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Abstract

In this paper we give a class of hyperbolic systems, which includes
systems with constant mutliplicity but significantly wider, for which
the initial boundary value problem (IBVP) with source term and initial
and boundary data in L2, is well posed in L2, provided that the nec-
essary uniform Lopatinski condition is satisfied. Moreover, the speed
of propagation is the speed of the interior problem. In the opposite
direction, we show on an example that, even for symmetric systems
in the sense of Friedrichs, with variable coefficients and variable mul-
tiplicities, the uniform Lopatinski condition is not sufficient to ensure
the well posedness of the IBVP in Sobolev spaces.
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1 Introduction

This paper is concerned with the solvability in L2 of the initial boundary
value problem for first order N ×N systems

(1.1)


Lu := A0(t, x)∂tu+

d∑
j=1

Aj(t, x)∂xju+B(t, x)u = f

u|t=0 = u0,

M(t, x′)u|xd=0 = g

We consider only the case of noncharacteristic boundaries, which means that
Ad is invertible when xd = 0. For simplicity, we have assumed here that the
boundary is flat and the equation holds for t > 0 and x ∈ Rd+ = {xd > 0}.
We also use the notation x = (x′, xd).

The starting point is the well known theory of hyperbolic symmetric
systems in the sense of Friedrichs ([Fr1, Fr2] or e.g. Chapter 3 in [BeSe]
for a more recent exposition and more references). If the matrices Aj
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are bounded and Lipschitz continuous on R × Rd+, hermitian symmetric,
if A0 is definite positive with A−1

0 bounded and if the boundary condition is
maximal dissipative and uniformly strictly dissipative, then, for all T > 0,
there is a constant C such that for all u0 ∈ L2(Rd), f ∈ L1([0, T ];L2(Rd+))
and g ∈ L2([0, T ] × Rd−1), the equation (1.1) has a unique solution u ∈
C0([0, T ];L2(Rd+)) which satisfies

(1.2)

∥∥u(t)
∥∥
L2(Rd+)

+
∥∥u|xd=0

∥∥
L2([0,t]×Rd−1)

≤ C
∥∥u|t=0

∥∥
L2(Rd+)

+ C

∫ t

0

∥∥Lu(s)
∥∥
L2(Rd+)

ds+ C
∥∥Mu|xd=0

∥∥
L2([0,t]×Rd−1)

.

Recall the general scheme of the proof of such theorems. First, one proves
a priori estimates, which in the case of symmetric systems, follow by inte-
gration par parts in

Re

∫
[0,t]×Rd+

e−2γs
(
Lu(s), u(s)

)
dsdx.

One obtains that there are constants γ0 and C such that for all smooth
enough function u and γ ≥ γ0

(1.3)

∥∥e−γtu(t)
∥∥2

L2(Rd+)
+
∥∥e−γsu|xd=0

∥∥2

L2([0,t]×Rd−1)
≤

C
∥∥u|t=0

∥∥2

L2(Rd+)
+ C

∥∥e−γsMu xd=0

∥∥2

L2([0,t]×Rd−1)
.

+ C

∫ t

0

∥∥e−γsLu(s)
∥∥
L2(Rd+)

∥∥e−γsu(s)
∥∥
L2(Rd+)

ds.

One can replace next ‖e−γtu(t)‖L2 by sup0≤s≤t ‖e−γsu(s)‖L2 which reveals
the L1 norm of ‖e−γsf(s)‖L2 , and finally, fixing γ and using a rough bound
for eγt on [0, T ] one obtains (1.2). The second step is to pass from these
estimates to an existence and uniqueness theorem. For this part, we refer
to [Fr1, Fr2, Rau, BeSe] for details, or to Section 5 where the analysis is
carried out in the new context developed in this paper.

We call inequalities of the form (1.2) semi-group estimates.

While Friedrichs analysis is based on the semi-group estimates, the alter-
nate approach developed initially by H.Kreiss is based on resolvent estimates
which can be stated as follows: there are constants C and γ0 such that for

all γ ≥ γ0 and all u ∈ C∞0 (R1+d
+ ),

(1.4)
γ
∥∥u∥∥2

L2(R1+d
+ )

+
∥∥u|xd=0

∥∥2

L2(Rd)

≤ Cγ−1
∥∥(L+ γA0)u

∥∥2

L2(R1+d
+ )

+ C
∥∥Mu|xd=0

∥∥2

L2(Rd)
,
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Note that the above resolvent estimates are implied by the semi-group es-
timates, for instance by squaring and integrating in time in (1.3). Wether
or not the converse implication holds is one of the points discussed in this
paper.

The resolvent estimates are the starting point for establishing the well
posed-ness of the boundary value problem in weighted spaces eγtL2 for γ
large and then the well posedness of the the initial boundary value problem
(1.1) with vanishing initial data u0, and finally for smooth initial data (see
e.g. [Kre, ChPi, Maj]).

The purpose of this paper is to understand better in which conditions
these properties remain true. The focus is put on linear problems, but,
by differentiating the equation, the maximal estimates above imply similar
a-priori estimates in Sobolev spaces, and, using iterative schemes, they ulti-
mately imply the local solvability in time of nonlinear problems. Indeed the
strategies that have been developed for instance in [Maj, BeSe, RaMa, Me5],
estimating the commutators with the tangential derivatives the via the mul-
tiplicative properties of Sobolev spaces or Gagliardo-Nirenberg inequalities,
estimating then the normal derivatives by the equation, and finally Picard’s
iterative schemes, do not use any special property of the system. We do not
develop further these aspects, since we do not pretend to novelty there.

In the interior, that is for functions which vanish on the boundary, a
necessary condition for the resolvent estimate (1.4) has been given by V.Ivrii
and V.Petkov ([IvPe]; see also section 4 in [Me3]): the principal symbol
L1(t, x, τ, ξ) must admit a bounded microlocal symmetrizer S(t, x, ξ) : this
is a positive definite symmetric matrix, homogeneous of degree 0 in ξ, such
that

(1.5) S, S−1 ∈ L∞, Im
(
S(t, x, ξ)

d∑
j=1

ξjA
−1
0 Aj(t, x)

)
= 0.

This property, called strong uniform hyperbolicity of the symbol in [Me3], is
equivalent to the existence of a constant C such that for all (t, x) ∈]0, T [×Rd+,
ξ ∈ Rd, τ ∈ R, γ > 0 and u ∈ CN ,

(1.6) |γ|
∣∣u∣∣ ≤ C∣∣L1(t, x, τ − iγ, ξ)

∣∣.
From now on, this condition is assumed to be satisfied:

Assumption 1.1. There is a constant C such that for all (t, x) ∈ [0, T ]×Rd+,
ξ ∈ Rd, τ ∈ R, γ > 0 and u ∈ CN , the inequality (1.6) is satisfied.
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Similarly, given a point (t, x) on the boundary, applying the resolvent
estimate (1.4) to

u
(
λ(t− t), λ(x− x)

)
, u ∈ C∞0 (R1+d

+ )

with parameter λγ in place of γ, and letting λ tend to +∞, one obtains that
for γ > 0:

(1.7)
γ
∥∥u∥∥2

L2(R1+d
+ )

+
∥∥u|xd=0

∥∥2

L2(Rd)

≤ Cγ−1
∥∥(L1 + γA0)u

∥∥2

L2(R1+d
+ )

+ C
∥∥Mu|xd=0

∥∥2

L2(Rd)
,

with the same constant C as in (1.4), where L1 and M are the operators
with constant coefficients frozen at (t, x). Performing a Fourier transform
in the tangential variables, one obtains that a necessary condition for (1.4)
is that for all (t, x′) in the boundary [0, T ]×Rd−1, all (τ, ξ′) ∈ R×Rd−1, all
γ > 0 and all u ∈ C∞0 (R+) one has

(1.8)
γ
∥∥u∥∥2

L2(R+)
+
∣∣u(0)

∣∣2 ≤
Cγ−1

∥∥(L1(t, x′, 0, iτ + γ, iξ′, ∂xd)u
∥∥2

L2(R+)
+ C

∣∣M(t, x′, 0)u(0)
∣∣,

Denoting by C− = {τ ∈ C; Im τ < 0}, this leads to introduce for (t, x′) in
the boundary and ζ = (τ, ξ′) ∈ C− × Rd−1, the space

Ein(t, x′, ζ) = L2(R+) ∩ kerL1(t, x′, 0, τ, ξ′, ∂xd).

It is also convenient to extend the definition near the boundary and Ein(t, x, ζ)
is the invariant space of

G(t, x, ζ) = A−1
d (t, x)

(
τA0(t, x) +

d−1∑
j=1

ξjAj(t, x)
)
,

associated to eigenvalues in C−. Hyperbolicity implies that for Im τ < 0,
G(t, x, ζ) has no real eigenvalues and that the dimension of Ein is constant
and equal to the number N+ of positive eigenvalues of A−1

0 Ad (see e.g.
[Kre]). The integer N+ is the correct number of boundary conditions for
(1.1) and we assume from now on, that the boundary condition M is a
N+ × N matrix. More generally, one could consider boundary conditions
where M takes its values in a N+ dimensional vector bundle.

Applied to u ∈ Ein, the estimate (1.8) implies that

(1.9) ∀u ∈ Ein(t, x′, ζ),
∣∣u∣∣ ≤ C∣∣M(t, x′)u

∣∣
with the same constant C, independent of (t, x′, ζ). Thus, a necessary con-
dition is that the uniform Lopatinski condition must be satisfied (see [Kre]):
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Definition 1.2. The boundary condition M is said to satisfy the uniform
Lopatinski condition (in short ULC) for the system L, when there is a
constant C such that for (t, x′) ∈ [0, T ] × Rd−1 in the boundary and all
ζ = (τ, ξ′) ∈ C− × Rd−1, the estimate (1.9) is satisfied.

For symmetric systems in the sense of Friedrichs, this condition is there-
fore satisfied for maximal strictly dissipative boundary conditions. However,
it is satisfied by a much wider class of boundary conditions, see e.g. [Ma-Os]
or other examples below. Another important motivation for considering
general boundary condition is the analysis of the stability of multidimen-
sional shock waves initiated by A.Majda ([Maj]). H.Kreiss has shown that
for strictly hyperbolic systems, the uniform Lopatinski condition implies
the a priori resolvent estimate (1.4). In [Ma-Os] and [Maj] it was noticed
that Kreiss’ proof extended to the case where the so-called block structure
condition was satisfied and in [Me1] it is shown that this latter condition
is satisfied for hyperbolic systems with constant multiplicities. More re-
cently, in [MeZu1], this result has been extended to some cases where the
multiplicity varies, with applications to MHD.

At this point, several questions can be raised, and it is the goal of this
paper to give them partial answers.

Question 1. To which extent can one push Kreiss construction of sym-
metrizers? Recall that their existence implies the resolvent estimates (1.4)
for the direct problem and for the dual problem, implying the well posed-ness
of the boundary value problem in weighted spaces eγtL2 for γ large; next a
causality principle follows, showing that if f and g vanish for t ≤ t0, then
the solution also vanishes there. This allows to solve the initial boundary
value problem (1.1) with vanishing initial data u0, and finally for smooth
initial data (see e.g. [Kre, ChPi, Maj]).

The obstacle to the construction of Kreiss symmetrizers is the existence
of varying multiplicities. In Section 3, we give a reasonable condition which
ensures the existence of smooth symmetrizers which extends Kreiss con-
struction.

Definition 1.3. The system L belongs to the class M if it is strongly hy-
perbolic and if near each point of the characteristic variety one of following
condition is satisfied :

i) L is analytically diagonalizable,
ii) denoting by n the conormal to the boundary, either n or −n belongs

to the cone of hyperbolic directions for the localized system.
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It belongs to the class sM if in addition it admits a symmetrizer S(t, x, ξ)
(1.5) which is Lipschitz continuous in (t, x) and C∞ in ξ 6= 0.

We refer to Section 2 for precise definitions and details. Condition i) is
the geometrical form of the block structure condition (see Theorem 3.4 in
[MeZu1]). The condition ii) extends the Defintion 3.6 in [MeZu1], where
it was applied to symmetric systems. We refer to this paper for examples.
Near points where the characteristic variety is smooth, the multiplicity is
constant, implying that the characteristic variety is analytic with respect to
the frequency variables and condition i) is satisfied (see Lemma 2.7 below).
Moreover, the symmetrizer can be chosen smooth, and even analytic, in ξ.
In particular, systems with constant multiplicity belong to the class sM.

Recall that Kreiss’ strategy was to construct first families of symmetriz-
ers, independently of any boundary condition, and next to show that for all
boundary condition which satisfies the ULC, one can select one symmetrizer
in the family which makes the boundary conditions strictly dissipative. We
call them K-families in Definition 3.5.

Theorem 1.4. If the system belongs to the class sM, there are K-families
of smooth symmetrizers for L.

If in addition the boundary conditions satisfies the ULC, the boundary
value problem is well posed in spaces eγtL2 for γ large enough.

The existence of K-families of symmetrizers implies the continuity of Ein
up to the boundary Im τ = 0 (see [MeZu2]), which is a strong limitation at
points where the multiplicities of the eigenvalues vary. This question is
discussed in Section 2.

Question 2. Is the uniform Lopatinski condition sufficient in general
for the validity of the resolvent (1.4)? In the constant-coefficient case, the
analysis in [GMWZ] shows that, if the estimate (1.2) (or (1.8)) is satisfied
for one boundary matrix M0 (and then M0 necessarily satisfies ULC), then
it is satisfied for all ULC boundary condition M . This applies to symmetric
systems, which admit strictly dissipative boundary condition.

But, in general, the answer to the question is negative:

Theorem 1.5. There are symmetric hyperbolic systems in the sense of
Friedrichs and boundary conditions which satisfy the uniform Lopatinski con-
dition, for which there are families of data bounded in Hs for all s which
generate solutions which are not bounded in L2 on all non trivial interval of
time.
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The conclusion is a classical expression of ill-posedness of the problem in
C∞. An example is given in Section 6. Of course, it has variable coefficients,
variable mutiplicities and the boundary conditions are not dissipative. The
strength of the result is that the well posed-ness is ruined not only in L2

but also in C∞.

Question 3. What can be said about the local theory, in particular about
local uniqueness and finite speed of propagation? We tackle this question
under the angle of the invariance of the assumptions by change of time. In
Section 2 we prove the following result (see the remark before Theorem 2.17).

Theorem 1.6. If L is of class sM, the validity of the uniform Lopatinski
condition is preserved by any change of time preserving hyperbolicity.

In particular, this proves that the speed of propagation for the bound-
ary value problem does nor exceed the speed of propagation for the interior
problem. This is in sharp contrast with the case of weakly well posed prob-
lems, where the weak Lopatinski condition holds, for which surface waves
can propagate faster than interior waves (see [Ben, BeSe, Hör, Gar, Her] )

Question 4. Are the semigroup estimates (1.2) satisfied for systems which
admit Kreiss symmetrizers? This is easily proved when the system is sym-
metric, using the obvious energy balance, since the boundary term which
involves the L2 norm of the trace of the solution is controlled by the resolvent
estimate (1.4). The general case is much more delicate. A positive answer
has been established for strictly hyperbolic systems [Rau] and extended to
systems with constant multiplicities [Aud]. An important consequence of
this question is the solvability of the initial-boundary value problem (1.1)
with all data, including u0, in L2. In Section 5 we extend the results cited
above, using ideas taken from [FrLa1, FrLa2]: the semigroup estimates are
proven, assuming the resolvent estimates, and using an holomorphic exten-
sion in ξ of the symmetrizer of the Cauchy problem. We make this condition
explicit in the next definition (recall Definition 1.3).

Definition 1.7. A system L in the class sM is said to belong to the class
aM if the symmetrizer S(t, x, ξ) (1.5) can be chosen Lipschitz continuous
in (t, x) and holomorphic in a cone {|Im ξ| ≤ δ|Re ξ|} for some δ > 0.

This condition is trivially satisfied when the system is symmetric in the
sense of Friedrichs, since then it is independent of ξ. It is also satisfied
when the multiplicities are constant, or more generally when the system is
analytically diagonalizable, since then the symmetrizer is explicitly given in
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the basis of diagonalization. Thus the next theorem extends the result of
[Aud] with a completely different method.

Theorem 1.8. Assume that the coefficients of L and M are W 1,∞([0, T ]×
Rd+). Suppose that the uniform Lopatinski condition is satisfied and that L is
of class aM. Then, for all f ∈ L1([0, T ];L2(Rd+), g ∈ L2([0, T ]×Rd−1) and
u0 ∈ L2(Rd+), the problem (1.1) has a unique solution u ∈ C0([0, T ]× Rd+).
Moreover, there is a constant C such that the semi group estimate (1.2) is
satisfied.

Section 5 is devoted to the proof of this results. It uses some para-
differential calculus, in particular for traces, which is presented in Section 4.

2 Symbolic analysis

In this section we extend the known properties of symbols of hyperbolic
boundary value problems in two directions, considering variable multiplici-
ties and giving intrinsic definitions which make clear the invariance of these
properties under a change of time direction. In particular, it is convenient to
treat in a whole the space-time variables x̃ = (t, x) ∈ R1+d, and accordingly
we consider a family of symbols

(2.1) L(a, ξ̃) =
d∑
j=0

ξjAj(a)

where ξ̃ = (ξ0, . . . , ξd) ∈ R1+d. The parameter a varies in a compact set
A, and the coefficients of the N × N matrices are supposed to be at least
continuous in a. In our analysis, we need the symbols p(a, ξ̃) to be smooth
with respect to the frequency variables, but for applications we insist on
keeping a limited smoothness in a, typically a Ck regularity with k ≥ 0,
or a W k,∞ regularity with k ≥ 1. This regularity is kept fixed throughout
this section, and to avoid repetition we use just say that a function p(a, ξ̃)
is smooth [resp. analytic] if it is C∞ [resp. real analytic] in ξ̃ and has the
given regularity Ck or W k,∞ with respect to a ∈ A. For example, a family
of spaces E(a, ξ̃) is smooth [analytic] if it admits locally a smooth [analytic]
basis.

The symbol L(a, ·) is assumed to be strongly hyperbolic in some direc-
tion ν1, uniformly with respect to a. Denote by Γa the cone of hyperbolic

1In the notations of the introduction, x0 = t, ξ̃0 = τ and ν = dt = (1, 0, . . . , 0).
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directions of L(a, ·), containing ν. Then L(a, ·) is strongly hyperbolic in any
direction ν ∈ Γa (see e.g. Section 4 in [Me3]). All the estimates below are lo-
cally uniform with respect to the parameters (a, ν) with a ∈ A and ν ∈ Γa.
This is made clear by shrinking A if necessary and choosing a cone with
compact basis Γ ⊂

⋂
a Γa. The uniform strong hyperbolicity hypothesis can

thus be stated as follows (see Proposition 4.4 in [Me3]).

Assumption 2.1. Γ is a closed convex cone in R1+d\0 which is contained
in Γa for all a ∈ A and there is a constant C such that for all a ∈ A, all
ξ̃ = Re ξ̃ + iIm ξ̃ ∈ R1+d − iΓ ⊂ C1+d\0 and all u ∈ CN ;

(2.2)
∣∣Im ξ̃

∣∣|u| ≤ C∣∣L(a, ξ̃)u
∣∣.

In the framework of Section 1, (2.2) is just an extension of the esimate
(1.6) to imaginary frequencies in a conical neighborhood of the given time
direction dt, considering (t, x) as the parameters and Proposition 4.4 in
[Me3] shows that this extension is legitimate.

Remark 2.2. Changing ξ̃ to −ξ̃, we see that the estimate (2.2) is satisfied
as well when Im ξ̃ ∈ Γ.

Together with L we consider boundary operator

(2.3) M(a)u|xn=0

where xn = n·x and n ∈ R1+d\{0} is the inner conormal vector to the bound-
ary of Ω = {xn > 0}2. More intrinsically, the data is K(a) = kerM(a) ⊂ CN .
We assume that

Assumption 2.3. For all a ∈ A, the boundary matrix L(a, n) is invertible,
K is a bundle over A of class W and dimK(a) = N−, the number of negative
eigenvalues of L(a, ν)−1L(a, n).

2.1 Localization and microhyperbolicity

The (real) characteristic variety of L(a, ·) is

Ca = {ξ̃ ∈ R1+d\{0}, detL(a, ξ̃) = 0}.

We denote by C the set of (a, ξ̃) with a ∈ A and ξ̃ ∈ Ca. At (a, ξ̃) ∈
C, invariant data are the kernel and the image of L(a, ξ̃). Denoting by

2In the notations of the introduction, n = dxd = (0, 0, . . . , 1), and xn = xd.
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ιa,ξ the embedding kerL(a, ξ̃) 7→ CN and by $a,ξ the projection CN 7→
CN/rangeL(a, ξ̃), the localized symbol at (a, ξ̃) is

La,ξ̃(η̃) = $a,ξL(a, η̃)ιa,ξ.

It acts from kerL(a, ξ̃) to CN/rangeL(a, ξ̃). The characteristic variety of
La,ξ̃ is denoted by Ca,ξ̃ ⊂ R1+d.

Strong hyperbolicity implies that for ξ̃ ∈ Ca one has

(2.4) p(η̃) := det
(
L(a, ξ̃ + η̃)

)
= O

(
|η̃|)m

)
where m = dim kerL(a, ξ̃) is the order of the root τ = 0 of p(ξ̃ + τν) = 0.
The limit

(2.5) p0(η̃) = lim
ε→0

ε−mp(εη̃)

exits and is homogeneous of degree m. Moreover, (2.2) implies that p0 is
hyperbolic any direction ν ∈ Γa (see. Lemma 8.7.2 in [Hör]). Denoting by
by Γa,ξ̃ the cone of hyperbolic directions for La,ξ̃ containing ν this means
that

∀(a, ξ̃) ∈ C, Γ ⊂ Γa ⊂ Γa,ξ̃.

Following the terminology of [Hör] (see [KK] for the original definition) Γa,ξ̃
is the cone of microhyperbolic directions near ξ̃. Moreover, the strong form
of hyperbolicity is preserved. This is the content of the next proposition.

Proposition 2.4. Let ξ̃ ∈ Ca of multiplicity m and let Γ′ be a closed convex

subcone of Γa,ξ̃. Then there is a neighborhood V of (a, ξ̃) in A × C1+d and

there are γ1 > 0, r > 0 and C such that :
i) for (a, ξ) ∈ V with Im ξ̃ ∈ −Γ′ with |ξ̃| ≤ γ1,

(2.6) ∀u ∈ CN , |Im ξ̃||u| ≤ C
∣∣L(a, ξ̃)u|.

ii) for (a, ξ) ∈ V with |ξ̃| ≤ γ1 and for θ ∈ Γ′ with |θ| = 1, the polynomial
in s, detL(a, ξ̃ + sθ) has exactly m roots counted with their multiplicities
contained in the disc {|s| ≤ r}. Moreover, if Im ξ̃ ∈ −Γ all of them have a
positive imaginary part, and if Im ξ̃ = 0 all of them are real .

We first prove the following lemma.
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Lemma 2.5. There is a neighborhood V of (a, ξ̃) and there are γ1 > 0, r > 0
and K > 0, such that for all matrix B with |B| ≤ K and all (a, ξ) ∈ V with
γ = |Im ξ̃| ≤ γ1, η̃ ∈ R1+d with |η̃| ≤ r:

Im ξ̃ ∈ −Γ, η̃ ∈ Γ′ ⇒ det
(
A(a, ξ̃ − iη̃) + γB

)
6= 0.

Proof. a) Consider the polynomial in s

p(b, s) = det
(
L(a, ξ̃ − iγν − isθ) + γB

)
Where ξ̃ ∈ R1+d, ν ∈ Γ, θ ∈ Γ′ with |ν| = |θ| = 1 and b stands fo
(a, ξ̃, ν, θ, B, γ). The assumption (2.2) implies that for all matrix B with
|B| < M = 1/C, all real ξ̃ and all γ > 0, L(a, ξ̃ − iγν) + γB is invertible.
Therefore, p(b, ·) has no root on the imaginary axis when γ > 0.

b) When (a, ξ̃) = (a, ξ̃) and γ = 0, p(b, s) = (−is)mp0(θ̃) + O(sm+1)
where p0 was introduced at (2.5). Because p0(θ) 6= 0 and the set of θ is
compact, as well as the sets of B and ν, there is a real neighborhood VR of
(a, ξ̃) and there are γ1 and r > 0 such that for (a, ξ) ∈ VR, |γ| ≤ γ1 and
|B| ≤ K, p(b, ·) has exactly m roots counted with their multiplicity in the
open disc D := {|s| < r} and no root in r ≤ s ≤ 2r.

c) When (a, ξ̃) = (a, ξ̃), B = 0 and γ > 0, q(γ, σ) = (−iγ)−mp(b, γσ) is
a polynomial in σ. It extends to γ = 0 and at γ = 0, q(0, σ) = p0(ν + σθ) is
a polynomial of degree m in σ. Because both ν and θ belong to the cone Γa,ξ̃
of hyperbolicity of p0, q(0, σ) = 0 has only real negative roots (see e.g. [Gar]
or Lemma 8.7.3 in [Hör]). By compactness in ν and θ, there are R > R1 > 0
such that these roots remain in {−R ≤ σ ≤ −R1}. By continuity, for γ small
and positive, q(γ, σ) has m roots in |σ| ≤ 2R which all satisfy Reσ < −1

2R1.

This shows that for (a, ξ̃) = (a, ξ̃), B = 0 and γ > 0 small, p(b, s) has m
roots in {|s| ≤ γ2R,Re s < 0}.

Decreasing γ1 if necessary, we can assume that 2γ1R ≤ r, and this shows
that for γ ∈]0, γ1] and (a, ξ̃) = (a, ξ̃), B = 0, the m roots of p(b, ·) in the
disc D, are located in D− = {s ∈ D,Re s < 0}.

By a) and b), there are no root in ∂D− for (a, ξ) ∈ V , |B| ≤ K and
γ ∈]0, γ1]. Therefore, the number of roots in D− is constant and independent
of b when γ > 0, if we have chosen, as we can, VR connected. Hence p(b, s)
has no roots in {|s| ≤ r,Re s ≥ 0} when γ > 0 and the lemma is proved.

Proof of Proposition 2.4. Lemma 2.5 implies that for all (a, ξ) ∈ V , all
with Im ξ̃ ∈ −Γ and |Im ξ̃| ≤ γ1 and all η̃ ∈ Γ′ with |η̃| ≤ r, L(a, ξ̃ + iη̃) is
invertible and

(2.7) |Im ξ̃| |L(a, ξ̃ + iη̃)−1| ≤ 1/K.
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Because Γa,ξ̃ is open and because Γ and Γ′ are closed convex cones, there is

ε > 0 such that for

η̃ ∈ Γ′, ξ̃ ∈ Γ, |ξ̃| ≤ ε|η̃| ⇒ η̃ + ξ̃ ∈ Γ′′

where Γ′′ is another closed subcone of Γa,ξ̃ which contains Γ′ in its interior.

Choose ν ∈ Γ with |ν| = 1. There is a neighborhood V1 of (a, ξ̃) and there

is γ2 > 0 such that for (a,Re ξ̃ − iη̃) ∈ V1 with η ∈ Γ′ and |η| ≤ γ2, one has
(a,Re ξ̃ − iε|η̃|ν) ∈ V , −ε|η̃|ν ∈ Γ,

∣∣− ε|η̃|ν∣∣ ≤ γ1 and η̃1 = η̃ − ε|η̃|ν ∈ Γa,ξ̃
with |η̃1| ≤ r. Thus the estimate (2.7) which is valid on Γ′′ implies that

ε|η̃| |L(a,Re ξ̃ − iη̃)−1| ≤ 1/K

and (2.6) follows with C = 1/(εK).

Part b) of the proof of the lemma above implies that for (a, ξ̃) close to
(a, ξ̃) and θ of length 1 in Γ′, detL(a, ξ̃ + sθ) = 0 has exactly m roots in s

in the disc {|s| < r}. Part c) says they are in Im s > 0 when Im ξ̃ ∈ −Γ.
If Im ξ̃ = 0, then (2.6) shows that the roots are located in Im s ≤ 0.

Now we note that the assumption satisfied by (ν, θ) are also satisfied by
(−ν,−θ) and therefore, shrinking the neighborhoods if necessary, the m
roots of detL(a, ξ̃−sθ) in the disc of radius r have also nonpositive imaginary
part, therefore the m roots of detL(a, ξ+sθ̃) in the disc are real. This proves
finishes the proof of ii).

2.2 Smooth modes and the class M

Recall that the characteristic variety C has been defined in the first lines of
Section 2.1.

Definition 2.6. C is said to be smooth at (a, ξ̃) if there is a neighbohood V of

this point in A×R1+d and a smooth function ϕ on V , such that dξ̃ϕ(a, ξ̃) 6= 0

and C ∩ V = {(a, ξ̃) ∈ V : ϕ(a, ξ̃) = 0}.

Lemma 2.7. Suppose that C is smooth at (a, ξ̃) and given locally by the

equation ϕ = 0. Then one can choose ϕ analytic in ξ̃ and
i) The characteristic variety of La,ξ̃ is the hyperplane {η̃ ·dξ̃ϕ(a, ξ̃) = 0}.
ii) There is a neighborhood V of (a, ξ̃), and an analytic family of spaces

E(a, ξ̃) on V , such that E(a, ξ̃) = kerL(a, ξ̃) for all (a, ξ̃) ∈ C ∩ V .

In particular, the dimension of kerL(a, ξ̃) is constant for (a, ξ̃) ∈ C ∩ V .
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Proof. Consider the polynomials p and p0 as in (2.4) and (2.5). Consider ν ∈
Γ and choose an hyperplane H such that R1+d = Rν ⊕H. By hyperbolicity
and continuity of the roots of polynomials, the roots in s of p0(η + sν) = 0
are the limits of sε where p(εη + εsε) = 0 for sequences ε → 0. Thus the
characteristic the set {p0 = 0} is the tangent space to C at (a, ξ̃) and this
proves i).

Moreover, ν · ∂ξ̃ϕ(a, ξ̃) 6= 0 since ν is a direction of hyperbolicity, and
thus non characteristic, for L(a,ξ̃). By the implicit function theorem, there

are neighborhoods V of (a, ξ̃) and V1 of (a, 0) and a smooth function λ(a, η)
on V1 such that

(2.8) C ∩ V = {(a, ξ̃ + η + sν), ξ ∈ H, s ∈ R, s+ λ(a, η) = 0}.

In particular, for (a, η) ∈ V1, −λ(a, η) is the unique eigenvalue close to 0 of
L(a, ν)−1L(a, ξ̃ + η) and this eigenvalue is semi-simple because of Assump-
tion 2.1. Thus λ is analytic in η and the corresponding eigenspace Eλ(a, η)
depends analytically on η. This proves ii).

Definition 2.8. L is said to be smoothly [analytically] diagonalizable at
(a, ξ̃) ∈ C if there is a neighbohood V of this point in A×R1+d, smooth [an-

alytic] functions ϕj on V , and smooth [analytic] families of spaces Ej(a, ξ̃)
on V , such that

i) ϕj(a, ξ̃) = 0 and dξ̃ϕj(a, ξ̃) 6= 0 on V ,

ii) C ∩ V =
⋃
Cj where Cj = {(a, ξ̃) ∈ V , ϕj(a, ξ̃) = 0},

iii) the Ej(a, ξ̃) are in direct sum,
iv) for all (a, ξ̃) ∈ C ∩ V , kerL(a, ξ̃) is the direct sum of the Ek(a, ξ̃) for

those indices k such that (a, ξ̃) ∈ Ck.

Fix ν ∈ Γ andH as before. ν is not characteristic for the localized symbol
and, shrinking ω, there are smooth [analytic] functions λj for (a, ξ) ∈ A×H
close to (a, 0) :

(2.9) Cj ∩ ω = {(a, ξ̃ + ξ + sν), ξ ∈ H, s ∈ R, s+ λj(a, ξ) = 0}.

Hence, the −λj(a, ξ) are the eigenvalue close to 0 of L(a, ν)−1L(a, ξ̃ + ξ).
They are semi-simple because of the strong hyperbolicity.

Remark 2.9. This condition is very restrictive at non smooth points of
C. It is not satisfied in the example of MHD or non-isotropic Maxwell
equations, as shown in [MeZu2]. Indeed a strong motivation for [MeZu2] and
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the present paper is to go beyond this condition. However, it is important
to make is explicit for two reasons:

- It is an almost necessary and sufficient condition for the validity of
the block structure condition (see [MeZu2]) which is the key structural as-
sumption for the construction of Kreiss-symmetrizers, see Section 3 below.
Moreover, the definition above is intrinsic and in particular, this shows that
the block structure condition is preserved by change of time.

- When all the Cj , of codimension one, cross on a analytic submanifold
Σ of codimension 2, then, after a block reduction, we are left, locally, with
the spectral analysis of a matrix of the form λ(σ)Id +A(σ, η) where σ ∈ Σ,
A(σ, 0) = 0 and η is a single variable transversal to Σ. In this case, one can
expect to be able to follow analytically in η both the eigenvalues close to
zero and associated eigenvectors of A.

At regular point (a, ξ̃) ∈ C, the localized operator has the form

La,ξ̃(η) = η̃ · dϕ(a, ξ̃) J

where {ϕ = 0} is the local equation of C and J an isomorphism from
kerL(a, ξ̃) to CN/rangeL(a, ξ̃). The vector field Hϕ with symbol η̃ · dϕ
determines the propagation of singularities. In presence of a boundary, this
depends on the position of Hϕ relatively to that boundary : tangent, incom-
ing or outgoing. That is ∂nϕ = n · dϕ = 0, > 0 or < 0 (assuming as we may
that ν · dϕ > 0). In the first case, the classical terminology is that the mode
ξ̃ is glancing, and in the other cases that it is hyperbolic. Another formula-
tion is that n is characteristic for La,ξ̃, n ∈ Γa,ξ̃ or −n ∈ Γa,ξ̃. These three
properties make sense in general and we are led to the following definition.

Definition 2.10. Given the domain Ω = {n · x > 0}, (a, ξ̃) ∈ C is said
hyperbolic incoming [resp. outgoing] if n ∈ Γa,ξ̃ [resp. −n ∈ Γa,ξ̃].

In this case, the boundary value problem for the localized operator needs
full [resp. no] boundary conditions and no precise analysis of the singularities
of C near (a, ξ̃) is needed. According to the discussion before Proposition 2.4
a more correct terminology would be to say that the mode is microhyperbolic.

The condition that n is characteristic for La,ξ̃ also makes sense in general.
However, in contrast with the situation at smooth points, in the general case,
there is a gap between this condition and the hyperbolicity.

If L is smoothly diagonalizable near (a, ξ̃), the characteristic variety is
singular as soon as there are different sheets Cj . But at these points the lo-
calized operator has a particular structure: it is block diagonal (see [MeZu1]
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and below) with blocks HϕjJj . Each of the Hϕj can be glancing, incom-
ing or outgoing, but the analysis can be carried on because of the strong
decoupling of these modes.

Summing up, the technical motivation for introducing of the class M
in as in Definition 1.3 is to rule out the difficult case where the localized
operator is not hyperbolic and cannot be decoupled into a diagonal system
of vector fields which can be handled separately. There are other and more
profound motivations that are explained in the sequel.

2.3 The incoming bundle, block decomposition

The Fourier-Laplace analysis of the boundary value problem relies on the
spectral properties of the matrix

G(a, ξ̃) = L(a, n)−1L(a, ξ̃)

for complex ξ̃ ∈ R1+d − iΓ, in particular in the limit Im ξ̃ → 0.
For ξ̃ ∈ R1+d−iΓ, the hyperbolicity implies that G(a, ξ̃)) has no eigenval-

ues on the real axis. The incoming space Ein(a, ξ̃) is defined as the invariant
space of G(a, ξ̃) associated to the eigenvalues in {Imλ < 0}. Ein(a, ξ̃) is
holomorphic in ξ̃ ∈ R1+d − iΓ, and in particular, the dimension of Ein is
constant.

If n ∈ Γ [resp. −n ∈ Γ], then one can choose above ξ̃ = −in [resp.
ξ̃ = n] and since G(a, n) = Id, dimEin = N [resp. dimEin = 0]. Hence, for
all ξ̃ ∈ R1+d − iΓ, Ein(a, ξ̃) = CN [resp. Ein(a, ξ̃) = {0}.

So we now exclude these trivial cases and assume that

(2.10) n /∈ ±Γ.

We first show that Ein only depends on the tangential frequencies.

Lemma 2.11. If ξ̃ ∈ R1+d − iΓ, then for all complex number s such that
ξ̃ + sn ∈ R1+d − iΓ, one has

(2.11) Ein(a, ξ̃ + sn) = Ein(a, ξ̃).

Proof. Because Γ is a convex cone, for all t ∈ [0, 1], ξ̃ + tsn ∈ R1+d − iΓ
and the eigenvalues of G(a, ξ̃ + tsn) do not cross the real axis. Because the
invariant spaces of G(a, ξ̃ + tsn) = G(a, ξ̃) + tsId do not depend on t, this
implies that the invariant space associated to the eigenvalues in {Imλ < 0}
is constant.
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Consider the projection $ : R1+d 7→ R1+d/Rn = T ∗∂Ω and its complex
extension C1+d 7→ C1+d/Cn = C ⊗ T ∗∂Ω. The image by $ of R1+d − iΓ
is T ∗∂Ω − iΓ[ where Γ[ = $Γ is a closed convex cone in T ∗∂Ω\{0}. The
invariance (2.11) legitimates the definition of Ein for frequencies for ζ ∈
T ∗∂Ω− iΓ[:

(2.12) Ein(a, ζ) = Ein(a, ξ̃), ξ̃ ∈ R1+d − iΓ, $ξ̃ = ζ.

Another important remark is that for α ∈ C\{0} , G(a, αξ̃) = αG(a, ξ̃)
and therefore they have the same invariant spaces. Therefore, by continuity,

(2.13) Ein(a, αξ̃) = Ein(a, ξ̃)

as long as Im ξ̃ ∈ Γ and Im (αξ̃) ∈ Γ, since the set of α ∈ C such that
Im (αξ) ∈ Γ is an open convex cone which contains 1. Introduce the open
set

(2.14) Z = {αξ̃, Im ξ̃ ∈ −Γ, α ∈ C\{0}} ⊂ C1+d\{0}

and its projection Z [ = $Z ⊂ C1+d/Cn ≈ C⊗ T ∗∂Ω

(2.15) Z [ = {ζ,∃α ∈ C\{0} : Imαζ ∈ −Γ[}

This set is conic and stable by multiplication by complex numbers 6= 0, but
is not convex. It does not contain 0. Moreover, if αξ̃ = βη̃ ∈ Z , with
Im ξ̃ and Im η̃ in −Γ, then η̃ = α/βξ̃ and by (2.13) , Ein(a, ξ̃) = Ein(a, η̃).
Therefore, this legitimates the definition

(2.16) Ein(a, ζ) = Ein(a, αζ), Imαζ ∈ −Γ[

for ζ ∈ Z [, and the property (2.13) is satisfied on Z .

An important issue is to understand the structure of the bundle Ein in
the limit Im ζ → 0.

Though this is not necessary, we simplify the exposition by choosing
Z ⊂ R1+d an hyperplane which does not contain n. We identify Z to T ∗∂Ω
considering the projection $̃ from R1+d → Z which corresponds to the
decomposition ξ̃ = ζ + ξnn ∈ Z ⊕ Rn. The complex cotangent space is
identified with ZC = Z + iZ. In these coordinates, Γ[ = $̃Γ ⊂ Z and

Ein(a, ζ) is defined for ζ ∈ Z − iΓ[. We denote by Γ
[

= Γ[ ∪ {0} the closure
of Γ[ in Z.

Fix ζ ∈ Z − iΓ. We study the spectral decomposition of G(a, ζ) for
(a, ζ) close to (a, ζ). Consider the distinct complex eigenvalues µ

k
, k ∈
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{1, . . . , k} of G(a, ξ). The invariant spaces of G(a, ζ) associated to µ
k

can

be holomorphically continued on a neighborhood V of (a, ζ) in A × ZC.
Denote by Ek(a, ζ) these spaces. Taking holomorphic basis, this yields a
block reduction

(2.17) G(a, ζ) = W−1(a, ζ)diag(Gk(a, ζ))W (a, ζ).

where the W and Gk are holomorphic in ζ and the spectrum of Gk(a, ξ̃) is

reduced to {µ
k
}. If Im ζ ∈ Γ[ the eigenvalues of Gk(a, ξ̃) are not real and

the invariant subspace Eink (a, ξ̃) associated to eigenvalues in Imλ < 0 is well
defined and holomorphic on this domain.

Case 1. If ζ ∈ Γ[, none of the eigenvalues µ
k

is real and for (a, ζ) in a

complex neighborhood of (a, ζ), Ein(a, ζ) = Ek(a, ζ) [resp. Ein(a, ζ) = {0}]
if Imµ

k
< 0 [resp. Imµ

k
< 0]

Case 2. Suppose now that Im ζ = 0.
Subcase 2.1. If µ

k
/∈ R, then again there is a complex neighborhood

V of (a, ζ) such that for (a, ζ) ∈ V with Im ζ ∈ Γ[, Ein(a, ζ) = Ek(a, ζ)
[resp. Ein(a, ζ) = {0}] if Imµ

k
< 0 [resp. Imµ

k
> 0]. In particular, Ein has

an holomorphic extension to V , which is Ek or {0}.

Subcase 2.1. Suppose now that µ
k
∈ R. This means that ξ̃

k
= ζ−µ

k
n

belongs to the real characteristic variety C. We consider first the case where
it is an hyperbolic point in the sense of Definition 2.10.

Proposition 2.12. If (a, ξ̃
k
) ∈ C is hyperbolic incoming [resp. outgoing] in

the sense of Definition 2.10, then there is a complex neighborhood V such that
for (a, ζ) ∈ V with Im ζ ∈ Γ[, Ein(a, ζ) = Ek(a, ζ) [resp. Ein(a, ζ) = {0}].
In particular, Ein has an holomorphic extension to V , which is Ek or {0}.

Proof. For (a, ζ) near (a, ζ), the invariant space of G(a, ζ) for eigenvalues

close to µ
k

is the invariant space of G(a, ξ̃) for eigenvalues close to zero for

(a, ξ̃) close to (a, ξ̃
k
). Suppose that n ∈ Γ

a,ξ̃
k . We apply by Proposition 2.4

with Γ′ a cone containing Γ and n and θ = n. For (a, ξ̃) close to (a, ξ̃
k
)

and ξ̃ ∈ Γ, detG(a, ξ̃ + sn) = 0 has mk roots near 0 and they all belong to
{Im s > 0}. Thus detG(a, ξ̃) has mk eigenvalues counted with multiplicities
near 0 and they all belong to {Imµ < 0}. Projecting on Z gives the result.

If −n ∈ Γ
a,ξ̃

k , then the roots in Im s < 0 and the eigenvalues in Imµ > 0

implying that Ein = {0}.
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Next we consider the case where the system is analytically diagonalizable

near (a, ξ̃
k
).

Proposition 2.13. Suppose that L is analytically diagonalizable near (a, ξ̃
k
).

Then there is a neighborhood V of (a, ζ), such that Eink (a, ζ) has a continuous

extension to V ∩ Z − iΓ[.

Proof. It is proved in [MeZu2] (see also Remark 3.8 below)that if a matrix
G̃(p, ζ, γ) with parameters p, frequencies ζ ∈ Rd and γ > 0, satisfies the
block structure condition, then the incoming space Ẽin(p, ζ, γ) has a contin-
uous extension to γ = 0. We apply this property to Gk(a, ζ − µkn − iγν),
with ν ∈ Γ of length 1, considering p = (a, ν) as the parameters. This
implies that the limit

Ẽin(a, ζ, ν) = lim
γ→0

Eink (a, ζ − µ
k
n− iγν)

exists and the convergence is locally uniform in (a, ν, ζ). It remains to show
that the limit is independent of ν. This is clear from the proof in [MeZu2],

since the limit is explicit in terms of ∂lnej(a, ξ̃
k
) where the ej(a, ξ̃) are ana-

lytic eigenvectors of diagonalization of L.

Corollary 2.14. If the system L belongs to the class sM, the bundle Ein(a, ζ)

has a continuous extension to A× (Z\{0} − iΓ[).

2.4 The Lopatinski condition

We consider boundary conditions (2.3) satisfying Assumption 2.3. The in-
variant datum is the kernel of the boundary condition K(a) = kerM(a) ⊂ E
with dimK = N − N+. The Lopatinski determinant D(a, ζ) is the angle
between K and Ein(a, ζ) or

(2.18) D(a, ξ̃) =
∣∣ det(K(a),Ein(a, ζ))

∣∣
where the determinant is computed by taking orthonormal bases in each
space. D(a, ζ) does not depend on the choice of theses bases. It depends
only on the choice of a scalar product on E. The invariance property (2.13)
shows that the natural domain of definition of D is Z [, which is larger that
than T ∗∂Ω − iΓ[. In particular, we note that, for α ∈ C\{0}, if ζ and αζ
both belong to T ∗∂Ω− iΓ[ then

(2.19) D(a, ζ) = D(a, αζ).

19



Given a time direction ν ∈ Γ, the weak Lopatinski condition is that
Ein(a, ζ − iγν)∩K(a) = {0}, or equivalently that D(a, ζ − iγν[) 6= 0, for all
(a, ζ) ∈ A×T ∗∂Ω and γ > 0. The strong Lopatinski condition is that there
is a constant C such that

∀(a, ζ) ∈ A× T ∗∂Ω, ∀γ > 0∀u ∈ Ein(a, ζ − iγν[), |u| ≤ C|M(a)u|.

This is equivalent to the condition that there is a constant c > 0 such that

(2.20) ∀(a, ζ) ∈ A× T ∗∂Ω, ∀γ > 0, D(a, ζ − iγν[) > c.

Locally there are holomorphic versions of D:

Lemma 2.15. For all (a, ζ) ∈ A× Z[, there are neighborhoods of a and ζ,
there is a function `(a, ζ) continuous in a and holomorphic in ζ and there
is a constant C > 1 such that on ω

(2.21)
1

C
|`(a, ζ)| ≤ D(a, ζ) ≤ C|`(a, ζ)|.

Proof. One can fix an orthonormal basis {ej} of Ein(a, ζ). For (a, ζ) in
a neighborhood of (a, ζ), the image of this basis by Π(a, ζ) is a basis of
Ein(a, ζ). Together with a continuous basis {fk} of K(a), we can form the
determinant

`(a, ζ) = det
(
Π(a, ζ)e1, . . . , f1, . . . ,

)
which is holomorphic in ζ and D(a, ζ) = σ(a, ζ)|`(a, ζ)| where σ(a, ζ) =
1.

Remark 2.16. The function ` can be globalized using analytic continu-
ation and the property that T ∗∂Ω − iΓ[ is contractible. However, when
dealing with the uniform Lopatinski condition, we think that the geometric
definition (2.18) is more adapted. For instance, if L is of class M, D has
a continuous extension to T ∗∂Ω\{0}, while the holomorphic version ` may
have no.

Theorem 1.6 is a consequence of Corollary 2.14 and of the next result:

Theorem 2.17. If the bundle Ein(a, ζ) has a continuous extension to A×
(T ∗∂Ω\{0}− iΓ[) and if the uniform Lopatinski condition is satisfied in the
direction ν, then for any closed subcone Γ1 contained in the interior of Γ,
there exists a constant c > 0 such that

(2.22) ∀(a, ζ) ∈ A× (T ∗∂Ω− iΓ[1), D(a, ζ) > c.

In particular, the uniform Lopatinski condition is satisfied in all direction
ν ∈ Γ1.
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Proof. Again, it is convenient to use a parametrization Z of T ∗∂Ω. A
consequence of the assumption is that D has a continuous extension to

A× (T ∗∂Ω\{0} − iΓ[) and this extension is bounded from below by c. For
a ∈ A, ζ ∈ Z with |ζ| = 1 and ν ∈ Γ1 with |ν| = 1, consider the function

(2.23) fa,ζ,ν(s) = D(a, ζ − isν)

which is defined for Re s ≥ 0.
a) We show that there is R > 0 such that for all (a, ζ, ν)

(2.24) |s| ≥ R ⇒ fa,ζ,ν(s) ≥ c/2.

Indeed, |Im ζ/s| ≤ 1/R and therefore if R is large Im (s−1ζ − iν) ∈ −Γ.
Then for such s, the invariance property (2.19) implies that

(2.25) fa,ζ,ν(s) = D(a, s−1ζ − iν).

The uniform Lopatinski condition implies that D(a, ζ) ≥ c for real fre-
quencies ζ ∈ Γ[. For such ζ, the invariance property (2.19), which can be
extended by continuity, implies that D(a,−iζ) = D(a, ζ) ≥ c. Hence, by
continuity and compactness, D(a, ζ − iν) ≥ c/2 when ν ∈ Γ[1 and |ζ| is so
small enough. With (2.25), this implies (2.24).

b) The assumption implies that for real frequencies with |ζ| = 1,
D(a, ζ) ≥ c. Hence, by continuity, there is ε > 0 such that

(2.26) |s| ≤ R, Re s ≤ ε, ⇒ fa,ζ,ν(s) ≥ c/2.

c) On the compact domain {|s| ≤ R,Re s ≥ ε}, fa,ζ,ν is proportional
to an holomorphic function, which is bounded from below on the boundary.
Thus the number of zeros in this domain in independent of the parameters.
When ν = ν, the assumption is that there are no roots, so that fa,ζ,ν never
vanishes on this domain. By compactness, it is uniformly bounded from
below and the theorem follows.

3 Tangential symmetrizers

The goal of this section is to prepare the proof Theorem 1.4 with the con-
struction of Kreiss symmetrizers. We first review their general approach and
the new piece is added at Theorem 3.12. The time direction is fixed and

21



we use the notations (τ, ξ) = (τ, ξ′, ξd) of the introduction. We denote by
ζ = (τ, ξ′) the tangential frequencies. We consider

(3.1) G(a, ζ) = Ad(a)−1
(
τA0(a) +

d−1∑
j=1

ξjAj(a)
)
.

The parameter a varies in A; as in the previous section a level of smoothness
with respect to a for functions or symbols is fixed, and not repeated in the
statements. By homogeneity we can assume that ζ ∈ Sd− = {(τ, ξ′) ∈
C×Rd−1, |τ |2 + |ξ′|2 = 1, Im τ < 0}. The incoming space Ein(a, ζ) is defined
for Im τ < 0 and the uniform Lopatinski condition is satisfied if and only if
there is a constant C0 such that

(3.2) ∀(a, ζ) ∈ A× Sd+ , ∀u ∈ Ein(a, ζ) |u| ≤ C0

∣∣M(a)u
∣∣.

Definition 3.1. A bounded symmetrizer on Ω = ω × U ⊂ A × Sd−, is a
smooth matrix S(a, ζ) on Ω, such that there are C, c > 0 such that for all
(a, ζ) ∈ Ω,

S(a, ζ) = S∗(a, ζ),(3.3)

|S(a, ζ)| ≤ C,(3.4)

ImS(a, ζ)G(p, ζ) ≥ c|Im τ |Id,(3.5)

It is a Kreiss symmetrizer for the boundary condition M if in addition, there
are positive constants C1 and c1 such that

(3.6) S(a, ζ) + C1M
∗(a)M(a) ≥ c1Id.

The symmetrizer is continuous [smooth], if it extends continuously [smoothly]

to ω × U ⊂ ω × Sd−.

Remark 3.2. Changing the constants, one can replace (3.6) by

(3.7) S(a, ζ) ≥ c1Id on kerM(a).

Theorem 1.4 is a consequence of the following two results:

Theorem 3.3. Under the assumptions of Theorem 1.4, there is a smooth
Kreiss symmetrizer.

Theorem 3.4. If there is a smooth Kreiss symmetrizer, the maximal resol-
vent estimates (1.4) are satisfied.

The remaining part of this section is devoted to the proof of the first
theorem. The second is proved in [Kre, Maj, ChPi] when the coefficients are
smooth in (t, x) and for instance in [Me5] when the coefficients are Lipschitz.
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3.1 The general strategy

The holomorphic regularity in τ is forgotten. In [Kre], H.Kreiss constructs

near each point (a, ζ) ∈ A × S
d
−, families of symmetrizers Sκ which are

independent of the boundary conditions, such that the negative cone of
Sκ is an arbitrarily small conic neighborhood of Ein. Next, he uses the
uniform Lopatinski condition to choose the parameter: because kerM does
not intersect Ein, it is contained in the positive cone of Sκ for κ large enough,
implying (3.6). The construction of the Sκ is performed locally, and we sum
up the main intermediate step in the following definition:

Definition 3.5. Let (a, ζ) ∈ A×Sd−. Consider a family of symmetrizers Sκ

on ωκ×Uκ− where the ωκ are neighborhoods of of a and Uκ− = Uκ∩Sd− where
the Uκ are neighborhoods of ζ in Sd. It is called a K-family near (a, ζ) if
there is a space E of dimension N+ and a projector Π on E such that for
all (a, ζ) ∈ ωκ × Uκ− and for all κ,

(3.8) Sκ(a, ζ) ≥ m(κ)Π′
∗
Π′ −Π∗Π

where Π′ = Id−Π and m(κ)→ +∞ as κ→ +∞.

Note that the constants C and c in (3.4) (3.5) may (and do in general)
depend on κ.

Remark 3.6. If S is continuous at (a, ζ), or has a continuous extension
at this point when Im τ = 0, shrinking the neighborhoods if necessary and
changing the parameters, it is sufficient to verify (3.8) at (a, ζ).

Remark 3.7. The choice of the projector Π is arbitrary, if one accepts to
modify the Sκ. If Π̃ is another projector on E, then Π̃Π = Π, Π̃′Π = 0 and
Π̃′ = Π̃′Π′. Hence,

|Π̃′u| = |Π̃′Π′u| ≤ C̃|Π′u|, |Πu| ≤ C(|Π̃′u|+ |Π̃u|).

with C = |Π and C̃ = |Π̃|. Thus,

m(κ)|Π′u|2 − |Πu|2 ≥ (m(κ)/C̃2 − 2C2)|Π̃′u|2 − 2C2|Π̃u|2.

Therefore, changing Sκ to S̃κ = 1
2C
−2Sκ we see that (3.8) for Sκ and Π

implies similar estimates for S̃κ and Π̃, with m̃(κ) = m(κ)/2C2C̃2 − 1. In
particular, we can always choose Π to be the orthogonal projector on E for
a given scalar product in CN .
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Remark 3.8 (see [MeZu2]). Any symmetrizer S(a, ζ) is necessarily negative
definite on Ein(a, ζ) for Im ζ < 0 implying that for (a, ζ) ∈ ωκ × Uκ− and
u ∈ Ein(a, ζ)

m(κ)
∣∣Π′u∣∣2 ≤ ∣∣Πu∣∣2.

Therefore, the space Ein(a, ζ) has a limit as (a, ζ) → (a, ζ) in A × Sd− and
this limit is E:

E = lim
(a,ζ,γ)→(a,ζ)

Ein(a, ζ)

This shows that E is unique. Denoting by Ein(a, ζ) this limit when ζ ∈
∂Sd− = Sd−1 is real, the same analysis shows that the family Ein(a, ζ − iγν)
is a Cauchy sequence for the uniform convergence on A × Sd−1 implying
that the following limit is uniform in (a, ζ) ∈ A× Sd−1

Ein(a, ζ) = lim
γ→0

Ein(a, ζ − iγν).

Lemma 3.9. Suppose that Sκ is a K-family of symmetrizers on ωκ × Uκ−.
Then for any boundary condition M which satisfies the uniform Lopatinski
condition, Sκ is a Kreiss symmetrizer for κ large enough.

Proof. The Lopatinski condition and Remark 3.8 imply that there is a con-
stant C0 such that

|Πu| ≤ C0|MΠu| ≤ C0|Mu|+ C0|M | |Π′u|.

Thus,

|u|2 ≤ 2|Πu|2 + 2|Π′h|2 ≤ 6C2
0 |Mu|2 + 6C2

0 |M |2|Π′u|2 − |Πu|2.

and, for m(κ) ≥ 6C0|M |2, (3.6) follows, with C1 = 6C2
0 and c1 = 1.

Proposition 3.10. Suppose that for all (a, ζ) ∈ ω × S
d
−, there are neig-

borhoods ωκ × Uκ of (a, ζ) and a K-family of bounded [resp. smooth] sym-
metrizers Sκ(p, ζ) on ωκ × Uκ−. Then for any boundary condition M which
satisfies the uniform Lopatinski condition, there is a bounded [resp. smooth]
Kreiss symmetrizer for the boundary value problem (L,M).

Proof. By Lemma 3.9, all (a, ζ) ∈ ω × Sd−, has a neighborhood ω × U such
that there is a bounded [resp. smooth] symmetrizer S on ω×U−. Therefore

there is a finite covering of Aω × Sd− by open sets ωj × Uj and Kreiss sym-
metrizers Sj on ωj × Uj,+. Consider a a partition of unity 1 =

∑
χj with

χκj supported in ωj × Uj . Then Σ =
∑

j χjSj is a Kreiss symmetrizer, wich

is bounded [resp. smooth] on A× Sd−.
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3.2 Construction of K-families of symmetrizers

Let (a, ζ) ∈ A×Sd−. To construct symmetrizers, we use the smooth diagonal
block reduction 2.17 of G on a neighborhood ω × U of (a, ζ):

For Im τ < 0, we denote by Eink (a, ζ) the invariant subspace of Gk asso-
ciated to eigenvalues in {Imµ < 0}. Thus,

(3.9) Ein(a, ζ) = W−1(a, ζ)
(⊕

k

Eink (a, ζ)
)
.

It is sufficient to construct K-families for each block separately:

Lemma 3.11. Suppose that for all k, Sκk is a K-family of bounded [smooth]
symmetrizers for Gk near (a, ζ). There are K-families of bounded [smooth]
symmetrizers Sκ for G near (a, ζ).

Proof. Taking finite intersection, we can find common neighborhoods ωκ ×
Uκ for the different Gk. Relabeling the families Sκk , we can also assume that
they satisfy (3.8) with the same m(κ) and by Remark 3.7 that the projectors
Πk are the orthogonal projectors on Ek.

Then Sκ = W ∗diag(Sκk )W is a family of bounded [smooth] symmetrizers
for G and for u = W−1(u1, . . . , uk)

t, there holds

(Sκu, u) =
∑

(Sκkuk, uk) ≥ m(κ)
∑
|Π′kuk|2 −

∑
|Πkuk|2.

Let Π = W−1diag(Πk)W . It is a projector on E and

|W |−2(Sκu, u) ≥ m̃(κ)|Π′u|2 − |Πu|2

with m̃ = m/(|W−1|2|W |2). Therefore, |W |−2Sκ is a K-family near (a, ζ).

The construction of Sκk for blocks Gk is already made in several cases
(see [Kre, BeSe, Me5]).

- First, when the spectrum of Gk(a, ζ) does not intersect the real line
and this is always the case when Im τ 6= 0 ;

- When τ is real and the spectrum of Gk(a, ζ) contains real eigenvalues,
we can split further the blocks to consider only the case where this spectrum
is limited to a single eigenvalue µ

k
. In this case, ξ̃ = (ζ,−µ

k
) ∈ R1+d\{0} is

characteristic for L(a, ·). If the characteristic manifold is smooth near (a, ξ̃)
or more generally if L is smoothly diagonalizable near this point, then Gk
satisfies the block structure condition and Kreiss construction applies (see
[Maj, MeZu2, Me5]).
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Therefore, to finish the proof of Theorem 3.3, we only have to construct
K families when the block Gk is associated to an hyperbolic characteristic
point ξ̃ in the sense of Defintion 2.10.

3.3 Symmetrizers for hyperbolic blocks

Consider (a, ζ) ∈ A × Rd\{0} and an invariant block Gk near this point,

such that the spectrum of Gk(a, ζ) is {µ
k
}. Denote by ξ̃ = (ζ,−µ

k
) ∈ Ca.

Theorem 3.12. Assume that the system L admits a smooth symmetrizer
S(a, ξ). If ξ̃ is an hyperbolic point in the sense of Definition 2.10, then there
are families of Kreiss symmetrizers for the block Gk.

The main part of the construction is made in the following

Lemma 3.13. Suppose that ξ̃ is incoming [resp. outgoing]. There is a
smooth symmetrizer S(a, ζ) such that

(3.10) S = S∗ � 0, SGk = (SGk)
∗,

and

(3.11) ReSGk(a, ν)� 0;
[
resp. ReSGk(a, ν)� 0

]
.

Here the notation S � 0 means that the matrix S is positive definite.

Proof. a) Because n is not characteristic for the linearized symbol La,ξ̃,

kerL(a, ξ̃) ∩ rangeL(a, n)−1L(a, ξ̃) = {0}

implying that µ
k

is a semi simple eigenvalue of G(a, ζ), with multplicity

mk = dim kerL(a, ξ̃).
By Proposition 2.4, for ν ∈ Γ of length 1 one has for a in a neighborhood

of a, (ζ, ξd) in a neighborhood of ξ̃, γ ≥ 0 and Re s > 0 small :

(3.12) (s+ γ)|u| ≤ C
∣∣G(a, ζ − iγν) + (ξd − isId)u

∣∣
This remains true for the block Gk. Moreover, Proposition 2.4 also asserts
that G(a, ζ − iγν) + ξdId has mk eigenvalues close to 0, which are real when
γ = 0. They must be the eigenvalues of Gk, and therefore, for (a, ζ) in
a neighborhood of (a, ζ), Gk(a, ζ) has only real eigenvalues. The estimate
(3.12) implies that they are semi simple and that the eigenprojectors are
uniformly bounded.
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b) The existence of a smooth symmetrizer implies that there is a smooth
full symmetrizer S̃(a, ξ̃) (see [FrLa1, FrLa2] [Me3]). It is a smooth matrix
S̃ such that

S̃L = (S̃L)∗, Re S̃(a, ξ̃)L(a, ν̃)� 0 on kerL(a, ξ̃).

Thus S1(a, ξ̃) = S̃(a, ξ)L(a, n) is a full symmetrizer for G(a, ξ̃) and this can
be transported in the block decomposition (2.17). Therefore, for (a, ζ, ξd) in
a neighborhood of (a, ξ̃) there is a smooth full symmetrizer for Gk(a, ζ) +
ξdId.

With a), we are now in position to apply Theorem 6.5 of [Me3] to con-
clude that there is a smooth symmetrizer Sk(a, ζ) for Gk(a, ζ), satisfying
(3.10). Moreover, the construction in [Me3] implies that S = S(a, ζ) =

S̃1(a, ξ̃).

c) It is sufficient to prove the third property(3.11) for a = a. It is also
proved in [Me3] that S(a, ξ̃) is a Friedrichs symmetrizer for the localized
operator La,ξ̃. A version of the localized operator is

L′(ζ ′, ξ′d) = ζ ′ · ∇ζGk(a, ζ) + ξ′dId

and Sk = Sk(a, ζ) is a Friedrichs symmetrizer for L′. In particular, S′kL
′(θ)

is definite positive for all direction θ in the cone of hyperbolicity of L′ con-
taining n. In particular this is true for ν ∈ Γ in the incoming case and for
ν ∈ −Γ in the outgoing case and (3.11) follows. This finishes the proof of
the lemma.

Proof of Theorem 3.12. When the mode is incoming, we choose Sκk = −ρSk
for some ρ > 0 such that the property (3.8) is satisfied. and E = Ek(a, ζ). 5
Because G(a, ζ − iγν) = G(a, ζ)− iγ∂τG(a, ζ) +O(γ2), we see that

ImSκkG = γρReSk∂τG+O(γ2)

therefore the property (3.5) is satisfied if γ is small enough.

When the mode is outgoing, we choose Sκk = κSk and E = {0}. Again,
(3.5) is satisfied for γ small and (3.8) is satisfied.

4 Para-differential estimates

To prove Theorem 1.8 we use different pseudo or para-differential calculi. In
this section we present the technical results which will be needed. On the
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one hand, we consider tangential operators, with symbols a(t, x, τ, ξ′) such
as Kreiss symmetrizers. On the other hand, we deal with spatial operators
with symbols a(t, x, ξ′, ξd) such as symmetrizers for L. Combining these
two approaches is one of the major technical difficulty in the analysis of non
symmetric initial boundary value problem. In this section, we gather several
estimates which will be used in the proof of Therorem 5.8

4.1 Paradifferential calculi

We give here some definitions and notations and we refer for instance to
Chapter 5 in [Me2] for details.

The spatial para-differential operators we consider are associated to sym-
bols which belong to classes denoted by Γm0 and Γm1 . Given an interval
I ⊂ R, a symbol a(t, x, ξ) defined on I ×Rd ×Rd belongs to Γm0 if it is C∞

in ξ and for all α ∈ Nd there is Cα such that for all ξ∥∥∂αξ a( · , ·, ξ)
∥∥
L∞(I×Rd)

≤ Cα(1 + |ξ|)m−|α|.

It belongs to Γm1 if in addition the first derivatives ∂t,xa belong to Γm0 . Next,
Σm
k is the set of symbols σ(t, x, ξ) ∈ Γmk which satisfies the spectral condition

that their Fourier transform with respect to the x-variables, σ̂(t, η, ξ), is
supported in {|η| ≤ ε(1 + |ξ|) for some ε < 1.

The para-differential operator Ta is by definition the pseudodifferential
operator

Ta = σa(t, x,Dx)

with symbol

(4.1) σa(t, x, ξ) =

∫
G(x− y, ξ)a(t, y, ξ)dy

and

(4.2) G(y, ξ) = (2π)−d
∫
eiyηχ(η, ξ)dη

where χ is a C∞ function supported in {|η| ≤ ε(1 + |ξ|), equal to 1 on
{|η| ≤ ε1(1 + |ξ|), for some 0 < ε1 < ε < 1 and such that∣∣∂βη ∂αξ χ(η, ξ)

∣∣ ≤ Cα(1 + |ξ|)−|α|−|β|.

The symbol σa and the quantization Ta depend on the choice of the cut-
off function χ, but if χ1 and χ2 satisfy the spectral condition, the difference
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between the two symbols σ1
a and σ2

a belong to Σm−1
0 if a ∈ Γm0 so that the

two operators of order m T 1
a and T 2

a differ by an operator of order m − 1
(see [Me2]). All the results below do not depend on the choice of the cutoff
function χ.

The tangential quantization is defined similarly, permuting the role of t
and xd. Tangential symbols are functions of (t, x, ζ) where ζ = (τ, ξ′) denote
the tangential frequencies. Using the notation z = (t, x′) for the tangential
variables, we see tangential symbols as functions of (t, x, ζ) or (xd, z, ζ).
To avoid confusion, when necessary, we will note T tg the corresponding
quantization.

Remark 4.1. The Kreiss symmetrizers are associated to the operators
L((t, x, ∂T + γ,Dx) which depend on the parameter γ. They are tangen-
tial pseudo or para-differential operators and their symbols are functions of
(t, x, τ, ξ′, γ). The proof of the energy estimates (1.4) called resolvent es-
timates in the introduction relies on a pseudo or para-differential calculus
with parameter γ, see [Kre, ChPi, MeZu1]. We do not give details here, as
we do not use this calculus.

4.2 A microlocal Cauchy problem

We first give a para-differential version of the classical symmetrizable hy-
perbolic Cauchy problem.

Proposition 4.2. Consider a matrix of symbols G ∈ Γ1
1. Assume that

there is a matrix S ∈ Γ0
1 such that S = S∗ is uniformly definite positive

and SG = (SG)∗. Then, for u0 ∈ L2 and f ∈ L2([0, T ] × Rd) the Cauchy
problem

(4.3) ∂tu+ iTGu = f, u|t=0 = u0

has a solution u ∈ C0([0, T ];L2(Rd))

Sketch of proof. First, we modify the symbol S into

(4.4) S̃(t, x, ξ) = S(t, x, ξ) + λ(1 + |ξ|2)−1 ∈ Γ0
1

with λ large enough so that the operator S = ReTS̃ is definite positive in
L2. Considering the energy

(
Su, u

)
L2 and computing its times derivative,

the symbolic calculus implies the following estimate (see e.g. Theorem 7.1.3
and Chapter 7 in [Me2]) :
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Lemma 4.3. There is a constant C such that for all u ∈ C1([0, T ];H1(Rd))
one has

(4.5)

∥∥u(t)
∥∥2

L2(Rd)
.
∥∥u(0)

∥∥2

L2(Rd)
+

∫ t

0

∥∥u(t′)
∥∥2

L2(Rd)
dt′

+

∫ t

0
Re
(
S(∂tu+ iTGu)(t′), u(t′)

)
L2(Rd)

dt′.

The adjoint of TG is TG∗+R where R(t) is bounded in L2, uniformly in t.
The symbol (S∗)−1 is a symmetrizer for G∗, and therefore there are similar
estimates for the backward Cauchy problem for −i(TG)∗. By duality, this
implies the existence of a solution u ∈ L2([0, T ]×Rd) of (4.3). A variant of
Friedrichs’ lemma, still using the symbolic para-differential calculus, implies
that this solution is strong, thus belongs to C0([0, T ];L2(Rd)) and satisfies
(4.5).

4.3 Estimates of traces

Operators of the form

(4.6) Pau = (Tau)|xd=0

will occur in the analysis.
For fixed t, Ta is bounded from L2(Rd) to H1(Rd) when a ∈ Γ−1

0 and
from H1(Rd) to H1(Rd) when a ∈ Γ0

0. Hence,

Lemma 4.4. i) If a ∈ Γ−1
0 , then Pa is bounded from L2([0, T ] × Rd) to

L2([0, T ];H
1
2 (Rd−1)).

ii) If a ∈ Γ0
0, Pa is bounded from L2([0, T ];H1(Rd)) to L2([0, T ];H

1
2 (Rd−1))

thus to L2([0, T ]× Rd−1).

When a is of degree 0 conditions must be imposed to be able to define
the trace of Tau when u ∈ L2. We will assume that

(4.7) a
(
t, x, (0, . . . , 0, ξd)

)
= 0.

The next proposition states that under this condition, the trace is well de-
fined when u ∈ L2. The idea is to replace a by a0 = a(t, x′, 0, ξ), that is to
freeze the value of xd at xd = 0, and next to replace the quantization Ta by
T 0
a = σ0

a(t, x
′, Dx) where

(4.8) σ0
a(t, x

′, ξ) =

∫
G0(x′ − y′, ξ′))a(t, y′, 0, ξ)dy′
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with the modified mollification kernel

(4.9) G0(y′, ξ′) = (2π)−d
∫
eiy
′η′χ
(
(η′, 0), (ξ′, 0)

)
dη′.

It acts only in the variables x′ and on the frequency side, the cut off is made
at |η′| ≤ ε(1 + |ξ′|), independently of ξd. We prove that for u ∈ L2 the trace
P 0
au = (T 0

au)|xd=0 is well defined and that Pa−P 0
a is a bounded operator in

L2.

Proposition 4.5. If a ∈ Γ0
1 satisfies (4.7) then Pa is bounded from L2 to

L2([0, T ], H−
1
2 (Rd−1)). Moreover, Pa − P 0

a is bounded from L2 to L2.

The remaining part of the Section 4.3 is mainly devoted to the proof of
this proposition. To simplify the exposition, we delete t from the notations
below since it appears as a parameter and the L2 integrability in time over
[0, T ] follows from the uniformity of the estimates at each fixed t.

First, we note that if a ∈ Γ0
1 satisfies (4.7) there are symbols aj ∈ Γ−1

1

such that

(4.10) a(x, ξ) =
d−1∑
j=1

aj(x, ξ)ξj + a0(x, ξ).

Indeed, we can take a0 = a, aj = 0 in the domain {|ξ| ≤ 1}; in the domain
{|ξ′| ≤ 2|ξd|} this is a consequence of a Taylor expansion in ξ′ and in the
domain {|ξ′| ≥ |ξd|} (4.10) is true with aj = aξj/(1+|ξ′|2), a0 = a/(1+|ξ′|2).
Next one can glue the different pieces by a partition of unity.

Using Lemma 4.4 and that Tajξj− 1
i ∂xjTaj is bounded from L2 to H1, we

see that for u ∈ L2 the trace of Tau belongs to H−
1
2 and the first statement

of the proposition is proved.
Next, we compare Pa and P 0

a . First, we note that

(4.11) a(x, ξ) = a0(x′, ξ) + xdb(x, ξ), b ∈ Γ0
0.

Lemma 4.6. If b ∈ Γ0
0, then Txdb − xdTb is bounded from L2 to H1. In

particular, the trace operator Pxdb is bounded from L2 to L2.

Proof. From (4.1) we see that ρ = σxdb − xdσb is given by

ρ(t, x, ξ) =

∫
(xd − yd)G(x− y, ξ)b(y, ξ)dy.

Note that

ydG(y, ξ) = i

∫
eiyη∂ηdχ(η, ξ)dη
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and ∂ηdχ is a symbol of degree −1 supported in a cone |η| ≤ ε(1+|ξ). There-
fore ρ satisfies the spectral condition and the estimates of Γ−1

0 . Therefore
ρ ∈ Σ−1

0 and ρ(x,Dx) is bounded from L2 to H1.

Hence, to prove the Proposition, it remains to study P 0
a − Pa0 . We first

compare the two symbols σ0
a and σa0 .

Lemma 4.7. Suppose that a = bξj with b ∈ Γ−1
1 and 1 ≤ j ≤ d − 1. Then

the symbol ρ(x′, ξ) = σ0
a − σa0 satisfies for |α| ≤ 1 and all β,

(4.12)
∣∣∂αx′∂βξ′ρ(x′, ξ)

∣∣ . (1 + |ξ|)−1+|α|(1 + |ξ′|)−|β|.

Proof. Because a0 does not depend on xd,

σa0(x, ξ) =

∫
G(x′ − y′, xd − yd, ξ)a(y′, 0, ξ)dy

=

∫
G1(x′ − y′, ξ)a(y′, 0, ξ)dy = σa0(x′, 0, ξ)

where

G1(y′, ξ) = (2π)−d
∫
eiy
′η′χ(η′, 0, ξ)dη′.

Therefore,

ρ(x′, ξ) = ξj

∫
H(x′ − y′, ξ)b(y′, 0, ξ)dy′,

where

H(y′, ξ) = (2π)−d
∫
eiy
′η′θ(η′, ξ)dη′, θ(η′, ξ) = χ(η′, 0, ξ)− χ(η′, 0, ξ′, 0).

The cut off function θ is supported in {ε1(1 + |ξ′|) ≤ |η′| ≤ ε(1 + |ξ|)}.
For all fixed ξd, consider pξd(x

′, ξ′) = (1 + |ξ|2)
1
2 b(x′, ξ′, ξd) as a symbol

in (x′, ξ′). They form a uniformly bounded family in Γ0
1(Rd−1). Let

qxd(x
′, ξ) = ξj

∫
H(x′ − y′, ξ)pxd(y

′, ξ)dy′.

They are bouned in in Γ0
1(Rd−1). Moreover, since θ is supported in {|η′| ≥

ε1(1 + |ξ′|)}, the support of their Fourier transform in x′ is contained in this
set and by Bernstein inequality

‖qξd(·, ξ
′)‖L∞ . (1 + |ξ′|)−1‖∇x′qξd(·, ξ

′)‖L∞
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implying that they are bounded in Γ−1
0 (Rd−1). Since ρ(x′, ξ′, ξd) = (1 +

|ξ|2)−1qξd(x
′, ξ′), we conclude that

|∂βξ′ρ(x′, ξ)| . (1 + |ξ|)−1(1 + |ξ′|)−|β|.

Since θ is supported in {|η′| ≤ ε(1 + |ξ|)} this implies bounds for the x′

derivative and the lemma is proved.

Combining (4.10) and the lemmas above, the next result finishes the
proof of Proposition 4.5.

Lemma 4.8. Suppose that ρ(x′, ξ) satisfies (4.12). Then the mapping u 7→
v =

(
ρ(x′, Dx)u

)
|xd=0

is bounded from L2(Rd) to L2(Rd−1).

Proof. Denote by ũ(x′, ξd) the partial Fourier transform of u with respect
to the variable xd. Then

(4.13) v(x′) =

∫
R
ρ(x′, Dx′ , ξd)ũ(x′, ξd)dξd.

Next use a dyadic partition of unity in the ξ′ variables, which yields a de-
composition

(4.14) ũ(x′, ξd) =
∑

ũk(ξ
′, ξd)

so that

v =
∑

vk, vk(x
′) =

∫
R
wk(x

′, ξd)dξd

with

wk(x
′, ξd) = ρ(x′, D′x, ξd)ũk(x

′, ξd) = ρk(x
′, D′x, ξd)ũk(x

′, ξd)

where the ρk are localized in |ξ′| ≈ 2k and satisfy, uniformly on k, for all
|α| ≤ 1 and all β:

(4.15)
∣∣∂αx′∂βξ′ρk(x′, ξ)∣∣ . (|ξd|+ 2k)|α|−12−k|β|.

In particular, the symbols pk,ξd(x
′, ξ′) := (|ξd| + 2k)ρk(x

′, ξ′, ξd) satisfy for
all β ∣∣∂βξ′pk,ξd(x′, ξ)∣∣ ≤ 2−k|β|.

uniformly in k and ξd. Moreover, they are supported in {|ξ′| ≈ 2k}. Hence
the operators pk,ξd(x

′, Dx′) are uniformly bounded in L2(Rd−1) (see e.g.
Lemma 4.3.3 in [Me2]). Therefore

(4.16)
∥∥wk(·, ξd)∥∥L2(Rd−1) . (2k + |ξd|)−1εk(ξd)
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with εk(ξd) = ‖ũk(·, ξd)‖L2 Similarly, applying the same estimates with ρ
replaced by (iξj + ∂xj )ρ, implies that

(4.17)
∥∥wk(·, ξd)∥∥H1(Rd−1)

. εk(ξd).

Consider dyadic partition of unity Qj(Dx′) so that

v =
∑
j

Qjv, Qjv =
∑
k

∫
Qjwk(x

′, ξd)dxd.

Then ∥∥Qjwk(·, ξd)∥∥L2 . min
(∥∥wk(·, ξd)∥∥L2 , 2

−j∥∥wk(·, ξd)∥∥H1(Rd−1)

)
so that ∥∥Qjwk(·, ξd)∥∥L2 . (2j + 2k + |ξd|)−1εk(ξd).

Hence

‖Qjv‖L2 ≤
∑
k

∫
‖Qjwk(·, ξd)‖L2dξd ≤

∑
k

∫
εk(ξd)dξd

2j + 2k + |ξd|

and

‖Qjv‖2L2 ≤

(∑
k

∫
ε2
k(ξd)dξd

)(∑
k

∫
dξd

(2j + 2k + |ξd|)2

)
.
∥∥ũ∥∥2

L2

∑
k

(2j + 2k)−1 . j2−j
∥∥ũ∥∥2

L2 .

Therefore, ∥∥v∥∥2

L2 .
∑
j

∥∥Qjv∥∥2

L2 .
∥∥ũ∥∥2

L2 =
∥∥u∥∥2

L2

and the lemma is proved.

We end this section with a lemma which we will need later on.

Lemma 4.9. If a ∈ Γ0
1 satisfies (4.7) then P 0

a , and hence Pa, are bounded

from L2 to H−
1
2 and from 〈Dx′〉−

1
2L2 to L2. In particular, there is a constant

C such that for all u ∈ 〈Dx′〉−
1
2L2(Rd);

(4.18)
∥∥P 0

au
∥∥
L2(Rd−1)

≤ C
∥∥〈Dx′〉

1
2u
∥∥
L2(Rd)

.

Here we have used the notation 〈Dx′〉 = (1−∆x′)
1
2 which is associated

to the symbol 〈ξ′〉 = (1 + |ξ′|2)
1
2 .
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Proof. Because of (4.10), the symbol σ0
a satisfies∣∣∂βξ′σ0

a(x
′, ξ′, ξd)

∣∣ . |ξ′|(〈ξ′〉+ |ξd|)−1〈ξ′〉−|β|.

It also satisfies the para-differential spectral localization in the tangent vari-
ables x′. This implies that σ0

a(·, ·, ξd) and ξdσ
0
a(·, ·, ξd) are bounded families

of para-differential symbols in the class Σ0
1 and Σ1

1 respectively on Rd−1.
Therefore for all v in L2(Rd−1) and all ξd ∈ R,

(4.19)

∥∥σ0
a(x
′, D′x, ξd)v

∥∥
L2(Rd−1)

.
∥∥v∥∥

L2(Rd−1)
,

|ξd|
∥∥σ0

a(x
′, D′x, ξd)v

∥∥
H−1(Rd−1)

.
∥∥v∥∥

L2(Rd−1)
.

Introduce a dyadic partition of unity in Rd−1 so that

ũ(x′, ξd) =
∑
j

Qj(Dx′)ũ(x′, ξd)

where ũ denotes the partial Fourier transform of u in the variable xd. The
spectrum in ξ′ of Qj ũ is contained in |ξ′| ≈ 2j . Then fj = σ0

a(x
′, D′x, ξd)Qj ũ

has also its spectrum in a larger annulus but still of order |ξ′| ≈ 2j . The
estimates (4.19) imply that∥∥fj(·, ξd)∥∥L2 . (1 + 2−j |ξd|)−1εj(ξd)

where εj(ξd) = ‖Qj ũ(·, ξd)‖L2 . Hence

v = P 0
au =

∑
j

vj , vj(x
′) =

∫
fj(x

′, ξd)dξd

and ∥∥vj∥∥L2 .
∫

(1 + 2−j |ξd|)−1εj(ξd)dξd . 2j/2‖εj‖L2(R).

Because the vj are spectrally supported in annuli |ξ′| ≈ 2j one has

‖v‖2L2 .
∑∥∥vj∥∥2

L2 .
∑
j

2j‖εj‖2L2(R) ≈ ‖〈D
′
x〉

1
2w‖2L2(Rd)

and the lemma is proved.
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4.4 Energy balance for the IBVP

Consider a system L = ∂t+
∑
Aj∂xj with Lipschitz coefficients. We assume

that it admits a symmetrizer S(t, x, ξ), which is Lipschitz continuous in
(t, x), homogeneous of degree 0 and C∞ in ξ 6= 0.

For such L, the Cauchy problem is well posed in L2, see e.g.Theorem 7.1.3
in [Me2] (see also Proposition 4.2 above and its proof). Following ideas
from [FrLa2], we want to obtain an inequality similar to the energy esti-
mate of the Cauchy problem, using the same symmetrizer, but now on the
domain {xd ≥ 0}. Non local boundary terms occur, but in contrast with
[FrLa2], we analyze them assuming that we already have a control of the
traces ‖u|xd=0‖L2 , for instance given by a preliminary use of Kreiss sym-
metrizers.

The L2 estimate for the Cauchy problem is proved using the energy
(Su, u)L2 , where S = ReTS̃ and S̃ a low frequency modification of the
symbol S :

(4.20) S̃(t, x, ξ) = θ(ξ)S(t, x, ξ) + λ(1 + |ξ|2)−1 ∈ Γ0
1,

with 1 − θ compactly supported and θ = 0 near the origin, and λ large
enough so that the operator S = ReTS̃ is definite positive in L2. Using
the approximation ‖Lu− (∂t + iTA)u‖L2 . ‖u‖L2 where A denotes here the
symbol

∑
ξjAj(t, x) (Theorem 5.2.9 in [Me2]), and the symbolic calculus as

recalled in Proposition 4.2, one obtains that for u ∈ C1([0, T ];H1(Rd)) one
has

(4.21)
∥∥u(t)

∥∥2

L2(Rd)
.
∥∥u(0)

∥∥2

L2(Rd)
+

∫ t

0
Re
(
SLu(t′), u(t′)

)
L2(Rd)

dt′.

In the remaining part of this section we analyze how this estimate is
modified when it is applied on the half space {xd ≥ 0}.

Note that there is no restriction in assuming that the symbol of the
symmetrizer is even in ξ. An important element is the value of S on the
conormal to the boundary and we introduce

(4.22) S∞(t, x) = S(t, x, (0, . . . , 0, 1)).

Proposition 4.10. Suppose that L = ∂t +
∑
Aj∂xj has Lipschitz coeffi-

cients on [0, T ]×Rd and admits a symmetrizer S(t, x, ξ), which is Lipschitz
continuous in (t, x), homogeneous of degree 0, C∞ and even in ξ 6= 0. Then,

there is a constant C such that for u ∈ C∞0 ([0, T ]× Rd+) one has

(4.23)

∥∥u(t)
∥∥2

L2(Rd+)
.
∥∥u(0)

∥∥2

L2(Rd+)
+
∥∥u∥∥2

L2([0,t]×Rd+)
+
∥∥Lu∥∥2

L2([0,t]×Rd+)

+
∥∥u|xd=0

∥∥2

L2([0,t]×Rd−1)
+
∥∥PS1 ũ

∥∥2

L2([0,t]×Rd−1)
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where PS1 is the trace operator associated to the symbol S1 = θ(S−S∞) and
ũ denotes the extension of u by 0 for xd < 0.

Proof. Consider u ∈ C∞0 ([0, T ]× Rd+) and introduce f = Lu ∈ C∞0 ([0, T ]×
Rd+) and g = u|xd=0 ∈ C∞0 ([0, T ] × Rd−1). Let χ ∈ C∞(R) with support in
]0,∞[ and equal to 1 on [1,∞[. Let χε(xd) = χ(xd/ε) and uε = χεu. Then

Luε = fε + f1
ε , fε = χεf, f1

ε = χ′εAdu = ε−1χ′(xd/ε)Adu.

We apply the energy estimate (4.21) to uε and pass to the limit. The
difficulty is concentrated in the term

(4.24) Iε = IS(f1
ε , uε) =

∫ t

0

(
Sf1

ε (t′), uε(t
′)
)
L2(Rd)

dt′.

The proposition will follow from the estimate

(4.25)
lim sup
ε→0

|Iε| .
∥∥u∥∥2

L2([0,t]×Rd)
+
∥∥f∥∥2

L2([0,t]×Rd)

+
∥∥g∥∥2

L2([0,t]×Rd−1)
+
∥∥P 0

S1
ũ
∥∥2

L2([0,t]×Rd−1)
.

a) For u smooth, f1
ε = g1χ

′
ε + h1

ε with g1 = Adu|x=0 and ‖h1
ε‖L2 .

ε
1
2 (‖u(t)‖L2+‖∂xu(t)‖L2). Therefore is sufficient to prove (4.25) for IS(hε, uε)

with hε := g1χ
′
ε.

b) The spatial Fourier transform of hε is ĥε(t) = χ̂′(εξd)ĝ1(t, ξ′). Since
χ′ ∈ S(R),

(4.26)
∥∥hε∥∥L2([0,T ];H−1(Rd))

. ‖g‖L2 .

Recalling the definition (4.20), note that TθS − (TθS)∗ and hence S− (TθS)∗

are of degree −1. This implies that∥∥Shε − T ∗θShε∥∥L2 .
∥∥g∥∥

L2 .

Therefore we are reduced to prove (4.25) with

(4.27) Iε = ĨS(hε, uε) =

∫ t

0

(
hε, TθSuε

)
L2(Rd)

dt′.

With S∞ defined by (4.22), we split S into S∞ + (S − S∞) and we study
each term separately.
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c) The operator TθS∞−S∞ is of degree−1, implying that TθS∞uε−S∞uε
is bounded in L2([0, T ];H1) by ‖u‖L2 . Therefore

ĨS∞(hε, uε) =

∫ t

0

(
g1χ
′
ε, S∞χεu

)
dt′ +O

(
‖g‖L2‖u‖L2

)
For u smooth,

lim
ε→0

∫ t

0

(
g1χ
′
ε, S∞χεu

)
dt′ =

1

2

(
g1, S∞|xd=0g

)
L2([0,T ]×Rd−1)

and therefore

(4.28) lim sup
ε→0

ĨS∞(hε, uε) . ‖g‖2 + ‖u‖2.

d) We now show, using the notation (4.6), that

(4.29) lim
ε→0

ĨS−S∞(hε, uε) =
(
g1, PS1 ũ

)
L2([0,T ]×Rd−1)

and this will finish the proof of the proposition.
Using that S is homogeneous of degree 0 and even, we can write

(4.30) S1(t, x, ξ) = θ(ξ)(S − S∞)(t, x, ξ) =

d−1∑
j=1

S1,j(t, x, ξ)ξj

where the S1,j are of degree −1. Hence,

∥∥TS1χεu
∥∥
L2([0,T ],H1)

.
d−1∑
j=1

∥∥∂xju∥∥L2 .

Moreover, TS1χεu → TS1 ũ in L2([0, T ], H1) and the trace on {xd = 0}
is well defined. Using (4.26) and the convergence g1χ

′
ε → g1 ⊗ δ|xd=0 in

L2([0, T ], H−1), this implies that(
g1χ
′
ε, TS1uε

)
→
(
g1, (TS1 ũ)|xd=0

)
that is (4.30) and the proposition is proved.

The main difficulty is now to estimate the trace PS1 ũ in L2. By Propo-
sition 4.5 and Lemma 4.9, we only know that

(4.31)
∥∥PS1 ũ‖L2([0,T ]×Rd−1) ≤ C

∥∥〈Dx′〉
1
2u
∥∥
L2([0,T ]×Rd+)

.
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The idea which is also taken from [FrLa2] is the following: the definition of
PS1 involves taking a trace on xd = 0, which on the Fourier side means an
integration in ξd. The idea is to shift the integration path to the complex
domain, using the holomorphy of the Fourier transform of ũ in Im ξd < 0
and an assumed holomorphy in ξd of the symbol.

Proposition 4.11. Suppose that S(t, x, ξ) admits a bounded holomorphic
extension in the cone {|Im ξ| ≤ δ|ξ|} for some δ > 0. Then, there are
constant C and δ1 > 0 such that for all δ′ ∈ [0, δ1] and all u ∈ C∞0 ([0, T ]×
Rd+)

(4.32)

∥∥PS1 ũ‖L2([0,T ]×Rd−1) ≤

C
(∥∥〈Dx′〉

1
2 e−δ

′xd〈Dx′ 〉u
∥∥
L2([0,T ]×Rd+)

+
∥∥u∥∥

L2([0,T ]×Rd+)

)
.

Proof. To simplify notations, we omit the variable t which is just a param-
eter. Note that when δ′ = 0, (4.32) is simply (4.31).

Introduce
S2 = θ(ξ′, 0)

(
S − S∞)

Since 1 − θ is compactly supported, say in {|ξ| ≤ R}, we note that θ(ξ) −
θ(ξ′, 0) = 0 when |ξ′| ≥ R. Hence S1 − S2 is supported in |ξ′| ≤ R and
thus of order −1 by (4.30). Therefore it is sufficient to prove the estimate
for PS2 . According to Proposition 4.5, we can also replace PS2 by P 0

S2
and

v = P 0
S2
ũ is given by

v(x′) =

∫
eix
′·ξ′σ(x′, ξ′, ξd)û(ξ)dξ

where û is the spatial Fourier transform of ũ and

σ(x′, ξ′, ξd) =

∫
G0(x′ − y′, ξ′)S2(y′, 0, ξ′, ξd)dy

′.

By assumption, S − S∞, and thus S2, have holomorphic extensions in
ξd to the domain {|Im ξd| ≤ δ|ξ|} and this extension vanishes when ξ′ = 0.
Hence, by homogeneity,

(4.33)
∣∣(S − S∞)(x, ξ)

∣∣ . |ξ′|
|ξ|
.

Therefore since σ vanishes for ξ′ small, σ, has an holomorphic extension
in ξd to a domain {Im ξd ≤ δ1〈|ξ′|〉}. Moreover, because u is supported in
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{xd ≥ 0}, its Fourier transform û is holomorphic in {Im ξd < 0}. Therefore,
one can shift the integration path in ξd to R− iδ〈ξ′〉

v(x′) =

∫
eix
′·ξ′σ(x′, ξ′, ξd − iδ〈ξ′〉)û(ξ′, ξd − iδ〈ξ′〉)dξ

=

∫
eix
′·ξ′ρ(x′, ξ′, ξd)ŵ(ξ′, ξd)dξ

=

∫
ρ(x′, D′x, ξd)w̃(x′, ξd)dξd

with ρ(x′, ξ′, ξd) = σ(x′, ξ′, ξd − iδ〈ξ′〉), w = e−δ
′xd〈Dx′ 〉u, and w̃ denoting

its partial Fourier transform in the variable xd. We conclude by applying
(4.18) to ρ and w.

4.5 Elliptic estimates

The last ingredient in the proof of Theorem 1.8 is to estimate the L2 norm
of 〈Dx′〉

1
2 e−δ

′xd〈Dx′ 〉u, using again the equation satisfied by u. Again the
idea is taken from [FrLa2]. Microlocally, one can choose δ′ such that v =
e−δ

′xd〈Dx′ 〉u satisfies an elliptic equation, which reduces the problem to the
proof of elliptic estimates, which we now recall.

Consider a system

(4.34) ∂xdu+ iT tg
A u = f

where A is a matrix with coefficients in Γ1
1.

Proposition 4.12. Suppose that the spectrum of A(t, x, ζ) is contained in
|Imλ| ≥ c|ζ|. Then there is a constant C such that∥∥〈Dz〉

1
2u
∥∥
L2 ≤ C

(∥∥u∥∥
L2 +

∥∥f∥∥
L2 +

∥∥u|xd=0

∥∥
L2

)
Proof. This is a special case of the tangential analysis (see e.g. [Kre, ChPi,
Me5]). The assumption implies that the matrix A is conjugated to a block
diagonal matrix with blocks A± having their spectrum in {±Imλ ≥ c|ζ|}.
Each block has a symmetrizer, and there is a symmetrizer S = S∗ such that
ImSA ≥ c′|ζ| (see e.g. Section 8.1.3 in [Me5]).

We will use the following extension of this estimate.

Proposition 4.13. Suppose that the spectrum of A(t, x, ζ) is contained in
|Imλ − δ|ζ|| ≥ c|ζ| for some δ ∈ [0, 1] and c > 0. Then there is a constant
C such that∥∥〈Dz〉

1
2 e−δ〈Dz〉xdu

∥∥
L2 ≤ C

(∥∥u∥∥
L2 +

∥∥f∥∥
L2 +

∥∥u|xd=0

∥∥
L2

)
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Proof. The symbols in ζ 7→ e−δxd〈ζ〉 form a bounded family of symbols
of degree zero. Therefore, the commutator

[
e−δ〈Dz〉xd , TA

]
are uniformly

bounded in L2. This shows that v = e−δ〈Dz〉xdu satisfies∥∥∂xdv + i(T tg
A − iδ〈Dz〉)v

∥∥
L2 ≤ C(

∥∥u∥∥
L2 +

∥∥f∥∥
L2).

The symbol of T tg
A −iδ〈Dz〉 is A(t, x, ζ)−iδ〈ζ〉 and its spectrum is contained

in |Imλ| ≥ c′|ζ|. Hence one can apply Proposition 4.12 to v and the estimate
follows since v|xd=0 = u|xd=0.

5 Semi group estimates and the IBVP in L2

The goal of this section is to solve the initial boundary value problem (1.1)
and to complete the proof of Theorem 1.8. We first review the analysis of
the boundary value problem and next show what has to be added to treat
initial data in L2.

5.1 The main steps

Consider the hyperbolic system L on {xd ≥ 0}

(5.1) L = A0(t, x)∂t +
d∑
j=1

Aj(t, x)∂xj +B(t, x)

together with boundary conditions M on {xd = 0}. The adjoint operator
L∗ is

(5.2) L∗ = −(A0(t, x))∗∂t −
d∑
j=1

A∗j (t, x)∂xj −B1(t, x)

where B1 = −B∗ + ∂tA0 +
∑
∂jA

∗
j . There are adjoint boundary conditions

M ′ for L∗ such that for all smooth enough functions u and v on [a, b]×Rd+ :

(5.3)
(Lu, v)− (u, L∗v) = (Mu|xd=0,M1v|xd=0)− (M ′1u|xd=0,M

′v|xd=0)

+ (u|t=b, v|t=b)− (u|t=a, v|t=a).

for some boundary matrices M1 and M ′1. Here (·, ·) denotes the L2 scalar
products on the appropriate domains. The formula extends to unbounded
time intervals. The matrices M1,M

′,M ′1 are not unique but the invariant
key property is that

(5.4) kerM ′ = (Ad kerM)⊥.
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Introduce the spaces L2
γ = eγtL2 with norms ‖u‖L2

γ
= ‖e−γtu‖2L2 and note

that, in the identity (5.3), (·, ·) can be understood as well as the duality
L2
γ × L2

−γ . We suppose here that the resolvent estimates have already been
proven and take them as an assumption.

Assumption 5.1. The following a priori estimates are valid : for γ ≥ γ0

and smooth u:

(5.5) γ‖u‖2L2
γ

+ ‖u|xd=0‖2L2
γ
. γ−1‖Lu‖2L2

γ
+ ‖Mu|xd=0‖2L2

γ

and

(5.6) γ‖v‖2L2
−γ

+ ‖v|xd=0‖2L2
−γ

. γ−1‖L∗u‖2L2
−γ

+ ‖M ′v|xd=0‖2L2
−γ
.

By Theorem 1.4, this assumption is satisfied for systems in the class sM.

Proposition 5.2 ([Kre, ChPi]). Under Assumption 5.1 the boundary value
problem

(5.7) Lu = f, Bu|xd=0 = g

is well posed in L2
γ for γ ≥ γ0.

Indeed, (5.6) implies that (5.7) has a weak solution in L2
γ . By tangen-

tial smoothing and Friedrichs Lemma, this solution is a strong solution and
therefore satisfies (5.5). In particular, this implies uniqueness of weak so-
lution. Moreover, the causality principle is satisfied: if f and g vanish for
t ≤ t0, then u also vanishes for t ≤ t0.

We now consider the initial-boundary value problem

(5.8) Lu = f, Mu|xd=0 = g, u|t=0 = u0.

Proposition 5.3. The problem (5.8) is well posed in L2
γ0 when u0 = 0.

Proof. Existence is obtained by extending f and g by 0 for t < 0. Then there
is a solution u ∈ L2

γ0 and the causality principle implies that it vanishes when
t < 0. Therefore, its trace u|t=0 also vanishes. Note that the trace is well

defined in H
− 1

2
loc since the equation is non characteristic in time. Uniqueness

follows in the same way : if f = 0 and g = 0, the extension ũ of u by 0 in
the past is a weak solution of Lũ = 0, Mu = 0 and therefore vanishes.
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This result settles the question of uniqueness of solutions for (5.8). The
existence part is easy when the data vanish on a neighborhood of the edge
{t = xd = 0}.

Proposition 5.4. If u0 ∈ L2, f ∈ L2
γ0 and g ∈ L2

γ0 vanish on a neighborhood
of {t = xd = 0}, then (5.8) has a unique solution u ∈ L2

γ0.
Moreover, if in addition u0, f and g belong to H1, the solution u also

belongs to H1.

Proof. Extend u0 and f by 0 for xd ≤ 0 and solve the Cauchy problem
Lv = f̃ , v|t=0 = ũ0. Then there is a unique solution v ∈ C0([0, 1];L2(Rd),
which by finite speed of propagation vanishes for xd ≤ 0 and t ≤ t0 for some
t0 > 0. We solve the problem for w = u − χv, where χ(t) is supported in
[0, t0[ and χ(0) = 1:

Lw = (1− χ)f −A0∂tχv, Mw|xd=0 = g, w|t=0 = 0.

Indeed, by Proposition 5.3 there is a solution w ∈ L2
γ0 .

The H1 smoothness is proved similarly taking H1 extensions of u0 and
f , which vanish near the edge and an H1 extension of g which vanish in
the past.

The difficult part of the proof is now to prove estimates for u independent
of the neighborhood where the data vanish. We prove them under the
following assumption:

Assumption 5.5. L admits a symmetrizer S(t, x, ξ) which is Lipschitz con-
tinuous in (t, x), and real analytic in ξ.

Theorem 5.6. Under Assumptions 5.1 and 5.5, there is a constant C
such that for all smooth u0, f and g which vanish on a neighborhood of
{t = xd = 0}, the unique H1 solution of (5.8) satisfies

(5.9)

‖u(t)‖L2+‖u|xd=0‖L2([0,t]×Rd−1) ≤ C(
‖u0‖L2 + ‖g‖L2([0,t]×Rd−1) +

∫ t

0
‖f(s)‖L2[(Rd+)ds

)
.

By density-continuity, the mapping (u0, f, g) 7→ u uniquely extends to
u0 ∈ L2, f ∈ L1([0, T ];L2) and g ∈ L2. Then u ∈ C0([0, T ];L2), is a weak
solution of (5.8). Since uniqueness is already known, the theorem above
implies the next corollary and hence Theorem 1.8.

Corollary 5.7. Under Assumptions 5.1 and 5.5, for all u0 ∈ L2(Rd+), f ∈
L1([0, T ];L2) and g ∈ L2([0, T ]×Rd−1), there is a unique u ∈ C0([0, T ];L2(Rd+))
solution of (5.8) on [0, T ]× Rd+. Moreover, u satisfies (5.9).
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5.2 The main estimate

We reduce the proof of the estimate (5.9) to a simpler one:

Theorem 5.8. Under Assumption 5.5, for u ∈ H1(R1+d
+ ) with support in

t ∈ [0, 2] one has

(5.10)
∥∥u(t)

∥∥
L2(Rd+)

. ‖Lu‖L2 + ‖u‖L2 + ‖u|xd=0‖L2 .

Taking this theorem for granted, we show that it implies Theorem 5.6.
Because (SA0)−1(A∗0)−1 is a symmetrizer for L∗ , one has similar estimates
for the adjoint problem:

(5.11)
∥∥v(t)

∥∥
L2(Rd+)

. ‖L∗v‖L2 + ‖v‖L2 + ‖v|xd=0‖L2 .

Corollary 5.9. Consider the backward initial boundary value problem for
t ≤ 1

(5.12) L∗Φ = ϕ, M ′ϕ|xd=0 = ψ, Φ|t=1 = 0.

Then

(5.13)
‖Φ|t=0‖L2 + ‖Φ‖L2([0,1]×Rd+)+‖Φ|xd=0‖L2 .

‖ϕ‖L2[0,1]×Rd+) + ‖ψ‖L2 .

By duality, this implies the following estimate for the direct problem:

Proposition 5.10. There is a constant C such that for data vanishing on
a neighborhood of the edge, the solutions of (5.8) satisfy

(5.14)
‖u|t=1‖L2+‖u‖L2([0,1]×Rd+) + ‖u|xd=0‖L2([0,1]×Rd−1) .

‖u0‖L2(Rd+) + ‖f‖L2([0,1]×Rd+) + ‖g‖L2([0,1]×Rd−1).

Proof. By duality, the corollary implies that

(5.15)
‖u‖L2([0,1]×Rd+)+‖u|xd=0‖L2 .

‖u0‖L2 + ‖f‖L2([0,1]×Rd+) + ‖g‖L2 .

To get the missing term, that is the L2 norm of u|t=1, it is now sufficient to
apply the direct estimate of Theorem 5.8 to v = tu, since Lv = tLu + A0u
is now controlled in L2.
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We pass from the estimate for time 1 to estimates for all time t ∈]0, 1]
by scaling. For ε ∈]0, 1] consider the systems

(5.16) Lε(t, x, ∂t, ∂x) = A0(εt, εx)∂t +
∑

Aj(εt, εx)∂xj + εE(εt, εx)

and the boundary conditions

(5.17) Mε(t, x) = M(εt, εx).

Lemma 5.11. If u is a solution of (5.8), then uε(t, x) = u(εt, εx) safisfies

(5.18) Lεuε = εfε, Bεuε|xd=0 = gε, uε|t=0 = u0,ε

where fε, gε and u0,ε are deduced from f , g and u0 by the scaling.

Proof. One has

Aj(εt, εx)(∂juε)(t, x) = ε(Aj∂ju)(εt, εx)

and similar formulas for the traces.

We note that the Assumptions 5.1 are satisfied for all ε ∈]0, 1], with
uniform constants:

Lemma 5.12. The boundary value problems (Lε, Bε) satisfy the estimates
(5.5) and (5.6) with constants independent of ε ∈]0, 1], for γ ≥ εγ0.

Proof. With γ′ = γ/ε ≥ γ0, the direct estimates are immediate consequences
of the scaling identities

γ‖uε‖2L2
γ

= ε−dγ′‖u‖2L2
γ′
, γ−1‖εfε‖2L2

γ
= ε−d(γ′)−1‖u‖2L2

γ′

and
‖uε|xd=0‖2L2

γ
= ε−d‖u|xd=0‖2L2

γ′
, ‖gε‖2L2

γ
= ε−d‖g‖2L2

γ′

The adjoint operator (Lε)
∗ is the scaled operator (L∗)ε deduces from L∗ as

in (5.16). Similarly, B′ε = B′(εt, εx) are dual boundary conditions so that
the estimates for L∗ε follow by the same scaling argument.

In the same vein, considering the symmetrizers Sε(t, x, ξ) = S(εt, εx, ξ)
implies that the Assumption 5.5 is satisfied for Lε, with uniform constants.
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Proposition 5.13. There is a constant C such that for data vanishing on a
neighborhood of the edge, the solutions of (5.8) are continuous in time with
values in L2 satisfy for t ∈ [0, 1]

(5.19)
‖u(t)‖L2+‖u|xd=0‖L2([0,t]×Rd−1) .

‖u0‖L2(Rd+) + ‖f‖L2([0,t]×Rd+) + ‖g‖L2([0,t]×Rd−1 .

Proof. The estimates at time t1 follows from (5.14) applied to uε with ε =
t1. When the data are H1, the solution is H1 and therefore continuous
in time with values in L2. Therefore, by density the solutions belong to
C0([0, 1];L2).

This is almost the desired estimate (5.9), except for the norm of f . It
remains to replace the L2 norm above by an L1([0, 1], L2) norm. For that
we split the problem into two pieces :

(5.20) Lu = f, Mu|xd=0 = 0, u|t=0 = 0.

and

(5.21) Lu = 0, Mu|xd=0 = g, u|t=0 = u0.

By linearity, it is sufficient to prove (5.9) for the solution of each problem sep-
arately. For the second equation, this follows directly from Poposition 5.13
and it remains to prove (5.9) for the solution of (5.20). We show that it
follows from (5.19) using Duhamel’s principle.

Proposition 5.14. There is a family of bounded operators E(t, s) from
L2(Rd+) to L2(Rd+), for 0 ≤ s ≤ t ≤ 1, such that for all s ∈ [0, 1[, u(t) =
E(t, s)u0 is the unique solution in C0([s, 1], L2(Rd+) of

Lu = 0, Mu|xd=0 = 0, u|t=s = u0.

In particular, for all u0 ∈ L2(Rd+), t 7→ E(t, s)u0 belongs to C0([s, 1], L2(Rd+)).
Moreover, for all u0 ∈ L2(Rd+), s 7→ E(t, s)u0 belongs to C0([0, t], L2

w(Rd+)
where L2

w(Rd+) denotes the space L2 equipped with the weak topology.

Proof. Clearly, what we have done before for the initial time t = 0 is true
for all initial time t = s. Thus, Proposition 5.13 implies that when u0 ∈ L2

vanishes near the boundary, there is a unique solution u ∈ C0([s, 1];L2)
which satisfies

‖u(t)‖L2 ≤ C‖u0‖L2
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The operator u0 7→ u extends by density to u0 ∈ L2 implying the first part of
the proposition. The second follows by duality : the corresponding operator
F(t, s′) for the backward transposed problem is defined for 0 ≤ t ≤ s′ ≤ 1
and v = F(·, s′)v0 solves

L∗v = 0, M ′u|xd=0 = 0, u|t=s′ = v0.

In particular, t 7→ F(t, s′)v is continuous from [0, s′] to L2(Rd+). The duality
relation (5.3) shows that E(t, s) = F(s, t)∗ and therefore s 7→

(
E(t, s)u0, v0

)
is continuous for all u0 and v0 in L2.

Lemma 5.15. For f smooth, vanishing in a neighborhood of the edge, the
solution of (5.20) is given by Duhamel’s principle:

(5.22) u(t) =

∫ t

0
E(t, s)f(s)ds.

Proof. Note that for f ∈ C0([a, 1];L2(Rd+)), s 7→ E(t, s)f(s) is continuous
from [0, t] to L2

w so that the integral (5.22) makes sense. Denote it by ũ(t).
For ψ ∈ H1(Rd+) vanishing near xd = 0, let Ψ(·) = F(·, t)ψ which is a

H1 solution on [0, t]× Rd+ of

L∗Ψ = 0, B′Ψ|xd=0 = 0, Ψ(t) = ψ.

Then

(ũ(t), ψ) =

∫ t

0
(E(t, s)f(s), ψ)ds =

∫ t

0
(f(s),F(s, t)ψ)ds

=
(
Lu,Ψ

)
L2([0,t]×Rd+)

= (u(t), ψ)

where the last equality follows from (5.3), which is satisfied since u is H1.
Hence ũ(t) = u(t) and the lemma is proved.

Using the estimates of Proposition 5.13 for E(·, s)f(s) and integrating
them in s implies

Corollary 5.16. For f smooth, vanishing in a neighborhood of the edge,
the solution of (5.20) satisfies

(5.23) ‖u(t)‖L2 + ‖u|xd=0‖L2([0,t]×Rd−1) .
∫ t

0
‖f(s)‖L2[(Rd+)ds

This finishes the proof of Theorem 5.6.
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5.3 Proof of Theorem 5.8

Recall that we are considering a function u ∈ H1(R1+d
+ ), supported in t ∈

[0, 2]. We can paralinearize the operator A−1
d L = ∂xd +G and write

(5.24) ∂xdu+ TiGu = f,

where TiG denotes the tangential paradifferential operator of symbol iG(t, x, ζ)
with ζ = (τ, ξ′) ∈ R× Rd−1, and f satisfies

(5.25) ‖f‖L2 . ‖Lu‖L2 + ‖u‖L2 .

The proof relies on microlocal estimates which are stated in Proposi-
tions 5.17 and 5.18 below. We glue the different pieces using a finite partition
of unity

(5.26) 1 = χ0(ζ) +
n∑
k=1

χk(ζ)

with χ0 is supported in {|ξ′| ≤ c| τ |} while the χk for k ≥ 1 are supported
in {|τ | ≤ 2c−1|ξ′|}. Let uk = χk(Dz)u, where z = (t, x′). We will estimate
the L2 norm of each uk(t) separately, using different methods according to
k = 0 or k ≥ 1. Note that

(5.27) ∂xduk + TiGχ̃kuk = fk,

where fk satisfies (5.25) and χ̃k is equal to one on the support of χk. Note
also that uk is not any more supported in t ∈ [0, 2], but uk has an H1 norm
for t /∈ [−1, 3] ccontrolled by the L2 norm of u. In particular

(5.28)
∥∥uk |t=−1

∥∥
L2 +

∥∥uk |t=3

∥∥
L2 . ‖u

∥∥
L2 .

We prove that one can choose the partition so that the uk satisfy

(5.29) ‖uk(t)‖L2 . ‖uk‖L2 + ‖fk‖L2 + ‖uk |xd=0‖L2 + ‖uk(−1)‖L2 .

Theorem 5.8 is a consequence of the following two results:

Proposition 5.17. One can choose c > 0 such that if χ0 is supported in
{|ξ′| ≤ c|τ |} then u0 = χ0(Dz)u satisfies (5.29).

Proposition 5.18. For all z = (t, x′) and all ζ = (τ , ξ′) ∈ Rd with |ξ′| = 1,
there is a conical neighborhood of (z, ζ) such that if χk is supported in this
neighborhood, uk = χku satisfies (5.29).

Indeed, by compactness, one can then choose a partition of unity 5.26
such that the estimate (5.29) is satisfied for all uk = χk(Dz)u.
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5.3.1 The case |ξ′| ≤ c|τ |

The proof of Proposition 5.17 is based on an extension of u0 to {xd < 0}.
We first make a block reduction of the symbol G(t, x, ζ) for large τ . If c is
small enough, the cone {|ξ′| ≤ c|τ |} is contained in the interior of the cone
Γ[ defined in Section 2 and therefore, by Proposition 2.4 :

Lemma 5.19. If c is small enough, the eigenvalues of G(t, x, ζ) in {|ξ′| ≤
c|τ |} are real and split in two groups, located in {±λ ≥ c|τ |} respectively.

As a corollary, there is a smooth microlocal block reduction

(5.30) χ̃0(ζ)G(t, x, ζ) = V −1G1V, G1 =

(
G+ 0
0 G−

)
where the eigenvalues of G± are located in {|λ| ≥ c1|τ |} with ±λτ > 0.

If χ(Dz) is supported in Γ[ and u0 = χ(Dz)u, on can split

v := TV u0 =

(
v+

v−

)
satisfies

(5.31) ∂xdv± + TiG±v± = f±

with

(5.32)
‖f±‖L2 + ‖v±‖L2+‖v±|xd=0‖L2 .

‖u0‖L2 + ‖f0‖L2 + ‖u0|xd=0‖L2 .

Moreover, the blocks G± are strongly hyperbolic and admit smooth sym-
metrizers. Therefore, we are in position to apply Proposition 4.2 with xd as
time variable, on a small but fixed interval [−X, 0] and then truncate the
solution for xd < X/2. Therefore, one can extend f± and v± to {xd < 0}
so that (5.31) and (5.32) remain satisfied. Denoting by ṽ the extension of
v, we see that ũ0 = TV −1 ṽ satisfies

(5.33) ‖Lũ0‖L2 + ‖ũ0‖L2+ . ‖u0‖L2 + ‖f0‖L2 + ‖u0|xd=0‖L2 .

Moreover, on {xd > 0}, ũ0|xd>0−u0 = (TV −1TV −Id)u0 and by the symbolic
calculus ∫ ∞

0

∥∥ũ0|xd>0(·, xd)− u0(·, xd)
∥∥2

H1(Rd+)
dxd . ‖u0‖2L2
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and therefore

(5.34) sup
t
‖ũ0|xd>0(t, ·)− u0(t, ·)‖2

L2(Rd+)
. ‖ũ0‖2L2

Using the energy estimate for the Cauchy problem implies that for t ∈
[0, T ]

(5.35) ‖ũ0(t)‖L2 ≤ ‖Lũ0‖L2([−1,T ]×Rd) + ‖ũ0‖L2([−1,T ]×Rd)

and Proposition 5.17 follows from (5.33) and (5.34).

5.3.2 The case |τ | ≤ C|ξ′|

Let c be chosen as in Proposition 5.17. We now consider the remaining
frequencies |τ | ≤ C|ξ′| with C = 1/c. The idea is to use Propositions 4.10
and 4.11 to estimate ‖uk(t)‖L2 . Let δ1 > 0 be given by Proposition 4.11 and
let α1 = δ1/(2 + C), so that

(5.36) |τ | ≤ (1 + C)|ξ′l ⇒ α1〈ζ〉 ≤ δ1〈ξ′〉.

We fix a point x̃ = (t, x) and ζ = (τ , ξ′) with |τ | ≤ C|ξ′| We assume as
we may that |ζ| = 1. The spectrum of G(x̃, ζ) is made of at most N isolated
eigenvalues. Denote by µk the distinct values of their imaginary part. Then,
there is α ∈ [0, α1] such that inf |µk − α| ≥ α1/N . Therefore, with c =
1
2α1/N , there is a conical neighborbhood of (x̃, ζ) such that for (x̃, ζ) in this

neighborhood, the spectrum of G(x̃, ζ) is contained in
∣∣Imλ− α|ζ|

∣∣ ≥ c|ζ|.
We choose χ supported in this neighborhood and set v = χ(x̃, Dz)u.

Then ∥∥∂xdv + iTG̃v
∥∥
L2 . ‖u‖L2 + ‖f‖L2 ,

where G̃ is an extension of G outside the given neighborhood such that G̃
satisfies the spectral property everywhere. Hence, the elliptic estimate of
Proposition 4.13 implies that∥∥〈Dz〉

1
2 e−α〈Dz〉xdv

∥∥
L2 .

∥∥u∥∥
L2 +

∥∥f∥∥
L2 +

∥∥u|xd=0

∥∥
L2 .

Using (5.36), this implies that∥∥〈Dx′〉
1
2 e−δxd〈Dx′ 〉v

∥∥
L2 .

∥∥u∥∥
L2 +

∥∥f∥∥
L2 +

∥∥u|xd=0

∥∥
L2 .

with δ = (2 +C)α ∈ [0, δ1]. Hence the estimate (5.29) for v follows from the
energy estimates of Propositions 4.10 and 4.11, and the proof of Theorem 5.8
is now complete.
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6 Counterexamples

In this section we prove Theorem 1.5. We give an example of an ill posed
initial boundary value problem for a 6×6 symmetric system with boundary
conditions which satisfy the uniform Lopatinski condition. This example
can be seen as well as a transmission problem for a symmetric 3× 3 system.
The example is in dimension d = 3, the space variables are denoted by
(x, y, z) and the boundary is {x = 0}. The dual variables are (ξ, η, ζ). The
eigenvalues have variable multiplicities on the manifold ξ = η = y = 0,
ζ 6= 0.

Consider in R1+3

(6.1) Lε =

∂t − ε∂x ∂y y∂z
∂y ∂t + ε∂x 0
y∂z 0 ∂t + ε∂x

 = Id∂t + εJ∂x +A∂y + yB∂z

With ε1 = 1 and ε2 = −1, consider on {x > 0} the doubled system

(6.2) Lε1U1 = 0, Lε2U2 = 0

together with boundary conditions on {x = 0} of the form

(6.3) BU :=

u2

v1

w1

−M
u1

v2

w2

 = 0, where Uj =

ujvj
wj

 .

We choose M of the form

(6.4) M =

c 0 0
0 1

2
i
2

0 − i
2

1
2


The system is symmetric. The form (6.3) is well adapted to the diagonal
1-D system L(∂t, ∂x, 0, 0) since then the boundary condition prescribes the
incoming components in terms of the outgoing ones. This 1-D analysis also
shows that when ‖M‖ < 1, the system is maximal strictly dissipative. In
particular, if M is of the form (6.4), the boundary condition is dissipative if
and only if |c| ≤ 1. The uniform Lopatinski condition is satisfied on a wider
range of c:

Proposition 6.1. When |c| < 2, the boundary conditions (6.3) (6.4) satisfy
the uniform Lopatinski condition for the system (6.2).
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This result will be proved later on. Taking it for granted, Theorem 6
follows from the next result :

Theorem 6.2. When c ∈] − 2,−1[, the initial boundary value problem is
strongly ill posed in the sense that there are families Uλ of smooth solutions
of LU = 0 on {t ≥ 0, x ≥ 0}, BU = 0 on {t ≥ 0, x = 0} such that

i) the Uλ(0, ·) are bounded in Hs(R3
+) for all s,

ii) for all time t > 0, the Uλ(t, ·) are not bounded in L2(R3
+).

Remark 6.3. Since the Uλ are smooth up to the boundary on the initial
surface, the compatibility conditions are satisfied at infinite order on the
edge {t = x = 0}. We do not make them explicit nor comment more on this
point here.

To prove the theorem, we first construct exact solutions of LεUε = 0.
Consider the basis

(6.5) e1 =

 0
−1
i

 , e2 =

1
0
0

 , e3 =

0
1
i

 .

Lemma 6.4. Let µ > 0 and γ > 0 satisfy µ2−γ2 = 1 and for ε ∈ {−1,+1}
let

(6.6) δ = εµ− γ =
1

γ + εµ
.

For all ζ > 0, introduce

(6.7) Φ(t, x, y, z, ζ) =
√
ζ(γt− µx) + iζz − 1

2
ζy2

Then

(6.8) Uε(t, x, y, z, ζ) = eΦ
(√

ζye1 + δe2

)
is an exact solution of LεUε = 0.

Proof. One has

ζ−
1
2 e−ΦLεUε = ζy2F2 + ζ

1
2 yF1 + F0

with
F2 = (−A+ iB)e1 = 0,

F1 = (−A+ iB)δe2 + (γId− εµJ)e1 = (δ + γ − εµ)e1,

F0 = Ae1 + (γId− εµJ)δe2 =
(
(γ + εµ)δ − 1

)
e2.
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where we have used that

(−A+ iB)e1 = 0, (−A+ iB)e2 = e1, Ae1 = −e2,

Je1 = e1, Je2 = −e2.

Therefore, the conditions on the parameters imply that LεUε = 0

Lemma 6.5. Let µ > 0 and γ > 0 satisfy µ2 − γ2 = 1. Let U1 and U2 be
defined by (6.8) with δj = εjµ− γ, with ε1 = 1 and ε2 = −1 as above. Then
LεjUj = 0 and the boundary condition (6.3) (6.4) is satisfied if c = δ2/δ1.

Proof. On the boundary

U1 = eΦ

 δ1

−Y
iY

 , U2 = eΦ

 δ2

−Y
iY

 ,

with Y = y
√
ζ. Therefore,

e−ΦBU =

 δ2

−Y
iY

−
c 0 0

0 1
2

i
2

0 − i
2

1
2

 δ1

−Y
iY

 = 0

when c = δ2/δ1.

Corollary 6.6. Let µ > 0 and γ > 0 satisfy µ2 − γ2 = 1 and let c = δ2/δ1.
Then the initial boundary value problem for (6.2) (6.3) (6.4) is strongly ill
posed.

Proof. Consider for λ large

Uλ(t, x, y, z) = e−λ
ρ

∫
U(t, x, y, z, ζ)ϕ(ζ − λ)dζ

where ϕ ∈ C∞0 (]1,∞[) and ρ < 1
2 . It satisfies LUλ = 0 and the boundary

condition BUλ = 0, for all time. In particular, the compatibility conditions
at the edge {t = x = 0} are satisfied.

At t = 0 the phase Φ is −
√
ζµx− 1

2ζy
2 + iζz and for all s,∥∥Uλ(0, ·)

∥∥
Hs(R3

+)
= O(1)

and similar estimates are true for t < 0 since the factor of t in the phase is
positive. On the other hand, for t > 0 the phase has the amplification factor
γ
√
ζt, and for λ� t−2/(1−2ρ),∥∥Uλ(t, ·)

∥∥
L2(R3

+)
& eγ

√
λt/2.
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Remark 6.7. Note that the blow up also occurs in L2(B∩R3
+) for any ball

B ⊂ R3 centered at the origin.

Proof of Theorem 6.2. For c ∈] − 2,−1[, one can choose µ > 0 and γ > 0
such that µ2 = 1 + γ2 and

c = δ2/δ1 = −µ+ γ

µ− γ

and the theorem follows.

Proof of Proposition 6.1. For the symbolic analysis, y is a parameter inde-
pendent of η and and we can replace yζ by ζ, which we do below. Clearly,
this is where the commutative calculus for symbols diverges from the non-
commutative calculus for differential operators.

a) We compute the spaces Ein(τ, η, ζ) when Im < 0. Due to the form
of the equation, it is the space of(

U1

U2

)
with Uj ∈ Einεj (τ, η, ζ),

where Einεj is the incoming space associated with Lεj . Recall from Section 2
that they are the invariant spaces associated to characteristic values ξ lying
in the half plane Im ξ > 0.

For Lε, the characteristic equations for the eigenvectors are

(6.9)


(−εξ + τ)u+ ηv + ζw = 0

(εξ + τ)v + ηu = 0

(εξ + τ)w + ζu = 0

Introduce polar coordinates for (η, ζ):

η = ρ cos θ, ζ = ρ sin θ.

The characteristic determinant is (τ + εξ)(τ2 − ξ2 − ρ2). The characteristic
frequencies are −ετ and ±

√
τ2 − ρ2. They are distinct and simple when

Im τ < 0.
An eigenvector for −ετ is

R0 =

 0
− sin θ
cos θ

 .
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Denote by ξ the square root of τ2 − ρ2 which is located in Im ξ > 0. Eigen-
vectors associated to the characteristic frequency ξ are

R =

 α
cos θ
sin θ

 and R′ =

 1
β cos θ
β sin θ


with

α =
−ρ

−εξ + τ
, β =

−ρ
εξ + τ

.

Of course, they are parallel to each other, since α = 1/β. Depending on
the sign of ε, we use one or the other form, depending on the sign of the
imaginary part of the denominators.

Consider the case ε = −1. Since Im τ < 0, Im (−ετ) < 0 and thus
Einε has dimension one, associated to the characteristic value ξ. Because
Im (εξ + τ) < 0 we choose R′ as a generator and hence

Ein−1 = C

 1
β cos θ
β sin θ

 , β =
−ρ
τ − ξ

.

When ε = +1, Im (−ετ) > 0 and Einε has dimension two, associated
to the characteristic frequencies −τ and ξ. Because Im (−εξ + τ) < 0, we
choose by R0 and R as generators and

Ein+1 = C

 0
− sin θ
cos θ

⊕ C

 α
cos θ
sin θ

 , α =
−ρ
τ − ξ

.

Combining the two cases, we conclude that for the symbol of the doubled
system (6.2), Ein has dimension three and is generated by

(6.10) E0 =

(
R0

0

)
, E1 =

(
R1

0

)
, E2 =

(
0
R2

)
with

R0 =

 0
− sin θ
cos θ

 , R1 =

 a
cos θ
sin θ

 R2 =

 1
a cos θ
a sin θ

 .

with

(6.11) a =
−ρ
τ − ξ

, where ξ2 = τ2 − ρ2, Im ξ > 0.

The definition of Ein extends to the limit case Im τ = 0, provided that
|τ |2 + ρ2 6= 0, choosing the correct limit for ξ.
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b) Applying the boundary conditions B to the basis of Ein yields

BE0 =

 0
− sin θ
cos θ

 ,

BE1 =

 0
cos θ
sin θ

−M
a0

0

 =

−cacos θ
sin θ


BE2 =

1
0
0

−M
 0
a cos θ
a sin θ

 =

 1
−1

2ae
iθ

i
2ae

iθ

 .

Because the three vectors in (6.10) are uniformly independent, the uniform
Lopatinski condition is satisfied if and only if the modulus of the Lopatinski
determinant ∆ = det(BE0,BE1,BE2) is bounded from below by a positive
constant. One has

∆ = det

 0 −ca 1
− sin θ cos θ −1

2ae
iθ

cos θ sin θ i
2ae

iθ


and

∆ = −1 +
1

2
ca2eiθ(cos θ − i sin θ) = −1 +

1

2
ca2.

Recall the following elementary result.

Lemma 6.8. The image of {Im τ < 0, ρ ∈ R} by the mapping (6.11) is
D := {|a| < 1}.

It implies that |∆| ≥ 1− 1
2 |c| and the proposition is proved.
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