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Abstract

In this paper we give a class of hyperbolic systems, which includes
systems with constant mutliplicity but significantly wider, for which
the initial boundary value problem (IBVP) with source term and initial
and boundary data in L?, is well posed in L?, provided that the nec-
essary uniform Lopatinski condition is satisfied. Moreover, the speed
of propagation is the speed of the interior problem. In the opposite
direction, we show on an example that, even for symmetric systems
in the sense of Friedrichs, with variable coefficients and variable mul-
tiplicities, the uniform Lopatinski condition is not sufficient to ensure
the well posedness of the IBVP in Sobolev spaces.
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1 Introduction

This paper is concerned with the solvability in L? of the initial boundary
value problem for first order N x N systems

d
Lu := Ao(t, 2)0u + Y Aj(t,2)0zu+ B(t, x)u = f

(1.1) =1
u‘t:() = Ug,

M(tv x/)uliﬂdzo = g

We consider only the case of noncharacteristic boundaries, which means that
Ay is invertible when x4 = 0. For simplicity, we have assumed here that the
boundary is flat and the equation holds for ¢ > 0 and x € Ri = {zq > 0}.
We also use the notation z = (2, z4).

The starting point is the well known theory of hyperbolic symmetric
systems in the sense of Friedrichs ([Frl, Fr2] or e.g. Chapter 3 in [BeSe]
for a more recent exposition and more references). If the matrices A;



are bounded and Lipschitz continuous on R X Ri, hermitian symmetric,
if Ap is definite positive with A ! bounded and if the boundary condition is
maximal dissipative and uniformly strictly dissipative, then, for all 7" > 0,
there is a constant C such that for all uy € L*(R?), f € L1([0,T]; L*(R4))
and g € L%([0,T] x R47!), the equation (1.1) has a unique solution u €
CO([0,T); L*(R%)) which satisfies

H“(t)Hp(Ri) + Hu|l"d=0HL2([0,t]><Rd—1) S C||“|t=0HL2(Ri)

(1.2) t
0 [ 10006 85+ M0l s

Recall the general scheme of the proof of such theorems. First, one proves
a priori estimates, which in the case of symmetric systems, follow by inte-
gration par parts in

Re / e 278 (Lu(s), u(s))dsdz.
[0,t]xRL

One obtains that there are constants vy and C such that for all smooth
enough function u and v > g

Heﬂt“@)ui?(ﬂxi) + Hei’ysu|md=0HiQ([O,t}XRdfl) S

(1.3) CH“It=0Hi2(Ri) +Clle" Mu IdZOHiQ([O,t]XRd—I)'

t
€ [ e L) g o5 g

One can replace next |e " u(t)||2 by supg<gs<; e 7°u(s)| 2 which reveals
the L' norm of ||e=7f(s)|| 2, and finally, fixing v and using a rough bound
for € on [0,7] one obtains (1.2). The second step is to pass from these
estimates to an existence and uniqueness theorem. For this part, we refer
to [Frl, Fr2, Rau, BeSe] for details, or to Section 5 where the analysis is
carried out in the new context developed in this paper.

We call inequalities of the form (1.2) semi-group estimates.

While Friedrichs analysis is based on the semi-group estimates, the alter-
nate approach developed initially by H.Kreiss is based on resolvent estimates
which can be stated as follows: there are constants C' and 7 such that for

all ¥ > v and all u € Cf(ﬁ}ﬁ%,
VHUHiZ(REd) + H“\wd=0Hi2(Rd)

< 0'7_1H(L + FVAO)UHiZ(Rf'd) + C||MU|$d:0“iz(Rd)7
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Note that the above resolvent estimates are implied by the semi-group es-
timates, for instance by squaring and integrating in time in (1.3). Wether
or not the converse implication holds is one of the points discussed in this
paper.

The resolvent estimates are the starting point for establishing the well
posed-ness of the boundary value problem in weighted spaces e L? for ~
large and then the well posedness of the the initial boundary value problem
(1.1) with vanishing initial data ug, and finally for smooth initial data (see
e.g. [Kre, ChPi, Maj]).

The purpose of this paper is to understand better in which conditions
these properties remain true. The focus is put on linear problems, but,
by differentiating the equation, the maximal estimates above imply similar
a-priori estimates in Sobolev spaces, and, using iterative schemes, they ulti-
mately imply the local solvability in time of nonlinear problems. Indeed the
strategies that have been developed for instance in [Maj, BeSe, RaMa, Me5],
estimating the commutators with the tangential derivatives the via the mul-
tiplicative properties of Sobolev spaces or Gagliardo-Nirenberg inequalities,
estimating then the normal derivatives by the equation, and finally Picard’s
iterative schemes, do not use any special property of the system. We do not
develop further these aspects, since we do not pretend to novelty there.

In the interior, that is for functions which vanish on the boundary, a
necessary condition for the resolvent estimate (1.4) has been given by V.Ivrii
and V.Petkov ([IvPe]; see also section 4 in [Me3]): the principal symbol
Li(t,z,7,£) must admit a bounded microlocal symmetrizer S(t,z,€) : this
is a positive definite symmetric matrix, homogeneous of degree 0 in &, such
that

d
(15) S8 teL® Im (S(t,x,é) ijAalAj(t,x)) =0.
j=1

This property, called strong uniform hyperbolicity of the symbol in [Me3], is
equivalent to the existence of a constant C such that for all (¢, z) €]0, T[xR%,
EeRY 71eR, v>0and ueCV,

(1.6) u| < ClLi(t 2,7 — iy, €)].
From now on, this condition is assumed to be satisfied:

Assumption 1.1. There is a constant C such that for all (t,z) € [0, T]xR4,
Ry, 7 €R, v >0 and u € CV, the inequality (1.6) is satisfied.



Similarly, given a point (¢,z) on the boundary, applying the resolvent
estimate (1.4) to

u(Mt - Me —2),  ue CRER)

with parameter Ay in place of 7y, and letting A tend to +00, one obtains that
for v > 0:

Mall7z ey + losea=oll72 ey
< 0'7_1 H(L1 + 'YAO)UHE(REF‘I) + CHMuﬂd:OHi?(Rd)’

with the same constant C as in (1.4), where L; and M are the operators
with constant coefficients frozen at (¢, z). Performing a Fourier transform
in the tangential variables, one obtains that a necessary condition for (1.4)
is that for all (¢,2’) in the boundary [0,T] x R*1, all (,¢') € R x R%~1, all
v >0 and all u € C°(R) one has

Mol + [uO)] <

(1.8)
Cy M (La(t, ', 0,07 + 7,38, 0uy)ul| s, + C| M (2,27, 0)u(0)],

Denoting by C_ = {7 € C;Im 7 < 0}, this leads to introduce for (¢,z') in
the boundary and ¢ = (1,¢') € C_ x R%!, the space

Eln(tv ﬂl‘/, C) = L2(R+) N ker Ll(ta 1"/7 07 T, é-/, 833(1)

It is also convenient to extend the definition near the boundary and E™"(¢, z, ¢)
is the invariant space of

d—1
G(t,z,¢) = Ay (t,x) (TAo(t,x) + Y &4 (t,2)),

j=1

associated to eigenvalues in C_. Hyperbolicity implies that for Im7 < 0,
G(t,,¢) has no real eigenvalues and that the dimension of E” is constant
and equal to the number Nt of positive eigenvalues of Ay LA, (see e.g.
[Kre]). The integer N is the correct number of boundary conditions for
(1.1) and we assume from now on, that the boundary condition M is a
NT x N matrix. More generally, one could consider boundary conditions
where M takes its values in a N dimensional vector bundle.
Applied to u € E™, the estimate (1.8) implies that

(1.9) Yu € E™(t, 2, ¢), |u’ < C‘M(t,x')u‘

with the same constant C', independent of (¢,2’, ). Thus, a necessary con-
dition is that the uniform Lopatinski condition must be satisfied (see [Kre]):



Definition 1.2. The boundary condition M is said to satisfy the uniform
Lopatinski condition (in short ULC) for the system L, when there is a
constant C such that for (t,2') € [0,T] x R¥1 in the boundary and all
¢ =(1,¢) € C_ xR the estimate (1.9) is satisfied.

For symmetric systems in the sense of Friedrichs, this condition is there-
fore satisfied for maximal strictly dissipative boundary conditions. However,
it is satisfied by a much wider class of boundary conditions, see e.g. [Ma-Os]
or other examples below. Another important motivation for considering
general boundary condition is the analysis of the stability of multidimen-
sional shock waves initiated by A.Majda ([Maj]). H.Kreiss has shown that
for strictly hyperbolic systems, the uniform Lopatinski condition implies
the a priori resolvent estimate (1.4). In [Ma-Os] and [Maj] it was noticed
that Kreiss’ proof extended to the case where the so-called block structure
condition was satisfied and in [Mel] it is shown that this latter condition
is satisfied for hyperbolic systems with constant multiplicities. More re-
cently, in [MeZul], this result has been extended to some cases where the
multiplicity varies, with applications to MHD.

At this point, several questions can be raised, and it is the goal of this
paper to give them partial answers.

Question 1. To which extent can one push Kreiss construction of sym-
metrizers? Recall that their existence implies the resolvent estimates (1.4)
for the direct problem and for the dual problem, implying the well posed-ness
of the boundary value problem in weighted spaces e L? for + large; next a
causality principle follows, showing that if f and ¢ vanish for ¢t < t¢g, then
the solution also vanishes there. This allows to solve the initial boundary
value problem (1.1) with vanishing initial data wug, and finally for smooth
initial data (see e.g. [Kre, ChPi, Maj]).

The obstacle to the construction of Kreiss symmetrizers is the existence
of varying multiplicities. In Section 3, we give a reasonable condition which
ensures the existence of smooth symmetrizers which extends Kreiss con-
struction.

Definition 1.3. The system L belongs to the class M if it is strongly hy-
perbolic and if near each point of the characteristic variety one of following
condition is satisfied :

i) L is analytically diagonalizable,

i1) denoting by n the conormal to the boundary, either n or —n belongs
to the cone of hyperbolic directions for the localized system.



It belongs to the class sM if in addition it admits a symmetrizer S(t, x, &)
(1.5) which is Lipschitz continuous in (t,z) and C* in & # 0.

We refer to Section 2 for precise definitions and details. Condition 7) is
the geometrical form of the block structure condition (see Theorem 3.4 in
[MeZul]). The condition i) extends the Defintion 3.6 in [MeZul], where
it was applied to symmetric systems. We refer to this paper for examples.
Near points where the characteristic variety is smooth, the multiplicity is
constant, implying that the characteristic variety is analytic with respect to
the frequency variables and condition 7) is satisfied (see Lemma 2.7 below).
Moreover, the symmetrizer can be chosen smooth, and even analytic, in £.
In particular, systems with constant multiplicity belong to the class sM.

Recall that Kreiss’ strategy was to construct first families of symmetriz-
ers, independently of any boundary condition, and next to show that for all
boundary condition which satisfies the ULC, one can select one symmetrizer
in the family which makes the boundary conditions strictly dissipative. We
call them K-families in Definition 3.5.

Theorem 1.4. If the system belongs to the class sM, there are K-families
of smooth symmetrizers for L.

If in addition the boundary conditions satisfies the ULC, the boundary
value problem is well posed in spaces V' L? for ~v large enough.

The existence of K-families of symmetrizers implies the continuity of E™"
up to the boundary Im7 = 0 (see [MeZu2]), which is a strong limitation at
points where the multiplicities of the eigenvalues vary. This question is
discussed in Section 2.

Question 2. Is the uniform Lopatinski condition sufficient in general
for the validity of the resolvent (1.4)7 In the constant-coefficient case, the
analysis in [GMWZ] shows that, if the estimate (1.2) (or (1.8)) is satisfied
for one boundary matrix My (and then My necessarily satisfies ULC), then
it is satisfied for all ULC boundary condition M. This applies to symmetric
systems, which admit strictly dissipative boundary condition.

But, in general, the answer to the question is negative:

Theorem 1.5. There are symmetric hyperbolic systems in the sense of
Friedrichs and boundary conditions which satisfy the uniform Lopatinski con-
dition, for which there are families of data bounded in H® for all s which
generate solutions which are not bounded in L? on all non trivial interval of
time.



The conclusion is a classical expression of ill-posedness of the problem in
C®. An example is given in Section 6. Of course, it has variable coefficients,
variable mutiplicities and the boundary conditions are not dissipative. The
strength of the result is that the well posed-ness is ruined not only in L2
but also in C°°.

Question 3. What can be said about the local theory, in particular about
local uniqueness and finite speed of propagation? We tackle this question
under the angle of the invariance of the assumptions by change of time. In
Section 2 we prove the following result (see the remark before Theorem 2.17).

Theorem 1.6. If L is of class sM, the validity of the uniform Lopatinski
condition is preserved by any change of time preserving hyperbolicity.

In particular, this proves that the speed of propagation for the bound-
ary value problem does nor exceed the speed of propagation for the interior
problem. This is in sharp contrast with the case of weakly well posed prob-
lems, where the weak Lopatinski condition holds, for which surface waves
can propagate faster than interior waves (see [Ben, BeSe, Hor, Gar, Her] )

Question 4. Are the semigroup estimates (1.2) satisfied for systems which
admit Kreiss symmetrizers? This is easily proved when the system is sym-
metric, using the obvious energy balance, since the boundary term which
involves the L? norm of the trace of the solution is controlled by the resolvent
estimate (1.4). The general case is much more delicate. A positive answer
has been established for strictly hyperbolic systems [Rau| and extended to
systems with constant multiplicities [Aud]. An important consequence of
this question is the solvability of the initial-boundary value problem (1.1)
with all data, including ug, in L?. In Section 5 we extend the results cited
above, using ideas taken from [FrLal, FrLa2]: the semigroup estimates are
proven, assuming the resolvent estimates, and using an holomorphic exten-
sion in & of the symmetrizer of the Cauchy problem. We make this condition
explicit in the next definition (recall Definition 1.3).

Definition 1.7. A system L in the class sM is said to belong to the class
aM if the symmetrizer S(t,z,€) (1.5) can be chosen Lipschitz continuous
in (t,x) and holomorphic in a cone {|{Im¢| < 6|Reél|} for some 6 > 0.

This condition is trivially satisfied when the system is symmetric in the
sense of Friedrichs, since then it is independent of &. It is also satisfied
when the multiplicities are constant, or more generally when the system is
analytically diagonalizable, since then the symmetrizer is explicitly given in



the basis of diagonalization. Thus the next theorem extends the result of
[Aud] with a completely different method.

Theorem 1.8. Assume that the coefficients of L and M are W1>°([0,T] x
Ri). Suppose that the uniform Lopatinski condition is satisfied and that L is
of class aM. Then, for all f € L*([0,T]; L>(R%), g € L*([0,T] x R¥1) and
up € L2(RL), the problem (1.1) has a unique solution u € C°([0,T] x R4).
Moreover, there is a constant C' such that the semi group estimate (1.2) is
satisfied.

Section 5 is devoted to the proof of this results. It uses some para-
differential calculus, in particular for traces, which is presented in Section 4.

2 Symbolic analysis

In this section we extend the known properties of symbols of hyperbolic
boundary value problems in two directions, considering variable multiplici-
ties and giving intrinsic definitions which make clear the invariance of these
properties under a change of time direction. In particular, it is convenient to
treat in a whole the space-time variables = (¢, z) € R'™¢, and accordingly
we consider a family of symbols

(2.1) L(a,§) =

Jj=0

§Aj(a)

M-

where 5 = (&,...,&) € Rt The parameter a varies in a compact set
A, and the coefficients of the NV x N matrices are supposed to be at least
continuous in a. In our analysis, we need the symbols p(a,€) to be smooth
with respect to the frequency variables, but for applications we insist on
keeping a limited smoothness in a, typically a C* regularity with & > 0,
or a Wk regularity with & > 1. This regularity is kept fixed throughout
this section, and to avoid repetition we use just say that a function p(a, 3 )
is smooth [resp. analytic] if it is C°° [resp. real analytic] in € and has the
given regularity C* or W with respect to a € A. For example, a family
of spaces E(a, £) is smooth [analytic] if it admits locally a smooth [analytic]
basis.

The symbol L(a,-) is assumed to be strongly hyperbolic in some direc-
tion v!, uniformly with respect to a. Denote by I', the cone of hyperbolic

In the notations of the introduction, zo = ¢, & = 7 and v = dt = (1,0,...,0).



directions of L(a,-), containing v. Then L(a, -) is strongly hyperbolic in any
direction v € T, (see e.g. Section 4 in [Me3]). All the estimates below are lo-
cally uniform with respect to the parameters (a,v) with a € A and v € T,.
This is made clear by shrinking A if necessary and choosing a cone with
compact basis I' C (), I's. The uniform strong hyperbolicity hypothesis can
thus be stated as follows (see Proposition 4.4 in [Me3]).

Assumption 2.1. T is a closed convex cone in R'TI\0 which is contained
in Uy for all a € A and there is a constant C such that for all a € A, all
£ =Reé +ilm¢é € R4 —4iI" ¢ CH\0 and all u € CV;

(2.2) [Tm €| |u| < C|L(a, &)ul.

In the framework of Section 1, (2.2) is just an extension of the esimate
(1.6) to imaginary frequencies in a conical neighborhood of the given time
direction dt, considering (¢,z) as the parameters and Proposition 4.4 in
[Me3] shows that this extension is legitimate.

Remark 2.2. Changing € to —&, we see that the estimate (2.2) is satisfied
as well when Im¢ € T.

Together with L we consider boundary operator
(2.3) M(a)u‘xn:()

where ,, = n-z and n € R'T9\{0} is the inner conormal vector to the bound-
ary of Q = {x,, > 0}2. More intrinsically, the data is K(a) = ker M (a) C CV.
We assume that

Assumption 2.3. For all a € A, the boundary matriz L(a,n) is invertible,
K is a bundle over A of class W and dimK(a) = N_, the number of negative
eigenvalues of L(a,v) ' L(a,n).

2.1 Localization and microhyperbolicity

The (real) characteristic variety of L(a, ) is
Co = {g € Rler\{O}a detL(a,g) = 0}

We denote by C the set of (a,g) with @ € A and £ € Ca. At (a,g) €
C, invariant data are the kernel and the image of L(a,{). Denoting by

%In the notations of the introduction, n = dzg = (0,0,...,1), and x, = zq4.
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tag the embedding ker L(a,g) — CV and by @, the projection CcN —
CN JrangeL(a, ¢), the localized symbol at (a, &) is

ng(ﬁ) = wava(a, ﬁ)La@.

It acts from ker L(a,€) to CV/rangeL(a,€). The characteristic variety of
L, ¢ is denoted by C, s C R+,

Strong hyperbolicity implies that for £ € C, one has

(2.4) p(i) = det (L(a,€ + 7)) = O(lil)™)

where m = dimker L(a, ) is the order of the root 7 = 0 of p(£ + 7v) = 0.
The limit

(2.5) po(17) = lim e™"p(en)

exits and is homogeneous of degree m. Moreover, (2.2) implies that pg is
hyperbolic any direction v € I, (see. Lemma 8.7.2 in [Hor]). Denoting by
by I, é the cone of hyperbolic directions for L ¢ containing v this means
that .

V(a,§) €C, Fclecl, ¢

Following the terminology of [Hor] (see [KK] for the original definition) I, z
is the cone of microhyperbolic directions near €. Moreover, the strong form

of hyperbolicity is preserved. This is the content of the next proposition.

Proposition 2.4. Letg € C, of multiplicity m and let I be a closed convex
subcone of Lz Then there is a neighborhood ¥ of (a, §~) in A x C'*¢ and

there are y1 > 0, r > 0 and C such that :
i) for (a,&) € ¥ with Im¢& € =T with [§] < 71,

(2.6) Vu e CN, [Tm €] |u| < C‘L(a,g)u\.

i) for (a,§) € ¥ with €| < 1 and for 6 € I’ with |0 = 1, the polynomial
in s, det L(a,& + s0) has exactly m roots counted with their multiplicities
contained in the disc {|s| <r}. Moreover, if In§ € —I" all of them have a

positive tmaginary part, and if Im& = 0 all of them are real .

We first prove the following lemma.
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Lemma 2.5. There is a neighborhood ¥ of (a, §~) and there are y1 > 0, r > 0
and K > 0, such that for all matriz B with |B| < K and all (a,§) € ¥ with
v = Imé| < 1, § € R with || < r:

Imé € T, 7€’ = det(A(a,& —if) +B) #0.
Proof. a) Consider the polynomial in s
p(b,s) = det (L(a, £ — iy —ish) + vB)

Where € € R v e T, 0 € T/ with |¢| = |§] = 1 and b stands fo
(a,g, v,0,B,7). The assumption (2.2) implies that for all matrix B with
IB| < M =1/C, all real £ and all v > 0, L(a,£ — iyv) + 4B is invertible.
Therefore, p(b, -) has no root on the imaginary axis when v > 0.

b) When (aﬂg) = (Qv E) and v = 0, p(bv 5) = (—is)mpo(é) + O(Sm+1)
where py was introduced at (2.5). Because po(f) # 0 and the set of 0 is
compact, as well as the sets of B and v, there is a real neighborhood 7% of
(a,€) and there are 4; and r > 0 such that for (a,&) € 7&, |y| < 1 and
|B| < K, p(b,-) has exactly m roots counted with their multiplicity in the
open disc D := {|s| < r} and no root in r < s < 2r.

) When (a,€) = (¢,§), B=0and y >0, q(v,0) = (—iv)""p(b,70) is
a polynomial in ¢. It extends to v = 0 and at v = 0, ¢(0, ) = po(v + o) is
a polynomial of degree m in ¢. Because both v and ¢ belong to the cone T', ¢
of hyperbolicity of py, (0, ) = 0 has only real negative roots (see e.g. [Gar]
or Lemma 8.7.3 in [Hor]). By compactness in v and 6, there are R > Ry > 0
such that these roots remain in {—R < 0 < —R;}. By continuity, for v small
and positive, ¢(7, o) has m roots in |o| < 2R which all satisfy Reo < —%Rl.
This shows that for (a,€) = (a,€), B = 0 and v > 0 small, p(b,s) has m
roots in {|s| <~v2R,Res < 0}.

Decreasing v if necessary, we can assume that 2y, R < r, and this shows
that for v €]0,71] and (a,€) = (a,€), B = 0, the m roots of p(b,-) in the
disc D, are located in D_ = {s € D,Res < 0}.

By a) and b), there are no root in dD_ for (a,§) € ¥, |B] < K and
v €]0,71]. Therefore, the number of roots in D_ is constant and independent
of b when « > 0, if we have chosen, as we can, ¥& connected. Hence p(b, s)
has no roots in {|s| < r,Res > 0} when v > 0 and the lemma is proved. [

Proof of Proposition 2.4. Lemma 2.5 implies that for all (a,§) € 7, all
with Im¢ € —T" and [Im¢| < v and all 7 € T with |7]| < r, L(a,& + i7) is
invertible and

(2.7) tm ] [L(a,€ + i)' < 1/K.

12



Because I',, é is open and because I" and I are closed convex cones, there is
€ > 0 such that for

Gel’, €T, [§ <elf] = H+&el”

where I'” is another closed subcone of Faé which contains I in its interior.

Choose v € I" with |v| = 1. There is a neighborhood #; of (a, g) and there
is 72 > 0 such that for (a,Re€ — i) € %1 with € " and || < 72, one has
(a,Re& —ic|nlv) € ¥, —e|p|lv € T, ‘ - €|ﬁ|V‘ <v and it =7 —¢lfjv € I‘&é
with |7!| < 7. Thus the estimate (2.7) which is valid on I'” implies that

eliil|L(a,Re€ —in) ! < 1/K

and (2.6) follows with C' = 1/(eK).
Part b) of the proof of the lemma above implies that for (a, €) close to
(a,§) and 6 of length 1 in I, det L(a, & + s) = 0 has exactly m roots in s

in the disc {|s| < r}. Part ¢) says they are in Ims > 0 when Im¢ € —T.

If Imé = 0, then (2.6) shows that the roots are located in Ims < 0.
Now we note that the assumption satisfied by (v, 0) are also satisfied by
(—v,—0) and therefore, shrinking the neighborhoods if necessary, the m
roots of det L(a, 3 —s6) in the disc of radius  have also nonpositive imaginary
part, therefore the m roots of det L(a, { —i—sé) in the disc are real. This proves
finishes the proof of ii). O

2.2 Smooth modes and the class M

Recall that the characteristic variety C has been defined in the first lines of
Section 2.1.

Definition 2.6. C is said to be smooth at (a, §~) if there is a neighbohood V" of
this point in AxRY™ and a smooth function ¢ on ¥, such that dggo(a, £)#0
and CNY = {(a,€) € ¥ : p(a,€) = 0}.

Lemma 2.7. Suppose that C is smooth at (a, g) and given locally by the

equation ¢ = 0. Then one can choose ¢ analytic in £ and 3
i) The characteristic variety of L,¢is the hyperplane {ﬁ'dgcp(g, §) =0},

ii) There is a neighborhood ¥ of (a, g), and an analytic family of spaces
E(a,€) on ¥, such that E(a,€) = ker L(a, €) for all (a,€) € CN Y.

In particular, the dimension of ker L(a, £) is constant for (a,&) € CN V.
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Proof. Consider the polynomials p and pg as in (2.4) and (2.5). Consider v €
I" and choose an hyperplane H such that R!*? = Ry @ H. By hyperbolicity
and continuity of the roots of polynomials, the roots in s of po(n + sv) =0
are the limits of s, where p(en + €s.) = 0 for sequences ¢ — 0. Thus the
characteristic the set {py = 0} is the tangent space to C at (a,€) and this
proves ). N
Moreover, v - 6ég0(g, g) = 0 since v is a direction of hyperbolicity, and
thus non characteristic, for L( wd) By the implicit function theorem, there

are neighborhoods 7 of (a, g) and 7 of (a,0) and a smooth function A(a,n)
on ¥, such that

(2.8) Cﬂ“f/:{(a,§+17+su),£6H,seR, s+ Ma,n) = 0}.

In particular, for (a,n) € 71, —A(a,n) is the unique eigenvalue close to 0 of
L(a,v) ' L(a, § + n) and this eigenvalue is semi-simple because of Assump-
tion 2.1. Thus A is analytic in 1 and the corresponding eigenspace Ej(a,n)
depends analytically on 7. This proves ii). O

Definition 2.8. L is said to be smoothly [analytically] diagonalizable at
(a, g) € C if there is a neighbohood ¥ of this point in A x R1T¢, smooth [an-
alytic] functions ¢; on ¥, and smooth [analytic] families of spaces E; (a,§)
on ¥, such that .

7’) QOj(Q, é) =0 and dé@j(a,f) 7& 0 on 7/;

it) CN Y =JCj where C; = {(a,€) € ¥, pj(a,&) =0},

iii) the Bj(a, &) are in direct sum,

w) for all (a,&) € CNYV, ker L(a,§) is the direct sum of the Ey(a, &) for
those indices k such that (a,€) € Cy.

Fix v € I' and H as before. v is not characteristic for the localized symbol
and, shrinking w, there are smooth [analytic] functions A; for (a,&) € Ax H
close to (a,0) :

(2.9) CiNnw= {(a,§+§+3y), e HiseR, s+ \j(a,§) =0}

Hence, the —\j(a,§) are the eigenvalue close to 0 of L(a, V)_lL(a,g~ + ).
They are semi-simple because of the strong hyperbolicity.

Remark 2.9. This condition is very restrictive at non smooth points of
C. It is not satisfied in the example of MHD or non-isotropic Maxwell
equations, as shown in [MeZu2]. Indeed a strong motivation for [MeZu2] and
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the present paper is to go beyond this condition. However, it is important
to make is explicit for two reasons:

- It is an almost necessary and sufficient condition for the validity of
the block structure condition (see [MeZu2]) which is the key structural as-
sumption for the construction of Kreiss-symmetrizers, see Section 3 below.
Moreover, the definition above is intrinsic and in particular, this shows that
the block structure condition is preserved by change of time.

- When all the Cj, of codimension one, cross on a analytic submanifold
> of codimension 2, then, after a block reduction, we are left, locally, with
the spectral analysis of a matrix of the form A(o)Id 4+ A(o,n) where o € 3,
A(0,0) = 0 and 7 is a single variable transversal to ¥. In this case, one can
expect to be able to follow analytically in 1 both the eigenvalues close to
zero and associated eigenvectors of A.

At regular point (a, §~ ) € C, the localized operator has the form

where {¢ = 0} is the local equation of C and J an isomorphism from
ker L(a,€) to CV /rangeL(a,£). The vector field H, with symbol 7 - dg
determines the propagation of singularities. In presence of a boundary, this
depends on the position of H, relatively to that boundary : tangent, incom-
ing or outgoing. That is 9,0 = n-dp =0, > 0 or < 0 (assuming as we may
that v-dp > 0). In the first case, the classical terminology is that the mode
é is glancing, and in the other cases that it is hyperbolic Another formula-
tion is that n is characteristic for L wfr M E T af OF 1 € T af These three
properties make sense in general and we are led to the followmg definition.

Definition 2.10. Given the domain Q = {n -z > 0}, (a,€) € C is said
hyperbolic incoming [resp. outgoing] if n € L. ¢ [resp. —n €T, E/'

In this case, the boundary value problem for the localized operator needs
full [resp. no] boundary conditions and no precise analysis of the singularities
of C near (a, 3 ) is needed. According to the discussion before Proposition 2.4
a more correct terminology would be to say that the mode is microhyperbolic.

The condition that n is characteristic for L af also makes sense in general.
However, in contrast with the situation at smooth points, in the general case,
there is a gap between this condition and the hyperbolicity.

If L is smoothly diagonalizable near (a,g), the characteristic variety is
singular as soon as there are different sheets C;. But at these points the lo-
calized operator has a particular structure: it is block diagonal (see [MeZul]
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and below) with blocks H, J;. Each of the H,, can be glancing, incom-
ing or outgoing, but the analysis can be carried on because of the strong
decoupling of these modes.

Summing up, the technical motivation for introducing of the class M
in as in Definition 1.3 is to rule out the difficult case where the localized
operator is not hyperbolic and cannot be decoupled into a diagonal system
of vector fields which can be handled separately. There are other and more
profound motivations that are explained in the sequel.

2.3 The incoming bundle, block decomposition

The Fourier-Laplace analysis of the boundary value problem relies on the
spectral properties of the matrix

G(a,€) = L(a,n) "' L(a,§)

for complex € € R4 — I, in particular in the limit Im & — 0.

For £ € R —iT', the hyperbolicity implies that G(a, £)) has no eigenval-
ues on the real axis. The incoming space E™(a, 13 ) is defined as the invariant
space of G(a,€) associated to the eigenvalues in {ImA < 0}. E(a,&) is
holomorphic in é € R4 — T, and in particular, the dimension of E™ is
constant.

If n € T [resp. —n € T, then one can choose above £ = —in [resp.
¢ = n] and since G(a,n) = Id, dimE™ = N [resp. dimE = 0]. Hence, for
all £ e R1t — 4T E"(a, &) = CN [resp. E"(a,§) = {0}.

So we now exclude these trivial cases and assume that
(2.10) n ¢ +T.
We first show that E only depends on the tangential frequencies.

Lemma 2.11. If € € RY9 — 4T, then for all complex number s such that
£+ sn e R —4T', one has

(2.11) E"(a, € + sn) = E™(a, €).

Proof. Because T' is a convex cone, for all ¢ € [0, 1], €+tsn € R4 4T
and the eigenvalues of G(a, £+ tsn) do not cross the real axis. Because the
invariant spaces of G(a,é—i— tsn) = G(a,g) + tsId do not depend on ¢, this
implies that the invariant space associated to the eigenvalues in {Im A < 0}
is constant. O
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Consider the projection w : R1*¢ s R+ /Rn = T*00 and its complex
extension C'*¢ — C!*4/Cn = C @ T*0N. The image by @ of R'T¢ — i’
is T*0Q — iT” where I” = @l is a closed convex cone in T*9Q\{0}. The
invariance (2.11) legitimates the definition of E™ for frequencies for ¢ €
T*99 — iT”:

(2.12) E™(a,¢) = E"(a,§), E£eR™ il wé=¢.

Another important remark is that for a € C\{0} , G(a, a€) = aG(a, &)
and therefore they have the same invariant spaces. Therefore, by continuity,

(2.13) E™(a, océ) = ]Em(a,é)

as long as Im¢& € T and Im (ag) € T, since the set of @ € C such that
Im (a§) € T is an open convex cone which contains 1. Introduce the open
set

(2.14) 7 = {af, Im€ € —T,a € C\{0}} c CH\{0}
and its projection 2° = w% c C'*¢/Cn ~ C @ T*0Q
(2.15) 2° = {¢,3a € C\{0} : ImaC € —T*}

This set is conic and stable by multiplication by complex numbers # 0, but
is not convex. It does not contain 0. Moreover, if aé = pBn € Z, with
Imé and Im 7 in —T, then 77 = o/B€ and by (2.13) , E"(a, &) = E"(a, 7).
Therefore, this legitimates the definition

(2.16) E™(a,¢) = E™(a,a¢),  Imal e —T?
for ¢ € #”, and the property (2.13) is satisfied on Z.

An important issue is to understand the structure of the bundle E™ in
the limit Im ¢ — 0.

Though this is not necessary, we simplify the exposition by choosing
Z C R an hyperplane which does not contain n. We identify Z to T*0%
considering the projection @ from R!*t? — Z which corresponds to the
decomposition é =(+&n € Z P Rn. The complex cotangent space is
identified with 2€ = Z + iZ. In these coordinates, I’ = @' ¢ Z and
E(a, ) is defined for ¢ € Z —iI”. We denote by I'=IU {0} the closure
of I” in Z.

Fix ¢ € Z —il. We study the spectral decomposition of G(a, () for
(a,¢) close to (a, ¢). Consider the distinct complex eigenvalues p,, k €
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{1,....k} of G(a,§). The invariant spaces of G(a,() associated to y, can

be holomorphlcally continued on a neighborhood ¥ of (a,() in A x zC.
Denote by Ex(a,() these spaces. Taking holomorphic basis, this yields a
block reduction

(2.17) G(a,¢) = WH(a, ¢)diag(Gk(a, )W (a, ).

where the W and G}, are holomorphic in ¢ and the spectrum of G(a, g) is
reduced to {u, }. If Im¢ € I’ the eigenvalues of Gy(a, &) are not real and

the invariant subspace E}'ﬁn(a, é) associated to eigenvalues in Im A < 0 is well
defined and holomorphic on this domain.

Case 1. 1If ( € I'”, none of the eigenvalues 4, is real and for (a,¢) in a
complex neighborhood of (a,¢), E™(a,() = Ex(a,() [resp. E™(a,¢) = {0}]
if Imp, <0 [resp. Imy, < 0]

Case 2. Suppose now that Im ( = 0.

Subcase 2.1. 1If My ¢ R, then again there is a complex neighborhood
¥ of (a,¢) such that for (a,¢) € ¥ with Im¢ € I?, E"(a,¢) = Ex(a, ()
[resp. Ei™(a, () = {0}] if Imp, <O [resp. Imp, > 0]. In particular, E™ has
an holomorphic extension to ¥, which is E; or {0}.

Subcase 2.1. Suppose now that #,, € R. This means that f =C—pmn
belongs to the real characteristic varlety C. We consider first the case where
it is an hyperbolic point in the sense of Definition 2.10.

Proposition 2.12. If (a, 5’“) € C is hyperbolic incoming [resp. outgoing] in
the sense of Definition 2.10, then there is a complex neighborhood ¥ such that
for (a,¢) € ¥ with Im¢ € I°, E™(a,() = Ex(a,C) [resp. E"(a,¢) = {0}].
In particular, E™™ has an holomorphic extension to ¥, which is By or {0}.

Proof. For (a,() near (a,(), the invariant space of G(a,() for eigenvalues
close to y, is the invariant space of G(a, 5) for eigenvalues close to zero for

(a,€) close to (a, gk) Suppose that n € Fa & We apply by Proposition 2.4

with I” a cone containing I’ and n and 6 = n. For (a,€) close to (a, §~k)

and fN e T, det G(a, §~ + sn) = 0 has my roots near 0 and they all belong to
{Im s > 0}. Thus det G(a, £) has my, eigenvalues counted with multiplicities
near 0 and they all belong to {Im 1 < 0}. Projecting on Z gives the result.

If —n € Fa’ék, then the roots in Im s < 0 and the eigenvalues in Im . > 0

implying that E™ = {0}. O
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Next we consider the case where the system is analytically diagonalizable

near (a, §k)

Proposition 2.13. Suppose that L is analytically diagonalizable near (a, ék)
Then there is a neighborhood ¥ of (a, (), such that E(a, ) has a continuous

extension to ¥V N Z — z'fb.

Proof. Tt is proved in [MeZu2] (see also Remark 3.8 below)that if a matrix
é(p,c ,7) with parameters p, frequencies ¢ € R? and v > 0, satisfies the
block structure condition, then the incoming space E" (p, C,7) has a contin-
uous extension to v = 0. We apply this property to Gg(a,( — Hn = i),
with v € T of length 1, considering p = (a,v) as the parameters. This
implies that the limit

min T in X
E (a,C,l/) - %E}%Ek (CL,C —Hkn—wu)

exists and the convergence is locally uniform in (a, v, (). It remains to show

that the limit is independent of v. This is clear from the proof in [MeZu2],
~k ~

since the limit is explicit in terms of &% e;(a,£ ) where the ej(a, ) are ana-

lytic eigenvectors of diagonalization of L. O

Corollary 2.14. If the system L belongs to the class sM, the bundle E"(a, ()
has a continuous extension to A x (Z\{0} — z'fb).

2.4 The Lopatinski condition

We consider boundary conditions (2.3) satisfying Assumption 2.3. The in-
variant datum is the kernel of the boundary condition K(a) = ker M (a) C E
with dimK = N — N;. The Lopatinski determinant D(a, () is the angle
between K and E™(a, ¢) or

(2.18) D(a,é) = |det(K(a),Em(a,C))‘

where the determinant is computed by taking orthonormal bases in each
space. D(a,() does not depend on the choice of theses bases. It depends
only on the choice of a scalar product on E. The invariance property (2.13)
shows that the natural domain of definition of D is 2, which is larger that
than 7*9Q — iI”. In particular, we note that, for o € C\{0}, if ¢ and a¢
both belong to T*9Q — il then

(2.19) D(a,¢) = D(a,a(Q).
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Given a time direction v € I', the weak Lopatinski condition is that
E™(a,¢ —iyv) NK(a) = {0}, or equivalently that D(a,( —iyi”) # 0, for all
(a,¢) € AxT*0Q and v > 0. The strong Lopatinski condition is that there
is a constant C' such that

V(a,¢) € A x T*0Q, Yy > 0Vu € E™(a,¢ — iv’),  |u| < C|M(a)ul.
This is equivalent to the condition that there is a constant ¢ > 0 such that
(2.20) V(a,¢) € Ax T*9Q, ¥y >0, D(a,¢—in/) > c.

Locally there are holomorphic versions of D:

Lemma 2.15. For all (a,() € A x 2Z°, there are neighborhoods of a and ¢
there is a function £(a,() continuous in a and holomorphic in ¢ and there
is a constant C > 1 such that on w

(2.21) (@0l < D(a,Q) < Olt(a, Q).

Proof. One can fix an orthonormal basis {e;} of E™(a,(). For (a,() in
a neighborhood of (a,(¢), the image of this basis by II(a,() is a basis of
E(a,(). Together with a continuous basis {fi} of K(a), we can form the
determinant

U(a,¢) = det (I(a,{)er, ..., fi,--.,)
which is holomorphic in ¢ and D(a,() = o(a,()|¢(a, )| where o(a,() =
1. 0

Remark 2.16. The function ¢ can be globalized using analytic continu-
ation and the property that T*9€Q — I is contractible. However, when
dealing with the uniform Lopatinski condition, we think that the geometric
definition (2.18) is more adapted. For instance, if L is of class M, D has
a continuous extension to 7*0Q\{0}, while the holomorphic version ¢ may
have no.

Theorem 1.6 is a consequence of Corollary 2.14 and of the next result:

Theorem 2.17. If the bundle E™(a, () has a continuous extension to A x
(T*0Q\{0} — z'fb) and if the uniform Lopatinski condition is satisfied in the
direction v, then for any closed subcone I'y contained in the interior of I,
there exists a constant ¢ > 0 such that

(2.22) V(a,¢) € Ax (T*0Q —iT%), D(a,¢) > c.
In particular, the uniform Lopatinski condition is satisfied in all direction

veli.
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Proof. Again, it is convenient to use a parametrization Z of T*0Q2. A
consequence of the assumption is that D has a continuous extension to
A x (T*0Q\{0} — ifb) and this extension is bounded from below by c. For
a€ A, (€ Zwith || =1 and v € 'y with |v| = 1, consider the function

(2.23) facw(s) = D(a,¢ —isv)

which is defined for Res > 0.
a) We show that there is R > 0 such that for all (a,(,v)

(2.24) Is] >R = facu(s)>c/2.

Indeed, [Im¢/s| < 1/R and therefore if R is large Im (s7¢ —iv) € —T.
Then for such s, the invariance property (2.19) implies that

(2.25) facw(s) = D(a,s ¢ —iv).

The uniform Lopatinski condition implies that D(a, () > ¢ for real fre-
quencies ¢ € I'”. For such ¢, the invariance property (2.19), which can be
extended by continuity, implies that D(a,—i¢) = D(a,() > c¢. Hence, by
continuity and compactness, D(a,( — iv) > ¢/2 when v € I} and [¢] is so
small enough. With (2.25), this implies (2.24).

b) The assumption implies that for real frequencies with || = 1,
D(a,{) > c. Hence, by continuity, there is £ > 0 such that

(2.26) |s|] <R, Res<e, = facu(s)>c/2.

c) On the compact domain {|s| < R,Res > €}, f, ¢, is proportional
to an holomorphic function, which is bounded from below on the boundary.
Thus the number of zeros in this domain in independent of the parameters.
When v = v, the assumption is that there are no roots, so that f, ¢, never
vanishes on this domain. By compactness, it is uniformly bounded from
below and the theorem follows. O

3 Tangential symmetrizers

The goal of this section is to prepare the proof Theorem 1.4 with the con-
struction of Kreiss symmetrizers. We first review their general approach and
the new piece is added at Theorem 3.12. The time direction is fixed and
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we use the notations (7,&) = (7,&',&4) of the introduction. We denote by
¢ = (7,&') the tangential frequencies. We consider

d—1
(3.1) G(a,¢) = Ag(a) ' (TAo(a) + > &A;(a)).
j=1

The parameter a varies in A; as in the previous section a level of smoothness
with respect to a for functions or symbols is fixed, and not repeated in the
statements. By homogeneity we can assume that ¢ € S? = {(1,¢) €
Cx R4 |72+ |¢|2 = 1,Im 7 < 0}. The incoming space E™(a, ¢) is defined
for Im 7 < 0 and the uniform Lopatinski condition is satisfied if and only if
there is a constant Cy such that

(3.2) V(a,{) € Ax S, Yu e E™(a,¢) |ul < Co|M(a)ul.

Definition 3.1. A bounded symmetrizer on Q@ = w x U C A x S%, is a

—

smooth matriz S(a,() on Q, such that there are C, ¢ > 0 such that for all
(a,¢) € Q,

(3'3) S(a7 C) = S*(aa C)a
(3.4) 15(a, Q)| < C,
(3.5) Im S(a,)G(p,¢) > c[Im7|Id,

It is a Kreiss symmetrizer for the boundary condition M if in addition, there
are positive constants C1 and c1 such that

(3.6) S(a,() +Ci1M*(a)M(a) > ¢1d.
The symmetrizer is continuous [smooth], if it extends continuously [smoothly]
towxT Cwx8”.
Remark 3.2. Changing the constants, one can replace (3.6) by
(3.7) S(a,() > c1ld on ker M(a).
Theorem 1.4 is a consequence of the following two results:

Theorem 3.3. Under the assumptions of Theorem 1.4, there is a smooth
Kreiss symmetrizer.

Theorem 3.4. If there is a smooth Kreiss symmetrizer, the maximal resol-
vent estimates (1.4) are satisfied.

The remaining part of this section is devoted to the proof of the first
theorem. The second is proved in [Kre, Maj, ChPi] when the coefficients are
smooth in (¢, z) and for instance in [Me5] when the coefficients are Lipschitz.
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3.1 The general strategy

The holomorphic regularity in 7 is forgotten. In [Kre], H.Kreiss constructs

near each point (a,() € A X gi, families of symmetrizers S* which are
independent of the boundary conditions, such that the negative cone of
S* is an arbitrarily small conic neighborhood of E. Next, he uses the
uniform Lopatinski condition to choose the parameter: because ker M does
not intersect E”, it is contained in the positive cone of S* for  large enough,
implying (3.6). The construction of the S* is performed locally, and we sum
up the main intermediate step in the following definition:

Definition 3.5. Let (a,() € A X?Ci. Consider a family of symmetrizers S*
on w* x U* where the w" are neighborhoods of of a and U® = U*NS% where
the U" are neighborhoods of ¢ in S. It is called a K-family near (a,() if
there is a space E of dimension Nt and a projector II on E such that for
all (a, () € W x U and for all k,

(3.8) S*(a,¢) > m(k)I" ' — II"IT
where ' =1d — II and m(k) — +00 as kK — +00.

Note that the constants C' and ¢ in (3.4) (3.5) may (and do in general)
depend on k.

Remark 3.6. If S is continuous at (g, (), or has a continuous extension
at this point when Im 7 = 0, shrinking the neighborhoods if necessary and
changing the parameters, it is sufficient to verify (3.8) at (a, ¢).

Remark 3.7. The choice of the projector II is arbitrary, if one accepts to
Iflodify the S*. If II is another projector on E, then IIII = II, II'IT = 0 and
II' = II'Tl’. Hence,
[[T] = '] < C\Wul, [T < C(|fTu] + |fu).
with C' = |l and C' = [TI|. Thus,
m(g)|[Mul? — [Hul? > (m(k)/C? — 2C%)|[IT'u|? — 2C%|Tul?.

Therefore, changing S* to S* = %C*QS” we see that (3.8) for S* and II
implies similar estimates for S* and II, with m(k) = m(k)/2C2C? — 1. In
particular, we can always choose Il to be the orthogonal projector on [E for
a given scalar product in CV.
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Remark 3.8 (see [MeZu2|). Any symmetrizer S(a, () is necessarily negative
definite on E(a,() for Im¢ < 0 implying that for (a,¢) € w" x U® and
u € E™(a, ()
m(/ﬁ)‘ﬂ/u‘2 < |ﬂu’2.

Therefore, the space E™(a,() has a limit as (a,() — (a,¢) in A x S% and
this limit is E:

E= lim E"(q,

B (a:C»’Y)%(Q:Q ( C)
This shows that E is unique. Denoting by E?*(a,() this limit when ¢ €
08¢ = S9=1 is real, the same analysis shows that the family E™(a, — iyv)
is a Cauchy sequence for the uniform convergence on A x S9! implying
that the following limit is uniform in (a, () € A x %1

E™(a,() = lim E™(a, ¢ — irv).

Lemma 3.9. Suppose that S* is a K-family of symmetrizers on w™ x UF.
Then for any boundary condition M which satisfies the uniform Lopatinski
condition, S* is a Kreiss symmetrizer for k large enough.

Proof. The Lopatinski condition and Remark 3.8 imply that there is a con-
stant Cy such that

|Tu| < Co|MITu| < Co|Mu| + Co| M| [IT'ul.
Thus,
Jul* < 2/Iul?* + 2|I'A|* < 6CF|Mul® + 6CF|M *|[I'ul” — [Iuf.
and, for m(x) > 6Co|M|?, (3.6) follows, with C; = 6C2 and ¢; = 1. O

Proposition 3.10. Suppose that for all (a,() € W X gi, there are neig-
borhoods w"® x U" of (a,¢) and a K-family of bounded [resp. smooth] sym-
metrizers S*(p,¢) on w® x US. Then for any boundary condition M which
satisfies the uniform Lopatinski condition, there is a bounded [resp. smooth]
Kreiss symmetrizer for the boundary value problem (L, M).

Proof. By Lemma 3.9, all (a,() € @ x gi, has a neighborhood w x U such
that there is a bounded [resp. smooth] symmetrizer S on w x U_. Therefore

there is a finite covering of Aw x ?i by open sets w; x U; and Kreiss sym-
metrizers S; on w; x Uj . Consider a a partition of unity 1 = ) x; with
xj supported in w; x Uj. Then X = > i X;5; is a Kreiss symmetrizer, wich
is bounded [resp. smooth] on A x S. O
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3.2 Construction of K-families of symmetrizers

Let (a,¢) € Ax 5% . To construct symmetrizers, we use the smooth diagonal
block reduction 2.17 of G on a neighborhood w x U of (a, ¢):

For Im 7 < 0, we denote by E};”(a, () the invariant subspace of G}, asso-
ciated to eigenvalues in {Im p < 0}. Thus,

(3.9) E"(a,¢) = W (a, Q) (P EF(a. Q).
k

It is sufficient to construct K-families for each block separately:

Lemma 3.11. Suppose that for all k, Sy is a K-family of bounded [smooth]
symmetrizers for Gy, near (a,(). There are K-families of bounded [smooth]
symmetrizers S for G near (a,().

Proof. Taking finite intersection, we can find common neighborhoods w® x
U" for the different G.. Relabeling the families S}, we can also assume that
they satisfy (3.8) with the same m(k) and by Remark 3.7 that the projectors
I, are the orthogonal projectors on E,.

Then S§* = W*diag(SF)W is a family of bounded [smooth]| symmetrizers
for G and for u = W1 (uy,...,ug)?, there holds

(S"u,u) = Y (Siup, uk) = m(x) Y [Mul? =) M.
Let IT = W diag(II,,)W. It is a projector on E and
W[72(S"u, u) = (k)| L uf* — [Luf?

with i = m/(|W~12|W|?). Therefore, |W|~25" is a K-family near (a, ().
O

The construction of Sj for blocks Gy is already made in several cases
(see [Kre, BeSe, Meb]).

- First, when the spectrum of G(a, () does not intersect the real line
and this is always the case when Im7 # 0 ;

- When 7 is real and the spectrum of G (a, ¢) contains real eigenvalues,
we can split further the blocks to consider only the case where this spectrum
is limited to a single eigenvalue g, . In this case, gz (€, —p,) € R*4\ {0} is
characteristic for L(a, -). If the characteristic manifold is smooth near (a, €)
or more generally if L is smoothly diagonalizable near this point, then G},
satisfies the block structure condition and Kreiss construction applies (see
[Maj, MeZu2, Me5)).
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Therefore, to finish the proof of Theorem 3.3, we only have to construct
K families when the block G, is associated to an hyperbolic characteristic
point £ in the sense of Defintion 2.10.
3.3 Symmetrizers for hyperbolic blocks

Consider (a,() € A x R)\{0} and an invariant block G, near this point,
such that the spectrum of Gy(a, ¢) is {, }. Denote by § = (¢, —#,) € Ca

Theorem 3.12. Assume that the system L admits a smooth symmetrizer
S(a,&). If  is an hyperbolic point in the sense of Definition 2.10, then there
are families of Kreiss symmetrizers for the block Gy,.

The main part of the construction is made in the following

Lemma 3.13. Suppose thatg is incoming [resp. outgoing]. There is a
smooth symmetrizer S(a,() such that

(3.10) S=5">0, SGi = (SGr)*,
and
(3.11) Re SGi(a,v) > 0; [resp. ReSGi(a,v) <0 ].
Here the notation S > 0 means that the matrix S is positive definite.

Proof. a) Because n is not characteristic for the linearized symbol L, é

ker L(a, §~) NrangeL(a,n) ' L(a, g) = {0}

implying that By is a semi simple eigenvalue of G(a,(), with multplicity
my, = dimker L(a, €).

By Proposition 2.4, for v € T of length 1 one has for a in a neighborhood
of a, (¢,&4) in a neighborhood of £, v > 0 and Re s > 0 small :

(3.12) (s +7)|ul < C|G(a, ¢ — i) + (&a — isld)ul

This remains true for the block Gi. Moreover, Proposition 2.4 also asserts
that G(a, —iyv) + &41d has my, eigenvalues close to 0, which are real when
v = 0. They must be the eigenvalues of Gy, and therefore, for (a,() in
a neighborhood of (a,(), Gi(a,() has only real eigenvalues. The estimate
(3.12) implies that they are semi simple and that the eigenprojectors are
uniformly bounded.

26



b) The existence of a smooth symmetrizer implies that there is a smooth
full symmetrizer S(a,§) (see [FrLal, FrLa2] [Me3]). It is a smooth matrix
S such that

SL=(SL)*, ReS(a,&)L(a,7) >0 on ker L(a,§).

Thus . (a,€) = S(a,&)L(a,n) is a full symmetrizer for G(a,£) and this can
be transported in the block decomposition (2.17). Therefore, for (a, (,&;) in
a neighborhood of (a,€) there is a smooth full symmetrizer for Gy (a,¢) +
&ld. B

With a), we are now in position to apply Theorem 6.5 of [Me3] to con-
clude that there is a smooth symmetrizer Si(a,() for Gi(a,(), satisfying
(3.10). Moreover, the construction in [Me3] implies that S = S(a,() =

Sl (Qv §) .

c) It is sufficient to prove the third property(3.11) for a = a. It is also
proved in [Me3] that S(a, €) is a Friedrichs symmetrizer for the localized
operator L wé A version of the localized operator is

(¢, &) = ¢ V¢Gi(a, Q) + &ld

and Sj, = Si(a, () is a Friedrichs symmetrizer for L'. In particular, S}, L'(6)
is definite positive for all direction @ in the cone of hyperbolicity of L’ con-
taining n. In particular this is true for v € I' in the incoming case and for
v € —I' in the outgoing case and (3.11) follows. This finishes the proof of
the lemma. O

Proof of Theorem 3.12.  When the mode is incoming, we choose S} = —pS},
for some p > 0 such that the property (3.8) is satisfied. and E = E(a,(). 5
Because G(a,( —iyv) = G(a, () — iv9-G(a, () + O(y?), we see that

Im SG = vpRe Sk0;G + O(+?)

therefore the property (3.5) is satisfied if « is small enough.

When the mode is outgoing, we choose S} = xSy and E = {0}. Again,
(3.5) is satisfied for v small and (3.8) is satisfied. O

4 Para-differential estimates

To prove Theorem 1.8 we use different pseudo or para-differential calculi. In
this section we present the technical results which will be needed. On the
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one hand, we consider tangential operators, with symbols a(¢,z,7,&’) such
as Kreiss symmetrizers. On the other hand, we deal with spatial operators
with symbols a(t,z,&’,€&;) such as symmetrizers for L. Combining these
two approaches is one of the major technical difficulty in the analysis of non
symmetric initial boundary value problem. In this section, we gather several
estimates which will be used in the proof of Therorem 5.8

4.1 Paradifferential calculi

We give here some definitions and notations and we refer for instance to
Chapter 5 in [Me2] for details.

The spatial para-differential operators we consider are associated to sym-
bols which belong to classes denoted by I't* and I'f*. Given an interval
I C R, a symbol a(t,, &) defined on I x R? x R? belongs to T'* if it is C>°
in ¢ and for all a € N there is C,, such that for all &

Ha?a( R é)HLOO(IXRd) < Ca(]_ —+ |§Dm7|a‘

It belongs to I'" if in addition the first derivatives 0; ,a belong to I'j’. Next,
3" is the set of symbols o(t, z, &) € T’} which satisfies the spectral condition
that their Fourier transform with respect to the z-variables, &(t,n,§), is
supported in {|n| < e(1 + [£]) for some e < 1.
The para-differential operator T, is by definition the pseudodifferential
operator
T, = o4(t,z,D,)

with symbol

(4.1) oalt,z,€) = / Gl — . £)alt,y,O)dy
and
(4.2) Gy, €) = (2m) / e (1, €)dn

where x is a C*° function supported in {|n| < (1 + [£]), equal to 1 on
{In] <e1(1 4 €|), for some 0 < 1 < e < 1 and such that

10508 x(1,€)| < Cal1 + |g])7II=1AL,

The symbol o, and the quantization T, depend on the choice of the cut-
off function y, but if x1 and 2 satisfy the spectral condition, the difference
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between the two symbols ol and o2 belong to 26"_1 if a € T']* so that the
two operators of order m T} and T? differ by an operator of order m — 1
(see [Me2]). All the results below do not depend on the choice of the cutoff
function .

The tangential quantization is defined similarly, permuting the role of ¢
and x4. Tangential symbols are functions of (¢, z, () where ¢ = (,¢’) denote
the tangential frequencies. Using the notation z = (¢,2’) for the tangential
variables, we see tangential symbols as functions of (t,z,() or (z4,z,().
To avoid confusion, when necessary, we will note 7% the corresponding
quantization.

Remark 4.1. The Kreiss symmetrizers are associated to the operators
L((t,x,0r + =, D) which depend on the parameter 7. They are tangen-
tial pseudo or para-differential operators and their symbols are functions of
(t,xz,7,&,7). The proof of the energy estimates (1.4) called resolvent es-
timates in the introduction relies on a pseudo or para-differential calculus
with parameter vy, see [Kre, ChPi, MeZul]. We do not give details here, as
we do not use this calculus.

4.2 A microlocal Cauchy problem

We first give a para-differential version of the classical symmetrizable hy-
perbolic Cauchy problem.

Proposition 4.2. Consider a matriz of symbols G € T1. Assume that
there is a matriz S € TV such that S = S* is uniformly definite positive
and SG = (SG)*. Then, for ug € L? and f € L*([0,T] x R?) the Cauchy
problem

(4.3) ou+iTgu = f, Uji—0 = Uo

has a solution u € C°([0,T]; L?(R%))

Sketch of proof. First, we modify the symbol S into
(4.4) S(t,x, &) = S(t,z,&) + A1+ [¢*) el

with A large enough so that the operator S = Re Ty is definite positive in
L?. Considering the energy (Su,u) 2 and computing its times derivative,
the symbolic calculus implies the following estimate (see e.g. Theorem 7.1.3
and Chapter 7 in [Me2]) :
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Lemma 4.3. There is a constant C such that for allu € C1([0,T]; H'(R?))
one has

t
gy Ol S O+ o

t
+ / Re (S(0yu + iTgu)(t'), u(t'))LQ(Rd)dt'.
0

The adjoint of T is Tg+ + R where R(t) is bounded in L2, uniformly in .
The symbol (S*)~! is a symmetrizer for G*, and therefore there are similar
estimates for the backward Cauchy problem for —i(T)*. By duality, this
implies the existence of a solution u € L%([0,T] x RY) of (4.3). A variant of
Friedrichs’ lemma, still using the symbolic para-differential calculus, implies
that this solution is strong, thus belongs to C°([0, T]; L2(R?)) and satisfies
(4.5). 0

4.3 Estimates of traces

Operators of the form
(4.6) Pu= (Tau)‘mdzo

will occur in the analysis.
For fixed t, T, is bounded from L?(RY) to H'(R?) when a € T';' and
from H'(R?) to H'(R?) when a € T'. Hence,

Lemma 4.4. i) If a € Ty', then P, is bounded from L*([0,T] x R%) to
L2([0.T); H2 (R1)).

i) If a € T, P, is bounded from L?([0, T]; H'(R%)) to L?([0, T7; H%(Rdfl))
thus to L2([0,T] x R4~1).

When a is of degree 0 conditions must be imposed to be able to define
the trace of T,u when u € L?. We will assume that

(4.7) a(t,z,(0,...,0,&)) =0.

The next proposition states that under this condition, the trace is well de-
fined when u € L2. The idea is to replace a by a® = a(t,z',0,¢), that is to
freeze the value of x4 at £4 = 0, and next to replace the quantization 7, by
TO = 69(t,2', D,) where

(4.8) ol(t, 2’ &) = /Go(w’y’,ﬁ’))a(t,y’,O,é)dy’
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with the modified mollification kernel
(4.9) GOy, €)= (2m) ¢ / e\ ((,0), (¢/,0))dn.

It acts only in the variables ' and on the frequency side, the cut off is made
at || < e(1+1¢'|), independently of ;. We prove that for u € L? the trace
Pu = (TQu)|z,=o is well defined and that P, — P? is a bounded operator in
L2

Proposition 4.5. If a € TY satisfies (4.7) then P, is bounded from L* to
L3([0,T], H_%(Rdfl)). Moreover, P, — PY is bounded from L* to L2.

The remaining part of the Section 4.3 is mainly devoted to the proof of
this proposition. To simplify the exposition, we delete ¢ from the notations
below since it appears as a parameter and the L? integrability in time over
[0,T] follows from the uniformity of the estimates at each fixed ¢.

First, we note that if a € T') satisfies (4.7) there are symbols a; € T
such that

d—1
(4.10) a(z,€) =Y aj(x,£)& + ao(,&).

j=1

Indeed, we can take ap = a, a; = 0 in the domain {|{| < 1}; in the domain
{I€'| < 2|&q|} this is a consequence of a Taylor expansion in ¢ and in the
domain {|¢'| > [¢4]} (4.10) is true with a; = a;/(1+|¢'[%), ao = a/(1+[¢/[2).
Next one can glue the different pieces by a partition of unity.

Using Lemma 4.4 and that Tp, ¢, — %8%, T, is bounded from L?to H', we

see that for u € L? the trace of T,u belongs to H~3 and the first statement
of the proposition is proved.
Next, we compare P, and PY. First, we note that

(4.11) a(z, &) = a®(2', &) + zgb(x, ), beTy.

Lemma 4.6. If b € 1‘8, then Ty, — 24T} is bounded from L? to H'. In
particular, the trace operator P, is bounded from L? to L.

Proof. From (4.1) we see that p = 0, — x40 is given by

plt,z,€) = / (24— ya) Gl — , E)b(y, €)dy.

Note that
yaG(y, &) = i/ely"andx(n,ﬁ)dn
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and 0Oy, x is a symbol of degree —1 supported in a cone || < e(14]§). There-
fore p satisfies the spectral condition and the estimates of I'y 1. Therefore
p € Xyt and p(z, D) is bounded from L? to H'. O

Hence, to prove the Proposition, it remains to study PO — P,0. We first
compare the two symbols ¢ and 0.

Lemma 4.7. Suppose that a = b§; with b € 1"1_1 and 1 < j<d-—1. Then
the symbol p(x',&) = 00 — a0 satisfies for || < 1 and all B,

(4.12) 0208 pla,€)] S (1 + el HHlel(1 + gy 12.
Proof. Because a” does not depend on x4,
7u0(2.8) = [ GG’ = o/ 2~ ya, Dl 0.)dy

- / G (2’ — o, E)aly,0,6)dy = 00 2, 0,€)

where

Gy, = (27T)_d/eiy'”'><(77’,O’E)dn’-
Therefore,

o' €)= [ HE = U 0.0y
where

HL€) = 2n) [0/ ', 00/.€) = x(1.0.€) = x(0/,0.€.0).
The cut off function 6 is supported in {e1(1 + [&']) < |7] < e(1+[€])}.

For all fixed &g, consider pg,(2',¢") = (1 + |£\2)%b(x',§’,£d) as a symbol
in (2/,¢). They form a uniformly bounded family in T'{(R?~1). Let

Goy(2,6) = & / H(@ — o, O)pay (' )y

They are bouned in in T9(R4~1). Moreover, since 6 is supported in {|n/| >
e1(141¢'])}, the support of their Fourier transform in 2’ is contained in this
set and by Bernstein inequality

lge, (€Nl S L+ 1ED) T IVarag, (&) pe
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implying that they are bounded in Ty'(R*1). Since p(z/,¢,&1) = (1 +
1€12) " ge, (2, €), we conclude that

05 p(x' &) S (L+ g~ + 1)~

Since 6 is supported in {|n'| < e(1 + |£|)} this implies bounds for the 2’
derivative and the lemma is proved. O

Combining (4.10) and the lemmas above, the next result finishes the
proof of Proposition 4.5.

Lemma 4.8. Suppose that p(x',€) satisfies (4.12). Then the mapping u —
v = (p(:r’,Dx)u)ud:O is bounded from L*(R?) to L?(R4™1).

Proof. Denote by a(z’,&;) the partial Fourier transform of u with respect
to the variable 4. Then

(4.13) o(a) = /R o, D, £0)ile" E4) .

Next use a dyadic partition of unity in the & variables, which yields a de-
composition

(414) a(xlagd) = Zﬁk(glvgd)

so that
o= ul) = [ g
with
w(2',&q) = p(a’, Dy, Ea)un (', €a) = pr(@’, Dy, Ea)ur(2', €q)

where the py are localized in |¢/| ~ 2* and satisfy, uniformly on k, for all
|a] <1 and all g:

(4.15) 850 pr(a’,€)| < (1€al +2)l~127HAL

In particular, the symbols py¢,(2,&) == (|&| + 2%)pr(2', &, €4) satisfy for
all g
} ’pk‘fd ) |< 27HAl,

uniformly in k and &;. Moreover, they are supported in {|¢'| ~ 2¥}. Hence
the operators p¢,(z', D,) are uniformly bounded in L?(R471) (see e.g.
Lemma 4.3.3 in [Me2]). Therefore

(4.16) [wi (- )| pga—n < (2% + 1€al) " en(a)
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with ex(&q) = ||ax(-,&q)||r2 Similarly, applying the same estimates with p
replaced by (i§; + 0x;)p, implies that

(4.17) Hwk("gd)HHl(Rd—l) S Ek(fd)'

Consider dyadic partition of unity Q;(D,/) so that

v=> Qu, Q= Z/ijk(xlyfd)dxd-
J k

Then
|Qjwi(-, €a)|| ;2 < min (Hwk('afd)HLQa 27ijk(’7£d)HH1(Rd—1)>
so that .
|Qjwr (- )| S (27 + 25 + |€a]) " ten(a)-
Hence
er(€a)déq
IQlse <3 [ 1@t silnaa < 3 [ 50
and
Qi < (3 [t ) (X [ o
R E NG ) TR\ ) @ 2 )
< lallfe > + 297 < 2 falf
k
Therefore,
2 2 ) 2
Iollze < D l@iwllze < Nlallze = llullzs
J
and the lemma is proved. ]

We end this section with a lemma which we will need later on.

Lemma 4.9. If a € TY satisfies (4.7) then P?, and hence P,, are bounded
from L? to H™2 and from (Dz/>_%L2 to L2. In particular, there is a constant
C' such that for all u € (D$/>_%L2(Rd);

0 1
(419 122l gansy < CIDA sy

Here we have used the notation (D,/) = (1 — Az/)% which is associated
to the symbol (¢') = (1 + |¢/|2)z.
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Proof. Because of (4.10), the symbol o0 satisfies

0500, € €0)| S 1E1(E) + &)~ (€)71A.

It also satisfies the para-differential spectral localization in the tangent vari-
ables /. This implies that ¢0(-,-,&;) and £300(-, -, &) are bounded families
of para-differential symbols in the class ¢ and X} respectively on RI-1,
Therefore for all v in L?(R?71) and all ¢; € R,

(4 19) “02(‘%‘/7Dlx?ﬁd)vHLQ(Rd—l) S, HUHLQ(]Rd—l)a
. |§d’”‘72($/vD:/vagd)”HH—l(Rd—l) < HUHLQ(Rd—l)'

Introduce a dyadic partition of unity in R4! so that

u(z',€q) = Z Qj(Dyr)u(x’, £4)

where % denotes the partial Fourier transform of u in the variable x4;. The
spectrum in & of Qi is contained in |¢'| ~ 27. Then f; = 09(2/, D., &) Q ;i
has also its spectrum in a larger annulus but still of order |¢/| ~ 27. The
estimates (4.19) imply that

1 £5( €)1 S (T +277|€al) " es(a)

where &(&4) = [[Qyii(-, £)l| 2 Hence

v="Plu=> v, Uj(x')Z/fj(fB',ﬁd)d&
J
and
[0jll 12 < /(1 +277(8al) e (€0 déa S 27 lejl rary-

Because the v; are spectrally supported in annuli |¢/| ~ 27 one has

102 3" [Josllze © 2 2 lleslZagmy = (D52 w22 gy
J

and the lemma is proved. ]
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4.4 Energy balance for the IBVP

Consider a system L = 0y + Aj&,;j with Lipschitz coefficients. We assume
that it admits a symmetrizer S(t,x,&), which is Lipschitz continuous in
(t, ), homogeneous of degree 0 and C* in & # 0.

For such L, the Cauchy problem is well posed in L?, see e.g.Theorem 7.1.3
in [Me2] (see also Proposition 4.2 above and its proof). Following ideas
from [FrLa2], we want to obtain an inequality similar to the energy esti-
mate of the Cauchy problem, using the same symmetrizer, but now on the
domain {zg > 0}. Non local boundary terms occur, but in contrast with
[FrLa2], we analyze them assuming that we already have a control of the
traces ||u|y,—oll 12, for instance given by a preliminary use of Kreiss sym-
metrizers.

The L? estimate for the Cauchy problem is proved using the energy
(Su,u)2, where S = ReTg and S a low frequency modification of the
symbol S :

(4.20) S(t,z,€) = 0(£)S(t,z,€) + A1+ [¢)*) ! e IY,

with 1 — 0 compactly supported and 6 = 0 near the origin, and A large
enough so that the operator S = ReTg is definite positive in L?. Using
the approximation ||[Lu — (0 +iTa)ul/r2 < ||ul/z2 where A denotes here the
symbol >~ §;A;(t, ) (Theorem 5.2.9 in [Me2]), and the symbolic calculus as
recalled in Proposition 4.2, one obtains that for u € C1([0,T]; H'(R%)) one
has

t
(421) )| 2@ S [wO)][72g0 + /0 Re (SLu(t'), ut')) pa gy dt'

In the remaining part of this section we analyze how this estimate is
modified when it is applied on the half space {z4 > 0}.

Note that there is no restriction in assuming that the symbol of the
symmetrizer is even in £. An important element is the value of S on the
conormal to the boundary and we introduce

(4.22) Seolt, ) = S(t,z, (0,...,0,1)).

Proposition 4.10. Suppose that L = 0y + ) A;jOy,; has Lipschitz coeffi-
cients on [0, T] x R? and admits a symmetrizer S(t,z,€), which is Lipschitz
continuous in (t,x), homogeneous of degree 0, C*° and even in § # 0. Then,

there is a constant C' such that for u € C5°([0,T] x Ri) one has
Hu(t)Hiﬂ(Ri) 5““(0)‘@2(]1@1) + HuHi%[O,t]xRi) + HLuHi?([O,t]xRi)

(4.23)

+ Hu|$d=0Hi?([0,t]de—1) + HPSlaHEQ([O,t}XRd—l)
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where Pg, is the trace operator associated to the symbol S1 = 0(S — S ) and
u denotes the extension of u by 0 for x4 < 0.

Proof. Consider u € C§°([0,T] x @i) and introduce f = Lu € C§°([0,T] x
@i) and g = uj,,—o € C3°([0,T] x R4™1). Let x € C*(R) with support in
10, 0] and equal to 1 on [1,00[. Let xe(zq) = x(z4/¢) and ue = x-u. Then

Lu. = f. + fal7 fe = Xxef, fal = X/aAdu = 5_1X/(xd/€)Adu-

We apply the energy estimate (4.21) to u. and pass to the limit. The
difficulty is concentrated in the term

t
(4.24) I = Is(f} ue) = /0 (SFH(E), us(t)) Loyt

The proposition will follow from the estimate

. ) ,
(4.25) 111?_%110 TABS HUHL2([O,t]><Rd) + HfHLQ([O,t]XRd)

+ HgHiQ([O,t]de—l) + HPSﬂH;([O,t]de—I)'

a) For u smooth, f! = gix. + hl with g1 = Aguj,—o and |[hl]l;2 <
5%(||u(t)|]L2+||(91u(t)HLz). Therefore is sufficient to prove (4.25) for Ig(he, u.)
with he := g1xL%.

b) The spatial Fourier transform of h. is he (t) = X (e€q)g1(t,&"). Since
X' € S(R),
(4.26) Hh‘eHLQ([O,T];Hfl(Rd)) S, HgHLQ-

Recalling the definition (4.20), note that Tys — (Typs)* and hence S — (Tyg)*
are of degree —1. This implies that

[8he — Tyshe| 12 < [lg]l -
Therefore we are reduced to prove (4.25) with
~ t
(4.27) I = Is(he,ue) = / (e, Toste) 1o gaydt'-
0

With S defined by (4.22), we split S into Sx + (S — So) and we study
each term separately.
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c) The operator Tys_ —So is of degree —1, implying that Tys_ ue—Sootie
is bounded in L2([0,T); H') by |lu| z2. Therefore

t
To (heyue) = /0 (91X Ssoxet)dt’ + O (gl lull2)

For u smooth,

(gla Soo‘xdzog)LQ([07T]><Rd—1)

| =

t
g% /0 (91X%, Sooxeu)dt’ =
and therefore

(4.28) limsup s, (he, ue) < lgll* + [Jull*.

e—0

d) We now show, using the notation (4.6), that
(4.29) ig% Is—s. (heyus) = (917 Ps, ﬂ) L2([0,T]xRd—1)

and this will finish the proof of the proposition.
Using that S is homogeneous of degree 0 and even, we can write

d—1
(4.30) Si(t,2,6) = 0(€)(S — So)(t.2,6) = Y S15(t, 7, €)¢
j=1
where the S ; are of degree —1. Hence,
d—1
HT51X€“HL2([0,T],H1) N Z H@xjuHLg.
j=1

Moreover, Tg,x-u — Ts, % in L?([0,T], H') and the trace on {z4 = 0}
is well defined. Using (4.26) and the convergence gix. — g1 ® Ojz,—o in
L2([0,T], H~'), this implies that

(91X;7T51u€) — (917 (T31a)|zd=0)
that is (4.30) and the proposition is proved. O

The main difficulty is now to estimate the trace Ps,@ in L?. By Propo-
sition 4.5 and Lemma 4.9, we only know that

(4.31) HPSN]HL?([O,T}XRF‘”) < CH<DI/>%UHL2([O,T]><R1)‘
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The idea which is also taken from [FrLa2] is the following: the definition of
Pg, involves taking a trace on x4 = 0, which on the Fourier side means an
integration in &;. The idea is to shift the integration path to the complex
domain, using the holomorphy of the Fourier transform of % in Imé&; < 0
and an assumed holomorphy in £ of the symbol.

Proposition 4.11. Suppose that S(t,z,&) admits a bounded holomorphic
extension in the cone {|Im¢&| < d|¢|} for some § > 0. Then, there are

constant C' and 6; > 0 such that for all 0" € [0,61] and all w € C°([0,T] x

—=d
R$)

|| Ps, @l 22 (o, 1y xra-1) <

4.32 /
(4.32) C(H<DII>%6—6zd<

D”'>“HL2([0,T}de) + HUHL2([O,T]><Rd ))'
+ +

Proof. To simplify notations, we omit the variable ¢ which is just a param-
eter. Note that when ¢’ = 0, (4.32) is simply (4.31).
Introduce

Sy = 6(¢,0)(S ~ 5x0)

Since 1 — @ is compactly supported, say in {|¢| < R}, we note that (§) —
6(¢',0) = 0 when |¢'| > R. Hence S; — Ss is supported in || < R and
thus of order —1 by (4.30). Therefore it is sufficient to prove the estimate
for Pg,. According to Proposition 4.5, we can also replace Pg, by Pg2 and
v = P§2ﬂ is given by

o) = [ ol ¢ (e
where 4 is the spatial Fourier transform of @ and

o(z',¢ &) = /Go(x’ —y,6)8(y',0,¢, &) dy’.

By assumption, S — S,., and thus S5, have holomorphic extensions in
&4 to the domain {|Im¢&,| < §|¢|} and this extension vanishes when & = 0.
Hence, by homogeneity,

e
~ ¢l

Therefore since o vanishes for ¢ small, o, has an holomorphic extension
in & to a domain {Im¢&; < §;(|¢'[)}. Moreover, because u is supported in

(4.33) (S = Soo) (2, )]
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{zq > 0}, its Fourier transform 4 is holomorphic in {Im&; < 0}. Therefore,
one can shift the integration path in &; to R — i§(¢')

o(a) = / ¢ € oo, €, 60— i6(¢'))a(€), €4 — i6(€)))dE
- / ¢ plal €, €4 (€', Ea)
- / pla!, Dl Ea)i(a’, q)déq

with p(a/, &, &) = o(a’, &, 6q — i6(¢")), w = e~ ¥a{Pardqy and @ denoting
its partial Fourier transform in the variable x4. We conclude by applying
(4.18) to p and w. O

4.5 Elliptic estimates

The last ingredient in the proof of Theorem 1.8 is to estimate the L? norm
of <Dx/>%e_5'”"d<Dr’>u, using again the equation satisfied by u. Again the
idea is taken from [FrLa2]. Microlocally, one can choose ¢’ such that v =
e~ 9"%atDar)y gatisfies an elliptic equation, which reduces the problem to the
proof of elliptic estimates, which we now recall.

Consider a system

(4.34) Dpyu+iTEu = f
where A is a matrix with coefficients in I‘%.

Proposition 4.12. Suppose that the spectrum of A(t,x,() is contained in
IIm A| > ¢|C|. Then there is a constant C' such that

D220l 2 < C(lfull 2 + (1] 2 + ega=oll )

Proof. This is a special case of the tangential analysis (see e.g. [Kre, ChP4i,
Me5]). The assumption implies that the matrix A is conjugated to a block
diagonal matrix with blocks Ay having their spectrum in {+Im A > ¢|(|}.
Each block has a symmetrizer, and there is a symmetrizer S = S§* such that
ImSA > |C] (see e.g. Section 8.1.3 in [Me5]). O

We will use the following extension of this estimate.

Proposition 4.13. Suppose that the spectrum of A(t,x,() is contained in
Im A — 6[C|| > ¢|¢| for some § € [0,1] and ¢ > 0. Then there is a constant
C such that

L §(D.)e
[(D=)2e P eul| 1y < C(|full o + (| £l 2 + [lmi=oll )
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Proof. The symbols in ¢ — e 9%4{) form a bounded family of symbols
of degree zero. Therefore, the commutator [6_5<D2>$4,TA] are uniformly
bounded in L2. This shows that v = e~ %(P=)%dy, satisfies

02,0 + (T = i6(D2))|| 12 < C(ful] o+ [|£] 12)-

The symbol of Tﬁlg —10(D,) is A(t,z,()—1i0(¢) and its spectrum is contained
in [Im A\| > ¢/|¢|. Hence one can apply Proposition 4.12 to v and the estimate
follows since Vjzg=0 = U|z4=0- OJ

5 Semi group estimates and the IBVP in L?

The goal of this section is to solve the initial boundary value problem (1.1)
and to complete the proof of Theorem 1.8. We first review the analysis of
the boundary value problem and next show what has to be added to treat
initial data in L2

5.1 The main steps
Consider the hyperbolic system L on {z4 > 0}

d
(5.1) L= Ag(t, )0, + Y Aj(t,2)0y; + B(t,x)
j=1
together with boundary conditions M on {z4; = 0}. The adjoint operator
L*is
d
(5.2) L* = —(Ao(t, )"0 — Y Aj(t,2)0s; — Bu(t, z)

j=1
where By = —B* + 0,Ap + > @A}f. There are adjoint boundary conditions
M’ for L* such that for all smooth enough functions u and v on [a, b] x Rff_ :
(Lu, ’U) — (u, L*U) = (Mu\:vd=07 Mlv\xd:O) — (M{U|Id:0, M/'U|xd:())
+ (Ujp=p, Vji=b) — (Ujt=q> V}t=a)-

(5.3)

for some boundary matrices M; and M]. Here (-,-) denotes the L? scalar
products on the appropriate domains. The formula extends to unbounded
time intervals. The matrices Mj, M’, M{ are not unique but the invariant
key property is that

(5.4) ker M’ = (Agker M)*.
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Introduce the spaces L2 = €7 L? with norms HuHL% = |le™"ul|7, and note
that, in the identity (5.3), (-,-) can be understood as well as the duality
L% X LQ_W. We suppose here that the resolvent estimates have already been
proven and take them as an assumption.

Assumption 5.1. The following a priori estimates are valid : for v > v
and smooth u:

655)  llulls + lupmol?s €7 Zul; + 1Mo ol
and
(56 ol +loolle S 7L s+ 1M g2

By Theorem 1.4, this assumption is satisfied for systems in the class sM.

Proposition 5.2 ([Kre, ChPi]). Under Assumption 5.1 the boundary value
problem

(5.7) Lu=f, Bug,—o=g
1s well posed in L?Y for v > .

Indeed, (5.6) implies that (5.7) has a weak solution in L2. By tangen-
tial smoothing and Friedrichs Lemma, this solution is a strong solution and
therefore satisfies (5.5). In particular, this implies uniqueness of weak so-
lution. Moreover, the causality principle is satisfied: if f and g vanish for
t < tg, then u also vanishes for t < tg.

We now consider the initial-boundary value problem
(58) Lu=f, Mu|zd=0 =9, Ujt=0 = Uo-
Proposition 5.3. The problem (5.8) is well posed in L?yo when ug = 0.

Proof. Existence is obtained by extending f and g by 0 for ¢ < 0. Then there
is a solution u € L%O and the causality principle implies that it vanishes when
t < 0. Therefore, its trace uj;—y also vanishes. Note that the trace is well

_1
defined in H,,? since the equation is non characteristic in time. Uniqueness
follows in the same way : if f = 0 and g = 0, the extension % of u by 0 in

the past is a weak solution of Lu# = 0, Mu = 0 and therefore vanishes. [
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This result settles the question of uniqueness of solutions for (5.8). The
existence part is easy when the data vanish on a neighborhood of the edge
{t = Tq = 0}.

Proposition 5.4. Ifug € L?, f € L?yo and g € Lgm vanish on a neighborhood
of {t = x4 =0}, then (5.8) has a unique solution u € L2 .

Moreover, if in addition ug, f and g belong to H', the solution u also
belongs to H'.

Proof. Extend ug and f by 0 for x4 < 0 and solve the Cauchy problem
Lv = f, Vjy—g = Uo. Then there is a unique solution v € C9(]0,1]; L?(RY),
which by finite speed of propagation vanishes for x4 < 0 and ¢ < t( for some
to > 0. We solve the problem for w = u — xv, where x(t) is supported in
[0,t0] and x(0) = 1:

Lw = (1—-x)f — AoOxv, Muwjy,—o=g, wy— =0.

Indeed, by Proposition 5.3 there is a solution w € L%O.

The H' smoothness is proved similarly taking H' extensions of uy and
f , which vanish near the edge and an H' extension of g which vanish in
the past. ]

The difficult part of the proof is now to prove estimates for u independent
of the neighborhood where the data vanish. We prove them under the
following assumption:

Assumption 5.5. L admits a symmetrizer S(t,z,&) which is Lipschitz con-
tinuous in (t,x), and real analytic in .

Theorem 5.6. Under Assumptions 5.1 and 5.5, there is a constant C
such that for all smooth ug, f and g which vanish on a neighborhood of
{t = x4 = 0}, the unique H' solution of (5.8) satisfies

a2 +lluje,=oll L2 (0, xra-1) < €
(5.9) !
(ol + lglzzqoases + | 176N gz s)-

By density-continuity, the mapping (uo, f,g) — u uniquely extends to
ug € L?, f € LY([0,T); L?) and g € L?. Then u € C°([0,T7]; L?), is a weak
solution of (5.8). Since uniqueness is already known, the theorem above
implies the next corollary and hence Theorem 1.8.

Corollary 5.7. Under Assumptions 5.1 and 5.5, for all ug € L2(]Ri), fe
LY([0,T7; L?) and g € L*([0, T]xR~1), there is a unique u € CO([0,T]; L*(RL))
solution of (5.8) on [0,T] x R%. Moreover, u satisfies (5.9).
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5.2 The main estimate

We reduce the proof of the estimate (5.9) to a simpler one:

Theorem 5.8. Under Assumption 5.5, for u € Hl(R}ﬁrd) with support in
t €[0,2] one has

(5.10) ) oty Itz + g2 + g ol 2

Taking this theorem for granted, we show that it implies Theorem 5.6.
Because (SAg)~1(A4g) ! is a symmetrizer for L* | one has similar estimates
for the adjoint problem:

(5.11) H”(t)HLz(Ri) S L 0ll2 + lvllzz + lvje,=oll 2

Corollary 5.9. Consider the backward initial boundary value problem for
t<1

(5.12) L*® = o, M/<P|xd:0 =1, @1 =0.
Then
(5.13) 1®je=ollze + 12l 220, 1yxret ) F | Playg=ollz2 <
H‘PHLz[O,l]XRi) + 19 22
By duality, this implies the following estimate for the direct problem:

Proposition 5.10. There is a constant C such that for data vanishing on
a neighborhood of the edge, the solutions of (5.8) satisfy

(5.14) Hu\tzl||L2+HUHL2([0,1]xRi) + ||U\:cd=0HL2([o,1]de—l) S

[woll Lo ey + 1Lz (o, xre ) + 191l L2(0,1)xRA-1)-
Proof. By duality, the corollary implies that

Hqu/Q 0,1]xRZ +”uxd_—OHL2 S
(5.15) (10,1133 |
HUOHL2 Hf”l,?([o,l]x]Rd) HQHLQ'

To get the missing term, that is the L? norm of U)=1, it is now sufficient to

apply the direct estimate of Theorem 5.8 to v = tu, since Lv = tLu + Agu
is now controlled in L2. O
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We pass from the estimate for time 1 to estimates for all time ¢ €]0, 1]
by scaling. For € €]0, 1] consider the systems

(5.16)  Le(t,,0;,0,) = Ao(et,ex)0; + Y Aj(et,ex)dy, + eE(et, ex)
and the boundary conditions
(5.17) M.(t,xz) = M(et,ex).
Lemma 5.11. If u is a solution of (5.8), then u.(t,x) = u(et,ex) safisfies
(5.18) Leu. = ¢fe, B5Ua|xd:0 =0Ge;  Uejt=0 = U0,e
where f, ge and ug. are deduced from f, g and ug by the scaling.
Proof. One has
Aj(et,ex)(0ue)(t, x) = e(A;0;u)(et, ex)
and similar formulas for the traces. O

We note that the Assumptions 5.1 are satisfied for all e €]0,1], with
uniform constants:

Lemma 5.12. The boundary value problems (L., B:) satisfy the estimates
(5.5) and (5.6) with constants independent of € €]0, 1], for v > €.

Proof. With v = /e > ~g, the direct estimates are immediate consequences
of the scaling identities

—d — —d _
uelFs = Nl v el =<40) i,
and
—d —d
Hua\xd:OH%g =¢e Hu|xd:0||%2/, ||ga||2Lg = ||9||%2,
Y Y

The adjoint operator (L.)* is the scaled operator (L*). deduces from L* as
in (5.16). Similarly, B, = B’(et,ex) are dual boundary conditions so that
the estimates for L} follow by the same scaling argument. O

In the same vein, considering the symmetrizers S;(t,z,§) = S(et,ex, )
implies that the Assumption 5.5 is satisfied for L., with uniform constants.
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Proposition 5.13. There is a constant C' such that for data vanishing on a
neighborhood of the edge, the solutions of (5.8) are continuous in time with
values in L? satisfy for t € [0,1]

(@)l L2+ lwz =0l L2 0. xrA-1) S

(5.19)
luoll 2 a )y + 1 f 1l 2o, xmey + 91l 220,1xma-1-

Proof. The estimates at time ¢; follows from (5.14) applied to u. with ¢ =
ti. When the data are H', the solution is H' and therefore continuous
in time with values in L?. Therefore, by density the solutions belong to
C([0,1]; L?). O

This is almost the desired estimate (5.9), except for the norm of f. It
remains to replace the L? norm above by an L'([0,1], L?) norm. For that
we split the problem into two pieces :

(520) Lu= f? Mu|xd=[) = 07 Ujt=0 = 0.
and
(5.21) Lu=0, Muj,—o=9, U= = uo

By linearity, it is sufficient to prove (5.9) for the solution of each problem sep-
arately. For the second equation, this follows directly from Poposition 5.13
and it remains to prove (5.9) for the solution of (5.20). We show that it
follows from (5.19) using Duhamel’s principle.

Proposition 5.14. There is a family of bounded operators E(t,s) from
L2(R1) to L*(RY), for 0 < s <t < 1, such that for all s € [0,1[, u(t) =
E(t,8)ug is the unique solution in C°([s, 1], L*(RL) of

Lu=0, Mup,—o=0, uy=s=uo.

In particular, for allug € L2(R4), t = E(t, s)ug belongs to CO([s, 1], L?(R1)).
Moreover, for all ug € LQ(Ri), s+ E(t, 8)ug belongs to CO(]0, 1], LfU(Ri)
where L2, (R‘i) denotes the space L? equipped with the weak topology.

Proof. Clearly, what we have done before for the initial time ¢ = 0 is true
for all initial time ¢ = s. Thus, Proposition 5.13 implies that when uy € L?
vanishes near the boundary, there is a unique solution u € CY([s, 1]; L?)
which satisfies

(@)l < Cluolly
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The operator ug — u extends by density to ug € L? implying the first part of
the proposition. The second follows by duality : the corresponding operator
F(t,s") for the backward transposed problem is defined for 0 <t < s’ <1
and v = F(-, s")vg solves

* /
L'v=0, Mup,—0=0, up—y = vo.

In particular, t — F(t,s')v is continuous from [0, s’ to L2(R%). The duality
relation (5.3) shows that £(t,s) = F(s,t)* and therefore s — (£(t, s)uo, vo)
is continuous for all ug and vg in L2. ]

Lemma 5.15. For f smooth, vanishing in a neighborhood of the edge, the
solution of (5.20) is given by Duhamel’s principle:

(5.22) u(t):/o E(t,s)f(s)ds.

Proof. Note that for f € C%([a,1]; L2(R%)), s + E(t,s)f(s) is continuous
from [0, ] to L2, so that the integral (5.22) makes sense. Denote it by @(t).

For ¢ € H'(R%) vanishing near z4 = 0, let ¥(-) = F(-,¢)1 which is a
H! solution on [0,t] x R% of

LW =0, BWU,_,=0, ¥t)=1.
Then . .
(a(t). ) = /0 (E(t, 5) f(s), )ds = /0 (f(s), F(s, t))ds
= (Lu, ‘I’)L2([o,t]xRi) = (u(t),¥)

where the last equality follows from (5.3), which is satisfied since u is H'.
Hence u(t) = u(t) and the lemma is proved. O

Using the estimates of Proposition 5.13 for £(-,s)f(s) and integrating
them in s implies

Corollary 5.16. For f smooth, vanishing in a neighborhood of the edge,
the solution of (5.20) satisfies

t
(5.23) w22 + 1wzg=0ll 220, xRA-1) 5/0 1/ ()| L2 (e y ds

This finishes the proof of Theorem 5.6.
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5.3 Proof of Theorem 5.8

Recall that we are considering a function u € H 1(R}r+d), supported in t €
[0,2]. We can paralinearize the operator A;lL = 0y, + G and write

(5.24) Oz u~+ Tigu = f,

where T;¢ denotes the tangential paradifferential operator of symbol iG(t, z, ()
with ¢ = (,¢&) € R x R*1, and f satisfies

(5.25) 1fllz2 < 1 Lull gz + llul 2.

The proof relies on microlocal estimates which are stated in Proposi-
tions 5.17 and 5.18 below. We glue the different pieces using a finite partition
of unity

(5.26) 1=x0() + > xk(¢)
k=1

with yo is supported in {|¢'| < ¢| 7|} while the x; for & > 1 are supported
in {|7| < 2c7|¢'|}. Let ug, = xx(D.)u, where z = (t,2'). We will estimate
the L2 norm of each wuy(t) separately, using different methods according to
k=0or k > 1. Note that

(527) 8xduk + EG}Zkuk = fka

where f}, satisfies (5.25) and Y is equal to one on the support of xj. Note
also that uy is not any more supported in ¢ € [0, 2], but u; has an H! norm
for t ¢ [—1,3] ccontrolled by the L? norm of u. In particular

(5.28) letkpe=r 2+ wte=s [l S Mol -

We prove that one can choose the partition so that the wuy satisfy

(5.29) lur(®)[r2 S lukllpz + [1fellz + luk)z,=oll L2 + lux(=1)[ 2.
Theorem 5.8 is a consequence of the following two results:

Proposition 5.17. One can choose ¢ > 0 such that if xo ts supported in
{1€'] < |7|} then ug = xo(D:)u satisfies (5.29).

Proposition 5.18. For all z = (t,2') and all { = (1,¢') € R? with |¢'| =1,
there is a conical neighborhood of (z,() such that if xy, is supported in this

neighborhood, u,, = xru satisfies (5.29).

Indeed, by compactness, one can then choose a partition of unity 5.26
such that the estimate (5.29) is satisfied for all ux = xx(D.)u.
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5.3.1 The case || < ¢|7|

The proof of Proposition 5.17 is based on an extension of uy to {zg < 0}.
We first make a block reduction of the symbol G(¢,z, () for large 7. If ¢ is
small enough, the cone {|¢'| < ¢|7|} is contained in the interior of the cone
I defined in Section 2 and therefore, by Proposition 2.4 :

Lemma 5.19. If ¢ is small enough, the eigenvalues of G(t,x,() in {|&'| <
c|t|} are real and split in two groups, located in {£\ > c|T|} respectively.

As a corollary, there is a smooth microlocal block reduction

(5.30) X0(OGH, Q) =VTIGV, G = <Ci)+ C?_>

where the eigenvalues of G4 are located in {|\| > ¢1|7|} with £A7 > 0.
If x(D.) is supported in I'” and ug = x(D.)u, on can split

v:=Tyuyg = <Z+>

satisfies

(5.31) Dyvs + Tigvs = fo
with

(5.32) 1££llz2 + lvll 2 +Hvseg=ollz2 <

[uollL> + [l foll 2 + lluoje,=oll 2-

Moreover, the blocks G+ are strongly hyperbolic and admit smooth sym-
metrizers. Therefore, we are in position to apply Proposition 4.2 with x4 as
time variable, on a small but fixed interval [—X,0] and then truncate the
solution for x4 < X/2. Therefore, one can extend fi and vy to {z4 < 0}
so that (5.31) and (5.32) remain satisfied. Denoting by o the extension of
v, we see that 4y = Ty —10 satisfies

(5.33) [ Laol| 2 + lltol 2+ < lluoll 2 + [ foll 22 + lluojs,=oll 2-

Moreover, on {z4 > 0}, to|,>0 — o = (Tyy-1Ty —Id)up and by the symbolic
calculus

o0
~ 2
[ o) = unCma) e S ol

49



and therefore
(5'34) Slip Ha0|wd>0(t7 ) - uO(ta )H%Z(Ri) 5 HQZOH%?

Using the energy estimate for the Cauchy problem implies that for ¢ €
[0, 7]

(5.35) o)z < | Lol p2(—1,71xre) + G0l L2((— 1,17 xR%)

and Proposition 5.17 follows from (5.33) and (5.34).

5.3.2 The case |7| < C|¢|

Let ¢ be chosen as in Proposition 5.17. We now consider the remaining
frequencies |7| < C|¢'| with C = 1/c. The idea is to use Propositions 4.10
and 4.11 to estimate ||ug(t)| 2. Let 61 > 0 be given by Proposition 4.11 and
let a1 = 81/(2+ C), so that

(5.36) 7l <@A+O)ET = ar{Q) < au(¢).

We fix a point & = (t,z) and ¢ = (1,¢£) with |7] < C[¢/| We assume as
we may that |¢| = 1. The spectrum of G(Z, ¢) is made of at most N isolated
eigenvalues. Denote by p, the distinct values of their imaginary part. Then,
there is o € [0, 1] such that inf |y, — o] > a1 /N. Therefore, with ¢ =
$ai1/N, there is a conical neighborbhood of (Z,¢) such that for (#,() in this
neighborhood, the spectrum of G(%, () is contained in [Im A — a[¢|| > ¢[¢].

We choose x supported in this neighborhood and set v = x(Z, D,)u.
Then

|0zv + iTgol| 12 S Nlullz2 + ([ £l 2,

where G is an extension of G outside the given neighborhood such that G
satisfies the spectral property everywhere. Hence, the elliptic estimate of
Proposition 4.13 implies that

[(D:)2eP v, <l o 4 (11| 2 + [fgea=oll o
Using (5.36), this implies that
[(Dar)7e ™54 0| 1y Sl o+ 1] o + [legeamoll 2

with § = (24 C)a € [0,01]. Hence the estimate (5.29) for v follows from the
energy estimates of Propositions 4.10 and 4.11, and the proof of Theorem 5.8
is now complete.
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6 Counterexamples

In this section we prove Theorem 1.5. We give an example of an ill posed
initial boundary value problem for a 6 x 6 symmetric system with boundary
conditions which satisfy the uniform Lopatinski condition. This example
can be seen as well as a transmission problem for a symmetric 3 x 3 system.
The example is in dimension d = 3, the space variables are denoted by
(x,y, z) and the boundary is {x = 0}. The dual variables are (£,7,¢). The
eigenvalues have variable multiplicities on the manifold £ = n = y = 0,

¢#0.
Consider in R1*3
8,5 — 5893 8y yaz
(6.1) L. = Oy O + €0, 0 = 1d0; +eJ0, + A0, + yBO.
y8z 0 8t + 681

With e = 1 and 9 = —1, consider on {z > 0} the doubled system
(6.2) Lo Ui =0, LeUs=0

together with boundary conditions on {z = 0} of the form

U9 U Uj
(6.3) BU = v | —-M| v ] =0, where U; = [ v
w1 w2 wj

We choose M of the form

c 0 0

(6.4) M=(0 35 %
o —& 1L

2 2

The system is symmetric. The form (6.3) is well adapted to the diagonal
1-D system L(0}, 0,,0,0) since then the boundary condition prescribes the
incoming components in terms of the outgoing ones. This 1-D analysis also
shows that when ||M| < 1, the system is maximal strictly dissipative. In
particular, if M is of the form (6.4), the boundary condition is dissipative if
and only if |¢| < 1. The uniform Lopatinski condition is satisfied on a wider
range of ¢:

Proposition 6.1. When |c| < 2, the boundary conditions (6.3) (6.4) satisfy
the uniform Lopatinski condition for the system (6.2).
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This result will be proved later on. Taking it for granted, Theorem 6
follows from the next result :

Theorem 6.2. When ¢ €] — 2, —1], the initial boundary value problem is
strongly ill posed in the sense that there are families Uy of smooth solutions
of LU =0 on {t >0,z >0}, BU=0 on {t >0,z =0} such that

i) the Ux(0,) are bounded in H*(R3) for all s,

i) for all time t > 0, the U(t,-) are not bounded in L*(R3).

Remark 6.3. Since the Uy are smooth up to the boundary on the initial
surface, the compatibility conditions are satisfied at infinite order on the
edge {t = x = 0}. We do not make them explicit nor comment more on this
point here.

To prove the theorem, we first construct exact solutions of L .U, = 0.
Consider the basis

1 0
(65) €1 = —1 s €y = 0 , €3 = 1
1 0 1
Lemma 6.4. Let 1 > 0 and v > 0 satisfy u> —~? =1 and fore € {—1,+1}
let

1

6.6 d=eu—~vy= .
(6.6) V=
For all { > 0, introduce

. 1
(6.7) Ot ,y,2,¢) = V(v — p) +iCz — (v
Then
(68) UE(t7xay>z7C) = eCD(\/Zyel + 662)

18 an exact solution of L .U: = 0.

Proof. One has
(2 LU = (PP F, + CiyFy + Ry

with
Fy = (—A+iB)e; =0,
Fy =(—A+iB)des + (7Id —eud)er = (6 + v — ep)eq,
Fo = Aer + (7Id — epd)dea = ((v +ep)d — 1)es.
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where we have used that
(_A + iB)el = 0, (—A + ’iB)GQ =eq, Ael = —es,
Jep =e1, Jey= —eo.

Therefore, the conditions on the parameters imply that L.U. = 0 O

Lemma 6.5. Let > 0 and v > 0 satisfy p> — > = 1. Let Uy and Uy be
defined by (6.8) with 6; = e —y, with 1 =1 and g3 = —1 as above. Then
L., Uj = 0 and the boundary condition (6.3) (6.4) is satisfied if c = 62/01.

Proof. On the boundary

51 52
U=¢e*|-Y], Uy=e*|-Y ],
iy Y
with Y = y+/C. Therefore,
52 C 0 0 51
e®BU=[-Y]| -0 L i}[-Y]|=0
iy 0 -+ 1) \iy
when ¢ = d2/0;. O

Corollary 6.6. Let > 0 and v > 0 satisfy u> — > =1 and let ¢ = §3/61.
Then the initial boundary value problem for (6.2) (6.3) (6.4) is strongly ill
posed.

Proof. Consider for A large

Us(t,z,g,2) = e / Ut 2,y (¢ — Nde

where ¢ € C3°(]1,00]) and p < % It satisfies LUy = 0 and the boundary
condition BUy = 0, for all time. In particular, the compatibility conditions
at the edge {t = x = 0} are satisfied.

At t = 0 the phase ® is —/Cux — %Cyz 4 i€z and for all s,

[UA(0, )] =0(1)

and similar estimates are true for ¢t < 0 since the factor of ¢ in the phase is
positive. On the other hand, for £ > 0 the phase has the amplification factor
v+/Ct, and for \ > t=2/(1=20)

Ho(R3)

HUA(@ ')HLQ(Rfjr) > TVAL/2
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Remark 6.7. Note that the blow up also occurs in L*(BNR3) for any ball
B C R3 centered at the origin.

Proof of Theorem 6.2. For ¢ €] — 2, —1[, one can choose px > 0 and v > 0
such that y? =1 +~? and
CcC = 52/51 = —m
w="
and the theorem follows. O

Proof of Proposition 6.1. For the symbolic analysis, y is a parameter inde-
pendent of 7 and and we can replace y{ by ¢, which we do below. Clearly,
this is where the commutative calculus for symbols diverges from the non-
commutative calculus for differential operators.

a) We compute the spaces E(7,7,¢) when Im < 0. Due to the form
of the equation, it is the space of

U . in
(U;) Wlth Uj S ]Eej (TanaC)a

where Em is the incoming space associated with L.,. Recall from Section 2
that they are the invariant spaces associated to characterlstlc values ¢ lying
in the half plane Im & > 0.

For L., the characteristic equations for the eigenvectors are

(—=e&+71)u+nv+Cw=0
(6.9) (eE+T1)v+nu=0
(e€+71)w+Cu=0

Introduce polar coordinates for (7, ¢):
n=pcosf, (= psind.

The characteristic determinant is (7 + €£)(72 — ¢2 — p?). The characteristic
frequencies are —e7 and +4/72 — p2. They are distinct and simple when
Im7 <0.

An eigenvector for —e7 is

Ro = —sinf
cos
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Denote by ¢ the square root of 72 — p? which is located in Im & > 0. Eigen-
vectors associated to the characteristic frequency £ are

« 1
R=|cosf and R = | Bcosd
sin 6 [Bsin 6
with
o= S 8= —P .
—e&+ 7’ 41

Of course, they are parallel to each other, since « = 1/8. Depending on
the sign of €, we use one or the other form, depending on the sign of the
imaginary part of the denominators.

Consider the case ¢ = —1. Since Im7 < 0, Im(—e7) < 0 and thus
E™ has dimension one, associated to the characteristic value £. Because
Im (£ + 7) < 0 we choose R’ as a generator and hence

1
E™ =C | Bcosh |, 8= P
[Bsin 6 T4

When ¢ = +1, Im(—e7) > 0 and E? has dimension two, associated
to the characteristic frequencies —7 and £. Because Im (—e€ + 7) < 0, we
choose by Rg and R as generators and

' =C| —sinf | ®C | cosb |, a:T_pg.
cosf sin @

Combining the two cases, we conclude that for the symbol of the doubled
system (6.2), E™ has dimension three and is generated by

e (1) ne(8) e (3

with
0 a 1
Ry=| —sinf |, Ry = | cosf Ry = | acosf
cos sin 0 asinf
with
(6.11) a= ;pf, where €2 =7%—p?, Imé > 0.
r—

The definition of E™ extends to the limit case Im7 = 0, provided that
17|? 4+ p% # 0, choosing the correct limit for &.
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b) Applying the boundary conditions B to the basis of E" yields

0
BEy= | —sinf | ,
cosf
0 a —ca
BE1=|cosO | —M|[O0]|] = | cosb
sin 6 0 sin 6
1 0 1
BE;,=|0| —M |acosf | = —%aew
0 asin %aew

Because the three vectors in (6.10) are uniformly independent, the uniform
Lopatinski condition is satisfied if and only if the modulus of the Lopatinski
determinant A = det(BEy, BE1, BEs) is bounded from below by a positive
constant. One has

0 —ca 1
A =det | —sinf cosf — %aew
cosf sinf %ae’e

and

1 ; 1
A=-1+ Eca2e’9(0059 —isinf) = -1+ §ca2.

Recall the following elementary result.

Lemma 6.8. The image of {Im7 < 0,p € R} by the mapping (6.11) is
D :={|a| < 1}.

It implies that |A| > 1 — $|c| and the proposition is proved. O
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