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Abstract

The Cauchy problem for first order system L(t, x, ∂t, ∂x) is known to
be well posed in L2 when a it admits a microlocal symmetrizer S(t, x, ξ)
which is smooth in ξ and Lipschitz continuous in (t, x). This paper
contains three main results. First we show that a Lipshitz smoothness
globally in (t, x, ξ) is sufficient. Second, we show that the existence of
symmetrizers with a given smoothness is equivalent to the existence
of full symmetrizers having the same smoothness. This notion was
first introduced in [FrLa1]. This is the key point to prove the third
result that the existence of microlocal symmetrizer is preserved if one
changes the direction of time, implying local uniqueness and finite
speed of propagation.
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1 Introduction

This paper is concerned with the well posedness in L2 of the Cauchy problem
for first order N ×N systems

(1.1)


Lu := A0(t, x)∂tu+

d∑
j=1

Aj(t, x)∂xju+B(t, x)u = f, t > 0,

u|t=0 = u0.

The starting point is the well known theory of hyperbolic symmetric sys-
tems in the sense of Friedrichs ([Fr1, Fr2]): if the matrices Aj are Lipschitz
continuous on [0, T ]×Rd, hermitian symmetric, and if A0 is definite positive
with A−1

0 bounded, then for all u0 ∈ L2(Rd) and f ∈ L1([0, T ];L2(Rd)), the
equation (1.1) has a unique solution u ∈ C0([0, T ];L2(Rd)) which satisfies

(1.2)
∥∥u(t)

∥∥
L2(Rd)

≤ C
∥∥u0

∥∥
L2(Rd)

+ C

∫ t

0

∥∥Lu(s)
∥∥
L2(Rd)

ds,
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for some constant C independent of u0. Additional properties are local
uniqueness and finite speed propagation. The question discussed in this
paper is to know for which systems these properties remain true.

For scalar equations of orderm, the analogue would be the well posedness
in Sobolev spaces Hm−1, for which strict hyperbolicity is necessary ([IvPe])
and sufficient ([G̊a2, Le]). This completely settles the question for scalar
equations but for systems, the situation is much more complex.

A necessary condition has been given by V.Ivrii and V.Petkov ([IvPe]):
they have shown that if the estimate (1.2) is valid for u ∈ C∞0 (]0, T [×Rd),
then there exists a bounded microlocal symmetrizer S(t, x, ξ) for (1.1) (the
precise definition is recalled below). This is equivalent to a strong form of
hyperbolicity of the principal symbol, which we call strong hyperbolicity of
the symbol, namely that L+B1 is hyperbolic for all matrixB1(t, x). Of course
it is stronger than hyperbolicity which is known to be a necessary condition
for the Cauchy problem to be well posed in C∞ (see [La1, Mi1, G̊a1] and
the review paper [G̊a3]). In particular, (1.2) are the best estimates in terms
of regularity that one can expect for the Cauchy problem.

On the side of sufficient conditions, except in the constant coefficient
case, where the energy estimate (1.2) is easily obtained on the space-Fourier
transform of the equation, the existence of a bounded symmetrizer does not
imply in general that the problem is well posed, even in C∞, A counterex-
ample is given in [St] and another one is proposed in Section 3. Besides
the case of symmetric systems recalled above for which the symmetrizer
S(t, x) is independent of ξ, the Cauchy problem is known to be well posed
in L2 when the microlocal symmetrizer is smooth in ξ and at least Lips-
chitz continuous in (t, x) (see [La2, Me] and Theorem 1.4 below for a precise
statement). In this case, the energy estimates are proven using the usual
pseudo-differential calculus or the para-differential calculus when the coef-
ficient have limited smoothness. This covers the case of strictly hyperbolic
systems and the more general case of hyperbolic systems with constant mul-
tiplicity (e.g. [Ca], [Ya]). This also applies to the case of ”generic” double
eigenvalues, still assuming the strong hyperbolicity of the symbol, see The-
orem 3.6 below.

The first objective of this paper is to revisit these questions under the
angle of the smoothness of the symmetrizer. We prove that the Lipschitz
continuity in (t, x, ξ) for ξ 6= 0 of the symmetrizer S is sufficient to obtain
the L2 estimates and the L2 well posedness. In addition, we give examples
and counterexamples showing that the Lipschitz condition is sharp.

The second main result of this paper is to prove that the existence of
microlocal symmetrizer is preserved by a change of time, as this is essential
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to obtain local uniqueness and the precise description of the propagation
of the support of solutions (see [JMR1, Ra]). More surprisingly, we show
that the existence of symmetrizers of a given smoothness is equivalent to the
existence of full symmetrizers of the same smoothness, a notion introduced
in [FrLa1]. This link is the key point in the proof of existence of microlocal
symmetrizers in any direction of hyperbolicity.

We now briefly present the results. Note that (1.2) applied to eγtu,
u ∈ C∞0 (]0, T [×Rd) implies that

(1.3) ∀γ ≥ γ0, : γ
∥∥u∥∥

L2(R1+d)
≤ C

∥∥(L+ γA0)u
∥∥
L2(R1+d)

,

for some constants C and γ0 independent of u. This estimate is elliptic like:
with χ ∈ C∞0 (R1+d) and u ∈ CN , , applying it to

u(t, x) = eiλ(tτ+xξ)λ−αd/2χ(λ
1
2 (t− t0, x− x0))u,

and to γ = λγ0, and letting λ tend to +∞ implies

Lemma 1.1. Suppose that the coefficients of L are continuous and bounded
on the open set Ω and there are constants γ0 and C such that

(1.4) γ
∥∥u∥∥

L2(Ω)
≤ C

∥∥(L+ γA0)
)
u
∥∥
L2(Ω)

.

for all γ ≥ γ0 and u ∈ C∞0 (Ω). Then the principal symbol L1(t, x, τ, ξ) of L
satisfies for all (t, x) ∈ Ω, all γ ∈ R and u ∈ CN :

(1.5) |γ|
∣∣u∣∣ ≤ C∣∣(L1(t, x, τ, ξ) + iγA0(t, x))u

∣∣.
There is no sign condition on γ as seen by changing ξ̃ to −ξ̃. When it

holds, we say that the symbol is strongly hyperbolic in the time direction.
The condition (1.5) has several equivalent formulations, see Section 4. One
of them is that the symbols admits a bounded symmetrizer.

Definition 1.2. A microlocal symmetrizer for L1 is a bounded matrix S(t, x, ξ),
homogeneous of degree 0 in ξ 6= 0, such that S(t, x, ξ)A0(t, x) is symmetric
and uniformly definite positive, and S(t, x, ξ)A(t, x, ξ) is symmmetric, where
A(t, x, ξ) =

∑
Aj(t, x)ξj.

Combining Lemma 1.1 and Theorem 4.10 below, we recover the the
necessary condition given in [IvPe]:
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Proposition 1.3. If L has continuous coefficient on the open set Ω and
there are constants γ0 and C such that (1.4) is satisfied, then the principal
symbol L1 must admit a bounded symmetrizer S(t, x, ξ) on Ω× Rd \ 0.

In the constant coefficients case, the existence of a bounded symmetrizer
is also sufficient, as immediately seen by Fourier synthesis. For variable
coefficients, this condition is far from being sufficient for the well posedness of
the Cauchy problem (1.1): in section 3 we give an example of a 3×3 systems
in space dimension d = 2, whose symbol L(x, τ, ξ) is strongly hyperbolic
uniformly in x, and such that the Cauchy problem (1.1) is ill posed, even
locally and with C∞ data.

On the side of sufficient conditions, let us first recall the following result:

Theorem 1.4. Suppose that the coefficients Aj ∈ W 1,∞([0, T ] × Rd) and
there exists a microlocal symmetrizer S, homogenenous of degree 0 and C∞in
ξ 6= 0 which satisfies ∂βt,x∂

α
ξ S ∈ L∞([0, T ] × Rd × Sd−1) for all α ∈ Nd and

all |β| ≤ 1. Then, there are constants C and γ such that for all u0 ∈ L2(Rd)
and f ∈ L1([0, T ];L2(Rd)), the Cauchy problem (1.1) has a unique solution
u ∈ C0([0, T ];L2(Rd)) which satisfies

(1.6)
∥∥u(t)

∥∥
L2(Rd)

≤ Ceγ0t
∥∥u0

∥∥
L2(Rd)

+ C

∫ t

0
eγ0(t−s)∥∥Lu(s)

∥∥
L2(Rd)

ds.

When the symmetrizer does not depend on ξ, this is Friedrichs theory, in
which case the estimate (1.6) is easily obtained by forming the real part of
the scalar product of SLu with u and performing integrations by parts. For
microlocal symmetrizers, one replaces the multiplication by S by the action
of the pseudodifferential operator S(t, x,Dx) ([La2]) when the coefficients
are also smooth in x, or by a paradifferential version when the coefficients
are Lipschitz (see eg [Me]). This theorems applies to hyperbolic systems with
constant multiplicities which admit smooth symmetrizers. Indeed, multiple
eigenvalues of A(t, x, ξ) with variable multiplicities are the main difficulty
for the construction of smooth symmetrizers. However, we note in Propo-
sition 3.6 that the theorem above applies to strongly hyperbolic systems
which have only generic double eigenvalues.

The first main result of the paper extends this result to Lipshitz sym-
metrizers, using a Wick quantization of the symbols.

Theorem 1.5. Suppose that the coefficients Aj ∈ W 2,∞(Rd+1) and there
exists a microlocal symmetrizer, homogenenous of degree 0 in ξ 6= 0 and
Lipschtiz continuous in (t, x, ξ) on Rd+1 × Sd−1. Then, there are constants
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C and γ such that for all u0 ∈ L2(Rd) and f ∈ L1([0, T ];L2(Rd)), the
Cauchy problem (1.1) has a unique solution u ∈ C0([0, T ];L2(Rd)) which
satisfies (1.6).

This theorem is proved in Section 2. In Section 3 we discuss the existence
of Lipschitz symmetrizers. In particular, we give examples of systems which
admit a Lipschitz symmetrizer but no C1 symmetrizer. We also prove that
the Lipschitz condition is sharp, in the sense that for all µ < 1, there are
examples of systems admitting Hölder continuous symmetrizers of order
µ < 1, for which the Cauchy problem with C∞ data is is locally ill posed.

Remark 1.6. In this theorem we assume that the coefficients are W 2,∞

whereas W 1,∞ was sufficient when the symmetrizers are smooth in ξ. This
is due to the use of the Wick quantization. One one hand it helps to deal
with symbols which are not smooth in ξ. On the other hand, the symbolic
calculus is less precise, and the W 2,∞ smoothness of the coefficient is used
to prove that in OpWick(S) ◦A(x, ∂x)−OpWick(iSA) is bounded in L2. At
the present time, it is not known wether this additional smoothness which
is crucial for the proof is necessary or not for the validity of the result.

The second part of the paper is concerned with the local theory of the
Cauchy problem and the finite speed propagation property for the support
of the solutions. A classical proof of this property relies on the invariance
of the assumptions by changes of time variables, so that one can convexify
the initial surface, The existence of a local symmetrizer is clearly invariant
by change of time, as well as strict hyperbolicity or the property that the
characteristic variety is smooth with constant multiplicities. In all these
cases the local theory was well established. This invariance is not clear for
the existence of smooth microlocal symmetrizers. However, when there are
smooth symmetrizers, local uniqueness and finite speed of propagation are
proved in [Ra] using another approach bases on finite difference approxima-
tion schemes and uniform estimates due to [La-Ni, Va].

The second main theorem of this paper asserts that the existence of a
Lipschitz symmetrizer [resp. C∞] is preserved by change of timelike direc-
tions. This is a key step for establishing a local theory, starting with local
uniqueness, finite speed of propagation and ending with the sharp descrip-
tion of the propagation of support as stated in [JMR1, Ra].

Let x̃ denote the space-time variables (t, x) and set accordingly ξ̃ = (τ, ξ)
Assuming that L1(x̃, ξ̃) is hyperbolic in the time direction (1, 0) ∈ R1+d,
denote by Γx̃ the cone of hyperbolic directions that is the component of
(1, 0) in {ξ̃ : detL1(x̃, ξ̃) 6= 0}.
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Theorem 1.7. Suppose that the coefficients Aj are Lipschitz continuous
[resp C∞] on Rd+1 and that there exists a microlocal symmetrizer S(t, x, ξ),
homogenenous of degree 0 in ξ 6= 0 and Lipschtiz continuous in [resp C∞]
(t, x, ξ) on Rd+1 × Sd−1. Then, for any time-like direction ν̃ ∈ Γt,x, the
symbol L(t, x, ν̃)−1A(t, x, ξ) admits a Lipschitz [resp C∞] symmetrizer.

Corollary 1.8. Under the assumptions of Theorem 1.5, the Cauchy problem
for L with initial data on any space like hyperplane is well posed in L2.

In Theorem 4.13, we prove that one can choose symmetrizers which also
depend smoothly on ν̃. As said above, with Theorems 1.4 and 1.5, this
implies local uniqueness, and finite speed of propagation. Together with the
Lipschitz dependence of the cone of propagation implied by Proposition 5.4,
this allows to the results on the precise propagation of support stated in
[JMR1, Ra] . We refer the reader to these papers for precise statements.

The proof of this theorem is based on an intrinsic characterization of the
existence of Lipschitz symmetrizers which uses the notion of full symmetriz-
ers introduced by K.O.Friedrichs and P.Lax [FrLa1]:

Definition 1.9. A full symmetrizer for (1.1) is a bounded matrix S̃(t, x, τ, ξ),
homogeneous of degree 0 in (τ, ξ) 6= 0, such that S̃(t, x, τ, ξ)L(t, x, τ, ξ) is
symmmetric.

S̃ is said to be positive in the direction ν̃, if Re S̃(t, x, τ, ξ)L(t, x, ν̃) is
definite positive on kerL(t, x, τ, ξ) for all (t, x, τ, ξ).

Of course the condition is nontrivial only near characteristic points, but
says nothing about hyperbolicity. Our third main theorem is the following;

Theorem 1.10. Suppose that L is hyberpolic in the time direction. Then,
L admits a continuous [resp. Lipschitz] microlocal symmetrizer S(t, x, ξ),
if and only if it admits a continuous [resp. Lipschitz] full symmetrizer
S̃(t, x, τ, ξ) which is positive in the time direction.

In this case, S̃ is positive in any direction of hyperbolicity ν̃.

2 Lipschitz symmetrizability is sufficient for the
L2 well posedness

The goal of this section is to prove Theorems 1.5. We consider a system

(2.1) Lu =

d∑
j=0

Aj(x̃)∂x̃ju

with coefficients Aj which are at least W 1,∞([0;T ]× Rd).
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2.1 Wave packets and localization

For u ∈ L2(Rs), λ > 0 and B ∈ L∞(Rd × Rd), let

(2.2) Wλ,Bu(x, ξ) =
1

(2π)
d
2

(
λ

π

) d
4
∫
ei(x−y)ξ− 1

2
λ|x−y|2B(x, y)u(y)dy

Lemma 2.1. The operator Wλ,B is bounded from L2(Rd) to L2(R2d) and

(2.3)
∥∥Wλ,Bu

∥∥
L2(Rd×Rd)

≤
∥∥B∥∥

L∞

∥∥u∥∥
L2(Rd)

.

Moreover, if B(x, z) ≡ Id, Wλ := Wλ,Id is isometric from L2(Rd) into
L2(Rd × Rd).

Proof. Let F denote the Fourier transform and vx(y) = B(x, y)e−
1
2
λ|x−y|2u(y).

Then

Wλ,Bu(x, ξ) =
1

(2π)
d
2

(
λ

π

) d
4

eiλxξF
(
vx
)
(ξ).

Therefore∫ ∣∣WBu(x, ξ)
∣∣2dxdξ =

(
λ

π

) d
2
∫ ∣∣vx(y)

∣∣2dxdy
=

(
λ

π

) d
2
∫
e−λ|x−y|

2∣∣B(x, y)u(y)
∣∣2dxdy ≤ ∥∥B∥∥2

L∞

∥∥u∥∥2

L2(Rd)
.

When B = 1, the inequality is an equality.

We will adapt the scale λ to the size of the frequency |ξ|. One has

Wλu(x, ξ) = (2π)−d
(

1

πλ

) d
4
∫
eixη−

1
2λ
|ξ−η|2 û(η)dη.

This shows that for a fixed ξ, Wλu( · , ξ) is the inverse Fourier transform of

wξ(η) =
(

1
πλ

) d
4 e−

1
2λ
|ξ−η|2 û(η). Therefore

(2.4)

∫ ∣∣Wλu(x, ξ)
∣∣2dx = (2π)−d

∫ ∣∣wξ(η)
∣∣2dη

= (2π)−d
(

1

πλ

) d
2
∫
e−

1
λ
|ξ−η|2 |û(η)|2dη.
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Integrating in ξ, we recover the isometry of Wλ, but the important point is
that we use (2.4) to localize in |ξ|.

Consider a dyadic partition of unity

(2.5) 1 = ϕ0(ξ) +

∞∑
j=1

θj(ξ)

with ϕ0 ∈ C∞0 (Rd), supported in {|ξ| ≤ 2} and equal to one on {|ξ| ≤ 1},
θj(ξ) = ϕj(ξ)− ϕj−1(ξ) and ϕj(ξ) = ϕ0(2jξ) for j ≥ 1. To unify notations,
we set θ0 = ϕ0 and for j ≥ 0 we denote by define Θj the operator

Θju = F−1
(
θj û
)
,

so that

(2.6) u =

∞∑
j=0

Θju

Proposition 2.2. For all n, m and α, there is a constant C such that for
all j ≥ 0

(2.7)
∥∥|ξ|m(1− ϕj+2)W2j∂

α
y Θju

∥∥
L2(R2d)

≤ C2−jn
∥∥Θju

∥∥
L2(Rd)

,

and for j ≥ 2,

(2.8)
∥∥|ξ|mϕj−2W2j∂

α
y Θju

∥∥
L2(R2d)

≤ C2−jn
∥∥Θju

∥∥
L2(Rd)

.

Proof. By (2.4)

∥∥(1− ϕj+2)W2j∂
α
y Θju

∥∥2

L2(R2d)
= (2π)−d

(
1

π2j

) d
2

∫
e−2−j |ξ−η|2(1− ϕj+2(ξ))2|ηα|2(θj(η))2|û(η)|2dηdξ.

On the support of (1− ϕj+2(ξ))θj(η), one has |ξ| ≥ 2j+2, |η| ≤ 2j+1 so that
|ξ − η| ≥ 1

2 |ξ| and therefore 2−j |ξ − η|2 ≥ 1
22−j |ξ − η|2 + 1

2 |ξ|. Hence,

∥∥2jn|ξ|m(1− ϕj+2)W2j∂
α
y Θju

∥∥2

L2(R2d)
≤ (2π)−d

(
1

π2j

) d
2

22jn22(j+1)|α|e−2j
∫
|ξ|2me−

1
2
|ξ|e−

1
2

2−j |ξ−η|2 |θj(η)û(η)|2dηdξ

≤ C
∥∥Θju

∥∥2

L2(Rd)
.
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This proves (2.7). Similarly

∥∥(ϕj−2)W2j∂
α
y Θju

∥∥2

L2(R2d)
= (2π)−d

(
1

π2j

) d
2

∫
e−2−j |ξ−η|2ϕj−2(ξ)2|ηα|2(θj(η))2|û(η)|2dηdξ.

On the support of ϕj−2(ξ)θj(η), one has |ξ| ≤ 2j−1 and |η| ≥ 2j so that
|ξ − η| ≥ 1

2 |η| and therefore 2−j |ξ − η|2 ≥ 1
22−j |ξ − η|2 + 2j−3. Hence,

∥∥2jn|ξ|mϕj−2W2j∂
α
y Θju

∥∥2

L2(R2d)
≤ (2π)−d

(
1

π2j

) d
2

22jn22(j+1)|α|22jme−2j−3

∫
e−

1
2

2−j |ξ−η|2 |θj(η)û(η)|2dηdξ

≤ C
∥∥Θju

∥∥2

L2(Rd)
,

and this proves (2.8).

Corollary 2.3. There is a constant C such that for all j ≥ 0,

(2.9)
∥∥(1− ϕj+2)W2jΘj∂xku

∥∥
L2(R2d)

≤ C
∥∥Θju

∥∥
L2(Rd)

and for j ≥ 2,

(2.10)
∥∥ϕj−2W2jΘj∂xku

∥∥
L2(R2d)

≤ C
∥∥Θju

∥∥
L2(Rd)

.

2.2 The main estimate

Let

(2.11) A(x, ∂x) =

d∑
j=1

Aj(x)∂xj , A(x, ξ) =

d∑
j=1

ξjAj(x).

We assume that we are given a matrix S(x, ξ), homogeneous of degree 0 in
ξ such that S(x, ξ)A(x, ξ) is hermitian symmetric.

Let ψ ∈ C∞0 (Rd), , vanishing on a neighborhood of the origin. For λ ≥ 1
introduce ψλ(ξ) = ψ(λ−1ξ).

Proposition 2.4. Suppose that the coefficients Aj belong to W 2,∞(Rd) and
that S ∈ W 1,∞(Rd × Sd−1). Then, there is a constant C such that for all
λ ≥ 1 and u

(2.12)
∣∣∣Re

(
ψλSWλu,WλA(x, ∂x)u

)
L2(R2d)

∣∣∣ ≤ C∥∥u‖2L2 .
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Proof. Let Sλ = ϕλS and consider the self adjoint operator Σλ = W ∗λSλWλ:

Σλu(x) = κλ
d
2

∫
eΦλ(x,y,z,ξ)Sλ(z, ξ)u(y)dzdξdy

where κ is a normallization factor and

Φλ(x, y, z, ξ) = i(x− y)ξ − 1

2
λ(|x− z|2 + |y − z|2).

The estimate to prove is

(2.13)
∣∣∣Re

(
A(x, ∂x)∗Σλu, u

)
L2

∣∣∣ ≤ C∥∥u∥∥2

L2 .

One can replaceA(x, ∂x)∗ by Ã∗ :=
∑
−A∗j∂xj since the difference is bounded

in L2 with norm O(supj ‖Aj‖W 1,∞). One has

A∗j∂jΣλu(x) = κ

∫
eΦλA∗j (x)

(
iξj − λ(xj − zj)

)
Sλ(z, ξ)u(y)dzdξdy.

Therefore

(2.14) Ã∗(x, ∂x)Σλ = W ∗λ (−iA∗Sλ)Wλ +
∑
j

(R1
j +R2

j )

where

R1
ju(x) = iκ

∫
eΦλξj

(
A∗j (z)−A∗j (x))

)
Sλ(z, ξ)u(y)dzdξdy,

R2
ju(x) = κ

∫
eΦλλ(xj − zj)A∗j (x)

)
Sλ(z, ξ)u(y)dzdξdy.

Because S is a symmetrizer for
∑
Ajξj , the matrix iA∗(x, ξ)Sλ is skew

symmetric and thus the real part of the first term in (2.14) vanishes and it
is sufficient to show that the remainders R1,2

j are bounded in L2. Write

(2.15) A∗j (x)−A∗j (z) =
∑
k

(xk − zk)Ãj,k(x, z),

with Ãj,k ∈W 1,∞, and use that

2λ(xk − zk) = ∂zkΦλ − iλ∂ξkΦλ := ZkΦλ

Integrating by parts in (z, ξ) yields that R1
j =

∑
k R

1
j,k with

R1
j,ku(x) = − iκ

λ

∫
eΦλZ∗k

(
ξjA

∗
j,kSλ

)
u(y)dzdξdy.

11



Note that 1
λZ
∗
k

(
ξjA

∗
j,kSλ

)
is a sum a terms of the form Bl(x, z)Sl(z, ξ, λ)

where the Bl and Sl are uniformly bounded. Therefore R1
j,k is of the sum

of the operators W ∗λ,BlSlWλ where the definition of Wλ,Bl is given in 2.2.

Lemma 2.1 implies that the R1
j are uniformly in λ,

The analysis of R2
j is similar. One has

R2
ju(x) = − iκ

λ

∫
eΦλA∗j (x)(Z∗j Sλ)u(y)dzdξdy.

Hence R2
j = −A∗jW ∗(ZjSλ)W is bounded in L2 since ZjSλ is bounded.

2.3 Proof of Theorem 1.5

Suppose that the operator L in (2.1) has W 2,∞ coefficients. Without loss of
generality, multiplying L on the left by A−1

0 , we assume that the coefficient
of Dt is A0 = Id so that L = ∂t + A(t, x, ∂x). We are given a Lipschtiz
symmetrizer S(t, x, ξ) which is uniformly definite positive and such that

(2.16) S, ∂t,xS, |ξ|∂ξS ∈ L∞.

Consider the energy

(2.17) Et(u) =
∞∑
j=0

(
S(t)W2jΘju,W2jΘju

)
L2(R2d)

.

Lemma 2.5. There are constants C ≥ c > 0 such that

c
∥∥u∥∥2

L2(Rd)
≤ E(u) ≤ C

∥∥u∥∥2

L2(Rd)
.

Proof. Because S(t, x, ξ) is definite positive bounded from above and from
below,

Et(u) ≈
∞∑
j=0

∥∥W2jΘju
∥∥2

L2(R2d)
=

∞∑
j=0

∥∥Θju
∥∥2

L2(R2d)
≈
∥∥u∥∥2

L2(R2d)
.

The Theorems follows from the energy estimate

Proposition 2.6. If u satisfies Lu = f , then

(2.18)
d

dt
Et(u(t)) ≤ C

(∥∥f(t)
∥∥
L2(R2d)

∥∥u(t)
∥∥
L2(R2d)

+
∥∥u(t)

∥∥2

L2(R2d)

)
.

12



Proof. One has

d

dt
Et(u(t)) = (∂tE)(u(t)) + 2Re Ẽt(u(t), ∂tu(t)))

= (∂tE)(u(t)) + 2Re Ẽt(u(t), f(t)))− 2Re Ẽt(u(t), Au(t)))

where ∂tEt is the expression (2.17) with S replaced by ∂tS and Ẽ is the
bilinear version of E . Because ∂tS ∈ L∞, the first term is O(‖u(t)‖2L2).
Similarly, the second term is O(‖u(t)‖L2‖f(t)‖L2) and it remains to prove
that

(2.19)
∣∣Re Ẽt

(
u(t), Au(t)

)∥∥ ≤ C∥∥u(t)
∥∥2

L2 .

For simplicity we drop the time from the notations, t being a parameter and
all the estimate below being uniform in t.

The expression to consider is

(2.20) Ẽ(u,Au) =

∞∑
j=0

(
SW2jΘju,W2jΘjAu

)
L2(R2d)

.

For j = 0 and j = 1, the L2 norms of Θju and ΘjAu are O(‖u‖L2) and
therefore it is sufficient to consider the terms with j ≥ 2 in the sum (2.21).

Corollary 2.3 implies that∥∥(1− ϕj+2)W2jΘj(Ak∂xku)
∥∥
L2(R2d .

∥∥Θj(∂xkAk)u)
∥∥
L2 +

∥∥Θj(Aku)
∥∥
L2 ,

and therefore∑
j≥2

∣∣∣((1− ϕj+2)SW2jΘju,W2jΘjAu
)
L2(R2d)

∣∣∣
.
∑
k

∥∥u∥∥
L2

(∥∥Aku∥∥L2 +
∥∥(∂xkAk)u

∥∥
L2

)
.
∥∥u∥∥2

L2 .

Similarly, ∑
j≥2

∣∣∣(ϕj−2SW2jΘju,W2jΘjAu
)
L2(R2d)

∣∣∣ . ∥∥u∥∥2

L2 .

Hence, it is sufficient to consider

(2.21)

∞∑
j=2

(
ψjSW2jΘju,W2jΘjAu

)
L2(R2d)

where ψj = ϕj+2 − ϕj−2. Next, we replace Θj(Au) by AΘju using the
following lemma

13



Lemma 2.7. The gj = [A,Θj ]u satisfy

(2.22)
∑∥∥gj(t)∥∥2

L2 .
∥∥u(t)

∥∥2

L2 .

Since S(x, ξ) is bounded and the Wλ are isometries, this lemma implies∣∣∣ ∞∑
j=0

(
ψjSW2jΘju,W2jgj

)
L2(R2d)

∣∣∣ . ∞∑
j=0

∥∥Θju‖L2

∥∥gj∥∥L2 .
∥∥u‖2L2 .

Summing up, we have proved that

Ẽ(u,Au) =
∞∑
j=0

(
ψjSW2jΘju,W2jAΘju

)
L2(R2d)

+O(
∥∥u∥∥2

L2).

We are now in position to apply Proposition 2.4 to each term of the sum
above. It implies that the real part of this sum is O(

∑
‖Θju‖2L2) = O(‖u‖2L2)

finishing the proof of 2.19 and of the proposition.

Proof of Lemma 2.7. Using the para-differential calculus (see e.g. [Me]) ,
one has

A(x, ∂x) = TiA +R

where TiA is a paradifferential operator of symbol iA(x, ξ) and R is bounded
from L2 to L2. Thus

gj = [TA,Θj ]u+RΘju−ΘjRu.

The last two terms satisfy (2.22). The symbolic calculus implies that the
[TiA,Θj ] are uniformly bounded in L2 since the coefficients of A belong
to W 1,∞. Moreover, the spectral properties of the paradifferential calculus
shows that [TiA,Θj ] = [TiA,Θj ]Θ̃j where the cut-off function θ̃j is supported
in the annulus {2j−n ≤ |ξ| ≤ 2j+n} for some fixed n if j ≥ 1 and in the ball
{|ξ| ≤ 2n} if j = 0. Therefore g′j = [TiA,Θj ]u satisfies∥∥g′j∥∥L2 .

∥∥Θ̃ju
∥∥
L2

and thus (2.22).
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3 Examples and counterexamples

In this section, we discuss the existence of symmetrizers of limited smooth-
ness. The case of generic double eigenvalues is specific, as shown in the next
subsection. But for eigenvalues of higher order, it is easy to construct exam-
ples of systems with symmetrizers which necessarily have no, or a limited,
smoothness.

Second, we show on an example that Lipschitz smoothness is sharp, even
for well posedness in C∞.

3.1 Example of non smooth symmetrizers

In space dimension two consider, near the origin, a system of the form

(3.1) L0(x, ∂t, ∂x, ∂y) = L0(∂t, ∂x, x∂y) = ∂t +A∂x + xB∂y,

with L0(τ, ξ, η) strictly hyperbolic. Consider next a perturbation

(3.2) La(x, ∂t, ∂x, ∂y) = L0(x, ∂t, ∂x, ∂y) + xa(x)C∂y = L(a(x), ∂t, ∂x, x∂y)

We will give explicit examples below. For a small, L(a, τ, ξ, η) is still strictly
hyperbolic and therefore it has smooth symmetrizers S(a, ξ, η) for (ξ, η) 6=
(0, 0), providing bounded symmetrizers for La(x, τ, ξ, η)

(3.3) S(a, x, ξ, η) = S(a, ξ, xη)

for (x, ξ) 6= (0, 0). On the unit sphere ξ2 + η2 = 1, they are smooth when
(x, ξ) 6= (0, 0). The definition of S can be extended at (x, ξ) = (0, 0), but in
general they have a singularity there.

Lemma 3.1. Suppose in addition that L0 is symmetric. Then, for a small,
there is a symmetrizer S of the form

(3.4) S(a, ξ, η) = Id + aS1(a, ξ, η)

with S1 homogeneous of degree 0 in (ξ, η) and smooth in (a, ξ, η) for (ξ, η)
in unit sphere ξ2 + η2 = 1.

Proof. The spectral projectors Πj(a, ξ, η) are smooth in (a, ξ, η) for (ξ, η) in
unit sphere ξ2 + η2 = 1 and S =

∑
Π∗jΠj is a symmetrizer. Since L0 is

symmetric, the Πj are symmetric when a = 0 and therefore S(0, ξ, η) = Id,
implying (3.4).

Substituting in (3.3) implies the following
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Corollary 3.2. If L0 is symmetric and strictly hyperbolic and a(x) = |x|α
with 0 < α < 1, La admits Hölder continuous symmetrizers S(a, x, ξ, η) of
class Cα.

If a(x) = x, it admits a Lipschtiz symmetrizer.

Example 1: consider

(3.5) La = ∂t +

 0 ∂x + xa∂y x∂y
∂x − xa∂y 0 0
x(1 + a2))∂y 0 0


In this case, detL(a, τ, ξ, η) = τ(τ2 − ξ2 − η2) is always strictly hyperbolic.

Lemma 3.3. If a 6= 0 is a constant, there are bounded symmetrizers S(x, ξ, η)
for La, but no continuous symmetrizers at (x, ξ) = (0, 0) when η = 1.

Proof. Fix η = 1. If S(x, ξ) is a symmetrizer, then its complex conjugate is
also a symmetrizer, so that S + S is a symmetrizer. Thus, it is sufficient to
consider the case where S has real coefficients sj,k. The symmetry condition
reads

(ξ + ax)s11 = (ξ − ax)s22 + (1 + a2)xs23

ηs11 = (ξ − ax)s23 + (1 + a2)xs33

ηs12 = (ξ + ax)s13.

The third condition is independent of the first two, it only involves s12 and
s13, and is trivially satisfied by s12 = s13 = 0.

There is no restriction in assuming that s22 = 1. Setting s′11 = s11 − 1,
s′33 = (1 + a2)s33 − s11, one must have

(3.6)
(ξ + ax)s′11 = −2ax+ (1 + a2)xs23

xs′33 = −(ξ − ax)s23.

Suppose that the coefficients are continuous at (x, ξ) = (0, 0). Then taking
x = 0 and ξ 6= 0 in the equations above, dividing by ξ and letting ξ tend
to 0 implies that s2,3(0, 0) = s′11(0, 0) = 0. Taking ξ = 0 dividing by x
and letting x tend to 0 implies that s′11(0, 0) = −2 + (1 + a2)s′23(0, 0) and
s′33(0, 0) = as2,3(0, 0). These conditions can be met only if a = 0.

When a(x) = x, by Corollary 3.2, there is a Lipschitz symmetrizer, but
it turns out that in this specific case, one can construct a C∞ symmetrizer.
The next example shows that this is not always the case.
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Example 2 : Consider the 4× 4 system with symbol

(3.7) La = ∂t +

(
Ω aJ
0 2Ω

)
, Ω =

(
ξ xη
xη −ξ

)
, J =

(
xη 0
0 0

)
.

By Corollary 3.2, when a(x) = x, La has a Lipchitz symmetrizer but

Lemma 3.4. When a(x) = x, there are no C1 symmetrizers for La.

Proof. Fix η = 1. Suppose that S(ξ, x) is a C1 symmetrizer near (x, ξ) =
(0, 0). We can assume that S has real coefficients. Using the block notation

(3.8) S =

(
S11 S12

S21 S22

)
,

the symmetry conditions imply

(3.9) ΩS12 − 2S12Ω = x2J0S11, J0 =

(
1 0
0 0

)
.

This is a linear system in S12 and since Ω and 2Ω have no common eigenvalue
it has a unique solution.

If S12 is C1 near the origin, plugging its Taylor expansion Σ0 +xΣ1 +ξΣ2

in (3.9) and using the notation Ω = xΩ1 + ξΩ2, yields at first order

Ω1Σ0 − 2Σ0Ω1 = Ω2Σ0 − 2Σ0Ω2 = 0

which implies that Σ0 = 0. The term in ξ2 is

Ω2Σ2 − 2Σ2Ω2 = 0

showing that Σ2 = 0. The term in xξ is then

Ω2Σ1 − 2Σ1Ω2 = 0

implying that Σ1 = 0, which is incompatible with the equation given by the
term in x2:

Ω1Σ1 − 2Σ1Ω1 = −2J0S11(0, 0) 6= 0

since S11(0, 0) must be definite positive.

17



3.2 Existence of smooth symmetrizers for generic double
eigenvalues

Consider a symbol τ Id + A(a, ξ) which is strongly hyperbolic in the time
direction, thus admitting a bounded symmetrizer S(a, ξ). At (a, ξ), ξ 6= 0,
the characteristic polynomial p(a, τ, ξ) = det(τ Id + A(a, ξ)) has roots τ j of
multiplicity mj . Near this point, it can be smoothly factored

(3.10) p(a, τ, ξ) =
∏
j

pj(a, τ, ξ)

with pj of order mj .

Assumption 3.5. In a neighborhood of (a, ξ), ξ 6= 0, the roots of p are
either of constant multiplicity or of multiplicity at most two.

In the second case, we assume that the multiplicity is two on a smooth
manifold M. Denoting by pj the corresponding factor in (3.10), we further
assume that either

i) M has codimension one and the discriminant of pj vanishes on M at
finite order,
or

ii) M has codimension two and the discriminant of pj vanishes on M
exactly at order two.

Theorem 3.6. Under these assumptions, there is a smooth symmetrizer
S(a, ξ) on a neighborhood of (a, ξ).

Proof. The construction is local in ρ = (a, ξ) and one can perform a block
reduction of A near ρ and it is sufficient to construct a symmetrizer for each
block. They are either diagonal and thus symmetric, or of dimension two.
Eliminating the trace, it is therefore sufficient to consider matrices

(3.11) A(ρ) =

(
−a b
c a

)
.

The hyperbolicity condition is that the discriminant ∆ = a2 + bc is real and
non negative. Strong hyperbolic, holds if and only if there is ε > 0 such that

(3.12) ∆ = a2 + bc ≥ ε(|a|2 + |b|2 + |c|2).

Our assumption is that ∆ vanishes on a manifold M, at finite order if
codimM = 1 and at order two if codimM = 2.
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a) If ∆ vanishes at finite order on a manifold of codimension 1 of
equation {ϕ = 0}, then (3.12) implies that for some integer k,

(3.13) A = ϕkAr

with detAr 6= 0 and still strongly hyperbolic. Thus Ar has distinct real
eigenvalues and is therefore smoothly diagonalizable.

b) Suppose that ∆ vanishes exactly at second order onM given by the
equations {ϕ = ψ = 0}. This means that ∆ ≥ ε1(ϕ2 + ψ2). Together with
(3.12), this implies that A vanishes on M and that

(3.14) A = ϕA1 + ψA2

and A1 and A2 have distinct real eigenvalues at ρ. We can smoothly conju-
gate A1 to a real diagonal and traceless form and changing ϕ we are reduced
to the case where

A1 =

(
−1 0
0 1

)
, A2 =

(
−a2 b2
c2 a2

)
.

Moreover, changing ϕ to ϕ− Re a2ψ, we can assume that Re a2 = 0. Since
∆ is real

(3.15) 2ϕIm a2 + ψIm (b2c2) = 0

Moroever, (3.12) implies for ϕ = 0

(3.16) Re (b2c2) > (Im a2)2

and this remains true in a neighborhood of ρ. In particular b2(ρ) 6= 0
and conjugating by a diagonal matrix with diagoanal entries b2/|b2| and 1
changes b2 into |b2|, meaning that we can assume that b2 is real. Having
performed these reductions, one easily checks using (3.15) that

(3.17)

(
Re c2 iIm a2

−iIm a2 b2

)
is a smooth symetrizer for ϕA1+ψA2, which is definite positive by (3.16).
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3.3 Ill posedness for non Lipschitz symmetrizers

Consider the system (3.5) with a = a(x) = |x|α. For η large and β to be
determined, we look for solutions of LaU = 0 of the form

(3.18) U(t, x, y) = eiβ
√
ηt+iyη

u(
√
ηx)

v(
√
ηx)

w(
√
ηx)

 .

With ε = η−α/2, the equation LU = 0 is equivalent to

(3.19) v(x) =
i

β
(∂x − iεxa)u(x), w = − 1

β
(1 + ε2a2)u(x)

and the scalar equation for the first component is(
β2 + (∂x + iεxa)(∂x − iεxa(x))− x2(1 + ε2a2)

)
u = 0

that is, since ∂x(xa) = (α+ 1)a,

(3.20)
(
β2 + ∂2

x − x2 − iε(α+ 1)a
)
u = 0.

The example has been cooked up precisely to get an eigenvalue problem for
a perturbation of the harmonic oscillator.

When α = 0, ε = 1 and u(x) = e−
1
2
x2 is a a solution when

(3.21) β2 = i− 1.

Choosing the root with negative imaginary part, this yieds exact solutions
of LaU = 0 of the form

(3.22) Uλ(t, x, y) =

∫
eiβ
√
ηt+iyηe−

1
2
ηx2(U0 +

√
ηxU1)ϕ(η/λ)dη

with constant vectors U0 and U1 not equal to 0 and ϕ ∈ C∞0 (R) with support
in the interval [1, 2]. The exponential growth of eit

√
ηβ implies that there is

no control of any H−s norm at positive time by an Hs′ norm of the initial
data. This can be localized in (x, y) and

Proposition 3.7. When a = 1, La has bounded symmetrizers but the
Cauchy problem for (3.5) is ill posed in L2 but also in C∞.
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Consider now the case α ∈]0, 1[. By standard perturbation theory the
eigenvalue problem (3.20) has a solution

(3.23) u = e−
1
2
x2 + εu1, β2 = 1 + iελ1 +O(ε2)

with

(3.24) λ1

∫
e−x

2
dx = (α+ 1)

∫
a(x)e−x

2
dx > 0

so that λ1 > 0. Therefore one can choose β = −1− i
2ελ1 +O(ε2)

(3.25) Im (β
√
η) ∼ 1

2
λ1η

1
2

(1−α) < 0

which is arbitrarily large if α < 1. This provides solutions of LaU = 0, with
exponentially amplified L2 norms implying the following proposition.

Proposition 3.8. When a = |x|α with 0 < α < 1, La has Cα symmetrizers
but the Cauchy problem for (3.5) is ill posed in L2.

4 Strong hyperbolicity of first order symbols

In this section we introduce the notion of strong hyperbolicity and show
that it is equivalent to the existence of symmetrizers. Next we discuss the
existence of smooth symmetrizers. We show that these notions are pre-
served by a change of the time direction. For the convenience of the reader,
we postpone to the appendix the proof of several independent results on
matrices.

4.1 Basic properties

We denote by x̃ ∈ R1+d the time-space variables and by ξ̃ the dual variables.
We consider N × N first order system systems

∑d
j=0Aj∂x̃j + B. Their

characteristic determinant is p(ξ̃) = det
(∑d

j=0 iξ̃jAj + B
)
, the principal

part of which is pN (ξ̃) = det
(∑d

j=0 iξ̃jAj
)

Definition 4.1. i)
∑d

j=0Aj∂x̃j +B is said to be hyperbolic in the direction

ν ∈ R1+d if pN (ν) 6= 0 and there is γ0 such that p(iτν + ξ̃) 6= 0 for all
ξ ∈ R1+d and all real τ such that |τ | > γ0.

ii) L =
∑d

j=0Aj∂x̃j is strongly hyperbolic in the direction ν if and only
if for all matrix B, L+B is hyperbolic in the direction ν.
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The classical definition of hyperbolicity is that the roots of p(iτν+ξ) 6= 0
are located in τ < γ0. But, since hyperbolicity in the direction ν implies
hyperbolicity in the direction −ν, the definition above is equivalent to the
usual one.

Proposition 4.2. L =
∑d

j=0Aj∂x̃j is strongly hyperbolic in the direction ν
if and only if there is a constant C such that

i) for all ξ̃ ∈ R1+d and all matrix B, the roots of det
(
L(ξ̃+λν)+B

)
=

0 are located in the strip |Imλ| ≤ C|B|,
With the same constant C, this condition is equivalent to

ii) for all (γ, ξ̃, u) ∈ R× R1+d × CN :

(4.1)
∣∣γu∣∣ ≤ C∣∣L(ξ̃ + iγν)u

∣∣.
Other equivalent formulations can be deduced from Proposition 5.1 be-

low.

Proof. a) By homogeneity, ii) is equivalent to the condition

(4.2)
∣∣Imλ| ≥ C ⇒

∣∣L(ξ̃ + λν)−1
∣∣ ≤ 1.

By Lemma 5.2 below, this is equivalent to the condition that for all matrices
B such that |B| < 1, L(ξ̃ + λν) + B is invertible when |Imλ| ≥ C. This is
equivalent to saying that the roots of det

(
L(ξ̃+λν) +B

)
= 0 are contained

in {|Imλ| < C}. By homogeneity, this is equivalent to i).
b) Note that (4.1) applied to ξ̃ = 0 implies that L(ν) is invertible. It

is then clear that i) implies strong hyperbolicity. Conversely, assume that
L is strongly hyperbolic. Consider the matrix Bj,k with all entries equal to
zero, except the entry of indices (j, k) equal to one. Then

det
(
L(ξ̃) +Bj,k

)
= detL(ξ̃) +mjk(ξ)

where mj,k is the cofactor of indices (j, k) in the matrix L(ξ̃). Following
Theorem 12.4.6 in [Hö1], the hyperbolicity condition implies that there is a
constant C such that∣∣mj,k(ξ̃ + iν)

∣∣ ≤ C∣∣detL(ξ̃ + iν)
∣∣.

Since L(ξ̃+ iν)−1 = (detL(ξ̃+ iν))−1M̃(ξ̃+ iν) where M̃ is the matrix with
entries (−1)j+kmk,j , this implies that there is another constant C such that
(4.1) is satisfied for γ = 1. By homogeneity, it is also satisfied for all γ.
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When p is hyperbolic in the direction ν, then the component of ν in
the set {pN 6= 0} is a convex open cone, which we denote by Γ(ν) and p is
hyperbolic in any direction ν ′ ∈ Γ(ν). This property is also true for strong
hyperbolicity. We give a quantitative version of this result, as we will need
it later on.

Lemma 4.3. Suppose that L is hyperbolic in the direction ν. For all ν ′ ∈
Γ(ν), the ball centered at ν ′ of radius ε := |pN (ν ′)|/K|ν ′|N−1 is contained
in Γ(ν), where K = max|ξ̃|≤2 |∇ξ̃ detL(ξ̃)|.

Proof. By homogeneity, one can assume that |ν ′| = 1. In this case, |pN (ν ′′)| >
|pN (ν ′)|−K|ν ′−ν”| if ν”−ν ′| ≤ 1. Noticing that |pN (ν ′)| = |ν ′∇ξ̃pN (ν ′)| ≤
K, this implies that |pN (ν ′′)| > 0 if |ν”− ν ′| ≤ ε.

Proposition 4.4. Suppose that L(ξ̃) satisfies (4.1) and let ν ′ ∈ Γ(ν) such
that

∣∣ detL(ν ′)
∣∣ ≥ c > 0. Then

(4.3)
∣∣γu∣∣ ≤ C1

∣∣L(ξ̃ + iγν ′)u
∣∣.

with C1 = KC|ν|/c|ν ′| and K = max|ξ̃|≤2 |∇ξ̃ detL(ξ̃)|

Proof. Let p(ξ̃) = det(L(ξ̃) +B) and pN = detL(ξ) its principal part. Sup-
pose that |ν| = |ν ′| = 1. The general case follows immediately. By Proposi-
tion (4.2), one has

(4.4) p(ξ̃ + iγν) 6= 0 for |γ| > C|B|.

We choose ν ′′ = ν ′ − εν with ε = c/K. By Lemma 4.3 ν ′′ ∈ Γ(ν) and
following [G̊a1, Hö1], (see e.g. [Hö1] vol 2, chap 12), one has

(4.5) p(ξ̃ + iγν + iσν ′′) 6= 0 for γ > C, σ ≥ 0.

and also for γ < −C|B| and σ ≤ 0. Indeed, all the roots of pN (tν + ν ′′) are
real and negative:

(4.6) pN (tν + ν ′′) = 0 ⇒ t < 0.

By (4.4), p(ξ̃ + iγν + zν ′′) = 0 has no root on the real axis, so that the
number of roots in {Im z ≥ 0} is independent of ξ̃ and γ > C|B|. Taking
ξ̃ = 0 and letting γ tend to +∞, (4.6) this implies that this number is equal
to zero implying (4.5). The proof for γ ≤ −C|B| and σ ≤ 0 is similar.

Substituting ν ′′ = ν ′−εν in (4.5) and choosing γ = ε′σ we conclude that

p(ξ̃ + iσν ′) 6= 0

if ε|σ| > C|B|. Applying again Proposition 4.2, (4.3) follows.
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In most applications, the coefficients of the system L and even the di-
rection ν may depend on parameters, such as the space time variables, the
unknown itself etc. The direction ν itself can be seen as a parameter. This
leads to consider families of systems, L(a, ∂x̃) and directions νa, depending
on parameters a ∈ A. Their symbol is

(4.7) L(a, ξ̃) =
d∑
j=0

ξ̃jAj(a).

When considering such families, we always assume that the matrices Aj(a)
and the directions νa are uniformly bounded,

Definition 4.5. We say that the family L(a, · ) is uniformly strongly hyper-
bolic in the direction νa for a ∈ A if ,

i) cA := infa∈A |detL(a, νa)| > 0,
ii) the equivalent conditions i) and ii) of Proposition 4.2 are satisfied

with a constant C independent of a ∈ A.

The next result is an immediate consequence of Proposition 4.4. It shows
that one can enlarge the set of strongly hyperbolic direction, preserving
uniformity: let Γa denote the component of νa in {detL(a, ξ̃) 6= 0}; for
c ∈]0, cA] and C > 0 introduce the set

(4.8) Ã =
{

(a, ν); a ∈ A, ν ∈ Γa, |ν| ≤ C, |detL(a, ν)| ≥ c
}
.

Proposition 4.6. Suppose that L(a, · ) is uniformly strongly hyperbolic in
the direction νa for a ∈ A. Then L(a, · ) is uniformly strongly hyperbolic in
the direction ν, for (a, ν) ∈ Ã.

4.2 Symmetrizers

We start with the notion of full symmetrizer introduced in [FrLa1].

Definition 4.7. A full symmetrizer for L(ξ̃) =
∑
ξ̃jAj is a bounded matrix

S(ξ̃), homogeneous of degree 0 on R1+d\{0}, such that S(ξ̃)L(ξ̃) is self ad-
joint. It is positive in the direction ν 6= 0 if there is a constant c > 0 such
that for all ξ̃ 6= 0 :

(4.9) u ∈ kerL(ξ̃) ⇒ Re
(
S(ξ̃)L(ν)u, u

)
≥ c|u|2.

Given a family of systems L(a, ·) and directions νa, a bounded family of
full symmetrizers S(a, · ) for a ∈ A is said to be uniformly positive in the
direction νa if the constant c above can be chosen independent of a.
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In (4.9), (f, u) denotes the hermitian scalar product in CN . More intrin-
sically, it should be thought as the antiduality between covectors f ∈ V∗ and
vectors u ∈ V, where V is a vector space of dimension N , so that the adjoint
P ∗ of the operator P from V to V satisfies (f, Pu) = (P ∗f, u). In this spirit,
the symbol L(ξ̃) must be thought as linear mapping from a vector space V
to another vector space W and the symmetrizer S(ξ̃) maps V to V∗ so that
the antiduality (SLu, u) makes sense.

Note that outside a conical neighborhood of the the characteristic variety,
the symmetrizer can be chosen arbitrarily and thus contains no information.

A different and more familiar notion of symmetrizer depends on the
choice of a time direction ν. Choosing a space E such that R1+d = E⊕ Rν
the symmetrizer is seen as a function of frequencies ξ ∈ E. Since the open
cone Γ(ν) is strictly convex, one can also require that Γ(ν)∩E = ∅. In a more
intrinsic definition, it can be seen as a symmetrizer invariant by translation
in the direction ν, or defined on R1+d/Rν. To avoid technicalities, we choose
the first option choosing a space E. and when considering families (L(a), νa),
we assume that we can choose E in such a way that there is a compact set
K such that

(4.10) ∀a ∈ A, νa ∈ K and K ∩ E = ∅.

This condition can always be met locally. In particular, uniformly in a ∈ A:

(4.11) c(|ξ|+ |τ |) ≤ |ξ + τνa| ≤ C(|ξ|+ |τ |), ξ ∈ E, τ ∈ R.

Definition 4.8. A symmetrizer for L(ξ̃) =
∑
ξ̃jAj in the direction ν is a

bounded matrix S(ξ), homogeneous of degree 0 in ξ ∈ E such that S(ξ)L(ξ)
and S(ξ)L(ν) are self adjoint for all ξ and there is c > 0 such that :

(4.12) ∀ξ ∈ E\{0}, ∀u ∈ CN ,
(
S(ξ)L(ν)u, u

)
≥ c|u|2.

Given a family of systems L(a, ·) and directions νa satisfying (4.10), a uni-
form family of symmetrizers S(a, · ) for {L(a, ·), νa}, a ∈ A, is a bounded
family S(a, ·) of symmetrizers for L(a, ·) in the direction νa, such that the
constant c can be chosen independent of a.

Remark 4.9. S(ξ + τν) = S(ξ), is almost a full symmetrizer, except that
it not necessarily defined on the line Rν. But (4.12) implies that L(ν)
is invertible and one can always choose S(ν) so that S(ν)L(ν) is definite
positive. This modification can be extended to a conical neighborhood of
ν where L(ξ̃)) remains invertible. This construction obviously preserves
positivity. This remains true for families and uniformity can be preserved.
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The existence of symmetrizers is equivalent to strong hyperbolicity, in
the following sense.

Theorem 4.10. Consider a family {L(a, · ), νa, a ∈ A}.
i) Assuming (4.10), L(a, ·) is strongly hyperbolic in the direction νa if

and only if there exists a uniform family of symmetrizers S(a, ·).
ii) L(a, ·) is strongly hyperbolic in the direction νa if and only if

a) it is hyperbolic in the direction νa and infa∈A |detL(a, νa)| > 0,
b) there is a bounded family of full symmetrizer S(a, ·) which is

uniformly positive in the direction νa.

Proof. i) If L(a, ·) is uniformly strongly hyperbolic in the direction νa, then
L(a, νa) and L(a, νa)

−1 are uniformly bounded, Similarly, (4.12) implies that
L(a, νa)

−1 is bounded.
In both case, A(a, ξ) = L(a, νa)

−1L(a, ξ) for |ξ| = 1 is bounded, and
strong hyperbolicity is equivalent to the existence of a constant C such that
for all λ, a, ξ ∈ E and u:

(4.13) |Imλ|
∣∣u∣∣ ≤ C∣∣A(a, ξ)u− λu

∣∣.
By Proposition 5.1 this is equivalent to the existence of a symmetric matrix
SA(a, ξ), bounded and uniformly definite positive, such that SAA is sym-
metric. This is equivalent to the condition that S(a, ξ) = SA(a, ξ)L(a, νa)

−1

is a symmetrizer for L(a, ·) bounded and uniformly positive in the direction
νa.

ii) Strong hyperbolicity implies the existence of a symmetrizer, thus of
a full positive symmetrizer by Remark 4.9. Hence it only remains to prove
the converse part of ii).

Let S(a, ·) be a full symmetrizer for L(a, ·), positive in the direction νa.
Suppose in addition that L(a, ·) is hyperbolic in this direction, so that L(a, ν)
is invertible. Then, Proposition 6.1 implies that when kerL(a, ξ̃) 6= {0}, 0
is a semi simple eigenvalue of A(a, ξ̃) = L(a, νa)

−1La, ξ̃). Moreover, the
spectral projectors, that is the projectors on kerA = kerL parallel to the
range of A , are uniformly bounded. Applied to ξ̃ + τν, this implies that
all the real eigenvalues of A(a, ξ̃) are semi-simple and all the corresponding
spectral projectors are uniformly bounded. Since L is hyperbolic, all the
eigenvalues are real and with Proposition 5.1 this implies that (4.13) is
satisfied.
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4.3 Smooth symmetrizers

We now consider a family {L(a, · ), νa, a ∈ A} where A is an open set of
some space Rm. We assume that the condition (4.10) is satisfied.

Theorem 4.11. Suppose that the coefficients of L(a, ·) are continuous,
[resp. W 1,∞] [resp. C∞] on A and that the mapping a 7→ νa is continu-
ous, [resp. W 1,∞] [resp. C∞]. Then, there exists a full symmetrizer S(a, ξ̃)
which is continuous, [resp. W 1,∞] [resp. C∞] on A×Sd and uniformly pos-
itive in the direction νa, if and only if there is a symmetrizer S(a, ξ) which
is continuous, [resp. W 1,∞] [resp. C∞] on A×Sd−1 and uniformly positive
in the direction νa,

Proof. By Remark 4.9 passing from a symmerizer to a full symmetrizer
is immediate. The converse statement follows from a more general result
given in Theorem 4.13 where the construction is extended to other directions
ν ∈ Γ(νa).

4.4 Invariance by change of time

Proposition 4.6 shows that strong hyperbolicity, thus the existence of bounded
symmetrizers or of full symmetrizers, extends from νa to all directions in the
cone of hyperbolicity Γa, preserving uniformity in sets such as (4.8). We now
prove that this is also true for smooth symmetrizers. The key point, is to
prove that for a continuous full symmetrizer, positivity extends from νa to
Γ(νa).

Proposition 4.12. Consider a family {L(a, · ), νa, a ∈ A} and assume that
L(a, ·) is uniformly strongly hyperbolic in the direction νa. For c > 0 and C
given, define Ã as in (4.8).

Suppose that S(a, ·) is a full symmetrizer of L(a, ·) which depends contin-
uously on ξ̃ ∈ R1+d\{0}, such that S(a, ·) is uniformly positive in the direc-
tion νa. Then, S(a, ·) is uniformly positive in the direction ν for (a, ν) ∈ Ã.

Proof. Since S(a, ξ̃+ sη)L(a, ξ̃+ sη̃) is symmetric, for u and v in kerL(a, ξ̃)
one has (

S(a, ξ̃ + sη)L(a, η̃)u, v
)

=
(
u,S(a, ξ̃ + sη)L(a, η̃)v

)
.

Letting s tend to 0, shows that for all η, the matrices S(a, ξ̃)L(a, η̃) are
symmetric on kerL(a, ξ̃).

By Lemma 4.3, there is ε such that for all (a, ν) ∈ P, the ball centered
at ν and radius ε is contained in Γa(νa). Therefore, there is t0 ∈]0, 1[ such
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that for all (a, ν) ∈ P, there is ν ′ ∈ Γa(νa) on the line joining νa and ν
such that ν = tνa + (1 − t)ν ′ with t ∈ [t0, 1[. By Proposition 4.4, L(a, )̇
is strongly hyperbolic in the direction ν ′, implying that L(a, ν ′)−1L(a, ξ̃)
has only real an semi-simple eigenvalues. Therefore, the result follows from
Proposition 6.2 applied to Jt = (1− t)L(a, νa) + tL(a, ν)

We are now ready to prove that the existence of a regular full sym-
metrizer implies the existence of symmetrizer, having the same smoothness,
in all directions ν ∈ Γ(νa). In particular, this finishes the proof of Theo-
rem 4.11. Consider a strongly hyperbolic family {L(a, · ), νa, a ∈ A}. As-
sume that the condition (4.10) holds. For c > 0 and C > 0 and O an open
neighborhood of K such that O ∩ E = ∅ let

(4.14) Ã0 =
{

(a, ν); a ∈ A, ν ∈ Γa ∩ O, |ν| ≤ C, |detL(a, ν)| ≥ c
}
.

Theorem 4.13. Suppose that the coefficients of L(a, ·) are continuous,
[resp. W 1,∞] [resp. C∞] on A and that the mapping a 7→ νa is contin-
uous, [resp. W 1,∞] [resp. C∞]. Suppose that S(a, ξ) is a uniform bounded
family of symmetrizers for {L(a, · ) in the directions νa for a ∈ A, which is
continuous, [resp. W 1,∞] [resp. C∞] on A × E. Then, there exist a con-
tinuous, [resp. W 1,∞] [resp. C∞] uniform family of symmetrizers S(a, ν, ξ)
for L(a, ·) in the direction ν, which is continuous, [resp. W 1,∞] [resp. C∞]
on Ã0 × E.

Proof. For ã = (a, ν) ∈ Ã0, consider

L̃(ã, τ, ξ) = τL(a, ν) + L(a, ξ) = L(a, ξ + τν).

Then S̃(ã, τ, ξ) = S(a, ξ + τν) symmetrizes L̃(ã, τ, ξ). By (4.11), L̃ and S̃
are continuous, [resp. W 1,∞] [resp. C∞] functions on Ã0 × R × Sd−1. The
positivity condition

(4.15) Re
(
S̃(ã, τ, ξ)L(a, ν)u, u

)
≥ c|u|2

on ker L̃(ã, τ, ξ) = kerL(a, ξ+τν) follows from Proposition 4.12 and and the
construction of a symmetrizer S(a, ν, ξ), with the same smoothness as S̃, is
given by Theorem 6.5.

5 Appendix A : Strongly hyperbolic matrices

We collect here the various technical results on matrices which have been
used in the previous section. Changing slightly the notations, for instance
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including ξ or ν among the parameters, we consider a family of N × N
matrices, A(a) depending on parameters a ∈ Ω where Ω is an open subset
of Rn. We denote by Σ(a) the spectrum of A(a).

5.1 Definition and properties

Proposition 5.1. The following properties are equivalent
i) There is a real C1 such that

(5.1) ∀t ∈ R,∀a ∈ Ω :
∣∣eitA(a)

∣∣ ≤ C1.

ii) All the the eigenvalues λ of A(a) are real and semi-simple and there
is a real C2 such that all the eigen-projectors Πλ(a) satisfy

(5.2) ∀a ∈ Ω :
∣∣Πλ(a)

∣∣ ≤ C2.

iii) A(a) − λId is invertible when Imλ 6= 0 and there is a real C3 such
that

(5.3) ∀λ /∈ R ∀a ∈ Ω :
∣∣(A(a)− λId

)−1∣∣ ≤ C3

∣∣Imλ|−1.

iv) There are definite positive matrices S(a) and there are constants C4

and c4 > 0 such that for all a ∈ Ω, S(a)A(a) is symmetric, and

(5.4)
∣∣S(a)

∣∣ ≤ C4, S(a) ≥ c4Id.

v) There is a real C5 such that for all matrix B, all a ∈ Ω and all ρ ∈ R,
the eigenvalues of ρA(a) +B are located in {|Imλ| < C5|B|}.

Proof. a) ii) implies that A(a) has the spectral decomposition A =
∑
λjΠj

with real λj ’s. Thus (5.2) implies that
∣∣eitA)

∣∣ =
∣∣∑ eitλjΠj

∣∣ ≤ NC2.
Conversely, i) implies that the eigenvalues λj of A(a) are real, and semi-

simple and thus that A(a) =
∑
λjΠj . Moreover,

lim
T→∞

1

2T

∫ T

−T
eit(A(a)−λjId)dt =

∑
k

lim
T→∞

1

2T

∫ T

−T
eit(λk−λjId)Πkdt = Πj .

Thus, |Πj | ≤ C1 if (5.1) is true.

b) Suppose that ii) is satisfied so that A =
∑
λjΠj and Id =

∑
Πj .

Then

(5.5) S(a) =
∑

Π∗jΠj

is definite positive, satisfies S ≥ N−1Id, |S| ≤ NC2
2 , and SA =

∑
λjΠ

∗
jΠj

is self adjoint.
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If iv) holds then, with ε = sign(γ) ,

c4|γ|
∣∣u∣∣2 ≤ Re ε

(
S(−iA+ γId)u, u

)
≤ C4

∣∣(A+ iγ)u
∣∣ ∣∣u∣∣

implying iii) with C3 = C4/c4.

If iii) is satisfied, then the eigenvalues of A(a) are real, and semi-simple,
for if there were a nondiagonal block in the Jordan’s decomposition of A−
λjId , the norm of (A− (λj − iγ)Id)−1 would be at least of order γ−2 when
γ → 0. Thus A =

∑
λjΠj and

lim
γ→0

iγ
(
A− (λj − iγ)Id)−1 =

∑
k

lim
γ→0

iγ

(λk − λj + iγ
Πk = Πj ,

hence |Πj | ≤ C3.

c) By homogeneity, iii) is equivalent to the condition

∀a ∈ Ω,∀ρ ∈ R,
∣∣Imλ| ≥ C3 ⇒

∣∣(ρA(a)− λId
)−1∣∣ ≤ 1.

By Lemma 5.2 below, this is equivalent to the condition that for all matrix
B such that |B| < 1, ρA− λId +B is invertible when |Imλ| ≥ C3, meaning
that the spectrum of ρA+B is contained in {|Imλ| < C3. By homogeneity,
this is equivalent to v) with C5 = C3.

The proof of the proposition is now complete.

Lemma 5.2. The matrix A is invertible with |A−1| ≤ κ if and only if A+B
is invertible for all B such that |B| < κ−1.

Proof. If |A−1| ≤ κ, then A + B = A−1(Id + A−1B) is invertible for all B
such that |A−1B| ≤ κ|B| < 1.

Conversely, if A is not invertible or if |A−1| > κ, there is u such that
|u| = 1 and |Au| < κ−1. Pick a linear form ` such that `(u) = 1 and |`| = 1.
Then the matrix B defined by Bu = `(u)Au satisfies |B| = |Au| < κ−1 but
A−B is not invertible since u is in its kernel.

5.2 Lipschitz dependence of the eigenvalues

Assumption 5.3. The family {A(a), a ∈ Ω} of N×N matrices, is uniformly
strongly hyperbolic in the sense that the equivalent properties of Proposition
5.1 are satisfied.
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Proposition 5.4. Suppose that A(·) ∈ W 1,∞(Ω) satisfies Assumption 5.3.
Denote by λj(a), 1 ≤ j ≤ N , the eigenvalues of A(a), labelled in the increas-
ing order and repeated accordingly to their multiplicity. Then, the functions
λj belong to W 1,∞(Ω)

Proof. The continuity of the roots of a polynomial with respect to the coef-
ficients is well known. The Lipschitz smoothness with respect to parameters
of the roots of hyperbolic polynomials is true in general, provided that the
coefficients are smooth enough (see [Br]). The proposition says that when
the polynomial is the characteristic determinant of a strongly hyperbolic
system, the Lipschitz smoothness of the coefficients is sufficient.

Fix a ∈ Ω and an eigenvalue λ = λp(a) = λp+m(a) of A(a) of multiplicity
m + 1. Let δ > 0 denote the distance of λ to the remainder part of the
spectrum of A(a). By Assumption 5.3, there is C which depends only on an
upper bound of the norms of the spectral projectors, thus independent of a,
such that

∀z ∈ C, |z − λ| ≤ δ/2,
∣∣(A(a)− zId

)−1∣∣ ≤ C|z − λ|−1

Therefore, A− zId is invertible when |A−A(a)| < |z − λ| ≤ δ/2C.
Let Ω1 ⊂ Ω denote a convex open neighborhhood of a. Because A ∈

W 1,∞(Ω) for a and a′ ∈ Ω1 there holds

(5.6)
∣∣A(a)−A(a′)

∣∣ ≤ K|a− a′|
with K =

∥∥∇aA∥∥L∞(Ω)
. Therefore, A(a) − zId is invertible if a ∈ Ω1 and

CK|a−a| ≤ |z−λ| ≤ δ/2. By Rouché’s theorem, this implies that A(a) has
m + 1 eigenvalues (counted with their multiplicity) in the disk {|λ − λ| ≤
KC|a− a|}. They must be real by assumption, and by continuity they are
{λp(a), . . . , λp+m(a)}. Hence, |λj(a) − λ| ≤ KC|a − a| for p ≤ j ≤ p + m,
provided that a ∈ Ω1 and KC|a− a| < δ/2.

Gluing these estimates together, we have proved that there are constants
C and K such that : for all a ∈ Ω, there is a convex neighborhood ω of a,
such that for a ∈ ω and all j,

|λj(a)− λj(a)| ≤ CK|a− a|.

The following independent lemma implies that
∣∣∇aλj∣∣L∞(Ω)

≤ CK and the

proposition follows.
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Lemma 5.5. Suppose that K is a positive real number and f is a func-
tion defined on the open set Ω ⊂ Rn such that for all a ∈ Ω, there is a
neighborhood ω of a, such that

(5.7) ∀a ∈ ω, |f(a)− f(a)| ≤ K|a− a|.

Then
∥∥∇af∥∥L∞(Ω)

≤ K.

Proof. Note that (5.7) implies that f is continuous at a, thus f is continuous.
We first shown that for all convex open set Ω1 ⊂ Ω the inequality

(5.8) |f(b)− f(a)| ≤ K|b− a|.

is satisfied for all a and b in Ω1. Indeed, let T denote the set of real numbers
t ∈ [0, 1] such that

(5.9) ∀s ∈ [0, t], |f(a+ s(b− a))− f(a)| ≤ Ks|b− a|.

By assumption, the property (5.8) is satisfied on a neighborhood of a, im-
plying that T is not empty. By definition T is an interval, and by continuity
of f it is closed. Using the assumption (5.7) near a+ t(b− a), implies that
T is open so that T = 1 and (5.8) is proved.

This implies that f is Lipschitz continuous on Ω1 and that
∥∥∇af∥∥L∞(Ω1)

≤
K. Since this is true for all ball Ω1 ⊂ Ω, the lemma follows.

5.3 Lipschitz dependence of the eigenprojectors

Proposition 5.6. Suppose that A(·) ∈ W 1,∞(Ω) satisfies Assumption 5.3.
Let a ∈ Ω and consider Λ := {λj(a), j ∈ J} a subset of the spectrum of
A(a). Let Λ′ = Σ(a)\Λ = {λj(a), j ∈ J ′} and define

(5.10) δ = dist(Λ,Λ′) = min
(j,j′)∈J,×J ′

∣∣λj(a)− λj′(a)
∣∣ > 0

Let ω be a neighborhood of a such that |λj(a) − λj(a)| ≤ δ/4 for all j ∈
{1, . . . , N} and a ∈ ω. With Λ(a) = {λj(a), j ∈ J}, consider the spectral
projector

(5.11) ΠΛ(a) =
∑

λ∈Λ(a)

Πλ(a).

Then, ΠΛ(a) is continuous on ω and

(5.12)
∣∣ΠΛ(a)−ΠΛ(a′)

∣∣ ≤ CKδ−1
∣∣a− a′∣∣,

where C depends only on an upper bound of the norms of the spectral pro-
jectors of A(·) and K =

∥∥∇aA∥∥L∞(Ω)
.
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Proof. There are finitely many Jordan curves Γk in the complex domain, of
total length less than Cδ, such that |z − λj(a)| ≥ δ/2 for all z ∈ ∪Γk and
all j ∈ J , surrounding Λ so that

ΠΛ(a) =
∑
k

1

2iπ

∫
Γk

(zId−A(a))−1dz

This formula extends to a ∈ ω. Moreover, using the estimate∣∣(zId−A(a))−1 − (zId−A(a′))−1
∣∣

≤
∣∣(zId−A(a))−1

∣∣ ∣∣A(a)−A(a′)
∣∣ ∣∣(zId−A(a′))−1

∣∣
≤ CKδ−2

∣∣a− a′∣∣
for z ∈ ∪Γk, implies (5.12).

5.4 A piece of functional calculus

We study the smoothness of f(A(a)), given the smoothness of f and A. We
extend the analysis to vector or matrix valued functions S(λ, a) using the
following definition

(5.13) SA(a) =
∑

λ∈Σ(a)

S(λ, a)Πλ(a).

Theorem 5.7. Suppose that A(·) is continuous [resp. W 1,∞] [resp. C∞]
on Ω and satisfies Assumption 5.3. Suppose that S(λ, a) is continuous [resp.
W 1,∞] [resp. C∞ ] on R×Ω. Then SA(a) is continuous [resp. W 1,∞] [resp.
C∞ ] on Ω.

1) The C∞ case. If S were holomorphic in λ one would have

SA(a) =
1

2iπ

∫
∂D

S(z, a)(zId−A(a))−1dz

where D is a rectangle [−R,R] + i[−δ, δ] containing Σ(a) in its interior,
implying the result since (zId− A(a))−1 is smooth in a for z ∈ ∂D. In the
C∞ case, we modify this proof considering an almost holomorphic extension
of S in the variable λ. It is a C∞ function in (z, a) ∈ C × Ω such that, for
z in bounded sets,

(5.14) ∂zS(z, a) = O(|Im z|∞)
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Since the result is local, we can assume that Ω is bounded and fix R such
that for a ∈ Ω, the spectrum of A(a) is contained in {|z| ≤ R}. Let D
denote the disc of radius R+ 1 in C. Then,

SA(a) =
1

2iπ

∫
∂D

S(z, a)(zId−A(a))−1dz

+
1

2iπ

∫
D
∂zS(z, a)(zId−A(a))−1dzdz

The first integral is C∞ in a as explained above. In the second, we note that
for all m, ∂zS(z, a) = (Im z)mRm(z, a) with Rm smooth and (Im z)m(zId−
A(a))−1 has m−1 uniformly bounded derivatives in a, for z ∈ D\R, implying
that the second integral is Cm−1 with respect to a ∈ Ω.

2) Continuity. Fix a ∈ Ω and denote by µj , 1 ≤ j ≤ m, the distinct eigen-
values of A(a) and introduce δ = minj 6=k |µj − µk|. For a in a neighbor-
hood ω of a, the spectrum of A(a) is contained in nonoverlapping intervals
Ij =]µj − δ/4, µj + δ/4[. Write

(5.15)

SA(a) =
∑
j

S(µj , a)ΠIj (a)

+
∑
j

∑
λ∈Ij∩Σ(a)

(
S(λ, a)− S(µj , a)

)
Πλ(a)

with

(5.16) Πj(a) =
∑

λ∈Ij∩Σ(a)

Πλ(a).

Using a uniform bound for the Πλ(a) and the continuity of the eigenvalues
at a one concludes that the second sum in (5.15) tends to 0 as a tends to a.
By Proposition 5.6, Πj is continuous and hence SA is continuous at a.

3) Lipschitz continuity. By Lemma 5.5 it is sufficient to prove that there is
a positive constant K such that for all a ∈ Ω, there is a neighborhood ω of
a, such that

(5.17) ∀a ∈ ω, |SA(a)− SA(a)| ≤ K|a− a|.

The proof starts as in 2) with the decomposition (5.15). Shrinking ω if
necessary, the Lipschitz continuity of S and of the eigenvalues implies that
for a ∈ ω and λ ∈ Ij ∩ Σ(a)∣∣∣S(λ, a)− S(µj , a)

∣∣∣ ≤ C|a− a|
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where C depends only
∥∥∇aA∥∥L∞(Ω)

and
∥∥∇λ,aS∥∥L∞(R×Ω)

. Since the Πλ are

uniformly bounded, this implies that the second sum in (5.15) is uniformly
O(|a− a|) so that it remains to prove that, with Sj = S(µj , a) and pj(a) =
Πj(a)−Πj(a)

)
, one has

(5.18)
∣∣∣∑

j

Sjpj(a)
∣∣∣ ≤ K|a− a|.

with K independent of a and ω. Since S ∈W 1,∞, the Sj satisfy

(5.19)
∣∣Sj∣∣ ≤ K1,

∣∣Sj − Sk∣∣ ≤ K1|µj − µk|.

Moreover, Proposition 5.6 implies that for all J ⊂ {1, . . . ,m} with J 6= ∅
and J 6= {1, . . . ,m},

(5.20) PJ =
∑
j∈J

pj(a).

satisfies, with ε = |a− a|:

(5.21)
∣∣PJ ∣∣ ≤ K2ε

(
min

j∈J,k/∈J
|µj − µk|

)−1

.

Moreover, when J = {1, . . . ,m},

(5.22) P{1,...,m} = 0.

The next lemma implies (5.18), finishing the proof of the proposition.

Lemma 5.8. There is a constant Cm which depends only on m, such that
for all Sj and pj, 1 ≤ j ≤ m satisfying (5.19) (5.21)and (5.22), the sum
S =

∑
Sjpj satisfies

(5.23)
∣∣S∣∣ ≤ CmK1K2ε.

Proof. By homogeneity, we can assume that K1 = K2 = 1. The proof is by
induction on m. When m = 1, the condition (5.19) reduces to |S1| ≤ 1, the
condition (5.21) is void and p1 = 0.

We assume that the lemma is proved up to order m−1 ≥ 1 and we prove
it at the order m. Let

(5.24) δ := min
j 6=k
|µj − µk| > 0.
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Permuting the indices we can assume that the infimum is attained for (j, k) =
(m− 1,m), which means that

(5.25) ∀j 6= k : |µm−1 − µm| ≤ |µj − µk|.

We spilt S in two terms:

(5.26) S = S̃ + (Sm − Sm−1)pm

with

(5.27) S̃ =

m−1∑
j=1

Sj p̃j

where p̃j = pj when j ≤ m− 2 and p̃m−1 = pm−1 + pm.
The condition (5.21) applied to J = {m} and (5.25) imply that |pm| ≤

εδ−1 while (5.19) and (5.25) imply that |Sm − Sm−1| ≤ δ. This shows that
the second term in (5.26) satisfies |(Sm − Sm−1)pm| ≤ ε.

We now check that the induction hypothesis can be applied to S̃. The
condition (5.19) is clear, so we only have to show that the conditions (5.21)
and (5.22) are satisfied for the p̃j .

Consider a non empty subset J̃ ⊂ {1, . . . ,m− 1}. Then P̃
J̃

= PJ with

1) J = J̃ ∪ {m} if m− 1 ∈ J̃ ,
2) J = J̃ if m− 1 /∈ J̃ ,

In particular, P̃{1,...,m−1} = P{1,...,m} = 0 so that (5.22) for S̃ is satisfied.

Suppose that J̃ 6= {1, . . . ,m− 1} and let J be as above. Introduce also
K̃ = {1, . . . ,m − 1}\J̃ and K = {1, . . . ,m}\J . One has K = K̃ in case 1)
and K = K̃ ∪ {m} in case 2). By assumption, we know that

∣∣P̃J̃ ∣∣ =
∣∣PJ ∣∣ ≤ ε( min

j∈J,k∈K
|µj − µk|

)−1

.

We claim that

(5.28) min
j∈J̃ ,k∈K̃

|µj − µk| ≤ 2 min
j∈J,k∈K

|µj − µk|.

Indeed, if it is true, it implies that

(5.29)
∣∣P̃J̃ ∣∣ ≤ 2ε

(
min

j∈J̃ ,k∈K̃
|µj − µk|

)−1
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so that the induction hypothesis is satisfied for S̃ with ε replaced by 2ε.
Thus

∣∣S̃∣∣ ≤ 2Cm−1ε and (5.23) follows with Cm = 1 + 2Cm−1.
Therefore, to complete the proof, it remains to prove the claim (5.28). In

this estimate, J̃ and K̃ play symmetric roles, and therefore we can assume
that m ∈ J , that is that m− 1 ∈ J̃ . Comparing the sets J̃ × K̃ and J ×K,
we see that the only nontrivial case concerns |µm − µk| when k ∈ K = K̃.
In this case, since m− 1 ∈ J̃ , the claim follows from the inequality

|µm−1 − µk| ≤ |µm − µk|+ |µm−1 − µm| ≤ 2|µm − µk|

where we have used (5.25). The proof of the lemma is now complete.

6 Appendix B : Symmetrizable matrices

6.1 Positivity of symmetrizers and bounds

Proposition 6.1. Suppose that L and S are matrices such that SL is her-
mitian symmetric. Suppose that J is an invertible matrix such that

(6.1) ∀u ∈ kerL, Re
(
SJu, u

)
≥ c|u|2.

Then, 0 is a semi-simple eigenvalue of J−1L and the associated eigenpro-
jector Π satisfies

(6.2) Π∗SJΠ = Π∗SJ

and

(6.3)
∣∣Π∣∣ ≤ |ΣJ | /c.

Moreover,

(6.4) Sf ∈ (kerL)⊥ ⇔ f ∈ range(L).

Proof. Let K and R denote respectively the kernel and the range of L.
The identity (SLu, v) = (u,SLv) implies that SR ⊂ K⊥ and hence R ⊂
S−1(K⊥). Next we note that (6.1) implies that if u ∈ K and SJu ∈ K⊥,
then u = 0, so that JK ∩ S−1(K⊥) = {0}:

(6.5) R ⊂ S−1(K⊥), JK ∩ S−1(K⊥) = {0}.

In particular JK ∩ R = {0} and K ∩ J−1R = {0}. This means that the
kernel K of AJ − τ Id has a trivial intersection with the range J−1R of
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AJ − τ Id, that is that τ is a semisimple eigenvalue of AJ . Moreover, since
dim R + dim JK = N , (6.5) implies that R = S−1(K⊥), that is (6.4).

In the splitting u = Πu + (Id − Π)u, Πu ∈ K and there is v such that
(Id−Π)u = J−1Lv. Therefore (SLv,Πu) = 0 and

(
SJΠu,Πu) =

(
SJu,Πu).

Hence,

c
∣∣Πu∣∣2 ≤ Re

(
SJΠu,Πu) = Re

(
SJu,Πu) ≤

∣∣SJu∣∣ ∣∣Πu∣∣
and (6.3) follows.

For f ∈ K⊥ and u ∈ CN one has (Π∗f, u) = (f,Πu) = 0. Thus
K⊥ ⊂ ker Π∗ and indeed K⊥ = ker Π∗ since the two spaces have the same
dimension. For all u, (Id − Π)u ∈ J−1R, hence SJ(Id − Π)u ∈ K⊥ and
therefore Π∗ΣJ(Id−Π)u = 0 that is (6.2).

Proposition 6.2. Suppose that L and S ares matrices such that SL is
hermitian symmetric. We now assume that we are given two matrices J0

and J1 such that for all t ∈ [0, 1] Jt = (1 − t)J0 + tJ1 is invertible, and for
all u and v in ker,

(6.6)
(
SJtu, v

)
=
(
u,SJtv

)
.

Suppose that J0 satisfies

(6.7) ∀u ∈ Ka,
(
SJ0u, u

)
≥ c|u|2.

and suppose that for t ∈ [0, 1[, 0 is a semi simple eigenvalue of J−1
t L. Then

for all t ∈ [0, 1],

(6.8) ∀u ∈ kerL,
(
SJtu, u

)
≥ (1− t)c|u|2.

Proof. The assumption (6.6) means that the restriction of SJt to kerL is
symmetric. By (6.7), it is positive definite for t = 0. By continuity, it
remains positive as long as it remains definite. It is indefinite when there
is a u ∈ kerL, u 6= 0 such that SJtu(∈ kerL)⊥. By (6.4), this would
imply that u 6= 0 would belong both to the kernel and to the range of
J−1
t L, contradicting the assumption that 0 is a semisimple eigenvalue. By

continuity, SJ1 is nonnegative and (6.8) follows.

6.2 From full symmetrizers to symmetrizers

We consider here N ×N matrices

(6.9) L(τ, a) = τJ(a)−A(a)
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which depend on parameters a in an open set Ω and τ ∈ R. We always
assume that J(a) is invertible. We link the spectral properties of AJ(a) :=
J(a)−1A(a) to the existence of symmetrizers and full symmetrizers of L(τ, a).

Assumption 6.3. We assume that the matrices J(a), J(a)−1 are uniformly
bounded and that there are uniformly bounded matrices S(τ, a) is such that
for all τ and a, S(τ, a)L(τ, a) is hermitian symmetric and

(6.10) ∀u ∈ kerL(τ, a), Re
(
S(τ, a)J(a)u, u

)
≥ c|u|2.

where c is independent of a and τ .
We further assume that all the complex roots in τ of detL(τ, a) = 0 are

real.

Proposition 6.1 implies that the eigenvalues τ of J(a)−1A(a) are real
and semi simple and that the corresponding eigenprojectors are uniformly
bounded:

Corollary 6.4. Under Assumption 6.3, the family AJ(a) is uniformly strongly
hyperbolic in the sense of Assumption 5.3.

Theorem 6.5. In addition to Assumption 6.3, suppose that J , A and S are
continuous [resp. Lipschitz continuous] [resp. C∞] in a ∈ Ω and τ ∈ R.
Then there is a bounded and continuous [resp. Lipschitz continuous] [resp.
C∞] matrix S(·) on Ω such that

(6.11) S(a)J(a) =
(
S(a)J(a)

)∗ ≥ c1Id, S(a)A(a) =
(
S(a)A(a)

)∗
,

with c1 > 0 independent of a.

Proof. Multiplying L by J−1 reduces to the case J = Id. A symmetrizer is

(6.12) S(a) =
∑

τ∈Σ(a)

Π(τ, a)∗S(τ, a)Π(τ, a)

where Σ(a) ⊂ R denotes the spectrum of A(a).
For u and v in kerL(τ, a), one has L(τ +σs, a)u = σJ(a)u and a similar

expression for v. The symmetry implies(
S(τ + σν)J(a)u, v

)
=
(
u,S(τ + σu)J(a)v

)
and letting σ tend to zero implies

(6.13)
(
S(τ, a)J(a)u, v

)
=
(
u,S(τ, a)J(a)v

)
.
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This shows that each term of the sum (6.12) is symmetric and S is
symmetric. Moroever, by (6.10) and Corollary 6.4, it is uniformly bounded
and uniformly positive. By construction, S(a)A(a) is symmetric and by
(6.2) and symmetry, one has

(6.14) S(a) =
∑

τ∈Σ(a)

Π(τ, a)∗S(τ, a) =
∑

τ∈Σ(a)

S∗(τ, a)Π(τ, a).

Theorem 5.7 implies that S is continuous [resp. Lipschitz continuous] [resp.
C∞] in a, finishing the proof of the theorem.
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