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Abstract. We show that hyperbolicity is a necessary condition for the well
posedness of the noncharacteristic Cauchy problem for nonlinear partial differ-

ential equations. We give conditions on the initial data which are necessary for
the existence of solutions and we analyze Hadamard’s instabilities in Sobolev

spaces. We also show that genuinely nonlinear equations raise new interesting
problems.

1. Introduction

The question of the well-posedness of the Cauchy problem was first raised by
Hardamard ([8], [9]) who proved that it is ill-posed in the case of linear second or-
der elliptic equations. But the introduction in [9] clearly indicates that Hadamard
was interested in nonlinear equations as well. In modern words, Hadamard’s proof
is based on the analytic regularity of linear elliptic boundary problems. This reg-
ularity has been extended to nonlinear elliptic equations by Morrey ([22]) so that
Hadamard’s argument also applies to general nonlinear elliptic equations.

For general linear equations, it is well known that hyperbolicity is a necessary
condition for the well-posedness of the noncharacteristic Cauchy problem in C∞,
(see Lax [16], Mizohata [21] and Ivrii-Petkov [13] for a simplified proof and further
developments; see also [10]). For nonlinear equations, Wakabayashi [27] has proved
that the existence of a smooth stable solution implies hyperbolicity, stability mean-
ing that one can perturb the initial data and the source terms in the equations. In
a previous paper, Yagdjian obtained this result, with a much weaker definition of
stability, in the sense of continuous dependence on the initial data, for the special
case of “gauge invariant” equations ([28]). We also mention [29] for a particular
case and [11] for first order scalar complex equations.

In this paper, we continue the analysis of Hadamard’s instabilities for nonhy-
perbolic nonlinear equations in two directions. First, we give necessary conditions
on the initial data for the existence of smooth solutions of a given equation, with-
out perturbing the equation or the source terms. Next, we also want to point out
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that the nonlinear theory yields interesting and difficult new problems. There are
many interesting examples, for instance in multi-phase fluid dynamics, where the
equations are not everywhere hyperbolic. To mention one occurrence of this phe-
nomenon, consider Euler’s equations of gas dynamics in Lagrangian coordinates:

(1.1)

{
∂tu + ∂xv = 0 ,

∂tv + ∂xp(u) = 0 .

The system is hyperbolic [resp. elliptic] when p′(u) > 0 [resp. p′(u) < 0]. For
van der Waals state laws, it happens that p is decreasing on an interval [u∗, u∗]. A
mathematical example is

(1.2) p(u) = u (u2 − 1)

Hadamard’s argument (see e.g. [8], [9]) shows that the Cauchy problem with data
taking values in the elliptic region is ill-posed: if u|t=0 is real analytic near x and
u(x) belongs to the elliptic interval, then any local C1 solution is analytic (see e.g.
[22]); thus the initial data v|t=0 must be analytic for the initial value problem to
have a solution.

However, there are other interesting questions about the system (1.1). There
are classical solutions with values in one of the hyperbolic region u < u∗ or u > u∗,
but there are also discontinuous solutions, modeling for instance phase transitions,
which take values in both regions. They have been extensively studied, see e.g.
[25], [3], [7]. Another remarkable fact is that (1.1) has a conserved energy. Let
P (u) satisfy P ′ = p. Then the energy:

(1.3) E(t) :=
∫ (1

2
v2(t, x) + P (u(t, x))

)
dx

is conserved for solutions of (1.1). For the example (1.2), P (u) = 1
4 u2 (u2 − 2). If

one consider the periodic problem, the L2 norm is dominated by the L4 norm on
[0, 2π], thus the boundedness of E controls the L4 and L2 norm of the solutions.
Of course, this is formal, and the validity of a priori bounds does not prove the
existence of solutions. However, this indicates that the nonexistence of solutions
is much more subtle than in the linear case. In particular, there is no blow up
phenomenon in Lp norms.

The equations (1.1) are thought as approximations or limits of more compli-
cated models which may include for instance viscosity or capillarity (see e.g. [3]);
numerical schemes have also been considered (see e.g. [6], [12]). In the case of
periodic solutions, spectral methods lead to filter high frequencies and to consider
the “approximate” system

(1.4)

{
∂tu

λ + ∂xvλ = 0,

∂tv
λ + ∂xSλp(uλ) = 0,

{
uλ

|t=0 = Sλh,

vλ
|t=0 = Sλk,

where Sλ is the projector on Fourier modes of index |n| ≤ λ. For instance, when
p is given by (1.2), the conservation of energy and the Cauchy-Lipschitz theorem
imply that in the periodic case:

for all h ∈ L4 and k ∈ L2, the equations (1.4) have global solutions (uλ, vλ)
which are uniformly bounded in C0([0,∞[;L4 × L2).

Note that there are no conditions on h, which can take values in the elliptic region
u2 < 1/3. The question is to analyze the behavior of (uλ, vλ) as λ → +∞. Because
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of the bounds on (uλ, vλ) and (∂tu
λ, ∂tv

λ), there are subsequences which converge
weakly and strongly in C0([0, 1],H−ε). In particular, the weak limits (u, v) are
bounded with values in L2 and continuous in time for the weak tolopogy of L2.
Thus u(0) = h and v(0) = k. Taking the weak limit p of p(uλ), there holds

∂tu + ∂xv = 0 , ∂tv + ∂xp = 0 .

The question is to express p in terms of u and v. As mentioned above, the answer,
p = p(u), (u, v) smooth, cannot be true in general when h takes values in the elliptic
zone. The common idea is that the limits (u, v) “escape” from the elliptic region,
as suggested by numerical calculations ([6], [12]), but no rigorous proof of this fact
seems available in the literature. A detailed answer to the questions above remains
a very interesting open problem. Motivated by this problem, we consider in Section
5 a modified nonlocal system:

(1.5)

{
∂tu = a(t)∂xv,

∂tv = |a(t)|∂xu,
with a(t) = ‖u(t)‖2

L2 − 1.

This a version of Kirchhoff equations ([15], [18] [1]), which is non hyperbolic when
a < 0. As (1.1), this system has a natural (formal) energy:

(1.6) E(t) = ‖v(t, ·)‖2
L2 +

∣∣∣‖u(t, ·)‖2
L2 − 1

∣∣∣.
This implies that the equations with filtered initial data (Sλh, Sλk) has global
solutions (uλ, vλ) uniformly bounded in L∞([0,+∞[, L2(T)). For large classes of
“nonanalytic” initial data (h, k) ∈ L2, with ‖h‖L2 < 1, we show that the limits
are u = h, v = k, constant in time, remaining in the elliptic region. The limit
equations, ∂tu = ∂tv = 0, have little to see with the original ones. This indicates
that the answers to the questions above might be very delicate.

Now we review the results of Sections 2 to 4. To fix a framework, we consider
first order square systems

(1.7) ∂tu = F (t, x, u, ∂xu) , u|t=0 = h .

where F is a smooth function of (t, x, u, v) ∈ R×Rd ×RN × (RN )d. The principal
symbol of the equation reads

(1.8) τ Id− ξ · ∂vF (t, x, u, v) .

Hyperbolicity means that all the eigenvalues of ∂vF are real. We consider the local
Cauchy problem (1.7) near (0, x) and a given base point (u, v), assuming that the
initial data satisfy

(1.9) h(x) = u , ∂xh(x) = v.

The results in Sections 2 to 4 illustrate the idea that if ∂vF (0, x, u, v) has a non real
eigenvalue, then the Cauchy problem (1.7) (1.9) for classical solutions is ill-posed.

Well posedness means first solvability. Hadamard’s counterexamples (see the
example (1.1) above) prove that analyticity type conditions on the data are neces-
sary for the existence of solutions of the elliptic Cauchy problem. In the same vein,
consider the equation1:

(1.10) (∂x + i∂y)u = u2 , x > 0, u|x=0 = h ,

1This explicit elementary example was suggested by Nicolas Lerner.
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with h(0) 6= 0. Any C0 solution on {x ≥ 0} near the origin is C1, does not vanish
and 1/u satisfies the Cauchy-Riemann equation. (∂x + i∂y)(1/u) = 0 . Therefore,
1/h is the trace of an holomorphic function in {x > 0}, implying that necessarily
1/h is microlocally analytic in the direction +1 at the origin. In particular, if h is
real valued, h must be real analytic near the origin.

In Section 2, we extend this analysis to first order scalar complex equations.
For such equations, is is proved in [11] that the existence of solutions for all complex
data close to a given h, implies that the system must be semilinear and hyperbolic.
We give a more precise result, showing that, in the non hyperbolic case, microlocal
analyticity conditions on the initial data are necessary for the existence of classical
solutions, hence that the Cauchy problem has no classical solution for most initial
data. The proof is based on the analysis of [19] (see also [2]), which provides
approximate integral representation of the C1 or C2 solutions. Taking real and
imaginary parts, this provides examples of 2×2 systems where the Cauchy problem
has no classical solutions.

This analysis does not extend to general systems: the representation and ap-
proximation theorems valid in the scalar case have no analogue; the local uniqueness
of the Cauchy problem may be false ([20]); there are no microlocal analytic regular-
ity theorem at elliptic directions for C1 or C2 solutions. However, there are results
about Hs′ microlocal regularity for Hs solutions when s′ ≤ 2s − s0 (see Bony [4]
and Sablé-Tougeron [23]). In Section 4, we show that if ∂vF (0, x, u, v) has a nonreal
eigenvalue, then for all Hs local solution, with s > d

2 + 1, the polarized Hs′ wave
front set of the initial data is not arbitrary, when s′ < 2s − d

2 − 1. In particular,
for most data in Hs′ , the Cauchy problem has no local Hs solution. Note that s′

can be taken larger than s, and for any “loss” k, it applies to s′ = s + k, if s is
large enough. The restriction s > d

2 + 1 is natural in order to have C1 classical
solution. The restriction s′ < 2s− d− 1/2 is forced by the Theorem of microlocal
ellipticity for nonlinear equations (see [4] [23]). Under additional assumptions on
the equations, one can show that for arbitrary large s′ there are Hs′ initial data
such that the Cauchy problem has no local Hs solution.

For linear equations, standard functional analysis results convert well-posedness
into estimates, and necessary conditions are found by contradicting the estimates.
Solvability implies continuous dependence on the data (see also F.John [14] for
general remarks on this notion). For nonlinear equations, there are no such abstract
argument and it is reasonable to include the continuous dependence in the definition
of the well posedness. In addition, because local uniqueness is not guaranteed, we
also include it in the following definition of Hölder continuous solvability. In the
next statement, Br denotes the ball {|x−x| < r} and Ωr,δ the lens shaped domain

Ωr,δ =
{
(t, x) : 0 < t , |x− x|2 + δt < r2

}
Definition 1.1. We say that the Cauchy problem (1.7) is Hölder well posed

on Hσ, if there are constants r0 > r1 > 0, δ > 0, c > 0, C and α ∈]0, 1], such
that for all h ∈ Hσ(Br0) satisfying ‖h− u− x · v‖Hσ(Br0 ) ≤ c and all r ∈]0, r1], the
Cauchy problem (1.7) has a unique solution in C1(Ωr,δ), with norm bounded by C.
Morever, given h1 and h2, the corresponding solutions satisfy for all r < r1:

(1.11) ‖u1 − u2‖L∞(Ωr,δ) ≤ C‖h1 − h2‖α
Hσ(Br0 )
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In Section 3, we show that if F is real analytic and if ∂vF (0, x0, u0, v0) has a
nonreal eigenvalue, then the Cauchy problem (1.7) is not Hölder well posed on Hσ,
for all σ.

Note that the definition above differs strongly from the notion of stable solution
introduced in [27] in the sense that we do not allow perturbations of the equations,
while the stability used in [27] is related to the solvability of

(1.12) ∂tu + F (t, x, u, ∂xu) = f , u|t=0 = h + h′.

for all f and h′ small. The analysis is based on the construction of asymptotic solu-
tions using WKB or geometric optics expansions. But they are not exact solutions,
yielding error terms f which are precisely the source terms chosen in [27]. In this
analysis, the choice of f is dictated by the choice of h. It is interesting and much
stronger to consider exact solutions of (1.7) (as in [28]), or to be able to choose
h and f independently. In Section 3, we construct exact solutions close to the
approximate solutions, by Cauchy-Kowalewski type arguments. This is where we
use the analyticity of the equation. In this respect, the results of this section give a
detailed account of the Hs instability of analytic solutions when hyperbolicity fails.

2. Necessary conditions for scalar complex equations

To simplify the discussion, consider a quasilinear scalar equation

(2.1) ∂tu +
d∑

j=1

aj(t, x, u)∂xj u + b(t, x, u) = 0 , u|t=0 = h .

where the aj are holomorphic functions of (t, x, u) on a neighborhood of (0, x, u).
The Cauchy data h is always assumed to satisfy h(x) = u. The nonhyperbolicity
condition reads

(2.2) Im a(0, x, u) 6= 0 .

Theorem 2.1. If the Cauchy problem (2.1) has a C1 solution for t ≥ 0 on a
neighborhood of (0, x), then for all ξ ∈ Rd such that ξ · Im a(0, x, u) > 0, (x, ξ) does
not belong to the analytic wave front set of h.

For the definition of the analytic wave front set, we refer to [24] or [10]. In
particular, it contains the C∞ wave front set and the theorems implies that if
the local Cauchy problem has a C1 solution, then h must be C∞ at (x, ξ) if
ξ · Im a(0, x, u) > 0. This means that for all C∞ cut-off function χ supported
in a sufficiently small neighborhood of x, the Fourier transform of χh is rapidly
decreasing in any small conical neighborhood of ξ. For “most” functions h in Hs,
(x, ξ) belongs to the the C∞ wave front set. Theorem 2.1 implies that for most h,
the Cauchy problem (2.1) has no C1 solution.

Example 2.2. Taking real and imaginary parts of the unknowns yields nonex-
istence theorem for 2 × 2 real systems. With αj(u, v) = Re aj(u + iv), βj(u, v) =
Im aj(u + iv), the equation (2.1) with b = 0 is equivalent to:

(2.3)

 ∂tu +
∑

∂xj
αj(u, v) = 0 , u|t=0 = h,

∂tv +
∑

∂xj
βj(u, v) = 0 , v|t=0 = k.
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Suppose that β = β(h(x), k(x)) 6= 0 and choose ξ such that ξ · β > 0. If h + ik is
not microlocally analytic at (x, ξ), then the Cauchy problem (2.3) has no local C1

solution near (0, x).
For instance, this applies to the the system:

(2.4)
{

∂tu + u∂xu− v∂xv + ∂yu = 0 , u|t=0 = h,

∂tv + v∂xu + u∂xv + ∂yv = 0 , v|t=0 = k,

when k(x) 6= 0. For functions independent of y, or equivalently dropping the ∂y,
the system is elliptic for v 6= 0 and Hadamard’s argument applies. The example
(2.4) shows that Theorem 2.1 also applies to nonelliptic systems.

Proof of Theorem 2.1. a) The complex characteristic curves are integral
curves of the holomorphic vector field:

L = ∂t +
∑

aj(t, x, u)∂xj − b(t, x, u)∂u .

They are given by Zj(t, x, u) = cj , U(t, x, u) = c0, where Zj and U are local holo-
morphic solutions of {LZj = 0 , Zj |t=0 = xj ,

LU = 0 , U |t=0 = u .

We also introduce the additional variables v = (v1, . . . , vd), which are placeholders
for ∂xj

u, and the function

J(t, x, u, v) := det
(∂Zj(t, x, u)

∂xk
+ vk

∂Zj(t, x, u)
∂u

)
.

Let G(t, x, u) be a holomorphic solution of LG = 0 on a complex neighborhood
O of (0, x, u). Suppose that u is C1 solution of (2.1) on [0, T ] × Ω such that
(t, x, u(t, x)) ∈ O for all (t, x) ∈ [0, T ] × Ω. Then, by Lemma 2.2.2 of [19], there
holds for all s ∈ [0, T ] and χ ∈ C1

0 (Ω):

(2.5)

∫
Ω

G(0, x, h(x))χ(x) dx =
∫

Ω

G(s, x, u(s, x))χ(x) J̃(t, x) dx

−
∫

[0,s]×Ω

∑
j

∂xj χ(x) aj(t, x, u(t, x))G(t, x, u(t, x)) J̃(t, x) dtdx

with J̃(t, x) := J(t, x, u(t, x), ∂xu(t, x)).

b) We use (2.5) with

(2.6) Gλ,y(t, x, u) :=
(λ

π

)d/2

U(t, x, u) e−λq(Z(t,x,u)−y) .

where q(y) = 〈Qy, y〉 is a quadratic form, with real coefficients, positive definite on
Rd.

The Gλ,y are defined and holomorphic for |t| ≤ T , |x− x| ≤ r, |u− u| ≤ ρ, for
some T > 0, r > 0 and ρ > 0. We can also assume that the given solution u of
(2.1) is defined and C1 for real (t, x) ∈ [0, T ]×Ω where Ω is the ball {|x− x| < r}
and that |u(t, x) − u| < ρ on this domain. We fix χ ∈ C∞

0 (Ω) equal to 1 on a
smaller neighborhood of x. Because Z(t, x, u) = x + O

(
|t|)

)
, ReZ(t, x, u(t, x)) 6= 0

for t small and x in the support of dχ. Because Z(0, x, u)− x = x− x 6= 0 on the
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support of dχ, there are Ω0 ⊂ Ω, real neighborhood of x, ε > 0, δ > 0 and T0 > 0,
such that

(2.7)
∀y ∈ Ω0 + i[−δ, δ]d, ∀t ∈ [0, T0], ∀x ∈ suppdχ :

Req(Z(t, x, u(t, x))− y) ≥ 2ε > 0.

Consider

(2.8) Th(y, λ) :=
(λ

π

)d/2
∫

Ω

e−λq(x−y) h(x) χ(x) dx.

We apply (2.5) to G = Gλ,y given by (2.6). The estimate (2.7) shows that the
second integral in the right hand side is O(e−ελ). Therefore, there is C such that
for all y ∈ Ω0 + i[−δ, δ] and t ∈ [0, T0],

(2.9)

∣∣∣Th(y, λ)−
(λ

π

)d/2
∫

Ω

Ũ(t, x)e−λq( eZ(t,x)−y)χ(x)J̃(t, x)dx
∣∣∣

≤ Ce−ελ

where Z̃(t, x) := Z(t, x, u(t, x)) and we use similar notations for Ũ and J̃ (see the
estimate (4.3.1) in [19]).

c) We now make use of Assumption (2.2). Shrinking Ω if necessary, in addition
to the previous requirements, we can further assume that

(2.10) ∀x ∈ Ω : |Im(a(0, x, h(x))− a| ≤ ρ,

where a = Im(a(0, x, h(x)) and ρ > 0 to be chosen later on. We use the estimate
(2.9) with

(2.11) y = x− itIma + y′ , y′ ∈ Cd, |y′| ≤ ρt.

Because Z(t, x, u) = x− ta(0, x, u) + O(t2) and u ∈ C1([0, T ]× Ω), there holds:

Im
(
Z̃(t, x)− y

)
= −Imy′ − t

(
Ima(0, x, h(x))− a

)
+ O(t2) .

Thus, there is T1 > 0 such that for t ∈ [0, T1]:

|Im
(
Z̃(t, x)− y

)
| ≤ 3ρt.

Hence
q
(
Im

(
Z̃(t, x)− y

))
| ≤ 9‖Q‖ρ2t2.

On the other hand: Imy = ta−Imy′ and therefore if ρ is small enough and |y′| ≤ ρt,

q(Imy) ≥ t2q(a)/2.

Hence, if ρ small enough, for t ∈]0, T1], y satisfying (2.11) and x ∈ Ω there holds:

(2.12) −Req(Z̃(t, x)− y) ≤ q
(
Im(Z̃(t, x)− y)

)
≤ q

(
Imy

)
− t2

4
q(a)

We now fix t > 0, t ≤ min(T0, T1), such that y ∈ Ω0 + i[−δ, δ]d for all y satisfying
(2.11). Thus, the estimates (2.9) and (2.12) imply that there are ε1 > 0 and C > 0
such that for all y in the complex ball of radius ρt centered at x − ita and for all
λ ≥ 1, there holds

(2.13) |Th(y, λ)| ≤ Ceλ(q(Imy)−ε1) .

Since the quadratic form q is definite positive on Rd, for y ∈ Cd, the unique real
critical point of x 7→ Req(y−x) is x = Rey and at this point −∂xq(y−x) is equal to
−QImy. By Proposition 7.2 of Sjöstrand [24] (see also [5], section I.2), the estimate
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(2.13) on a neighborhood of x − ita implies that (x, tQa) does not belong to the
analytic wave front set of h.

d) For all ξ such that ξ · a > 0, there is a definite positive real symmetric Q
such that Qa = ξ. We apply the previous step to q(x) = 〈Qx, x〉 which implies that
there is t > 0 such that (x, tξ) does not belong to the analytic wave front set of h.
Since the wave front is conic in ξ, the theorem is proved. �

3. Hadamard’s instabilities in Sobolev spaces

We consider systems, and for simplicity we state the results for quasi-linear
systems:

(3.1) ∂tu =
d∑

j=1

Aj(t, x, u)∂xj u + F (t, x, u), u|t=0 = h.

We assume that the Aj and F are real valued and real analytic near (0, x, u) ∈
R× Rd × RN . We want to compare two solutions of (3.1) with initial data h1 and
h2. We can choose h1 to be analytic, for instance h1(x) = u, and find an analytic
local solution u1 by Cauchy-Kowalewski theorem. Changing u to u−u1, we get an
equation similar to (3.1), with the additional information that 0 is a solution, that
is:

(3.2) F (t, x, 0) = 0 or F (t, x, u) = F1(t, x, u)u.

We look for solutions of (3.1) in lens shaped domains

(3.3) Ωr,δ =
{
(t, x) : t ≥ 0, |x− x|2 + δt < r2

}
,

assuming that the equation is not hyperbolic at (0, x, 0):

Assumption 3.1. There is ξ ∈ Rd such that the matrix A :=
∑

ξ
j
Aj(0, x, 0)

has a nonreal eigenvalue.

The next theorem shows that the Cauchy problem is not Hölder well posed.
We denote by Br the ball of radius r centered at x.

Theorem 3.2. For all m, α ∈]0, 1], r0 > 0 and δ > 0, there are rε → 0,
families of initial data hε ∈ Hm(Br0) and solutions uε of (3.1) on Ωrε,δ, such that

(3.4) lim
ε→0

‖uε‖L2(Ωrε,δ)/‖hε‖α
Hm(Br0 ) = +∞.

Let λ0 denote an eigenvalue of ξ · A(0, x, 0) such that γ0 = |Imλ0| > 0 is
maximum. Let r denote an eigenvector associated to λ0. We consider initial data

(3.5) hε(x) := εM Re
(
eix·ξ/εr

)
.

We look for solutions

(3.6) uε(t, x) = u(t, x, t/ε, x · ξ/ε)

where u(t, x, s, θ) is 2π periodic in θ. For uε to be solution of the equation, it is
sufficient that u solves an equation of the form

(3.7) ∂su = A(y, u)∂θu + ε
(
B(y, u)∂yu + F (y, u)

)
,

with y = (t, x − x) and A(y, u) =
∑

ξ
j
Aj(t, x, u). In particular A(0, 0) = A and

the equation reads

(3.8) (∂s −A∂θ)u = F(u) := (A−A)∂θu + ε
(
B∂yu + F (y, u)

)
.
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The solution of the Cauchy problem is given by

(3.9) u = esA∂θh + T (u) , T (u)(s) :=
∫ s

0

e(s−s′)A∂θF(u(s′))ds′.

We solve this equation following the method explained in Wagschall [26] (see also
the references therein).

Function spaces and existence of solutions. Given power series u =
∑

uαyα and
Φ =

∑
Φαyα, we say that u � Φ when |uα| ≤ Φα for all α. Consider the series

φ(z) = c0

+∞∑
n=0

zn

n2 + 1

where c0 is taken such that φ2 � φ (cf [17], [26]). For y ∈ R1+d, we denote by
Y =

∑
yj , and we will consider power series u(y) such that there is a constant C

such that
u(y) � Cφ(RY + R0).

R > 0 and R0 ∈]0, 1] are given parameters. These power series are convergent for
R

∑
|yj |+ R0 ≤ 1.

Next we introduce the weight function on Z:

〈n〉 = |n| when n 6= 0, 〈0〉 = 2.

Note that for all p and q in Z:

(3.10) 〈p + q〉 ≤ 〈p〉+ 〈q〉.
Given positive parameters γ, κ, ε, R and ρ, we consider formal Fourier series

(3.11) u(s, θ, y) =
+∞∑
−∞

un(s, y)einθ

where the un(s, y) are power series in y, with coefficient C∞ in s ∈ [0, s], where

(3.12) s := min{κ/γ, 1/ερ}.
We denote by E the space of u such that there is a constant C such that for all
s ∈ [0, s]:

(3.13) un(s, y) � C
c1

n2 + 1
e(γs−κ)〈n〉φ(RY + ερs) .

The number c1 is chosen such that∑
p+q=n

c1

p2 + 1
c1

q2 + 1
≤ c1

n2 + 1
.

Elements u ∈ E define smooth functions on the domain

(3.14)
∆ =

{
(s, θ, y) : 0 ≤ s <s,

θ ∈ T, R
∑

|yj |+ ερs < 1
}
.

The best constant C in (3.13) defines a norm |||u||| on E. Equipped with this norm,
E is a Banach space. The choice of c0 and c1 and (3.10) imply that E is a Banach
algebra:

(3.15) |||uv||| ≤ |||u||| |||v|||.
When u is valued in CN , we denote by |||u||| the sup of the norms of the components
of u.
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Lemma 3.3. If F (y, u) is holomorphic on a neighborhood of the origin in C1+d×
CN , there are constants R0, C0 and a0 such that for all parameters γ, κ, ε, R ≥ R0

and ρ, the mapping u 7→ F (·,u) maps the ball of radius a0 of E into the ball of radius
C0 in E.

Proof. There are constants R0, C and a such that

F (y, u) � Cφ(R0Y )
N∏

j=1

1
a− uj

,

in the sense of power series in (y, u). Substituting u = u(y) in the expansion, using
(3.15) as well as the identities φ2 � φ and φ(R0Y ) � φ(RY + ερs), yields for
|||u||| < a:

|||F (·,u)||| ≤ C
1

(a− |||u|||)N
.

�

We further denote by |||·|||′ the norm obtained when φ is replaced by its derivative
φ′ in (3.13), and by ||| · |||1 the norm obtained when c1/(n2 + 1) is replaced by
c1/

√
n2 + 1. In particular, there holds:

|||∂yu|||′ ≤ R|||u|||,
|||∂θu|||1 ≤ |||u|||.

Moreover, differentiating the estimate φ2 � φ implies that 2φφ′ � φ′, thus

2|||uv|||′ ≤ |||u||| |||v|||′.

Similarly, there is c2 independent of all the parameters such that:

|||uv|||1 ≤ c2|||u||| |||v|||1.

Factoring out y and u in A(y, u)−A and u in F (y, u), using that y � (2/c0R)φ(RY ) �
(2c0/R)φ(RY +ερs) and that φ′ � φ, we deduce from Lemma 3.3 and the estimates
above that for R ≥ R0 and |||u||| ≤ a0:

|||(A(y, u)−A)∂θu|||1 ≤ C
(
R−1 + |||u|||

)
|||u|||,(3.16)

|||B(y, u)∂yu + F (y, u)|||′ ≤ CR|||u|||.(3.17)

Next, we investigate the action of the operator

v(s) = I(f)(s) :=
∫ s

0

e(s−s′)A∂θ f(s′)ds′ .

On each Fourier component, it reads

vn(s, y) =
∫ s

0

ein(s−s′)Afn(s′, y)ds′.

By the definition of γ0, for all γ > γ0 there is a constant Kγ such that:

(3.18) ∀n ∈ Z, ∀s ∈ [0,+∞[: einsA ≤ Kγe|n|γs.

By definition of the norm |||f|||1, there holds:

fn(s′, y) � c1√
n2 + 1

|||f|||1e(s′γ−κ)〈n〉φ(RY + ερs′).
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Using that for s′ ≤ s, φ(RY + ερs′) � φ(RY + ερs), and integrating term by term
the power series in y, implies that

vn(s, y) � c1Kγ1√
n2 + 1

|||f|||1φ(RY + ερs)
∫ s

0

e|n|γ1(s−s′)e(s′γ−κ)〈n〉ds′

For γ > γ1 > γ0, the last integral is estimated by

e(sγ−κ)〈n〉
∫ s

0

es′(|n|γ1−〈n〉γ)ds′ ≤ C

(γ − γ1)〈n〉
e(sγ−κ)〈n〉 .

Choosing γ1 = (γ + γ0)/2, this shows that for all γ > γ0, there is a constant Kγ

such that
|||I(f)||| ≤ Kγ |||f|||1.

Similarly, there holds

vn(s, y) � Kγ

n2 + 1
|||f|||′e(sγ−κ)〈n〉

∫ s

0

eγ(s−s′)(|n|−〈n〉)φ′(RY + ερs′)ds′.

Since |n| ≤ 〈n〉, we can ignore the exponential in the integral. Moreover,

ερ

∫ s

0

φ′(RY + ερs′)ds′ � φ(RY + ερs)− φ(RY ) � φ(RY + ερs).

Therefore,

|||I(f)||| ≤ Kγ

ερ
|||f|||′.

Using (3.16) (3.17), these inequalities yield estimates for the operator T (u) defined
in (3.10). Similarly, one obtains estimates for increments T (u)− T (v):

Proposition 3.4. There are R0 and a0 and for all γ > γ0 there is a constant
Kγ , such that for all R ≥ R0, all κ > 0, all ρ > 0 and all ε ∈]0, 1], there holds for
all u and v in E such that |||u||| ≤ a0 and |||v||| ≤ a0:

|||T (u)||| ≤ Kγ

(
R−1 + 2|||u|||+ Rρ−1

)
|||u|||,

|||T (u)− T (v)||| ≤ Kγ

(
R−1 + |||u|||+ |||v|||+ Rρ−1

)
|||u− v|||

Corollary 3.5. With notations as above, if

Kγ

(
R−1 + 4a + Rρ−1

)
<

1
2
,

then for all f ∈ E with |||f||| ≤ a, the equation

u = f + T (u)

has a unique solution u ∈ E such that |||u||| ≤ 2a. Moreover,

|||u− f||| ≤ Kγ

(
R−1 + 4|||f|||+ Rρ−1

)
|||f|||.

Application. In accordance with (3.5), we solve the Cauchy problem (3.7) with
initial data

(3.19) u|s=0 = h := εMRe(eiθr).

Let

(3.20) f = esA∂θh = εMRe
(
eisλ0+iθr

)
.

We consider only small values of the parameter ε, and we use the notation εM =
e−κ1 , that is κ1 = M | ln ε|.
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Consider a small parameter β > 0, to be chosen later on, such that βM < 1/2.
We fix

(3.21)
{

γ = (1 + β)γ0, κ = (1− β)κ1,
R = eβκ1 = ε−βM , ρ = R2 = ε−2βM .

Introduce σ = (1− β)/(1 + β) < 1. For ε small enough, κ/γ = σκ1/γ0 ≤ (ερ)−1 =
ε−1+2βM , thus, the end point (3.12) is s = σκ1/γ0.

Proposition 3.6. There is a constant c > 0 such that for all M ≥ 1 and
β ∈]0, 1/2M [, there is ε0 such that for all ε ∈]0, ε0], and parameters as in (3.21),
the Cauchy problem (3.7), (3.19) has a solution u ∈ E, and

(3.22) ∀(s, θ, y) ∈ ∆ : |u(s, θ, y)| ≥ cesγ0−κ1 .

Proof. For ε small enough, there holds

|||f||| = 2
c1c0

|r| max
s∈[0,s[

eκ−κ1+s(γ0−γ) ≤ Ce−βκ1

for some constant C independent of ε and β. By Corollary 3.5, there is K, depending
only on β, such that for KεβM < 1, the problem has a unique solution u ∈ E and

|||u− f||| ≤ Ke−2βκ1 .

For (s, θ, y) ∈ ∆, there holds R
∑
|yj |+ ερs ≤ 1. Since the series φ(z) converges at

z = 1,
|(u− f)(s, θ, y)| ≤ Ke−2βκ1

∑
n∈Z

c1

n2 + 1
φ(1)e(sγ−κ)〈n〉.

Since sγ − κ ≤ 0 and 〈n〉 ≥ 1, this implies that there is K ′ such that

|(u− f)(s, θ, y)| ≤ K ′e−2βκ1e(sγ−κ)

≤ K ′esγ0−κ1e−βκ1esβγ0 = K ′esγ0−κ1e−β(1−σ)κ1 .

Because r and r are eigenvectors associated to distinct eigenvalues λ0 and λ0, they
are linearly independent and there is c > 0 such that

|f(s, θ)| ≥ 2cesγ0−κ1 .

Since σ < 1, the two estimates above imply that for ε small enough (3.22) is
satisfied. �

Proof of Theorem 3.2. The integer m ≥ 1 and the Hölder exponent α ∈
]0, 1] are given, as well as the parameter δ > 0. We fix M large enough, such that

(3.23) α′ :=
M −m

M
α− 1 + d

2M
> 0.

Note that α′ < α ≤ 1. Next we choose β > 0 such that

(3.24) 1− α′ < σ :=
1− β

1 + β
and 2Mβ < 1

and we fix the parameters γ, κ, R and ρ as in (3.21). By Proposition 3.6, for ε small
enough, we have a solution u of (3.7) (3.19) on the domain ∆ defined in (3.14).
Thus

uε(t, x) = u(
t

ε
,
x · ξ
ε

, t, y)
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is a solution of (3.1) (3.5) on the domain

∆̃ε =
{
(t, x) : 0 ≤ t < εs,

∑
|xj |+ t + tε−βM < εβM

}
.

Since tε := εs = σγ−1
0 Mε| ln ε| and 2βM < 1, for ε small enough, this domain

contains
∆ε =

{
(t, x) : 0 ≤ t < tε, |x| < cεβM

}
with c = 1/(2

√
d). For ε small, it also contains the lens shaped domain Ωrε,δ, with

(3.25) rε = (tε/δ)1/2.

Moreover, for ε small, Ωrε,δ contains the cube{
tε − ε ≤ t ≤ tε, |x− x| ≤ ε

}
.

Thus, Proposition 3.6 implies that there is c > 0 such that for all ε small enough:

‖uε‖L2(Ωrε,δ) ≥ cesγ0−κ1ε1+d = cεM(1−σ)+(1+d)/2.

On the other hand, the Sobolev norm of the initial data on a fixed ball Br0

centered at x is of order:

‖hκ,ε‖Hm(Br0 ) ≤ CεM−m .

Thus, using the notation (3.23),

(3.26) ‖uε‖L2(Ωrε,δ)/‖hε‖α
Hm(Br0 ) ≥

c

Cα
εM(1−σ−α′)

which, by (3.24), tends to +∞ as ε tends to zero. �

4. Solvability in Sobolev spaces

In this section, we consider the fully nonlinear Cauchy problem in R1+d:

(4.1)

{
∂tu = F (t, x, u, ∂x1u, . . . , ∂xd

u), t ≥ 0
u|t=0 = h,

near (0, x). We assume that F is C∞ in a neighborhood of p := (0, x, u, v) in
R× Rd × RN × (RN )d. The initial data h is smooth and satisfies

(4.2) h(x) = u, ∂xh(x) = v.

Assumption 4.1. There is ξ ∈ Rd such that the matrix ξ·∂vF (p) =
∑

ξ
j
∂vj F (p)

has nonreal eigenvalues.

Because ξ · ∂vF is real, this implies that there is at least one eigenvalue with
positive imaginary part. Denote by Π the spectral projector of ξ ·∂vF (p) associated
to eigenvalues in {Imµ > 0}.

Theorem 4.2. Let s > d/2 + 1 and s ≤ s′ < 2s − 1 − d/2. Suppose that the
Cauchy data h satisfies (4.2) and

(4.3) (Id−Π)h ∈ Hs′ near x.

If the Cauchy problem (4.1) has a solution in C0([0, T ];Hs(ω)), then

(4.4) (x, ξ) /∈ WFHs′ (Πh).
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In this statement, WFHs′ denotes the Hs′ wave front set. In the spirit of
Hadamard’s argument and of Theorem 2.1, Theorem 4.2 shows that smoothness
of part of the Cauchy data, here Πh, implies smoothness of the other components.
For all s′′ ∈ [s, s′[, there are many Cauchy data h such that

(4.5) h ∈ Hs′′ , (Id−Π)h ∈ Hs′ , (x, ξ) ∈ WFHs′ (Πh).

For such data, all T > 0 and all neighborhood ω of x, Theorem 4.2 implies that (4.1)
has no local solution in C0([0, T ];Hs(ω)). This implies that the Cauchy problem is
not locally well posed from Hs′′ to C0(Hs) for all s′′ = 2s− 1− d/2− ε > s when
s > 1 + d/2.

The proof is an application of the results of Monique Sablé-Tougeron [23] about
the propagation of microlocal singularities for nonlinear boundary value problems.
For the convenience of the reader, we sketch a proof within the class of spaces
C0(Hs) instead of the class Hs,s′(R1+d) used in [23].

Proof. Decreasing slightly s, we can assume that ρ := s−1−d/2 /∈ N. Suppose
that h ∈ Hs(Rd) satisfies (4.2) and that u ∈ C0([0, T ];Hs(ω)) is a solution of (4.1).

a) The product is continuous from Hσ−α×Hσ−β into Hσ−α−β , when σ > d/2,
α ≥ 0, β ≥ 0 and α + β ≤ 2σ. By induction on k, (4.1) implies that

∂k
t u ∈ C0([0;T ]Hs−k(ω)) , k ∈ {0, . . . , [2s− 2]}

Therefore, for all smooth function G,

∂k
t G( · , · , u, ∂xu) ∈ C0(Hs−1−k) , k ∈ {0, . . . , [2s− 2]} .

Since, ρ = 2s− 2− (s− 1+d/2) < 2s− 2−d this property is true up to k = [ρ]+1.
Denoting by Cα(Rd) the usual Hölder space for α ∈ R\Z, this implies that g =
G(·, u(·), ∂xu(·)) satisfies

(4.6) ∂k
t g ∈ C0([0, T ];Cρ−k(ω)) , k ∈ {0, . . . , [ρ] + 1} .

For ρ > 0, ρ /∈ N, we denote by C̃ρ the set of functions g which satisfy this property.

b) Localizing near (0, x), and using Bony’s paralinearization theorem in x ([4],
[23]), (4.1) implies that ũ = χ1u satisfies

(4.7) ∂tũ − TA(t, x, ∂x) ũ = f,

where χ1 ∈ C∞
0 (ω) is equal to one near x and f ∈ C0([0, T ];Hs−1+ρ(ω′)) for

some smaller neighborhood ω′ of x. In this equation, TA denotes a paradifferential
operator in x of symbol

(4.8) A(t, x, ξ) :=
d∑

j=1

ξ · ∂vF (p(t, x)) + ∂uFp(t, x)

with p(t, x) = (t, x, u(t, x), ∂xu(t, x)). The coefficients belong to C̃ρ.

c) We perform a microlocal block diagonalization of A. Near (0, x, ξ), there are
symbols

P =
[ρ]∑

j=0

Pj , D =
[ρ]∑

j=0

Dj

such that

(4.9) P]A− ∂t(P − P[ρ]) = D]P .
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The terms Pj(t, x, ξ) [resp. Dj ] are C∞ and homogeneous of degree −j [resp. 1− j]
in ξ and C̃ρ−j in (t, x). In (4.9), ] denotes the composition of symbols (cf [4]):( ∑

j≤[ρ]

Pj

)
]
( ∑

j≤[ρ]

Qj

)
:=

∑
l+m+|α|≤[ρ]

1
α!

(∂α
ξ Pl) ((−i∂x)αQm)

Moreover, D is block diagonal and there is one block DI associated to the spectrum
of A(0, x, ξ) in {Imµ > 0}. In particular

(4.10) Im spec(DI
0(0, x, ξ)) > 0

The construction is classical. The principal terms P0 and D0 are chosen such that

P0A0(P0)−1 = D0,

where A0 = ξ · ∂vF is the principal symbol of A. Next, one proceeds by induction
on j, choosing Pj and Dj such that the terms of degree 1 − j in the two sides of
(4.9) are equal. In particular, (4.9) is an identity between symbols of degree 1, like
D, and the degree of the last term, like D[ρ] is 1− [ρ]. This is why, in ∂tP , we can
ignore the last term which would be ∂tP[ρ], of degree −[ρ].

In this computation, we only use symbols with positive degrees of smoothness
ρ− j, with j ≤ [ρ]. However, the term ∂tP[ρ] which will appear in the remainders,
requires one more derivative. This is why we took k ≤ [ρ] + 1 in (4.6).

d) Suppose that χ(t, x, ξ) is a microlocal cut-off function supported in a conical
neighborhood of (0, x, ξ) where (4.9) is satisfied. The equation (4.7) implies that

(∂t − TχD)TχP ũ = Tχ2P (∂t − TAũ) + Tχ∂tP[ρ] ũ + TQũ + Ru

where R is a remainder in the [ρ]-calculus x. If ρ < 1 then Q = 0 and if ρ > 1,
Q is a symbol of degree zero, (ρ − 1) smooth in x and equal to zero near (0, x, ξ).
In particular, near (0, x), Ru ∈ C0(Hs−1+ρ) and TQu(t, ·) ∈ Hs−1+ρ) near (x, ξ)),
uniformly in t. Moreover, since ∂tP[ρ] is of degree −[ρ] with smoothness Cρ−[ρ]−1

in x, the operator Tχ∂tP[ρ] is of order −[ρ] + (1− ρ + [ρ]) = 1− ρ. Therefore, we see
that

w := TχP ũ

satisfies

(4.11) ∂tw − TχDw ∈ C0(Hs−1+ρ) , near (0, x, ξ) .

e) D is block diagonal. Denote by wI the components of w which correspond
to the bloc DI . The equation (4.11) implies that

(4.12) ∂twI − TχDI w ∈ C0(Hs−1+ρ) , near (0, x, ξ) .

By (4.10), this problem is elliptic and the backward Cauchy problem is well posed
([23]). This implies that w ∈ C0(Hs+ρ) near (0, x, ξ). By construction, wI = TΠu

where Π =
∑

j≤[ρ] Πj , with Πj of degree −j in ξ and C̃ρ−j in (t, x). In particular,

(4.13) wI |t=0 = TΠ|t=0h ∈ Hs+ρ , near (x, ξ) .

For (t, x, ξ) close to (0, x, ξ), the principal symbol Π0(t, x, ξ) is the spectral projector
of ξ · ∂vF (t, x, u(t, x), ∂xu(t, x)) corresponding to eigenvalues in {Imµ > 0}. In
particular

(4.14) Π := Π0(0, x, ξ).
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Since the system (Π0, Id−Π) is elliptic near (x, ξ), there are symbols U =
∑

j≤[ρ] Uj

and Vj =
∑

j≤[ρ] of degree zero such that

Π = U ] Π|t=0 + V ] (Id−Π), near (x, ξ) .

This implies that for χ1 supported in a sufficiently small conical neighborhood of
(x, ξ)

(4.15) χ1(x,Dx)Π = TUTΠ|t=0 + TV (Id−Π) + R

with R of order −ρ.
Suppose that the initial data satisfies

(4.16) h ∈ Hs(Rd) , (Id−Π)h ∈ Hs+ρ(Rd).

Then (4.15) and (4.13) imply that χ1(x,Dx)Πh ∈ Hs+ρ, that is Πh ∈ Hs+ρ near
(x, ξ) or (x, ξ) /∈ WFHs+ρ(Πh). �

Remark 4.3. a) Note that only the condition u ∈ C0(Hs) is used to prove
(4.13).

b) The proof only relies on the ellipticity ∂t − TχDI
. Thus, the Sobolev spaces

Hs do not play any particular role and there are analogous results in the Hölder
spaces Cµ.

c) For semilinear equation, the critical index 1 + d/2 can be decreased to d/2
as usual. This is also the case for system of conservation laws, since we only need
to paralinearize functions of u.

One can push a little further the analysis when Assumption 4.1 is strengthened.

Assumption 4.4. The real eigenvalues of ξ · ∂vF (p(t, x)) are semi-simple and
have constant multiplicity, and there are nonreal eigenvalues.

In this case, the condition s′ < 2s− 1− d/2 in Theorem 4.2 can be relaxed.

Theorem 4.5. Under Assumption 4.4, for all σ > d/2 + 1, there are Cauchy
data h ∈ Hσ(Rd), satisfying (4.2) such that for all s > 2 + d/2, all T > 0 and
all neighborhood ω of x, the Cauchy problem (4.1) has no solution u ∈ C0([0, T ] :
Hs(ω)).

The meaning is that one can take σ very large and s very close to 2 + d/2 + 2,
so that u will be of class C2, but not much smoother, while the initial data is as
smooth as we want.

Proof. a) Suppose that u ∈ C0([0, T ];Hs(ω)) solves (4.1). We show that
u ∈ C0([0, T ′];Hs′(ω′)) for T ′ < T , ω′ ⊂⊂ ω and s′ ≤ σ such that s′ < 2s−2−d/2.
It is sufficient to prove that u ∈ C0([0, T ′];Hs′(ω′)) with s′ = min(σ, 2s− 2− d/2)
when ρ := s− 1− d/2 /∈ N.

The analogue is proved in [23], for m-th order scalar equations, when the real
roots of the principal symbol are simple. As in the proof of Theorem 4.2, near any
ξ 6= 0, there is an elliptic symbol P =

∑
j≤[ρ] such that w := TP u satisfies

∂tw − TDw ∈ C0(Hs′) , w|t=t0 ∈ Hσ near (0, x, ξ) .

The matrix D is block diagonal. By Assumption 4.4, the blocks of the principal
symbol D0 are either hyperbolic, that is of the form iλId with λ(t, x, ξ) real, or
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elliptic, meaning that the imaginary part of the eigenvalues is either positive or
negative.

Since the Cauchy data is Hσ, the equation implies that hyperbolic blocks are
microlocally Hs′ . The same result holds for negative elliptic blocks. For positive
elliptic block, we use the backward elliptic regularity, and decreasing the interval of
time, we see that the elliptic modes are C0(Hs+ρ). This shows that w ∈ C0(Hs′).
Since P is elliptic, u has the same regularity.

b) Repeating the argument in a), we deduce that any solution u ∈ C0(Hs)
with initial data in Hσ is necessarily in C0(Hσ) on a smaller domain. Therefore,
by Theorem 4.2, if

h ∈ Hσ(Rd) , (Id−Π)h ∈ Hσ′+ρ′(Rd) , Π0h /∈ Hσ′+ρ′(x, ξ) ,

the Cauchy problem has no solution in C0(Hσ′), thus no solution u ∈ C0(Hs). �

5. An example of problems with elliptic zones

In this section we consider a modified version of (1.1). This is a nonhyperbolic
form of Kirchhoff equation. The advantage is that we can make explicit computa-
tions, the drawback is that the equation is nonlocal2. The modified system reads:

(5.1)

{
∂tu = a(t)∂xv,

∂tv = |a(t)|∂xu,
with a(t) = ‖u(t)‖2

L2 − 1.

As (1.1), this system has a natural (formal) energy:

(5.2) E(t) = ‖v(t, ·)‖2
L2 +

∣∣∣‖u(t, ·)‖2
L2 − 1

∣∣∣.
If u is C1(L2), the mapping t 7→ U(t) := ‖u(t, ·)‖2

L2 is C1, thus |U(t) − 1| is
Lipschitzean and

d

dt
|U(t)− 1| = sign

(
U(t)− 1

)dU(t)
dt

a.e.

If (u, v) is in addition C0(H1), then

dE(t)
dt

= |a|
∫

v∂xudx + asign(a)
∫

u∂xvdx = |a|
∫

∂x(uv)dx = 0

In the spirit of (1.4), we considered the filtered system, with truncated fre-
quencies. Since the system has constant coefficients in x, it is sufficient to filter the
initial data:

(5.3)

{
∂tu

λ = aλ(t)∂xvλ,

∂tv
λ = |aλ(t)|∂xuλ,

{
uλ

|t=0 = 0,

vλ
|t=0 = Sλh,

with aλ(t) = ‖uλ(t)‖2
L2 − 1 and Sλ is defined on the Fourier side by:

Ŝλh(ξ) = 1{|ξ|≤λ}ĥ(ξ).

2Thierry Colin proposed the simpler example : ∂tu = −(1−‖∂xu‖2
L2 ) ∂2

xu. The system (5.1)

is first order and fits the general presentation of this paper.
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For Fourier transforms, the system reads for |ξ| ≤ λ:

(5.4)

{
∂tû

λ = iξaλ(t)v̂λ,

∂tv̂
λ = iξ|aλ(t)|ûλ,

{
ûλ

|t=0 = 0,

v̂λ
|t=0 = ĥ,

and ûλ = v̂λ = 0 for |ξ| ≥ λ. This is a system of ordinary differential equations,
and it has local solutions, C1 in time with values in L2. One can use the energy E
to prove that the solutions are global in time, but we provide a direct proof.

Suppose that (uλ, vλ) is defined and that Uλ(t) := ‖uλ(t)‖2
L2 ≤ 1 on [0, T ]. This

is certainly true for T small. Then, |aλ| = −aλ on this interval and for |ξ| ≤ λ:

(5.5)

{
uλ(t, ξ) = i sinh(ξAλ(t)

)
h(ξ)

vλ(t, ξ) = cosh(ξAλ(t)
)
h(ξ)

Aλ(t) = t−
∫ t

0

Uλ(s)ds.

Therefore
Uλ(t) =

1
2π

∫
|ξ|≤λ

sinh2(ξAλ(t)) |ĥ(ξ)|2 dξ,

and

(5.6)
dUλ

dt
= (1− Uλ(t))Iλ(t)

with
Iλ(t) =

1
2π

∫
|ξ|≤λ

ξ sinh(2ξAλ(t)) |ĥ(ξ)|2 dξ.

Since Uλ(0) = 0, the equation (5.6) implies that 1−Uλ does not vanish and remains
positive on [0, T ]. In particular Uλ(T ) < 1. By (5.5), there holds

‖vλ(t)‖2
L2 = Uλ(t) + ‖Sλh‖2

L2 ≤ 1 + ‖h‖2
L2 .

Therefore, by continuation, this implies that (5.3) has a unique global solution in
C0([0,+∞[;L2(R) and that Uλ(t) < 1 for all time. Moreover, Aλ ≥ 0 and the
integral Iλ is positive, implying that Uλ is strictly increasing.

Since Uλ is increasing, there holds A(t) ≤ t(1− Uλ(t)). Therefore

1 ≥ Uλ(t) ≥ 1
8π

∫
Cλ

(
e2|ξ|t(1−aλ(t)) − 2

)
|h(ξ)|2 dξ

≥ et(1−Uλ(t))λ

∫
Cλ

1
8π
|h(ξ)|2 dξ − 1

2
‖h‖2

L2 .

where Cλ := {λ2 ≤ |ξ| ≤ λ}. Hence

(5.7) 1− Uλ(t) ≤ 1
tλ

(µ(λ) + K) .

where K = ln(8π(1 + ‖h‖2)) and

(5.8) µ(λ) = − ln
( ∫

Cλ

|h(ξ)|2 dξ
)

The condition µ(λ) ≤ Cλ implies that h is real analytic. On the other hand, for
general non analytic functions, there holds

(5.9) lim
λ→+∞

µ(λ)
λ

= 0.

Typically, for general Hs functions which are not smoother than Hs, µ ≤ C lnλ
with C related to s.
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Proposition 5.1. Suppose that h ∈ L2(R) is not analytic in the sense that it
satisfies (5.9). Then solutions (uλ, vλ) of (5.3) converge weakly to (0, h).

This means that the weak limits satisfy

(5.10)
{

∂tu = 0, u|t=0 = 0,

∂tv = 0, v|t=0 = h.

These “limit” equations have nothing to see with the original ones (5.1), implying
that (5.3) are not approximations of (5.1).

Proof. The estimate (5.7) and (5.9) imply that for all t > 0, Uλ(t) → 1 when
λ → ∞. Since Uλ < 1 and is increasing, thins implies that Aλ(t) → 0, uniformly
on compacts subsets of ]0,+∞[. By (5.5)

ûλ(t, ξ) → 0 v̂λ(t, ξ) → (̂ξ),

uniformly on compacts of ]0,+∞[×R. �

Remark 5.2. The same analysis applies to more general initial data. One can
for instance take u(0, ·) = h 6= 0, with ‖h‖L2 < 1 and v(0, ·) = 0. This only amounts
to interchange cosh and sinh in (5.5).
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