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Abstract

We consider the Cauchy problem in L2 for first order system. A
necessary condition is that the system must be uniformly diagonaliz-
able, or equivalently that it admits a bounded symmetrizer. A suffi-
cient condition is that it admits a smooth (Lipschtitz) symmetrizer,
which is true when the system is hyperbolic, diagonalizable with eigen-
values of constant multiplicities. Counterexamples show that uniform
diagonalizability is not sufficient in general for systems with variable
coefficients and indicate that the symplectic properties of the set Σ
of the singular points of the characteristic variety are important. In
this paper, give a new class of systems for which the Cauchy prob-
lem is well posed in L2. The main assumption is that Σ is a smooth
involutive manifold and the system is transversally strictly hyperbolic.

1 Introduction

In this note, we give a new class of first order systems

(1.1) L(t, x,Dt, Dx) = Dt −
d∑

j=1

Aj(t, x)Dxj
= Dt − A(t, x,Dx)
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which are strongly hyperbolic, which means by definition that for all lower
order term B the Cauchy problem for L+B with initial data on the surface
{t = 0} is well-posed in C∞. Here we use the notation D = −i ∂ for partial
derivatives.

Strong hyperbolicity is satisfied as soon as the Cauchy problem is well
posed in L2 and satisfies resolvent estimates of the form

(1.2) γ∥u∥L2 ≲ ∥(L+ iγν)u∥L2 , for γ ≥ γ0,

where ν denotes the conormal to the initial surface, or semi-group estimates
of the form

(1.3) ∥u(t)∥L2 ≲ ∥u(0)∥+
∫ t

0

∥Lu(t′)∥L2dt′.

In these cases, additional zero-th order term are bounded in L2 and absorbed
by choosing γ large or by Gronwall’s lemma. Note that (1.3) implies (1.2).

A necessary condition for (1.2) is that the system L(t, x,Dt, Dx) must be
uniformly diagonalizable, which means that is there is a family of matrices
T (t, x, ξ), such that T and T−1 are uniformly bounded and T−1AT is di-
agonal. There are other equivalent formulations, for instance that there is
a bounded family of symmetrizers, that is a family of hermitian symmetric
matrices S(t, x, ξ), such that S and S−1 are uniformly bounded and SA is
symmetric (see e.g [4]).

For systems with constant coefficients, strong hyperbolicity is equivalent
to uniform diagonalizability (see [5], [14]). This is not true for general sys-
tems with variable coefficients. Even more, there are examples of uniformly
diagonalizable systems for which the Cauchy problem is ill-posed in C∞ (and
thus not strongly hyperbolic) (see [4, 13, 7]). However, strong hyperbolicity
is known for diagonalizable systems with constant multiplicities, and more
generally for systems which admit smooth symmetrizers S(t, x, ξ). In [7], the
required smoothness has been decreased to Lipschitz regularity in (t, x, ξ)
for ξ ̸= 0. A necessary condition for L to be strongly hyperbolic is that
the geometric multiplicity of any multiple eigenvalue τ of L(t, x, τ, ξ) is not
less than the half of the algebraic multiplicity+1 and strong hyperbolicity is
known for a class of systems which generalizes single effectively hyperbolic
operators and which are not symmetrizable (see [11, 12]).

How to characterize strongly hyperbolic systems is an interesting problem
which is not yet settled. This note brings a new piece to the understanding
of this question.
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Before stating our main result, let us introduce some notations. We will
work within the following framework.

Assumption 1.1. The coefficient matrices Aj(t, x) are C∞ and constant
outside a compact set. They act in a N-dimensional space denoted by E.
Moreover, for all (t, x, ξ) the eigenvalues of A(t, x, ξ) =

∑
ξjAj(t, x) are real

and semi-simple.

In particular L is hyperbolic in the time direction and diagonalizable.
We denote by C the characteristic variety of L, that is the set of (t, x, τ, ξ) ∈
T ∗R1+d\{0} such that detL(t, x, τ, ξ) = 0. Note that Assumption 1.1 implies
that at characteristic points,

(1.4) dimKerL(t, x, τ, ξ) = multiplicity of the eigenvalue τ .

If ρ = (t, x, τ , ξ) is a regular point of C, then Assumption 1.1 implies that on
a neighborhood of ρ, C is given by an equation τ = µ(t, x, ξ) and that µ is
an eigenvalue of constant multiplicity of A(t, x, ξ) for (t, x, ξ) close to (t, x, ξ)
since µ(t, x, ξ) is the unique eigenvalue close to τ .

As mentioned above, variable multiplicities form an important obstacle
to strong hyperbolicity and we have to impose conditions at singular points.
Recall first the invariant definition of the localized system Lρ at ρ ∈ C:

(1.5) Lρ(ρ̇) = ϖρ(L
′(ρ) · ρ̇) ıρ

where ıρ is the injection of kerL(ρ) into E, ϖρ is the projection from E onto
E/rangeL(ρ) and L′ is the derivative of L. Because kerL(ρ) ∩ rangeLρ =
{0} by Assumption 1.1, Lρ can also be seen as a matrix with values in
Hom(KerL(ρ)). Recall that Lρ is hyperbolic in the time direction, and more
generally, that the cone of hyperbolic directions of Lρ contains the cone of
hyperbolic directions of L.

We make the following natural assumption on the set Σ of singular points
of C.

Assumption 1.2. Σ ⊂ C is a smooth C∞ manifold in T ∗R1+d\{0} and on
each component of Σ the dimension of kerL(ρ) is constant.

Lemma 1.3. When Assumptions 1.1 and 1.2 are satisfied, then Lρ(ρ̇) = 0
when ρ ∈ Σ and ρ̇ ∈ Tρ(Σ).
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This lemma will be proved in Section 4. It implies that the symbol Lρ

can be seen as defined on T ∗Rd+1/TρΣ, that is on directions ρ̇ which are
transversal to Σ. Note that, because Lρ is hyperbolic in the direction dt,
this direction is not characteristic for Lρ and thus transverse to Σ. The first
natural case to consider is when Lρ is strictly hyperbolic in these transverse
directions:

Assumption 1.4. For all ρ ∈ Σ, Lρ(ρ̇) is strictly hyperbolic in the time
direction, on T ∗Rd+1/TρΣ.

This condition is called linear splitting in [8]. In some sense, the three
assumptions above describe the simplest and most regular structure for eigen-
value crossing along a variety Σ. However, these conditions are not sufficient
to imply strong hyperbolicity. The counterexample in [7] and the analysis
in [12] based on effectively hyperbolicity, indicate that the symplectic prop-
erties of the Σ plays an important role. In particular, the counterexample
in [7] is based on a reduction to the harmonic oscillator and this relies on
the property that the symplectic form is not identically 0 on TΣ. In this
paper, we go in the opposite direction and we can now formulate our main
assumption.

Assumption 1.5. All ρ ∈ Σ has a neighborhood on which one of the follow-
ing condition is satisfied:

i) Σ is of co-dimension two in T ∗R1+d\{0},
ii) Σ is of co-dimension three in T ∗R1+d\{0} and dimkerL(ρ) = 2,

iii) Σ is an involutive submanifold of T ∗R1+d\{0}.

We can now state our main result.

Theorem 1.6. Consider a first order system L (1.1) satisfying the Assump-
tions 1.1, 1.2, 1.4 and 1.5. Then the Cauchy problem for L with initial data
on {t = 0} is well-posed in L2. In particular L is a strongly hyperbolic system.

Indeed, only the third case in Assumption 1.5 is new. In the first two
cases, as noted in [8, 7, 10], there is a smooth microlocal symmetrizer S(t, x, ξ).
This will be recalled in the proof of the theorem. On the contrary, in gen-
eral, there is no smooth symmetrizer under the condition iii). Indeed, the
Assumption 1.4 implies that there is a symmetrizer S(t, x, ξ, ξ′) which is ho-
mogeneous of degree 0 and smooth with respect to the transversal variables
ξ′ ̸= 0. Thus, under Assumptions 1.1, 1.2 and 1.4, the system is uniformly
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diagonalizable, but in general, the symmetrizer is singular at Σ. Because of
this singularity, we cannot use the classical pseudo-differential calculus. But,
using the precise description of the singularity, we can use instead a second
microlocalization, and this is where the condition iii) comes in.

Theorem 1.6 is proved in Section 3. The main step is to obtain semi-
group estimates of the form (1.3) on [0, T ] × Rd. Since the assumptions are
also satisfied by the adjoint system L∗, we have similar estimates for the
backward Cauchy problem for L∗, and thus existence of weak solutions in L2

for the direct problem; by Friedrich’s Lemma they are strong solutions and
satisfy the energy estimate; differentiating the equation, we see that they
are as smooth as the data. The geometric formulation of the assumptions,
imply that they remain satisfied after all space-like change of variables, im-
plying local uniqueness, finite speed of propagation and local existence and
uniqueness for the Cauchy problem.

The proof of the main L2 estimate is microlocal. Near (0, x, ξ), one can
perform a smooth reduction of the system into blocks Ak associated to the
distinct eigenvalues τ k of A(0, x, ξ). If ρk = (0, x, τ k, ξ) is a regular point
of C, then near (0, x, ξ), Ak has a unique real eigenvalue and the estimate
is well known. If ρk ∈ Σ, in cases i) and ii) there is a smooth symmetrizer
and the L2 microlocal energy estimate follows. In case iii) we can reduce the
problem to a model case of the following form:

(1.6) Lmod(t, x,Dt, Dx) = Dt −
l∑

j=1

Aj(t, x,Dx)Dxj

where the Aj are classical pseudo-differential operators of order 0. In this
model, the involutive manifold is Σmod = {τ = ξ1 = . . . = ξl = 0}. This
model is analyzed in Section 5. The key is that, by Assumption 1.4 there is a
symmetrizer S(t, x, ξ, ξ′) which can be quantified so that the error Im (LmodS)
is bounded in L2. The reduction to the model case, is made using a Fourier
integral operator which quantifies a canonical transformation which maps
the involutive manifold Σ to the model case Σmod. However, since we are
considering the Cauchy problem, we need to preserve time in this reduction.
Details are given in Section 4.
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2 The microlocal symbolic analysis

In preparation for the proof of Theorem 1.6, we analyze first the properties
of the symbol L(t, x, τ, ξ) = τ Id − A(t, x, ξ). Let (t, x, ξ) ∈ R1+d × Rd\{0}.
We denote by τ k, the distinct eigenvalues of A(t, x, ξ) so that the points
ρk = (t, x, τ k, ξ) belong to the characteristic variety C.

For (t, x, ξ) in a small conical neighborhood ω of (t, x, ξ), there is a smooth
invertible matrix P (t, x, ξ), homogeneous of degree 0 in ξ, such that P−1AP
is block diagonal

(2.1) P−1(t, x, ξ)A(t, x, ξ)P (t, x, ξ) = diag(Ak(t, x, ξ))

where the eigenvalues of the blocks Ak are close to τ k, and its dimension rk
is the multiplicity of τ k.

There are several cases.

1) If ρk is a regular point of C, locally near ρk, C is given by a smooth
equation τ = µ(t, x, ξ) and

(2.2) Ak(t, x, ξ) = µ(t, x, ξ)Id.

2) If ρk ∈ Σ is a singular point, we can write

Ak(t, x, ξ) = µ(t, x, ξ)Id + A′
k(t, x, ξ),

where A′
k is traceless. By Assumption 1.2, near ρk, τ − µ and A′ vanish on

Σ and therefore; Σ is given by the equations

(2.3) τ = µ(t, x, ξ), qj(x, ξ) = 0, j = 1, . . . , l.

Therefore, A has the form

(2.4) Ak(t, x, ξ) = µ(t, x, ξ)Id +
l∑

j=1

Ak,j(t, x, ξ)qj(x, ξ).

The localized system at ρk, L
′
ρk
(ρ̇), is conjugated to

(2.5) (τ̇ + µ̇)Id +
∑

Ak,j q̇j

where µ̇ = ṫ∂tµ+ ẋ∂xµ+ ξ̇∂ξµ and with similar definition for q̇j. This clearly
proves Lemma 1.3. Because the dqj are independent, Assumption 1.4 implies,
and indeed is equivalent to:
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Lemma 2.1. For all η ∈ Rl\{0}, the eigenvalues of
∑

ηjAkj(t, x, ξ) are real
and simple.

Proposition 2.2. There is a conical neighborhood ω of (t, x, ξ) and there

is a symmetric matrix S(t, x, ξ, η), C∞ for (t, x, ξ) ∈ ω, and η ∈ Rl\{0},
homogeneous of degree 0 both in ξ and η, and such that S is positive definite,
S−1 is bounded, and

(2.6) Im
(
S(t, x, ξ, q(x, ξ))Ak(t, x, ξ)

)
= 0.

Proof. (See [9] ) For (t, x, ξ) ∈ ω and η ∈ Rl, introduce the symbol

(2.7) Ak(t, x, ξ, η) =
l∑

j=1

ηjAk,j(t, x, ξ)

By the lemma, for |η| = 1, the eigenvalues of Ak(t, x, ξ, η) are simple. By
perturbation, this property remains true for (t, x, ξ) close to (t, x, ξ), and
therefore, shrinking ω if necessary, there is a smooth matrix P(t, x, ξ, η) for
(t, x, ξ) ∈ ω and η ̸= 0, homogeneous of degree 0 in ξ and in η, such that

(2.8) PAkP−1 = diag(β1, . . . , βrk)

is diagonal with entries βj(t, x, ξ, η). Then

(2.9) S = P∗P

is self adjoint and positive definite, and satisfies (2.6) since for η = q(t, x, ξ)
the eigenvalues of Ak(t, x, ξ, q(t, x, ξ)) = Ak(t, x, ξ) are real.

We now discuss the consequences of Assumption 1.5.

Lemma 2.3. If property i) or ii) of Assumption 1.5 is satisfied at ρk, there
is a conical neighborhood ω of (t, x, ξ) and there is a smooth positive definite
matrix Sk(t, x, ξ) for (t, x, ξ) ∈ ω, homogeneous of degree 0 in ξ and such
that SkAk is self adjoint.

Proof. In these cases we can find a smooth microlocal symmetrizer. For the
explicit expression of the symmetrizers we refer to [10, 7].
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Proposition 2.4. If condition iii) of Assumption 1.5 is satisfied at ρk, there
is a canonical transformation Ψ = ρ 7→ ρ̃ in a neighborhood of ρk such that
t̃ = t and Σ̃ = Ψ(Σ) is given by the equations

(2.10) τ̃ = 0, ξ̃1 = . . . = ξ̃l = 0.

Proof. We construct Ψ in two steps. First we consider the flow of Hτ−µ, the
Hamilton vector field of τ − µ,

(2.11) Ψ1 = exp((t− t)Hτ−µ) : ρ 7→ ρ1

It is a canonical transformation defined on a conical neighborhood of ρk, such
that t1 = t and which transforms τ − µ into τ1. Therefore, Σ1, the image of
Σ is given by equations

(2.12) τ1 = 0, q1,1 = . . . = q1,l = 0.

Since Σ1 is involutive the Poisson brackets of these equations, and in partic-
ular ∂t1q1,j, vanish on Σ. Because ∂t1q1,j is independent of τ1 and the dx,ξ q̃1,j
are linearly independent, this means that there are smooth homogenous func-
tions mj,k such that

(2.13) ∂t1q1,j = ∂tg1,j =
∑

mj,kq1,k.

Denoting by Q1 the vector with components q1,j and by M the matrix with
entries mj,k, this means that ∂tQ1 = MQ1. Introduce P (t, x, ξ) such that

∂tP = −PM, P|t=0 = Id.

Hence ∂t(PQ1) = 0 and Q̃1 = PQ1 depends only on (x, ξ). This shows that
Σ1 is given locally by the equations

(2.14) τ1 = 0, q̃1,j(x, ξ) = 0.

In other words, near ρk,

(2.15) Σ1 = {(t, x, 0, ξ); (x, ξ) ∈ Σ1}

where Σ1 is given by the equations q̃1,j(x, ξ) = 0. Moreover Σ1 is invo-
lutive in T ∗Rd and there is a canonical transformation Ψ2 in T ∗Rd which
transforms q̃1,j into ξj for j = 1, . . . , l. We extend it to T ∗R1+d, by leaving
(t1, τ1) invariant, and the composed transformation Ψ2 ◦ Ψ1 has the desired
properties.
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3 Proof of Theorem 1.6

As recalled in the introduction, it is sufficient to prove the following energy
estimate:

Theorem 3.1. Under the assumptions of Theorem 1.6, there are T > 0 and
C such that for all smooth function u, one has

(3.1) ∥u(t)∥L2 ≤ C∥u(0)∥+ C

∫ t

0

∥Lu(t′)∥L2dt′.

To prove this, we construct a finite partition of unity on T ∗Rd

(3.2) 1 = χ∞(x) +
n∑

j=0

χj(x, ξ)

and prove the estimate (3.1) for each piece u∞ = χ∞u and uj = χj(x,Dx)u
separately. Indeed,

∥Luj(t)∥L2 ≲ ∥Lu(t)∥L2 + ∥u(t)∥L2 , ∥uj(0)∥L2 ≲ ∥u(0)∥L2

so, adding the estimates for uj we get that

∥u(t)∥L2 ≤ C∥u(0)∥+ C

∫ t

0

∥Lu(t′)∥L2 + C

∫ t

0

∥u(t′)∥L2dt′,

which, by Gronwall’s lemma, implies (3.1).
We choose χ∞ equal to 1 for |x| ≥ R with R so large that L = L∞ =

Dt−A∞(Dx) has constant coefficients on the support of χ∞. Our assumptions
imply that L, thus L∞, is uniformly diagonalizable. Hence there is a bounded
symmetrizer S∞(ξ) for A∞(ξ) and the L2 estimate for u∞ follows, using the
Fourier transform.

We choose χ0 supported in |ξ| ≤ 2. Then ∥∂tχ0u∥L2 = O(∥u∥L2+∥Lu∥L2)
and the estimate for χ0(x,Dx)u immediately follows.

Thus by compactness of {|x| ≤ R} × Sd−1, we are reduced to prove the
following estimate:

Proposition 3.2. Under the assumptions of Theorem 1.6, for all (x, ξ) ∈
T ∗Rd\{0}, there are T > 0, a conical neighborhood ω of (x, ξ) such that for
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all pseudo-differential symbol of degree 0, χ(x, ξ) supported in ω, there is a
constant C such that for all smooth function u,

(3.3) ∥χ(x,Dx)u(t)∥L2 ≤ C∥u(0)∥+ C

∫ t

0

(
∥Lu(t′)∥L2dt′ + ∥u(t′)∥L2

)
dt′.

Proof. a) From now on, we fix (x, ξ) ∈ T ∗Rd\{0}. We convert the sym-
bolic analysis of the previous section into a pseudo-differential calculus. Let
P (t, x, ξ) such that (2.1) holds in a conical neighborhood ω of (0, x, ξ). Let χ
be supported in ω′ = ω ∩ {t = 0} and introduce v = P−1(t, x,Dx)χ(x,Dx)u
and its component vk which in the block corresponding decomposition above.
Let

(3.4) Lkvk := Dtvk − Ak(t, x,Dx)χ̃(x,Dx)vk

where χ̃ is supported in ω′ and equal to 1 on a neighborhood of the support
of χ. Because the commutators are bounded in L2, one has

(3.5) ∥Lkvk(t)∥L2 ≲ ∥Lu(t)∥L2 + ∥u(t)∥L2 .

We claim that it is sufficient to prove the following energy estimate for each
vk separately:

(3.6) ∥vk(t)∥L2 ≤ C∥vk(0)∥+ C

∫ t

0

(
∥Lkvk(t

′)∥L2dt′ + ∥vk(t′)∥L2

)
dt′.

Indeed, with (3.5), it implies that

∥v(t)∥L2 ≤ C∥u(0)∥+ C

∫ t

0

(
∥Lu(t′)∥L2dt′ + ∥u(t′)∥L2

)
dt′.

Moreover, χ(x,Dx)u = (χ̃P )(t, x,Dx)v + Ru where R is of degree −1 and
hence

∥χ(x,Dx)u(t)∥L2 ≤ ∥v(t)∥L2 + ∥u(t)∥H−1 .

Finally, we note that the errors in H−1 are also controlled, using that

(3.7) ∥∂tu(t)∥H−1 ≲ ∥Lu(t)∥L2 + ∥u(t)∥L2

and

(3.8) ∥u(t)∥H−1 ≤ ∥u(0)∥H−1 +

∫ t

0

∥∂tu(t′)∥H−1dt′.

Therefore, it only remains to prove (3.6).
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b) If ρk is a regular point in C, or if ρk ∈ Σ and one of the condition
i) or ii) of Assumption 1.5 is satisfied, there is a symmetrizer Sk(t, x, ξ) for
Ak, in a possibly smaller neighborhood ω. One can choose γ such that the
energy

Re
(
χ̃Sk(t, x,Dx)vk, vk

)
L2 + γ

(
(1 + |Dx|2)−1vk, vk)L2

is positive definite and equivalent to ∥vk∥L2 . Differentiating in time and using
the classical pseudo-differential calculus, one obtains (3.6).

c) If ρk ∈ Σ and the condition iii) of Assumption 1.5 is satisfied, we
know by Proposition 2.4 that there is a canonical transformation Ψ on a
neighborhood of ρk such that the symbol of Lk is transformed to

τ̃ Id +
l∑

j=1

ξ̃jÃj(t̃, x̃, ξ̃)

revealing the model operator

(3.9) L̃ = Dt̃ −
l∑

j=1

Ãj(t̃, x̃, Dx̃)Dx̃j
.

In this case the estimate (3.6) follows from the following two results.

Proposition 3.3. There are T > 0, a conical neighborhood ω of (x, ξ) and
a smooth family of elliptic Fourier integral operators F = Ft, for t ∈ [0, T ],
associated to the canonical transformation Ψ and such that for all pseudo-
differential symbol of degree 0, χ(x, ξ) supported in ω

(3.10) (FLk − L̃F )χ(x,Dx)

is bounded in L2, uniformly in time.

Proposition 3.4. If χ̃ is supported in a small conical neighborhood of (x̃, ξ̃)

where Ψ(ρk) = (0, x̃, 0, ξ̃), there is a constant C such for all w ∈ H1([0, T ]×
Rd) satisfies

(3.11) ∥χ̃(x̃, Dx̃)w(t)∥L2 ≤ C∥w(0)∥L2 + C

∫ t

0

∥L̃w(t′)∥L2dt′.
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Indeed, decreasing the neighborhoods if necessary, we can assume that
χ̃ = 1 on the image of the support of χ. We apply this estimate to w =
Fχ(x,Dx)vk, noticing that, by (3.10) and the uniform boundedness of F in
L2, one has

∥L̃w(t)∥L2 ≲ ∥Lkvk(t)∥L2 + ∥vk(t)∥L2 .

Moreover, by microlocal ellipticity of F on the support of χ, we have

∥χ(x,Dx)vk(t)∥L2 ≤ ∥χ̃(x̃, Dx̃)w(t)∥L2 + ∥vk(t)∥H−1 .

Since ∥(1 − χ(x,Dx))vk(t)∥L2 is bounded by the right-hand side of (3.6),
combining these estimates, and arguing as in (3.8) to absorb the H−1 error,
we obtain (3.6) in the case iii) of Assumption 1.5.

It remains to prove the two propositions above. This is done in the next
two sections.

4 Reduction to the model

In this section, we prove Proposition 3.3. Recall that the canonical transfor-
mation Ψ is the composed of Ψ1 and Ψ2. The first is defined, for t ∈ [0, T ],
by (2.11). The symbol µ is defined on a small conical neighborhood ω of
(0, x, ξ), for simplicity we modify it, so that it is defined on [0, T ] × T ∗Rd,
so that is supported in ω and equal to µ in a smaller neighborhood ω′ with
|ξ| ≥ 1. Decreasing T if necessary, consider the Fourier integral operator

(4.1) F1u(t, x) =

∫
eiφ(t,x,ξ)û(t, ξ)dξ

where φ(t, x, ξ) solves for t ∈ [0, T ] the eikonal equation

(4.2) ∂tφ = µ(t, x, ∂xφ), φ(0, x, ξ) = x · ξ,

(see [6, 2, 3, 1]). It is associated to the canonical transformation Ψ1. We
can consider it also as a family of Fourier integral operators F1,t on Rd,
associated to canonical transformations Ψ1,t, which are obviously defined
from Ψ1. Moreover, this operator is elliptic. Therefore, (see e.g. [1, 3])

Lemma 4.1. There is a constant C such that for u smooth, v = F1u satisfies

(4.3)
∥∥v(t)∥∥

L2 ≤ C
∥∥u(t)∥∥

L2
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(4.4)
∥∥u(t)∥∥

L2 ≤ C
∥∥v(t)∥∥

L2 + C
∥∥u(t)∥∥

H−1 .

Moreover,

(4.5)
∥∥Dtv(t)− F1(Dt + µ(t, x,Dx))u(t)

∥∥
L2 ≤ C

∥∥u(t)∥∥
L2

and if a(t, x,Dx) is a pseudo-differential operator of order 1, then

(4.6)
∥∥b(t, x,Dx)v(t)− F1a(t, x,Dx)u

∥∥
L2 ≤ C

∥∥u(t)∥∥
L2

where

(4.7) b(t, x, ξ) = a(Ψ−1
1,t (t, x, ξ)).

Let χ be supported in a small conical neighborhood of (x, ξ). The Lemma
implies that F1 transforms Lk = Dt − Ak(t, x,Dx)χ(x,Dx) into

(4.8) Dt −
∑

A1,j(t, x,Dx)q1,j(t, x,Dx) +B(t, x, ∂x)

where B(t) are uniformly bounded in L2 and, using the notations introduced
in (2.12), and the q1,j is the function deduced from qj by Ψ1. We have shown
that they are independent of t, and that there is a canonical transformation
Ψ2 which transforms them into ξj. Therefore there is an elliptic Fourier
integral operator F2 on Rd, bounded in L2, and such that

(4.9) ∥F2q1,j(x,Dx)χ1(x,Dx)v −Dxj
F2χ1(x,Dx)v∥L2 ≲ ∥v∥L2 ,

(4.10) ∥χ1(x,Dx)v∥L2 ≲ ∥F2χ1(x,Dx)v∥L2 + ∥χ1(x,Dx)v∥H−1

where χ1 is supported in a small conical neighborhood of (x, ξ) and one can
assume that χ1 = 1 on the image of ω by Ψ1 for 0 ≤ t ≤ T . Here we note
that

∥(1− χ1(x,D))F1χ(x,D)v∥Hs ≲ ∥v∥Hs−1 ,

for s = 0, 1 and for any χ supported in ω.
Combining with the lemma above, we see that the composed operator

F2 ◦ χ1F1 satisfies the properties listed in Proposition 3.3, which is now
proved.
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5 Analysis of the model system

In this section we prove Proposition 3.4. The symbol of the model operator
(5.1) has the form

(5.1) A(t, x, ξ) =
l∑

j=1

ξjAj(t, x, ξ)

with some 1 ≤ l < d where the Ak are classical pseudo-differential symbols
of degree 0, independent of (t, x) for (t, x) outside a compact set. The coeffi-
cients are defined on a neighborhood of (x, ξ), for convenience we extend the

coefficients Aj to [0, T ]×T ∗Rd by multiplying them by some cut-off function
χ(t, x, ξ). We still call Aj these extended symbols.

Introduce

(5.2) A(t, x, ξ, η) =
l∑

k=1

ηkAk(t, x, ξ)

By Proposition 2.2, we know that the following condition is satisfied.

Assumption 5.1. There is a symmetric matrix S(t, x, ξ, η), C∞ in (t, x)
and constant outside a compact, homogeneous of degree 0 and C∞ both in
ξ ̸= 0 and η ̸= 0, such that S is positive definite, S−1 is bounded, and
S(t, x, ξ, ξ′)A(t, x, ξ) is symmetric, where ξ′ = (ξ1, . . . , ξl).

Proposition 3.4 is a direct consequence of the following estimate.

Proposition 5.2. Under the Assumption 5.1, there is a constant C such for
all u ∈ H1([0, T ]× Rd) satisfies

(5.3) ∥u(t)∥L2 ≤ C∥u(0)∥L2 + C

∫ t

0

∥Lu(t′)∥L2dt′.

To prove this estimate, we use a symbolic calculus where symbols of
degree (m, k) satisfy for all multi-indices α and β,

(5.4) |∂α
x∂

β′

ξ′ ∂
β′′

ξ′′ a| ≤ Cαβ(1 + |ξ|)m−|β′′|(1 + |ξ′|)k−|β′|

where ξ = (ξ′, ξ′′), ξ′ = (ξ1, . . . , ξl) ξ
′′ = (ξl+1, . . . , ξd), for some constant Cαβ

independent of (x, ξ). The set of all such a(x, ξ) is denoted by Sm,k which is
noting but S(m, g) with

g = |dx|2 + |dξ′|2

1 + |ξ′|2
+

|dξ′′|2

1 + |ξ|2
, m = (1 + |ξ|)m(1 + |ξ′|)k,
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(see [3, Chapter XVIII] for the definition of S(m, g) and the associated
pseudo-differential calculus). The key remark is that the symbol (5.1) be-
longs to S0,1, so that the classical proof of the L2 energy estimate works with
symmetrizers in S0,0, which is exactly the case of S(t, x, ξ, ξ′). Let us proceed
to the details.

We use Weyl’s quantification op(a) for symbols, but any other quantifi-
cation would do since we consider only the principal terms. The rules of the
symbolic calculus we need are collected in the following lemma, and follow
from the general calculus developed in [3].

Lemma 5.3. i) Operators op(a) with a ∈ S0,0 are bounded in L2.
ii) If a ∈ S0,1 and b ∈ S0,0 then op(a) ◦ op(b)− op(ab) is bounded in L2.
iii) If S is a n×n self adjoint matrix of symbols in S0,0, such that for all

(x, ξ) ∈ T ∗Rd with |ξ′| ≥ 1 and all vector u ∈ Cn one has

(5.5) c |u|2 ≤ (S(x, ξ)u, u),

for some c > 0, then op(S) is self adjoint in L2(Rd;Cn) and there is a
constant C such that for all u ∈ L2(Rd)

(5.6)
c

2

∥∥u∥∥2

L2 ≤
(
op(S)u, u

)
L2 + C

∥∥(1 + |Dx′|2)−1/2u
∥∥2

L2 .

Moreover, the bounds are uniform if the symbols (a, b, S) remains in
bounded sets of the given classes S0,m.

Proof of Proposition 3.4. Let χ0 ∈ C∞
0 (Rl) be supported in |η| < 2 and such

that χ0(η) = 1 for |η| < 1. Denote χ = 1− χ0. Introduce

S0(t, x, ξ) = S(t, x, ξ, ξ′)χ(ξ′) + χ0(ξ
′).

This is a self adjoint matrix of symbols in S0,0, depending on the parameter
t, and which satisfies (5.5). Thus, using (5.6), there is γ > 0 and c > 0 such
that the operator op(S(t)) associated to the symbol

S(t, x, ξ) = S0(t, x, ξ, ξ
′) + γ(1 + |ξ′|2)−1

satisfies for all t ∈ [0, T ] and u ∈ L2(Rd)

(5.7) c
∥∥u∥∥2

L2 ≤
(
op(S(t))u, u

)
L2 .
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We fix γ such that this property is satisfied. Using i) of the lemma, we see
that there is another constant C such that

(5.8)
(
op(S(t))u, u

)
L2 ≤ C

∥∥u∥∥2

L2 .

Given a smooth u ∈ C1([0, T ];H1(Rd). Consider the energy

E(t) =
(
op(S(t))u, u

)
L2 ≈

∥∥u(t)∥∥2

L2 .

The definition of op(S(t)) shows that, for smooth functions,

[∂t, op(S(t))] = op(∂tS(t)).

Moreover, ∂tu = i
(
Lu+op(A)u+Bu

)
, where B is bounded in L2. Therefore,

dropping the parameter t to simplify notations,

(5.9)
∂tE = −2Im

(
op(S)Lu, u

)
L2 +

(
op(∂tS)u, u

)
L2

− 2Im
(
op(S)op(A)u, u

)
L2 − 2Im

(
op(S)Bu, u

)
L2 .

By the symbolic calculus, op(∂tS), op(S)B and op(S)op(A) − op(SA) are
bounded in L2, uniformly in time. Because S symmetrizes A, the definition
of S implies that

Im
(
S(t, x, ξ)A(t, x, ξ)

)
∈ S0,0

and therefore Im
(
op(SA)

)
is bounded in L2. This implies that the last three

terms in (5.9) are O(∥u∥L2). Integrating and using (5.7) and (5.8), yields

∥u(t)∥2L2 ≤ C∥u(0)∥2L2 + C

∫ t

0

(
∥Lu(t′)∥L2∥u(t′)∥L2 + ∥u(t′)∥2L2

)
dt′.

The estimate (5.3) follows for smooth functions. It extends to u ∈ H1 by
density.

Remark 5.4. The proof of the estimate (5.3) relies only on the existence
of the symmetrizer S satisfying the properties listed in Lemma 5.3, not on
strict hyperbolicity.
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