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Abstract. The profile equations of geometric optics are described in a form invariant under
the natural transformations of first order systems of partial differential equations. This
allows us to prove that various strategies for computing profile equations are equivalent.
We prove that if L generates an evolution on L2 the same is true of the profile equations.
We prove that the characteristic polynomial of the profile equations is the localization
of the characteristic polynomial of the background operator at (y, dφ(y)) where φ is the
background phase. We prove that the propagation cones of the profile equations are subsets
of the propagation cones of the background operator.

§1. Introduction.

In this paper we revisit the profile equations of geometric optics. In our earlier work
we avoided the language of vector bundles and concentrated on the family of symmetric
hyperbolic systems. There were three reasons. First, the symmetric systems dominate in
applications. Second there are users in the scientific community for whom vector bundles
are not familiar. Finally, the symmetric category has certain simplifying features.

For a system of first order operators L(y, ∂) with principal symbol, L1 and phase satisfying
the eikonal equation, L1(y, dφ(y)) = 0, the leading profile is naturally a section of the
bundle kerL1(y, dφ(y)). The bundle rgL1(y, dφ(y)) and quotient bundles by the kernel
and range play central roles. It is no extra work to consider operators which are maps of
vector bundles. The resulting economy of notation has advantages similar to considering
linear transformations of vector spaces in lieu of matrices. In local coordinates and with
a smooth choice of bases in the fibers, operators on bundles take the familiar form of
differential expressions with smooth matrix valued coefficients.

For equation from physics and from geometry, the unknown v and the quantity Lv are
often quantities of different natures. It is natural to have different spaces for the unknowns
v and the the values of Lv.

In our treatments (with J.-L. Joly) of geometric optics for symmetric hyperbolic systems
we lean heavily on spectral projectors associated with the symbol of the operators. This
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approach has at least three weaknesses;

1. The symmetry property is not preserved under multiplication of the system by an
invertible matrix valued function.

2. In practice one often computes the profile equations by hand and without reference to
projectors or the symmetric structure. It is important to show that this proceedure leads
always to the same result.

3. There are hyperbolic systems which generate good L2 evolutions and are neither sym-
metric nor symmetrised by multiplying by a matrix valued function.

The second item is the key hint. If there is an answer which is independent of the choices
that one makes, then there should be a choice independent description. In §2, we present
such a construction which has the advantage of working in general thereby overcoming
defect 3.

In §3 we introduce the operators L which generate evolutions on L2. For operators which
generate evolutions on L2 and phases satisfying the smooth variety hypothesis, we prove
in §4, in that the profile equation is essentially a transport equation at the group velocity.
The smooth variety hypothesis is rarely violated in practice.

In §5, we show that when the original equations are symmetrisable in the sense of Friedrichs
and the phase satisfies the constant rank hypothesis which is weaker than the smooth
variety hypothesis, then the profile operator acting on sections of kerL1(y, dφ(y)) is also
symmetrisable.

For systems generating an evolution in L2, and phases satisfying the constant rank hy-
pothesis we prove in §6 that the profile equations generate an evolution on L2 sections of
kerL1(y, dφ(y)). In other words, the profile equations inherit this strong type of hyperbol-
icity from the original operator L.

When the constant rank hypothesis is satisfied, we prove in §7, that the characteristic
polynomial of the profile equations is the localisation of the characteristic polynomial of
L. It follows that its propagation cones at each point are subsets of the propagation cones
of the background hyperbolic system. In particular the domains of influence of the profile
equations are subsets of the domains for the background equations. This was known in
the symmetric case by a special argument.

The central ideas and methods of this article are readily adapted to nonlinear, resonant,
dispersive, and diffractive geometric optics ([JMR1,2], [DR]. [DJMR]). We present the one
phase, nondispersive, linear theory to highlight the new elements. We treat situations
including multiple roots and most importantly variable multiplicity. It is in the latter
situation that the profile equations can be nontrivial hyperbolic systems as in conical
refraction.

§2. The profile equations, invariant description.

After recalling the WKB computation of asymptotic solutions this section has two results.
The first extracts a pair of equations for the nthe coefficient an using the natural quotient
spaces and their canonical projections. The second result shows that the standard way to
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derive equations for an involving ad hoc choices yield answers independent of the ad hoc
choices.

Suppose that L(y, ∂) is a first order linear system of partial differential operators with
smooth coefficients mapping sections of a vector bundle V to sections of another vector
bundle, W . Both bundles have fiber dimension N and lie above the same open set Ω ⊂
R

1+d
t,x . Even if one considers the case of vector spaces V and W , one immediately finds

bundles with nonconstant fibers playing a central role. The issues we address are local in
y so it suffices to consider bundles over a fixed open subset of space time.

Denote y = (t, x) and by Vy and Wy the fibers over the point y. The principal symbol
L1(y, η) is a linear map from Vy to Wy which is a linear function of η. The variable η
belongs to the cotangent space (R1+d

y )∗.

Assumption. Suppose that φ is a smooth real valued function on Ω satisfying the eikonal

equation

∀y ∈ Ω, dφ(y) 6= 0, and, detL1(y, dφ(y)) = 0 . (2.1)

We impose the constant rank hypothesis,

k := dim
(

kerL1(y, dφ(y))
)

is independent of y ∈ Ω . (2.2)

Notation. For smooth functions f(ε, y) and g(ε, y) the notation f ∼ g means that they
have the same Taylor expansion at ε = 0. The notation

f(ε, y) ∼ a0(y) + εa1(y) + · · · ,

means that the right hand side is the Taylor expansion of f at ε = 0. The notation
f = O(ε∞) is synonymous with f ∼ 0.

Seek asymptotic solutions,

vε = eiφ(y)/ε V (ε, t, x), V (ε, t, x) ∼ a0(t, x) + ε a1(t, x) + · · · , L vε ∼ 0 . (2.3)

Compute

L(y, ∂)
(

eiφ(y)/ε V (ε, t, x)
)

= eiφ(y)/ε L
(

y, ∂ +
idφ(y)

ε

)

V .

L
(

y, ∂ +
idφ(y)

ε

)

V ∼ L
(

y, ∂ +
idφ(y)

ε

)(

a0(t, x) + ε a1(t, x) + · · ·
)

∼
L1(y, dφ(y))a0

ε
+

∞
∑

n=0

εn
(

L1(y, idφ(y)) an+1 + L(y, ∂) an

)

.

The residual is O(ε∞) if and only if the coefficient of εn vanishes for all n ≥ −1.

Proposition 2.1. With vε(y) defined by (2.3) one has Lvε = O(ε∞) if and only if,

L1(y, idφ(y)) an + L(y, ∂) an−1 = 0 , for n = 0, 1, . . . , (2.4)
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where by convention a−1 := 0.

When the coefficients an satisfy the equations (2.4), Lvε is infinitely small in ε. The
leading coeffient a0 gives the envelope of the wave packet eiφ(y)/ε a0(y). The coefficients
an are called the profiles of vε. The profile an appears in two equations, (2.4) and

L1(y, idφ(y)) an+1 + L(y, ∂) an = 0. (2.5)

The determination of the an is recursive. Given an−1 with

L(y, ∂) an−1(y) ∈ rgL1(y, dφ(y)) , (so (2.4) is not inconsistent),

the determination of an goes as follows.

• Equation (2.4) determines an(y) modulo the kernel of L1(y, dφ(y)).

• Projecting (2.5) along the range of L1 gives an evolutionary differential equation expected
to complete the determination of an and guaranteeing L(y, ∂) an(y) ∈ rgL1(y, dφ(y)) for
the next step.

• The exception to this rule is the leading coefficient a0 for which one has a−1 = 0 which
trivially satisfies L(y, ∂) a−1(y) ∈ rgL1(y, dφ(y)).

This section is devoted to analysing the ”projecting” in the middle bullet. Projecting along
the range onto any compliment will do, but involves an arbitrary choice. More generally,
one can multiply by any matrix of rank equal to dim kerL1(y, dφ(y)) and annihilating the
range. In the symmetric case, [JMR1,2,3, etc.] have systematically taken the orthogonal
projection along the range onto the kernel. This has three advantages,

• It is well defined. That is, it requires no arbitrary choices.

• It has norm equal to one.

• It is self adjoint.

The latter two properties lead to natural a priori estimates.

There is an analogous map which depends neither on symmetry nor on ad hoc choices.
It is the natural projection from W to W/rgL1(y, dφ(y)). Using this projector yields a
construction robust under the three natural transformations preserving first order linear
systems, namely,

1. Smooth change of basis in V .

2. Smooth change of basis in W .

3. Mulitplication of L by an invertible matrix valued function of y.

It allows us to prove, in Proposition 2.2, that the profile equations are independent of the
projection method that one employs.

Introduce four natural vector bundles over Ω,

kerL1(y, dφ(y)) , rgL1(y, dφ(y)) ,
V

kerL1(y, dφ(y))
, and,

W

rgL1(y, dφ(y))
.
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Denote by irg and iker the inclusions

rgL1(y, dφ(y))
irg
−→ W , kerL1(y, dφ(y))

iker−→ V .

and by πrg and πker the natural projections,

V
πker−→

V

kerL1(y, dφ(y))
, W

πrg

−→
W

rgL1(y, dφ(y))
.

To derive the profile equations use the two exact sequences,

0 → kerL1(y, dφ(y)
iker−→ V

L1(y,dφ(y)
−→ W

πrg

−→
W

rgL1(y, dφ(y))
→ 0 ,

0 → kerL1(y, dφ(y))
iker−→ V

πker−→
V

kerL1(y, dφ(y))
→ 0 .

Even when the original differential operator L(y, ∂) acts on vector spaces, the quotient
bundles arise naturally. And, the quotient bundles generically have nonconstant fibers
since kerL1(y, dφ(y)) and rgL1(y, dφ(y)) typically vary from point to point.

The bundle maps

πker : V →
V

kerL1(y, dφ(y))
, and, L1(y, dφ(y)) : V → rgL1(y, dφ(y)),

are surjective and have the same kernels. Therefore, there is a uniquely determined invert-
ible bundle map,

L̃1(y) :
V

kerL1(y, dφ(y))
→ rgL1(y, dφ(y))

yielding a commutative diagram,

V
L1(y,dφ(y))

−→ rgL1(y, dφ(y))

πkerց (L̃1)
−1ւր L̃1

V
ker L1(y,dφ(y))

Theorem 2.2. The profile equations (2.4) are satisfied if and only if for n = 0, 1, . . . ,

πrg L(y, ∂) an = 0, and, πkeran = −(L̃1(y))
−1L(y, ∂)an−1 , (2.6)

with the convention a−1 = 0.
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Remark. In order for the second equation in (2.6) to make sense, one must know that
L(y, ∂)an−1 takes values in rgL1(y, dφ(y)). This is equivalent to the first equation in (2.6)
for the the index n− 1.

Proof. If the equations of Proposition 2.1 are satisfied, then the first equation in (2.6) is
proved by applying πrg to (2.5).

Equation (2.4) implies that L(y, ∂)an−1 lies in rgL1(y, dφ(y)). The second equation in
(2.6) is proved by applying L̃1(y)

−1 to (2.4).

This proves that the equations (2.6) are necessary.

Conversely, If the equations (2.6) are satisfied, then the second equation of (2.6) with n = 0
implies the case n = 0 of (2.4)

To prove the case n ≥ 1 of (2.4), multiply the second equation of (2.6) by L̃1(y) to prove
(2.4).

We next verify that the equations (2.6) are well behaved under the three natural trans-
formations of the operator L. The equations (2.6) are expressed in term of bundle maps.
The invariance under change of bases in Vy and Wy is automatic.

The behavior under multiplication of L by a a matrix is only slightly harder. If M(y) is a
smooth invertible bundle map from W to Y then replacing the operator L from V to W
by the operator ML from V to Y yields equivalent differential equations. The map M(y)
induces an invertible bundle map

Wy

rgL1(y, dφ(y))
7→

Yy

rg (ML)1(y, dφ(y))
.

defined by,

w + rgL1(y, dφ(y)) 7→ Mw +M rgL1(y, dφ(y)) = Mw + rg (ML)1(y, dφ(y)) .

This bundle map is denoted M(y) with little risk of confusion. With this notation, the
preceding identity asserts that

M
(

w mod rg L1(y, dφ(y))
)

=
(

Mw
)

mod rg (ML)1(y, dφ(y)) .

This identity is equivalent to,

Mπrg L1(y,dφ(y)) = πrg (ML)1(y,dφ(y))M .

This proves the following. The operator, πrg (ML)1(y,dφ)ML, associated to ML is equal to
M times the operator, πrg L1

L, associated to L. In particular the first equations from the
pair (2.6) are either satisfied for both L and ML or for neither.

The map πrg is natural from the mathematical point of view. On the other hand, it is not
the sort of object a scientist would normally employ. In scientific practice, what is usually
done is to write down the N scalar equations represented by (2.5). One then seeks linear
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combinations of these equations which do not contain any an+1 terms thereby yielding
equations for an alone. This corresponds to to choosing a smoothly varying basis

ℓ1(y) , ℓ2(y) , . . . , ℓk(y)

of the k dimensional annihilator of rgL1(y, dφ(y)). Applying ℓj(y) to (2.5) shows that

ℓj(y)
(

L(y, ∂) an

)

= 0, j = 1, 2, . . . , k .

These k scalar equations replace the first equation from (2.6). Defining

K(y)w :=
(

ℓ1(y)(w), ℓ2(y)(w), . . . , ℓk(y)(w)
)

∈ C
k,

shows that this practical construction is a special case of the next proposition which proves
that replacing (2.6) in this way yields an equivalent system of partial differential equation.
In the same way, the projection algorithms of [Me] which are more general than the spectral
projections of [JMR] yield also equivalent descriptions.

Proposition 2.3. Suppose that
K : W → Z

is a smooth bundle map defined for y ∈ Ω. Suppose that K satisfies for all y ∈ Ω,

K(y)
(

rgL1(y, dφ(y))
)

= 0, rankK(y) = k .

Then each of the equations

πrg L(y, ∂) a = 0, and, K L(y, ∂) a = 0 ,

implies the other

Proof. Replacing Z by the subbundle rgK reduces to the case of maps which are surjec-
tive.

In that surjective case, K and πrg have the same kernels and are surjective. Therefore,
there is a unique invertible bundle map

M :
W

rgL1(y, dφ(y))
→ Z,

so that the following diagram commutes,

W
πrg
−→ W

rg L1(y,dφ(y)) → 0

K ց M−1րւM

Z

ց

0
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Therefore,

K L(y, ∂) = M πrg L(y, ∂) , πrg L(y, ∂) = M−1K L(y, ∂).

The Proposition follows.

The profile equations lead to initial value problems. The coefficient an is determined by
solving

πrg L(y, ∂) an = 0, πker an = −(L̃1(y))
−1L(y, ∂)an−1 . (2.7)

Once an−1 is known one can choose a section Hn of V so that

πker Hn = −(L̃1(y))
−1L(y, ∂)an−1 .

Then an − Hn takes values in kerL1(y, dφ(y)) so there is a unique smooth section gn of
kerL1(y, dφ(y)) so that

an = iker(gn) + Hn .

The number of equations is equal to dimkerL1(y, dφ(y)) which is the number of unknowns
represented by g. The initial data for an is equivalent to prescribing the values of gn(t0, x).
In §5, we prove in great generality that the initial value problem for gn is a good hyperbolic
system.

Note that the value of gn depends on the choice Hn. A convenient way is to choose a
subbundle J ⊂ V complementary to kerL1(y, dφ(y)),

Jy ⊕ kerL1(y, dφ(y)) = Vy . (2.8)

Denote by P (y) the projection along Jy onto kerL1(y, dφ(y)). Then in the above construc-
tion one can take

Hn = −(I − P )L1(y)
−1L(y, ∂) an−1 , gn = P an . (2.9)

With this choice the initial data that are required are the values of P an|t=t0 . When there
is a natural hermitian structure on V as in the symmetrisable case described in §4, one
can choose J to be the orthogonal complement and P the orthogonal projection.

§3. Hyperbolic operators generating evolutions on L2.

We introduce a family of hyperbolic operators for which the profile equations yield well
posed initial value problems.

Denote by L1(t, x, τ, ξ) = L1(y, η) the prinicipal symbol. We assume that the Cauchy
problem for L is well posed. This implies that the planes t = constant are noncharacter-
istic. For, if there were a noncharacteristic point, the differential equation Lu = 0 would
represent a nontrivial constraint on the values of admissible initial data. In addition, when
the Cauchy problem is at least weakly well posed, the theorem of Lax and Mizohata ([L],
[M]) implies that one has hyperbolicity in the sense that for all real ξ and y ∈ Ω the roots
τ of the equation

detL1(y, τ, ξ) = 0, (3.1)
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are all real.

The maximal sound speed measured using the Euclidean norm in x (and dual norm in ξ)
is defined by 1,

σ := sup
{

|τ | : ∃(y, ξ) ∈ Ω × R
d, |ξ| = 1, and, detL1(y, τ, ξ) = 0

}

. (3.2)

Definitions. A forward influence cone is a subset of Ω of the form
{

|x− x0| ≤ σ(t− t0), t0 ≤ t ≤ t1

}

. (3.3)

The cone opens toward the future. A backward influence cone is defined similarly but
opening toward the past. For any such cone Γ, Γ(t) denotes its section at time t.

It is important that part of the definition is that the cone lies inside Ω where the phase φ
is defined.

Defintion. The operator L(y, ∂) generates an evolution on L2 if for every forward influence
cone Γ there is a constant C so that for any g ∈ L2(Γ(t0)) supported in the interior of
Γ(t0) there is a unique u ∈ L∞([t0.t1] ; L

2(Γ(t))) vanishing on a neighborhood of the lateral
boundaries of Γ and solving the initial value problem,

Lv = 0 in Γ v = g on Γ(t0) . (3.4)

In addition there is a constant C = C(t0, t1) independent of g so that,

sup
t0≤t≤t1

‖v(t)‖L2(Γ(t) ≤ C ‖g‖L2(Γ(t0)) . (3.5)

Remarks. 1. By a Duhamel construction, one solves inhomogeneous equations and the
solutions satisfy the estimate

sup
t0≤t≤t1

‖v(t)‖L2(Γ(t) ≤ C
(

‖g‖L2(Γ(t0)) +

∫ t1

t0

‖Lv(t)‖L2(Γ(t)) dt
)

. (3.6)

A perturbation argument shows that changing the lower order terms does not affect
whether one generates an evolution on L2.

2. Using the weak=strong result of Friedrichs (see [Fr1], [LP]) together with (3.6) one
shows that the solution is continous with values in L2(Γ(t)) so the trace at time t is a well
defined element of L2(Γ(t)).

1 The Euclidean norm can be avoided by using the more precise ideas associated with in-

fluence curves defined as lipschitzean curves whose tangents belong to the forward prop-
agation cones of the constant coefficient hyperbolic operators L(y, ∂) (see [Lr], [JMR4],

[R2]).
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3. Finite speed of propagation is built into this definition since the property is supposed
for every forward influence cone.

4. The frozen constant coefficient operators L1(y, ∂) are generators of strongly continuous

semigroups on L2(Rd) with bounds uniform for y ∈ Γ. That is,

∃C, ∀y ∈ Γ ∀g ∈ L2(Rd ; Vy) ,

the constant coefficient Cauchy problems

L1(y, ∂)v = 0, v|t=t = g, (3.7)

are uniuqely solvable and the solutions satisfy

sup
t∈R

‖v(t)‖L2(Wy) ≤ C ‖v(t)‖L2(Rd ; Wy) . (3.8)

Sketch of Proof of 4. Blow up at y. The solution v of (3.7) is constructed as a weak

star limit in L∞([t, T ] L2(Rd)) of

vε := uε(t+ ε(t− t) , x+ ε(x− x)),

where uε is the solution of

L1(y, ∂)uε = 0, uε
∣

∣

t=t
= g

(x− x

ε

)

.

For ε small, the family vε is bounded in L∞([t, T ] ; L2(Rd)), and satisfies

L1(y + ε(y − y), ∂) vε = 0, vε
∣

∣

t=t
= g .

The limit of any weak star convergent subsequence solves (3.7) with estimate (3.8). Unique-
ness follows from Hölmgren’s Theorem.

5. When L generates an evolution on L2, the hyperplanes t = constant are noncharac-
teristic so A0(y) is for each y an invertible linear map Vy → Wy. Therefore, A−1

0 L is a
differential operator mapping sections of V to sections of V . It is automatic that A−1

0 L
generates an evolution on L2 since the solutions of Lv = 0 and A−1

0 Lv = 0 are the same.
Then 4. implies that for all real τ, ξ, the matrix A−1

0 L1(y, τ, ξ) is similar to a real diagonal
matrix. In particular for characteristic (y, η),

ker (A−1
0 L)1(y, η) ⊕ rg (A−1

0 L)1(y, η) = Vy . (3.9)

6. If L generates an evolution on L2 then the transposed operator on the dual bundles

L(y, ∂)† : W † → V †
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generates an evolution on L2 with the same choice of σ

Sketch of proof of 6. The characteristic polynomial of the dual (see §7) differs by a
constant factor from that of L proving the equality of the σ.

Existence for the dual problem follows from the esimtate (3.6) for the L by a standard
duality.

Uniqueness and finite speed for the dual problem follow by a Hölmgren type argument
from the existence and finite speed for L.

§4. Transport at the group velocity.

Definition. The phase φ satisfies the smooth variety hypothesis if in a conic neighor-
hood of the points (y, dφ(y)) the characteristic variety of L is a smooth graph, {(y; τ, ξ) :
τ = τ(y, ξ)}. For such a φ, define the group velocity associated to φ by,

v(y) := −∇ξτ(y, dφ(y)) . (4.1)

When the smooth variety hypothesis is satisfied, the profile equations of geometric optics
have principal part which is the directional derivative at the group velocity.

Proposition 4.1. Suppose that the phase φ satisfies the constant rank hypothesis.

i. If L1(y, ∂) generates an evolution on L2, then for any (y; τ, ξ) in the characteristic
variety,

πrg(y, τ, ξ)A0(y) iker(y, τ, ξ) : kerL1(y, τ, ξ) →
W

rgL1(y, τ, ξ)
(4.2)

is invertible.

ii. If in addition, φ satisfies the smooth variety hypotheses, then the profile operator
πrg L(y, ∂) iker differs from

πrg A0 iker

(

∂t + v.∂x

)

(4.3)

by an operator of order zero.

Remarks. 1. Part i. implies that when the constant rank hypothesis is satisfied, the
hyperplanes {t = const.} are noncharacteristic for the profile operator, πrg L(y, ∂) iker.

2. Part ii. is equivalent to the assertion that the prinicipal symbol of πrg L(y, ∂) iker is
equal to

πrg A0 iker

(

iτ +

d
∑

j=0

iξj

)

.

Proof. i. It is sufficient to show that it is injective. Suppressing the y dependence, it
suffices to show that if

r ∈ kerL1(τ, ξ) and πrg(τ, ξ)A0r = 0, (4.4)
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then r = 0.

Compute

L1(τ, ξ) =
(

L1(τ, ξ)A
−1
0

)

A0 , L1(τ, ξ)A
−1
0 = A0

(

A−1
0 L1(τ, ξ)

)

A−1
0 .

The second similarity together with (3.9) implies that

kerL1(τ, ξ)A
−1
0 ⊕ rgL1(τ, ξ)A

−1
0 = Wy .

The conditions of (4.4) are equivalent to,

A0 r ∈ rgL1(τ, ξ)A
−1
0 ∩ kerL1(τ, ξ)A

−1
0 = {0} .

Therefore, A0r = 0, so r = 0.

ii. The coefficients of ∂t and ∂j in the profile operator are respectively

πrg(y, τ(y, ξ), ξ)A0(y) iker(y, τ(y, ξ), ξ), and, πrg(y, τ(y, ξ), ξ)Aj(y) iker(y, τ(y, ξ), ξ).

The assertion is equivalent to the identities,

πrg Aj iker = −
∂τ

∂ξj
πrg A0 iker , j = 1, . . . , d . (4.6)

Reason for y fixed and suppress the y dependence for ease of reading. First show that
kerL1(τ(ξ), ξ) has dimension independent of ξ. The kernel is the eigenspace of the diago-
nalisable transformation A−1

0 L1(0, ξ) corresponding to the eigenvalue −τ(ξ). The smooth
variety hypothesis implies that for δ small, the dimension is equal to

trace
1

2πi

∮

|z+τ(ξ)|=δ

(

z − A−1
0 L1(0, ξ)

)−1

dz .

It is a continuous integer valued function, hence locally constant.

Choose a smooth local basis

w1(ξ) , . . . , wk(ξ) of kerL(τ(ξ), ξ) .

Differentiate the identity L(τ(ξ), ξ)wm(ξ) = 0 with respect to ξj to find

(

A0
∂τ

∂ξj
+ Aj

)

wm + L(τ(ξ), ξ)
∂wm

∂ξj
= 0 .

Multiply by πrg to find

πrg

(

A0
∂τ

∂ξj
+ Aj

)

wm = 0, j = 1, . . . , d, m = 1, . . . , k . (4.7)
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Equation (4.7) is equivalent to (4.6).

§5. The profile equation in the symmetrisable case.

In this section we show that if the operator L is symmetrisable in the sense of Friedrichs
[F2], then the proflle operator πrg L(y, ∂) iker is also symmetrisable. This argument is a
variant of those used by [JMR1,2,3] to show that the profile equations yield well posed
initial value problems. It is pertinent when the smooth variety hypothesis is violated,
since when the variety is smooth the profile equations are transport equations that are
essentially trivial. A classic nontrivial example is conical refraction (see [Lu],[JMR2]).

Multiplying L by A−1
0 (y) achieves two related goals. First it reduces to an operator with

V = W . And second, the coefficient of ∂t is the identity transformation on Vy.

Definition. The operator L is symmetrisable in the sense of Friedrichs if and only if
there is a smooth map y 7→ γ(y) with γ(y) a scalar product on Vy (equivalently, the vector
bundle V has a hermitian structure) so that A−1

0 (y)Aj(y) is γ(y)-hermitian for all y.

The standard energy estimate by integration by parts shows that this is equivalent to the
existence of a C > 0 for each forward influence cone Γ, so that for all smooth solutions of
Lv = 0 supported in Γ, one has,

d

dt

∫

(v(t, x) , v(t, x))γ(t,x) dx ≤ C

∫

(v(t, x) , v(t, x))γ(t,x) dx.

Equivalently, writing
A−1

0 L = ∂t +G(y, ∂x)

the operator G satisfies
G + G∗ = order zero

where the adjoint is taken with respect the time dependent scalar product,

∫

(

· , ·
)

γ(t,x)
dx ,

on square integrable sections of V .

If φ(y) satisfies the eikonal equation and the constant rank hypothesis, (3.9) allows us to
introduce the spectral projection Π(y)) along the range of A−1

0 (y)L1(y, dφ(y)) onto its
kernel.

The scalar product γ(y) induces a scalar product on

V

rg (A−1
0 (y)L1)(y, dφ(y))

and a smooth family of unitary maps U(y),

V

rg (A0(y)−1L1)(y, dφ(y))

U(y)
−→

(

rgA0(y)
−1L1(y, dφ(y)

)⊥γ(y)

.
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In addition,

(

rgA0(y)
−1L1(y, dφ(y)

)⊥γ(y)

= ker (A0(y)
−1L1)(y, dφ(y)) = kerL1(y, dφ(y)).

When L is symmetrisable, A−1
0 (y)L1(y, dφ(y)) is γ(y) hermitian so Π(y) is the γ(y)-

orthogonal projection of Vy onto kerL1(y, dφ(y)). One has,

U(y) πrgA−1
0 L1(y,dφ(y)) = Π(y) .

Proposition 5.1. Suppose that L is symmetrisable in the sense of Friedrichs and φ is a
phase satisfying the eikonal equation and the constant rank hypothesis.

i. The following two differential operators on the vector bundle kerL1(y, ∂)) are equal,

Π (A−1
0 L)(y, ∂) Π iker = U πrg A

−1
0 L(y, ∂) iker .

ii. The operator Π(y) (A−1
0 (y)L)(y, ∂) Π(y), mapping sections of kerL1(y, dφ(y)) to sec-

tions of the same bundle, is symmetrisable in the sense of Friedrichs.

Proof. i. Follows from the identities, Π iker = iker and U πrg = Π.

ii. Since the projectors Π(y) and A−1
0 Aj are γ(y)-hermitian, it follows that the coefficient

matrices
Π(y)A−1

0 (y)Aj(y)Π(y)

are γ(y)-hermitian.

We do not know a a simple algebraic proof like this that the profile equation is well
posed for more general problems. For example for systems symmetrised by a a family of
pseudodifferential operator in x. The next example shows that it is not simply a question
of having a good hyperbolic operator sandwiched between two nice projectors. In the next
section we give a proof valid under very general hypotheses.

Example. Consider

A :=

(

0 −Λ
1 0

)

, Λ > 0, specA =
{

± iΛ1/2
}

, sup
ξ∈R

‖eξA‖ < ∞.

The projector Π = 1
2

(

1 1
1 1

)

, is orthogonal with respect to the standard scalar product

on C2 with range equal to C(1, 1). The sandwiched matrix satisfies

ΠAΠ =
1 − Λ

2
Π, spec ΠAΠ =

{

(1 − Λ)/2 , 0
}

, Λ 6= 1 ⇒ sup
ξ∈R

‖eξ ΠAΠ‖ = ∞.

This shows that L := ∂t + iA∂x generates an evolution on L2(R) while for Λ 6= 1, ΠLΠ
does not generate an evolution of the square integrable rg Π valued functions. It is not
even weakly hyperbolic.
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§6. Stability of the profile equations; general case.

In this section we show that the profile equations of geometric optics generate an L2

evolution whenever L generates an L2 evolution and the phase satisfies the constant rank
hypothesis. For hyperbolic systems that are not symmetrisable in the sense of Friedrichs
and phases not satisfying the smooth variety hypothesis, this results is new.

Theorem 6.1. Suppose that L generates an evolution on L2 and the phase φ satisfies the
eikonal equation and the constant rank hypothesis. Then,

πrgL(y, ∂) iker : kerL1(y, dφ(y)) →
W

rgL1(y, dφ(y))
,

is a first order operator between vector bundles that generates an evolution on L2.

Proof. Suppose that Γ is a forward influence cone in Ω beginning at t0 and ending at t1.
For a smooth section g(x) of kerL1(0, x), dφ(0, x)) supported in the interior of Γ(t0), we
need to show that the Cauchy problem

πrgL(y, ∂) iker v = 0, vε(t0, x) = g , (6.1)

has a unique solution v that is a section of kerL1(t, x), dφ(t, x)), v ∈ L∞([t0, t1] ; L
2(Γ(t)),

and satisfies estimate (3.6).

We construct such a solution as the weak limit

v = weak − lim
ε→0

e−iφ/ε vε (6.2)

where vε is the solution of the initial value problem,

Lvε = 0, vε(t0, x) = eiφ(t0,x)/ε g(x) . (6.3)

Define uε by
uε := e−iφ(y)/ε vε, so, vε := eiφ(y)/ε uε. (6.4)

The equation Lvε = 0 is then,

0 = L
(

y, ∂ +
idφ(y)

ε

)

uε =
i L1(y, dφ(y))

ε
uε + L(y, ∂) uε . (6.5)

Since L(y, ∂) generates a continuous evolution on L2, vε is bounded in L∞([t0, t1] ; L
2).

Therefore uε is bounded in L∞([t0, t1] ; L
2) ⊂ L2([t0, t1]×Rd). Since L(y, ∂) is first order,

L(y, ∂) uε is bounded in H−1(Γ) . (6.6)

Equation (6.5) implies that

L1(y, dφ(y))

ε
uε is bounded in H−1(Γ) . (6.7)
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The initial values,
uε(0, x) = g(x) , (6.8)

are independent of ε.

Suppose that u ∈ L∞([t0, t1]] ; L
2(Γ(t)) is a weak star limit point of the sequence uε.

Choose a sequence ε(k) → 0 so that uε(k) tends weakly to u. The next argument concerns
only that subsequence. Estimate (6.7) implies that L1(y, dφ(y))uε tends to zero in H−1(Γ).
Passing to the weak limit in (7) yields

L1(y, dφ(y))u = 0 . (6.9)

Introduce special coordinates in the fibers. Multiplying L by A−1
0 we may suppose that

the coefficient of ∂t is equal to the identity matrix.

The constant rank hypothesis shows that (3.9) is a smooth decomposition. It yields

uε(y) = uε
ker(y) + uε

rg(y).

With this representation, L1(y, dφ(y)) has the block form

(

0 0
0 M(y)

)

, M(y) ∈ Hom
(

rgL1(y, dφ(y)
)

invertible.

Estimate (6.7) shows that

uε
rg

weakly
−→ 0 in H−1(Γ).

Thus the weak limit u = uker.

Equation (6.5) in the current coordinates shows that

∂tu
ε
ker is bounded in L∞([t0, t1] ; H

−1(Γ(t))). (6.10)

Therefore uε
ker is bounded in in Lip([t0, t1] ; H

−1(Γ(t)) with initial value equal to g by (6.8).
It follow that uε

ker converges uniformly to a Lipschitz continuous function with values in
H−1 whose initial value is g. In particular,

u|t=0 = g . (6.11).

Thus v ∈ L∞([0, T ] ; L2(Γ(t))) solves the initial value problem (6.1). And, v inherits the
a priori bound

∥

∥v
∥

∥

L∞([t0,t1] ; L2(Γ(t))
≤ C ‖g‖L2(Rd).

Since the uε are supported uniformly in a strictly smaller influence cone the same is true
of u showing that u vanishes on a neighborhood of the lateral boundary of Γ. This settles
the existence part for the evolution in L2.
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To prove uniqueness, use a duality argument as in Hölmgren’s Theorem. Remark 6 above
shows that the operator between duals,

(

πrgL(y, ∂)iker

)†
: kerL1(y, dφ(y))† →

(

W/rgL1(y, dφ(y))
)†
,

generates an L2 evolution. This shows that for each T ∈ [t0, t1] and

ψ ∈ L2
(

Γ(T ) ;
(

kerL1(T, x), dφ(T, x))
)†

)

, suppψ ⊂⊂ Γ(T ) ,

There is a w ∈ L∞([t0, T ] ; L2(Γ(t)) with values in kerL1(y, dφ(y))† satisfying the initial
value problem

(

πrgL(y, ∂)iker

)†
w = 0, w(T, ·) = ψ .

From the finite speed for L†, w vanishes on a neighborhood of the lateral boundaries of Γ.
Therefore in the integrations by parts over Γ which follow the only boundary terms which
arise are from the top and bottom.

Use Green’s identity which is proved using Friedrich’s weak=strong result,

∫ T

t0

〈

πrgL(y, ∂)ikerv , w
〉

−
〈

v ,
(

πrgL(y, ∂)ikerv
)†
w

〉

dx dt =

∫

〈

v(t) , w(t)
〉

dx
∣

∣

∣

t=T

t=t0
.

To prove uniqueness of the Cauchy problem for the problem defining v = vker with initial
value g = 0, use this identity with,

πrgL(y, ∂)ikerv = 0,
(

πrgL(y, ∂)ikerv
)†
w = 0, vker

∣

∣

t=0
= 0 wker

∣

∣

t=T
= ψ ,

to find,
∫

〈

v(T ) , ψ
〉

dx = 0 .

Since T and ψ are arbitrary it follows that v = 0.

Combining this result with the discussion at the end of §2, yields the following existence
and uniqueness result for asymptotic solutions.

Corollary 6.2. Suppose that L and φ are as in Theorem 6.1 and Γ is a forward influ-
ence cone with base at t = t0. Suppose that J ⊂ V is a subbundle complementary to
kerL1(y, dφ(y)) as in (2.8) and that P (y) is the projection along Jy onto kerL1(y, dφ(y)).
Then for any family of smooth initial sections x 7→ gn(x) of kerL1

(

(t0, x), dφ(t0, x))
)

sup-
ported in the interior of Γ(t0) there are uniquely determined smooth profiles an defined
in Γ, vanishing on the lateral boundaries, satisfying the equations (2.6) together with the
initial conditions

P an

∣

∣

t=t0
= gn .
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§7. Characteristic polynomial of the profile operator.

In this section we compute the characteristic polynomial of the operator, πrg L(y, ∂) iker
when L generates an L2 evolution when the constant rank hypothesis is satisfied The
smooth variety hypothesis need not be satisfied.. A classic example is conical refraction in
crystal optics (see [Lu], [JMR2]).

The symbol L1(y, η) is a linear map from Vy to Wy so does not have a well defined
determinant. For fixed y choosing bases in Vy and Wy yields a matrix valued function
L1(y, η) and therefore a determinant. Different choices of bases yield functions of η which
differ at most by a multiplicative constant. Therefore, the characteristic polynomial at y
is well defined up to a nonvanishing constant factor.

Definition. Suppose that P (η) is a polynomial in N variables and that η ∈ CN . Define
µ to be the unique integer so that for |α| < µ, ∂αP (η) = 0 and there is an α with |α| = µ
and ∂αP (η) 6= 0. The localization of P at η is the (nonzero) term homogenous of degree
µ in the Taylor expansion of P at η.

Proposition 7.1. Suppose that L(y, ∂) generates an evolution on L2 and that φ satisfies
the constant rank hypothesis. For each y, the characteristic polynomial of the profile oper-
ator det πrg L1(y, η) iker is a nonzero constant times the localization of the characteristic
polynomial η 7→ detL1(y, η) at η := dφ(y). That is, as η → 0,

detL1(y, dφ(y) + η) = c(y) det
(

πrgL1(y, η) iker

)

+O(|η|k+1) , c(y) 6= 0 .

Remark. Proposition 4.1.i shows that η 7→ det
(

πrg L1(y, η) iker

)

is nonzero at η =
(τ, ξ) = (1, 0, . . . , 0). That is, (y, 1, 0, . . . , 0) is noncharacteristic for πrg L(y, ∂) iker.

Proof. From (3.9) one has,

kerA−1
0 L1(y, η) ⊕ rgA−1

0 L1(y, η) = Vy .

Corresponding to this direct sum decomposition, linear transformations from Vy to itself
have block forms,

(

B11 B12

B21 B22

)

.

Choose a basis
b1, . . . , bk, for kerL1(y, dφ(y)) .

Then the equivalence classes

[bj ] := bj + rgA−1
0 L1(y, dφ(y)) ,

form a basis for Wy/ rgL1(y, dφ(y)). Choose a complimentary set so that

b1, . . . , bk, c1, c2 . . . , cN−k is a basis for Vy .
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In these bases the matrices for ikerA−1
0 L1

and πrg A−1
0 L1

are

(

I
0

)

and ( I 0 ) ,

respectively.

For η small and supressing the y dependence, the symbol has bloch form,

A−1
0 L1(η + η) =

(

R(η + η) O(|η|)
O(|η|) E(η) +O(|η|)

)

,

where

R(ζ) := ( I 0 )A−1
0 L1(ζ)

(

I
0

)

is the principal symbol of πrgA
−1
0 L iker, and E(η) is invertible. Since the kernel of

A−1
0 L1(y, η) has dimension k, it follows that R(η) = 0.

Use the linearity of the symbol of R(ζ)

R(η + η) = R(η) +R(η) = R(η), so, A−1
0 L1(η + η) =

(

R(η) O(|η|)
O(|η|) E(η) +O(|η|)

)

.

Hence,

detA−1
0 L1(η + η) = det

(

R(η) O(|η|)
O(|η|) E(η) +O(|η|)

)

.

Since R(η) is a linear function of η with values in Hom
(

kerA−1
0 L1(η)

)

which has dimension

k one has detR(η) = O(|η|k). Therefore the determinant on the right is equal to

c detR(η) +O(|η|k+1), c = detE(η) 6= 0 ,

proving the proposition.

Application. It is known that if L is hyperbolic with timelike direction t then the
localisation is also hyperbolic with this timelike direction (see [G], [H]). Thus the timelike
cone of the localisation contains the timelike cone of the original operator. By duality (see
[JMR4]), the propagation cone of the localisation is a subset of the propagation cone of
the background operaotor. Thus the speeds of propagation of the profile equations are no
faster than those of the background operator.
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