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Abstract. In this paper we prove the existence of curved multiD viscous shocks and also justify
the small viscosity limit.

Starting with a curved, multidimensional (inviscid) shock solution to a system of hyperbolic
conservation laws, we show that the shock can be obtained as a small viscosity limit of solutions to
an associated parabolic problem (viscous shocks). The two main hypotheses are a natural Evans
function assumption on the viscous profile, together with a restriction on how much the shock can
deviate from flatness. The main tools are a conjugation lemma which removes xN

ε
dependence

from the linearization of the parabolic problem about the viscous profile, new degenerate Kreiss-
type symmetrizers used to prove an L2 estimate for the linearized problem, and a finite regularity
calculus of semiclassical and mixed type (classical-semiclassical) pseudodifferential operators.
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Part 1. Introduction

1. The problem

This paper presents a rigorous study of the zero viscosity limit for multiD curved shocks, and
at the same time proves the existence of curved viscous shocks for systems of conservation laws.
Starting with a curved shock (a piecewise smooth solution of a system of hyperbolic conservation
laws), we show that this shock can be obtained as the limit as viscosity goes to zero of solutions
to an associated parabolic problem (hyperbolic + viscosity). In [GW] an arbitrarily high order
asymptotic expansion was constructed for the viscous boundary layer on each side of the shock,
but the expansion was rigorously justified there only for sufficiently weak shocks in dimension one.
Here we are able to prove stability of the layer and thereby justify the expansion in all dimensions
for shocks of arbitrary strength satisfying: (a) an appropriate Evans function condition and (b) a
hypothesis that limits how much the curved shock we start with can deviate from flatness ((H7)
and (H6) in section 2). Recent work by Freistühler and Szmolyan [FS] and independently by Plaza
and Zumbrun [PZ] shows that the Evans condition holds for sufficiently weak Lax shocks. We recall
that the existence of multiD curved shocks in the inviscid case was proved by Majda [M2, M3].

Consider the m × m system of conservation laws on RN+1

N∑
j=0

Aj(u)∂xju = 0.(1.1)

where Aj(u) = f ′j(u) and fj : Rm → Rm are C∞ functions with f0(u) = u.
Set x = (x0, x

′′, xN ) = (x′, xN ), where x0 denotes time, and suppose that (U0
±(x), xN = ψ0(x′))

is a given shock solution of (1.1), not necessarily planar, which exists for x0 ∈ [−T0, T0]. For
convenience, we assume (U0

±, dψ0) is constant (U±, σ) outside some ball centered at the origin in
[−T0, T0]×RN . It is also convenient to suppose that (U0

±, ψ0) ∈ C∞([−T0, T0]×RN . (Even though
U0
± is initially defined just in ±(xN − ψ0(x′)) ≥ 0, we can extend each of these functions smoothly

to all of [−T0, T0]×RN .) The case of sufficiently high but finite regularity can be handled as below,
but much more bookkeeping is needed.

To say that (U0
±, dψ0) is a shock solution of (1.1) means that both of the following conditions

hold. Let S be the surface xN = ψ0(x′).
1. U0

+ (resp., U0
−) satisfies (1.1) in xN ≥ ψ0(x′) (resp., xN ≤ ψ0(x′)).

2.
∑N−1

0 [fj(U0)]∂xjψ0 − [fN (U0)] = 0 on S (the Rankine-Hugoniot condition). Here [u] means
the jump at S, u+ − u−.

Together these conditions imply that U0 defined as U0
+ (resp., U0

−) in xN > ψ0(x′) (resp.,
xN < ψ0(x′)) is a distribution solution of (1.1) in the whole space.

The problem we study is the following one:

Under suitable hypotheses show that on the time interval [0, T0], U0 is the limit as ε → 0 in some
appropriate norm (e.g., L2) of solutions to the associated parabolic problem on RN+1:

N∑
j=0

Aj(uε)∂xju
ε − ε�uε = 0.(1.2)

The asymptotic expansion constructed in [GW] provides an arbitrarily high order approximate so-
lution to the parabolic problem (1.2) with the given shock as the “outer part” of the leading term.
Our main result is that these approximate solutions are close in L∞ for ε small to exact solutions
of the parabolic problem. This yields the small viscosity limit as a simple corollary.
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As in [GW] the first step is to reformulate the parabolic problem as a doubled boundary problem
involving an unknown “front”. We fix once and for all a high order approximation to that front,
constructed as part of the expansion in [GW], and use it to define a change of variables leading to
a flat boundary (xN = 0). From this point on the main tools are the conjugation argument of [MZ]
and degenerate symmetrizers.

We look for an exact solution to the doubled problem as the sum of the approximate solution and
an error term which satisfies a nonlinear “error equation”. The [MZ] conjugation argument allows
us to reduce the problem of proving L2 estimates for the linearized error equation to the study
of a similar problem with xN

ε dependence removed from the coefficients. The doubled boundary
problem that remains fails to satisfy the uniform Lopatinski condition (since the Evans function
vanishes for zero frequency). Indeed, that failure is the main point that distinguishes our problem
from the question of stability of viscous Dirichlet boundary layers studied in [MZ]. There the
uniform Lopatinski condition was satisfied. Here as in [GMWZ1] we construct degenerate Kreiss-
type symmetrizers to cope with the degeneracy in the Lopatinski determinant. These symmetrizers
yield a degenerate L2 estimate - see Theorem 9.1. The singularity in the estimate (which really
occurs only in the low frequency regime) makes it harder to absorb the various error terms that
arise in using the pseudodifferential calculus, and also complicates the proof of nonlinear stability.
We are nevertheless able to use the estimate to prove nonlinear stability because we have a high
order approximate solution.

Assumptions on Evans functions (Definition 7.3) have been shown to give necessary and sufficient
conditions for nonlinear stability in the small viscosity limit in the cases of 1D Dirichlet boundary
layers [GR] and 1D curved shocks [R]. More recently, the same was shown for multiD Dirichlet
boundary layers in the paper [MZ]. It is to be expected then, that assumptions on the Evans
function (see (H7)) should be the correct approach for studying the stability of the boundary layers
that arise in the small viscosity limit for multiD shocks.

The goal of [GMWZ1] was to find a way to use energy estimates to recover and extend some of
the results proved in [Z] by constructive techniques based on estimation of Green’s functions. In
both papers the problem of long time stability for multiD planar viscous shocks is studied under
the Evans assumption (H7) on the viscous profile. In [GMWZ1] we had no high order approximate
solution, but again the basic L2 estimate obtained with degenerate symmetrizers was singular.
However, the planar hypothesis meant that after conjugation the linearized error equation had
constant coefficients, so we were able to prove additional mixed norm and L1 − L2 estimates that
led to nonlinear long time stability. It is not clear to us yet whether such estimates can be proved
in a variable coefficient situation such as the case of curved shocks. In any case such estimates are
not needed to study the short time small viscosity problem considered here.

We’ll refer to the small viscosity problem studied here as the small viscosity problem with prepared
data, since we use the approximate solution to define initial data for the associated parabolic
problem. This prepared data problem was solved in [GX] for sufficiently weak 1D shocks, and in
[R] for 1D shocks of arbitrary strength satisfying an Evans function hypothesis like the one we
make here (H7). A more difficult problem is the small viscosity problem with unprepared data in
which one takes the discontinuous initial data given by the hyperbolic shock as initial data for the
associated parabolic problem. In this problem one has additional phenomena such as the formation
of an initial layer (see [Y] for an analysis in 1D).

In their work on the small viscosity problem in 1D the authors mentioned above [GX, R, Y]
all found it helpful to put the error equation in conservative form and then integrate. The Evans
function for the resulting problem does not vanish for zero frequency. Conservative form also
proved useful in the study of long time stability for 1D [KK] and multiD ([GMWZ1], part 2) planar
shocks under zero mass perturbations. While it is not hard to use the approximate solution to
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write the error equation for the problem considered here in conservative form, we see no way to
take advantage of that fact. On the one hand there appears to be no useful way to integrate the
equation in the multiD small viscosity problem for systems (in the scalar multiD case integration
helps [Go2]). In addition, the various error terms introduced by use of the pseudodifferential calculi
during the process of conjugating the problem to simpler forms wreck the conservative structure
anyway. Instead, here we apply symmetrizer arguments directly to the unintegrated equation.

We conclude the paper with some observations about the difference between the long time sta-
bility and small viscosity problems. One might at first think that the problems are equivalent
after rescaling, but in fact this is not so. Although both problems can be formulated (as we do
here and in [GMWZ1]) as doubled boundary value problems, the small viscosity problem involves
a boundary layer, while the long time problem does not (see section 12).

A more detailed overview and guide to the proof is given in section 3 after the statement of
the main result. As far as we know, this is the first existence proof and justification of the small
viscosity limit for multiD curved shocks. In a subsequent paper we hope to remove the restriction
(assumption (H6)) on how much the inviscid shock can deviate from flatness. In addition, it is clear
that the methods of this paper yield similar results under weaker hyperbolicity hypotheses than
(H2), and for more general, even nonlinear, viscosities. We plan to discuss these generalizations in
a future work.

This work builds on the classic stability analysis for multi-D inviscid shocks in [M2, M3]. An
analogous stability problem for highly oscillatory, multi-D, inviscid shocks is studied in [W]. The
nonlinear stability of curved multi-D weak inviscid shocks is studied in [FM].

2. Assumptions

2.1. Assumptions on the equations.
(H1) fj ∈ C∞(Rm,Rm).
(H2) There are neighborhoods O± ⊂ Rm of U0

±(0), respectively, such that for u± ∈ O±,
∑N

j=1 Aj(u±)ξj
has simple real eigenvalues for ξ ∈ RN \ 0 (strict hyperbolicity).

2.2. Assumptions on the inviscid shock.
(H3) (U0

±(x), ψ0(x′)) exists for x0 ∈ [−T0, T0]. ψ0 is C∞ and U0
± are C∞ up to the shock surface

S = {xN = ψ0(x′)}. We take ψ0(0) = 0.
(H4) U0

±(x) ∈ O± for all x ∈ [−T0, T0] ×RN , and (U0
±, ψ0) is constant (U±, σ) for (x′′, xN ) outside

some ball centered at the origin in RN .
(H5) (U0

±, dψ0) is uniformly stable in the sense of Majda [M2] at each point of S.
(H6) The set {(U0

±(x), dψ0(x′)) : x ∈ [−T0, T0] × RN} is a subset (necessarily compact) of the
neighborhood ω1 of (U0

+(0), U0
−(0), dψ0(0)) chosen in Remark 7.9.

Observe that (H2) implies that for u± ∈ O±

the eigenvalues λ of − i
N∑
j=1

Aj(u±)ξj − |ξ|2 satisfy �λ = −|ξ|2.(2.1)

Remark 2.1. 1. (H5) implies that (U0
±(x′, ψ0(x′)), ψ0(x′)) satisfies the Lax shock inequalities for all

x′. Let

AN (u, dφ) ≡ AN (u) −
N−1∑
j=0

Aj(u)∂xjφ.
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The Lax shock inequalities in turn imply that if we let k (resp., l) be the number of positive (resp.,
negative) eigenvalues of AN (U0

+(x′, ψ0(x′)), dψ0(x′)) (resp., AN (U0
−(x′, ψ0(x′)), dψ0(x′)), then

k + l = m − 1.(2.2)

2. For Lax shocks (H5) is a consequence of (H7) below (see Remark 7.6). Thus, we could as well
replace (H5) by the assumption that (U0

±, dψ0) is a Lax shock.

The final hypothesis is an assumption on the viscous profile U0(x′, z) which is stated in terms of
the corresponding Evans function D(x′, β̂, ρ). Our definitions of these terms are the standard ones
and they are recalled in (7.23)-(7.24) and Definition 7.3 respectively. Let SN

+ = {β = (β′, γ′) ∈
RN+1 : γ′ ≥ 0 and |β| = 1}, and introduce polar coordinates β = ρβ̂, β̂ ∈ SN

+ .

2.3. Assumption on the viscous profile.
(H7) For each x′ ∈ [−T0, T0] ×RN−1

x′′ , D(x′, β̂, ρ) vanishes to precisely first order at ρ = 0 (where it
must vanish) for all β̂ ∈ SN

+ , and has no other zeros in SN
+ × R+.

Remark 2.2. 1. Recent work by Freistühler and Szmolyan [FS] and independently by Plaza and
Zumbrun [PZ] shows that (H7) holds for sufficiently weak Lax shocks.

2. When the Evans function vanishes in γ′ > 0, the linearized problem is strongly unstable.
The analogue of (H7) in one space dimension has been shown by Rousset [R] to imply nonlinear
stability in that case.

3. The neighborhood ω1 specifies how much the shock can deviate from flatness.
4. The choice of ω1 and (H6) imply that AN (U0

±(x), dψ0(x′)) has a uniformly bounded inverse
for all x ∈ RN+1

+ .

2.4. Choice of extension of the shock and profile. It will be convenient to smoothly extend
(U0
±(x), dψ0(x′)) and the corresponding viscous profile U0(x′, z) to all time (x0 ∈ R) so that (H3)-

(H7) continue to hold.
In addition we can choose the extension so that {(U0

±(x′, ψ0(x′)), dψ0(x′)) : x′ ∈ RN} is a compact
subset of ω1 (see Remark 7.9), and so that {(V 0

+, ∂zV
0
+, V 0

−, ∂zV
0
−)(x′, 0) : x′ ∈ RN} is a compact

subset of R4m (see (7.18)).
It is not necessary (nor is it possible in general) to extend (U0

±(x), dψ0(x′)) as a solution of the
system of conservation laws.

Henceforth we assume that such extensions have been chosen.

3. Main result and guide to the proof

Definition 3.1. Let x = (x′, xN ) be the original variables on RN+1 in which the problems (1.1)
and (1.2) are stated. For a fixed choice of Ψε define flat variables x̃ (globally on [−T0, T0]×RN ) by

x̃′ = x′

x̃N = xN − Ψε(x′).
(3.1)

When the use of flat variables is clear from the context, we drop the tilde.

Notation 3.1. 1. When working in flat variables, if we are given functions f±(x) defined on xN ≥ 0,
we define f(x) for xN ∈ R by

f(x) =

{
f+(x′, xN ) for xN ≥ 0
f−(x′,−xN ) for xN ≤ 0

.

2. Similarly, given f(x) defined for xN ∈ R, define f±(x′, xN ) = f(x′,±xN ) for xN ≥ 0.
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In the statement of the following theorem ũε is obtained from ũε± as in the above Notation,
where (ũε±,Ψ

ε) is the smooth high order approximate solution to the doubled parabolic problem
(4.4) on x̃N ≥ 0 constructed in [GW] and recalled in section 4 (4.6), (4.7). The viscous front is
approximated by xN = Ψε(x′) where

Ψε(x′) = ψ0(x′) + εψ1(x′) + · · · + εMψM (x′)(3.2)

and ψ0 defines the inviscid shock.
The functions ũε± have expansions (in flat variables) ũε±(x) =

(
U0
±(x, z) + εU1

±(x, z) + · · · + εMUM
± (x, z)

)
|z=xN

ε
+ εMr(x).(3.3)

Here

U j
±(x, z) = U j

±(x) + V j
±(x′, z),(3.4)

U0
±(x) is the original shock and V j

±(x′, z) are boundary layer profiles exponentially decreasing in z.
It is shown in [GW] that these expansions can be constructed to arbitrarily high order under the

assumptions of section 2.

Theorem 3.1. Under assumptions H1-H7 of section 2 there exists an ε0 such that for 0 < ε ≤ ε0
the parabolic problem (1.2) has an exact solution on ΩT0 ≡ [0, T0]×RN of the form (in the original
x variables)

uε(x) = ũε(x′, xN − Ψε(x′)) + εLw,(3.5)

where ũε and Ψε have the above expansions. Note that the original inviscid shock (U0
±, ψ0) appears

in the leading terms.
The exponent L can be chosen as large as desired provided the approximate solution is constructed

with sufficiently many terms (M(L)) and in that case we have the estimates (in flat variables),

|∂α(w±, ε∂Nw±)|L∞ ≤ 1

|∂α(w±, ε∂Nw±)|L2 ≤ C(T0)εL
(3.6)

for |α| ≤ L, 0 < ε ≤ ε0. Here ∂ = (∂0, . . . , ∂N−1).

Remark 3.1. 1. This theorem is an immediate consequence of Theorem 11.1. For a given L as in
Theorem 3.1 one can use Theorem 11.1 to see how many terms in the expansions of (ũε±,Ψ

ε) are
needed to yield the estimates (3.6).

2. Denote the original variables by (y′, yN ), and write the right and left sides of the inviscid shock
as UR(y′, yN ) and UL(y′, yN ). The shock surface is yN = ψ0(y′). Set x′ = y′ and xN = yN −ψ0(y′).
Then U0

+(x) in (3.4) is UR(x′, xN + ψ0(x′)) and U0
−(x) = UL(x′,−xN + ψ0(x′)).

Given the properties of the profiles as described in Proposition 4.1, Theorem 3.1 has the following
immediate corollary.

Corollary 3.1. Let U0(x) be the function on ΩT0 defined as U0
+ (resp., U0

−) in xN > ψ0(x′) (resp.,
xN < ψ0(x′)), where (U0

±, ψ0) is the given inviscid shock. Then for uε as in (3.5) and any compact
K ⊂ ΩT0 we have

|uε − U0|L2(K) ≤ C(K)
√
ε.

Of course, Theorem 3.1 contains much more information than this, since it rigorously justifies
the explicit high order asymptotic description given by the expansions (3.2), (3.3) of the viscous
boundary layer on each side of the inviscid shock.
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Remark 3.2. Henceforth, we’ll work exclusively in flat variables. In those variables the viscous
front is given by xN = 0, while the inviscid shock is xN = −(Ψε(x′) − ψ0(x′)).

The main steps in the proof are:
I. Approximate solution. Construct an arbitrarily high order approximate solution to the

m × m parabolic problem (1.2) in which the inviscid shock appears in the leading term. This is
done in [GW] by introducing an unknown “front”

xN = Ψε(x′),

and reformulating the original problem on the whole space as a doubled boundary problem with
transmission boundary conditions on the half-space x̃N ≥ 0, where x̃N = xN − Ψε(x′). The
expansion of Ψε is constructed along with that of ũ. This approximate solution is recalled in
section 4.

II. Reduce to a forward error problem. Henceforth, we work with the doubled parabolic
boundary problem (4.4). Advantages are that we are now in a position to apply Kreiss-type
symmetrizer techniques developed for boundary problems. In addition, we have a single limiting
problem (7.10) as z = xN

ε → +∞, instead of two distinct limiting problems at ±∞.
We fix a high order approximate solution (ũ,Ψε) to the doubled problem (4.4), and look for an

exact solution of the form

uε± = ũε± + wε
±,(3.7)

where w± (drop epsilons) satisfies the “error equation” (really an initial boundary value problem)
(6.4).

Note that the “viscous profile” U0(x′, z) (7.23) is essentially the leading term in the expansion
of ũ.

Initial data for the error problem (6.4) satisfying high order corner compatibility conditions (at
the corner x0 = 0, xN = 0) is chosen in section 5, and that allows us in section 6 to reformulate
the error problem as a “forward problem” (i.e., one where the forcing and the solution are zero in
the past, x0 < 0) with homogeneous boundary data.

The problem has been reduced to solving the 2m × 2m forward error problem (6.14). The most
difficult remaining step will be to prove an L2 estimate for the corresponding linearized problem
(6.16) (the linearization is about ũ±).

III. Symbolic preparation. All the work in section 7 is done at the symbol level. The
arguments are quantized in section 9 (that is, operators are associated to symbols) after the needed
pseudodifferential calculi are developed in section 8.

The discussion in section 7 applies almost entirely to behavior in the small (|β| ≤ δ) and medium-
sized (δ ≤ |β| ≤ R) frequency regions, with the main difficulties centered in the small frequency
region. Here β = (β′, γ′) = εζ, where ζ = (ζ ′, γ), ζ ′ is dual to x′, and γ ≥ 1. Sometimes we need to
use polar coordinates β = ρβ̂, where |β̂| = 1.

IV. Conjugation to remove xN
ε dependence. In section 7 to prepare the way for the use

of symmetrizers, we first rewrite (6.16) as the 4m× 4m first order system (7.6) (the system is first
order in ∂N , but second order tangential derivatives do appear).

It has been known for a long time (see, e.g., [Go, GX] for the 1D case) that the main obstacle to
proving an L2 estimate for the linearized error problem is the z = xN

ε dependence of the coefficients.
Here we use a key idea from [MZ], which is to replace the original linearized problem (7.6) by a
“limiting” problem in which the xN

ε dependence (but not the xN dependence!) has been removed.
This is achieved by conjugating the original problem with a semiclassical pseudodifferential operator
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WD (9.14) whose symbol

W = W0(x′,
xN
ε

, pε(x), β) + εW1(x′,
xN
ε

, pε(x), β)(3.8)

is constructed in section 7.
The limiting problem (7.10) is obtained from (7.6) simply by letting z → +∞ in the coefficients

of that problem. The construction of the symbols W0, W1 combines the Gap Lemma of [GZ] with
our semiclassical pseudodifferential calculus (section 8 and the Appendix).

The construction of the conjugator W and the later construction of symmetrizers depend on
a knowledge of the spectral properties of the symbol G∞(p, β) of the limiting operator. These
properties are recalled in section 7.

V. Degenerate Evans implies degenerate Lopatinski. In section 7 we also define the Evans
function, first giving the classical definition D(x′, β̂, ρ) (7.29) for problems on the whole space (as
in [ZS], e.g.), and then relating that to the Evans function D(x′, β̂, ρ) (7.35) for the corresponding
doubled boundary problem.

The Evans function (a Wronskian of solutions to the ODE (7.34)(a)) encodes information about
the linearized stability of the viscous profile and also, less obviously, of the original inviscid shock.
The existence of the profile itself implies D(x′, β̂, 0) = 0, and a key hypothesis of this paper (H7)
is the assumption that D vanishes to precisely first order at ρ = 0 and has no other zeros in the
unstable (closed) half plane (γ′ ≥ 0). We recall from [ZS] how the first order vanishing of D at
ρ = 0 is equivalent to the simultaneous validity of: (a) transversality at the connection U0 (of
the stable/unstable manifolds for U0

+(x′)/U0
−(x′) of the travelling wave ODE (7.24)), and (b) the

uniform stability in the sense of Majda [M2] of the original inviscid shock . The properties (a) and
(b) are necessary for the construction of high order approximate solutions as in [GW].

In Proposition 7.2 (recalled from [GMWZ1]) we describe how the small frequency behavior of
the Evans function translates into failure at ρ = 0 of the uniform Lopatinski condition for the
boundary problem (6.16). It is important for the construction of degenerate symmetrizers to know
precisely how the boundary operator Γ behaves on the decaying generalized eigenspace E−(x′, β̂, ρ)
(7.4), and in particular to identify the one dimensional subspace E−,φ on which it vanishes. That
subspace is essentially the span of the doubled differentiated profile ∂zU0 (7.36).

VI. Conjugation to block structure. The last element of symbolic preparation carried out
in section 7 is the conjugation of G∞, the symbol of the limiting problem (7.10), to block structure.
The (main) stages of the conjugation are

G∞ → G1,∞ (7.52) → G2,∞ (7.58) → GHP (7.65) → GB,∞ (7.59).(3.9)

The H block of GHP is associated to the generalized eigenspace of G∞ corresponding to small
eigenvalues - that is, eigenvalues that approach zero as ρ → 0. The P block corresponds to
eigenvalues whose real parts remain strictly bounded away from zero as ρ → 0.

The conjugation from the H block of GHP to the HB block of GB,∞ is done as in [MZ]. Again,
the main difficulty is associated with “glancing modes”, that is, points (p′, β̂′, γ̂′, ρ) = (p′, β̂′, 0, 0)
such that ĤB(p′, β̂′, 0, 0) has multiple pure imaginary eigenvalues (here ĤB (7.61) is defined by
HB(p′, β̂, ρ) = ρĤB(p′, β̂, ρ)). The argument is a modification of the classic perturbation argument
of Kreiss [K], the difference being that now the perturbation is performed with respect to the
parameters γ̂′ and ρ instead of just γ̂′.

The conjugations associated to the P block pose no significant difficulty.
In fact only the conjugations represented by the first three arrows in (3.9) will be quantized in

section 9. The final arrow is the only one that requires localization on the unit sphere SN
+ in β

space, and is needed because the piece of the symmetrizer corresponding to the H block of GHP

has to be constructed microlocally (that is, using spatial cutoffs and cutoffs on SN
+ simultaneously).
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Microlocal pieces SĤB
symmetrizing ĤB are constructed first. They are then conjugated back a

step and assembled by a microlocal partition of unity to produce the symbol SH .
VII. Symmetrizer construction at the symbol level.

The degenerate symmetrizer S =
(
SH 0
0 SP

)
is constructed so that �SGHP has certain positivity

properties in the interior (7.82), (7.83), (7.90), and so that S+Γ∗1Γ1 has certain positivity properties
on the boundary (7.91) (here Γ1 = ΓT 0, where the symbol T 0 is a composition of conjugator symbols
(7.67)).

The SH block is constructed as in [MZ] by modifying the ansatz used in [K]; an extra term is
added to the kth subblock of SĤB

corresponding to the extra ρ parameter. The SH block of S is
not the “degenerate” one.

Assumption (H7) together with the fact that the viscous profile approaches its endstate with
fast exponential decay as z → ∞ implies that the boundary operator fails to satisfy the uniform
Lopatinski condition on a one dimensional subspace EP1,− of the eigenspace associated to the P
block of GHP (see Proposition 7.2, 2(b)). To deal with this we construct the SP block with a
degeneracy as ρ → 0:

SP =
(
CI 0
0 −ρ2I

)
.(3.10)

In Proposition 7.4 we show that SP and SH can be chosen so that

(a) c1ρ
2|U |2 ≤ ((S + Γ∗1Γ1)(x′, β̂, ρ)U,U) ≤ c2ρ

2|U |2 for U ∈ EP1,− and

(b) ((S + Γ∗1Γ1)(x′, β̂, ρ)U,U) ≥ c1|U |2 for U ∈ Ec
P1,− ,

(3.11)

where Ec
P1,− is the subspace of C4m orthogonal to EP1,− .

Note that when the uniform Lopatinski condition (Definition 7.6) holds, S can be constructed
so that an estimate like (3.11)(b) holds for all U ∈ C4m.

VIII. Pseudodifferential calculi and the mixed Garding inequality. In section 8 and
the Appendix we present the semiclassical, classical, and mixed pseudodifferential calculi we need to
quantize the symbolic portion of the argument. The calculi are rather simple in the sense that the
proofs are based just on Taylor’s formula and standard properties of the Fourier transform. Even
though our inviscid shock and approximate solution are piecewise C∞, we construct the calculi
under weaker regularity hypotheses in order to allow the arguments of this paper to be applied
when C∞ is replaced by CM for M large enough.

To an element a(x′, β, ζ) of the mixed symbol class Mm
M (8.11) we associate the operator

a(x′, εD,D)u =
∫

eix
′ζ′a(x′, εζ, ζ)û(ζ ′)dζ ′.(3.12)

Operations like composition and taking adjoints with pseudodifferential calculi produce error
terms, and a quick glance at our main L2 estimate, Theorem 9.1, shows that this estimate cannot
absorb O(|U |L2) errors. Partly for this reason (in contrast to [MZ], where such errors can be
absorbed), in section 9 we often need to keep track of terms beyond the leading term in applications
of the calculus and estimate the associated higher order errors.

One of the main applications of the mixed calculus is the proof of the Garding inequality for
mixed pseudodifferential operators stated at the end of section 8. In particular that proof requires
both composition and adjoint formulas for mixed type operators.

IX. Localization, assumption (H6), and limiting the deviation from flatness of the
inviscid shock. Spatial localization is accomplished with smooth cutoffs κ(x), while frequency
localization is performed with pseudodifferential operators associated to semiclassical symbols like
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χ1(εζ) (for localization by frequency size) and classical symbols like χ2( ζ
|ζ|) (for localization by

frequency direction).
Note that if one tries to commute a cutoff like κ(x) through

∂NU − 1
ε
GU = F,(3.13)

the commutator is an unacceptable O(|U |L2) error. The error is unacceptable because a degenerate
L2 estimate proved for the localized problem cannot be used to conclude anything about the solution
to the original problem (3.13).

Localization by frequency direction leads to a similar problem, so these two types of localization
have to be avoided in the early conjugations. They can in fact be tolerated once the block structure
GHP has been achieved (see Remark 9.5).

On the other hand localization by frequency size (χ1(εζ)) can be tolerated in (3.13) (see step 1
in the proof of Proposition 9.1).

There are two points in the argument where spatial localization is needed. One is at the stage
of the very first conjugation G → G∞, where in order to apply the Gap Lemma we need to limit
how much the coefficients of G∞ (which depend on the inviscid shock (U0

±, dψ0)) can vary. We
can’t introduce a spatial cutoff at this point, so we introduce a hypothesis (H6) instead . That is,
instead of using a spatial cutoff to restrict to a small neighborhood on which the inviscid shock
varies only slightly, we assume that the global deviation of that shock from flatness (a piecewise
constant shock) is not too large. The neighborhood ω1 in the statement of (H6) specifies how much
deviation is allowed.

The viscous profile satisfies

|∂zU0(x′, z)| ≤ Ce−δz,(3.14)

for some δ > 0. The discussion in Remark 7.9 shows, for example, that the larger δ is, the more
one can allow the inviscid shock to deviate from flatness.

The second point where spatial localization is needed is in the construction of the SH block of
the symmetrizer symbol and (therefore) also of the corresponding operator sεh,D (9.50), (9.71). As
indicated earlier the resulting O(|U |L2) errors can be absorbed now since the GHP form has already
been achieved (Remark 9.5).

X. L2 estimate - error control. The L2 estimate is proved in section 9. The main technical
challenge here is to control the size of errors arising from use of the calculi.

We’ve already discussed the cutoff errors. Another source of O(|U |L2) errors is the conjugation
process. For example, if one attempts to conjugate G to G∞ using a first order conjugator whose
symbol is given by just the first term W0 in (3.8) (as is done in [MZ]), this produces an O(|U |L2)
error. The operator associated to W1 removes that error (step 3 in the proof of Proposition 9.1).
The semiclassical calculus tells us what equation the symbol W1 must satisfy, and the Gap Lemma
enables us to solve that equation.

The quantized version of the conjugation represented by the first arrow in (3.9) also produces
O(|U |L2) errors that cannot simply be thrown on the right as new forcing terms. Instead, we
“incorporate these errors back into the system” (they are the r0 terms in the matrix (9.38)). By a
careful choice of the conjugating operator TD (7.54) and its left and right (approximate) inverses,
we can arrange so that these incorporated errors occupy relatively harmless positions in (9.38). The
positions are harmless because the HR,L blocks are unaffected, and a subsequent conjugation (by
the operator Ta,D (9.40)) removes the off-diagonal terms while leaving behind acceptable O(ε|U |L2)
errors (step 4 in the proof of Proposition 9.1).

XI. L2 estimate - use of Garding inequalities. We note first that the estimates on χMU
and χLU in (9.6), corresponding to the medium and large frequency regimes, are taken from [MZ].
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Indeed, estimates (9.6)(b),(c) are essentially estimates (4.37),(4.28), respectively, in [MZ]. We say
“essentially” because, although [MZ] considers Dirichlet boundary conditions, the same argument
in the medium and large frequency regions yields estimates for any boundary condition satisfying
the uniform Lopatinski condition in those regions. We refer the reader to [GMWZ1], section 3, for
more detail on how the standard symmetrizer argument works in those regions for such boundary
conditions. Thus, the focus in this paper is almost entirely on the small frequency estimate for
χSU .

Having quantized the symmetrizer symbol in step 5 (9.71) and introduced spatial and frequency
(χ1(εζ)) cutoffs in step 6, we proceed in step 7 to obtain the desired bounds on the solution U5,S

to (9.73).
We start from the simple identities (9.75) (obtained by integrating ∂N (sεDU5,S , U5,S) on xN ≥ 0

and using the equation to rewrite ∂NU5,S). The interior estimates (9.77), (9.79), and (9.80) are
done by blocks. The main new point here is the estimate corresponding to the degenerate sεp−,D
block. Here we rewrite the symbol

sεp−Pε
− as ε2(

1
ε2

sεp−Pε
−)(3.15)

and observe that 1
ε2
sεp−Pε

− is a smooth symbol of order two in the mixed calculus satisfying the
positivity property (9.57), (9.58). Thus, the mixed Garding inequality gives the estimate (9.79).

The most delicate part of the estimate is the treatment of boundary terms. Here again we have
a degeneracy (the one described above in (3.11), but the analysis cannot be done by blocks.

Thus, we introduce pseudodifferential projections, that is, mixed operators whose matrix symbols
π1(x′, εζ, ζ) and π2(x′, εζ, ζ) project onto orthogonal invariant subspaces for the operator S +Γ∗1Γ1.
We note that π1 = e4me∗4m, where e4m = f4m + |εζ|F and f4m(x′, εζ) is obtained by doubling the
differentiated profile ∂zU0, extending to ρ > 0, and transporting by (T 0)−1.

The projectors allow us to quantize the symbolic positivity estimates in (3.11) using Garding in-
equalities. The classical Garding inequality can be used to estimate ((sεD+Γ∗1,DΓ1,D)π2,DU5, π2,DU5)
(Prop. 9.4), while the mixed Garding inequality is used for ((sεD +Γ∗1,DΓ1,D)π1,DU5, π1,DU5) (Prop.
9.3). Mixed Garding applies since

((sε + Γ∗1Γ1)π1U, π1U) = (Bε
1v4m, v4m)(3.16)

where Bε
1 = ε2b1(x′, εζ, ζ) is 1×1 and b1 is a smooth mixed symbol of order two satisfying b1 ≥ c〈ζ〉2

(9.70).
The mixed terms involving both π1,DU5 and π2,DU5 are shown to give acceptable errors (Propo-

sition 9.2).
XII. Higher derivative estimates . If one simply differentiates the equation (10.3) and throws

commutators on the right as new forcing terms, those commutators are unacceptably large errors.
Instead, we consider an enlarged system for the new unknown U∗,k = (( γ

ε2
)kU, ( γ

ε2
)k−1∂U, . . . , ∂kU).

The system can be put in a simple block diagonal form (10.4). The choice of the power ε2 in the
definition of U∗,k makes the commutator error appearing on the right in (10.4) an acceptable error.

We can now simply repeat the entire argument of section 9 on this block diagonal system to prove
the higher derivative estimates of Proposition 10.1. These estimates involve only the tangential
derivatives (∂0, . . . , ∂N−1).

XIII. Nonlinear stability. Here we take advantage of the large powers of ε appearing in the
two terms on the right in the nonlinear forward error problem (6.14) to prove convergence of the
obvious iteration scheme (11.4), (11.5). To control L∞ norms we use the Sobolev inequalities (11.9)
- it suffices to control just one ∂N derivative provided one has control of sufficiently many tangential
derivatives. The ∂N control comes from the equation.
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The nonlinear term on the right in (11.6) depends on ∂′′U as well as U , so we need to take
advantage of the extra gain in the high frequency estimates in order to be able to estimate k
derivatives of Un+1 with only k derivatives of Un (as we must do to make the iteration scheme
work). This is the point of (11.13) and (11.21). The rest is routine.

Part 2. Reductions

4. Reduction to a doubled boundary problem

Following [GW] we make the change of coordinates

x̃′ = x′, x̃N = xN − Ψε(x′),(4.1)

where the smooth function Ψε remains to be determined. Set ũε(x̃) = uε(x), and drop the tildes to
rewrite (1.2) (suppressing some epsilons) as

N−1∑
j=0

Aj(u)∂xju + AN (u, dΨ)∂xNu − ε
N∑
1

(∂xj − ∂xjΨ∂xN )2u = 0,(4.2)

where

AN (u, dΨ) = AN (u) −
N−1∑

0

Aj(u)∂xjΨ.(4.3)

On RN+1
+ = {xN ≥ 0} define

uε±(x) = uε(x′,±xN ),

and note that uε satisfies the free problem (4.2) if and only if uε± satisfies the doubled parabolic
boundary problem on RN+1

+ :

(a)
N−1∑

0

Aj(u±)∂xju± ± AN (u±, dΨ)∂xNu± ∓ ε

(
N−1∑

1

∂2
xjΨ

)
∂xNu±

− ε

(
N−1∑

1

∂2
xj + Cε(x′)∂2

xN
∓ 2

N−1∑
1

∂xjΨ∂xj∂xN

)
u± = 0

(b)u+ − u− = 0 on xN = 0

(c)∂xNu+ + ∂xNu− = 0 on xN = 0,

(4.4)

where

Cε(x′) = 1 + |∇x′′Ψε|2 .(4.5)

At this stage, we decide to look for a function Ψε which is polynomial with respect to ε, that is:

Ψε(x′) = ψ0(x′) + εψ1(x′) + · · · + εMψM (x′),(4.6)

where ψ1, . . . , ψM remain to be determined.
[GW] constructs an approximate solution to (4.4) of the form (ũε±,Ψ

ε) where Ψε is given by (4.6),
and ũε±(x) = (

U0
±(x, z) + εU1

±(x, z) + · · · + εMUM
± (x, z)

)
|z=xN

ε
+ εMr(x).(4.7)

Here

U j
±(x, z) = U j

±(x) + V j
±(x′, z),
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U0
±(x) is the original shock (see Remark 3.4), and V j

±(x′, z) are boundary layer profiles exponentially
decreasing in z. The ε−dependence is suppressed in the notation.

Let us write (4.4)(a) as

Pε
±(uε±, dΨ

ε)∂uε± = 0.(4.8)

Plugging (4.7) and (4.6) into (4.4) and setting coefficients of distinct powers of ε equal to zero
yields a sequence of profile equations for the ψj(x′), U

j
±(x), and V j

±(x′, z). Under the assumptions
of section 2 these equations can be solved to yield (ũε±,Ψ

ε) satisfying (suppress some epsilons):

P±(ũ±, dΨ)∂ũ± = εMRε,M
± (x)

ũ+ − ũ− = 0 on xN = 0
∂xN ũ+ + ∂xN ũ− = 0 on xN = 0,

(4.9)

on [−T0
2 , T0].

Notation 4.1. 1. Set ΩT0 = [−T0
2 , T0] × R

N
+ , where RN

+ = {(x′′, xN ) : xN ≥ 0}. Let HM
T0

(x) =
HM (ΩT0) and HM

T0
(x′) = HM (bΩT0).

2. Set Ω = RN+1
+ = {(x0, x

′′, xN ) : xN ≥ 0}. Let HM (x) = HM (Ω) and HM (x′) = HM (bΩ).
3. Set HM ({x0 = 0, xN ≥ 0}) = HM (x′′, xN ).
4. Many of the functions in this paper have an ε-dependence that is usually suppressed in the

notation (when it is harmless). For functions with ± dependence, we set u = (u+, u−).
5. z is a placeholder for xN

ε .
6. For j = 0, . . . , N set ∂j = ∂xj and Dj = 1

i ∂j .

The remainder Rε,M
± is C∞ and satisfies

|∂αRε,M
± |L∞ ≤ Cαε

−αN

|∂αRε,M
± |L2 ≤ Cαε

1
2
−αN .

(4.10)

on ΩT0 for all multi-indices α.
For later reference we record here some properties of the profiles:

Proposition 4.1 ([GW]). 1. U0
±(x), V 0

±(x′, z), and dψ0(x′) are independent of (x′′, xN ) for |x′′, xN |
large. Each is a smooth function of its arguments with derivatives of every order uniformly bounded
with respect to (x, z). Moreover, there exist δ > 0, C > 0 such that for all x′

|V 0
±(x′, z)| ≤ Ce−δz.(4.11)

2. For j ≥ 1 U j
±(x), V j

±(x′, z), and dψj(x′) vanish for |x′′, xN | large. Each is a smooth function
of its arguments, V j

± is exponentially decreasing in z, and

U j
± ∈ H∞T0

(x).(4.12)

3. The function r(x) in (4.7) lies in H∞T0
(x).

4. For j ≥ 1 the functions U j
±(x), V j

±(x′, z), dψj(x′), and r can be extended from ΩT0 to Ω so
that statements 1-3 continue to hold on Ω. (This gives an extension of ũ that we’ll use later.)

Remark 4.1. If ψ1, . . . , ψM are not included in (4.6), the profile equations turn out to be overde-
termined and consequently unsolvable. See ([GW],4.4).
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We seek an exact solution to (4.4) of the form

uε± = ũε± + wε
±,(4.13)

where wε
± satisfies for x0 ∈ [0, T0]

P±(ũ± + w±, dΨ)∂w± =

[P±(ũ±, dΨ) − P±(ũ± + w±, dΨ)]∂ũ± − εMRε,M
± ,

w+ − w− = 0 on xN = 0,
∂xNw+ + ∂xNw− = 0 on xN = 0.

(4.14)

Clearly, we also need some initial condition. If we simply try

w± = 0 on x0 = 0,

then corner compatibility fails and we can’t expect regular solutions wε
±. So we should try to choose

initial data of the form

wε
± = εM

′
ωε

0,±(x′′, xN ) on x0 = 0,(4.15)

which is corner-compatible to sufficiently high order with (4.14). This is done in the next section.
Standard parabolic theory (e.g., as in [KL, E]) then gives existence on some [0, Tε]. The task
remains of showing existence on [0, T0] for small enough ε.

5. Corner compatibility

Let w0,±(x′′, xN ) = w±|x0=0. Corner compatibility to a given high enough order is arranged by
correctly specifying ∂kNw0,± for k = 1, . . . , k0, for k0 large enough, at the corner x0 = 0, xN = 0.

For k = 0, 1 choose ∂kNw0,±(0, x′′, 0) to be any functions satisfying the boundary conditions, say,
the constant function zero in both cases (the choice of compatible data is far from unique).

For k = 2 use the interior equation (4.14) and the differentiated boundary condition

∂0(w+ − w−) = 0

to determine

∂2
Nw±(0, x′′, 0) = εM−1a2,±(x′′).

Then differentiate the interior equation with ∂N and use the boundary condition

∂0(∂Nw+ + ∂Nw−) = 0

to get

∂3
Nw±(0, x′′, 0) = εM−2a3,±(x′′).

Here ak ∈ H∞. Continue in this way. Then, for a smooth cutoff ρ(xN ) identically equal to 1
near xN = 0, take (with slightly modified ak)

w0,±(x′′, xN ) = ρ(xN )[x2
Na2,±(x′′)εM−1 + · · · + xk0

N ak0,±ε
M−k0+1].(5.1)

If k0 is odd, then for j = 1, . . . , k0−1
2 this choice of initial data is compatible with

∂j0(w+ − w−) = 0

∂j0(∂Nw+ + ∂Nw−) = 0
(5.2)

at the corner. In this case we say the initial data is corner compatible to order k0−1
2 .
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Observe that for a given choice of k0

w±|x0=0 = εM−k0+1ωε
0,±(x′′, xN ),(5.3)

where ω0,± ∈ H∞(x′′, xN ) uniformly with respect to ε..

Remark 5.1. Thus, we have now a carefully constructed choice of initial data for (4.4), namely

uε± = ũε±(0, x′′, xN ) + εM−k0+1ωε
0,±(x′′, xN ) on x0 = 0.(5.4)

6. Reduction to a forward problem

We will look for an exact solution uε± to (4.4) as a perturbation ũε± + w± of ũε±. Our next task
is to put the “error equation” for w in convenient form.

Notation 6.1. 1. Set AN (u, dΨ) = AN (u, dΨ) − ε
(∑N−1

1 ∂2
xjΨ

)
where, we recall,

AN (u, dΨ) = AN (u) −
N−1∑

0

Aj(u)∂xjΨ,(6.1)

and Aj = dfj , j = 0, . . . , N , f0(u) = u.
2. Let FN (u, dΨ) ≡ fN (u) −

∑N−1
0 fj(u)∂xjΨ − ε(

∑N−1
1 ∂2

xjΨ)u.
3. Let F±(u, dΨ) = (f1(u), . . . , fN−1(u),±FN (u, dΨ)).
4. Let E±(dΨ, ∂2) =

∑N−1
1 ∂2

xj + C(x′)∂2
xN

∓ 2
∑N−1

1 ∂xjΨ(x′)∂xj∂xN .
5. Let H±(v, dΨ)w ≡ (A1(v)w, . . . , AN−1(v)w,±AN (v, dΨ)w).
6. For j = 1, . . . , N − 1 let Qj(v, w) = fj(v + w) − fj(v) − Aj(v)w and set

QN (v, w) ≡ FN (v + w, dΨ) − FN (v, dΨ) − AN (v, dΨ)w,

Q±(v, w) = (Q1(v, w), . . . ,±QN (v, w)).
(6.2)

Q± is at least quadratic in w.

7. Set B(u±) =
(

u+ − u−
∂Nu+ + ∂Nu−

)
|xN=0.

8. Let ∂j = ∂xj and ∇ = (∂1, . . . , ∂N ), so ∇ · U = div U .

In this notation the doubled parabolic problem satisfied by ũ±, (4.9), is

∂0ũ± + ∇ · (F±(ũ±, dΨ)) − εE±(dΨ, ∂2)ũ± = εMRε,M
± (x)

B(ũ±) = 0.
(6.3)

Now u = ũ+w will be an exact solution of (4.4) provided w± is a solution to the error problem

(a) ∂0w± + ∇ · (H±(ũ±, dΨ)w±) − εE±(dΨ, ∂2)w± =

− ∇ · (Q±(ũ±, w±)) − εMRε,M
± (x)

(b) B(w±) = 0

(c) w±|x0=0 = w0,±(x′′, xN ) = εM0ζε±(x′′, xN ),

(6.4)

where ζ± ∈ H∞(x′′, xN ) is chosen so that w0,± is corner compatible to order k0. Here k0 and
M0 = M0(M,k0) < M can be taken large provided M >> k0.

Remark 6.1. The “bad term” with coefficient of order 1
ε in (6.4) arises when ũ± in ∇ · H± is

differentiated with ∂N .
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6.1. Reduction to a forward problem with nonhomogeneous boundary conditions. We
proceed to replace (6.4) by a problem with nonhomogeneous boundary and interior forcing both
supported in x0 ≥ 0. The reduction is carried out in the following steps:

1. First extend ũ and Ψ as indicated in Proposition 4.1 from ΩT0 to Ω. Extend Rε,M
± to Ω to

have support in |x0| < T0 + 1 and so that the estimates (4.10) still hold.
Next, ignore the boundary and extend the function ζε in (6.4)(c) without any loss of regularity

into xN < 0. Similarly extend ũ± and Rε,M
± so that (6.4)(a) is now an equation on the full space

RN+1.
2. Consider the initial value problem for the new unknown w1,± given by the extended (6.4)(a)

and the extended initial data. Let G±(w1,±) denote the expression obtained by replacing w± by
w1,± in (6.4)(a) and subtracting the right side from the left. Construct a k0-th order solution at
x0 = 0 that is, a function w1,± satisfying

∂j0(G±(w1,±)) = 0 at x0 = 0 for j = 1, . . . , k0.(6.5)

w1,± should be defined for all x0, but supported in [−δ, δ] for some δ > 0 (easily arranged by
multiplying by a cutoff χ(x0) identically one near 0). The high power of ε in the initial data is
useful here, since each time the equation is used to solve for some ∂j0w1,±|x0=0, a factor of 1

ε is
introduced.

3. Define

G̃± ≡
{

G±(w1,±), x0 ≥ 0
0, x0 < 0

,(6.6)

which lies in Hk0+1(x) by (6.5).
4. Corner compatibility conditions on the original initial data w0,± imply the function

g ≡
{
B(w1,±), x0 ≥ 0
0, x0 < 0

(6.7)

belongs to Hk0+1(x′).
5. Looking for a solution to (6.4) of the form w± = w1,± +w2,±, we have reduced to solving the

forward boundary problem on xN ≥ 0:

(a) ∂0w2,± + ∇ · (H±(ũ±, dΨ)w2,±) − εE±(dΨ, ∂2)w2,± =

− ∇ · [Q±(ũ±, w1,± + w2,±) − Q±(ũ±, w1,±)] − G̃±
(b) B(w2,±) = −g

(c) w2,± = 0 in x0 < 0.

(6.8)

Remark 6.2. Fix M1 large. Provided k0 and M were taken large enough in the construction above,
the functions w1,± and G̃± (resp. g) can be taken to have the form

εM1f ε(x), for f ε ∈ HM1(x),

(resp., εM1hε(x′), for hε ∈ HM1(x′))
(6.9)

uniformly with respect to ε.

6.2. Reduction to a forward problem with homogeneous boundary conditions. Next we
transfer the nonzero boundary data of (6.8) to interior forcing:
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1. Look for a solution to (6.8) of the form w2,± = u′± + v′±, where the first two terms of the
Taylor series of u′ at xN = 0 are chosen so that u′ satisfies the boundary condition (6.8)(b). Then
extend u′ without loss of regularity into xN ≥ 0 so that its support lies in x0 ≥ 0.

2. Let K±(x) denote the expression obtained by replacing w2,± by u′± in (6.8)(a) and subtracting
the right side from the left. We have now reduced to solving the forward problem with homogeneous
boundary conditions

(a) ∂0v
′
± + ∇ · (H±(ũ±, dΨ)v′±) − εE±(dΨ, ∂2)v′± =

− ∇ · [Q±(ũ±, w1,± + u′± + v′±) − Q±(ũ±, w1,± + u′±)] − K±.
(b) B(v′±) = 0

(c) v′± = 0 in x0 < 0.

(6.10)

Remark 6.3. Fix M2 large. Provided k0 and M were taken large enough in the construction above,
the functions

u′±, w1,±, and K
can be chosen with the form

εM2f ε(x), for f ε ∈ HM2(x)(6.11)

uniformly with respect to ε. In addition,

supp u′ ∪ supp K ⊂ {0 ≤ x0 ≤ T0 + 1},
supp w1,± ⊂ {−δ ≤ x0 ≤ δ}.(6.12)

Next relabel v′ = w, b = w1 + u′ and write (6.10) in a simpler form

(a) ∂0w± + ∇ · (H±(ũ±, dΨ)w±) − εE±(dΨ, ∂2)w± =

− ∇ · [Q±(ũ±, b± + w±) − Q±(ũ±, b±)] − K±
(b) B(w±) = 0

(c) w± = 0 in x0 < 0.

(6.13)

Let us write b± = εM2 b̃±, K = εM2F , and w = εLw̃, for L ≤ M2. Drop tildes, relabel M2 = M ,
and cancel εL to obtain our final form for the error problem on xN ≥ 0:

(a) ∂0w± + ∇ · (H±(ũ±, dΨ)w±) − εE±(dΨ, ∂2)w± =

− ∇ ·
(
(εMb±, ε

Lw±)N (ũ±, dΨ, εMb±, ε
Lw±)w±

)
− εM−LF±

(b) B(w±) = 0

(c) w± = 0 in x0 < 0.

(6.14)

Here, we’ve used that Q(ũ, p) = O(|p|2) and introduced an obvious notation in defining N . More-
over, b± and F± are in HM (x) uniformly with respect to ε, and

supp F ⊂ {0 ≤ x0 ≤ T0 + 1}.(6.15)

Recall that M in (6.14) can be taken arbitrarily large as long as the approximate solution ũ is
constructed with sufficiently many terms.

To complete the study of the small viscosity limit, it is enough to show that for some ε0 > 0,
this problem has a solution on Ω for 0 < ε < ε0.
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The first step is to obtain an L2 estimate for the forward linearized problem on Ω:

(a) ∂0w± + ∇ · (H±(ũ±, dΨ)w±) − εE±(dΨ, ∂2)w± = F±

(b) B(w±) = 0 on xN = 0

(c) w± = 0 in x0 < 0,

(6.16)

where

supp F ⊂ {0 ≤ x0 ≤ T0 + 1}.(6.17)

Part 3. Symbolic preparation

7. Evans functions, conjugators, block structure, symmetrizers

7.1. 4m × 4m first order system. We rewrite the problem yet again, this time putting it in a
form needed for the symmetrizer argument to follow.

Perform the differentiations on the H term in (6.16), set U± = (w±, ε∂Nw±) and observe that
(6.16)(a) can be rewritten as

∂NU± − 1
ε
G±U± = Cε(x′)−1F±,(7.1)

where we have relabelled
(

0
F±

)
as F±. Here

G± =
(

0 I
M± A±

)
(7.2)

with

M± = Cε(x′)−1

[
ε∂0 +

N−1∑
1

Aj(ũ±)ε∂j −
N−1∑

1

ε2∂2
j + E±

]

E±w± = ±(∂uAN (ũ±, dΨ)w±)∂zũ± +
N−1∑

1

(∂uAj(ũ±)w±)ε∂j ũ±

A± = Cε(x′)−1

[
±AN (ũ±, dΨ) ± 2

N−1∑
1

∂jΨε∂j

]
.

(7.3)

To prove weighted estimates we introduce Ũ± = e−γx0U±, F̃± = e−γx0F± and observe that (7.1)
is equivalent to

∂N Ũ± − 1
ε
Gγ
±Ũ± = Cε(x′)−1F̃±,(7.4)

where Gγ
± is the same as G± except that the ∂0 in M± is replaced by ∂0 + γ.

Drop tildes, define the 2m × 4m matrix Γ and the 4m × 4m matrix G by

Γ =
(

1 0 −1 0
0 1 0 1

)
G =

(
Gγ

+ 0
0 Gγ

−

)
,

(7.5)
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and let U =
(
U+

U−

)
to obtain the following equivalent form (G form) for the doubled boundary

problem (6.16):

∂NU − 1
ε
GU = F

ΓU = 0 on xN = 0
U = 0 in x0 < 0.

(7.6)

Here we have relabeled C(x′)−1F as F .

7.2. Limiting and frozen problems. Let us write the approximate solution ũε(x) in (4.7) as

ũε±(x) = uε1±(x) + uε2±(x′, z)|z=xN
ε
,(7.7)

where for some δ > 0

|uε2(x′, z)| + |∇x′u
ε
2(x
′, z)| + |∂zuε2(x′, z)| ≤ Ce−δz,

uε1±(x) = U0
±(x) + O(ε),

(7.8)

and (U0
±(x), ψ0(x′)) is the original (ideal) shock. We also have

dΨε(x′) = dψ0(x′) + O(ε).(7.9)

Definition 7.1. The limiting problem corresponding to (7.6) is

∂NU − 1
ε
G∞U = F

ΓWDU = 0 on xN = 0
U = 0 in x0 < 0,

(7.10)

where G∞ is the matrix with blocks (
0 I

M∞,± A∞,±

)
obtained from those of G by letting z = xN

ε → +∞, and WD is a pseudodifferential operator whose
symbol is constructed later in this section. We have (dropping epsilons)

M∞,± = C(x′)−1

[
ε(∂0 + γ) +

N−1∑
1

Aj(u1,±)ε∂j −
N−1∑

1

ε2∂2
j + E∞,±

]

E∞,±w± =
N−1∑

1

(∂uAj(u1,±)w±)ε∂ju1,±

A∞,± = C(x′)−1

[
±AN (u1,±, dΨ) ± 2

N−1∑
1

∂jΨε∂j

]
.

(7.11)

Notation 7.1. 1. Recall that the x′-dependence in Cε(x′) enters through dΨε (4.5). Thus, the
x−dependence in the coefficients of G enters through

pε1,± = u1,±, pε2 = dx′Ψ,

pε3 = (ε∇x′′u1,+, ε∇x′′u1,−, ε
N−1∑

1

∂2
xjΨ),

u2,±, ε∇x′′u2,±, and ∂zu2,±.

(7.12)
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In view of (7.8) the x-dependence of G∞ enters just through

pε(x) = (pε1,+, pε1,−, p
ε
2, p

ε
3),(7.13)

where pε varies in some neighborhood of

p = (U0
+(0), U0

−(0), dψ0(0), 0) ∈ R2m × RN × R2m(N−1)+1.(7.14)

For later reference we note, setting ε = 0, that

p0(x) = (U0
+(x), U0

−(x), dψ0(x′), 0),(7.15)

the first three components giving the original inviscid shock.
2. Let us set β = εζ

Vε,±(x′, z) = (u2,±, ε∇x′′u2,±, ∂zu2,±)(x′, z),

Vε(x′, z) = (Vε,+(x′, z),Vε,−(x′, z))
(7.16)

and write the symbols associated to the operators G, G∞ as

G = G(Vε(x′, z), pε(x), β)

G∞ = G∞(pε(x), β).
(7.17)

3. Observe that

V0,±(x′, z) = (V 0
±, 0, ∂zV

0
±)(x′, z)(7.18)

where V 0
± are the leading profiles from (4.7).

Remark 7.1. For the purposes of proving an L2 estimate we would normally (e.g., when the uniform
Lopatinski condition is satisfied) drop the second term in the expression for E±w±, since doing so
would result just in an absorbable O(|U |L2) error. Similarly, if we were free to localize in x′ we
could treat it as another nearly constant parameter, say pε4. Such localization would introduce
another error of the same order. However, since our symmetrizer is degenerate, our estimate (9.1)
cannot absorb such errors. So instead we proceed as above.

In preparation for the construction of the conjugator that will allow us to replace the original G
problem with the limiting G∞ problem, we define the associated frozen coefficient problems (only
p is frozen):

(a)Uz − G(Vε(x′, z), p, β)U = F

(b)Uz − G∞(p, β) = F
(7.19)

Remark 7.2. The estimates (7.8) show that when one passes to the limit as z → ∞ in (7.19)(a),
the (x′, z) dependence in G disappears.

7.3. Spectral properties of G∞(p, β).

Notation 7.2. 1. Recall β = (β′, γ′) is a placeholder for εζ), and introduce polar coordinates

β = ρβ̂, where β̂ = (β̂′, γ̂′) and β̂ ∈ SN .(7.20)

We’ll always take γ′ ≥ 0, so define SN
+ = SN ∩ {γ̂′ ≥ 0}.

Notation 7.3. Given a function q(x) shall sometimes denote q(x′, 0) by q(x′). For example, U0
±(x′, 0) =

U0
±(x′).
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Remark 7.3. Observe that smooth functions f(β) of β ∈ RN+1 can be rewritten as smooth func-
tions f(β̂, ρ) with (β̂, ρ) ∈ SN × R+. For such functions we’ll use both notations interchangeably.
However, when f(β̂, 0) is not constant on SN , the function f(β) corresponding to f(β̂, ρ) is not
continuous at β = 0.

Proposition 7.1 ([Z, ZS]).
1. Assume p1,± ∈ O±, p2 ∈ RN , and p3 = 0. When ρ > 0 and γ′ ≥ 0, G∞(p, β) has 2m eigenvalues
counted with multiplicities in �µ > 0 and 2m eigenvalues in �µ < 0.

2. G∞(p0(x′), 0) has 0 as a semisimple eigenvalue of multiplicity 2m. The nonvanishing eigen-
values ( fast modes) are those of

A∞,+(p0(x′), 0) (k positive, m − k negative) and

A∞,−(p0(x′), 0) (l positive, m − l negative)
(7.21)

3. Consider the multiple zero eigenvalue of G∞(p0(x′), β̂, 0) (polar coordinates). For γ̂′ > δ > 0,
this eigenvalue splits for ρ > 0 small into k + l = m − 1 slow decaying modes

µ = cδρ + O(ρ2) where �cδ < 0(7.22)

and (m − k) + (m − l) = m + 1 slow growing modes (�cδ > 0).

Here “decaying” and “growing” refer to the corresponding exponential solutions eµzv of (7.19)(b).
A proof of Proposition 7.1 is also given in [GMWZ1], Proposition 2.1, where a slightly different
reduction of the original problem to a first order system is used.

7.4. Evans function on the whole line. In order to make a clear connection with the earlier
work [Z, ZS] on planar shocks, we first define the Evans function for the curved shock problem on
the whole space, and then relate this to the Evans function for the doubled boundary problem.

Note first that the profiles (recall Notation 7.3)

U0
±(x′, z) = U0

±(x′) + V 0
±(x′, z)

as in (4.7), defined for z ≥ 0, patch together to give a smooth profile on Rz:

U0(x′, z) =

{
U0

+(x′, z), z ≥ 0
U0
−(x′,−z), z ≤ 0

.(7.23)

Setting

G(u, dφ) ≡ fN (u) −
N−1∑

0

fj(u)∂jφ,

we recall that the profile U0(x′, z) is constructed in [GW] as a solution of the “travelling wave”
equation

C0(x′)∂zU0 = G(U0, dψ0) −G(U0
−, dψ0)

lim
z→±∞

U(x′, z) = U0
±(x′).

(7.24)
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Definition 7.2. Define the 2m × 2m matrix for z ∈ R

G0(x′, z, β) =
(

0 I
M0 A0

)
, where

M0(x′, z, β) =

C0(x′)−1

[
(iβ0 + γ′) +

N−1∑
1

Aj(U0(x′, z))iβj +
N−1∑

1

β2
j + E0(x′, z)

]
,

E0(x′, z)w = (∂uAN (U0(x′, z), dψ0(x′))w) ∂zU0(x′, z),

A0(x′, z, β) = C0(x′)−1

[
AN (U0(x′, z), dψ0(x′)) + 2

N−1∑
1

∂jψ0(x′)iβj

]
.

(7.25)

We shall also work with the 4m × 4m matrices on z ≥ 0 given by

G0(x′, z, β) ≡ G(V0(x′, z), p0(x′), β),

G∞,0(x′, β) ≡ G∞(p0(x′), β),
(7.26)

where the matrices on the right are obtained from those in (7.17) by setting ε = 0 and evaluating
on the inviscid shock.

Remark 7.4. The matrix G0 is the same as the upper left block of G0, except that the latter matrix
is restricted to z ≥ 0.

The Evans function is a Wronskian of solutions to the following 2m× 2m system on Rz in which
x′ is a smoothly varying parameter:

Uz − G0(x′, z, β)U = 0.(7.27)

Lemma 7.1. For β = (β′, γ′) with γ′ > 0, there exist bases of solutions

{UR
1 (x′, z, β), · · · ,UR

m}, {UL
1 , · · · ,UL

m}(7.28)

of (7.27) spanning the stable/unstable manifolds at z = +∞/−∞, respectively, such that

D(x′, β) ≡ det(UR
1 , · · · ,UR

m,UL
1 , · · · ,UL

m)|z=0(7.29)

is C∞ in x′, analytic in β, and continuously extendible to γ′ = 0.

Proof. The proof in [ZS], based on the Gap Lemma of [GZ] and Proposition 7.1, works as well in
the presence of the parameter x′.

Definition 7.3. The function D(x′, β) in (7.29) is called the Evans-Lopatinski determinant (or
Evans function for short) for the problem (7.27). We always take the solutions defining the columns
in (7.29) to be of size ∼ 1.

Remark 7.5. In ρ > 0 we may write D(x′, β) = D(x′, β̂, ρ). The argument of [ZS] Lemma 5.1
shows that D(x′, β̂, ρ) and ∂ρD(x′, β̂, ρ) are analytic in (β̂, ρ) on {γ̂′ > 0, ρ > 0} and continuously
extendible to {γ̂′ ≥ 0, ρ ≥ 0}.

7.5. Assumption on the viscous profile.
Recall from the Introduction the assumption (H7):

(H7) For each x′ ∈ RN , D(x′, β̂, ρ) vanishes to precisely first order at ρ = 0 (where it must
vanish) for all β̂ ∈ SN

+ , and has no other zeros in SN
+ × R+.
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Remark 7.6. 1. Nonvanishing of D(x′, β) for γ′ > 0 is necessary even for linearized stability of the
viscous boundary layer. See Remark 1.3 of [GMWZ1].

2. For Lax shocks the argument of Proposition 5.3 of [ZS] implies

D(x′, β̂, ρ) = Cκ(x′)∆(x′, β̂)ρ + o(ρ)(7.30)

as ρ → 0, for some C ,= 0. Here κ(x′) is nonvanishing if and only if the stable/unstable manifolds for
U0

+(x′)/U0
−(x′) of the travelling wave ODE (7.24) are transverse at the connection U0(x′, z). ∆(x′, β̂)

is the Lopatinski-Kreiss-Majda determinant for the ideal shock problem linearized at (U0
±, dψ0).

Since uniform stability of the inviscid shock is equivalent to nonvanishing of ∆(x′, β̂) for β̂ ∈ SN
+ ,

this explains why Assumption (H6) implies (H5)r for Lax shocks.
The computation giving (7.30) shows that

D(x′, β̂, ρ) ∈ C∞(x′, C(SN
+ , C1(R+)).(7.31)

3. The nonvanishing of both κ and ∆ is needed to carry out the construction of the high order
approximate solution in [GW]. Thus, the assumptions in section 2 imply the hypotheses of [GW]
are satisfied.

4. The vanishing of D(x′, β̂, 0) reflects the fact that at ρ = 0 equation (7.27) has the solution
U(x′, z) = (φ, φz), where φ = ∂zU0(x′, z) (differentiate (7.24) twice). This solution is fast-decaying
at both ±∞. It will be convenient later to normalize

UR
1 (x′, z, β̂, 0) = UL

m(x′, z, β̂, 0) = (φ(x′, z), φz(x′, z)).(7.32)

7.6. Evans function for the doubled boundary problem.

Notation 7.4. 1. Given a function U(z) =
(
u(z)
v(z)

)
defined for z ∈ R, we set for z ≥ 0

U+(z) =
(
u(z)
v(z)

)
U−(z) =

(
u(−z)
−v(−z)

)
.

(7.33)

2. Similarly, given a vector e =
(
a
b

)
∈ C2m, set e− =

(
a
−b

)
.

Observe that U(x′, z, β̂, ρ) is a solution of the 2m×2m system (7.27) if and only if U =
(
U+(z)
U−(z)

)
solves the 4m × 4m boundary problem

(a) Uz − G0(x′, z, β)U = 0

(b) ΓU = 0 on z = 0.
(7.34)

Definition 7.4. For γ̂′ > 0, ρ > 0 define E−(x′, β̂, ρ) as the space of boundary values at z = 0 of
decaying solutions to (7.34)(a). In view of Proposition 7.1 E−(x′, β̂, ρ) has dimension 2m. Moreover,
it has a continuous extension to γ̂′ ≥ 0, ρ ≥ 0.

Remark 7.7. The individual functions UR,L
j (x′, z, β̂, ρ) appearing in the definition of D(x′, β) are

locally analytic in (β̂, ρ) on {γ̂′ > 0, ρ > 0}. This is a consequence of a standard contraction
mapping argument [Co] together with the corresponding fact for solutions to the systems obtained
from (7.27) by taking limits as z → ±∞. This argument also shows that the individual solutions
corresponding to fast decaying modes extend analytically to {γ̂′ ≥ 0, ρ ≥ 0}. The fast decaying
solutions are independent of β̂ at ρ = 0, and so extend smoothly as functions of β as well.
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Since the subspace E−(x′, β̂, ρ) has a continuous extension to {γ̂′ ≥ 0, ρ ≥ 0} (this can be
seen by arguing as in [CP], Chapter 7), we can if necessary redefine the individual solutions UR,L

j

corresponding to slowly decaying modes so that they have continuous extensions to γ̂′ ≥ 0, ρ ≥ 0.
Henceforth, we assume this has been done.

The Evans function for (7.34) measures the degree of linear dependency between two 2m−dimensional
subspaces of C4m; namely, kerΓ and E−(x′, β̂, ρ). Let e1, . . . , e2m be the standard basis of C2m.

Definition 7.5. Define the Evans function for (7.34) as the 4m × 4m determinant D(x′, β̂, ρ) =

det
(

e1 · · · e2m UR
1+ · · · UR

m+ 0 · · · 0
e1− · · · e2m− 0 · · · 0 UL

1− · · · UL
m−

)
|z=0.(7.35)

Remark 7.8. 1. We note that the last 2m columns of the above matrix form a basis for E−(x′, β̂, ρ).
2. The x′ dependence of E−(x′, β̂, ρ) and D(x′, β̂, ρ) enters only through p0(x′).

Recalling the normalization (7.32) we set

E−,φ(x′, β̂, ρ) = span
(
UR

1+

UL
m−

)
|
(x′,0,β̂,ρ).(7.36)

For κ > 0 fixed denote by Ec
−,φ,κ(x

′, β̂, ρ) any complementary subspace in E−(x′, β̂, ρ) varying

continuously with (x′, β̂, ρ) such that

E−(x′, β̂, ρ) = E−,φ(x′, β̂, ρ) ⊕ Ec
−,φ,κ(x

′, β̂, ρ)(7.37)

with uniformly bounded projections for 0 ≤ ρ ≤ κ.
The following key Proposition is essentially Proposition 4.1 of [GMWZ1] adapted to curved

shocks. The small differences reflect our slightly different reduction of the original problem to a
first order system.

Proposition 7.2. 1. Let D(x′, β̂, ρ) be the Evans function defined in Lemma 7.1. Then

D(x′, β̂, ρ) = D(x′, β̂, ρ).(7.38)

2. Under the assumptions of section 2 we have
(a) For any choice of 0 < δ < R there is a constant Cδ,R such that when δ ≤ ρ ≤ R,

|Γu| ≥ Cδ,R|u| for u ∈ E−(x′, β̂, ρ) for all (x′, β̂) ∈ RN × SN
+ .(7.39)

(b) There exist positive constants C1, C2, δ such that

C1ρ|u| ≤ |Γu| ≤ C2ρ|u| for u ∈ E−,φ(x′, β̂, ρ)(7.40)

for 0 ≤ ρ ≤ δ and all (x′, β̂) ∈ RN × SN
+ .

(c) For Ec
−,φ,κ(x

′, β̂, ρ) as in (7.37) there exists C > 0 such that

|Γu| ≥ C|u| for u ∈ Ec
−,φ,κ(x

′, β̂, ρ)(7.41)

for 0 ≤ ρ ≤ κ and all (x′, β̂) ∈ RN × SN
+ .

(d)There exists C > 0 such that

|Γu| ≥ Cρ|u| for u ∈ E−(x′, β̂, ρ)(7.42)

for 0 ≤ ρ ≤ κ and all (x′, β̂) ∈ RN × SN
+ .
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Proof. The proof is given in [GMWZ1], Proposition 7.1. We simply note that the compactness
arguments there still work here because of the way we chose the extension of (U0

±(x′), dψ0(x′)) to
all x′ ∈ RN in section 2. Also, the degeneracy of the Lopatinski condition expressed by (7.40)
reflects the degeneracy of the Evans function for the shock problem at zero frequency.

7.7. Conjugation to remove z dependence. In this section we construct an [MZ] conjugator
to remove the (x′, z) dependence from the coefficients of G. The main new point here is that since
we can’t tolerate O(|U |L2) errors at this stage, we must use the semiclassical calculus to construct
a second term W1 in the conjugator which permits us to attain O(ε|U |L2) errors.

The first step is a construction at the symbol level. In this section G(z) (resp., G∞) denotes the
function G(Vε(x′, z), p, β) (resp., G∞(p, β)) defined in (7.19).

Lemma 7.2. Let p be as in (7.14) and set β = 0. For δ as in (7.8) let F(x′, z, β) ∈ C∞(RN
x′ ×

[0,∞) × RN × R+) satisfy

|F(x′, z, β)| ≤ Ce−δz(7.43)

for C independent of (x′, z, β). There is a neighborhood ω of (p, β) and matrices Wε
0, Wε

1 defined
and C∞ on RN

x′ × [0,∞) × ω such that (dropping epsilons for now)
1) W−1

0 is uniformly bounded and there is a θ > 0 such that

|W0(x′, z, p, β) − I| ≤ Ce−θz

|W1(x′, z, p, β)| ≤ Ce−θz.
(7.44)

2) W0, W1 satisfy
(a) ∂zW0 = G(z)W0(z) − W0(z)G∞
(b) ∂zW1 = G(z)W1(z) − W1(z)G∞ + F(x′, z, β).

(7.45)

Proof. The right side of (7.45)(a) can be written

LW0 + ∆GW0,(7.46)

where L is the constant coefficient operator ad G∞ = [G∞, ·] and ∆G is left multiplication by
G − G∞ = O(e−δz).

The eigenvalues of L are differences of eigenvalues of G∞(p, β). Suppose we can choose κ ∈ (0, δ)
such that L has no eigenvalues on �µ = −κ for (p, β) ∈ ω. Let Π+(p, β) (resp., Π−(p, β)) be the
spectral projector on the sum of the generalized eigenspaces of L associated with eigenvalues in
�µ > −κ (resp., �µ < −κ). Then the “Gap Lemma” estimates of [GZ, Z] show that W0, W1

satisfying (7.44) with θ < κ and depending smoothly on parameters can be obtained as solutions
of

W0(z) =

I +
∫ z

0
e(z−s)LΠ−(s)∆G(s)W0(s)ds −

∫ ∞
z

e(z−s)LΠ+(s)∆G(s)W0(s)ds

W1(z) =
∫ z

0
e(z−s)LΠ−(s)(∆G(s)W1(s) + F(s))ds

−
∫ ∞
z

e(z−s)LΠ+(s)(∆G(s)W1(s) + F(s))ds.

(7.47)

There is no problem choosing κ as above satisfying the separation condition at the basepoint
(p, β). The same choice works for (p, β) ∈ ω provided ω is small enough. (In Remark 7.9 we
describe a better way of choosing ω).
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The uniform boundedness of W−1
0 follows by the argument in [MZ], Lemma 2.6.

Remark 7.9 (Choice of ω and ω1). In proving the degenerate L2 estimate we will see that spatial
cutoffs φ(x) lead to unacceptable O(|U |L2) errors, while frequency cutoffs χ(β) localizing near
β = 0 are allowed. Since we can’t localize in x we have to restrict how much the original shock
(U0
±(x), dψ0(x′)) can deviate from (U0

±(0), dψ0(0)) in order to insure (pε(x), β) ∈ ω for all x ∈ RN+1
+ .

To see how much deviation from flatness can be allowed, set ε = 0 in G∞(pε, εζ) to obtain a matrix
K(p0

1,+(x), p0
1,−(x), p0

2(x
′)) with blocks(

0 I
0 C(x′)−1

(
±AN (U0

±(x), dψ0(x′))
)) .(7.48)

We first choose a connected, relatively compact neighborhood

ω1 / (U0
+(0), U0

−(0), dψ0(0))(7.49)

as large as possible so that for all (p1,+, p1,−, p2) ∈ ω1, differences of eigenvalues of the frozen matrix
K(p1,+, p1,−, p2) avoid the line �µ = −κ for some κ ∈ (0, δ). Of course, we should take

ω1 ⊂ O+ × O− × RN .

In addition, we need to choose ω1 so that

A∞,±(p1,+, p1,−, p2, 0, 0) have uniformly bounded inverses on ω1.(7.50)

ω1 specifies how much (U0
±(x),dψ0(x′)) can deviate from (U0

±(0), dψ0(0)).
Observe that the larger δ is, that is, the faster the leading profiles V 0

±(x′, z) decay exponentially
to zero, the more the original shock may deviate from flatness. In addition, the more slowly varying
the matrix K(p1,+, p1,−, p2) is, the larger the neighborhood ω1 can be chosen.

Now having fixed ω1, if we choose any small enough neighborhood ω2 (resp., ω3) of p3 = 0 ∈
R2m(N−1)+1 (resp., of β = 0 ∈ RN × R+), the choice

ω = ω1 × ω2 × ω3(7.51)

works in Lemma 7.2.
The above discussion is what motivates the choice of Assumption (H6).

7.8. Hyperbolic and elliptic blocks.

The following lemma separates out the eigenspaces corresponding to small and large eigenvalues
of G∞.

Let p be as in (7.2) and ω = ω1 ×ω2 ×ω3 as in (7.51). Recall that p3 is the placeholder for pε(x)
defined in (7.12).

Lemma 7.3. Shrinking ω2 and ω3 if necessary, we can construct a C∞ invertible matrix T (p, β)
defined on ω such that T−1G∞(p, β)T has the block diagonal form

T−1G∞T =


HR 0 0 0
0 PR 0 0
0 0 HL 0
0 0 0 PL

 ≡ G1,∞,(7.52)

where, with R,L corresponding to +,− respectively

HR,L(p, β) = −A−1
∞,±M∞,± + (O(β) + O(p3))2

PR,L(p, β) = A∞,± + O(β) + O(p3).
(7.53)
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T has the form

T (p, β) =


I A−1

∞,+ 0 0
−A−1
∞,+M∞,+ + τ1 I + τ2 0 0

0 0 I A−1
∞,−

0 0 −A−1
∞,−M∞,− + τ3 I + τ4

 ,(7.54)

where

τi = τi(p, β) = O(β) + O(p3)(7.55)

and O(β) (resp., O(p3)) represents a smooth function of (p, β) of the form β · f(p, β) (resp., p3 ·
f(p3)).

The eigenvalues of PR(p, β) and PL satisfy |�µ| > C > 0 for |β| + |p3| small.

Proof. The proof is a simple computation. Look for T of the given form and use (7.50) to solve for
τ1, . . . , τ4.

The eigenvalues of PR,L have the stated property since the eigenvalues of A∞,± are nonvanishing.

7.9. Block structure.

Notation 7.5. Given a function f(p) = f(p1,+, p1,−, p2, p3), set p′ = (p1,+, p1,−, p2) ∈ R2m×RN and
with slight abuse write

f(p′) ≡ f(p′, 0).(7.56)

Observe that we can rewrite HR,L(p, β) in (7.53) as

HR,L(p, β) = HR,L(p′, β) + O(p3) + O(p3)O(β) + O(p3)2.(7.57)

Conjugation by a constant coefficient matrix T1 (with only zeros and ones) changes G1,∞ in (7.52)
to T−1

1 G1,∞T1 =

G2,∞(p, β) =


HR 0 0 0
0 HL 0 0
0 0 PR 0
0 0 0 PL

(7.58)

In the next Proposition we use the polar coordinate notation introduced in Notation 7.2.

Proposition 7.3 (Block structure). Let p′ ∈ ω1. For all β̂ with γ̂′ ≥ 0 there is a neighborhood
ω̂ of (p′, β̂, 0) in (R2m × RN ) × SN

+ × R+ and there are C∞ matrices T2(p′, β̂, ρ) on ω̂ such that
T−1

2 G2,∞T2 has the following block diagonal structure

T−1
2 G2,∞T2 =

HB(p′, β̂, ρ) 0 0
0 P+(p′, β) 0
0 0 P−(p′, β)

 ≡ GB,∞.(7.59)

Here the eigenvalues of P+ (resp. P−) belong to a compact set in �µ > 0 (resp. �µ < 0) and in
addition

�P+ =
1
2
(P+ + P ∗+) ≥ cI and − �P− ≥ cI on ω̂(7.60)

for some c > 0.



28 OLIVIER GUES, GUY MÉTIVIER, MARK WILLIAMS, KEVIN ZUMBRUN

We have HB(p′, β̂, ρ) = ρĤB(p′, β̂, ρ) with

ĤB(p′, β̂, ρ) =

Q1 · · · 0
...

. . .
...

0 · · · Qp

 (p′, β̂, ρ).(7.61)

The blocks Qk are νk × νk matrices which satisfy one of the following conditions:
i) �Qk is positive definite.
ii) �Qk is negative definite.
iii) νk = 1, �Qk = 0 when γ̂′ = ρ = 0, and ∂

γ̂′(�Qk)∂ρ(�Qk) > 0.

iv) νk > 1, Qk has purely imaginary coefficients when γ̂′ = ρ = 0, there is µk ∈ R such that

Qk(p′, β̂, 0) = i


µk 1 0

0 µk
. . . 0

. . . . . . 1
· · · µk

 ,(7.62)

and the lower left corner a of Qk satisfies ∂
γ̂′(�a)∂ρ(�a) > 0.

Moreover, the matrix T2 can be taken of the form

T2(p′, β̂, ρ) =
(
TH(p′, β̂, ρ) 0

0 TP (p′, β)

)
,(7.63)

for C∞ functions TH and TP . In fact, a single smooth matrix TP (p′, β) defined for |β| small and
p′ in a neighborhood of ω1 can be chosen to conjugate the (PR, PL) block of G2,∞ to the (P+, P−)
block of GB,∞.

7.10. Transport Proposition 7.2. We need to transport the information in Proposition 7.2
about the problem

Uz − G0(x′, z, β)U = 0
ΓU = 0 on z = 0

(7.64)

to an appropriately conjugated boundary problem.

Notation 7.6. Corresponding to the p′ notation introduced above, set p′(x) = (p0
1,+(x), p0

1,−(x), p0
2(x)) =

(U0
+(x), U0

−(x), dψ0(x′)). Note p0(x) = (p′(x), 0) (the last entry is p3), so sometimes we’ll write
(abusively) p0(x) = p′(x).

Set

GHP (p′(x), β) =
(
H 0
0 P

)
(7.65)

where

H =
(
HR 0
0 HL

)
, P =

(
P+ 0
0 P−

)
.(7.66)

In previous subsections we have defined symbols Wε
0(x
′, z, pε(x), β) (7.44), T (pε(x), β) (7.54), T1

(7.58), and TP (p′(x), β) (7.63). Set

W0(x′, z, p′(x), β) = W0
0 (x′, z, p0(x), β)
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and define

T3(p′(x), β) =
(
I 0
0 TP

)
,

T (x, z, β) = W0(x′, z, p′(x), β)T (p′(x), β)T1T3(p′(x), β),

T 0(x′, z, β) = W0(x′, z, p′(x′), β)T (p′(x′), β)T1T3(p′(x′), β)

Γ1(x′, β) = ΓT 0(x′, 0, β),

(7.67)

and observe that T 0 conjugates the problem (7.64) to

Uz − GHP (p′(x′), β)U = 0

Γ1(x′, β)U = 0 on z = 0.
(7.68)

Corresponding to the blocks in (7.68) there is the obvious decomposition of C4m;

C4m = EH ⊕ EP+ ⊕ EP−

U = UH + UP+ + UP− ,
(7.69)

where the three spaces on the right have dimensions 2m, m − 1, m + 1, respectively, and, if
U = (uH , uP+ , uP−), we have UH = (uH , 0, 0), etc..

For ρ > 0, γ̂′ > 0 define E−(x′, β̂, ρ) to be the space of boundary values at z = 0 of decaying
solutions of

Uz − GHP (p′(x′), β)U = 0 on z ≥ 0.(7.70)

These spaces vary smoothly in {ρ > 0, γ̂′ > 0} and extend continuously to {ρ ≥ 0, γ̂′ ≥ 0}. In
fact, it is not hard to check that

E−(x′, β̂, ρ) = T 0(x′, 0, β)E−(x′, β̂, ρ),(7.71)

where E− is the corresponding space for (7.64) defined earlier. We have

E−(x′, β̂, ρ) = EH−(x′, β̂, ρ) ⊕ EP− ,(7.72)

where EH−(x′, β̂, ρ) = E−(x′, β̂, ρ) ∩ EH .
Next define the subspace EP1,−(x′, β) of EP− by

E−,φ(x′, β) = T 0(x′, 0, β)EP1,−(x′, β),(7.73)

where we have used the regularity property of fast decaying modes explained in Remark 7.5 to
rewrite E−,φ(x′, β̂, ρ) = E−,φ(x′, β).

For κ > 0 fixed choose a smoothly varying subspace EP2,−,κ(x
′, β) orthogonal to EP1,−(x′, β) such

that
EP− = EP1,−(x′, β) ⊕ EP2,−,κ(x

′, β)

UP− = UP1,−(x′, β) + UP2,−,κ(x
′, β).

(7.74)

Then

Ec
−,φ,κ(x

′, β̂, ρ) ≡ T 0(x′, 0, β)(EH−(x′, β̂, ρ) ⊕ EP2,−,κ(x
′, β))(7.75)

is a choice of complementary space that works in Proposition 7.2.
Having defined EH−(x′, β̂, ρ) we take EH+(x′, β̂, ρ) to be any continuously varying subspace of

EH such that

EH = EH+(x′, β̂, ρ) ⊕ EH−(x′, β̂, ρ)(7.76)
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with uniformly bounded projections. (In [GMWZ1], (3.25) a particular choice of EH+ , denoted
there by EH+,c , is made, but here any choice as above will do.)

This gives a more refined decomposition,

C4m =

EH+(x′, β̂, ρ) ⊕ EH−(x′, β̂, ρ) ⊕ EP+ ⊕ EP1,−(x′, β) ⊕ EP2,−,κ(x
′, β),

U = UH+ + UH− + UP+ + UP1,− + UP2,−,κ .

(7.77)

The next Corollary is then an immediate consequence of Proposition 7.2.

Corollary 7.1. There exist positive constants C1, . . . , C4 and κ such that for 0 ≤ ρ ≤ κ, all (x′, β̂),
and U ∈ C4m

(a) C1ρ|UP1,− | ≤ |Γ1(x′, β̂, ρ)UP1,− | ≤ C2ρ|UP1,− |
(b) |Γ1(x′, β̂, ρ)(UH− + UP2,−,κ)| ≥ C3(|UH− | + |UP2,−,κ |)
(c) |Γ1(x′, β̂, ρ)U−| ≥ C4ρ|U−|.

(7.78)

Again, in making these statements for all x′ ∈ RN , we are using the compactness properties of
our choice of extensions in section 2.

Part (a) of the Corollary shows that Γ1 fails to satisfy the uniform Lopatinski condition at ρ = 0.

Definition 7.6. A boundary operator Γa(x′, β̂, ρ) depending continuously on (x′, β̂, ρ) satisfies the
uniform Lopatinski condition at (x′, β̂, ρ) if there exists a C > 0 such that

|Γa(x′, β̂, ρ)u| ≥ C|u|(7.79)

for u ∈ E−(x′, β̂, ρ) uniformly near (x′, β̂, ρ).

The following simple consequence of Corollary 7.1 gives a more precise version of (7.1)(c) and is
essential for the construction of degenerate symmetrizers. It is proved in [GMWZ1], Lemma 4.1.

Lemma 7.4. There exists a constant δ > 0 such that for ρ sufficiently small, all (x′, β̂) and all
U ∈ C4m we have

|Γ1(x′, β̂, ρ)U−,c| ≥ δ(|UH−,c | + ρ|UP− |).(7.80)

7.11. Standard and degenerate symmetrizers. In this section p′ denotes the frozen variable
corresponding to p′(x).

Observe that HR,L(p′, β̂, ρ) can be written HR,L = ρĤR,L for ĤR,L(p′, β̂, ρ) smooth. Set

H(p′, β̂, ρ) =
(
HR 0
0 HL

)
= ρ

(
ĤR 0
0 ĤL

)
,

P (p′, β) =
(
P+ 0
0 P−

)
.

(7.81)

Proposition 7.4. 1. Let p′ ∈ ω1. There is a C∞ matrix SH(p′, β̂, ρ) on a neighborhood ω∗ of
{p′} × SN

+ × {0} such that SH = S∗H and

�(SHĤ)(p′, β̂, ρ) =
∑

(Vl)∗KlVl(7.82)
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where {Vl} is a finite collection of C∞, invertible, 2m × 2m matrices having the following block
structure

Kl =

B1 · · · 0
...

. . .
...

0 · · · Bp

 (p′, β̂, ρ).(7.83)

with either Bj = B∗j positive definite, or Bj = γ̂′Bj,0 + ρBj,1 with Bj,0 and Bj,1 positive definite.
The number of blocks p can vary with l. Moreover,

∑
V ∗l Vl is positive definite.

2. Standard symmetrizer. Let {(x, β̂, ρ) : (p′(x), β̂, ρ) ∈ ω∗} be denoted (abusively) by
p
′−1(ω∗) and set p

′−1
0 (ω∗) = {(x′, β̂, ρ) : (p′(x′), β̂, ρ) ∈ ω∗}

Given a boundary condition Γa that satisfies

|Γa(x′, β̂, ρ)u| ≥ C|u| for u ∈ E−(x′, β̂, ρ) on p
′−1
0 (ω∗)(7.84)

choose

SP (p′, β) =
(
CI 0
0 −I

)
,(7.85)

where the blocks correspond to those in the matrix P . Then for C large enough we have

�(SPP )(p′, β) ≥ I for p′ ∈ ω1, |β| small .(7.86)

Set

S(x, β̂, ρ) =
(
SH(p′(x), β̂, ρ) 0

0 SP

)
(7.87)

on p
′−1(ω∗).

Then SH as above can be chosen so that in addition we have for C large enough and U ∈ C4m,

((S + Γ∗aΓa)(x′, β̂, ρ)U,U) ≥ c|U |2 on p
′−1
0 (ω∗)(7.88)

for some c > 0.
3. Degenerate symmetrizer
Consider Γ1 which is degenerate in the way specified in Corollary 7.1. Now choose

SP =
(
CI 0
0 −ρ2I

)
.(7.89)

Then for C large enough we have for u = (uP+ , uP−) ∈ C2m

(�(SPP )(p′, β)u, u) ≥ C|uP+ |2 + ρ2|uP− |2(7.90)

p′ in a neighborhood of ω1 and |β| small.
Define S(x′, β̂, ρ) as above with the new SP . Then SH as above can be chosen so that in addition

we have for C large enough and U ∈ C4m

(a)((S + Γ∗1Γ1)(x′, β̂, ρ)U,U) ≥ c1(|UH |2 + |UP+ |2 + |UP2,−,κ |2) + c2ρ
2|UP1− |2,

(b)c1ρ2|U |2 ≤ ((S + Γ∗1Γ1)(x′, β̂, ρ)U,U) ≤ c2ρ
2|U |2 for U ∈ EP1,−

(7.91)

on p
′−1
0 (ω∗) for some positive c1, c2.

Proof. In the case where the uniform Lopatinski condition holds the construction of S follows by
the same argument as in [MZ] (see also the section on standard symmetrizers in [GMWZ1]).

In the degenerate case the construction of [GMWZ1], Proposition 7.4, gives S satisfying (7.91),
except for the upper bound in part (b), which follows from the definition of SP and Corollary
7.1(a).
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We note also that the construction of SH in [GMWZ1] is close to the original method of [K]
and involves localization on SN

+ and use of the refined block structure of Proposition 7.3. The
boundary estimate in (7.91) (a) follow by incorporating the information in Corollary 7.1 into the
Kreiss argument.

8. Semiclassical and mixed calculi

8.1. Semiclassical calculus. Our proof of the L2 estimate in the small frequency region requires
the use of classical, semiclassical, and mixed-type pseudodifferential operators. We begin with a
simple calculus of semiclassical operators with finite regularity in x′.

We have had to do a fair amount of bookkeeping to state precisely how much regularity in x′ is
needed to make the calculi work. The motivation is to be able to apply the calculus to problems in
which the inviscid shock is not piecewise C∞ but just piecewise CM for M big enough. Attention
to regularity hypotheses also helps clarify what determines the size of the constants appearing in
our estimates. In this paper our linearized problem has C∞ coefficients since the inviscid shock
is assumed piecewise C∞ (for convenience), so the regularity hypotheses needed for applying the
calculi are always satisfied.

The reader may wonder why we don’t paralinearize as in [MZ], thereby eliminating much of
the bookkeeping and allowing us to assume much less regularity in x′. The reason is that this
introduces O(|U |L2) errors at a stage when they are too big to be absorbed by the left side of our
degenerate symmetrizer L2 estimate (9.1).

Notation 8.1. 1. Let ζ ′ = (ζ0, ζ
′′) ∈ RN denote variables dual to the tangential variables x′ =

(x0, x
′′), and set ζ = (ζ ′, γ), where we always take γ ≥ 1. Set 〈ζ〉 =

√
|ζ|2 =

√
|ζ ′, γ|2 and, with

slight abuse, 〈ζ ′〉 =
√

|ζ ′, 1|2.
2. For ε > 0 let β ∈ RN × R+ (resp. β′ ∈ RN ) denote a placeholder for εζ (resp. εζ ′).
3. We will ignore powers of 2π in all formulas involving pseudodifferential operators and Fourier

transforms. We write p̂(ξ′, ζ) for the partial Fourier transform of p(x′, ζ) with respect to x′.
4. On Hs(RN ) define the norms |u|s,γ = |〈ζ〉û|L2 .
5. When we write

Tε,γ : X → Y
for a family of linear operators mapping one function space into another, we mean that the operator
norm is uniformly bounded with respect to ε, γ for 0 < ε < 1 and γ ≥ 1. For a particular s ∈ R we
say Tε,γ is of order k on Hs if

Tε,γ : Hs(RN ) → Hs−k(RN ).(8.1)

When Tε,γ is of order k on Hk, we shall simply say it is of order k. When the domain and target
spaces of T are clear from the context, we’ll write simply |T | for the operator norm.

6. Constants C that appear in the proofs are always uniform with respect to γ ≥ 1, 0 < ε ≤ 1,
but may change from line to line (even term to term).

7. We’ll sometimes denote spaces like CM (RN
x′ , C

∞(RN × R+)) by CM (x′, C∞(β)) when the
domains of the variables involved are clear.

Remark 8.1. Our pseudodifferential operators are defined by symbols with finite regularity in x′.
Such an operator is generally of order k on Hs only for s in a proper subinterval of R. See
Proposition 8.9.

The semiclassical operators are built from “symbols” in the set
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SM = {p(x′, β) ∈ CM (RN
x′ , C

∞(RN × R+)) :

p is independent of x′ for |x′| large and sup
|µ|≤M

|∂µx′∂νβ′p(x′, β)| ≤ Cν}.(8.2)

Let

S∞ = ∩MSM .(8.3)

Define symbol norms

|p|M,K = sup
|µ|≤M

sup
|ν|≤K

sup
(x′,β)

|∂µx′∂νβ′p(x′, β)|.(8.4)

Remark 8.2. Often we will use symbols in

{p(x′, β) ∈ CM (x′, C∞0 (β)) :

p is independent of x′ for |x′| large} ⊂ SM .
(8.5)

(The subscript 0 indicates compact support in β.)

To each p(x′, β) ∈ SM we associate the operator defined by

p(x′, εD)u =
∫

eix
′ζ′p(x′, εζ)û(ζ ′)dζ ′.(8.6)

The following propositions are proved in Appendix A.

Proposition 8.1. If p ∈ SM and M ≥ N + 1 then

p(x′, εD) : L2(RN ) → L2(RN ).

Definition 8.1. A family of linear operators rε,γ is said to be of order εk if rε,γ = εkRε,γ where

Rε,γ : L2(RN ) → L2(RN ).

Proposition 8.2 (Products). Suppose p ∈ SM1 and q ∈ SM2, where M1 ≥ N + 1 and M2 ≥
M1 + (N + 1) + k + 1 for some k ≥ 1. Set

t(x′, β) =
∑
|α|≤k−1

1
α!

ε|α|∂αβ′p(x
′, β)Dα

x′q(x
′, β).(8.7)

Then t(x′, β) ∈ SM1 and

A ≡ p(x′, εD)q(x′, εD) = t(x′, εD) + rε,γ ,(8.8)

where rε,γ is of order εk. Precisely, rε,γ = εkT , where

|T | ≤ C|p|N+1,k|∂x′q|M2−1,0.

Proposition 8.3 (Adjoints). Suppose p ∈ SM , where M ≥ (N + 1) + k + 1, for some k ≥ 1. Set

t(x′, β) =
∑
|α|≤k−1

1
α!

ε|α|∂αβ′D
α
x′p
∗(x′, β).(8.9)

Then t ∈ SM−k+1 and

p(x′, εD)∗ = t(x′, εD) + rε,γ ,

where rε,γ is of order εk. We have rε,γ = εkT , where

|T | ≤ C|∂x′p|M−1,k.
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8.2. Mixed calculus. We’ll sometimes need to compose classical with semiclassical pseudodiffer-
ential operators. For m ∈ R define the classical (C) and mixed (M) symbol classes

CmM = {p(x′, ζ) ∈ CM (RN
x′ , C

∞(RN × {γ ≥ 1}) : p is independent of x′

for |x′| large and sup
|µ|≤M

|∂µx′∂νζ′p(x′, ζ)| ≤ Cν〈ζ〉m−|ν|},(8.10)

Mm
M = {a(x′, β, ζ) ∈ CM (x′, C∞(β, ζ)) : a is independent of x′

for |x′| large and sup
|µ|≤M

|∂µx′∂νβ′∂τζ′a(x′, β, ζ)| ≤ Cν,τ 〈ζ〉m−|τ |},(8.11)

Set

Cm∞ = ∩MCmM , Mm
∞ = ∩MMm

M .

Define associated symbol norms

|p|M,K = sup
|µ|≤M

sup
|ν|≤K

sup
(x′,ζ)

|∂µx′∂νζ′p(x′, ζ)|〈ζ〉|ν|−m

|a|M,K1,K2 = sup
|µ|≤M

sup
|ν|≤K1

sup
|τ |≤K2

sup
(x′,β,ζ)

|∂µx′∂νβ′∂τζ′a(x′, β, ζ)|〈ζ〉|τ |−m.
(8.12)

Remark 8.3. 1. Clearly, SM ⊂ M0
M and CmM ⊂ Mm

M .
2. If p(x, β) ∈ SM and q(x′, ζ) ∈ CmM , then p(x′, β)q(x′, ζ) ∈ Mm

M .

To an element a(x′, β, ζ) ∈ Mm
M we associate the mixed operator

a(x′, εD,D)u =
∫

eix
′ζ′a(x′, εζ, ζ)û(ζ ′)dζ ′.(8.13)

In the proof of the Garding inequality (Proposition 8.10), we’ll need to compose and take ad-
joints of mixed type operators. The next few propositions give a mixed calculus that extends the
semiclassical calculus.

Proposition 8.4. If a ∈ Mm
M and M ≥ N + 1 then

a(x′, εD,D) : Hm(RN ) → L2(RN ).

Definition 8.2. 1. Let 〈D〉m be the operator defined by the Fourier multiplier 〈ζ〉m.
2. We say that an operator rε,γ is of order εk〈D〉m if it has the form εkTε,γ for some operator

Tε,γ of order m. In that case we write rε,γ = O(εk〈D〉m) and define the mixed degree of rε,γ to be
m − k.

3. For γ ≥ 1 define 〈D, γ〉mmax =

{
〈D〉m, m ≥ 0
γm, m ≤ 0

.

Proposition 8.5 (Mixed products). Suppose a ∈ Mm1
M1

and b ∈ Mm2
M2

, where M1 ≥ N + 1 and
M2 ≥ M1 + (N + 1) + m1 + k + 1 for some k ≥ 1. Then

A ≡ a(x′, εD,D)b(x′, εD,D) = t(x′, εD,D) + rε,γ ,(8.14)

where for appropriate constants Cα,µ,ν , we have t(x′, β, ζ) =∑
|α|≤k−1

1
α!

( ∑
µ+ν=α

Cα,µ,ν(ε∂β′)µ∂νζ′a(x
′, β, ζ)

)
Dα

x′b(x
′, β, ζ) ∈ Mm1+m2

M1
(8.15)



MULTI-D VISCOUS SHOCKS II 35

and

rε,γ =
∑

0≤l≤k
rl,ε,γ with rl,ε,γ = O(εl〈D〉m2〈D, γ〉m1−k+l

max ).(8.16)

We have |ε−lrl,ε,γ | ≤ C|a|N+1,k,k|∂x′b|M2−1,0,0.

Note that when k ≤ m1 each of the terms rl,ε,γ has mixed degree m1 + m2 − k.

Remark 8.4. 1. Suppose a ∈ Mm1
M1

for M1 ≥ N + 1 and b ∈ Mm2
M2

where M2 satisfies only
M2 ≥ 2(N + 1) + m1 + k + 1 for some k ≥ 1. Since Mm1

M1
⊂ Mm1

N+1, we can still apply Proposition
8.5 obtaining t ∈ Mm1+m2

N+1 .
2. When a is independent of β in Proposition 8.5, rl,ε,γ = 0 for l ,= 0.

Proposition 8.6 (Mixed adjoints). Suppose a ∈ Mm
M where M ≥ (N + 1) + m + k + 1 for some

k ≥ 1. Then

a(x′, εD,D)∗ = t(x′, εD,D) + rε,γ ,

where for appropriate constants Cα,µ,ν , we have t(x′, β, ζ) =

∑
|α|≤k−1

1
α!

( ∑
µ+ν=α

Cα,µ,ν(ε∂β′)µ∂νζ′D
α
x′a
∗(x′, β, ζ)

)
∈ Mm

M−k+1(8.17)

and

rε,γ =
∑
l≤k

rl,ε,γ with rl,ε,γ = O(εl〈D, γ〉m−k+l
max ).(8.18)

We have |ε−lrl,ε,γ | ≤ C|∂x′a|M−1,k,k.

8.3. Classical calculus. The results on mixed products and adjoints contain results for classical
products and adjoints as special cases, but we need to supplement those results with the following.

Proposition 8.7 (Classical products). Suppose

p(x′, ζ) ∈ Cm1
M1

and q(x′, ζ) ∈ Cm2
M2

,

where M1 ≥ N + 1 and M2 ≥ 2(N + 1) + |m1| + 3. Set t(x′, ζ) = p(x′, ζ)q(x′, ζ). Then t ∈ Cm1+m2
M1

and

p(x′, D)q(x′, D) = t(x′, D) + r,(8.19)

where r is of order m1 + m2 − 1. We have

|r| ≤ C|p|N+1,1|∂x′q|M2−1,0.

Proposition 8.8 (Classical adjoints). Suppose

p(x′, ζ) ∈ CmM ,

where M ≥ (N + 1) + |m| + 3. Set t(x′, ζ) = p∗(x′, ζ). Then

p(x′, D)∗ = t(x′, D) + rε,γ ,(8.20)

where r is of order m − 1 and |r| ≤ C|∂x′p|M−1,1.
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8.4. Remainder terms. Sometimes, for example in the proof of the Garding inequality in the
next subsection, we need to know the mapping properties on Hs of the remainder terms that arise
in the mixed calculus. The proofs show that these operators, while not actually given by symbols
in M, are still given by superpositions of Fourier multipliers converging in an appropriate sense.
The next Proposition makes more precise the mapping properties of such superpositions.

Proposition 8.9. Fix s ∈ R and suppose a(x′, β, ζ) ∈ CM (x′, C∞(β, ζ)) has compact support in
x′ and satisfies

|∂αx′a(x′, β, ζ)| ≤ C〈ζ〉k

for |α| ≤ M . Suppose M ≥ N + 1 + [|s − k|], where [x] denotes the least integer ≥ x. Then the
operator

A(x′, εD,D) ≡
∫

eix
′ξ′ â(ξ′, εD,D)dξ′(8.21)

is of order k on Hs.

8.5. Garding inequality.

Notation 8.2. 1. (u, v) denotes the L2 pairing, which can be extended as the duality pairing on
Hs × H−s.

2. For a matrix a (symbol or operator) set �a = a+a∗
2 .

The following Garding inequality will be used in the proof of the L2 estimate to obtain bounds
from below both in the interior and on the boundary.

Proposition 8.10 (Garding inequality). Consider n × n matrix symbols a ∈ Mm
M1

, w ∈ M0
M2

,
where M1 ≥ 2(N + 1) + max(m2 ,m) + 2 + [|m2 |] and M2 ≥ 2(N + 1) + m + 2 + [|m2 |]. Suppose there
is a scalar symbol χ ∈ M0

M1
and c > 0 such that χ2w = w and

�a(x′, β, ζ) ≥ c〈ζ〉m on supp χ.(8.22)

Let A = a(x′, εD,D) and W = w(x′, εD,D). Then there exists C > 0 such that for all u ∈ H
m
2

c

2
|Wu|2m

2
,γ ≤ �(AWu,Wu) + C(|u|2m

2
−1,γ + ε2|u|2m

2
,γ).(8.23)

C depends on symbol norms of a, w, and χ.

Part 4. Stability estimates

9. L2 estimate

9.1. The main estimates.

Notation 9.1. 1. For u(x) ∈ L2(R+, Hs(RN
x′)) and ζ = (ζ ′, γ) = ( ζ0, ζ

′′, γ), set

|u|s,γ = |〈ζ〉sû(ζ ′, xN )|L2(ζ′,xN ).

2. For u(x′) ∈ Hs(RN ) set 〈u〉s,γ = |〈ζ〉sû|L2(ζ′).
3. When s = 0 we write |u|0,γ = |u|0, 〈v〉0,γ = 〈v〉0.
4. Let Λ(εζ) = (1 + (εγ)2 + (εζ0)2 + |εζ ′′|4) 1

4 . For u(x), v(x′) set

|u|Λ = |Λ(εζ)û(ζ ′, xN )|L2(ζ′,xN ), 〈v〉Λ = |Λ(εζ)v̂(ζ ′)|L2(ζ′),

and similarly define |u|φ, 〈v〉φ for other weights φ.
5. For u(x) set 〈u(0)〉φ = 〈u(x′, 0)〉φ.
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Our goal is to prove the following (degenerate) L2 estimate for solutions to the doubled boundary
problem (7.6)

∂NU − 1
ε
GU = F

ΓU = 0 on xN = 0
U = 0 in x0 < 0 :

(9.1)

Theorem 9.1 (Main L2 estimate). Under the assumptions of section 2, there exist positive con-
stants C, ε0, γ0 such that for all γ > γ0, 0 < ε < ε0 with εγ ≤ 1, solutions to (9.1) satisfy

√
ε|U |0 + ε〈U(0)〉0 ≤ C|F |0.(9.2)

The preceding estimate is a composite of three more precise estimates corresponding to the three
natural frequency regimes in the problem, the regimes in which εζ is of small, medium, or large
size.

Recall β = (β′, γ′) ∈ RN × R+ is a placeholder for εζ. We shall localize with respect to the size
of β using cutoff functions χj(β) ∈ S∞ (8.2), j = S,M,L, such that

χS(β) + χM (β) + χL(β) = 1,(9.3)

where for some constants R1 (sufficiently small), R2 (sufficiently large)

supp χS ⊂ {0 ≤ |β| ≤ R1}

supp χM ⊂ {3
4
R1 ≤ |β| ≤ R2}

supp χL ⊂ {3
4
R2 ≤ |β|}.

(9.4)

Notation 9.2. 1. Our calculi involve semiclassical (a(x′, β)), mixed (b(x′, β, ζ)), and classical (c(x′, ζ))
symbols, sometimes depending on parameters like xN , ε, or z = xN

ε . When the nature of the
symbol is clear from the context, we’ll often write simply aU , bU , cU in place of a(x′, εD)U ,
b(x′, εD,D)U , c(x′, D)U , respectively. When composing operators, we need to distinguish, for
example, b1(x′, εD,D)b2(x′, εD,D) from (b1b2)(x′, εD,D). To avoid ambiguity we add then the
subscript D and write these two operators as b1,Db2,D, (b1b2)D respectively.

2. We will occasionally use the symbol χM to denote a cutoff distinct from the one in (9.4), but
also supported in a bounded region strictly away from the origin. Similar statements apply as well
to χS , χL.

3. The symbol r0 will always denote a symbol or operator of order zero. It may change from
line to line or even from term to term, entry to entry, etc..

4. Write the solution to (9.1) as U = (U+, U−) = (u+, v+, u−, v−). Define

UΛ = (Λu+, v+,Λu−, v−),(9.5)

where Λ(εD) is the multiplier associated to the symbol defined in Notation 9.1.
5. Let Π1(x′, β̂, ρ) and Π2(x′, β̂, ρ) be the projections defined in (9.68) satisfying Π1 + Π2 = I.

Proposition 9.1. Using the notation just introduced, we have the following estimates for solutions
to (9.1). Let R1, R2 be as in (9.4). For R1 sufficiently small and R2 sufficiently large, there exist
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constants C, γ1, ε1 such that for all γ > γ1, 0 < ε < ε1 with εγ ≤ 1

(a)
√
ε|χSU |1,γ + ε〈Π1,DχSU(0)〉1,γ + 〈Π2,DχSU(0)〉0 ≤

C
(
|F |0 + |(∂β′χS)U |0 + ε|U |0 + ε〈U(0)〉0

)
(b) |χMU |0 +

√
ε〈χMU(0)〉0 ≤

C (ε|F |0 + ε|U |0 + ε〈U(0)〉0)
(c) |χLUΛ|Λ +

√
ε〈χLUΛ(0)〉√Λ ≤

C (ε|F |0 + ε|UΛ|0 + ε〈UΛ(0)〉0) .

(9.6)

Assuming Proposition 9.1 for the moment we prove Theorem 9.1.

Proof of Theorem 9.1. Let A denote the sum of the three left hand sides in (9.6). We have
√
ε|U |0 + ε〈U(0)〉0 ≤ A ≤ C|F |0 + B,(9.7)

where B represents the sum of the terms on the three right sides not involving F . Of these terms
only 3 are not obviously dominated by other terms on the right, namely

|(∂β′χS)U |0, ε|UΛ|0, ε〈UΛ(0)〉0.(9.8)

We need to check that each of these 3 terms can be absorbed by A, at least for ε small enough
and γ big enough. The second and third terms are easily handled by noting that in the small and
midfrequency regions, the symbol Λ ∼ 1. Finally, on supp ∂β′χS we have |β| ≥ C > 0, so to absorb
this term we can first estimate it using (9.6)(b).

The use of pseudodifferential calculi in the following arguments gives rise to many error terms
that we need to absorb in the estimates. Having stated Proposition 9.1, we can now make the
following definition:

Definition 9.1. We will call an error term acceptable if: (a) it can be dominated by a finite sum
in which each term has the same form as one of those appearing on the right sides in (9.6), or

(b) it can be absorbed by the sum of the left sides of (9.6) for small enough ε and large enough
γ satisfying εγ ≤ 1.

9.2. Proof of Proposition 9.1. This proof will occupy the rest of section 9. We note first that
the estimates on χMU and χLU in (9.6) are taken from [MZ]. Indeed, estimates (9.6)(b),(c) are es-
sentially estimates (4.37),(4.28), respectively, in [MZ]. We say “essentially” because, although [MZ]
considers Dirichlet boundary conditions, the same argument in the medium and large frequency
regions yields estimates for any boundary condition satisfying the uniform Lopatinski condition in
those regions. In particular, note the extra gain in regularity in the high frequency region. This
plays an important role in the final nonlinear stability argument.

We refer the reader to [GMWZ1], section 3, for more detail on how the standard symmetrizer
argument works in those regions for such boundary conditions.

Thus, we shall focus henceforth on the estimate for χSU in (9.6)(a).
1. Localize to small frequency region.
In (9.1) G = G(V(x′, xNε ), pε(x), εD). χSU satisfies

χSUxN − 1
ε
GχSU = χSF +

1
ε
[χS ,G]

ΓχSU = 0 on xN = 0.
(9.9)

There is a high frequency contribution to the commutator because of the x′ dependence of G, and
to get a good estimate for this we use the semiclassical calculus. Although G does not belong to
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SM , it is simply a differential operator and we can use and directly estimate the expression for
remainders in (12.15). Since

χS,DGD = (χSG)D +
ε

i
(∂β′χS∂x′G)D + ε2RD,(9.10)

where RD is of order zero, we have
1
ε
[χS,D,GD] =

1
i
(∂β′χS∂x′G)DU + εRDU.(9.11)

Thus US = χSU satisfies

∂xNUS − 1
ε
GUS = F ′

ΓUS = 0 on xN = 0,
(9.12)

where

|F ′|0 ≤ C|F |0 + |(∂β′χS)U |0 + ε|U |0.(9.13)

2. Extend and invert conjugator. It will be convenient first to extend the symbols
Wj(x′, z, p, β), j = 0, 1 defined in Lemma 7.2 smoothly to all β ∈ RN × R+, so that the esti-
mates in (7.44) continue to hold. However, the ODEs (7.45) hold only on the original domain. For
now we suppose that W1 satisfies (7.45)(b) for some F to be chosen.

The symbols Wj belong to S∞, and we’ll use the semiclassical calculus to construct approximate
right and left inverses, W−1,R,D and W−1,L,D for the conjugator

WD = W0(x′,
xN
ε

, pε(x), εD) + εW1(x′,
xN
ε

, pε(x), εD).(9.14)

These operators will satisfy

WDW−1,R,D = I + ε2r0

W−1,L,DWD = I + ε2r0

(9.15)

where r0 = r0(x′, xNε , pε(x), εD) has order zero.
Construct W−1,R(x′, xNε , pε(x), β) of the form

W−1,R = w0 + εw1,(9.16)

and use the calculus to find that w0, w1 should satisfy

w0 = W−1
0

w1 = W−1
0 (W1w0 +

1
i
∂β′W0∂x′w0).

(9.17)

The construction of W−1,L,D is similar.
3. Second order conjugation to G∞. Choose smooth cutoffs χ1(β), χ2(β), χS(β) compactly

supported in ω3 (recall (7.51)) and such that

χ1χ2 = χ1, χSχ1 = χS .(9.18)

Later, we’ll use the same notation to denote a possibly different set of three cutoffs with the
properties (9.18).

Note that (9.12) still holds with G replaced by GDχ2,D and henceforth set

GDχ2,D = GD, G∞,Dχ2,D = G∞,D.(9.19)

G, for example, does not belong to S∞, but G does.
Define V = W−1,R,DUS and use (9.15) to see

WDV = US + ε2r0US .(9.20)
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For later reference observe also that the equation and the calculus imply for each L > 0

(a) ε2∂xNUS = εGDUS + ε2F ′ = εr0US + ε2F ′

(b) (1 − χ1,D)V = (1 − χ1,D)W−1,R,D χS,DU = εLrL,0US ,

(c) ∂NUS =
1
ε
GDWDV + F ′ + εr0U

(9.21)

for some operator rL,0 of order zero.
Computing ∂N (WDV ) in two ways we have

∂N (WDV ) =

(a)
1
ε
∂zW0,DV + ∂zW1,DV + (∂pW0∂Npε)DV + εr0V + WD∂NV =

(b) ∂NUS + ε2∂N (r0US) =
1
ε
GDWDV + F ′ + εr0U.

(9.22)

Using Lemma 7.2 and (9.21)(b), we have

∂zW0,DV = (GW0 − W0G∞)D χ1,DV + εLr0,LU

∂zW1,DV = (GW1 − W1G∞ + F)D χ1,DV + εLr0,LU.
(9.23)

Using the calculus and (9.21)(b) we find

GDWDV = (GW0 +
ε

i
∂β′G∂x′W0 + εGW1)D χ1,DV + ε2r0U

WDG∞,D (χ1,DV ) = (W0G∞ +
ε

i
∂β′W0∂x′G∞ + εW1G∞)D χ1,DV + ε2r0U.

(9.24)

Finally, substitute (9.23) and (9.24) into (9.22) and observe that provided we choose

F =
1
i
(∂β′G∂x′W0 − ∂β′W0∂x′G∞) − ∂pW0∂Npε(9.25)

in Lemma 7.2, then χ1,DV satisfies

WD∂N (χ1,DV ) − 1
ε
WDG∞,D (χ1,DV ) = F ′ + εr0U.(9.26)

Apply W−1,L,D to get

∂N (χ1,DV ) − 1
ε
G∞,D(χ1,D)V = W−1,L,DF ′ + εr0U.(9.27)

Since

0 = ΓUS = ΓWDV + ε2Γr0US =

ΓWDχ1,DV + ΓWD(1 − χ1,D)V + ε2Γr0US ,
(9.28)

we find using (9.21)(b) and (9.20)

US = WDχ1,DV + ε2r0US and

ΓWD(χ1,DV ) = ε2r0US .
(9.29)
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In view of (9.27) and (9.29) we have reduced the proof of Proposition 9.1 to showing that the
estimate in (9.6)(a) holds with US on the left replaced by U1,S satisfying for some new F

∂NU1,S − 1
ε
G∞,DU1,S = F

ΓWDU1,S = ε2r0US on xN = 0
U1,S = χ1,Dr0US .

(9.30)

Remark 9.1. In proving the estimate (9.6)(a) for U1,S one should replace T (x′, 0, 0, β) (for T as in
(7.67)) by W−1

0 (x′, 0, p′(x′, 0), β)T (x′, 0, 0, β) in the definition of Π1,Π2 (Definition 9.2). Similar
remarks apply to the reductions that follow.

4. Conjugation to Gε
HP . Here we’ll reduce to a problem where G∞,D in (9.30) is replaced by

an operator Gε
HP,D close to GHP,D (recall (7.65). Until we achieve that reduction (9.46), the only

way we can deal with O(|U |0) errors is to “incorporate them back into the system”. The remaining
acceptable errors are simply incorporated into the new forcing term F .

Notation 9.3. Denote by O(εD) a semiclassical operator with symbol s(x, β) such that s = β·f(x, β)
for some smooth f . O(ε) denotes an operator with symbol s = εf(x, β) ∈ S∞. In a similar way
define O(ε2), O((εD)2), etc.. When speaking of symbols instead of operators we’ll use, as before,
the notation O(εζ), O(ε), etc.. In ambiguous cases like O(ε), the intent (symbol or operator) should
be clear from the context.

Remark 9.2. Terms like |O(εD)χ2,DU1,S |0 are acceptable errors in the sense of Definition 9.1.

The main step is to conjugate to G1,∞,D with acceptable errors, since, for example, the conjuga-
tion by T1 from G1,∞,D to G2,∞,D is exact.

Let T+(p, β) denote the upper left block of the matrix T (p, β) defined in (7.54) and set

G+
∞(pε(x), β) =

(
0 I

M∞,+ A∞,+

)
χ2,

G+
1,∞ =

(
HR 0
0 PR

)
χ2.

(9.31)

As we did earlier with Wj , extend the semiclassical symbol T+(pε(x), β) smoothly to all β ∈
RN ×R+ so that the extension has a uniformly bounded inverse, and use the calculus to construct
right and left inverses satisfying

T+,DT−1,r,D = I + ε2r0

T−1,l,DT+,D = I + ε2r0.
(9.32)

The symbol T−1,l has the form

T−1,l(pε(x), β) = T−1
+ + εr0,(9.33)

and so does T−1,r.
Write U1,S = (U1,S,+, U1,S,−), set Us = U1,S,+, and define V = T−1,r,DUs. We have with F =

(F+, F−)

(a) T+,DV = Us + ε2r0Us

(b) (∂NT+,D)V + T+,D∂NV = ∂NUs + O(ε)(r0Us + εF+) =
1
ε
G+
∞,DT+,DV + F+ + O(ε)(r0Us + εF+).

(9.34)
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We have the following symbol equalities

(a) T+ =
(
I A−1

∞,+

0 I

)
+ O(εζ) + O(ε)

(b) T−1,l =
(
I −A−1

∞,+

0 I

)
+ O(εζ) + O(ε)

(c) T−1,l∂NT+ =
(

0 r0

0 0

)
+ O(εζ) + O(ε)

(d) G+
∞T+ =

(
0 I
0 A∞,+

)
χ2(εζ) + O(εζ) + O(ε)

(e) ∂ζ′T−1,l = εO(εζ) + O(ε)

(f)
1
ε
(∂ζ′T−1,l)∂x′(G+

∞T+) =
(

0 r0

0 r0

)
χ2(εζ) + O(εζ) + O(ε)

(g)
1
ε
T−1,lG

+
∞T+ =

1
ε
G+

1,∞ +
(

0 r0

0 r0

)
χ2(εζ) + O(εζ) + O(ε).

(9.35)

For (9.35)(g) we used (9.33), (7.52), and (9.35)(d).
Applying the operator T−1,l,D to (9.34)(b) and using the semiclassical calculus, we obtain in view

of the symbol equalities (9.35):

∂NV =
1
ε

(
HR,D εr0

0 PR,D + εr0

)
χ2,DV + r0F+ +

O(ε)Us + O(εD)V + O(ε)V.
(9.36)

Observe that terms on the right in (9.35)(c),(f), and (g) all make contributions to the r0 entries
of the first matrix on the right in (9.36).

Using the analogue of (9.21)(b) we obtain

∂N (χ1,DV ) =
1
ε

(
HR,D εr0

0 PR,D + εr0

)
(χ1,DV ) + r0F+ + Eacc,(9.37)

where Eacc is an acceptable error in the sense of Definition 9.1.
After performing the same sort of manipulations on the lower right block of G∞,D we reduce to

proving the desired estimate for

∂NU2,S − 1
ε


HR,D εr0 0 0

0 PR,D + εr0 0 0
0 0 HL,D εr0

0 0 0 PL,D + εr0

U2,S + F

ΓWDTDU2,S = ε2r0US on xN = 0
U2,S = χ1,Dr0US ,

(9.38)

in place of the problem (9.30).
Define

G+
1,∞,ε(p

ε(x), β) =
(
HR εr0

0 PR + εr0

)
χ2.(9.39)
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A direct computation using the invertibility of PR shows that for β ∈ ω3 one can choose a matrix
symbol Ta,+ of the form

Ta,+(pε(x), β) =
(
I εr0

0 I

)
(9.40)

such that

T−1
a,+G+

1,∞,εTa,+ =
(
HR 0
0 PR + εr0

)
.(9.41)

As before we extend and invert Ta,+,D. The operator T−1,a,D associated to the symbol

T−1,a =
(
I −εr0

0 I

)
(9.42)

is easily seen to be a right and left inverse satisfying the analogue of (9.32).
Write U2,S = (U2,S,+, U2,S,−), set Us = U2,S,+, and define V = T−1,a,DUs. Now repeat the

preceding argument line for line, but note, for example, that now instead of (9.35)(c),(e),(f) we
have, respectively,

T−1,a∂NTa,+ = O(ε)

∂ζ′T−1,a =
(

0 ε2r0

0 0

)
1
ε
(∂ζ′T−1,a)∂x′(G+

1,∞,εTa,+) = O(ε).

(9.43)

Similarly choose Ta,− corresponding to the lower right block of the matrix in (9.38), define Ta
to be the matrix with blocks (Ta,+, Ta,−), recall T1 from (7.58), and use the calculus as before to
reduce to proving the desired estimate for

∂NU3,S − 1
ε
Gε

2,∞,DU3,S + F

ΓWDTDTa,DT1U3,S = ε2r0US on xN = 0
U3,S = χ1,Dr0US

(9.44)

where

Gε
2,∞(pε(x), β) =


HR

HL

PR + εr0

PL + εr0

χ2(β).(9.45)

Finally, a similar but easier version of the above arguments allows us to use T3,D for T3(p′(x), β)
as in (7.67) to reduce to the problem

∂NU4,S − 1
ε
Gε
HP,DU4,S + F

ΓWDTDTa,DT1T3,DU4,S = ε2r0US on xN = 0
U4,S = χ1,Dr0US

(9.46)

where (recall (7.65))

Gε
HP (pε(x), β) =

(
GHP (p′(x), β) +

(
εr0 0
0 εr0

))
χ2(β).(9.47)

Here we have used the fact that pε(x) = (p′(x) + εr0, εr0).
5. Quantize the degenerate symmetrizer.



44 OLIVIER GUES, GUY MÉTIVIER, MARK WILLIAMS, KEVIN ZUMBRUN

In this paragraph we’ll use notation introduced in Notation 7.6 and Proposition 7.4, as well as
the O(εl〈D〉k) notation introduced in the section on the mixed calculus. Recall ζ = (ζ ′, γ) where
γ ≥ 1 and that β is a placeholder for εζ.

In Proposition 7.4 we constructed the symbol of a degenerate symmetizer

S(x, β̂, ρ) =
(
SH(p′(x), β̂, ρ) 0

0 SP (β)

)
(9.48)

on p
′−1(ω∗). Let κ2(x) and χ3(β) be smooth cutoffs such that

supp κ2(x)χ3(β) ⊂ p
′−1(ω∗).(9.49)

Set Aε
1 = {(x, ζ) : (x, εζ) ∈ p

′−1(ω∗)} and define symbols supported in Aε
1:

sεh(x, ζ) = SH(p′(x),
ζ

|ζ| , ε|ζ|)κ2(x)χ3(εζ)

sεp(x, ζ) = SP (εζ)κ2(x)χ3(εζ) =
(
sεp+ 0
0 sεp−

)
, where

sεp+(x, ζ) = CIκ2(x)χ3(εζ), sεp−(x, ζ) = −ε2(|ζ|2κ2(x)χ3(εζ)I).

(9.50)

For H(p′(x), β), P (p′(x), β) as in (7.65) define

Hε(x, ζ) = H(p′(x), εζ)χ2(εζ)κ1(x)

Pε(x, ζ) = P (p′(x), εζ)χ2(εζ)κ1(x) =
(
Pε

+ 0
0 Pε

−

)
,

(9.51)

where the cutoffs satisfy κ1κ2 = κ1, χ3χ2 = χ2.

Remark 9.3. 1. Observe that since χ3(β) has compact support, sεh(x, ζ) represents a bounded
family in the classical symbol class C0

∞. On the other hand the operators sεp,D, Hε
D, and Pε

D can
be viewed as semiclassical, mixed, or classical operators corresponding to symbols in S∞, M0

∞, or
C0
∞, respectively.
2. As indicated in (9.50) we can also view sεp−(x, ζ) as the product of −ε2 with the mixed symbol

of order two |ζ|2κ2(x)χ3(εζ)I ∈ M2
∞.

Let

Aε
0 = {(x, ζ) : κ1(x)χ2(εζ) = 1} ⊂ Aε

1.(9.52)

Lemma 9.1 (Interior properties). The symbols just defined satisfy the following properties on Aε
0

for ε ∈ (0, 1]:
1. sεh is self-adjoint and

�(
1
ε
sεhHε) =

∑
(vεl )

∗kεl v
ε
l ,(9.53)

where
(a)the vεl (x, ζ) are bounded families (parametrized by ε) in C0

∞ such that the finite sum
∑

(vεl )
∗vεl >

C > 0;
(b)the kεl are bounded families in C1

∞ having the block structure

kεl (x, ζ) =

bε1 · · · 0
...

. . .
...

0 · · · bεp

 .(9.54)
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The number of blocks p can vary with l. There is c > 0 such that either

bεj ≥ c|ζ|(9.55)

or bεj = γbεj,0 + εbεj,2, where bεj,k are bounded families in Ck∞ satisfying

bεj,0 ≥ c and bεj,2 ≥ c|ζ|2.(9.56)

2. sεp is self-adjoint and

�(
1
ε
sεp+Pε

+) ≥ C

ε

�(
1
ε
sεp−Pε

−) = εbε−(x, ζ, εζ),
(9.57)

where bε−(x, ζ, β) is a bounded family of mixed symbols in M2
∞ such that

bε− ≥ c|ζ|2(9.58)

for some c > 0.

Proof. The proof is an immediate consequence of Proposition 7.4.

9.3. Block diagonalization of S + Γ∗1Γ1. In order to describe the properties of the symmetrizer
on the boundary we first rewrite the decomposition of C4m in (7.77):

C4m = EP1,−(x′, β) ⊕ Ec
P1,−(x′, β),(9.59)

where Ec
P1,−(x′, β) is the 4m − 1 dimensional space

Ec
P1,−(x′, β) = EH ⊕ EP+ ⊕ EP2,−,κ(x

′, β).(9.60)

Choose a smooth basis vector f4m(x′, β) for EP1,−(x′, β) of unit length. Note that f4m will be some
scalar multiple of the image under (T 0)−1(x′, 0, β) (7.67) of the “doubled profile” (recall (7.32))(

UR
1+

UL
m−

)
|
(x′,0,β̂,ρ).

Next choose an orthonormal basis

{f1(x′, β), . . . , f4m−1(x′, β)} for Ec
P1,−(x′, β)

so that

{f1(x′, β), . . . , f4m(x′, β)}(9.61)

is a smoothly varying orthonormal basis for C4m. The fj are initially defined for all x′ and |β|
small, but can be smoothly extended to all β as an orthonormal basis.

Let M denote the positive (for ρ > 0) self-adjoint matrix S + Γ∗1Γ1. Since f4m is generally not
an eigenvector of M , we need to modify the above basis. The estimates (7.91) together with a
Rayleigh-Ritz argument show that M has a simple small eigenvalue λs(x′, β̂, ρ) ∼ ρ2 isolated from
the rest, and hence varying smoothly with (x′, β̂, ρ). We write

λs(x′, β̂, ρ) = ρ2µ(x′, β̂, ρ).(9.62)

The estimate (7.91) implies that the smoothly varying eigenspace H1(x′, β̂, ρ) corresponding to λs
is spanned by a vector of size ∼ 1 of the form

e4m(x′, β̂, ρ) = f4m(x′, β) + ρg4m(x′, β̂, ρ)(9.63)
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for some smooth g4m ∈ f⊥4m of size O(1). Thus, H2(x′, β̂, ρ) ≡ e⊥4m is an invariant subspace for M
spanned by vectors of the form

ej(x′, β̂, ρ) = fj(x′, β) + ρgj(x′, β̂, ρ), for j = 1, . . . , 4m − 1.(9.64)

The smooth dependence of the fj on β (unlike gj) plays an important role in the following argu-
ments. Normalize and relabel so that the ej give an orthonormal basis for C4m.

Notation 9.4. Thinking of ej as a column vector and e∗j as its row vector adjoint, we’ll write eje
∗
j

for the 4m × 4m matrix which orthogonally projects x ∈ C4m onto ej . Thus,

eje
∗
jx = (x, ej)ej ,(9.65)

where ( , ) is the complex inner product on C4m.

Definition 9.2. Define π1(x′, β̂, ρ) and π2(x′, β̂, ρ) to be the smoothly varying orthogonal projec-
tions of C4m onto the first and second components, respectively, of

C4m = H1(x′, β̂, ρ) ⊕ H2(x′, β̂, ρ).(9.66)

In terms of the basis just chosen we have

π1(x′, β̂, ρ) = e4me∗4m

π2(x′, β̂, ρ) =
4m−1∑
j=1

eje
∗
j .

(9.67)

In the statement of Proposition 9.1 Π1,Π2 are defined as follows:

Πj(x′, β̂, ρ) = T (x′, 0, 0, β)πj(x′, β̂, ρ)T −1(x′, 0, 0, β)(9.68)

for T as in (7.67).

Lemma 9.2 (Boundary properties).

Set sε(x, ζ) =
(
sεh 0
0 sεp

)
. Let T4(x′, ζ̂, ε|ζ|) be the matrix whose columns are (e1, . . . , e4m), define

V ∈ C4m by U = T4V , and set V ′ = (v1, . . . , v4m−1) and

Aε
0,0 = {(x′, ζ) : (x′, 0, ζ) ∈ Aε

0}.(9.69)

Then on Aε
0,0 we have

(a)((sε + Γ∗1Γ1)π2U, π2U) = (Bε
2(x
′, ζ)V ′, V ′)

where Bε
2 ∈ C0

∞ is (4m − 1) × (4m − 1) and Bε
2 ≥ cI.

(b)((sε + Γ∗1Γ1)π1U, π1U) = (Bε
1(x
′, ζ)v4m, v4m)

where Bε
1 = ε2bε1(x

′, εζ, ζ) is 1 × 1 and bε1 ∈ M2
∞ satisfies bε1 ≥ c〈ζ〉2.

(9.70)

Proof. The equality in (a) is proved by a simple computation using the explicit formulas for T4 and
π2. B2 is positive since H2 is a strictly positive invariant subspace for M .

(b) is proved by the same kind of computation as (a). The form of Bε
1 follows from (9.62). Use

Remark 9.3 to see that Bε
1, B

ε
2 are in the stated symbol classes.

Our symmetrizer is the operator

sεD =
(
sεh,D 0

0 sεp,D

)
.(9.71)

6. Reduce to (GHεPε ,Γ1).
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Choose cutoffs κ(x) and χ1(β) such that κκ1 = κ, χ1χ2 = χ1, and set U5,S = κ(x)U4,S . Having
reduced to the block form (9.46), we are now in a position to absorb O(|U |0) errors (see (9.76)).

Observe that the boundary condition in (9.46) satisfies

ΓWDTDTa,DT1T3,D = Γ1,D + εr0(9.72)

for Γ1(x′, β) as in (7.67).
Also, we see by using the semiclassical calculus that commuting the cutoff κ(x) through (9.46)

produces an O(1) error in the interior and an O(ε) error on the boundary. Thus, using a partition
of unity in x we reduce to

∂NU5,S − 1
ε
GHεPε,DU5,S = F0

Γ1,DU5,S = εr0US on xN = 0

U5,S = κ(x)U4,S = κ(x)χ1,Dr0US ,

(9.73)

where

GHεPε =
(
Hε(x, ζ) 0

0 Pε(x, ζ)

)
F0 = F +

(
r0 0
0 r0

)
U4,S .

(9.74)

Remark 9.4. Since U5 is cutoff by χ1,D, we may replace Γ1 by Γ1χ0 for some cutoff such that
χ0χ1 = χ0 without affecting (9.73). From now on we assume this has been done.

7. L2 estimate.

Notation 9.5. 1. Let (f, g) denote the inner product of L2(x) and 〈f, g〉 that of L2(x′).
2. Set U5,S = (u, v) = (u, vp+, vp−).
3. Set F0 = (fh, fp) = (fh, fp+, fp−).
4. Let φ =

√
γ +

√
ε|ζ| and set |u|φ = |φu|0.

Begin from the identities

(a) 〈sεh,Du, u〉 + �1
ε
(sεh,DHε

Du, u) = −((∂Nsεh,D)u, u) − 2�(fh, sεh,Du)

(b) 〈sεp,Dv, v〉 + �1
ε
(sεp,DPε

Dv, v) = −((∂Nsεp,D)v, v) − 2�(fp, sεp,Dv).
(9.75)

The right sides of (9.75)(a),(b) are dominated, respectively, by

C(|u|20 + |fh|20)
C(|vp+|20 + |fp+ |20 + δε|vp−|21,γ + Cδε|fp− |20).

(9.76)

Here we’ve used |εζ| ≤ C and the special form of sεp−.

Remark 9.5. Recall that r0U4,S is one contribution (of size O(|U |L2) to fp−. Fortunately, the ε on
the fp− term in the previous estimate allows us to absorb that contribution. In this sense O(|U |L2)
errors can be tolerated once HP block structure has been achieved.

A similar remark applies to fh, which has an O(|U |L2) contribution that can be absorbed using
the estimate (9.77) below.

The argument of [MZ] Proposition 4.8 shows

�1
ε
(sεh,DHε

Du, u) ≥ c1|u|2φ − c2|u|20.(9.77)
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This uses Lemma 9.1(1) and the Garding inequality for classical operators.
The operator 1

ε2
sεp−,D is of order two in the mixed calculus. Using that calculus gives

1
ε2

sεp−,DPε
−,D = (

1
ε2

sεp−Pε
−)D + O(〈D〉) + O(ε〈D〉2).(9.78)

Thus, using (9.57), (9.58) and applying the Garding inequality in the mixed calculus we obtain,

cε|vp−|21,γ ≤ �1
ε
(sεp−,DPε

−,Dvp−, vp−) +

C(ε|US |20 + ε3|US |21,γ) + Cε|vp−|21
2
,γ
.

(9.79)

Here the US terms on the right are errors from Garding’s inequality, while the vp− terms correspond
to the errors in (9.78). (We’ve used |εζ| ≤ C on supp χ1(εζ)).

Similarly, but more easily we obtain

c
|vp+|20

ε
≤ �1

ε
(sεp+,DPε

+,Dvp+, vp+) + C(|vp+|20 + ε|US |20).(9.80)

Boundary terms This is the most delicate part, since we’ll have only weak trace control on
π1,DU5,S .

Notation 9.6. 1. Set U5,S = U5.
2. Let F(x′, ζ̂, ε|ζ|) denote an element of C0

∞ which may change from line to line.
3. Using (2) and (9.64) we may write for j = 1, 2

πj(x′, ζ̂, |εζ|) = πj,s(x′, εζ) + ε|ζ|F ,(9.81)

where π1,s = f4mf∗4m, for example. Recall

f4m = (0h, 0p+, fp−).(9.82)

4. Set M *(x, εζ) = (sε,* + Γ∗1Γ1)(x′, εζ), where

sε,* =

0
0

sεp−(x′, εζ)

 .(9.83)

Recall M itself is not smooth in β.
5. When a(x′, ζ̂, ε|ζ|) defines a bounded family in C0

∞ for ε small, we’ll write just a(x′, ζ̂, ε|ζ|) ∈
C0
∞.

The next Lemma is used repeatedly below.

Lemma 9.3. For i = 1, 2 let Ai = ai(x′, ζ̂, ε|ζ|) ∈ C0
∞, B = ε|ζ|b(x′, ζ̂, ε|ζ|) ∈ C0

∞, and C =
c(x′, εζ) ∈ S∞. Then

(a) ADBD = (AB)D + εr0, BDAD = (BA)D + εr0

(b) CDAD = (CA)D + εr0

(c) A1,DA2,D = (A1A2)D + O(〈D〉−1) + εr0

(d) (CD)∗ = (C∗)D + εr0; (BD)∗ = (B∗)D + εr0

(9.84)

Proof. The lemma follows immediately from the product and adjoint theorems in the semiclassical,
mixed, and classical calculi.
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Setting MD = sεD + (Γ1,D)∗Γ1,D and U5 = π1,DU5 + π2,DU5 we’ll estimate the four terms

(a)〈MDπ1,DU5, π1,DU5〉,
(b)〈MDπ1,DU5, π2,DU5〉,
(c)〈MDπ2,DU5, π1,DU5〉,
(d)〈MDπ2,DU5, π2,DU5〉.

(9.85)

The left side of our L2 estimate for U5 will contain the boundary terms

ε2〈π1,DU5〉21,γ + C〈π2,DU5〉20.(9.86)

These terms, along with the others on the left in Proposition 9.1, determine which errors arising
from the calculus can be absorbed. The following errors, for example, are acceptable:

(a)〈επ2,DU5, U5〉 ≤ δ〈π2,DU5〉20 + Cδε
2〈π1,DU5〉20,

(b)ε2〈US〉20 + 〈εO(εD)US , US〉 ≤ Cδε
2〈US〉20 + δε2〈US〉21,γ .

(9.87)

Observe that we cannot tolerate ε〈U5〉20 or 〈〈D〉−1U5〉20 errors.

Notation 9.7. We’ll denote the errors on the left in (9.87)(a),(b) by Err1, Err2, respectively.

Remark 9.6. The replacement of MD by MD in (9.85)(b),(c),(d) results by Lemma 9.3 only in an
error of type Err1. This replacement has to be done differently for (9.85)(a) (Lemma 9.4).

Mixed boundary terms.

Proposition 9.2.
(MDπ1,DU5, π2,DU5) + (MDπ2,DU5, π1,DU5) =Err1 + Err2.

Proof. In view of Remark 9.6 we may replace M by M . Lemma 9.3 gives

(MDπ2,DU5, π1,DU5) = (π1,DMDπ2,DU5, U5) + Err1

〈(π1M)Dπ2,DU5, U5〉 + Err1 =

〈(λsπ1)Dπ2,DU5, U5〉 + Err1 =

〈(λsπ1π2)DU5, U5〉 + Err1 + Err2,

(9.88)

where we’ve used the form (9.62) of λs in the last equality. Since π1π2 = 0 this gives the result for
this term. The other term is handled the same way.

Positive boundary terms. Consider first the more difficult term 〈MDπ1,DU5, π1,DU5〉.

Lemma 9.4. 〈MDπ1,DU5, π1,DU5〉 = 〈(π1Mπ1)DU5, U5〉 + Err1 + Err2.

Proof. 1. Using Lemma 9.3 again, we obtain

〈(Γ1,D)∗Γ1,Dπ1,DU, π1,DU〉 = 〈Γ1,Dπ1,DU,Γ1,Dπ1,DU〉 =

〈(Γ1π1)DU, (Γ1π1)DU〉 + Err1 + Err2 =

〈((Γ1π1)D)∗(Γ1π1)DU,U〉 + Err1 + Err2 =

〈(π1Γ∗1Γ1π1)DU,U〉 + Err1 + Err2.

(9.89)

Here for the second, third, and fourth equalities we have used

Γ1π1 = ρF (F as in Notation 9.6).(9.90)
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2. Next consider 〈sεDπ1,DU, π1,DU〉. Writing π1 as in (9.81), we have four terms to examine. We
begin with

〈sεDπ1,s,DU, π1,s,DU〉 = 〈sε,*D π1,s,DU, π1,s,DU〉 =

〈(sε,*π1,s)DU, π1,s,DU〉 + Err2 = 〈π1,s,D(sε,*π1,s)DU,U〉 + Err2 =

〈(π1,ss
ε,*π1,s)DU,U〉 + Err2 = 〈(π1,ss

επ1,s)DU,U〉 + Err2.

(9.91)

In the first equality we’ve used (9.83) and

π1,s =

0
0

fp−f∗p−

 ,(9.92)

while the second, third, and fourth equalities follow from Lemma 9.3 and the fact that sε,* = O(ρ2)
(9.50).

3. Next consider
〈sεD(ρF)DU, π1,s,DU〉 = 〈π1,s,DsεD(ρF)DU,U〉 + Err2 =

〈(π1,ss
ε,*)D(ρF)DU,U〉 + Err2 = 〈(π1,ss

ε,*ρF)DU,U〉 + Err2 =

(π1,ss
ερF)DU,U〉 + Err2

(9.93)

Here again we’ve used Lemma 9.3 and the special form of π1,s and sε,*.
4. The remaining two terms are handled quite similarly. Adding up we obtain the result.

Proposition 9.3. There exist positive constants c, C such that

cε2〈π1,DU5〉21,γ ≤ 〈MDπ1,DU5, π1,DU5〉 + Err1 + Err2.(9.94)

Proof. 1. Let T4 = T (from Lemma 9.2) and define V = (V ′, V4m) = (T ∗)DU . As we did with πj ,
we can write

T = Ts + ρF(9.95)

where Ts(x′, β) is smooth in β. By Lemma 9.3 we have

(a)(T ∗)DTD = I + εr0, TD(T ∗)D = I + εr0

(b)TDV = U5 + εr0U5

(c)π1,DU5 = TD

(
0

V4m

)
+ εr0U5

(d)π2,DU5 = TD

(
V ′

0

)
+ εr0U5.

(9.96)

2. In view of Lemma 9.4 we just need to consider
〈(π1Mπ1)DU5, U5〉 = 〈(λsπ1)DTDV, TDV 〉 + Err2 =

〈(T ∗λsπ1T )DV, V 〉 + Err2.
(9.97)

We’ve used Lemma 9.3, (9.95), and the special form of λs (9.62).
Now T ∗λsπ1T is a 4m × 4m matrix with all entries zero except for the (4m, 4m) entry, which

equals λs = ε2bε1 for bε1 as in (9.70)(b). Applying the Garding inequality for the mixed calculus and
using (9.96) gives the result.

Proposition 9.4. There exist positive constants c, C such that for γ large and ε small

c〈π2,DU5〉21,γ ≤ 〈MDπ2,DU5, π2,DU5〉 + Err2.(9.98)
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Proof.

〈MDπ2,DU5, π2,DU5〉 =
〈
MD(TD

(
V ′

0

)
+ O(ε)U5), TD

(
V ′

0

)
+ O(ε)U5

〉
=

〈Bε
DV ′, V ′〉 + 〈O(〈D〉−1 + ε)V ′, V ′〉 +

〈O(1)V ′, O(ε)U5〉 + 〈O(ε)U5, O(1)V ′〉 + 〈O(ε)U5, O(ε)U5〉.

(9.99)

The classical Garding inequality gives in view of the positivity of Bε

c〈V ′〉20 ≤ 〈MDπ2,DU5, π2,DU5〉 +
C

γ
〈V ′〉20 + Cε〈V ′〉20

+ ε2Cδ〈U5〉20 + δ〈V ′〉20 + Cε2〈U5〉20.
(9.100)

Using (9.96) the result follows easily.

Adding up the estimates and absorbing terms by taking ε small and γ large, we obtain the
degenerate L2 estimate for the problem (9.73) satisfied by U5,S = (u, vp+, vp−):

|u|2φ +
|vp+|20

ε
+ ε|vp−|21,γ + ε2〈π1,DU5〉21,γ + 〈π2,DU5〉20 ≤

C(|F |2 + ε|US |20 + ε3|US |21,γ) + Err1 + Err2

(9.101)

The errors on the right are acceptable in the sense of Definition 9.1, so this concludes the proof
of Proposition 9.1 and the degenerate L2 estimate of Theorem 9.1.

10. Higher derivative estimates

In this section we’ll use the notation for norms introduced in section 9. We use ∂ to denote some
tangential derivative, one of ∂0, . . . , ∂N−1. Sometimes ∂U will denote the tangential gradient of U ,
instead of just a single partial derivative of U .

Notation 10.1. 1. For k = 1, 2, . . . let U∗,k = (( γ
ε2

)kU, ( γ
ε2

)k−1∂U, . . . , ∂kU). Here ∂jU represents
all possible tangential derivatives of U order j.

2. Define U∗,kΛ simply by replacing U by UΛ (9.5) in the definition of U∗,k.

Proposition 10.1. Under the assumptions of section 2, there exist positive constants C, ε0, γ0

such that for all γ > γ0, 0 < ε < ε0 with εγ ≤ 1, solutions to (9.1) satisfy

|U∗,k|0 +
√
ε〈U∗,k〉0 ≤ C√

ε
|F ∗,k|0.(10.1)

This follows immediately from the following more precise estimates by an argument parallel to
the proof of Theorem 9.1.

Proposition 10.2. Using the notation just introduced, we have the following estimates for solu-
tions to (9.1). Let R1, R2 be as in (9.4). For R1 sufficiently small and R2 sufficiently large, there
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exist constants C, γ1, ε1 such that for all γ > γ1, 0 < ε < ε1 with εγ ≤ 1

(a) |χSU
∗,k|1,γ +

√
ε〈χSU

∗,k〉1,γ ≤
C√
ε

(
|F ∗,k|0 + |(∂β′χS)U∗,k|0 + ε|U∗,k|0 + ε〈U∗,k〉0

)
(b) |χMU∗,k|0 +

√
ε〈χMU∗,k〉0 ≤

C
(
ε|F ∗,k|0 + ε|U∗,k|0 + ε〈U∗,k〉0

)
(c) |χLU

∗,k
Λ |Λ +

√
ε〈χLU

∗,k
Λ 〉√Λ ≤

C
(
ε|F ∗,k|0 + ε|U∗,kΛ |0 + ε〈U∗,kΛ 〉0

)
.

(10.2)

Proof. The estimates in (b) and (c) follow directly from the higher derivative estimates of [MZ]
in the medium and large freqency regions. These are estimates with γ weights for the linearized
problem, so one can simply apply them to the problems satisfied by U

(ε2)j
for various j.

As usual, therefore, we focus on the small frequency region. If we simply differentiate the equation
and throw commutators on the right as forcing, those new forcing terms are too large to absorb
in a straightforward way. To get around this problem we reprove L2 estimates for an appropriate
enlarged system.

1. Enlarging the system. We begin with a solution U of the doubled boundary problem

∂NU − 1
ε
GU = F

ΓU = 0 on xN = 0
U = 0 in x0 < 0 :

(10.3)

Let ∂ denote one of ∂0, . . . , ∂N−1. Observe that ( γ
ε2
U, ∂U) satisfies the enlarged system

∂N

( γ
ε2
U

∂U

)
− 1

ε

(
G 0
0 G

) ( γ
ε2
U

∂U

)
=

( γ
ε2
F

∂F

)
+

(
0

ε
γ [∂,G]

( γ
ε2
U

)) ,(
Γ 0
0 Γ

) ( γ
ε2
U

∂U

)
= 0 on xN = 0,( γ

ε2
U

∂U

)
= 0 in x0 < 0.

(10.4)

2. Localize to small frequency region. Let χS(εζ) be a small frequency cutoff as before.
Commuting χS,D through (10.4) we obtain (writing χS for χS,D)

∂N (χSU
∗,1) − 1

ε

(
G 0
0 G

)
(χSU

∗,1) =

χSF
∗,1 + χS

(
0

ε
γ [∂,G]( γ

ε2
U)

)
+

1
ε

[
χS ,

(
G 0
0 G

)]
U∗,1 = F ′,

(10.5)

where

|F ′|0 ≤ C(|F ∗,1|0 + |(∂β′χS)U∗,1|0 + ε|U∗,1|0).(10.6)

The second commutator was computed like the corresponding term in the previous section (9.11).
The boundary condition is (

Γ 0
0 Γ

)
χSU

∗,1 = 0.(10.7)
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The problem (10.5),(10.7) can be treated just like (9.12). We may now repeat the (entire)
argument of the previous section to obtain the desired estimate of U∗,1. Iteration completes the
proof.

Remark 10.1. If U∗,1 had been defined instead as
(γ

εU
∂U

)
, the first commutator in (10.5) would

have produced an unacceptable O(|U∗,1|0) error.

11. Nonlinear stability

Notation 11.1. 1. Suppose u, v, w are vectors in Rm1 , Rm2 , Rm3 , respectively. Denote by uf(v)w
a function with values in Rm whose components are finite sums of terms of the form

ujfk(v)wl

where fk is a C∞ function of v and uj , wl represent components of u and w.
2. Recall |u|k,γ = |〈ζ〉kû(ζ, xN )|0. For k ∈ N we have the equivalence of norms

|u|k,γ ∼
∑
|α|≤k

γk−|α||∂αu|0.(11.1)

3. Set |u|∗ = |u|L∞ .
4. Define

‖u‖k,γ = |u|k,γ + |ε∂u|k,γ .(11.2)

5. Let M and L < M be the positive integers appearing in the nonlinear error equation (6.14).
They can be taken arbitrarily large as long as the approximate solution (ũ, dΨ) is constructed with
sufficiently many terms. Let b± and F± be the functions appearing in (6.14). They are bounded in
HM (RN+1

+ ) uniformly with respect to ε. With ∇ = (∂1, . . . , ∂N ) and z = xN
ε , set b = (b+, b−) and

B = (b,∇b)

Ũ = (ũ, ∂zũ, ∂ũ, dΨ).
(11.3)

6. φ(γ) always denotes an increasing function of γ. It may change from term to term.
7. Set ∂′′ = (∂1, . . . , ∂N−1).

Let us first rewrite the error equation in the doubled form corresponding to the linear problem
(10.3). As before let

U± = e−γx0(w±, ε∂Nw±) and U = (U+, U−).

Let κ(x0) be a smooth cutoff which is identically one on [0, T0]. After computing out the diver-
gence term in (6.14) and inserting the subscript n to denote the nth iterate, we obtain an error
equation of the form

∂NUn+1 − 1
ε
GUn+1 = e−γx0κ(x0)Fε(Un, ∂

′′Un),

ΓUn+1 = 0 on xN = 0,
Un+1 = 0 in x0 < 0,

(11.4)
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where in the notation just described,

Fn ≡ Fε(Un, ∂
′′Un) = εL−3(εUn)f(Ũ , εMB, εLUn, ε, e

γx0)(εUn)

+ εL−3(εUn)f(Ũ , εMB, εLUn, ε, e
γx0)(ε∂′′Un)

+ εM−2Bf(Ũ , εMB, εLUn, ε, e
γx0)(εUn, ε∂

′′Un)

+ εM−LC(x′)−1F

= A + B + C + D.

(11.5)

For F(U, ∂′′U) ≡ e−γx0κ(x0)Fε(U, ∂′′U) consider the nonlinear error equation

∂NU − 1
ε
GU = F(U, ∂′′U),

ΓU = 0 on xN = 0,
U = 0 in x0 < 0.

(11.6)

Theorem 11.1. Recall N is the number of space dimensions. Suppose the constants k, L,M satisfy

k − 3 >
N

2

M − L − 2k − 1
2
> 1

L − 3 − 2k − 1
2
> 1.

(11.7)

Then there exist constants ε0, γ0 such that for all 0 < ε ≤ ε0, γ ≥ γ0 satisfying εγ ≤ 1, the error
equation (11.6) has a unique solution U satisfying the estimates

‖U‖k,γ ≤ εM−L−2k− 1
2φ(γ)

|U |∗ ≤ 1

|∂U |∗ ≤ 1

(11.8)

for some φ(γ), an increasing function of γ.

Proof. The first few points are some preliminaries.
1. Sobolev inequalities. For k − 3 > N

2 we have

(a)ε|∂U |∗ ≤ C(γ)(ε|U |k−2,γ + ε|∂NU |k−2,γ)

(b)ε|U |∗ ≤ C(γ)(ε|U |k−3,γ + ε|∂NU |k−3,γ).
(11.9)

2. Moser inequalities.
For k ∈ N let α = (α1, . . . , αr) with |α| = α1 + · · · +αr ≤ k, αi ∈ N. Suppose |vi|k,γ + |vi|∗ < ∞.

Then

γk−|α||(∂α1v1) · · · (∂αrvr)|0 ≤ C

r∑
i=1

|vi|k,γ(
∏
j �=i

|vi|∗)

3. Relations between norms. Directly from the definitions we see

(a)|U |k,γ ≤ C|U∗,k|0

(b)|U∗,k|0 ≤ C

ε2k
|U |k,γ .

(11.10)

Let χL(εζ) be a high frequency cutoff like the one in (10.2)(c). Observe that

‖U‖k,γ ∼ |U |k,γ + |χL(ε∂U)|k,γ .(11.11)
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4. High frequency estimate. We can absorb the high frequency pieces of U∗,kΛ in the two
terms on the right in (10.2)(c) to obtain

|χLU
∗,k
Λ |Λ ≤ C

(
ε|F ∗,k|0 + ε|U∗,k|0 + ε〈U∗,k〉0

)
.(11.12)

Use the main L2 estimate (10.1) to replace the right side of the above inequality by C|F ∗,k|0.
When |εζ| is large, we have Λ2

ε ≥ C〈ζ〉. Thus, we may conclude

|χL(ε∂U)|k,γ ≤ C|F ∗,k|0.(11.13)

5. Induction assumption. Let the first iterate U1 be 0. Assume there exist ε1(γ), γ1 such
that for 0 < ε ≤ ε1, γ ≥ γ1, and some φ(γ)

‖Un‖k,γ ≤ 2εM−L−2k− 1
2φ(γ)

|Un|∗ ≤ 1

|∂Un|∗ ≤ 1

(11.14)

The main step is to show, after decreasing ε1 if necessary, that Un+1 satisfies the same estimates.
6. Estimate Fn ≡ F(Un, ∂

′′Un). Set A = e−γx0κ(x0)A and define B, C, D similarly. Applying
the Moser inequalities we have

|A|k,γ ≤ C(γ)εL−2|Un|k,γ ,(11.15)

where C(γ) depends on L∞ norms of Ũ , εMB, and εUn.
Write ε∂Un = (1 − χL)(ε∂Un) + χL(ε∂Un), and corresponding to this decomposition set B =

B1 + B2. Since |εζ| ≤ C on supp (1 − χL(εζ)), we have just as above

|B1|k,γ ≤ C(γ)εL−2|Un|k,γ .(11.16)

For B2 we have

|B2|k,γ ≤ C(γ)(εL−2|Un|k,γ + εL−3|χL(ε∂Un)|k,γ).(11.17)

Similarly, we have

|C|k,γ ≤ C(γ)(εM−1|Un|k,γ + εM−2|χL(ε∂Un)|k,γ), and

|D|k,γ ≤ φ(γ)εM−L.
(11.18)

Summing the above estimates we obtain

|Fn|k,γ ≤ C(γ)(εL−2|Un|k,γ + εL−3|χL(ε∂Un)|k,γ) + εM−Lφ(γ).(11.19)

7. Estimate ‖Un+1‖k,γ. In view of the main L2 estimate, (11.10), and (11.19) we have

|Un+1|k,γ ≤ C|U∗,kn+1|0 ≤ C√
ε
|F∗,kn |0 ≤ C

ε2k+ 1
2

|Fn|k,γ

≤ C(γ)(εL−2−2k− 1
2 |Un|k,γ + εL−3−2k− 1

2 |χL(ε∂Un)|k,γ) + εM−L−2k− 1
2φ(γ).

(11.20)

From (11.13) and (11.19) we obtain

|χL(ε∂Un+1)|k,γ ≤ C|F∗,kn |0 ≤ C

ε2k
|Fn|k,γ

≤ C(γ)(εL−2−2k|Un|k,γ + εL−3−2k|χL(ε∂Un)|k,γ) + εM−L−2kφ(γ).
(11.21)

Adding the previous two estimates we find

‖Un+1‖k,γ ≤ εL−3−2k− 1
2C(γ)‖Un‖k,γ + εM−L−2k− 1

2φ(γ).(11.22)
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Provided ε1(γ) is chosen so that εL−3−2k− 1
2C(γ) ≤ 1

2 , the induction assumption and (11.22)
imply

‖Un+1‖k,γ ≤ 2εM−L−2k− 1
2φ(γ).(11.23)

8. L∞ estimates. The equation gives

ε|∂NUn+1|k−2,γ ≤ C|Un+1|k,γ + ε|Fn|k−2,γ .(11.24)

From (11.19) we get

|Fn|k,γ ≤ εL−3C(γ)‖Un‖k,γ + εM−Lφ(γ).(11.25)

Thus,

ε|∂NUn+1|k−2,γ ≤ 2εM−L−2k− 1
2φ(γ).(11.26)

This together with the inequalities (11.9) and the assumption (11.7) immediately implies that for
ε1 small enough

ε|Un+1|∗ ≤ ε

ε|∂Un+1|∗ ≤ ε.
(11.27)

This completes the inductive step.
9. Contraction Thus, the sequence of iterates satisfies the estimates (11.14). One can now

consider the problem satisfied by Un+1 − Un and use estimates like those above (but simpler) to
show that for ε1 small enough, the sequence converges to some U in the ‖ ‖0,γ norm. A standard
argument (involving interpolation and weak convergence) implies that U solves the error equation
(11.6) and satisfies the estimates (11.8) in Theorem 11.1.

This completes the proof of Theorem 11.1.

12. Long time versus small viscosity

In this brief section we remark on some of the relations between the question of long time stability
of planar shocks studied in [GMWZ1] and the small viscosity limit for curved shocks on a finite
time interval studied in this paper.

I. Consider the following constant endstates, long-time stability error problem, similar to the
one studied in [GMWZ1]:

vt + (f ′(U)v)x + δgx(x, v) = vxx

v(0, x) = v0(x),
(12.1)

Here v = v(t, x), x ∈ Rd, U(x1) is a profile, vxx means Laplacian of v, g(x, v) = O(|v|2), and Fx

means div F . δ is a parameter that we are free to make small, but we don’t want to confuse it later
with viscosity ε. We suppose

lim
x1→±∞

U(x1) = U±.(12.2)

Think of the profile U(x1) as being initially perturbed to U(x1) + δv0(x). To show the profile is
stable as t → ∞ one wants to show the solution v(t, x) to (12.1) satisfies

|v(t, x)|L∞(x) → 0 as t → ∞.(12.3)
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To do this it suffices to show for any p > d
2

|v|L2(t,Hp+1(x)) + |vt|L2(t,Hp−1(x)) ≤ C.(12.4)

Observe that (12.4) holds if and only if for some T0 > 0

|v|
L2([0,

T0
ε

],Hp+1(x))
+ |vt|L2([0,

T0
ε

],Hp−1(x))
≤ C(12.5)

uniformly with respect to ε.

12.1. Rescale. Set

εt = τ, εx = y, z(τ, y) = v(
τ

ε
,
y

ε
),(12.6)

so the problem (12.1) becomes (after dividing the parabolic eqn by epsilon)

zτ + (f ′(U(
y1

ε
))z)y + δ(g(

y

ε
, z))y = εzyy

z(0, y) = v0(
y

ε
),

(12.7)

a small viscosity problem.
Observe that for any T0 > 0

|z|L2([0,T0],y) = ε
d+1
2 |v|

L2([0,
T0
ε

],x)
,(12.8)

and ε∂τ,y = ∂t,x.
Thus, v satisfies (12.5) if and only if z satisfies

p+1∑
k=0

εk−
d+1
2 |∂ky z|L2([0,T0],y) +

p−1∑
k=0

εk+1− d+1
2 |∂ky zτ |L2([0,T0],y) ≤ C(12.9)

for some T0 > 0 and some p > d
2 , with C independent of ε.

So if we show (12.9), we have a long time stability result.
Can one prove (12.9) using methods like those in this paper: double the problem, construct an

approximate solution, etc.? We think not.
Note first some obvious differences between (12.7) and the error equation (6.4). The initial data

of ũ + w for w as in (6.4) depends on (x′, xNε ) and corresponds to a boundary layer near xN = 0,
while in (12.7) the data depends on y

ε , where y = (y1, . . . , yd).
In addition the 1

ε dependence in the coefficients of (6.4) enters only through xN
ε , while in (12.7)

it enters through y
ε .

In short the small viscosity problem has a boundary layer, while the long time problem does not.
II. Consider the problem studied in this paper in the case when the original inviscid shock is

actually planar, that is, when (U0
±, dψ0) is constant. The problem is trivial in this case since the

profile is already an exact solution to the parabolic problem (1.2). The sense in which the solution
to the parabolic problem converges to the inviscid shock is immediately clear.

III. On the other hand consider the question of long time stability in the case when the original
inviscid shock is curved. Clearly, for “most” curved shocks this problem does not even make sense,
since curved inviscid shocks generally don’t live forever. This suggests the interesting question of
how viscous shocks evolve near times when the corresponding inviscid shock becomes unstable, a
question we don’t address in this paper.
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Part 5. Appendix: Proofs for section 8

12.2. Semiclassical calculus. We use the notation introduced in section ().

Proof of Proposition 8.1. When p(x′, εζ) independent of x′, p(x′, εD) is just a bounded Fourier
multiplier on L2. Reduce the general case to this case by writing

p(x′, εζ) = p(0, εζ) + h(x′, εζ),(12.10)

where h ∈ SM has compact support in x′. We have

h(x′, εD) =
∫

eix
′ξ′ ĥ(ξ′, εD)dξ′,(12.11)

and

|ĥ(ξ′, εζ)| ≤ C〈ξ′〉−M .(12.12)

Thus, h(x′, εD) is an absolutely convergent superposition of bounded Fourier multipliers on L2,
and so is bounded on L2.

Proof of Proposition 8.2. 1. The assertion is trivial if q(x′, β) is independent of x′, so since
q(x′, β) = q(0, β) + Q(x′, β) where Q has compact support in x′, we can reduce to the case where
q has compact support in x′. This uses up one x′ derivative of q and accounts for the appearance
of ∂x′q in the upper bound for |T |. Below we relabel Q as q.

2. Write

Au(x) =
∫

eix
′ζ′d(x′, εζ)û(ζ ′)dζ ′,(12.13)

where

d(x′, εζ) =
∫

ei(x
′−y′)ξ′p(x′, ε(ζ ′ + ξ′), εγ)q(y′, εζ ′, εγ)dy′dξ′.(12.14)

Expand p(x′, ε(ζ ′ + ξ′), εγ) about εζ ′,∑
|α|≤k−1

1
α!

∂αβ′p(x
′, εζ ′, εγ)ε|α|ξ

′α +

εk
∑
|α|=k

∫ 1

0

k(1 − t)k−1

α!
∂αβ′p(x

′, εζ ′ + εtξ′, εγ)ξ
′αdt,

and use basic properties of the Fourier transform to obtain

d(x′, εζ) = t(x′, εζ) + εkR(x′, εζ)

where R(x′, εζ ′, εγ) =∑
|α|=k

∫ ∫ 1

0
eix
′ξ′ k(1 − t)k−1

α!
∂αβ′p(x

′, εζ ′ + εtξ′, εγ)ξ
′αq̂(ξ′, εζ)dtdξ′.(12.15)

3. It remains to show that R(x′, εD) is bounded on L2. Write

∂αβ′p(x
′, εζ ′ + εtξ′, εγ) = ∂αβ′p(0, εζ

′ + εtξ′, εγ) + h(x′, εζ ′ + εtξ′, εγ),(12.16)

where h is CM1 and has compact support and in x′. Corresponding to (12.16)

R(x′, εζ) = R1(x′, εζ) + R2(x′, εζ),
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where

|R̂1(ξ′, εζ)| ≤ C〈ξ′〉−(M2−1−k).

Thus, R1(x′, εD) is an absolutely convergent superposition of bounded Fourier multipliers on L2.
To see that R2(x′, εD) can also be expressed as such a superposition, it suffices to show

|R̂2(ξ′, εζ)| ≤ C〈ξ′〉−(N+1).(12.17)

Since M2 − k − (N + 1) ≥ N + 1, this follows easily from the estimate (for |µ| + |ν| ≤ N + 1)

|∂µx′h(x′, εζ ′ + εtξ′, εγ)ξ
′νξ
′αq̂(ξ′, εζ)| ≤ C〈ξ′〉−(M2−1−k−|ν|).(12.18)

Proof of Proposition 8.3. We’ll consider scalar symbols. The proof for matrix symbols requires no
essential changes.

The Proposition is clear when p(x′, εζ) is independent of x′, so we write p(x′, β) = p(0, β) +
P (x′, β) and reduce as before to the case where p has compact support in x′. This uses up one x′

derivative of p. Below we relabel P as p.
On the Fourier side the kernel of p(x′, εD) is p̂(ζ ′ − ξ′, εξ′, εγ). That is to say,

̂p(x′, εD)u(ζ ′) =
∫

p̂(ζ ′ − ξ′, εξ′, εγ)û(ξ′)dξ′.(12.19)

Thus, the kernel of its adjoint is p̂(ξ′ − ζ ′, εζ ′, εγ) = p̂(ζ ′ − ξ′, εζ ′, εγ). That is,

̂p(x′, εD)∗u(ζ ′) =
∫

p̂(ζ ′ − ξ′, εζ ′, εγ)û(ξ′)dξ′.(12.20)

Therefore, the adjoint p(x′, εD)∗ is the operator with symbol d defined by d̂(ζ ′ − ξ′, εξ′, εγ) =
p̂(ζ ′ − ξ′, εζ ′, εγ), or relabeling,

d̂(ξ′, εζ ′, εγ) = p̂(ξ′, ε(ζ ′ + ξ′), εγ).(12.21)

Expand p̂(ξ′, ε(ζ ′ + ξ′), εγ) about εζ ′,∑
|α|≤k−1

1
α!

∂αβ′ p̂(ξ
′, εζ ′, εγ)ε|α|ξ

′α +

εk
∑
|α|=k

∫ 1

0

k(1 − t)k−1

α!
∂αβ′ p̂(ξ

′, εζ ′ + εtξ′, εγ)ξ
′αdt,

and use properties of the Fourier transform to obtain

d(x′, εζ) = t(x′, εζ) + εkR(x′, εζ),(12.22)

where R̂(ξ′, εζ ′, εγ) is the factor multiplying εk in the second term above. We have

|R̂(ξ′, εζ ′, εγ)| ≤ C〈ξ′〉−(M−1−k),

so arguing as before, R(x′, εD) is bounded on L2.
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12.3. Mixed calculus.

Proofs of Propositions 8.4, 8.5, and 8.6. 1. The proofs of these propositions are similar to the
proofs of the corresponding semiclassical propositions in the preceding subsection. We indicate
here the changes that are needed. The proof of Proposition 8.4 is just like before, except that now
one obtains an absolutely convergent superposition of Fourier multipliers of order m.

2. Proposition 8.5. In place of p and q in (12.14) we now have a(x′, ε(ζ ′+ξ′), εγ, ζ ′+ξ′, γ) and
b(y′, εζ ′, εγ, ζ ′, γ). The formula for t(x′, β, ζ) arises as before from expanding a(x′, ε(ζ ′+ ξ′), εγ, ζ ′+
ξ′, γ) about ζ ′.

The analogue of R(x′, εζ) in (12.15) is, for some constants Kα,µ,ν , R(x′, εζ, ζ) =∑
|α|=k

∫ ∫ 1

0
eix
′ξ′ k(1 − t)k−1

α!
·

( ∑
µ+ν=α

Kα,µ,ν((ε∂β′)µ∂νζ′a)(x
′, εζ ′ + εtξ′, εγ, ζ ′ + tξ′, γ)

)
ξ
′αb̂(ξ′, εζ, ζ)dtdξ′.

(12.23)

The replacement for εkR1 in the proof of Proposition 8.5 can now be written with obvious
notation as

R1 =
∑
|α|=k

∑
µ+ν=α

R1,α,µ,ν .(12.24)

For terms with |µ| = l, |ν| = k − l we have the estimate

R̂1,α,µ,ν(ξ′, εζ, ζ) ≤ Cεl
(∫ 1

0
〈ζ ′ + tξ′, γ〉m1−k+ldt

)
〈ξ′〉−(M2−1−k)〈ζ〉m2 .(12.25)

For |ξ′| ≤ 1
2 |ζ ′| (12.25) is ≤

Cεl〈ζ〉m1+m2−k+l〈ξ′〉−(M2−1−k).(12.26)

For |ξ′| ≥ 1
2 |ζ ′|, when m1 − k + l ≥ 0 (12.25) is ≤

Cεl〈ζ〉m2

(
〈ξ′〉−(M2−1−m1−l) + γm1−k+l〈ξ′〉−(M2−1−k)

)
,(12.27)

and when m1 − k + l < 0 (12.25) is ≤
Cεl〈ξ′〉−(M2−1−k)〈ζ〉m2γm1−k+l.(12.28)

Since l ≤ k and M2 − 1 − m1 − k ≥ N + 1, the estimates (12.26), (12.27), and (12.28) show that
R1,α,µ,ν(x′, εD,D) is an absolutely convergent superposition of operators of order O(εl〈D〉m2〈D, γ〉m1−k+l

max ).
Similarly, define

R2 =
∑
|α|=k

∑
µ+ν=α

R2,α,µ,ν

parallel to εkR2 in Proposition 8.5, and use

M2 − 1 − m1 − k − (N + 1) ≥ N + 1,

the argument above, and an estimate like (12.18) to show that for |µ| = l, |ν| = k−l, R2,α,µ,ν(x′, εD,D)
is also such a superposition.

3. Proposition 8.6. The adjoint a(x′, εD,D)∗ is the operator with symbol d defined (recall
(12.21)) by

d̂(ξ′, εζ ′, εγ, ζ ′, γ) = â(ξ′, ε(ζ ′ + ξ′), εγ, ζ ′ + ξ′, γ).(12.29)



MULTI-D VISCOUS SHOCKS II 61

The remaining deviations from the proof of Proposition 8.3 parallel the argument just given in the
proof of Proposition 8.5.

12.4. Classical calculus.

Proofs of Propositions 8.7 and 8.8. The proofs are quite similar to the corresponding results in the
mixed calculus. Let us begin with the result for adjoints.

In place of εkR in (12.22)we have now

R̂(ξ′, ζ ′, γ) =
∑
|α|=1

∫ 1

0
∂αβ′ p̂(ξ

′, ζ ′ + tξ′, γ)ξ
′αdt,(12.30)

where the integrand is ≤
〈ζ ′ + tξ′, γ〉m−1〈ξ′〉M−2.(12.31)

When |ξ′| ≤ 1
2 |ζ ′|, we obtain the desired estimate on R̂ as long as M − 2 ≥ N + 1.

When |ξ′| ≥ 1
2 |ζ ′| and m − 1 < 0 (12.31) is ≤

γm−1〈ξ′〉−(M−2) ≤ C〈ζ〉m−1〈ξ′〉−(M−2+m−1),(12.32)

which works as long as M − 2 + m − 1 ≥ N + 1.
Finally, when |ξ′| ≥ 1

2 |ζ ′| and m − 1 ≥ 0 (12.31) is ≤

(〈ξ′〉m−1 + γm−1)〈ξ′〉−(M−2) ≤ C〈ξ′〉−(M−2−m+1)〈ζ〉m−1,(12.33)

which works provided M − m − 1 ≥ N + 1
The proof for products uses the same breakdown into cases, and is simpler than the corresponding

mixed calculus result.
To see the reason for the appearance of symbol norms of ∂x′q and ∂x′p in the upper bounds for

error terms, recall the beginning of the proof of Proposition 8.2.

12.5. Remainder terms.

Proof of Proposition 8.9. Let Au = A(x′, εD,D)u. Then by Plancherel

|Au|s−k,γ = |〈D〉s−k
(∫ ∫

eix
′(ξ′+ζ′)â(ξ′, εζ, ζ)û(ζ ′)dζ ′dξ′

)
|L2(x′)

≤
∫

|〈ξ′ + ζ ′, γ〉s−kâ(ξ′, εζ, ζ)û(ζ ′)|L2(ζ′)dξ
′.

(12.34)

By Peetre’s inequality

〈ξ′ + ζ ′, γ〉s−k ≤ Cs−k〈ζ ′, γ〉s−k(1 + |ξ′|)|s−k|,(12.35)

so the integrand on the right in (12.34) is ≤(
sup
ζ′

(1 + |ξ′|)|s−k||â(ξ′, εζ, ζ)|〈ζ〉−k
)

|u|s,γ .(12.36)

The result now follows from

|â(ξ′, εζ, ζ)| ≤ C〈ξ′〉−M 〈ζ〉k.
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Remark 12.1. Fix s ∈ R. In view of Proposition 8.9 if we assume M ≥ N + 1 + [|s − m|] in
Proposition 8.4, we obtain an operator of order m on Hs.

Set [|s − m|]k = max([|s − m|], [|s − (m − k)|]). Similarly, if we assume M2 ≥ M1 + (N + 1) +
m1 + k + 1 + [|s− (m1 + m2)|]k in Proposition 8.5 (resp., M ≥ (N + 1) + m + k + 1 + [|s−m|]k in
Proposition 8.6), the error operators rl,ε,γ in (8.16) (resp. (8.18)) have the indicated order on Hs.

12.6. Garding inequality.

Proof of Proposition 8.10. We adapt the argument of [MZ], Theorem B.16 to our calculus.
Since �a − 3c

4 〈ζ〉m is positive definite on the support of χ, we can define

b = b∗ = χ(�a − 3c
4

〈ζ〉m)
1
2 ∈ M

m
2
M1

.(12.37)

Thus,

�a = b∗b +
3c
4

〈ζ〉m + a′, with a′ = (1 − χ2)(�a − 3c
4

〈ζ〉m).(12.38)

Set B = b(x′, εD,D). Now �(Av, v) = 1
2((A + A∗)v, v), so the calculus implies

1
2
(A + A∗) =

(�a)(x′, εD,D) + r1 = r1 + (B∗B + r2) +
3c
4

〈D〉m + a′(x′, εD,D).
(12.39)

Since M1 ≥ (N + 1) + m + 2 + [|m2 |], Proposition 8.6 with k = 1 and Remark 12.1 imply that

r1 = r1,a + r1,b where

r1,a = O(〈D〉m−1) on H
m
2
−1 and r1,b = O(ε〈D〉m) on H

m
2 .

(12.40)

Similarly, since M1 ≥ 2(N + 1) + m
2 + 2 + [|m2 |], Propositions 8.6, 8.5, and Remark 12.1 imply

that r2 is a sum of two terms with the same mapping properties as in (12.40).
Set r3 = r1 + r2. This gives

�(Av, v) = |Bv|20 +
3c
4

|v|2m
2
,γ + �(a′(x′, εD,D)v, v) + �(r3v, v).(12.41)

where

|(r3v, v)| ≤ C1|v|m
2
−1,γ |v|m

2
,γ + εC2|v|2m

2
,γ .(12.42)

Here we have used the extension of the L2 pairing to H−
m
2 × H

m
2 .

Next apply these estimates to v = Wu. Since a′w = 0 and M2 ≥ 2(N + 1) + m + 2 + [|m2 |],
a(x′, εD,D)W = r4, where r4 is a sum of two terms as in (12.40). Thus, the a′ term in (12.41) is ≤

C1|u|m
2
−1,γ |Wu|m

2
,γ + εC2|u|m

2
,γ |Wu|m

2
,γ .(12.43)

Finally, use (12.42) and (12.43) and absorb terms in the usual way to obtain the result.
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