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1. Introduction.
Many recent works are devoted to the study of high frequency oscillatory

nonlinear waves and to nonlinear geometric optics. In this talk we review several
basic problems and results in this field.

High frequency linear waves are modelled by phase-amplitude expansions

(1.1) uε(t, x) = a(t, x, ε) ei ϕ(t,x)/ε with a(t, x, ε) ∼
∑
n≥0

εn an(t, x) .

This leads to linear geometric optics ([La]) : the phase ϕ satisifies an eikonal equa-
tion and the amplitudes an are determined by transport equations. For nonlinear
waves, the natural extension of (1.1) which includes the phenomenon of generation
of harmonics is

(1.2) uε(t, x) ∼ u(t, x) + εp
∑
n≥0

εn Un(t, x, ϕ(t, x)/ε) .

The Un(t, x, θ) are periodic (or quasi/almost periodic) in the θ variable and ϕ is
a real phase function. In the summation, n runs in a countable set of nonnegative
numbers. Typically, n is an integer, a half integer... . u is a a background state, ε
is a wavelength and εp is the order of magnitude of the energy of the oscillations
(assuming that ∂θU0 6= 0). Basic questions are existence, propagation, interaction,
reflection of waves (1.2).

In contrast with linear waves, the choice of the parameter p for the amplitude
of the oscillations is very important. It is strongly related to the scale of time
T under consideration. For small times or small amplitudes (i.e. large p), the
propagation is mainly linear. The idea is to increase the scale of energy εp or the
time of propagation T to reach the regime where the first nonlinear effects appear.
Examples of relations between p and T are be computed in sections 2 and 4.
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The waves uε are solutions of partial differential equations. Examples from
nonlinear optics are Maxwell equations which describe the propagation of an elec-
tromagnetic wave in a nonlinear medium modelled by a polarisation vector P :

(1.3)
{

∂tB + curlE = 0 ,

∂tE − curlB = −∂tP

Different models for the interaction light-matter have been considered (see [Do]).
Here we mention two of them :

ε2∂2
t P + P = E + f(E, P ) anharmonic oscillator model{

ε2∂2
t P + P = (N0 −N)E

∂tN = E · ∂tP
Maxwell-Bloch

Note that the size of several coefficients is related to the wavelength ε.
Other examples of equations for uε are nonlinear wave equations

(1.4) (∂2
t −∆x) u + f(t, x, u,∇t,x u) = 0 .

One can also consider quasilinear equations, such that Euler’s equations for gas
dynamics and thus study acoustic waves. For the purpose of this talk, we restrict
ourselves to first order semilinear systems. Possibly after rescaling the dependent
and independent variables u and (t, x), we suppose that the equation reads

(1.5) L(ε∂) u = f(t, x, u, ε)

where

(1.6) L(ε∂) := ε∂t +
d∑
j=1

εAj(t, x)∂xj + E(t, x) ,

and the Aj are symmetic, E is skew symmetric and f = O(ε+|u|2). The case E = 0,
after disivion by ε in (1.5), covers the usual examples of hyperbolic equations such
as the reduction of (1.4) to a first order system. Maxwell equations (1.3) are of
the form (1.5) with u = (B, E, P, ε∂tP ) or u = (B, E, P, ε∂tP, N). Quasinilear
analogues cover the case of Euler’s equations.

Note that nonlinear geometric optics technics are not restricted to the specific
expansion (1.2). Rescaling both the dependent and independent variable, is always
possible. The important feature is that two scales are present. They are (t, x) and
ϕ(t, x)/ε in (1.2), but one can as well consider scales like (εt, εx) and (t, x). In
particular, the analysis applies to singular systems

(1.6) ∂tU
ε +

∑
Aj∂xjU

ε +
1
ε

∑
Bj∂θjU

ε = F (t, x, Uε, ε) ,

see §3.3 and the references there. One can also consider nonperiodic profiles Un in
θ, such as rapidly decreasing functions. They are used to model solutions which
resemble simple waves.
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The paper is organized as follows. In §2, we review the basic problem of the
propagation of single wave (1.2). The main task is to justify the existence of exact
solutions close to the formal solutions given by BKW methods. The interaction of
several waves is described by expansions similar to (1.2) but with several phases. It
is discussed in §3, where several different results are briefly presented. Three scales
expansions are introduced in §4. They are usefull to describe long time propagation
and diffractive effects

2. One phase expansions.
2.1. Standard amplitudes

We look for asymptotic solutions

(2.1) uε(t, x) ∼ εp
∑
n≥0

εn Un(t, x, ϕ(t, x)/ε) .

of equation (1.4) for times 0 ≤ t ≤ T . To determine the natural size for the
amplitude εp, consider the ordinary differential case where L(ε∂) = ε∂t. Then

(2.2) u(t) = u(0) + ε−1

∫ t

0

f(u(s)) ds .

Suppose that f is of order J ≥ 2 near u = 0. Then,

u = O(εp) ⇒ ε−1

∫ t

0

f(u) = O(T εpJ−1) .

The balance is for TεpJ−1 ≈ εp, thus

(2.3) p =
1

J − 1
for T = O(1) .

For simplicity, we continue the discussion assuming that J = 2 and thus p = 1.

2.2. Formal solutions
Plugging the expansion into the equation (2.1) leads to an infinite system of

equations (see [CB])

(2.4) L(dϕ ∂θ)U0 = 0 ,

and for n ≥ 0

(2.5) L(dϕ ∂θ)Un+1 + L1(∂)Un + Fn = 0 .

Here L(dϕ ∂θ) = (∂tϕ +
∑

∂xjϕAj)∂θ + E, L(∂) := ∂t +
∑

Aj ∂xj , and Fn is
a function of (U0, . . . Un). In particular, F0 = − 1

2 f ′′(0)(U0, U0).
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One analyzes L(dϕ∂θ) on Fourier series in θ :

L(dϕ∂θ)
(∑

α

Vα eiαθ
)

=
∑
α

L(iαdϕ)V0,α eiαθ .

The projector on its kernel is (formally)

P
(∑

α

Vα eiαθ
)

:=
∑
α

ΠαVα eiαθ .

where Πα is the orthogonal projector on the kernel of L(iαdϕ). Because the
L(iαdϕ) are skew adjoint, the projector on the image of L(dϕ∂θ) is (formally)
1− P.

For (2.4) to have a nontrivial solution, one requires that at least one among
the projector Πα is non trivial, and it is natural to assume that this holds for
α = 1. This means that ϕ satisfies the eikonal equation

(2.6) det L(idϕ) = detL(t, x, idϕ(t, x)) = 0 .

Then, (2.4) is equivalent to the polarization condition

(2.7) U0 = PU0 ⇔
{

U0,α = 0 α /∈ C
U0,α = ΠαU0,α α ∈ C

where C is the set of integers α such that det L(iαdϕ) = 0.
In the nondispersive case (E = 0 in (1.5) ), C = Z, Π0 = Id and for α 6= 0,

Πα = Π is the projector on the kernel of L(idϕ). Introducing the average V and
the oscillation V ∗ = V − V of the periodic function V , (2.7) is then equivalent to
the condition ΠU∗0 = U∗0 .

In the dispersive case (E 6= 0 ), C is limited. In many examples, such as the
Maxwell equations of §1, one has C = {−1, 0, 1}, which means that there is no
generation of harmonics in the leading term.

The propagation equation for U0 is obtained by applying P to the equation
(2.5) :

(2.8) PL1(∂)PU0 + PF0(U0) = 0 ,

In the nondispersive case, this is a coupled system for the average and oscillations
of U0 : 

L1(∂)U0 + F0 = 0
(I −Π)U∗0 = 0

Π L1(∂) ΠU∗0 + ΠF ∗0 = 0

In the dispersive case, (2.8) is a coupled system of equations for the Fourier coef-
ficients U0,α with α ∈ C.
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Example. Suppose that λ(t, x, ξ) is a real eigenvalue of constant multiplicity
of the hermitian symmetric matrix

∑
ξj Aj(t, x)− iE and that αϕ satisfies

(2.9) α∂tϕ(t, x) + λ(t, x, α∂xϕ(t, x)) = 0 .

Then the first order part of the propagator ΠαL1(∂)Πα is the vector field :

(2.10) Xα := ∂t +
∑
j

∂λ

∂ξj
(t, x, α∂xϕ) ∂xj .

In the nondispersive case, this is independent of α 6= 0. In the dispersive case
the group velocity vα := ∇ξλ(t, x, αdϕ) depends on α. The constant multiplicity
assumption is satisfied generically, but variable multiplicities do occur. A classical
example is conical refraction.

Given C∞ Cauchy data for ϕ and U0 with PU0 = U0, one can solve the
eikonal equation (2.6) and the nonlinear profile equation (2.7) (2.8) on a suitable
domain of determinacy Ω. The other terms Un are determined similarly on the
same domain Ω, solving linear equations. In the most favorable cases, this leads
to approximate solutions, that is to functions uεapp which satsify (2.1) and

L(ε∂)uεapp − f(uεapp) = O(ε∞) .

2.3. Exact solutions
Theorem ([JR 1], [DR]) Let uεapp be a formal solution on a domain of de-

terminacy Ω for L(ε∂). Suppose that

uε0(x) − uεapp(0, x) = O(ε∞) .

Then the Cauchy problem initial data uε0, has a unique solution uε for ε ≤ 1,
defined and smooth on a domain Ω′ ⊂ Ω independent of ε, and satisfying

uε(t, x) − uεapp(t, x) = O(ε∞)

Moreover, Ω′ can be taken arbitrarily close to Ω if ε is restricted to be small
enough.

The main part of the proof is not to compare uε and uεapp. It is to prove the
existence of uε on a domain independent of ε. Note that the classical existence
theorems for smooth solutions do not apply. The Theorem means that the small
arbitrary oscillations contained in the remainders O(εN ) are kept under control.
They interact with the main oscillation uεapp and also with themselves, but they
cannot be organized in a coherent way to affect the leading oscillation.
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Further results and problems.
1) Similar results are available for quasilinear equations and perturbations of

a background solution u ([G 2], [G 3]). The phase ϕ satisfies the eikonal equation
for the linearized operator on u. The main novelty is that the transport operator
contains an additional nonlinear term in ∂θU0. In particular, the transport equation
for U0 looks like a Burger’s equation and thus may develop shocks. The other
equations for Un, n ≥ 1 remain linear. The expansions are justified, as long as the
phase ϕ and the first profile U0 exist and remain smooth. See also §3.1 for results
about weak solutions in 1-D.

2) Another interesting feature of [G 3] is the justification of expansions with
almost periodic profiles. In the nondispersive case, the Fourier analysis of the
inverse of L(dϕ∂θ) is much more delicate since the Fourier spectrum is now R in
place of Z and ∂−1

θ does not act in the space of almost periodic functions with
vanishing mean value. As a consequence, the second term U1 is not defined in
general. However, the profile equations still make sense and define the U0. [G 3]
provides a construction of solutions which satisfy

uε(t, x) = εp U0(t, x, ϕ(t, x)/ε) + o(εp) .

3) In some cases, the “standard amplitude” computed at the beginning of this
section leads to linear geometric optics (the nonlinearity vanishes on the polariza-
tion). This happens for example for Maxwell-Bloch equations or for quasilinear
waves associated to linearly degenerate eigenvalues. To reach nonlinear phenom-
ena one can consider larger amplitudes or longer times. In some cases, approximate
solutions can still be constructed but new stability conditions are needed to jus-
tify the approximation. This is related to known examples of instabilities such as
Raman an Brillouin instabilities in optics. For Maxwell Bloch equation which is is
quadratic (J = 2), the standard amplitude is p = 1. Formal solutions with p = 1/2
can be computed ([D]). The justification is in progress. For quasilinear systems,
the standard amplitude is p = 1. Formal solutions with p = 0, associated with
linearly degenerate eigenvalues are proposed in [Se 1], [Se 2]. The justification in
space dimension one is made in [He].

3. Multiphase expansions
Consider the interaction of oscillatory waves. The interesting phenomenon is

the creation of a new outgoing oscillation of the same magnitude, from incoming
oscillations. This happens when the phases ϕj of the incoming waves and the phase
ϕ of the outgoing wave satisfy the resonance relation

(3.1) ϕ =
∑
j

ϕj ,

or more generally

(3.2) α ϕ =
∑
j

αj , ϕj , α, αj ∈ Z ,
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for the resonances among harmonics. The analysis is made through multiphase
expansions

(3.3) uε(t, x) ∼ εp
∑
n≥0

εn Un(t, x, ψ1(t, x)/ε, . . . , ψm(t, x)/ε) ,

where the Uj(t, x, θ1, . . . θm) are periodic in the variables θ. The leading term U0

is often sought as a superposition of incoming and outgoing waves

(3.4) U0(t, x, ψ1(t, x)/ε, . . . , ψm(t, x)/ε) =
∑
j

Sj(t, x, ϕj(t, x)/ε) .

with phases ϕj which are linear combination of the ψk satisfying the eikonal equa-
tion. However, the number of directions for the phases ϕj can be infinite, even if
only three of them are present in the Cauchy data, the other ones being created
by interactions (see [JR 2], [JMR 2], [JMR 8]).

A formal derivation of the equations of nonlinear geometric optics, is given in
[HK 1], [MR] and [HMR], see also [JMR 1], [JMR 3]. The equations of propagation
have the same structure as in §2 :

(3.5) U0 = PU0 , PL1(∂)PU0 + PF0(U0) = 0 .

The operator P acts on multiperiodic functions of θ = (θ1, . . . , θm)

P
(∑

α

Vα eiαθ
)

:=
∑
α

ΠαVα eiαθ .

where Πα is the orthogonal projector on the kernel of L(iαdψ), which is only non
trivial when αψ :=

∑
αjψj is eikonal. Thus the structure of the resonances is

encoded in P.
The justification of the asymptotic expansions for exact solutions is delicate.

Simple examples show that complete expansions (3.3) are not true in general.
Instead, one has to study a larger class of solutions which satisfy the weaker
estimate

(3.6) uε(t, x) = U0(t, x, ψ1(t, x)/ε, . . . , ψm(t, x)/ε) + o(1) ,

3.1. Results in one space dimension
Solutions satisfying (3.6) are constructed [JMR 1] in wide class of situations.

Partial previous justifications were given in [T], [McLPT], [J], [Ka]. In general (3.6)
is proved in Lp for all p <∞. The justification in L∞ requires more assumptions.
This is due to weak resonances that is linear combinations (3.1) or (3.2) which
satisfy the eikonal equation only on a small set. They create new waves whose
energy is localized on isolated curves. These waves are small in L1 but O(1) in
L∞. As a consequence (3.6) is not always true in L∞. This phenomenon is studied
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in detail in [G 1]. In the absence of weak resonances, L∞ convergence is proved in
[JMR 1].

The justification of nonlinear geometric optics also covers the framewok of
weak solutions of quasilinear systems of conservation laws : see [Che 2] which
generalizes a result of [Sch 1] and particular cases previously treated in [DiPM],
[Liu], [Che 1].

The interaction of (strong) shock waves or contact discontinuities and small
amplitude oscillations is described in [Co 1] and [Co 2].

3.2. Focusing and caustics
In space dimension d ≥ 2, an major phenomenon is the focusing of oscilla-

tions. This phenomenon is already present for linear equations and corresponds
to the breakdown of existence of smooth solutions of the eikonal equation. When
rays focus, amplitudes grow and the large amplitudes can be amplified by non-
linearities. For example, it may imply that the domain of existence of the (weak)
solutions uε, shrinks to the empty set as ε tends to zero (see [JMR 2] [JMR 7]).
Focusing and blow up can be created by the principal oscillations themselves. This
is called direct focusing in [JMR 2]. But nonlinear interactions make the problem
much harder. Focusing and blow up can be created by phases not present in the
principal term of the expansion, but which are generated after several interac-
tions. This phenomenon is explored in detail in [JMR 2], where it is called hidden
focusing.

In the extreme opposite direction, when it is combined with strongly dissi-
pative mechanisms, focusing can lead to a complete absorbtion of oscillations, in
finite time. The oscillations disappear when they reach the caustic set. An example
of such a behaviour is given in [JMR 5].

A general study of caustics for dissipative or sublinear equations is performed
in [JMR 7] [JMR 10]. In this case, global existence is known in advance together
with suitable energy estimates. As in the linear case, the desciption of the solution
involves oscillatory integrals and the transport equations hold on the Lagrangian
manifold which is the geometric solution of the eikonal equation. Approximations
are shown in Lp for some p ≥ 2. However, no precise behaviour near the caustic
is given. In particular, a challenging open question, is the validity of the formal
expansions near the caustic, computed in [HK 2].

3.3 Coherent expansions
A framework where all focusing is excluded, besides the one space dimen-

sionnal case, occurs when one considers a coherent set of phases. This assumption
means that the dichotomy between characteristic and noncharacteristic phases
(3.2) is clear.

Definition ([JMR 2]). A real vector space Φ ⊂ C∞(Ω) is L-coherent when
for all ϕ ∈ Φ\{0}, one of the following two condition holds :

i) det L(t, x, dϕ(t, x)) ≡ 0 and dϕ(t, x) 6= 0 at every point (t, x) ∈ Ω,
ii) det L(t, x, dϕ(t, x)) 6= 0 at every point (t, x) ∈ Ω.
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A typical and important example is given by linear phases for a constant
coefficient background system. Then, expansions like (3.3) or (3.5) can be justified,
see [JMR 2] [JMR 3] [JMR 4] [Sch 2] [De].

An important idea is to introduce the fast variables θ = (θ1, . . . , θm) as
independent variables and to look for exact solutions of the form

(3.7) uε(t, x) = εp Uε(t, x, ψ1(t, x)/ε, . . . , ψm(t, x)/ε) .

The phases ψj belong to the coherent space Φ and are independent over Q, not
necessarily over R. This allows the study of quasiperiodic oscillations. The equation
for Uε is a singular system

(3.8) ∂tU
ε +

∑
Aj∂xjU

ε +
1
ε

∑
Bj∂θjU

ε = F (t, x, Uε, ε)

The Bj are skew symmetric and thus L2 estimates are available. The coherence
assumption is used to prove Hs estimates.

The principal profile U0 is determined by (3.5). However, the equations for U1

leads to small divisors problems for the summation of its Fourier series. Generically,
the summation of the Fourier series can be performed and complete expansions
(3.3) can be constructed ([JMR 3]) (see also [De] for the case of the wave equation).
Using a general theorem from [G 2], this implies the existence of exact solutions
satisfying (3.3). In general, only U0 is defined and one can can prove (3.7) : [JMR 2],
[Sch 2]. Note that theses results have analogues for quasilinear equations. Almost
periodic semilinear oscillations are investigated in [JMR 4].

3.4. Further Results.
1. Another important problem is the reflection of oscillatory waves on bound-

aries. A formal approach is described in [MA]. The tranverse reflection at a bound-
ary is studied in [Chi] for two speed equations, and in [Wi 1] under more general
hypothesis. The possibility of glancing mode for flat boundaries and linear coher-
ent phases, is studied in [Wi 2]. Oscillations near a diffractive point, for semilinear
wave equations with globally Lipschitzean nonlinearity, are studied in [Che 3].
The interaction of a multidimensional strong shock and oscillations in the regime
of weakly nonlinear geometric optics is discussed in [Wi 3], [Wi 4].

2. The equations of geometric optics expansions are simpler than the original
full set of equations, and thus they give detailed descriptions of several mecha-
nisms of nonlinear interaction. Applications to the study of qualitative behavior
of solutions of systems of conservation laws, are numerous. See e.g. [Hu 1], [MR],
[MRS], [JMR 9].

3. The validity of geometric optics can be extended beyond the category of
solutions of the form (1.1), to more general families of ”oscillating” solutions uε.
This is shown in [JMR 6] and [MS] for semilinear systems either of size 3 × 3 or
with quadratic interaction. This illustrates a link between geometric optics and
compensated compactness, in the spirit of [DiP 1], [DiP 2], [T], [McLPT], [Wa].
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4. Three scales expansions
In geometric optics, the waves are propagated along rays. However, even for

parallel rays, diffractive effects appear for long time propagation. Then “parax-
ial approximations” are valid and the dispersion is due to the curvature of the
characteristic variety. The analysis is performed through a three scale expansion

(4.1) uε(t, x) ∼ εp
∑
n≥0

εn Un(εt, t, x, ϕ(t, x)/ε) .

for times t ≤ O(1/ε). Related expansions in other scales are

(4.2) uε(t, x) ∼ εp
∑
n≥0

εn Un(t, x, ψ(t, x)/ε, ϕ(t, x)/ε2) .

for times t ≤ O(1) ( See [Hu 2])
The initial data for uε correspond to “initial data” for the Un(T, t, x, θ) on

T = t = 0.
Assume here that L(ε∂) has constant coefficients and is non dispersive (E =

0). Consider an eigenvalue λ(ξ) of constant multiplicity of A(ξ) =
∑

ξjAj and
assume that ϕ(t, x) = ωt + k · x with ω = −λ(k). In particular, ϕ satisfies the
eikonal equation.

4.1. Standard amplitudes As in section 2.1, the balance is TεpJ−1 ≈ εp. For
T = O(1/ε) this holds for p = 2/(J − 1).

4.2. Formal expansions
Plugging (4.1) into (1.4) and ordering the equations in powers of ε, one ob-

tains

L(dϕ) ∂θU0 = 0 ,(4.3)
L(dϕ) ∂θU1 + L(∂t,x)U0 = 0 ,(4.4)
L(dϕ) ∂θU2 + L(∂t,x)U1 + ∂TU0 = fJ(U0).(4.5)

where fJ is the J-th homogeneous part of the Taylor expansion of f at u = 0.

a) The first equation (4.3) is equivalent to

(4.6) ΠU∗0 = U∗0 (polarization).

where Π := is the orthogonal projector on kerL(dϕ). We use the notation V and
V ∗ = V − V for the average and oscillations of V .
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b) Split F := L(dϕ)∂θU1 + L(∂)U0 into F + ΠF ∗ + (Id− Π)F ∗. The (4.4)
is equivalent to

L(∂t,x)U0 = 0(4.7)
X(∂t,x)U∗0 = 0(4.8)
(Id−Π)U∗1 = −QL(∂t,x)∂−1

θ U∗0(4.9)

where X is the transport field X(∂t,x) = ∂t + v·∂x := ∂t +
∑d
j=1 ∂ξj (k) ∂xj which,

thanks to the constant multilicity assumption satisfies ΠL(∂t,x)Π = X(∂t,x)Π. In
addition, Q is the partial inverse of L(dϕ) suchthat QL(dϕ) = L(dϕ)Q = Id− Π
and QΠ = ΠQ = 0. Finally, ∂−1

θ is the inverse of ∂θ acting on functions of vanishing
mean value. .

c) Similarly, (4.6) is equivalent to

∂T U0 + L(∂t,x) U1 = fJ(U0)(4.10)

∂TU∗0 + X(∂t,x)ΠU∗1 − ΠL(∂t,x)QL(∂t,x)∂−1
θ U∗0 =

(
ΠfJ(U0)

)∗(4.11)

(Id−Π)U∗2 = ∂−1
θ Q(Id−Π)

((
ΠfJ(U0)

)∗ − ∂TU∗0 − L(∂t,x)U∗1
)

(4.12)

We have used (4.9) in (4.11). The constant multiplicity also implies that

(4.13) S := ΠL(∂t,x)QL(∂t,x)Π =
1
2

∑
j,l

∂2
ξj ,ξl

λ(k)∂2
xj ,xl

Π

4.3. Simplified case
Assume that J is odd and the data have an odd Fourier spectrum. Then one

looks for solutions Un in the space of periodic functions with odd spectrum

U(θ) =
∑

α∈2Z+1

Uα eiαθ .

This space is preserved by odd polynomials and thus by fJ . In particular U = 0.
The equations (4.7) and (4.10) are void. (4.6), (4.8) (4.11) become

U∗0 = ΠU∗0 , XU∗0 = 0 ,(4.14)
∂TU∗0 − S∂−1

θ U∗0 + ΠfJ(U∗0 ) = X(∂t,x)ΠU∗1(4.15)

X anihilates the left hand side of (4.2). Thus X2ΠU1 = 0. The condition ΠU1

bounded for large t then requires XΠU1 = 0. Finally, the equations for U0 are

(4.16)

{
U∗0 = ΠU∗0 , XU∗0 = 0 ,

∂TU∗0 − S∂−1
θ U∗0 + ΠfJ(U∗0 ) = 0

Theorem ([DJMR]) i) The equations for U0 can be solved, and similar equa-
tions for the Un, n > 0, giving approximate solutions uεapp on [0, T/ε]× Rd.

ii) If uε0(x) ∼ uεapp(0, x), for all T < T , there is ε(T ) > 0 such that the

Cauchy problem with initial data uε0 has a solution uε on [0, T/ε]× Rd and uε ∼
uεapp.
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4.4. The general case, rectification
We refer to [JMR 11] for the general case. The new phenomenon is rectifica-

tion which occurs when the oscillations U∗ affect the main field U . The analysis
is much more delicate and complete expansions (4.1) are not available in general.
This is due to the fact that the rectified waves have no definite polarization and
propagate in all directions. However, the leading term U0 is well defined as a so-
lution of equations which take the rectification effects into account. In this case,
the errors are o(ε)p.
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résultats qualitatifs, Ann. Inst. Henri Poincaré, 8 (1991) pp 351-417.
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