|1;0,T + |F,G|2;p,T ).(10.52)

2. Nonlinear estimates.
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For p > d
2 and F,G as in (10.37) set

Ep = Cp(|F,G|(1;0 + |F,G|2;p)(10.53)

and observe that assumption (H5)IV on v0 implies Ep <∞.
For Tε sufficiently small the solution of (10.37) satisfies

|u|2;p+1,Tε + |ut|2;p,Tε ≤ Ep + 1.(10.54)

Now we have
|u|2;p+1,Tε + |ut|2;p,Tε ≤

≤ Ep + Cε(|Bu|1;0,Tε + |Bu|2;p,Tε + |h|1;0,Tε + |h|2;p,Tε).
(10.55)

Consider |h|1;0,Tε for h = Hu2 (earlier notation). We have by Cauchy-Schwartz

|Hu2|1;0,Tε ≤ |H|∞,Tε |u|22;0,Tε ≤ f(Ep).(10.56)

|Bu|1;0,Tε is similar and the remaining terms are just as in the proof of Theorem 4.1, so the proof
of Theorem 4.2 is finished.

Part 4. Nonzero mass perturbations

11. Nonlinear stability

In this section we prove Theorem 4.3 using the linear estimates from earlier sections. We also
prove Theorem 4.4 assuming the L1 − L2 estimates proved in the next section. The passage from
linear to nonlinear stability in both cases is very similar to the argument in section 9.

Proof of Theorem 4.3.
1. Error equation. We no longer have a perturbation in conservative form, so we must work
with the error problem

ut + (A(x)u)x +
d∑

j=2

Aj(x)∂ju+ εdiv(B(x, t, y)u) + εdiv(h(x, t, y, u)) =

�u+ f

u|t=0 = 0,

(11.1)

(this is (2.12) in (x, t, y) notation) instead of (2.14). Here f is the particular function appearing in
(2.12). Consider also the corresponding linear problem

ut + (A(x)u)x +
d∑

j=2

Aj(x)∂yju−�u = f

u|t=0 = 0

(11.2)

for any f ∈ L2([0,∞)× Rd). As usual, u and f are extended by zero in t < 0.
2. Linear estimates. Recall the small frequency estimate (8.12) for general forcing

|U |22 ≤ C
|F |22

ρ2(γ + ρ2)
≤ C |F |

2
2

ρ4
,(11.3)
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where U(x, λ, η), F (x, λ, η) are related to u(x, t, y), f(x, t, y) just as they were in the doubled
boundary problem (8.1). (Recall that in section 7 the assumption of “ρF” forcing is not invoked
until (8.13).) Since d ≥ 5 now, the argument used to obtain the earlier mixed norm estimate gives

|V |L2(x,t,y) ≤ C|H|L2(x,L1(t,y)),(11.4)

where U = V̂ (x, λ, η), F = Ĥ. There is no need to consider an auxiliary problem. For u as in
(11.2) this gives

|χS(D)(u, uy)|L2(x,t,y) + |χS(D)ux|L2(x,t,y) ≤ C|f |L2(x,L1(t,y))

|χM (D)(u, uy)|L2(x,t,y) + |χM (D)ux|L2(x,t,y) ≤ C|f |L2(x,t,y),
(11.5)

where the medium frequency estimate is proved just as before.
For the large frequency estimate take the L2(x) pairing of û(x, λ, η) with the eigenvalue equation

ûxx − (A(x)û)x − s(x, λ, η)û = f̂(x, λ, η)(11.6)

and argue as in section 9 to obtain

|χL(D)(u, uy, ut)|L2(x,t,y) + |χL(D)ux|L2(x,t,y) ≤ C|f |L2(x,t,y).(11.7)

Adding up, for solutions of (11.2) we have

|u, uy, ut|2;0 + |ux|2;0 ≤ C(|f |(2,1);0 + |f |2;0).(11.8)

Line by line repetition of the proof of Proposition 10.2 gives the higher derivative estimates:

|u|2;p+1,T + |ut|2;p,T ≤ Cp(|f |(2,1);0,T + |f |2;p,T ).(11.9)

Note that there is a gain of one derivative in this estimate, while in the estimate of Proposition
10.2 there is a gain of two derivatives since the forcing there is div(F,G).

3. Nonlinear estimates We’ll refer to the corresponding arguments in section 9, just indicating
the needed changes.

For p > d
2 and f as in (11.1) set

Ep = Cp(|f |(2,1);0 + |f |2;p).(11.10)

Assumption (H5)II on v0 implies Ep <∞.
For Tε sufficiently small the solution of (11.1) satisfies

|u|2;p+1,Tε + |ut|2;p,Tε ≤ Ep + 1.(11.11)

In place of (10.42) for solutions to (11.1) we now have

|u|2;p+1,Tε + |ut|2;p,Tε ≤
Cp(|f + εdiv(Bu) + εdiv(h)|(2,1);0,Tε + |f + εdiv(Bu) + εdiv(h)|2;p,Tε)
≤ Ep + Cε(|Bu|(2,1);1,Tε + |Bu|2;p+1,Tε + |h|(2,1);1,Tε + |h|2;p+1,Tε).

(11.12)

Just as before the Moser inequalities imply

|Bu|2;p+1,Tε + |h|2;p+1,Tε ≤ f(Ep).(11.13)

Also, |h|(2,1);1,Tε is a sum of terms of the form

|Φ∂〈j〉(e−tv0)∂〈l〉u∂mu∂nu|(2,1);0,Tε ,(11.14)

where j + l +m+ n ≤ 1. By Lemma 10.2, (11.14)≤
C|∂mu|(∞,2);0,Tε |∂〈j〉(e−tv0)∂〈l〉u∂nu|2;0,Tε ,(11.15)

and the second and third factors are ≤ f(Ep) by (10.45) and the Moser inequality, respectively.
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The term |Bu|(2,1);1,Tε is treated similarly, so this concludes the proof of Theorem 4.3.

Notation 11.1. 1. |u|1;p =
∑
|α|≤p |∂α(x,y)u(x, t, y)|L1(x,t,y).

2. |u|1;p,T =
∑
|α|≤p |∂α(x,y)u(x, t, y)|L1(x,L1

T (t,y)).

Proof of Theorem 4.4.
Again, consider the error equation (11.1) and the corresponding linear problem (11.2).

1. Linear estimates. In the next section (see Corollary 12.2 below) we prove the following
estimate for solutions u to (11.2):

|u, uy, ut|2;0 + |ux|2;0 ≤ C(|f |1;0 + |f |2;0).(11.16)

As before, repetition of the proof of Proposition 10.2 gives

|u|2;p+1,T + |ut|2;p,T ≤ Cp(|f |1;0,T + |f |2;p,T ).(11.17)

2. Nonlinear estimates.
For p > d

2 and f as in (11.1) set

Ep = Cp(|f |(1;0 + |f |2;p)(11.18)

and observe that assumption (H5)III on v0 implies Ep <∞.
For Tε sufficiently small the solution of (11.1) satisfies

|u|2;p+1,Tε + |ut|2;p,Tε ≤ Ep + 1.(11.19)

Now we have
|u|2;p+1,Tε + |ut|2;p,Tε ≤

≤ Ep + Cε(|Bu|1;1,Tε + |Bu|2;p+1,Tε + |h|1;1,Tε + |h|2;p+1,Tε).
(11.20)

Consider |h|1;1,Tε . In place of (11.14) we have

|Φ∂〈j〉(e−tv0)∂〈l〉u∂mu∂nu|1;0,Tε .(11.21)

Instead of Lemma 10.2 just use Cauchy-Schwartz to obtain (11.21) ≤

C|∂mu|2;0,Tε |∂〈j〉(e−tv0)∂〈l〉u∂nu|2;0,Tε ≤ f(Ep).(11.22)

|Bu|1;1,Tε is similar and (11.13) holds, so the proof of Theorem 3.3 is finished.

12. L1 − Lp estimates, p ≥ 2

Henceforth we revert to the notation (t, x1, x
′) in place of (t, x, y), and (τ, ξ1, ξ′) in place of

(τ, ξ, η).
We next establish L1 − Lp bounds for the conjugated doubled eigenvalue equation, p ≥ 2.

From here on, we assume the auxiliary structural hypothesis (H6); that is, we assume that branch
singularities of characteristic roots ξ1 (considered as functions of (τ, ξ′)) are confined to a finite
union of smooth surfaces τ = τj(ξ′) on which the singularity has constant order equal to sj , the
multiplicity of the corresponding root ξ1.

We work in polar coordinates (λ̂, ξ̂′, ρ) with (dropping hats) γ := 
λ, τ := �λ. Departing
somewhat from an earlier assumption, we now relax our standard requirement γ ≥ 0 to the more
general

γ ≥ −θρ(|τ |2 + |ξ′|2)(12.1)
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for small frequencies and

γ ≥ −θ(|τ |+ ρ|ξ′|2),(12.2)

for mid- and high-frequencies, θ > 0 sufficiently small. Then the main result, to be established in
the remainder of this section, is the following, where L1, L2 refer to L1(x1), L2(x1) norms.

Proposition 12.1. Assume (H1), (H2),(H3),(H4),(H6), and (12.1). Then, for F ∈ L1 and ρ > 0
sufficiently small, the solution of the conjugated doubled boundary problem (6.34) satisfies

|U |2L2 ≤
Cβ2|F |2L1

ρ2
(12.3)

for some C > 0 uniformly near the basepoint X0, where

β := max
j≥0
βj ,(12.4)

with β0 := 1 and

βj := (|τ − τj(ξ′)|+ ρ+ γ)1/sj−1.(12.5)

(Note that β = 1 if the glancing set G is empty, in particular for d = 1.)

From (12.3), we obtain readily the linear estimate (11.16) cited in the previous section.

Corollary 12.1. Assume (H1), (H2), (H3), (H4), and (H6). Then, for d ≥ 3, the solution of the
linear problem (11.2) (nonzero mass) satisfies

|u, uy, ut|2;0 + |ux|2;0 ≤ C(|f |1;0 + |f |2;0),(12.6)

while, for d ≥ 1, the solution of (9.8) (zero mass) satisfies the same bound with (F,G) in place of
f .

Proof. Nonzero mass. We want to use the L1 → L2 bound (12.3) in exactly the same manner that
the first inequality of (8.16) was used to establish the mixed norm estimate of Proposition 8.2. The
key to doing so is the observation, which can be checked directly using the explicit form of βj given
above, that for δ > 0 ∫

|τ,ξ′|<δ

β2

ρ2
dτdξ′ <∞(12.7)

for dimension d ≥ 3. (Some care is needed since β is singular.)
Substituting (12.3) line by line for the first inequality of (8.16) in the proof of Proposition 8.2,

we thus obtain (8.28) with pure L1 norm |f |L1(x,t,y) substituted for the mixed norm |f |L2(x,L1(t,y))

on the righthand side. This concludes the treatment of the key small-frequency regime.
The treatment of the midfrequency range goes exactly as before: since ρ is bounded above and

below, there is no difference between general- and ρ-forcing. The treatment of high frequencies, as
noted in Section 8.1, is in fact somewhat simpler for general forcing. Combining these observations,
we obtain the result.

Note that (12.7) fails for d = 1 and 2. For this reason different arguments are needed to handle
nonzero mass perturbations in these dimensions. The case d = 2 is treated in Theorem 4.5. For
d = 1 see [ZH], [Z2].

Zero mass. For “ρF”-forcing, we obtain in place of (12.3) the estimate

|U |2L2 ≤ Cβ2|F |2L1 ,(12.8)

and β2 is integrable near the origin for all d ≥ 1. As in the proof of Theorem 4.1 one needs to
consider an auxiliary problem to treat the Fx1 part of the forcing. The small frequency estimate
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then follows almost exactly as for Theorem 4.1, with the L1(t, x1, x
′) norm now playing the role of

the mixed norm; see Lemma 12.6 of Section 12.6 below.
The treatment of mid- and high frequencies goes as before.

In what follows we’ll occasionally interpolate between L2 and L∞ using the following elementary
inequalities:

|u|Lp ≤ |u|
1− 2

p

L∞ |u|
2
p

L2 ≤ |u|L∞ + |u|L2 .(12.9)

From (12.3) we obtain immediately the following L1 → Lp bounds, to be used in the next section.

Corollary 12.2. Assume (H1), (H2), (H3), (H4), (H6), and (12.1). Then, for F ∈ L1 and ρ > 0
sufficiently small, the solution of the conjugated doubled boundary problem (6.34) satisfies

|u|Lp ≤
Cβ|F |L1

ρ
(12.10)

for all 2 ≤ p ≤ ∞, for some C > 0 uniformly near the basepoint X0, where β is defined as in
Proposition 12.1.

Proof. Recall that |U | bounds both |u| and |ux1 |. Thus, the result for p = ∞ follows from the
standard one-dimensional Sobolev inequality

|f |∞ ≤ |f |1/22 |fx1 |
1/2
2 ,(12.11)

and the general result 2 ≤ p ≤ ∞ by interpolation between L2 and L∞ norms.

Our basic strategy in proving Proposition 12.1 will be to establish an L2 → L∞ bound for the
adjoint problem, then appeal to duality. In deriving adjoint L2 → L∞ bounds, we use duality in
a second way, to first conclude adjoint L2 → L2 bounds from the L2 → L2 bounds of the forward
equation (slightly refined). From L2 bounds on source and solution, L∞ bounds are then readily
obtained by a standard energy estimate/integration by parts.

Remark 12.1. It is worth noting that we do not in this argument apply degenerate symmetrizers
to the adjoint equation. Indeed, because of an asymmetry between forward vs. dual equations, our
standard degenerate symmetrizer estimate would not recover the sharp bound available by duality.
(Specifically, the degeneracy in the boundary condition for the dual equation occurs in hyperbolic
modes, though we shall not show it here.)

12.1. The dual problem. Consider a general boundary problem

LU := Ux1 −G(x1, λ, ξ
′)U = F

ΓU = 0 on x1 = 0.
(12.12)

The dual problem is then defined via L2 inner product on R+ as

L∗V := −Vx1−G
∗(x1, λ, ξ

′)U = G

Γ∗V = 0 on x1 = 0,
(12.13)

where the kernel of Γ∗ is the orthogonal complement of the kernel of Γ, i.e., by the property that

〈LU, V 〉 = 〈U,L∗V 〉(12.14)

for ΓU(0) = Γ∗V (0) = 0.
A formality is to first establish well-posedness of both problems.

Proposition 12.2. For ρ > 0, both forward and dual problems have a unique H1 solution for any
data in L2.
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Proof. It is sufficient to prove uniqueness, which follows in both cases from the standard (nonde-
generate) symmetrizer construction carried out for fixed ρ �= 0. The interior estimates thereby
obtained feature constants that may blow up arbitrarily fast in ρ as ρ → 0; however, this is of no
consequence for the present purpose.

Corollary 12.3. The bound of Proposition 12.1 is equivalent to the dual bound

|V |2L∞ ≤
Cβ2

ρ2
|G|22(12.15)

for solutions of the dual conjugated boundary problem, for G ∈ L2.

Proof. We have

|U |L2 = sup
|G|L2=1

〈U,G〉 = 〈U,L∗V 〉 = 〈LU, V 〉 = 〈F, V 〉 ≤ |F |L1 |V |L∞ ,(12.16)

from which we obtain the forward direction

|U |L2/|F |L1 ≤ |V |L∞/|G|L2 .(12.17)

A reverse calculation yields the backward direction.

12.2. Decomposition of UH±. To establish (12.15), we will need to sharpen the basic L2 → L2

estimate for the forward equation. To do this, we shall need to decompose the hyperbolic modes
UH in decomposition (6.16) as the sum UH = UH+ + UH− , where

UH± = UHh± + UHe± + UHg± .(12.18)

Each vector appearing in (12.18) has 4n components, and the decomposition depends on (λ, ξ′, ρ).
While UH here is the same as the vector UH appearing in (6.16), to avoid confusion it is important
to note that the definitions of UH± are different now as we explain below.

We shall write

UHh = UHh+ + UHh−

and do similarly for e and g. The hyperbolic mode UHh± has nonvanishing components correspond-
ing (only) to the blocks Qk in (6.10) which are 1×1 with real part vanishing at the base point, but
with real part > 0 (resp.< 0) when ρ > 0. The elliptic mode UHe± has nonvanishing components
corresponding to blocks with 
Qk positive or negative definite at the base point. Finally, the
glancing mode UHg has nonvanishing components corresponding to blocks of size larger than 1× 1
which are purely imaginary at the base point (glancing blocks).

Further, we shall diagonalize the glancing blocks by a 4n× 4n matrix THg(λ, ξ′, ρ):

U ′Hg := T−1
Hg
UHg ,(12.19)

where UHg := UHg+ + UHg− . Here UHg± are defined as the projections of UHg onto the growing
(resp. decaying) eigenspaces of ĤB in (6.10) corresponding to glancing blocks. Call these subspaces
Hg±. Clearly, THg also has a block structure and we may construct it so that in any given block
corresponding to a glancing block Qj , the first columns are eigenvectors of Qj associated (for ρ > 0)
to eigenvalues with 
µ < 0. The remaining blocks of THg are identity matrices.

We denote by

U ′ := T−1
Hg
U(12.20)

the full variable with UHg diagonalized, and all other components unchanged. By calculations
similar to those in [Z1], we obtain the following estimates.
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Lemma 12.1. The diagonalizing transformation THg may be chosen so that

|THg | ≤ C,(12.21)

|T−1
Hg
| ≤ Cβ,(12.22)

and

|T−1
Hg |Hg−

| ≤ Cα,(12.23)

where β := maxj βj, α := maxj αj, with

βj := θ1−sjj , αj := θ1−[(sj+1)/2]
j ,(12.24)

θj := (|τ − τj(ξ′)|+ γ + ρ)1/sj ,(12.25)

and T−1
Hg |Hg−

denotes the restriction of T−1
Hg

to subspace Hg−. In particular,

βα−2 ≥ 1.(12.26)

Remark 12.2. The quantities β and α, and their sharp estimation, we regard as a key to the analysis
of long-time stability in multidimensions.

Proof. Clearly, it is sufficient to establish for a single blockQj of size sj that there exist diagonalizing
matrices whose inverses are bounded by βj , αj , respectively. Let µ denote the multiple pure
imaginary eigenvalue appearing in Qj evaluated at the basepoint (τ , ξ′). From here on, we drop
the j subscript.

Set σ = (|τ − τ(ξ′)|+ γ + ρ) so θ = σ1/s. By a classic matrix perturbation argument (e.g., [Z1],
Lemma 4.8) the eigenvalue µ splits for σ + ρ > 0 small into s eigenvalues.

µk = µ+ πk + o(|σ, ρ|1/s), k = 1, . . . , s(12.27)

Here

πk = εki(pσ − iqρ)1/s with

ε = 11/s,

p(ξ′) and q(ξ′) are real and ∼ 1, and sgn p = sgn q.

(12.28)

Moreover, correponding eigenvectors are given in appropriate coordinates by

(1, πk, π2
k, . . . , π

s−1
k ) + o(|σ, ρ|1/s).(12.29)

Thus, there exists a matrix THg of eigenvectors of the s× s block Q that is approximately given
by a vandermonde matrix with generators distance at least θ apart related by s roots of unity.
(Note: In [Z1], γ was constrained as a function of τ , ρ; however, an examination of the argument
shows that the analysis remains valid in the more general case (12.1).)

By Kramer’s rule, we may therefore estimate β as the quotient of two vandermonde determinants,
the numerator of size s−1 and the denominator of size s, taken from the same set of equally spaced
generators. The standard formula for vandermonde determinants gives then

β ∼ θ

(
s− 1

2

)
−

(
s
2

)
= θ1−s(12.30)

as claimed.
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Denoting by (
t1
t2

)
(12.31)

the matrix consisting of the k ≤ [(s+1)/2] stable eigenvectors of Q, i.e., the first k columns of THg ,
and noting that t1 as a vandermonde matrix is invertible, we find that Hg− consists of vectors of
form (

w
t2t
−1
1 w

)
=

(
t1
t2

)
t−1
1 w,(12.32)

where w ∈ Ck is arbitrary.
From |(w, t2t−1

1 w)| ≥ |w| and the computation∣∣∣T−1
Hg

(
w

t2t
−1
1 w

) ∣∣∣ =
∣∣∣ (
t1 ∗
t2 ∗

)−1 (
t1
t2

)
t−1
1 w

∣∣∣
=

∣∣∣ (
Ik
0

)
t−1
1 w

∣∣∣
= |t−1

1 w|

(12.33)

we thus obtain that |T−1
Hg |Hg−

| ≤ |t−1
1 |.

Observing that t1 is a k × k vandermonde matrix with generators taken from the same equally
spaced set, and applying Kramer’s rule similarly as before, we obtain

|t−1
1 | ≤ Cθ1−[(s+1)/2],(12.34)

and thus α = θ1−[(s+1)/2] as claimed.

We define similar decompositions on the dual variable V , and also the forcing terms F and G.

12.3. Interior estimates. We begin by carrying out a basic degenerate symmetrizer estimate
for the diagonalized forward problem. Note that the treatment of glancing modes is considerably
simpler in diagonalized coordinates, and indeed has nothing to do with that of the original Kreiss
construction.

Lemma 12.2. For the forward diagonalized problem, we have the interior bound

|U ′|2L2 ≤ C
|F ′|2L2

ρ2(γ + ρ2)
.(12.35)

Proof. In diagonalized coordinates, we must deal with a new degeneracy of order α−1 in the glancing
modes of the diagonalized boundary condition Γ′ := ΓTHg for the forward problem, as may be seen
by the calculation

|Γ′U ′Hg− | = |ΓUHg− | ≥ C−1|UHg− | ≥
C−1|U ′Hg− |
|T−1

Hg |Hg−
|
.(12.36)

On the other hand, there are no coalescing modes, and so we may dispense with the usual Kreiss
construction, treating glancing modes in the same way as hyperbolic and elliptic modes. Precisely,
in all except glancing modes, we make the same choice of degenerate symmetrizer followed in
previous sections, while in the glancing modes we choose

SHg = diag(SHg+ , SHg−) := diag(C,α−2).(12.37)
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Evidently, there holds

|Γ′U ′−| ≥ C(δ|U ′Hh− |+ δ|U
′
He− |+ α

−1|U ′Hg− |+ ρ|U
′
P−|)(12.38)

analogous to Lemma 7.1, and therefore we again obtain good trace terms in the resulting sym-
metrizer estimate.

It remains to check that we retain good interior (L2) bounds. Let µk± denote the eigenvalue
associated with the kth mode of U ′Hg . Taylor expanding the expression (12.28) for πk about ρ/σ = 0
yields,

|
µk±| ≥ C−1ρ2β,(12.39)

whence we obtain from the fact that βα−2 ≥ 1 the lower bound

α−2|
µk±| ≥ C−1ρ2,(12.40)

and thereby the key interior estimate

(Re SG′B(∞)U ′Hg , U
′
Hg) ≥ α

2ρ2|U ′Hg+ |
2
2 + ρ2|U ′Hg− |

2
2.(12.41)

That is, we still find that 
SG′B(∞) ≥ ρ2 as before, and therefore the rest of the calculation of
section 8 goes through as before to give the claimed estimate.

Remark 12.3. Since THg diagonalizes the forward problem, T−1∗
Hg

diagonalizes the dual problem.

By duality, this yields

Corollary 12.4. For the dual diagonalized problem, we have the interior bound

|V ′|2L2 ≤
C|G′|2L2

(γ + ρ)2ρ2
.(12.42)

In fact, the above estimates can be somewhat refined. Let U ′Hg±,j denotes the jth grow-
ing/decaying glancing mode, and µj± the associated growth/decay rate (eigenvalue of GB).

Lemma 12.3. For the forward diagonalized problem, we have the refined interior bounds

|U ′|22 ≤ C
|FP |22 + (γ + ρ2)−1|FHh |22 + ρ−1|FHe |22 +

∑
j,± |
µj±|−1|FHg±,j |22

ρ2
.(12.43)

Proof. Parabolic modes have growth/decay rates with real part bounded in absolute value above
and below by order one; elliptic modes have growth/decay rates bounded above and below by order
ρ; hyperbolic modes have growth/decay rates bounded above and below by order (γ+ρ2). Glancing
modes are treated individually in the diagonalized coordinates, and have growth/decay rates with
absolute value of real part |
µj±|. Using this sharp information in the degenerate symmetrizer
estimate described just above, specifically in the application of Young’s inequality in step (8.10)
of section 8, we obtain the claimed bound. Note that the worst-case version of (12.43) is (12.2),
corresponding to component FHh .

Corollary 12.5. For the dual diagonalized problem, we have the interior bounds

|V ′P |2L2 + (γ + ρ2)|V ′Hh |
2
L2 + ρ|V ′He |

2
L2 +

∑
j±
|
νj±||V ′Hg±,j |

2
L2) ≤

C|G′|2L2

ρ2
,(12.44)

where νj± = −µ∗j∓ denote growth/decay rates for the dual problem (eigenvalues of −G∗B).
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Proof. Integration by parts, exactly as in the proof of Corollary 12.3, but mode by mode. For
example, to obtain the bound

ρ|V ′He |
2
L2 ≤

C|G′|2L2

ρ2
,(12.45)

we begin with bound

ρ|U ′|2L2 ≤ Cρ−2|F ′He |
2
L2(12.46)

for the forward problem L′U ′ = F ′He , and calculate

|V ′He |L2 = sup
|F ′He |=1

〈V ′He , F
′
He〉 = sup〈V ′, L′U ′〉 = sup〈L′∗V ′, U ′〉(12.47)

= sup |G′|L2 |U ′|L2 ≤ |G′|L2C
√
ρ−2(γ + ρ)−1|F ′He |L2(12.48)

= C
√
ρ−2(γ + ρ)−1|G′|L2(12.49)

12.4. L∞ estimates. With these preparations, L∞ estimates are now easily obtained.

Lemma 12.4. For the dual problem, we have the bounds

|V ′|2∞ ≤
C|G′|2L2

ρ2
, |V |2∞ ≤

Cβ2|G|2L2

ρ2
.(12.50)

Proof. Working in diagonalized coordinates, we may take the real part of the L2 inner product of
V ′ with equation (L′)∗V ′ = G′ from x0 ≥ 0 to plus infinity to obtain after integration by parts the
estimate

|V ′(x0)|2 ≤ C(|V ′P |22 + (γ + ρ2)|V ′Hh |
2
2 + ρ|V ′He |

2
2 +

∑
j±
|
νj ||V ′Hg±,j |

2
2)

+ C|V ′|2|G′|2.
(12.51)

Bounding the first term on the righthand side using Corollary 12.5 and the second term using
Corollary 12.4, we obtain the first asserted bound. The second asserted bound then follows by
change of coordinates and the Jacobian bounds of Lemma 12.1.

This completes the proof of Proposition 12.1.

Remark 12.4. 1. Note that no symmetrizer construction was carried out for the dual problem,
neither to obtain interior nor trace estimates; indeed, our degenerate symmetrizer construction
applied to the dual problem does not seem to yield the sharp L2 bounds we obtain by reference to
the forward problem. A review of the argument structure shows that the approach is completely
general, in the sense that it will always yield some L2 estimate for the dual diagonalized equations,
and an L∞ bound improving on that bound by factor equal to the minimum growth rate among
all modes.

2. The resolvent bound derived here agrees with that obtained by integration of the pointwise
bounds stated in Proposition 4.5 of [Z1]; however, as noted in [Z1], slightly better bounds were in
fact established, and these yield (on integration) the improved bound |U |22 ≤

Cβ|F |21
ρ ; see Remark

4.35 of the reference. As pointed out in the same remark, this improved bound is sharp for square
root singularities, s = 2, but likely not for higher order branch singularities.

3. It would be very interesting to determine analogous bounds in the situation that (H6) does
not hold. Let us denote the resulting factor of singularity as β̃(d, s), depending on dimension d
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and maximum order of singularity s. Simple examples show that β̃(d, s) >> β(s); however, we
conjecture that β̃(d, s)2 nonetheless remains integrable in Rd, for all fixed d and s, as needed for
our arguments.

12.5. Mid- and high-frequency estimates. In the next section, we shall need also the following
straightforward bounds.

Lemma 12.5. Assume (H1), (H2), (H3), and (H4). Then, for F ∈ L2 and ρ bounded uniformly
above and below, and under assumption (12.1), the solution of the conjugated doubled boundary
problem (6.34) satisfies

|u|22 + |ux1 |22 + |ux1x1 |22 ≤ C|F |22(12.52)

for some C > 0. For ρ sufficiently large, and under assumption (12.2), the solution satisfies (in
polar coordinates, suppressing hats)

(ρ|τ |+ ργ + ρ2|ξ′|2)2|u|22 + (ρ|τ |+ ργ + ρ2|ξ′|2)|ux1 |22 + |ux1x1 |22 ≤ C|F |22.(12.53)

Proof. The |u|2 and |ux1 |2 bounds follows by essentially the same calculation as in the proof of
Proposition 9.1, but substituting general forcing F in place of divergence forcing Fx1 + iηG. The
|ux1x1 |2 bounds can then be obtained directly from the equation (9.1).

Corollary 12.6. Assume (H1), (H2), (H3), and (H4). Then, for F ∈ L1, ρ bounded uniformly
above and below and under assumption (12.1), the solution of the conjugated doubled boundary
problem (6.34) satisfies

|u|2 + |ux1 |2 ≤ C|F |1(12.54)

for some C > 0. For ρ sufficiently large, and under assumption (12.2), the solution satisfies (in
polar coordinates, suppressing hats)

(ρ|τ |+ ργ + ρ2|ξ′|2)3/4|u|2 + (ρ|τ |+ ργ + ρ2|ξ′|2)1/4|ux1 |2 ≤ C|F |1.(12.55)

Proof. By duality, the bounds (12.52) and (12.53) hold also for the adjoint equation. Applying
the one-dimensional Sobolev inequality |f |∞ ≤ |f |1/22 |fx1 |

1/2
2 , we thus obtain the adjoint L2 → L∞

bounds

|v|∞ + |vx1 |∞ + |vx1x1 |∞ ≤ C|G|2(12.56)

for ρ bounded above and below, and

(ρ|τ |+ ργ + ρ2|ξ′|2)3/4|v|∞ + (ρ|τ |+ ργ + ρ2|ξ′|2)1/4|vx1 |∞ ≤ C|G|2(12.57)

for ρ sufficiently large, from which the claimed bounds follow by duality.

Corollary 12.7. Assume (H1), (H2), (H3), and (H4). Then, for F ∈ L1, ρ bounded uniformly
above and below, and under assumption (12.1), the solution of the conjugated doubled boundary
problem (6.34) satisfies

|u|p ≤ C|F |1(12.58)

for all 2 ≤ p ≤ ∞, for some C > 0. For ρ sufficiently large, and under assumption (12.2), the
solution satisfies (in polar coordinates, suppressing hats)

(ρ|τ |+ ργ + ρ2|ξ′|2)1/2+1/2p|u|p ≤ C|F |1.(12.59)

Proof. As in the proof of Corollary 12.2, this follows immediately by one-dimensional Sobolev
inequality and interpolation.

Remark 12.5. Comparison with the explicit resolvent bounds of [Z1] shows that the above estimates
are sharp.



MULTI-D VISCOUS SHOCKS I 49

12.6. The auxiliary problem. Finally, we point out the following straightforward estimates for
auxiliary problem (10.3).

Lemma 12.6. Assuming (H2)–(H3), there exists a solution ŵ of auxiliary problem (10.3) satisfying

|ŵ|Lp(x1) ≤ C|F̂ |L1(x1)(12.60)

for all 1 ≤ p ≤ ∞, with C > 0 independent of p.

Proof. As before, we begin by conjugating to a constant coefficient doubled boundary value problem,
and imposing the augmented boundary condition B̃. Since the eigenvalues of A are nonzero, real,
and distinct, we can further conjugate by a constant matrix to the case that A(∞) is diagonal, and
w may be decomposed entirely into scalar components wj . Integrating the vector (sgn wj) against
S times the diagonalized equation, where S is the usual symmetrizer, we thus obtain the estimate

C−1|ŵ+(0)| − |B̃ŵ−(0)|+ |ŵ|L1(x1) ≤ |F̂ |L1(x1),(12.61)

yielding the desired estimate for p = 1. Next, taking inner product of ŵ against the original
equation (10.3), and integrating from x0 to infinity, we obtain

|ŵ(x0)|2 ≤ C(|ŵ|2L2(x1) + 〈ŵ, F̂ 〉),(12.62)

and therefore, by Hölder’s inequality,

|ŵ|2L∞(x1) ≤ C(|ŵ|L1(x1)|ŵ|L∞(x1) + |ŵ|L∞(x1)|F̂ |L1(x1)).(12.63)

Dividing both sides by |ŵ|L∞(x1), and applying bound (12.61), we obtain the result for p =∞. The
remaining bounds then follow by interpolation between p = 1 and p =∞.

13. Nonlinear stability for d = 2

The nonlinear iteration scheme of section 11 fails for nonzero mass perturbations in dimension
d = 2. On the one hand the proof fails, since β2/ρ2 is not integrable then. But this reflects the
underlying fact that the linearized response to nonzero mass L1 initial data in general decays in
Lp, p ≥ 2 no faster than a d-dimensional heat kernel. Though not explicitly stated in [Z1], this
is a consequence of the bounds therein, which show that far field behavior is dominated by the
outgoing portion of a “multidimensional diffusion wave,” in the sense of [HoZ]; examination of the
(upper and lower) bounds of [HoZ] in the specific case of compressible Navier–Stokes equations
then yields the result. Likewise, review of the nonlinear iteration scheme of [Z1] shows that this
linear response is the dominant part of the solution, and therefore similar bounds hold for the full,
nonlinear solution U . In particular, |U |2(t) ∼ (1 + t)−d/4, and thus

|U |2L2(x,t) =
∫ ∞

0
|U |22(t)dt ∼

∫ ∞
0

(1 + t)−d/2dt(13.1)

converges if and only if d ≥ 3. Since convergence of the iteration scheme implies |U |L2(x,t) < +∞,
we find that the scheme cannot work for d ≤ 2, except for zero mass initial data, where it works
for L1 ∩Hs initial data for all d ≥ 1, Theorem 4.2.

In this section, we show that the resolvent bounds we have derived are nonetheless sufficient to
yield a nonzero mass stability result for d ≥ 2, by following a different approach introduced in [Z1].
This argument has the advantage of yielding at the same time rates of decay, thus improving the
previous results also for d ≥ 3; recall, the [KK] type scheme yields decay with no rate. These rates,
however, are not expected to be sharp in the uniformly stable case considered here; see discussion
below Proposition 8.1 in [ZS], or in Section 3.3. of [Z1].
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13.1. Linear estimates. Define by Φ(t) the solution operator for the linearized Cauchy problem

(a) ut + (A(x1)u)x1 +
d∑

j=2

Aj(x1)∂ju−�u = 0

(b) u|t=0 = f.

(13.2)

The main step is then to establish the following bounds, (Proposition 4.45 of [Z1]).

Proposition 13.1. Assume (H1), (H2), (H3), (H4), and (H6). Then, there hold the bounds

|Φ(t)f |p ≤ C(1 + t)−
d−1
2

(1− 1
p
)(‖f‖1 + ‖f‖p),(13.3)

|Φ(t)Dxjf |p ≤ Ct−
1
2 (1 + t)−

d−1
2

(1− 1
p
)(‖f‖1 + ‖f‖p),(13.4)

for all 2 ≤ p ≤ ∞. (Note: here, all norms are with respect to spatial variables only.)

Proof. Standard short-time theory yields, for t ≤ 1, the bounds

|Φ(t)f |2 ≤ C‖f‖2,(13.5)

|Φ(t)Dxjf |2 ≤ Ct−
1
2 ‖f‖2.(13.6)

Thus, it is sufficient to establish, for t ≥ 1, the bounds

|Φ(t)f |p ≤ Ct−
d−1
2

(1− 1
p
)‖f‖1,(13.7)

|Φ(t)Dxjf |2 ≤ t−
1
2 t
− d−1

2
(1− 1

p
)‖f‖1.(13.8)

To this end, define contours Γ(ξ′) by


λ = −θ1|�λ|2 + |ξ′|2)
for |�λ| ≤ R, and


λ = −θ1R|�λ| − θ1|ξ′|2
for |�λ| ≥ R, with θ1 sufficiently small. Then, standard semigroup theory together with the
resolvent bounds previously obtained gives representation

u(x, t; y) =
1

(2πi)d

∫
ξ′∈Rd−1

∮
λ∈Γ̃(ξ′)

eiξ
′·x′eλtû(x1, ξ

′, λ)dλdξ′.(13.9)

for the solution u of the linearized Cauchy problem, where û denotes the solution of the generalized
resolvent equation obtained formally by Laplace–Fourier transform; see the related Lemma 4.39 of
[Z1].

This formal equation is just (using Duhamel’s principle to replace Cauchy initial data by homo-
geneous initial data with forcing f(x)δ(t), δ(·) denoting the Dirac delta-function)

ûx1x1 − (A1(x1)û)x1 − s(x1, λ, ξ
′)û = f̃(x1, ξ

′),(13.10)

where f̃ denotes the Fourier transform of f , (τ, ξ′) is dual to (t, x′), λ = iτ + γ with (12.1), (12.2)
and as usual

s(x1, λ, ξ
′) =

d∑
j=2

Aj(x1)iξj + λI + |ξ′|2I.

Bounding

|f̃ |L∞(ξ′,L1(x1)) ≤ |f |L1(x1,x′) = |f |1(13.11)
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using Hausdorff–Young’s inequality, and appealing to the L1 → Lp resolvent estimates of the
previous section, we may thus bound

|û(x1, ξ
′, λ)|Lp(x1) ≤ |f |1b(ξ′, λ),(13.12)

where, for ρ := |ξ′| + |λ|, and R > 0 sufficiently large, b := Cβρ−1 for ρ ≤ 1/R, b := C for
1/R ≤ ρ ≤ R, and b := C(|λ|+ |ξ′|2)−1/2−1/2p for ρ > R.
L2 bounds. Using in turn Parseval’s identity, Fubini’s Theorem, the triangle inequality, and our

L1 → L2 resolvent bounds, we may estimate

|u|L2(x1,x′)(t) =
( ∫

x1

∫
ξ′∈Rd−1

∣∣∣ ∮
λ∈Γ̃(ξ′)

eλtû(x1, ξ
′, λ)dλ

∣∣∣2dξ′ dx1

)1/2

=
( ∫

ξ′∈Rd−1

∣∣∣ ∮
λ∈Γ̃(ξ′)

eλtû(x1, ξ
′, λ)dλ

∣∣∣2
L2(x1)

dξ′
)1/2

≤
( ∫

ξ′∈Rd−1

∣∣∣ ∮
λ∈Γ̃(ξ′)

|eλt||û(x1, ξ
′, λ)|L2(x1)dλ

∣∣∣2dξ′)1/2

≤|f |1
( ∫

ξ′∈Rd−1

∣∣∣ ∮
λ∈Γ̃(ξ′)

e�λtb(ξ′, λ)dλ
∣∣∣2dξ′)1/2

,

(13.13)

from which we readily obtain the claimed bound on |Φ(t)f |2 using the bounds on b on each of
the small-, mid-, and high frequency regions. For example, on the critical small-frequency region,
parametrizing Γ(ξ′) by

λ(ξ′, k) = ik − θ1(k2 + |ξ′|2), k ∈ R,
and observing that in nonpolar coordinates

ρ−1β ≤
[
(|k|+ |ξ′|)−1(1 +

∑
j≥1

( |k − τj(ξ′)|
ρ

) 1
sj
−1]

≤
[
|k|+ |ξ′|)−1(1 +

∑
j≥1

( |k − τj(ξ′)|
ρ

)ε−1]
,

(13.14)

where ε := 1
maxj sj

(0 < ε < 1 chosen arbitrarily if there are no singularities), we obtain a contribu-
tion bounded by

C|f |1
( ∫

ξ′∈Rd−1

∣∣∣ ∫ +∞

−∞
e−θ(k

2+|ξ′|2)t(ρ)−1βdk
∣∣∣2dξ′)1/2

≤ C|f |1
∫
ξ′∈Rd−1

(
e−2θ|ξ′|2t|ξ′|−2ε

∣∣∣ ∫ +∞

−∞
e−θ|k|

2t|k|ε−1dk
∣∣∣2dξ′)1/2

+C
∑
j≥1

|f |1
∫
ξ′∈Rd−1

(
e−2θ|ξ′|2t|ξ′|−2ε

∣∣∣ ∫ +∞

−∞
e−θ|k|

2t|k − τj(ξ′)|ε−1dk
∣∣∣2dξ′)1/2

≤ C|f |1
∫
ξ′∈Rd−1

(
e−2θ|ξ′|2t|ξ′|−2ε

∣∣∣ ∫ +∞

−∞
e−θ|k|

2t|k|ε−1dk
∣∣∣2dξ′)1/2

≤ C|f |1t−(d−1)/4

(13.15)

as claimed.
To obtain the claimed bounds on |Φ(t)Dxf |2, we may use again the auxiliary problem (10.3),

and the bounds of Lemma 12.6 to obtain for bounded frequencies the improved L1 → L2 bounds
available for ρ-forcing, and thereby an additional factor of ρ on the critical small-frequency region,
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which yields an additional factor of t−1/2 in the estimate just above. On high-frequency regions,
the estimate degrades by an algebraic factor in ξ′, λ, but this is harmless for t ≥ 1.
L∞ bounds. Similarly, using Hausdorff–Young’s inequality, we may estimate

|u|L∞(x1,x′)(t) ≤ sup
x1

∫
ξ′∈Rd−1

∣∣∣ ∮
λ∈Γ̃(ξ′)

eλtû(x1, ξ
′, λ)dλ

∣∣∣dξ′
≤

∫
ξ′∈Rd−1

∮
λ∈Γ̃(ξ′)

|eλt||û(x1ξ
′, λ)|L∞(x1)dλdξ

′

≤|f |1
∫
ξ′∈Rd−1

∮
λ∈Γ̃(ξ′)

e�λtb(ξ′, λ)dλdξ′,

(13.16)

to obtain the claimed bound on |Φ(t)f |∞. For example, on the critical small-frequency region,
parametrizing Γ(ξ′) again by

λ(ξ′, k) = ik − θ1(k2 + |ξ′|2), k ∈ R,
we obtain a contribution bounded by

C|f |1
∫
ξ′∈Rd−1

∫ +∞

−∞
e−θ(k

2+|ξ′|2)tρ−1βdkdξ′

≤ C|f |1
∫
ξ′∈Rd−1

e−θ|ξ
′|2t|ξ′|−ε

∫ +∞

−∞
e−θ|k|

2t|k|ε−1dkdξ′

≤ C|f |1t−(d−1)/2

(13.17)

as claimed. The improved bound on |Φ(t)Dxf |∞ follows as before upon substitution of the improved
L1 → L∞ bounds available for ρ-forcing, exactly as in the case p = 2.

General 2 ≤ p ≤ ∞. Finally, the general case follows by interpolation between L2 and L∞

norms.

13.2. Nonlinear stability. Nonlinear stability now follows by the argument of Proposition 4.46,
[Z1], for completeness reproduced here.

Proof of Theorem 4.5. Defining

v := u− ψ,(13.18)

and Taylor expanding as usual, we obtain the nonlinear perturbation equation

vt − Lv =
∑
j

Qj(v, v)xj ,(13.19)

where

Qj(v, v) = O(|v|2)(13.20)

so long as |v| remains bounded by some fixed constant. Applying Duhamel’s principle, and inte-
grating by parts, we can thus express (supressing x-dependence)

v(t) = Φ(t)v(0) +
∫ t

0
Φ(t− s)DxjQ

j(s)ds.(13.21)

Define now

ζ(t) := sup
0≤s≤t,2≤p≤∞

‖v(·, s)‖Lp(1 + s)
d−1
4 .(13.22)

We shall establish:
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Claim.

ζ(t) ≤ C2(ζ0 + ζ(t)2).(13.23)

From this result, it follows by continuous induction that ζ(t) ≤ 2C2ζ0 for t ≥ 0, provided ζ0 <

1/4C2. But definition (13.22) then yields

‖v(·, t)‖L2 ≤ 2C2ζ(1 + t)−(
d−1
4 )(13.24)

as claimed. Thus, it remains, first, to establish the claim above, and, second, to extend to 2 < p ≤
∞.

Proof of Claim. Recalling (13.20) and (13.22), we can bound

|(Qj(v, v)(·, t)|Lp ≤ |v|L∞ |v|Lp

≤ Cζ(t)2(1 + t)−
d−1
2

for p ≥ 2, and
|(Qj(v, v)(·, t)|L1 ≤ |v|2L2

≤ Cζ(t)2(1 + t)−
d−1
2 ,

so that

|(Qj(v, v)(·, t)|Lp + |(Qj(v, v)(·, t)|L1 ≤ Cζ(t)2(1 + t)−
d−1
2 .(13.25)

The requisite L∞ bounds hold for short time provided they hold initially, by local existence/regularity
theory, and at later times provided that the L∞ bounds of the iteration scheme remain valid. Thus,
we can establish the global validity of bounds (13.25) at the same time that we establish the global
bound (13.24) on our iteration scheme, using the standard strategy of continuation.

Substituting into (13.21) and using bounds (13.3) and (13.4), we obtain

|v(t)|Lp ≤ Cζ0t−
d−1
2

(1− 1
p
)

+ Cζ(t)2
∫ t

0
(1 + t− s)−

d−1
2

(1− 1
p
)(t− s)− 1

2 (1 + s)−
d−1
2 ds

≤ C(p)(ζ0 + ζ(t)2)(1 + t)−
d−1
2

(1− 1
p
)
,

(13.26)

for all 2 ≤ p ≤ ∞, where C(p) is strictly monotone increasing in p, with C(∞) bounded for d ≥ 3
and C(∞) = +∞ for d = 2. (This final inequality follows by a direct calculation; see, e.g., Appendix
A5, [Z1].)

Of course, the integral in the second to last line is monotone decreasing in p, and so we may
always substitute the less precise bound

|v(t)|Lp ≤ C(2)(ζ0 + ζ(t)2)(1 + t)−
d−1
4 .

Thus, ζ(t) ≤ C(ζ0 + ζ(t)2), establishing the claim, and the result for p = 2. Once ζ is bounded,
(13.26) then yields the result for 2 < p ≤ ∞ as well.

Remark 13.1. Alternatively, we could have performed higher derivative estimates as in the proof
of Proposition 10.3 and carried them along in the analysis to obtain a self-contained argument
involving only Sobolev estimates, for initial data in the smaller space L1 ∩Hd. This would require
the same regularity f ∈ C [ d

2
]+5 as the [KK] type argument used in previous sections; by contrast,

the present argument requires only f ∈ C2.
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13.3. Relation between [KK] and [Z1] analyses. We conclude by a brief further discussion
of the relation between KK and [Z1] approaches, in light of the above calculations. Clearly, the
pointwise resolvent kernel bounds of [Z1] were not the essential point (we have not used them here),
but rather the consequent L1 → Lp resolvent bounds, and the improved bounds for ρ-forcing. These
bounds are shared, central features of both the [Z1] and [KK] analyses. (However, note: the [KK]
resolvent analyses is purely one-dimensional, so does not address the important technical issue of
glancing modes; indeed, it is not immediately clear that their method of obtaining resolvent bounds
can be generalized to multidimensions.)

The main difference, then, is in the endgame by which the resolvent bounds are converted to
nonlinear estimates. The [KK] approach could be described as “hyperbolic,” as it uses an iteration
scheme very similar to that of the inviscid case. In particular, the integration of λ along the
imaginary axis does not reveal the effects of diffusion. As we have demonstrated here, this scheme
is applicable for general (nonzero mass) initial data only for dimensions greater than or equal to
three. The end game of [Z1] described above could be described rather as “parabolic:” integration
on the parabolic contour Γ(ξ′) reveals an additional temporal decay due to diffusion that is essential
to the proof of nonlinear stability in dimensions less than or equal to two (note: in dimension one,
somewhat further care is needed; specifically, translation of the shock must be projected out [Z2],
[MaZ]).

With regard to the small viscosity limit, we point out that both choices of contour are consistent
with the standard hyperbolic analysis, since the curvature of the parabolic contour is taken propor-
tional to viscosity. A very interesting direction in the small viscosity theory would be to investigate
whether there is any advantage to working on such parabolic contours to take into account the
beneficial effects of diffusion. It is not clear, however, how to incorporate this into the argument
structure of, e.g., [MZ], [GMWZ2].
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[MZ] Metivier, G. and Zumbrun, K., Large viscous boundary layers for noncharacteristic nonlinear hyperbolic

problems, preprint, April 2002, available at http://www.maths.univ-rennes1.fr/ metivier/preprints.html
[PZ] Plaza, R. and Zumbrun, K., An Evans function approach to spectral stability of small-amplitude shock profiles,

Preprint, 2002.
[R] Rousset, F., Viscous limits for strong shocks of systems of conservation laws, Preprint, 2001, available at

http://www.umpa.ens-lyon.fr/ frousset/
[W1] Williams, M., Highly oscillatory multidimensional shocks, Comm. Pure Appl. Math. 52. 1999, pp. 129-192.
[Y] Yu, Shih-Hsien, Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws,

Arch. Rational Mech. Analysis. 146. 1999, 275-370.
[Z1] Zumbrun, K., Multidimensional stability of planar viscous shock waves, Advances in the theory of shock

waves, 304-516. Progress in Nonlinear PDE, 47, Birkhäuser, Boston, 2001.
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