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This is the first of a series of articles analysing high frequency solutions of of hyperbolic partial
differential equations over time scales beyond those for which the geometric optics approximation
is valid. Here and in [DR 2], we treat problems for which approximate solutions with infinitely
small residual can be constructed. Key hypotheses are that there is one fundamental linear phase,
the nonlinearities are odd, and the spectrum of the profiles or envelopes are contained in the odd
integers. In [JMR 6] problems not satisfying these hypotheses are discussed. In those more general
problems rectification effects are analysed.

§1. The origin of Schrödinger type approximations.
The standard approach to the Maxwell Equations when applied to laser propagation is to make
approximations which lead to equations of Schrödinger type. This simple fact raises at least the
following three questions.
• How is it that models with finite speed lead to approximations with infinite speed?
• Why is it that the classic model of nondispersive wave propagation, the Maxwell Equations in
vacuum, are approximated by the classic model of dispersive wave propagation?
• How come these approximations are not common within the subject of partial differential
equations where such high frequency problems are treated?

Note that any high order implicit difference approximation is dispersive and has infinite speed.
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In addition to curiosity about such questions there are physical problems where the appropriate
approximations are at present not clear. Among these we mention, Raman and Brillouin scattering
by lasers, continuum generation, and optical parametric oscillators.
Our goal is to clarify the nature and range of validity of the approximations leading to Schrödinger
like equations. The present paper addresses the simplest mathematical situations leading to such
approximations.
The basic fact is that for solutions of constant coefficient problems with linear phase and wavelength
of order ε, the behavior for times t ∼ 1/ε have an asymptotic expansion involving a slow time T = εt
and for which the evolution is described by a Schrödinger type equation. The equation arises in
an approximation in which there are three distinct scales, the wavelength ε and two longer scales
1 and 1/ε.
This is most clear in simple explicitly solvable models. Consider the initial value problem for u(t, y)
with x := (t, y) ∈ R1+d,

u := utt −∆ u :=
∂2u

∂t2
−

d∑
j=1

∂2u

∂y2
j

= 0 . (1.1)

The partial Fourier Transform of the solution is given by

û(t, η) = û(0, η) cos t|η|+ ût(0, η)
sin t|η|
|η| . (1.2)

Take initial data oscillating with wavelength of order ε and linear phase equal to y1/ε,

uε(0, y) := f(y) eiy1/ε , uεt (0, y) = 0 , f ∈ S(Rd) . (1.3)

Then
û(0, η) = f̂(η − e1/ε) , ût(0, η) = 0 , (1.4)

and the solution is the sum of two terms

uε±(t, y) :=
1

2 (2π)d/2

∫
f̂(η − e1/ε) ei(yη∓t|η|) dη . (1.5)

Initial data with ut 6= 0 lead to similar expressions with an additional complication of a factor
1/|η|. The contributions from η near 0, is O(ε∞) because of the rapid decay of factors analogous
to f(η − e1/ε).
We analyse uε+, the other being entirely analogous. For ease of reading the subscript plus is omitted.
Introduce ζ := η − e1/ε to find

uε(t, y) =
1

2 (2π)d/2

∫
f̂(ζ) eiy(e1+εζ)/ε e−it|e1+εζ|/ε dζ . (1.6)

Expanding the exponent to first order in ε yields

| e1 + εζ | = (1 + εζ1) + O( ε2 |ζ|2 ) . (1.7)

Define
B(t, y) :=

1
2 (2π)d/2

∫
f̂(ζ) ei(yζ−tζ1) dζ (1.8)
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to find
uε(t, y) = ei(y1−t)/ε B(t, y) + O(ε t) . (1.9)

Estimating as for (1.15) in the sequel yields∥∥ e−i(y1−t)/ε uε(t, y) − B(t, y)
∥∥
Hs(Rd) ≤ C εt

∥∥ f
∥∥
Hs+2(Rd) . (1.10)

The amplitude B satisfies the simple transport equation

∂B

∂t
+

∂B

∂y1
= 0 . (1.11)

The error estimates (1.9) and (1.10) show that the approximation is useful as long as t = o(1/ε).
(1.9) is the standard approximation of geometric optics.
This approximation has the following geometric interpretation. One has a superposition plane
waves ei(xω+t|ω|) with ω ∼ (1/ε, 0, . . . , 0) + O(1). Replacing ω by (1/ε, 0, . . . , 0) and |ω| by 1/ε
yields the approximation (1.10). The wave vectors make an angle of order ε with e1 so they remain
close for times small compared with 1/ε. For longer times the fact that the rays are not parallel is
important. The wave begins to spread out. Parallel rays is a reasonable approximation for times
t = o(1/ε).
The analysis just performed can be carried out without fundamental change for initial oscillations
with nonlinear phase ψ(y) and for variable coefficient operators (see [L],[R]).
The approximation (1.9) cannot remain valid for large time. The approximate solution consists of
waves rigidly moving with velocities ±e1. The amplitudes are constant along the rays y1 − t =
cst. However for ε fixed and time tending to infinity the solution of the initial value problem
decays like t−(d−1)/2. In fact for large time the solution resembles an outgoing spherical wave
a(y/|y|, |y|− t)/|y|(d−1)/2. Thus eventually the collumnation of the solution degrades and the wave
spreads over regions which grow linearly in time. These waves spread beyond the regions reached
by the rays. The penetration of waves into regions not reached by the rays of geometric optics
is called diffraction. Finding approximations for times beyond the validity of geometric optics
amounts to studying the onset of diffractive effects.
To study times and distances of order 1/ε, insert the second order Taylor expansion

∣∣∣ |e1 + εζ| −
(
1 + εζ1 +

ε2

2
(ζ2

2 + . . . + ζ2
d)
) ∣∣∣ ≤ C |εζ|3 (1.12)

into the integral (1.6) to find that

uε(t, y) = ei(y1−t)/ε 1
2 (2π)d/2

∫
f̂(ζ) eiyζ−tζ1 eiεt(ζ

2
2+...+ζ2

d)/2 dζ + O(ε2t) (1.13)

Introduce the slow variable T := εt and

B(T, t, y) :=
1

2 (2π)d/2

∫
f̂(ζ) eiyζ eitζ1 eiT (ζ2

2+...+ζ2
d)/2 dζ .

Then
uε(t, y) = ei(y1−t)/ε B(εt, t, y) + O(ε2t) (1.14)
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uniformly on R1+d. In fact,

e−i(y1−t)/ε uε(t, y)−B(εt, t, y) =
1

2 (2π)d/2

∫
f̂(ζ)

(
eit|e1+εζ|/ε − eit(1+εζ1+ε2|ζ⊥|2/2)/ε ) dζ .

Use |eiz − eiw| ≤ |z − w| together with (1.12) to show that∣∣∣ eit|e1+εζ|/ε − eit(1+εζ1+ε2|ζ⊥|2/2)/ε
∣∣∣ ≤ C t ε2 |ζ|3

and therefore ∥∥ e−i(y1−t)/ε uε(t, y)−B(εt, t, y)
∥∥
Hs(Rd) ≤ C t ε2 ‖f‖Hs+3(Rd) , (1.15)

which is a quantitative version of (1.14).
The profile B satisfies a pair of partial differential equations.

(∂t + ∂y1)B = 0, and
(
2i∂T −∆y2,...yd

)
B = 0 . (1.16)

The first is the transport equation of geometric optics and the second is the Schrödinger equation
which we were looking for. These together with the initial condition

B(0, 0, y) = f(y)

suffice to uniquely determine B. The first equation in (1.14) is solved by writing

B = A(T, y1 − t, y2, · · · , yd) (1.17)

in which case A(T, y1, y2, · · · , yd) is determined from the Schrödinger equation(
2i∂T −∆y2,...yd

)
A = 0 , A(0, y) = f(y) . (1.18)

The variable y1 enters only as a parameter.
For t = o(1/ε) one has T → 0, and setting T = 0 in (1.14) recovers the approximation of geometric
optics. Thus (1.14) matches the asymptotics for t = o(1/ε) and those for t = O(1/ε).
A typical solution of (1.18) has spatial width which grows linearly in T . Thus the width of our
solution uε grows linearly in εt which is consistent with the geometric observation that the wave
vectors comprising u make an angle O(ε) with e1.
In contrast to the case of the geometric optics expansion, the last results do not extend to nonlinear
phases. Note that the rays associated to nonlinear phases diverge linearly in time and the geometric
optics approximation decays correspondingly. The formulas valid for times of order 1, remain valid
for large times. The approximations of Schrödinger type describe the interaction over long periods
of times of parallel rays. In the same way, one does not find such Schrödinger approximations for
linear phases when the geometric approximations are not governed by transport equations. The
classic example is conical refraction.
The approximation (1.15) clearly presents three scales; the wavelength ε, the lengths of order 1
on which f varies, and, the lengths of order 1/ε traveled by the wave on the time scales of the
variations of B with respect to the slow time T .

Summary. The Schrödinger approximations are intimately related to linear phases for which the
rays are parallel. They provide diffractive corrections for times t ∼ 1/ε to solutions of wavelength
ε which are adequately described by geometric optics for times t ∼ 1.
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These key features, parallel rays and three scales are commonly satisfied by laser beams. The beam
is comprised of virtually parallel rays. A typical example with three scales would have wavelength
∼ 10−6m, the width of the beam ∼ 10−3m, and the propagation distance ∼ 1m.
For nonlinear phases the long time behavior is different. With suitable convexity hypotheses on
the wave fronts, nonlinear transport equations along rays yield nonlinear geometric optics optics
approximations valid gloablly in time (see [Go]).

2. Formulating the ansatz.
We study solutions of semilinear symmetric hyperbolic systems with constant coefficients and
nonlinearity which is or order J near u = 0. The quasilinear case is discussed in §6.

Symmetric hyperbolicity hypothesis. Suppose that

Lε(∂x) :=
d∑

µ=0

Aµ
∂

∂xµ
+ ε L0 = A0∂0 + A1∂1 + · · ·+ Ad∂d + ε L0 := L1(∂x) + ε L0 . (2.1)

is a constant coefficient symmetric hyperbolic system of order one with timelike variable t := x0,
that is, the coefficients Aµ are N ×N hermitian symmetric matrices with A0 strictly positive.

The fact that the lower order term appers with a factor ε is crucial. In §2.1 this is discussed in
terms of interaction times. A remark in §3.3 shows that the construction of approximate solutions
can fail if one has L0 instead of εL0. In §5, the factor ε is crucial in the proof of the approximation
theorem if L0 + L∗0 has a negative eigenvalue.
The nonlinear differential differential equation to solve is

Lε(∂x) uε + F (uε) = 0 , (2.2)

where uε is a family of CN valued functions.

Order J hypothesis. The nonlinear function F is smooth on a neighborhood of 0 ∈ CN , and
the nonlinear terms are of order J ≥ 2 in the sense that

|β| ≤ J − 1 =⇒ ∂βu,uF (0) = 0 .

The Taylor expansion at the origin is then

F (u) = Φ(u) + O(|u|J+1) , (2.3)

where Φ is a homogeneous polynomial of degree J in u, u.

§2.1. Time of nonlinear interaction.
The amplitude of nonlinear waves in crucially important. Our solutions have amplitude uε = O(εp)
where the exponent p > 0 is chosen that the nonlinear term F (u) = O(εpJ) affects the principal
term in the asymptotic expansion for times of order 1/ε. The time of nonlinear interaction is
comparable to the times for the onset of diffractive effects.
The time of nonlinear interaction is estimated as follows. Denote by S(t) the propagator for the
linear operator Lε. Then in L2(Rd), ||S(t)|| ≤ Ceε|t|. The Duhamel representation

u(t) = S(t)u(0)−
∫ t

0

S(t− σ)F (u(σ)) dσ

suggests that the contribution of the nonlinear term at time t is of order tεpJeεt. For the onset of
diffraction, t ∼ 1/ε so the accumulated effect is expected to be O(εpJ−1). For this to be comparable
to the size of the solution we chose p so that pJ − 1 = p.
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Definition. For nonlinearities satisfying the the order J hypothesis, the standard normalization
is to choose p so that

p :=
1

J − 1
. (2.4)

A similar estimate shows that the contribution of the εL0 is no larger than Cεt so the natural
interaction time is no shorter than t ∼ 1/ε. In particular this term does not influence the principal
term in the linear geometric optics description of the solution for t ∼ 1.

§2.2. Harmonics and rectification.
Introduce a general linear phase β.x = τt + η.y with β = (τ, η) ∈ R1+d. The oscillating factor is
then eiβ.x/ε. The remarks of the previous section suggest replacing B by εpB.
Nonlinearity will normally create harmonics eimβ.x/ε with m ∈ Z. The waves with these phases
will then interact with each other. With this in mind, the leading term in (1.15) is replaced by

εp B(εx, x, x.β/ε) , with B(X, x, θ) ∈ C∞(R1+d × R1+d × T)

periodic in θ.
A special role is played by the harmonic with m = 0 which is nonoscillatory. Such a term occurs
from a J-linear interaction of harmonics eimjβ.x/ε with

m1 + m2 + · · ·+ mJ = 0 . (2.5)

If the oscillatory waves propagate with speed v, then one expects such rectification to produce
source terms of the form f(y − vt). This is expected to create a term like L−1

(
f(y − vt)

)
which

in general is a wave dispersing in all direction of space. For times t ∼ 1/ε which interest us, such
wave will be small compared to the waves which propagate nearly sharply in the direction v. This
suggests the following facts proved in [JMR 6],
• The rectified waves are correctors to the principal term in the asymptotics.

• The rectified waves are not described by expressions analogous to the principal term.

In the analysis which follows these rectification effects are not present. Then, correctors to all
orders can be constructed having the same form as the principal term. The rectification is avoided
by assuming that the nonlinear function F is odd, and that the profiles B in the asymptotic
expansion are periodic functions of θ whose spectrum is contained in the odd integers Zodd. Note
that for J and mj odd the sum on the left hand side of (2.5) is odd and therefore never equal to
zero. More generally, if B(θ) had odd spectrum and F is odd, then F (B(θ)) has odd spectrum.

Oddness hypothesis. The Taylor expansion of F at u = 0 contains only monomials of odd
degree.

This hypothesis is satisfied if and only if the even part F (u) + F (−u) vanishes to infinite order
at u = 0. In particular it is satisfied for odd functions F . Note that quadratic nonlinearities are
excluded by the oddness hypothesis.
The leading term in the ansatz is O(εp) where p from (2.4) is fractional for J ≥ 3. The terms in
the Taylor expansion of F generate terms in εnp. These consideration suggest the ansatz

uε = εp a(ε, εx, x, β.x/ε) , a(ε, X, x, θ) ∼
∑
j∈pN

εj aj(X, x, θ) , (2.6)
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where the smooth profiles aj are periodic in θ and satisfy

spec aj ∈ Zodd . (2.7)

¿From the example in §1, we expect the leading profile a0 to satisfy a homogeneous transport
equation ∂ta0 + v.∂ya0 = 0 with respect to x and to be as rapidly decreasing in X, x as this
permits. In order for εj+paj+p to be small compared to the preceding εjaj term for times t ∼ 1/ε
it is necessary that lim εa(X, x/ε, θ) = 0 as ε → 0 . Our profiles satisfy the stronger condition
that for all α

∂αX,x,θ aj ∈ L∞([0, T ]× Rd × R1+d × T) . (2.8)

§3. Equations for the profiles.

The goal is to find uε as in the ansatz (2.6)-(2.8) which is an approximate solution of (2.2). Compute

Lε(∂x)uε = εp−1 b(ε, εx, x, x.β/ε) ,

where
b(ε, X, x, θ) = L1(β) ∂θa + ε L1(∂x) a + ε2 (L1(∂X) + L0 ) a . (3.1)

Then (2.6) and (2.8) imply that

b(ε, X, x, θ) ∼
∑
j∈pN

εj bj(X, x, θ) . (3.2)

The Taylor expansion of F at 0, yields

F (εpa(ε, X, x, θ)) = εpJ c(ε, X, x, θ) , c(ε, X, x, θ) ∼
∑
j∈pN

εj cj(X, x, θ) . (3.3)

with
c0(X, x, θ) = Φ( a0(X, x, θ) ) . (3.4)

Note that in computing (3.4) the order J hypothesis guarantees that the leading contribution of
the nonlinear is this O(εp+1) term. More generally, aj contributes terms which are no larger than
O(ε(p+j)J) = O(εp+jJ+1) = o(εp+j) to the nonlinear term. Thus for j > 0, cj is determined by
{ak : k < j}.
Adding the expressions for Lεuε and F (uε) shows that

Lε(∂)uε + F (uε) = εp−1 r(ε, εx, x, β.x/ε) , r(ε, X, x, θ) ∼
∑
j∈pN

εj rj(X, x, θ) . (3.5)

The strategy is to choose the profiles aj so that the profiles rj of the residual are identically equal
to zero.
Setting rj = 0 for j = 0, 1, 2 yields the equations

L1(β) ∂θa0 = 0 , (3.6)

L1(β) ∂θa1 + L1(∂x)a0 = 0 , (3.7)
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L1(β) ∂θa2 + L1(∂x)a1 + (L1(∂X) + L0) a0 + Φ(a0) = 0 . (3.8)

Note that since j assumes fractional values, these are not the three leading terms in (3.5). However,
they are the terms which lead to the determination of a0.
With the convention that aj = 0 whenever j < 0 the equation rj = 0 reads

L1(β) ∂θaj+1 + L1(∂x)aj + (L1(∂X) + L0) aj−1 + cj−1 = 0 . (3.9)

§3.1. Analysis of equation 3.6.
Expand in a Fourier series

a0(X, x, θ) =
∑

m∈Zodd

am(X, x) eimθ .

Then
L1(β) ∂θa0 =

∑
m∈Zodd

im L1(β) am(X, x) eimθ .

In order for there to be nontrivial solutions of (3.6) one must have

det L1(β) = 0 . (3.10)

Equivalently β must belong to the characteristic variety of L. There are two naturally defined
matrices which play a central role in the sequel.

Definition. For β ∈ R1+d let π(β) be the linear projection on the kernel of L1(β) along the range
of L1(β). Denote by Q(β) the partial inverse defined by

Q(β)π(β) = 0 , and Q(β)L1(β) = I − π(β) . (3.11)

Symmetric hyperbolicity implies that both π(β) and Q(β) are hermitian symmetric. In particular
π(β) is an orthogonal projector. With this notation, equation (3.6) is equivalent to

π(β) a0 = a0 . (3.12)

This asserts that the principal profile is polarized along the kernel of L1(β).

§3.2. Analysis of equation 3.7.
Equation (3.7) involves both a0 and a1. Multiplying by π(β) annihilates L1(β) so eliminates the
a1 term to give

π(β)L1(∂x)π(β) a0 = 0 . (3.13)

A vector w ∈ CN vanishes if and only if

π(β) w = 0 , and Q(β)w = 0 .

Thus the information in (3.7) complementary to (3.13) is obtained by multiplying (3.13) by Q(β).
This yields

(I − π(β)) a1 = −Q(β)L1(∂x) ∂−1
θ a0 . (3.14)

Equations (3.12) and (3.13) are the fundamental equations of linear geometric optics (see [R]). As
such they determine the dynamics of π(β)a0 with respect to the time t. The following hypothesis
guarantees that the linear geometric optics is simple. It excludes for example β along the optic
axis of conical refraction.
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Simple characteristic variety hypothesis. β = (τ , η) and there are neighborhoods ω of η in

Rd (resp. O of β in R1+d) so that for each η ∈ ω there is exactly one point (τ(η), η) ∈ O∩char L1.

Proposition 3.1. If the simple characteristic variety hypothesis is satisfied then the functions,
τ(η), π(τ(η), η) and Q(τ(η), η) are real analytic on ω. In addition

π(β)L1(∂x)π(β) = π(β)A0 π(β)
(

∂t −
d∑
j=1

∂τ(η)
∂ηj

∂

∂yj

)
. (3.15)

Proof. Since

L1(τ, η) = A
1/2
0

(
τI +

d∑
j=1

ηjA
−1/2
0 Aj A

−1/2
0

)
A

1/2
0 ,

the solutions τ are the eigenvalues of the hermitian matrix

H(η) := −A
−1/2
0

( d∑
j=0

ηj Aj

)
A
−1/2
0 .

Choose r > 0 so that for η near η there is exactly one eigenvalue τ(η) in the disk of center τ and
radius r. Then the real analyticity of π(η) follows from the contour integral representation

π(η) =
1

2πi

∮
|z|=r

(
zI −H(η)

)−1
dz .

The analyticity of τ and Q then follow from the formulas

τ(η) =
trace H(η)π(τ(η), η)

trace π(τ(η), η)
, Q(τ(η), η) = (I − π(τ(η), η))

(
π(τ(η), η) + L1(τ(η), η)

)−1
.

Differentiate the identity
L1

(
τ(η), η

)
π(τ(η), η) = 0

with respect to ηj to find

L1(τ(η), η)
∂

∂ηj
π(τ(η), η) +

( ∂τ(η)
∂ηj

A0 + Aj

)
π(τ(η), η) = 0 .

Multiplying by π(τ(η), η) eliminates the first term to give

π(τ(η), η)
( ∂τ(η)

∂ηj
A0 + Aj

)
π(τ(η), η) = 0 . (3.16)

Using this for the summands on the right hand side of the identity

π(β)L1(∂x)π(β) = π(β)A0π(β)
∂

∂t
+

d∑
j=1

π(β)Ajπ(β)
∂

∂xj

yields (3.15). The proof is complete.
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Definitions. If τ , η belongs to the characteristic variety and satisfies the simplicity assumption,
define the transport operator V and group velocity v by

V (τ , η; ∂x) := ∂t −
d∑
j=1

∂τ(η)
∂ηj

∂

∂xj
:= ∂t + v.∂y . (3.17)

Also define γ(τ , η) ∈ Hom
(
ker L1(τ , η)

)
by

π(τ , η)L0 π(τ , η) = γ(τ , η)π(τ , η) . (3.18)

The τ , η dependence of π, Q, V and γ will often be omitted when there is little risk of confusion.
Since V is scalar and πA0 is an invertible map from the image of π to itself, it follows that (3.13)
is equivalent to

V (∂x)π(β) a0 = 0 .

§3.3. Analysis of equation 3.8.

The information in (3.8) is split in two by multiplying by Q(β) and by π(β) which yield

(I − π(β))a2 = −Q(β) ∂−1
θ

(
L1(∂x)a1 + (L1(∂X) + L0) a0 + Φ(a0)

)
, (3.19)

and
π (L1(∂X) + L0)π a0 + π L1(∂x)a1 + π Φ(a0) = 0 . (3.20)

Equation (3.19) determines a part of a2 in terms of earlier profiles. To interpret (3.20), write

a1 = π a1 + (I − π) a1

and use (3.15) and (3.18) for the first summand and (3.14) for the second terms to find

V (∂X)π A0 a0 + γ a0 − π L1(∂x)Q(β)L1(∂x) ∂−1
θ a0 + π Φ(a0) = −π L1(∂x)π a1 . (3.21)

The scalar operator V (∂x) commutes with all the linear operators in (3.21) and therefore (3.12) and
the last equation of §3.2 imply that it annihilates the left hand side of (3.20). Using Proposition
3.1 this shows that V (∂x)π A0 π V (∂x)π a1 = 0 . Since V (∂x) is scalar it commutes with π A0 π
which is an invertible linear map on the range of π. It follows that V (∂x)2πa1 = 0. This together
with the condition (2.8) that a1 is bounded implies that

V (∂x) a1 = 0 . (3.22)

Thus the last equation in §3.2 together with (3.21) yield the following pair of equations for a0 =
π(β) a0,

V (∂x) a0 = 0 , V (∂X) π A0 a0 + γ a0 − π L1(∂x) Q(β)L1(∂x) ∂−1
θ a0 + π Φ(a0) = 0 . (3.23)

This is analogous to (1.16).
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Remark. If π L1(∂)π were not a simple transport operator, for example in the case of conical
refraction, it would not necessarily annihilate Φ(a0) or π L1 Q L1 ∂−1

θ a0 . A similar difficulty arises
if one studies L1 + L0 instead of L1 + εL0. In that case one finds (V + γ)a0 = 0 and it is not
necessarily true that V + γ annihilates Φ(a0).

Just as the operator π L1 π is a scalar transport operator when the simple characteristic variety
hypothesis is satisfied, the next result shows that the operator π L1 Q L1 π appearing in (3.23) is a
scalar second order operator.

Proposition 3.2. If the simple characteristic variety hypothesis is satisfied then

π(β)L1(∂x)Q(β)L1(∂x)π(β) = −1
2
πA0π

∑
j,k

∂2τ

∂ηj∂ηk

∂2

∂yj∂yk


− π A0 Q A0 π V (∂)2 + π

(
A0 Q L1(∂) + L1(∂)Q A0

)
πV (∂)

(3.24)

where π = π(τ(η), η), Q = Q(τ(η), η), and V (∂) is defined in (3.17).

Proof. Differentiating (3.16) with respect to ηk yields(
∂

∂ηk
π(τ(η), η)

) (
∂τ

∂ηj
A0 + Aj

)
π(τ(η), η) + π(τ(η), η)

∂2τ

∂ηj∂ηk
A0π(τ(η), η)+

π(τ(η), η)
(

∂τ

∂ηj
A0 + Aµ

)(
∂

∂ηk
π(τ(η), η)

)
= 0 .

(3.25)

Differentiate I − π(τ(η), η) = L(τ(η), η)Q(τ(η), η) with respect to ηk to find

− ∂

∂ηk
π(τ(η), η) =

(
∂τ

∂ηk
A0 + Ak

)
Q + L

∂

∂ηk
Q(τ(η), η) .

Multiplying on the left by π yields

π(τ(η), η)
(

∂

∂ηk
π(τ(η), η)

)
= −π(τ(η), η)

(
∂τ

∂ηk
A0 + Ak

)
Q(τ(η), η).

The adjoint of this identity reads(
∂

∂ηk
π(τ(η), η)

)
π(τ(η), η) = −Q(τ(η), η)

(
∂τ

∂ηk
A0 + Ak

)
π(τ(η), η).

Multiply (3.25) on the left and the right by π((τ(η), η) and use the last two identities to eliminate
the ∂π terms to find

−π

(
∂τ

∂ηk
A0 + Ak

)
Q

(
∂τ

∂ηj
A0 + Aj

)
π + π

∂2τ

∂ηj∂ηk
A0 π

− π

(
∂τ

∂ηj
A0 + Aj

)
Q

(
∂τ

∂ηk
A0 + Ak

)
π = 0 .
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Multiplying by ∂2/∂yj∂yk and summing over j, k yields

π

d∑
k=1

(
∂τ

∂ηk
A0 + Ak

)
∂

∂yk
Q

d∑
j=1

(
∂τ

∂ηj
A0 + Aj

)
∂

∂yj
π

=− 1
2

π A0 π

∑
j,k

∂2τ

∂ηj∂ηk

∂2

∂yj∂yk

 .

In this identity use the sum of the two expressions

A0

∑
k

∂τ

∂ηk

∂

∂yk
= −A0 V (∂) + A0∂t ,

∑
k

Ak
∂

∂yk
= L1(∂)−A0 ∂t .

to show that

π (−A0 V (∂) + L1(∂))Q (−A0 V (∂) + L1(∂))π = −1
2

πA0π

 d∑
j,k=1

∂2τ

∂ηj∂ηk

∂2

∂yj∂yk

 .

The proposition follows.

When (3.24) is used in the second equation in (3.23), the last two terms in (3.24) annihilate a0

thanks to the first equation in (3.23). Let R denote the real homogeneous scalar second order
differential operator

R(∂y) :=
1
2

d∑
j,k=1

∂2τ

∂ηj∂ηk

∂2

∂yj∂yk
. (3.27)

The equations satisfied by a0 = π a0 are then

V (∂x) a0 = 0 , V (∂X)π A0 a0 + γ a0 + π A0 R(∂y) ∂−1
θ a0 + π Φ(a0) = 0 . (3.28)

The equations for the higher profiles are derived in similar fashion. (I − π)aj is determined by
setting Q times the the case j − 1 of (3.9) equal to zero to find

(I − π) aj = −Q ∂−1
θ

(
L1(∂x)aj−1 + (L1(∂X) + L0) aj−2 + cj−2

)
= −Q ∂−1

θ L1(∂x)aj−1 + Hj(ak≤j−2) .
(3.29)

In all cases the right hand side is is a function of the profiles {ak : k ≤ j−1} and their derivatives.
A special case is those j < 1 for which one finds (I − π)aj = 0.
The dynamics for π aj is determined by setting π times the case j of (3.9) equal to zero to find

π (L1(∂X) + L0)π aj + π L1(∂x) (I − π) aj+1 + πcj = −π L1(∂x)π aj+1 .

Simplifying using (3.15), (3.18), and (3.30) yields

V (∂X)π A0 aj + γ aj − π L1(∂x)Q L1(∂x) ∂−1
θ π aj + πcj = −π A0 π V (∂x)π aj+1 . (3.30)

12



By induction one shows that V (∂x) annihilates the left hand side of this equation. Then exactly as
in the derivation of (3.22) one finds V (∂x)π aj+1 = 0 . The expression (3.28) for the complementary
projection then shows by induction that

V (∂x) aj = 0 , j ∈ pN . (3.31)

For j > 0 the term cj is a function of the profiles ak with k < j. Then using (3.24) equation (3.30)
takes the form

V (∂X)π A0 aj + γ π aj + π A0 R(∂y) ∂−1
θ π aj + πKj(ak<j) = 0 , 0 < j ∈ pN . (3.32)

Theorem 3.3. If uε is given by (2.6)-(2.8) then in order that L(∂)uε + F (uε) ∼ 0 in C∞ it is
sufficient that the principal profile a0 satisfies (3.12) and (3.28), and that the profiles aj with j > 0
satisfy the equations (3.29), (3.31), and (3.32).

§4. Solvability of the profile equations.

The first equation in (3.28) holds if and only if

a0(T, Y, t, y, θ) = a(T, Y, y − vt, θ) , a(T, Y, y, θ) := a0(T, Y, 0, y, θ) (4.1)

The second equation in (3.28) then holds if and only if

V (∂X)π A0 a + γ a + π A0 R(∂y) ∂−1
θ a + πΦ(a) = 0 . (4.2)

In the linear case with the spectrum of a0 equal to the single point k, the operator ∂−1
θ is simply

multiplication by 1/ık and the principal part of (4.2) is a scalar Schrödinger type operator whose
second order part, R(∂y), is determined by the the second order Taylor polynomial τ at η. The
A0R ∂−1

θ term is antisymmetric thanks to the factor ∂−1
θ .

Equation (3.31) suggests writing

aj(T, Y, t, y, θ) := aj(T, Y, y − vt, θ) , (4.3)

in which case (3.32) takes the form

V (∂X) π A0 π aj + γ π aj + π A0 R(∂y) ∂−1
θ π aj + πKj(ak<j) = 0 . (4.4)

Similarly (3.19) becomes
(I − π) aj = Hj(ak≤j−1) . (4.5)

The idea is to construct smooth aj tending to zero as Y, y →∞,

aj ∈ C∞
(
[0, T∗[ ; ∩sHs(Rd × Rd × T)

)
, spec aj ⊂ Zodd . (4.6)

If the profiles tend rapidly to zero as Y → ∞ then they can be replaced by profiles independent
of Y as explained in §7.2 of [JMR 6]. Profiles satisfying (4.6) take into account nonnegligible
modulations on the long scale Y . The published version in the Polytéchnique seminar produced
rapidly decaying profiles which was not a good decision.
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Theorem 4.1. Suppose that for all j ∈ pN, initial data gj ∈ ∩sHs(Rd × Rd × T) are given
satisfying πgj = gj and spec gj ⊂ Zodd. Then there is a T∗ ∈]0,∞] and a unique a0 satisfying
(4.6), (3.12), (3.28), and a0|T=0 = g0. If T∗ <∞ then

lim
T↗T∗

||a0||L∞([0,T ]×Rd×Rd×T) =∞ (4.7)

For j > 0 there are unique aj satisfying (4.6), (4.5), and (4.4) where T∗ is that from a0.

Proof. Denote by z := (Y, y) ∈ R2d with ζ := (Ξ, η) ∈ R2d the dual variable. The partial Fourier
transform of a(T, Y, θ) is a function of (T, ζ, n) = (T, Ξ, η, n) .
Define the positive definite matrix E := π A0 π + (I − π), and ã := Ea . Then equation (4.2) is
equivalent to

πã = ã ,
∂ã
∂T

+ P (∂Y , ∂y, ∂θ) ã + π Φ(E−1ã) = 0 . (4.8)

where acting on functions with mean zero in θ, P is the Fourier multiplier with symbol

P (Ξ, η, n) := γ − iv.Ξ + i π(β) R(η)
1
n

E−1 π(β) . (4.9)

Extend the operator to all functions by setting the symbol equal to zero for n = 0 . Then P
annihilates functions which are independent of θ . The key to the analysis is that the matrices P
satisfy ∥∥P + P ∗

∥∥
CN→CN ≤ C1 . (4.10)

Definition. For s ∈ N, Γs denotes the Hilbert space of functions f(z, θ) ∈ L2(R2d × T) such that

α ∈ N2d+1, |α| ≤ s =⇒ ∂αz,θ f ∈ L2(R2d × T) .

The space Γsπ is the subset of Γs consisting of functions whose spectrum is contained in Zodd, and
which satisfy the polarization πf = f .

The solutions of (4.2) are constructed by Picard iteration. The key facts are that the associated
linear evolutions are bounded on Γs and that Γs is mapped to itself by smooth functions. These
well known facts are summarized in a lemma.

Lemma 4.2. i. Linear estimate. With C1 from (4.10),∥∥eTP (∂z,∂θ)
∥∥

Γs→Γs
≤ C eC1|T | . (4.11)

ii. Gagliardo-Nirenberg Inequalities. If u ∈ L∞(R2d) ∩ Γs then for any ν ∈ N4d with
0 < |ν| < s, ∂νz,θ u ∈ L2s/|ν| and with a constant independent of u

‖ ∂νz,θ u ‖L2s/|ν| ≤ C ‖u ‖1− |ν|/sL∞ ‖u ‖|ν|/sΓs . (4.13)

iii. Schauder’s Lemma. If G is a smooth function such that G(0) = 0, s > (2d + 1)/2 , and
u ∈ Γs, then G(u) ∈ Γs. If in addition G is odd and satisfies π G = G , then G maps Γsπ to itself.

iv. Moser Inequality. For all M > 0, there is a constant C(s, M, G) such that if u, w ∈ Γs

satisfy
‖w ‖L∞(R2d×T) ≤M, and || ∂αz u ||L∞(R2d×T) ≤M ∀ |α| ≤ s,

then ∥∥G(u + w)−G(u)
∥∥

Γs
≤ C

∥∥w
∥∥

Γs
. (4.14)
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Using the results of the Lemma, standard Picard iteration constructs for each s > (2d + 1)/2 a
unique solution u ∈ C([0, T∗(s)[ ; Γs) with

lim inf
t↗T∗(s)

∥∥u(t)
∥∥

Γs
=∞ . (4.15)

In fact, inequality (4.14) with w = 0 shows that ||G(u)||Γs ≤ C(||u||L∞) ||G(u)||Γs . This estimate
shows that so long as the L∞ norm of u stays bounded, the Γs norm can grow at most exponentially,
and therefore cannot explode in finite time. This proves (4.7) and at the same time shows that the
time of explosion T∗ is independent of s > 2d + 1.
It follows that the unique solution belongs to C([0, T∗[ ; Γs) for all s. Using the differential equation
to express time derivatives in terms of spatial derivatives, it follows that ∂jt u ∈ C([0, T∗[ ; Γs) for
all s. This is equivalent to the desired regularity (4.7). The construction of a0 is complete.
The construction of the higher profiles requires only the solution of linear equations using (4.12).

§5. Convergence toward exact solutions.

Given aj satisfying (4.6), Borel’s theorem constructs

a(ε, T, Y, y, θ) ∼
∑
j∈pN

εj aj(T, Y, y, θ) in C∞
(
[0, T∗[ ; ∩sHs(Rd × Rd × T)

)
, (5.1)

with spec a ⊂ Zodd. The ∼ in (5.1) means that for all T ∈]0, T∗[, α ∈ N2d+2 and m ∈ N∥∥∥ ∂αT,z,θ
(
a(ε, T, Y, y, θ)−

∑
|j|≤m

εj aj(T, Y, y, θ)
) ∥∥∥

L2([0,T ]×R2d×T)
≤ C εm+1 . (5.2)

The profile a is defined by

a(ε, T, Y, t, y, θ) := a(ε, T, Y, y − vt, θ) . (5.3)

When aj , or equivalently aj , are solutions of the appropriate profile equations, approximate solu-
tions uε are defined by

uε(t, y) := εp a(ε, εx, x, x.β/ε) = εp a(ε, εt, εy, y − vt, x.β/ε) . (5.4)

The profile equations are computed exactly so that in this case

Lε(uε) + F (uε) = rε(εt, εy, y − vt, x.β/ε) (5.5)

with
rε(T, Y, y, θ) ∼ 0 in C∞

(
[0, T∗[ ; ∩sHs(Rd × Rd × T)

)
. (5.6)

In particular, for any c < T∗, uε satisfies the hypotheses of the following stability theorem which
then implies that for Cauchy data very close to those of uε the exact solution of the initial value
problem exists for 0 ≤ t ≤ c/ε and is very close to uε. The theorem is a variant of the stability
theorem of Gues, [G1]. The modifications are to assume L∞ control of the approximate solution to
simplify the demonstration, and that the time scale is longer corresponding to smaller amplitudes.
These ideas were first introduced in [D].
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Approximation Theorem 5.1 Suppose the derivatives of F of order less than or equal to J
vanish at the origin, that p = 1/(J − 1), and with c > 0

uε = εp Uε(t, y) ∈ C∞([0, c/ε]× Rd) for 0 < ε ≤ 1 (5.7)

has ε∂ derivatives which are O(εp) in the sense that for all α ∈ R1+d,∥∥ (ε∂x)α Uε
∥∥
L∞([0,c/ε]×Rd) ≤ Cα . (5.8)

Suppose in addition that uε is an infinitely accurate approximate solution in the sense that

Lε(uε) + F (uε) ∼ 0 in C∞
(
[0, c/ε] ; ∩sHs(Rd)

)
, (5.9)

that is for any α and M∥∥ ∂αx
(
Lε(uε) + F (uε)

) ∥∥
L2([0,c/ε]×Rd) ≤ C(α, M) εM . (5.10)

Define vε ∈ C∞([0, T∗(ε)[×Rd) to be the maximal solution of the initial value problem

Lε vε + F (vε) = hε , and vε(0, y) = uε(0, y) + gε(y) . (5.11)

If
hε ∼ 0 in C∞

(
[0, c/ε] ; ∩sHs(Rd)

)
and gε ∼ 0 in ∩s Hs(Rd) , (5.12)

then there is an ε0 > 0 so that for ε < ε0, T∗(ε) > c/ε and

uε − vε ∼ 0 in C∞
(
[0, c/ε] ; ∩sHs(Rd)

)
. (5.13)

Remarks. In this result, the oddness hypothesis is not needed. The result and the proof are valid
for operators of the form Lε = L1(∂) + L0(ε) with

L0(ε) + L0(ε) ≥ −C I , ||L0(ε)||CN ≤ C ε−M .

The positive part of L0(ε) can be polynomially large. The ε in the zero order term of (2.1) is
needed for the construction of the approximate solution.

Proof. Step 1. Taylor’s Theorem absorbs the εp’s. Define wε, W ε, and V ε by

vε := uε + wε := εpUε + εpW ε := εpV ε .

Then the equation for vε holds if and only if the perturbation wε satisfies an equation

Lε wε + F (uε + wε)− F (uε) ∼ 0 , wε(0) = gε ∼ 0 . (5.14)

The strategy is to show that this problem has a solution wε ∼ 0 on 0 ≤ t ≤ c/ε.
Taylor’s Theorem expresses F (u + w) − F (w) = H(u, w)w where the smooth function H has
derivatives of order less that or equal to J − 2 vanishing at the (0, 0). Therefore

H(εpUε, εpW ε) = ε(J−1)p G(ε, Uε, W ε) = ε G(ε, Uε, W ε) .
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where G is a smooth function. Equation (5.14) then reads

Lε εp W ε + ε G(ε, Uε, W ε) εp W ε ∼ 0 .

Cancelling the εp factors yields

Lε W ε + ε G(Uε, W ε)W ε ∼ 0 , W ε(0) ∼ 0 in ∩s Hs(Rd) . (5.15)

where the key is the factor ε in front of the G W term. Roughly one expects growth like eεt with
sources O(ε∞) which yields W ε = O(ε∞) for times up to c/ε.
Step 2. ε∂ estimates for W ε. Introduce the Hs

ε norms, each equivalent to the norm in Hs(Rd)
by ∥∥f∥∥2

Hsε
:=

∑
|α|≤s

∥∥ (ε∂y)αf
∥∥2

L2(Rd) . (5.16)

This norm is a scaling of that in Hs in the sense that if g(y) := f(εy) then∥∥ ( ε∂y )α g
∥∥2

L2 = εd/2
∥∥ ∂αy f

∥∥2

L2 , so
∥∥ g
∥∥2

Hsε
= εd/2

∥∥ f
∥∥2

Hs
. (5.17)

This scaling property immediately implies the Sobolev and Moser inequalities

‖f‖L∞ ≤
Cs
εd/2

∥∥f∥∥
Hsε

, and
∥∥G(u)

∥∥
Hsε
≤ Cs(||u||L∞)

∥∥u∥∥
Hsε

. (5.18)

In the same way, the the propagation estimate for Lε

∥∥u(t)
∥∥
Hsε
≤ C(s)

(∥∥u(0)
∥∥
Hsε

+
∫ t

0

∥∥Lεu(σ)
∥∥
Hsε

dσ

)
(5.19)

follows from the case ε = 1 . Inequality (5.19) for ε = 1 can be proved directly by the standard
energy method or by using the Fourier Transform as in the proof of (4.12).
Choose ε1 > 0 so that for ε ≤ ε1, ‖W (0)‖L∞ ≤ 1/2. Since Uε is bounded in L∞, it follows that so
long as

‖W ε(t)‖L∞ ≤ 1 (5.20)

one has ∥∥G(ε, Uε, W ε) W ε
∥∥
Hsε
≤ C(s)

(
1 +

∥∥W ε
∥∥
Hsε

)
. (5.21)

Applying inequality (5.19) to W ε and using (5.15) and (5.21) yields for all n ∈ N and s > d/2

∥∥W ε(t)
∥∥
Hsε
≤ C(s, n)

(
εn + ε

∫ 1

0

(
1 +

∥∥W ε(σ)
∥∥
Hsε

)
dσ

)
. (5.22)

Gronwall’s inequality yields ∥∥W ε(t)
∥∥
Hsε
≤ C(s, n) εn eεC(s,n)t . (5.23)

Step 3. Endgame. First choose s > d/2 and n > d/2. Then with the constants Cs from (5.18),
C(s, n) from (5.23) and c from (5.7), choose ε0 ≤ ε1 so that

ε ≤ ε0 =⇒ Cs
εd/2

C(s, n) εn eC(s,n) c ≤ 1/2 .
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Then (5.23) together with (5.18) show that for as long as W ε exists in 0 ≤ t ≤ c/ε, one has
‖W ε‖L∞ ≤ 1/2.
The first consequence of this conclusion is that for ε ≤ ε0, the maximal solution of the initial value
problem (5.15) defining W ε exists for 0 ≤ t ≤ c/ε and satisfies (5.20) throughout that interval.
Since vε is expressed in terms of W ε it follows that vε exists on this interval.
Once this is known it follows that inequality (5.23) is valid for all s, n and 0 ≤ t ≤ c/ε. This
implies in that for all α and m, there is a C(α, m) so that for all ε ≤ ε0

‖∂αy wε‖L2 ≤ C(α, m) εm . (5.24)

Thus to prove (5.13) it suffices to prove estimates analogous to (5.24) for time derivatives of wε.
These follow from (5.24) by using the differential equation (5.14) to express time derivatives in
terms of spatial derivatives.

§6. The quasilinear case.
A few ideas are needed to extend the analysis to the case of quasilinear equations

L(u, ∂x) u + F (u) :=
d∑

µ=0

Aµ(u) ∂µu + F (u) = 0 . (6.1)

For simplicity of reading, the εL0 term from (2.1) will be omitted in this section. The system (6.1)
is assumed to be symmetric hyperbolic in the sense that the coefficients Aµ are smooth hermitian
symmetric valued functions of u, and, for each u, A0(u) is positive definite.

6.1. Order of nonlinearity and amplitudes.
Suppose that the quasilinear terms are of order 2 ≤ K ∈ N in the sense that

|α| ≤ K − 2 =⇒ ∂αu,u
(
Aµ(u)−Aµ(0)

)
u=0

= 0 . (6.2)

Then Aµ(u)−Aµ(0) is of order K − 1 and so its product with ∂µu is of order K.
If the solutions have amplitude of order εp with derivatives of order εp−1, then the size of the
quasilinear terms is εp(K−1) εp−1 . Accumulating for time T one obtains T εp(K−1) εp−1 Setting
this equal to the order of magnitude of the solutions, εp, yields the following estimate for the time
of quasilinear interaction

Tquasilinear ∼
1

εpK−p−1
.

The standard normalization for diffractive nonlinear geometric optics is obtained by taking the
time of interaction to be of order ε−1, that is

p =
2

K − 1
. (6.3)

To insure that the the semilinear term does not have a time of interaction shorter than ε−1,
supposes that F is of order J satisfying (2.4), that is

2
K − 1

=
1

J − 1
equivalently J =

K + 1
2

. (6.4)

Since K will be assumed odd, (6.4) determines an integer J .
It is possible to consider quasilinear problems for which the left hand sides in (6.4) are smaller
than the right hand sides. In such cases, the quasilinear terms do not affect the leading term in
the approximation (see [DR 2]).
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6.2. Profile equations.
Oddness hypothesis. In addition to the oddness hypothesis from §2, assume that K is odd
and that the Taylor expansion of Aµ(u)−Aµ(0) at u = 0 contains only monomials of odd order.

With the normalizations of section 6.1, the ansatz (2.6)-(2.8) is then appropriate. The degree K−1
Taylor polynomial of Aµ(u)−Aµ(0) is denoted Λµ, so for u ≈ 0,

Aµ(u)−Aµ(0) = Λµ(u) + O(|u|K) .

Expanding L(uε, ∂)uε + F (uε) as in §3, and setting the terms of order εp−1, εp and εp+1 equal to
zero yields the equations

L(0, β) a0 = 0 , (6.5)

L(0, β) a1 + L(0, ∂x) a0 = 0 , (6.6)

L(0, β) a2 + L(0, ∂x) a1 + L(0, ∂X) a0 +
∑

βµ Λµ(a0)∂θa0 + Φ(a0) = 0 . (6.7)

Equation (6.5) requires that β belong to the characteristic variety of the linearized operator L(0, ∂).
Construct the associated projector π(β) and partial inverse Q(β). Equations (6.5) and (6.6) are
then equivalent to (3.12), (3.13), and (3.14).
Assume that the characteristic variety of L(0, ∂) satisfies the simplicity assumption at β. Propo-
sition 3.1 then shows that (3.13) is a transport equation.
Setting π(β) times (6.7) equal to zero yields the analogue of (3.21),

V (∂X)π A0 a0 − π L(0, ∂x)Q(β) L(0, ∂x) ∂−1
θ a0+

π
∑

βµΛµ(a0) ∂θa0+π Φ(a0) = π L(0, ∂x)π a1 .
(6.8)

The key change is the appearance of the quasilinear terms Λµ(a0)∂θa0 on the left. They are
qualitatively of the form uK−1 ∂θu. The analysis which leads to (3.22) and therefore the elimination
of the right hand side is exactly as before. The analysis of Proposition 3.2 applies to L(0, ∂) and
one finds the quasilinear equations for the principal profile a0,

V (∂x) a0 = 0 , V (∂X)π A0 a0 + π A0 R(∂y)∂−1
θ a0 + π

∑
βµΛµ(a0) ∂θa0 + π Φ(a0) = 0 . (6.9)

The analogous equations for the correctors aj with j ∈ pN \ 0 are linear. The solvability of (6.9)
is proved as in §4 with a little more work because of the quasilinear term. The L∞ norm in the
explosion criterion (4.8) is correspondingly replaced by the Lipshitz norm.

§6.3. Convergence.
The proof of convergence uses the following quasilinear approximation theorem.

Approximation Theorem 6.1. Suppose that (6.2) and (6.4) are satisfied, that p is defined by
(6.3), and that and uε, hε and gε satisfy (5.7), (5.8), and (5.12). Suppose that uε is an infinitely
accurate approximate solution in the sense that

L(uε, ∂)uε + F (uε) ∼ 0 in C∞
(
[0, c/ε] ; ∩sHs(Rd)

)
, (6.10)

Define vε ∈ C∞([0, T∗(ε)[×Rd) to be the maximal solution of the initial value problem

L(vε, ∂) vε + F (vε) = hε , and vε(0, y) = uε(0, y) + gε(y) . (6.11)

Then there is an ε0 > 0 so that for ε < ε0, T∗(ε) > c/ε and

uε − vε ∼ 0 in C∞
(
[0, c/ε] ; ∩sHs(Rd)

)
. (6.12)
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Outline of Proof. Define vε, wε and W ε as in the proof of Theorem 5.1, except that the value
of p is now given by (6.3). Taylor’s Theorem yields the analogue of equation (5.15),(

L(0, ∂x) +
d∑

µ=0

ε2Hµ(ε, Uε, W ε) ∂µ + ε G(ε, Uε, ∂Uε, W ε)
)

W ε ∼ 0 . (6.13)

The key observation is that so long as

‖W ε, ε∂W ε ‖L∞([0,t]×Rd) ≤ 1 (6.14)

the derivatives of the coefficients ε2Hµ are O(ε). Then the natural growth rates are O(eεt) which
means that one has stability estimates for times as long as c/ε. That is, for s > d + 1, there is a
constant C(s) so that so long as 0 ≤ t ≤ c/ε and (6.14) holds one has

‖W (t)‖Hε ≤ C

(
‖W (0)‖Hsε+∫ t

0

∥∥{L(0, ∂x) +
d∑

µ=0

ε2Hµ(ε, Uε, W ε) ∂µ + ε G(ε, Uε, ∂Uε, W ε)
}

W ε(σ)
∥∥
Hsε

dσ

)
.

The endgame is as in Theorem 5.1.
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[G 1] O. Gues, Développements asymptotiques de solutions exactes de systèmes hyperboliques
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