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Abstract

We study linear and nonlinear stability of large-amplitude multi-
dimensional viscous boundary layers arising through the small viscos-
ity perturbation of a hyperbolic initial-boundary value problem with
noncharacteristic boundary. Our main result is to show that, provided
there holds the necessary condition that all “frozen,” planar boundary
layers associated with the inner layer of the profile satisfy an appro-
priate Evans function condition, then the linearized equations about
the full profile are well-posed in L2, with sufficiently strong estimates
on the solution and its derivatives as to yield a full nonlinear stabil-
ity result and thereby nonlinear continuation/validation of the formal
boundary layer expansion (alternatively, short-time existence for pre-
pared initial data). The method of analysis is by symmetrizers and
an appropriate extension of Kreiss’ analysis of hyperbolic equations.
Notable technical aspects include reduction to constant coefficients of
the resolvent equation by an extension of the Gap Lemma of Evans
function theory, clarification of the role of block structure in Kreiss-
type estimates, and the use of conormal derivative estimates in the
hyperbolic—parabolic setting.
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1 Introduction

In this paper, we study the linear and nonlinear stability of viscous boundary
layers which arise when one considers small viscosity parabolic perturbations
of hyperbolic equations. For linear equations this problem is studied in
[BBBJ], [Ba-Ral, [Lio]. The semilinear case is solved in [Gul]. For quasilinear
equations, a partial answer is given in [Gr-Gu] (see also [Gi-Se] for results
in one space dimension). Indeed, the analysis in [Gr-Gu] has two parts. In
the first part, approximate solutions are obtained using formal expansions
in series of the the viscosity €. In the second part, the authors prove the
stability of this approximate solution, proving that the exact solution is
actually close to the approximate one, using a smallness condition (as in
[Gi-Se]). By an example, they also show that some condition is needed.
However, the smallness condition is not natural and does not allow large
boundary layers.

The goal of this paper is to remove this smallness assumption, replacing
it by an accurate assumption based on the analysis of an Evans function.
Evans functions have been introduced in the study of the stability of planar
viscous shock and boundary layers (see, e.g., [GZ], [ZH], [ZS], [Z], [S], [Rou],
and references therein!). They play the role of the Lopatinski determinant
for constant coefficient boundary value problems. When they vanish in the
open left half plane, the problem is strongly unstable and when they do
not vanish in the closed half space, the problem is expected to be strongly
stable. Rescaling the variables, the results of [ZH], [Z] can be used to study
the linear stability of boundary layers created by viscous perturbations of
constant state solutions of hyperbolic equations on a half space providing
some estimates of the corresponding Green’s function. This indicates that
assumptions on the Evans function should be the correct approach in the
study of the stability of boundary layers. This has been proved to be correct
in space dimension one [Gr-Ro| and the goal of this paper is to extend the
analysis to multidimensional problems.

The one space dimensional analysis in [Gr-Ro] is based on integrations
along characteristics for the hyperbolic equations and on pointwise estimates
of the Green’s function for the parabolic part, which are then combined to
yield L' bounds on the Green’s function for the linearized equations about
the full boundary layer expansion. In multi-dimensions, both ingredients
break down, due to more complicated geometry of characteristic surfaces. In

LFor the origins of this method in the study of reaction—diffusion equations; see, e.g.,



particular, the known estimates of the parabolic Green’s function [Z] consist
of LP bounds, p > 2, and do not include pointwise behavior. Moreover, it is
known from study of the constant-coefficient case [HoZ] that the L' norm
of the Green’s function is not necessarily bounded in multi-dimensions, but
in general may grow time-algebraically. This is a consequence of focusing
and spreading in the underlying hyperbolic propagation, the effects of which
are even more dramatic without parabolic regularization. Indeed, examples
given by Rauch [Ral] of LP instability, p # 2, of smooth perturbations of
constant states give reason to believe that L? is the only LP norm in which
we can expect that multi-dimensional hyperbolic problems be well-posed.

Thus, we are restricted in multi-dimensions by the hyperbolic (or “outer”)
part of the solution to seeking L? — L? bounds, analogous to but (even in
the constant-coefficient case) distinct from the L! Green’s function bounds
found in [Gr-Ro]. Moreover, we must obtain these bounds by a method suit-
able for the analysis of both hyperbolic boundary-value problems and their
parabolic regularizations. To satisfy these requirements, we follow Kreiss’
analysis of hyperbolic equations. Our basic estimate concerns the L? sta-
bility of the linearized equations, and is proved using symmetrizers and a
suitable extension of Kreiss’ analysis to parabolic-hyperbolic problems.

It can be seen by comparison with explicit representations of the resol-
vent in the planar case, carried out respectively in [Ag] and [Z], that this
basic estimate is sharp for both hyperbolic and parabolic parts of the equa-
tions. Moreover, we significantly relax the structural assumptions under
which the parabolic results of [Z] were obtained, just as the Kreiss analysis
relaxed the assumptions necessary for the hyperbolic results of [Ag] .

Consider a first order quasilinear system

d
(1.1) L(b,u,d)u = dpu+ Y _ Aj(bu)dju = F(b,u)

=1

The equation holds on R x € where € is a regular bounded domain in R¢.
The unknown u is valued in RY and b = b(t,z) will be a given function
which represents the variables (¢, z) and the various possible source terms :

(1.2) b(t,x) = (t,z,by(t,z)) € RIFTE x RMo = RM

For example, one can think of (1.1) as a system of conservation laws with
unknown by + v where by is some background variable state and w a per-
turbation. The function by can also appear as a forcing term in the right



hand side. Since we will use change of coordinates, we also include the
variables (¢,z) in the coefficient b. The parameter b will vary in a domain
B = [-T,T] x Q x By where By is a bounded open set in RM0. The pair
(b,u) will vary jointly within an open set @ C B x R¥, having the form
of a graph Upepl (b) over B, where U(-) is a continuous set-valued function
from B to open sets in RY; in the simplest case, U(b) = U and O = B x U.
(The latter suffices to discuss small amplitude boundary layers, i.e., u small,
or, more generally, for boundary layers with small variation; see discussion
below Definition 1.3.) We denote by By the set B = [T, T] x 9Q x By, and
Op := Upep,U(b) the restriction of O to 9Q. For (b,u) = (t,z, by, u) € Oy,
we denote by

d
(13) Aulbu) = 3 vy(@) Ay (b )
j=1
the boundary matrix where v(z) = (v1(x),...,v4(z)) is the inner unit nor-

mal vector to 9f) at x.
Next, we consider a parabolic viscous perturbation of (1.1)

(1.4) L(b,u,0)u—¢ Z 9;(Bj (b, w)Opu) = F(b,u).
1<j,k<d

with Dirichlet boundary conditions:
(1.5) u |oQ = 0.

Note that nonhomogeneous boundary conditions reduce to homogeneous
ones, changing u into ug + v, and adding ug to the parameters by. For the
parabolic problem (1.5), (b,u) is allowed to range in a possibly larger open
set O* containing O. For small amplitude boundary layers, we may take
O* = O = B x U; however, in general we wish to allow the situation that
the solution of (1.5), within the boundary layer near 02, may take on values
of (b, u) that lie outside the domain of well-posedness (i.e., hyperbolicity) of
equation (1.1).

Assumption 1.1.

(HO) The Aj and Bjj are N x N real matrices, C* for (b,u) in O*; F
is a smooth function from O* to RV,

(H1) There is ¢ > 0 such that for all (b,u) € O and all ¢ € R? the
eigenvalues of E;{k:l &&kBjx(u) satisfy Rep > c[¢|*.



(H2) For all (b,u) € O, the eigenvalues of > &;A;(b,u) are real and
semi-simple and have constant multiplicities for (b,u) € O := B x U and
¢ e R\ {0}.

(H3) There is ¢ > 0 such that for all (b,u) € O and & € R? the eigenval-
ues of i 335y & A5 (w) + 37 oy &€k Byk(u) satisfy Re > cl¢|?.

(H4) For all (b,u) € Oy, there holds det Ay, (b, u) # 0.

The Assumption (H1) means that the perturbation

B(b,u,0) i= Y 05 Bi(b,u)dy - )

is uniformly parabolic. (H2) means that L is hyperbolic, at least when
the state (b, u) remains in the domain O. The important Assumption (H4)
means that the boundary 0f) is noncharacteristic for L. The Assumption
(H3) is a compatibility condition between L and B. For example, when
B = A, is the Laplacian, (H1) is trivial and (H3) follows immediately
from (H2). When (1.1) is a system of conservation laws which admits a
strictly convex entropy n(u), the system is symmetric hyperbolic. If in
addition, Re (1" (u) Y- &&,Bjx(u)) is definite positive for all £ # 0, then the
assumptions (H1) and (H3) are satisfied.

The first step is to find the correct limiting boundary conditions for
equation (1.1). These come from the study of a natural “inner layer” o.d.e
equation, for b € By, (see [Gi-Se], [Rou], ) :

(1.6) A(bw)fg Z’Z( (bw)‘fl";“)—o, w(0) = 0,

where By, (b,u) = Y vj(x)vg(x)B;k(b,u). In (1.6) z stands for a fast variable
in the direction v. If (y,z,) — y + zpv(y) with y € 0Q and x,, small
parametrizes a neighborhood of 9€2, then z is a placeholder for z,/c. In
what follows, what we call a solution of (1.6), is a solution on [0, co[ such
that (b,w(z)) € O* for all z. One introduces the set

C = {(b,u) € Oy : (1.6) has a solution
such that v = lim w(z)}

z——400

(1.7)

Following [Gi-Se|, [Rou], [Gr-Gu]| the correct limit boundary conditions for
(1.1) read

(1.8) Ve e 09, (b(t,x),u(t,x)) €C.



Constants are solutions of (1.6) and Assumption (H4) implies that for
all (b, w) there is a family of solutions wy (), depending on parameters v,
such that wy , , converges to u as z tends to infinity at an exponential rate
(stable-central manifold theorem). That one of these solutions connects u
to zero is a condition on (b, u) which defines C. That the connection can be
chosen smooth with respect to parameters is a transversality assumption.

To start the discussion, we first assume that for all b € By a family of
solutions of (1.6) is chosen, connecting 0 to a set of end states C, C U(D).

Assumption 1.2. We are given a smooth manifold C C Oy such that for
all b € By, Cp := {u € UD) : (byu) € C} # 0, and a smooth function W
from C x [0,00[ such that for all (b,u) € C, wy, = W(b,u,-) is a solution
of (1.6) and wy,(2) converges to v when z tends to +00, at an exponential
rate, which can be chosen uniform on compact subsets of C.

Assumption 1.2 is the natural analog of assumption (H4), [Z], made in
the planar shock theory.

The properties of C depend on the stability of wy,,, solutions of ODE (1.6).
Consider the linearized equation of (1.6) around wy,,

() 4 (A ) ) 57— (Baw) 5
dw

(1.9) - d%((w.qu;L(w))%) -0

w(0) = 0.

These equations depend on the parameters b € By and the function w(z),
with w € C°°(]0, 0o[; RY). The unknown is 1.

Definition 1.3. We say that the limiting boundary conditions (1.8) are
transversal if:

i) For all b € By, Cy is a smooth manifold of dimension N_ equal to the
number of negative eigenvalues of Ay (b, u).

i) For (b,u) € C, the tangent space of C, at wu 1is the set of @ such that
the linearized equation (1.9) with w = wy,, has a (unique) solution W such
that @ = lim, oo W(2).

In [Gr-Gu], it is proved that in the small amplitude case, i.e., for v in a
suitably small neighborhood of 0, there is a unique manifold C and connec-
tion W having the properties above; moreover, the transversality condition



is satisfied. They also prove that the boundary conditions (1.8) are max-
imally dissipative, when u is small and the parabolic term is the Laplace
operator. In the large, we substitute for maximal dissipativity the more
general uniform Kreiss-Lopatinski condition.

Consider a point (b,u) € C, b = (t,z,by). To derive the Kreiss-Lopatinski
condition for hyperbolic problems, the idea is to approximate {2 near x by
the half space {v(z) -z > 0}, and to linearize the equation (1.1) around
the constant solution u. This leads to a constant coefficient problem which
is analyzed using a tangential Fourier-Laplace transform. We proceed in a
similar way for (1.4). To (b,u) € C we associate the profile w(z) = wyp ().
The substitute for the constant state w is the “planar” boundary layer
w(z) = w(v - x/e) that interpolates between 0 on the boundary v -z = 0
and the inner state u . Next, we linearize the equation (1.4) around w to
get the linear operator

d d
~ 1
(1.10) O + Z Agﬁjv —€ Z Bj,k8j27kv + gEﬁv
j=1 Jk=1
where
d _ d _
Agv =Ajv— Z V(0w - Vy By j)v — Z vi(v - VyBj )0, w
k=1 k=1
d _ d
(1.11) Eﬁv = Zyk(v vuAk)azw - Z ijk(v qu],k:)agw
k=1 Gk=1

where f stands for the function f evaluated at (b, @). In (1.10), the coeffi-
cients are functions of v - x only, and thus we can again perform a Fourier-
Laplace transform in (¢,y) where y are the variables in the tangent space
T,Q. This leads us to introduce the following symbols, where n € T;0€) is
a Fourier tangential frequency and 7 — iy a Fourier-Laplace time frequency:

d
(1.12) M= (it + N+ > A+ > nymBjy + B
j=1 1<j,k<d
d o~ ~
(1.13) A=A — N inu(Bj + Br)
i=1 1<j,k<d

9



The symbols M and A are functions of z € [0, 00[ which depend on the
parameters (b,u) € C and (7,7,7) € R x T;0x]0, 0o|. Introducing the fast
variable z and scaling the frequency variables properly (see section 2 below),
the Fourier-Laplace transform of (1.10) reads

~ d%*v dv

1.14 Lv:=-B,— +A—+ M
( ) v dz? dz+ v

This is an ordinary differential system in z, depending on the parameters
(b,u, ) with ¢ := (1,n,7).

Let E_ (b, u, ¢) denote the set of initial data (v(0), 2(0)) € CN xCN such
that the corresponding solution of Lv = 0 is bounded as z tends to infinity.
Under Assumptions 1.1 and 1.2, for all (b,u) € C and ¢ = (7,7,7) # 0 with
v >0, E_(b, u, () has dimension N and depends smoothly on the parameters
(b,u, () (see Corollary 2.7 below). The weak stability condition states that
the problem Lv = 0, v(0) = 0 has no nontrivial bounded solutions, equiva-
lently that E_ is transverse to kerI" := {0} x C", where I is the mapping
(11,0) — @ from CV x CN to CN. This is clearly necessary for linear stabil-
ity, its violation implying the existence of local time-exponentially growing
modes. The strong or uniform stability condition requires in addition some
uniform behavior as ¢ tends to zero and also as ( tends to infinity. In partic-
ular, the uniform behavior near the origin is needed to recover the uniform
stability of the hyperbolic boundary value problem. The uniform behavior
at infinity is equivalent to the well-posedness of the Dirichlet boundary value
problem for the parabolic part of the equation.

Because E_ and kerI" both have dimension NV in a space of dimension
2N, there is a determinant

(1.15) D(b,u, () = det (E,(b, u, C),kerf)

obtained by taking orthonormal bases in each space, and the result is inde-
pendent of the choice of the bases. This is the Evans’ function (see [Z], [S]).
D vanishes if and only if E_ NkerI" is not reduced to {0}.

To deal properly with the high frequencies, some appropriate scaling is
required. With

N

(1.16) A(Q) = (1 +72 497+ |ny4)

introduce the space E,(b,u,g) = JAE_(b,u,() where Jy is the mapping
(,0) = (t, A=20) in CN x CV and the “scaled” Evans’ function

(1.17) D(b,u,¢) = det (E_(b,u,(),kerT).

10



Note that ker I' is invariant by Jx so that D vanishes if and only if D vanishes.
Moreover, for bounded values of ¢, there is C' such that £|D| < |D| < C|D,
since, in the computation of the Evans’s functions, the introduction of Jy
only amounts to a change of scalar product in C?V.

The weak stability condition requires that D # 0 for (b,u) € C and ¢ # 0
with v > 0. The strong or uniform reads

Assumption 1.4 (Uniform stability condition). There is a constant
¢ > 0 such that for all for all (b,u) € C and { = (1,7v,n) # 0 with v >0

(1.18) |D(b,u,¢)| > ¢

Remarks 1.5. a) The weak and uniform stability conditions are conditions
on the “frozen coefficient” planar boundary value problems associated with
the inner layer solution. They are natural analogs of those defined in [Z]
for the planar shock case. In the one-dimensional boundary layer case,
Assumption 1.4 reduces to the condition imposed by Grenier and Rousset
[Gr-Ro).

b) The uniform stability condition is equivalent to saying that

(1.19) lv] < CAu| for U ='(u,v)€E_(bu,7,1n,7)

uniformly with respect to (b, u) and (7,7, ) bounded, with (7,7,7) # 0 and
v 2 0.

c¢) Under Assumptions 1.1 and (1.2) the spaces E_(b,u, ,v,n) have
limits E® (b, u, 7,7,7) when (7,v,7) = p(#,7,%) and p tends to zero, with
(#,1,%) # 0, ¥ > 0. In addition, the spaces E® are closely related to
the similar spaces associated to the limit hyperbolic problem, and extend
continuously to ¥ = 0. The uniform stability condition implies that for all
(b,u) € C and (7,7v,n) # 0 with v > 0:

(1.20) E-(b,u,¢) () ({0} x CV) = {0},
and for all (7,9,7) # 0 with 4 > 0:

(1.21) B (b,u,7,9,7) () ({0} x CV) = {0}
This will be shown in Appendix A.

d) The stability condition also involves a uniform behavior as (7,7, 7)
tends to infinity. Indeed, one can show that the spaces E_(y,b,u,,1n,7)

11



have limits as E*(y, b, u, 7,7, ) when (7,7,7) = (A7, A2, A7j) and \ tends
to infinity, with (7,7%,7) # 0, 4 > 0. The uniform stability condition (1.18)
for large values of ( is equivalent to the transversality condition E*°Nker ' =
{0}. It turns out that this condition is equivalent to the well-posedness
of the parabolic Dirichlet boundary value problem, as can be seen by a
standard rescaling/asymptotic ODE argument (see [Z], Lemma 4.28 and
also the proof of Lemma 2.14 below). In particular, it is satisfied when
the parabolic operator is symmetric, i.e. when there is a smooth definite
positive S(b, u) such that Re (> §;,SBj 1) is positive definite for £ # 0 (see
Remark 2.15 below).

The following useful relation was established by Rousset [Rou] via Evans
function calculations. A proof of the second part of the assertion (i.e., sat-
isfaction of the uniform Kreiss-Lopatinski condition) is given in Appendix
A; see also Remark c) above.

Proposition 1.6. [Rou] Under Assumptions 1.1, 1.2, the uniform stability
condition Assumption 1.4 implies both that the limiting boundary condition
(1.8) is transversal and that the resulting limiting hyperbolic boundary value
problem (1.1) (1.8) satisfies the uniform Kreiss-Lopatinski condition. (In-
deed, these two statements are together equivalent to Assumption 1.4(ii).)

Therefore, under Assumptions 1.1, 1.2 and 1.4, one can solve the mixed
problem (1.1) (1.8) for initial conditions which satisfy sufficiently many com-
patibility conditions (see [Maj], [Ra-Ma|, [Mok], [Mé2]).

Remark 1.7. For outer initial data sufficiently close to some particular
value ug for which there exists a boundary layer satisfying the uniform sta-
bility condition 1.4 (or, more generally, a compact set Uy of such values),
Remark 1.5 (b) above, together with the above proposition, implies that
Assumption 1.4 is automatically satisfied for such time as the outer solution
remains near ug (resp. Up). This gives a simple situation in which these
assumptions are verifiable a priori for solutions with large boundary layer.
Note that this does not preclude the possibility of multiple (but locally
unique), stable boundary layers, with associated distinct valid boundary
layer expansions. For analogs in the shock layer setting, see [AMPZ].

Consider a solution ug in H*([-Tp, Ty] x Q) of the hyperbolic bound-
ary value problem (1.1) (1.8), with b a given smooth enough function in
H®o([—Tp, Tp] x ). The index s is large enough, and how large will be
made precise later. In any case, sg > 1+ % so that functions in H*° are

12



Lipschtiz continuous. By definition of the boundary condition, there is a
profile

(1.22) wo(t, Y, 2) = W(ty),uo (t.y) (2) -

The profiles wy, are defined for b € By and a € Cp,. It is convenient to
extend the definition to all b and a € U.

Lemma 1.8. There is a C* function W on O x [0, 00[ such that
i) W(b,a,z) =0 when b € By and z =0,
it) for all compact set I C xU, there are § > 0 and C such that

Vbe B, YVaeK,V2>0: |W(ba,z)—al <Ce ®
iii) when b € By and a € Cy then z — W (b,a, z) is a solution of (1.6)

Proof. One can parametrize a neighborhood of 9€2 using normal coordinates
x =y + zpv(y). Near (b,a) € C, one can use coordinates a = (a’,a”) such
that C is given by the equations a” = h(b,a’). Then one can extend locally
the function w as

W (b, a,2) = wy o papan(2) + (@ = h(V’,a')) tanh z .

where b = (t,y,bo) if b= (t,x,by) and = = y+ x,,v(y). When z is outside a
neighborhood of 02, one can take W = a. Gluing the pieces by a partition
of unity yields the result. O

Taking ¢ € C* () such that ¢ = 0 and dy = v on 95, introduce
(1.23) ug(t,z) = W(b(t, ), uo(t, ), p(x)/e) -

By construction, it satisfies

(1.24) wojon = 0.
u§ — ug = O(e™9%/%)

Thus ug is a perturbation of ug in the interior and the general idea is that
ug is close to a solution of (1.4). In this direction, the main step is to
prove that the linearized equations from (1.4) around u§ are stable. More
precisely, consider a family of perturbations v* € WH>°([~Tp, T] x Q) and
the linearized equation from (1.4) around u := uf + €v® :

(1.25) Pu8+ev(tawaataaﬂc)u = f’ U|6Q =0

13



as-+ev 18 a differential operator, first order in ¢ and second order in x, whose
coefficients depend on b, @5 and v and their derivatives. Its explicit form is
computed in section 4 below.
The main new result of this paper is that, under Assumptions 1.1 and
1.4, the equations (1.25) are well posed in L2. With Ty > 0 given, we assume
that

ug € W22([=Ty, To] x Q), be W2®([~Ty, Ty] x Q)

1.26
( ) sup <”UEHL°° + Hgvt7xrvEHLOO + H52V§x’UEHL°°> < 0.

€€]0,1]

Theorem 1.9 (L? stability). There are C > 0 and &y such that for all
€ €]0,e0] and f € L*([~To, Tp] x Q) vanishing for t < 0, the equation (1.25)
has a unique solution which vanishes for t < 0. Moreover

(1.27) lullzz + VEldzull 2 + €2 |03ull 2 < O fll2 -

This theorem is proved in section 4 below together with slight improve-
ments which are needed in the proof of the estimates for the derivatives. Let
us just mention where the difficulty lies. The coefficients of Pz¢ depend on
¢(z/e) and thus are not (uniformly) Lipschitzean. Moreover, the coefficient
of u in Pye has a factor % in front of it. Thus the usual energy method us-
ing integration by parts yields singular and apparently uncontrolled terms.
This is exactly where the smallness assumption in [Gr-Gu] comes in. Using
it together with a tricky argument, the authors were able to absorb the sin-
gular terms. Our main objective in this paper, is to replace the smallness
argument by a detailed analysis of P,: and to use the Assumption 1.4 to
construct symmetrizers.

The next step is to prove estimates for the derivatives of the solution wu.
The classical approach is to differentiate (1.25) with respect to vector fields
which are tangent to R x 92, in order have natural boundary conditions for
the derivatives. For non characteristic problems, the normal derivatives are
deduced from the tangential ones using the equations. Here, we can adapt
the first argument, but the second certainly fails since the coefficients of Pye
are singular in the normal direction and the solution cannot be (uniformly)
smooth in this direction. This leads us to introduce spaces with conormal
Sobolev smoothness. Such spaces have already been widely used in the study
of boundary value problems, see e.g. [Ra2|, [Gu2]. Let {Z}o<x<i denote a
finite set of generators of vector fields tangent to R x 9, with for instance
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Zy = 0. For U C R x Q and m € N, define the space

H™U) = {ue L*(U) : Zy, ... Zy,u € L*(U),

(1.28) Vp <m,V(ky,. .. ky) €{0,.. .k} }

This space is equipped with the obvious norm, denoted by || - [|3ym ().

In order to solve nonlinear problems, we need work in Banach algebras
which means here that we have to supplement the H™ estimates with L™
estimates. Introduce the following norms

I
(1.29) lalbwiy = lallzee +>° D" N2k -+ Ziyulles.
p=11<k1,kp<k
Reinforcing (1.26), we now assume that on Qr, := [—Tp, Tp] x €,

uy € W22 (Qp ), be W22 (Qnp)

sup |[[v°]wm + €l|Vi 0% [ywm + 62HV§UE||Wm < 00.
€€]0,1]

(1.30)

Theorem 1.10. There are C > 0 and €¢ such that all € €]0,e0] and all
[ € H™([=Tv, To] x ) vanishing for t < 0, the solution of equation (1.25)
satisfies

(1.31) lullyem + Velldzullpem + €22 [03ullrem < Ol fll3em

If in addition m > 2 + 4 and f € L>([~Ty, Ty] x ), then the solution u
also satisfies

(1.32) lullwez + elldzulw + 2[Zullze < C(Iflem +ell fllz) -

These results can be used to solve the nonlinear equations (1.4). In order
to avoid technical discussions on compatibility conditions for the Cauchy
data and the boundary conditions, we consider here the simple case where
the Cauchy data for (1.1) and (1.2) are zero, but with a non trivial forcing
term, see [Gr-Gu]. More precisely, we consider F'(b, u) such that F'(0,0) = 0.
With indices m and sg such that

d+1 d+1
> — > 3——
5 S0 > m + 5
consider b € H*([—Tp, Tp] x ) such that b = 0 for ¢ < 0. Assuming that
the state u = 0 belongs the domain of hyperbolicity O in Assumption 1.1

(1.33) m
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and shrinking Tp if necessary, the mixed Cauchy problem (1.1) (1.8) has a
unique solution ug € H*([—Tp, Tp] x ) which vanishes for ¢ < 0. In this
case, uf given by (1.23) vanishes for ¢ < 0 and is an exact solution of (1.4)
there. We show that this solution can be continued to [0, Tp] x € and that
ug is a good approximation.

Theorem 1.11. There is g > 0 such that for all € €]0,ep] the problem
(1.4)(1.5) has a unique solution u® which vanishes for t < 0. Moreover,

(1.34) [u = ugllzem + flu = ugllze = O(e).-

This theorem is proved in section 6. Indeed, we first construct a first
corrector uj such that uj = 0 for t < 0, uj = 0 on [—Tp,Tp] x I and
u;, = ug + cuj satisfies equation (1.4) up to an error e = O(e). Indeed,
when one substitutes uf in (1.4), the O(e~!) term is killed by the choice
(1.23) and because W satisfies (1.6) when the boundary condition is satis-
fied. However, it remains an 0(6—580/ ¢) term. The corrector uj, given by
a formula analogous to (1.23), can be chosen to cancel this term (see the
general discussion of BKW solutions in [Gr-Gu]). Then the solution u® is

constructed as uf + ev®, where v° solves
(1.35) Pusv® +eQ(v°) = f:=¢c"e

and Q is at least quadratic in v. Denoting by || - [|xm= [resp. |- |ym] the
norm given by adding the left [resp right] hand sides of (1.31) and (1.32)
one proves that

1eQ(v%) Iy < et O (M),

(1.36)
I12(Q(v5) — Qv5))[lym < eV/*C(M) [lvr — v,

provided that

gllviflr~ <1, ellviflze <1

(1.37)
ellviflam <M,  elviflam <M.

Together with Theorem 1.10, this shows that the equation (1.35) can be
solved in A, provided that ¢ is small enough.

The main result in [Gr-Gu] is analogous to Theorem 1.11, but does not
give the existence up to Ty. They proved the linear and nonlinear stabil-
ity as long as ug remains smaller than some small constant in a suitable
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norm. Here, we get the stability under the more geometric condition that
(y,uo(t,y)) remains in a domain where the uniform stability condition As-
sumption 1.4 holds, knowing that when this condition fails, strong instabil-
ities can occur. Note also that our estimates in Theorem 1.10 are stronger
than the corresponding estimates in [Gr-Gu], since they proved estimates
for derivatives €Z and not for Z. The price they had to pay was that they
needed a very accurate approximate solution u;,, so that the solution is con-
structed as u +cMv with M large, so that control of € derivatives for v gives
control of L™ norms for eéMv. Moreover, the accurate approximate solutions
were constructed by BKW expansions, which require a lot of smoothness on
ug. Indeed, they assumed ug € C*°.

However, the results in Theorem 1.10 and 1.11 are not quite satisfactory.
Because (1.4) is parabolic, one should expect the solutions to be smoother
than the solutions of (1.1). Here we get a result going the wrong way.
We start from a very smooth solution ug of (1.1) and we end up with less
smooth solutions of (1.4). This is clearly related to the method of proof, and
a direct proof of existence with uniform estimates for (1.4), without using
the solution ug of (1.1) would be very interesting. This will be developed in
a further work. In any case, the stability analysis in Theorem 1.9 is the key
point and is indeed the main concern of this paper.
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2 Linear stability : the model case

This section is an introduction to and preparation for the general analysis
developed in section 4. We consider the model problem where the domain
is a half plane and the hyperbolic solution ug as well as the source term
are constant. More precisely, we fix y € J{ and a local chart x from a

neighborhood V of y to a neighborhood V of 0 in R? such that Q NV is

transformed into VN {z > 0} where (y,z) € R4~ x R are coordinates in R?,
and the defining function ¢ in (1.23) is ¢ = x. The form of the equation
(1.4) is preserved by the change of coordinates, as well as the Assumptions
1.1 and 1.4. For simplicity, we keep the same notations. The linearized
equations around u, read

d d
1
2.1) 8tu+ZA§8ju—£ZBjkajzku—i-fEau:f, x>0,
k) b E

: j=1 jk=1

Uy—p = 0.

Av=Aw—e> (B -v)opus —e > (By; - Oui)v,
k k

15 — N.
Bj,k = BJJ‘”

Ev=c¢ Z(g; -0)Qjus — € Z(E;k - 0) 07 pu, + ~§~’7k(’u, djug)Okus,
J Jk
where A stands for the function A evaluated at (b(t,y, ), us(t,y,z)) and A’
is the derivative of A with respect to the variable u. The d —1 first variables
are (y1,...,y4—1) and the d-th variable is x.
In particular, we will consider (2.1) when u = uj + cv and u§ is given
by (1.23), which reads in the new coordinates,

(2:2) ug(ty,) = Wb(t,y. @), uo(t . ), )

As mentioned in the introduction, the starting point is to analyze the lin-
earized equation when u is a constant and the coefficients (¢, y, x) are frozen.
This leads us to consider functions

T

(2.3) W (t,y,z) = W(b, a, g) te=up, )

where

(2.4) p= (bv a, C)

18



are parameters which vary in a neighborhoods of b = b(t,0,0) in R x R% x
RMo x [0, 00[, @ = ug(,0,0) in O, and ¢ = 0 in RV respectively. We denote

by p = (b,a,c).
When « is given by (2.2), the linearized equation (2.1) simplifies to

Btu—i—ZAﬁ@u—aZng@JQku—i- “Efu=f, x>0,

(2.5) =

Up=0 = 0.
with
A v= A v — (Bjd 0)0,wp — (Er/i,j - O wp )V
(2.6) Bg’k = Bj1,
E'v = (g;l - 0) 0wy — (Eél,d : v)@?wp - Eg,d(va Dz wp) 0wy
and the functions are now evaluated at (b, w(p, x/¢)). We remark that all the
coefficients Ag, Bj]j. . and E' are C* functions of p and z = z/e. Moreover,

they converge with an exponential rate when z tends to +0o. The limits are
denoted by A%°(p), B2 (p) and E*°(p). They are given by

2.7 AF@P) = Ajba+c), Bji(p) = Bjkba+c), E>(p)=0.

Moreover, there are C' and § > 0, such that for all p in a neighborhood of p
and all indices j and k:

(28)  |A¥(p,2) — A®(p)| + | BE (. 2) — A(p)| + |[E*(p, 2)| < Ce™

In this section we prove uniform a priori estimates for (2.5). We shall
concentrate more on the method than on the estimates themselves. The
symmetrizers we construct now will serve as symbols for the general con-
struction of symmetrizers performed in section 4.

We denote by || - || and | - | the L? norms respectively on the half space
{(t,y,r) € R : 2 > 0} and on the boundary {(¢,y) € R%}.

Theorem 2.1. There is C such that for all € €]0,1], all v > 0 and all test
functions u, f satisfying (2.1), one has

e ull + yETle " yull + /Tl dsul

2.9
29 +elle™qull + elle™ 0y dpull < Clle™f]
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The trace dyu|,— can also be estimated as stated in section 4, but this
is unessential here. Introducing @ = e 7'u, (2.5) is equivalent to

at+fyu+ZAﬁau—a Z Bﬁkafkm “Efa=f,

(2.10) =

ux:() =0.
with f = e 7 f. Thus (2.9) is equivalent to
(2.11) Yl + &0y 2l + €10y 0yl < C| ]

for the solutions of (2.10) We write (2.10) in the condensed form

—cd%u+ A9, u + MW_(Bfld) 7,

(2.12)
Up=0 = 0.
where
d—1
AF = (Bg,d)fl (Aﬁ - Z(Bﬁd + Bj )Eaj)
=1
M# = (B )7 (=01 + ) +ZA”58 = Z 0%+ B

7,k=1

We have used that, by Assumption (H1), B4 and thus B d 4 are invertible.

Remark that A* and M* are differential operators in £(d;++) and £8,. They
are respectively of order 1 and of order two for the natural parabolic weights,
where €0, has weight 1 and €0; and ey have weight 2.

Write (2.12) as a first order system for U = (gau ﬂ) :

1
o,U — gG'iU =F,
I'Upo=0.

(2.13)

with



Theorem 2.1 follows from the following estimates for the solutions of
(2.13): there is C' such that for all € €]0, ], all 7 such that for all v > o

and all test functions U = (:j), F satisfying (2.13), one has

5
(2.14) Yllull + VENlIOyull + ellOgull + \\//; ol + |9yvll < CIIF|?

2.1 Symmetrizers

Recall now the essence of the “method of symmetrizers” as it applies to
general boundary value problems

(2.15) Ogu=G(z)u+ f, Tu(0)=0.

Here, u and f are functions on [0, co[ values in some Hilbert space H, and
G(x) is a C! family of (possibly unbounded) operators defined on D, dense
subspace of H.

A symmetrizer is a family of C! functions z + S(x) with values in
the space of operators in H such that there are Cy, A > 0, 6 > 0 and C;
such that

(2.16) Ve, S(z)=S(x)* and |S(x)| <Cy,
(2.17) Vo, 2ReS(x)G(x)+ 0,5(x) > 2)AId,
(2.18) S(0) > 8Id — C1T*T.

In (2.16), the norm of S(x) is the norm in the space of bounded operators
in H. Similarly S*(x) is the adjoint operator of S(x). The notation ReT =
$(T + T*) is used in (2.17) for the real part of an operator 7. When T
is unbounded, the meaning of ReT" > ), is that all u € D belongs to the
domain of 7" and satisfies

(2.19) Re (Tw,u) > Alul®.

The property (2.17) has to be understood in this sense.

Lemma 2.2. If there is a symmetrizer S, then for all u € C([0,00[; H) N
C°(]0,00[; D), one has

02
(2.20) Al + 8]u(0)]* < TOHfH2 + C1|Tu(0)?,

where f := 0,u — Gu.
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Here, | - | is the norm in ‘H and || - || the norm in L?([0, co[; H).

Proof. Taking the scalar product of Su with the equation (2.15) and inte-
grating over [0, o[, (2.16) implies

—(S(0)u(0), u(0)) = / 0, (S, w)dz

(2.21)
= / ((2Re SG + 0,5)u, u)d$ + 2Re / (Sf, u)d:n.

By (2.17),
/ ((2Re SG + 0,9)u, u)dz > 2X|[u|/*.

By (2.18) and the boundary condition I'u(0) = 0,
(S(0)u(0), u(0)) > 8]u(0)[* — C1[Tu(0)[.

By (2.16)
C2
2| [ (S7,u)da| < 20l 71 Jull < SEFIP + Al

Thus the identity (2.21) implies the energy estimate (2.20). O

2.2 Laplace—Fourier transform

To obtain energy estimates for (2.13) we perform a Fourier transform in
variables (t,y). The matrix G* in (2.13) is a differential operator in 0}, €9,
with coefficients independent of (t,y). Denoting by U(r,n,z) the Fourier
transform of U(t,y, z), (2.13) is equivalent to

o 1 ~ ~
(2.22) 0,U = gg(;,p, eT,ev,en)U + F, TUjp—g = U = 0.
where
g(va)7577n):: ( ;; {j ) )
d—1
A(z,p,7,7,m) = (B )" (Ag = ini(Bly+ Bgﬁ)

1

.
I

d—1 d—1
M(z,p,7,70m) = (BY )7 (G +9) + D img A+ D7 mym B + BF)
=1 =
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and the functions Ag. etc are evaluated at (p, z).
By Plancherel’s theorem, the energy estimates (2.14) are equivalent to
the following estimates for the solutions of (2.22):

(2.23) (v +elnf?)la] +(\\/g+ nhlell < ClLE].

It is convenient to eliminate the € in (2.22) by setting

A

(2.24) Uz) =Ulez), F(2)=¢F(ez), (7,7,7) = (eT,ev,em).
Then, (2.22) is transformed into
(2.25) 0.U =G(z,p, 7,77 U+ F, TU(0)=u(0)=0.

With (2.24), the energy estimate (2.23) is equivalent to the energy estimate
N U C =
(2.26) G+ lalal® + (VA + aplol+ < ;HFH

for the solutions of (2.25).

We now proceed to the proof of (2.26) and to the analysis of (2.25). We
denote by ¢ = (7,7,7) € R x [0, 00[xR%! the frequencies. There are three
different regimes, depending on the size of |(|:

1) |[¢] is small. (Remember that we will perform the substitution
(2.24), so that in the original variables this means that e(|7| + || + |n|) is
small). In this regime, part of u is governed by an elliptic-parabolic equation
and the other part is governed by the limiting hyperbolic problem.

2) |¢|] = 1. This is the intermediate regime, where (2.25) has an
“elliptic” behavior.

3) |¢| is large. In this high frequency regime, the parabolic behavior
prevails. There is a natural quasi-homogeneity, where n has weight 1 and
(,7) have weight 2. The length is given by (¢) = (72 4+ 42 + |f|*)!/4.

The next result summarizes the estimates in the different regimes. It
implies (2.26) and therefore Theorem 2.1. Introduce a weight function h(()
such that

_ G+¢HY? when || <1,
(2.27) h(¢) = { (©) when [¢] > 1.

Note that both (7 + [¢[*)'/? and (¢) are ~ 1 when |¢| ~ 1. Introduce next

(228) (¢ =nO+(N~>
which is of order h when [¢| < 1 and of order (¢)*/? when |¢| > 1.
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Theorem 2.3. There are a neighborhood of p and a constant C' such that

for all p in this neighborhood, all ¢ € R¥1 with 4 > 0 and all U and F in
C5°([0, 00[) satisfying (2.25), one has

(2.29) R2|lal + hlloll + €9 (0)] < CIF].

Remark 2.4. The inequality (2.29) implies the desired estimates (2.26)<
(2.23)< (2.14) = (2.9) but is much more precise. It includes estimates of
the traces for v = 0, u and also estimates for \/e0;u since h > min (1, /) 7.

2.3 Reduction to constant coeflicients

We prove Theorem 2.3 by constructing symmetrizers in the three different
regimes. Remember that the frequencies for (2.25) are smaller by a factor
¢ than the actual frequencies for (2.22) (see (2.24)), so that the regime
¢ — 0 is crucial. The main idea is to conjugate system (2.25), for bounded
frequencies (, to a constant coefficient system

(2.30) O.U1 =G®U, + Fy, T1U1(0)=0,

using the exponential convergence of the coefficients at z = oo. Thus we
are reduced to constant coefficient equations and we perform the classical
analysis, looking at the growing and decaying modes of G*°. Here we extend
Kreiss’ analysis to parabolic-hyperbolic systems (2.30). The case where
|| > po > 0 falls in the so called elliptic region. The hyperbolic behavior
occurs in the limit { — 0. When ( is large, the parabolic character prevails
and the equation (2.25) can be handled directly.

The coefficients C* which enter in the definition of G have limits at
infinity in z, see (2.8). Therefore, G(z,p, () converges with an exponential
rate to a limit G*=°(p, {) when z tends to 4.

Lemma 2.5 (Spectral analysis of G). i) There are ¢ > 0 and p; > 0
such that for p in a compact neighborhood of p, |(| > p1 with v > 0, and
z € [0,00[, G(2,p,¢) has N eigenvalues, counted with their multiplicities, in
Rep >0 and N eigenvalues in Reu < 0. They satisfy |Re p| > ¢(C).

it) When ¢ # 0 and v > 0, G*¥(p,() has N eigenvalues, counted with
their multiplicities, in Rep > 0 and N eigenvalues in Re p < 0.

iti) When ¢ =0, G>(p,0) has 0 as a semi-simple eigenvalue, of mul-
tiplicity N. The nonvanishing eigenvalues are those of (Bgfd)_lAgo.
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Proof. a) When ( is large, we use the quasi-homogeneity to write

M= (M +0((0)), A=(QA+0(),

where
d—1
M = (Bcﬁl,d)_l ((m’ + fy)Id + Z ankB] k)
Gk>1
(2.31) A .
A=—i ﬁk(Bfl,d)il(Bkd_'_Bdk)
k=1
with
P T
(O (€2’ ()
Thus

( <<(>)Id 1(31 )g< <C>(_)11d 1(31 ) =(0) ( ]\94 Ij ) +0(1).

Tracing back the definitions, [ is an eigenvalue of the matrix G, coefficient of
the (¢) term in the right hand side, if and only if —(i7 + ¥) is an eigenvalue
of

d
> &&Bjk(bwp(2))

jk=1

with g = —ip and (&1,...,84-1) = 7. If p belongs to imaginary axis, &4
is real and by (H1) one must have 4 < —c|¢|%2. For 4 > 0, this implies
that £ = 0, and therefore that 7 — i = 0, which contradicts that () = 1.
Thus G has no eigenvalues on the imaginary axis. Therefore, the number of
eigenvalues in Re > 0 and in Rep < 0 is independent of é when 4 > 0.

Moreover, when 9 = 0, G reduces to

0 Id
(Bfl’d)—l 0o /|-

The eigenvalues are the square roots of the eigenvalues of By %, and therefore
N of them are in Rep > 0 and N in Re u < 0.

By a standard perturbation argument, for (¢) large, the eigenvalues of
G are i = (C)i 4+ O(1), where /i is an eigenvalue of G, and ) of the lemma
follows.
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b) Similarly, tracing back the definitions and using (2.7), p is an eigen-
value of G(p, () if and only if —7 + iy is an eigenvalue of

d d

Z njAj(b, a+ C) — 19 Z gjngj,k(ba a + C)

j=1 Gk=1
with & = —ip and (&1,...,&-1) =n. If Rep = 0, € is real and (H3) implies
that v < —c(|u|? + |n|?). For v > 0, this implies that v = 0, z = 0 and
1n = 0. Thus the matrix above vanishes, the eigenvalue —7 must be zero and
therefore, ( = 0. This shows that G* has no eigenvalues on the imaginary
axis when ¢ # 0 and v >0

The number of eigenvalues in Rep > 0 and in Re x < 0 is independent

of (p,¢) when ¢ # 0 and v > 0. Letting z tend to oo, ) implies that for ¢
large, N eigenvalues lie on each half plane.

c) When ¢ = 0, one has

. (0 Id
g (p’o)_(o B;éAd(b,aJrc))'

By (H1) (H4) Bi%Al(b, a+c) is invertible when p remains in a neighborhood
of p. Thus the eigenvalues of G are zero with multiplicity N, and the
eigenvalues of By %Al. O

Lemma 2.6 (Conjugation to constant coefficient). For all ( € R}
with v > 0, there is a neighborhood w of (p,() and there is a matriz W
defined and C*> on [0, 00[xw such that o

i) WL is uniformly bounded and there is 0 > 0 such that

(2.32) W(z,p,¢) —1d| < Ce %,
it) W satisfies
(2.33) IW =G(2)W(z) = W(2)G>.

Proof. Consider (2.33) as an ordinary (linear) differential equation in the
space of matrices. Because G converges exponentially to G, it has the
form

W = LW + 6G(2)W,

where L is the constant coefficient operator adG*> = [G*°, -], and 0G(z) is
the left multiplication by G(z) — G(c0) = O(e™%). Now we apply the Gap
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Lemma of [GZ], [ZH], [Z], which asserts that associated with the eigenvalue
0 and the eigenvector Id of £, there is a solution of (2.33) satisfying (2.32).
Recall that W is obtained as the solution of

W(z) = Id+ / Z eCIEII_ (5)6G(s)W(s)ds
0

(0.9}
—/ eCmILILL6G (s)W(s)ds
z

where I [resp II_] is the spectral projector on the sum of the generalized
eigenspaces of L associated with eigenvalues in Re u > —k [resp. Re u < —k|
where k is chosen in ]0,d[ such that £ has no eigenvalues on {Reu = k}.
Together with the estimates in [GZ], [ZH], [Z] which prove the existence of
a solutions such that W —Id = O(e™%) for 6 < &, this shows that one can
choose W depending smoothly on the parameters, as long as the eigenvalues
of £, which are differences of eigenvalues of G*°, remain separated by a line
Re o = k for some « €]0,d[. This is true locally.

Consider D(z) := det W(z). Then

(2.34) 0.D(z) =tr(G(z) —G>) D(z).
This clearly implies that D(z) never vanishes on [0, 00[. In addition, since
D(z) = 14+0(e%), this also provides uniform bounds for D(z) and 1/D(z).
To prove (2.34), denote by (Wi,...,Way) [resp denote by (G, ...,Gan)]
the columns of W [resp. G]|. Then (2.33) implies that

0.D = det[Wr,...,G(2)Wj,... Wax]
J

=) det [Wi,...,WGj(c0),... Wan] .
J

Next use the following algebraic identities for matrices VYW and G with columns
(Wl, ey WQN) and (Gl, e ,GQN):

> det [Wh,...,GW;,... Way] = (trG) det W,

J
> det [Wh,...,WGj,... Way]| = (trG) det W,
J

which are quite clear when (Wj,...,Wsy) is a basis, and extend alge-
braically to general W. O
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The substitution U = WU transforms the equation (2.25) into (2.30)
with 1 = W™IF and I'y(p, ¢) = TW™1(0,p,¢)v. In particular, let E_(p, ¢)
[resp. F_(p, ()] denote the space of initial data U(0) [resp. U;(0)] such that
the corresponding solution of 9,U = G(z,p, )U [resp. 0.U; = G*=(p,()U1]
is bounded as z tends to infinity. Then

(2.35) E_(p,¢) = W(0,p, OF(p, ().

Corollary 2.7. E_(p,() and F_(p, ) have dimension N and vary smoothly
with (p,¢) when ¢ # 0 and v > 0. In addition,

(2.36) F_(p,¢) Nker ' (p, ¢) = {0} .

Proof. Since F_ is the spectral subspace for G associated to eigenvalues
lying in Rep < 0, it has dimension N by Lemma 2.5 and varies smoothly
with the parameters (p,() when ¢ # 0. The identity (2.36) follows from
Assumption 1.4 which means that E_(p,() Nker'1(p,{) = {0}. O

Remark 2.8. Lemmas 2.5, 2.6 and the first statement in Corollary 2.7
only use Assumptions 1.1 and 1.2. The transversality (2.36) relies on the
additional Assumption 1.4.

2.4 Kreiss analysis

To prove estimates for solutions of the constant coefficient equation (2.30),
we follow Kreiss’ analysis, with a slight but important generalization of the
block structure condition, needed to treat general viscosities in the non-
strictly hyperbolic case. (In the simpler, strictly hyperbolic or Laplacian
viscosity case, the usual block structure condition will suffice; see Remark
2.11b.) When ¢ # 0 the block diagonalization of G is quite easy since
the eigenvalues remain away from the imaginary axis. When working near
¢ = 0, one has to push further the analysis of G*(p,(). We proceed in two
steps.

Lemma 2.9. There is a C* invertible matriz V defined on a neighborhood
wo of (p,0) such that V='G>V has the block diagonal form

ey, [(H O\
(2.37) Y gv_<0 P>.—g2
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with H(p,0) = 0 and P(p,0) = (By) 1A and

co\—1 poo
(2.38) V(p,0) = ( 151 (42 )Id Bia )

The eigenvalues of P satisfy |Re u| > ¢ for some ¢ > 0 and

d—1
(2.39) H = —(A7) " ((ir + nId+ ) inAF) + O(I¢?).

j=1
Proof. By (H1) (H4), 0 is not an eigenvalue of (Biol)_lA‘fo. Lemma 2.5
implies that, on a small neighborhood €y of the origin, there is a smooth
family of matrices V; as indicated in the lemma.

The form of H follows from a direct perturbation argument. Moreover,
if 41 is an eigenvalue of P(p,0), then 0 is an eigenvalue of pAF — p2B3,.
Thus (H2) implies that Re u # 0. This remains true for ¢ in a neighborhood
of 0. 0

Next, we analyze the structure of H. The block reduction of the first
order part is the key part in Kreiss’ analysis. We show that, with suitable
modification, the analysis can be extended to H. Introduce polar coordi-
nates for ( :

C=pC=p(75m), with p=[C], [|=1,
H(p,¢) = pH(p.C,p).
Lemma 2.10 (The generalized block structure condition). For allé

with 4 > 0 there is a neighborhood & of (p,¢,0) in R x S x R and there

are matrices V (p, é,p) C™ on & such that V-YHV has the following block
diagonal structure:

(2.40)

(2.41) VIHV = Q(p,¢) + pR(p, ¢, p),
with
Q - 0 Ry - 0
(2.42) Q=1 + . |, R=]: :
0 Ok 0 R
and
Qr -+ 0 le,l . R]f,ak
(243)  Q=| : . |, Rp= Lo ,
0 Qx RE | RE .
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where the subblocks Q. qu are v X v matrices, and the blocks Q, Ry
are apv X apvg matrices. Moreover, Qp, Ry satisfy one of the conditions
i) or ii) below if ¥ > 0, and one of the conditions i) to iv) when 5 =0 :

i) the spectrum of Qk(p, ) is contained in the open half plane {Re p > 0};

ii) the spectrum of Qr(p, () is contained in {Repu < 0}.

W) v, =1, Qg is purely imaginary when 5 = 0, and 05(Re Qr)Re Ry, is
positive definite, where Re Ry := %(Rk +Rj).

) vy > 1, Qk has purely imaginary coefficients when 5 = 0, there is
wi € R such that

e 10
X | 0 .0
(2.44) Qr(p, &) =i S :
.. .. 1
Kk
x 0...0
(2'45) ng,q(ya éa 0) - 0...0 )
k
Tp.q 0...0

and (OsReay)Re RII’C is positive definite at (p, é, 0), where ay, is the lower left

hand corner of Qi and R}: 18 the ay, X ay, matriz with entries r;fﬂ.

Remarks 2.11. a) This result (more precisely, assertions (2.41)—(2.44))
was originally established in [Z], by a closely related argument; see Observa-
tions 4.11-4.12 and equations (4.102)—(4.103) of that reference. In the main
analysis of [Z] there appears an additional “foliated structure” hypothesis
(H6) under which dependence on 7 is effectively suppressed in the bifurca-
tion problem (2.41), and this was used in an essential way in establishing the
L' — LP estimates on which the analysis of [Z] is based. The fact that we
may dispense with any such auxiliary hypotheses here reflects both the cor-
rectness of the L? norm for the problem at hand, and the power/generality
of the Kreiss symmetrizer construction.

(There appears also in the main analysis of [Z] the assumption that
A(n,€) and B(n,&) be simultaneously symmetrizable, under which the ma-
trices RZ may be chosen to be diagonal, recovering a “weak block structure”
in (2.43). However, the latter is only a technical convenience, and could be
removed.)
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b) When p = 0, the block structure reduction V1AV = Q with Q
as in (2.42) is established in [Mé3]. The construction there extends to the
case where the eigenvalues of the entire symbol iA(n, &) + pB(n,&) are of
constant multiplicity with respect to all parameters including p. This holds
in particular, when A(n, £) is strictly hyperbolic or when B(n, &) = |n|?+|¢|?
corresponds to “artificial” Laplacian viscosity. However, constant multiplic-
ity with respect to p typically fails for multiple characteristics. Indeed, a
necessary condition is that, for all £ € RY, HZ?,kzl Bjkgjﬁkﬂ be a scalar
multiple of the identity, where II is the eigenprojection associated with the
multiple eigenvalue of Z;lzl A;&;; this is violated, for example, for the “ef-
fective” strictly parabolic systems associated with gas dynamics and MHD
(see [HoZ] for a description of effective viscosity and its relation with time-
asymptotic behavior).

The independent proof of Lemma 2.10 is postponed to Appendix A.
We just give now a flavor of the arguments, assuming constant multiplicity
with respect to all parameters as in Remark b) above. One first performs
a block reduction of H, isolating the the purely imaginary eigenvalues from
the eigenvalues with non vanishing real part of H(p, ¢ ,0). The later case
is easily handled. The former case occurs only Whe}li = 0. In this case,
consider a purely imaginary eigenvalue p = zg 4 of H (ps é ,0). Note that g =
(1, §d) # 0 since (7,17) # 0. Suppose that A(p,&, p) an eigenvalue of constant
multiplicity of > &A%(p) —ip Y. 1. &6kB%.(p) such that 7+ A(p, £,0) = 0.

The key point is the following remark. By (H2), A\(p, &, p) is real when
p =0 and £ is real. Moreover, it satisfies

ImA(£,0) =0, ImA(§p) < —cp for p> 0 small.

Therefore, d,A(§,0) < 0. This implies that the eigenvalue equation

satisfies

(2.46) dyIm F(p,(,0) <0 and J,Im F(p,¢,0) <O0.

In particular, by the implicit function theorem, if §d is a simple root (hy-
perbolic mode), there is a unique semi-simple eigenvalue u(p,7,%,17, p) of
multiplicity ai equal to the multiplicity of A, close to p. In this case,
Qr + pRr = pld. Moreover, (2.46) implies that 8§Re,ui and d,Rep do
not vanish and have the same sign. This is why the sign condition occurs in
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blocks i) which correspond to semi-simple real purely imaginary eigenval-
ues of H(p,(,0).

If § g 52 multiple root of the eigenvalue equation F = 0, we repeat
the proof in [Mé3]. The proof of the block reduction is unchanged. In this
case, the matrices Ry are also block-diagonal, meaning that R’;q = 0 when
p # q. The integer vy is the order of the root § ; and oy, the multiplicity of A.
Moreover, all the matrices Q) +prj7p, p €{1,...,ax}, are equal. That they
are purely imaginary when ¥ = p = 0 follows from Ralston’s Lemma (see
[Ral], [Ch-P] ). The property of the lower left hand corner of this matrix
follows from (2.46), exactly as the condition d;Rea # 0 in the hyperbolic
case ([Ch-P]). We also have 0,Rea # 0 and the two derivatives have the
same sign.

2.5 Construction of symmetrizers

Next we construct symmetrizers for (2.30). To warm up, we consider first
the easy case where ¢ # 0.

Lemma 2.12 (Symmetrizers for medium frequencies). For all { # 0
with v > 0 there is a neighborhood w of (p,{) and there is a C* matriz
S(p,¢) on Q such that

(2.47) S=5*%,
(2.48) Re (8G®) > 1d,
(2.49) S>1d— C(T'y)Ty.

where C' is independent of (p,() € w.

Proof. By Lemma 2.5, the eigenvalues of G*(p, () are away from the imag-
inary axis. Hence, there is a smooth invertible matrix ¥ on a neighborhood
w of (p,(), such that

—loo_G+0
VQV—(O a.

where G4 have their spectrum in £Re i > 0. In the terminology of boundary
value problems this is an elliptic situation. The symmetrizer is built in the

form
-1y [ RS 0 -1
Ss=WV) ( 0 S > %
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with S+ symmetric, positive definite, such that
Re(S+G4+) >1d, —Re(S-G-)>1d.

For instance, one can choose
0 *
Sy = 2/ e e Gy
0

and use a similar expression for S_. If k4 and ~_ are large enough, (2.48)
holds. Moreover, the form of § implies that there are constants ¢ and C
such that

(2.50) (SV,V) > ch IV = Cr_[I_V|?.

where I, [resp. II_] is the spectral projector of G on the space gener-
ated by generalized eigenvectors associated to eigenvalues in Re p > 0 [resp.
Re 1 < 0]. These projectors are smooth functions of (p, ¢) in a neighborhood
of (p, () since the two groups of eigenvalues remain separated. The Evans-
Lopatinski stability condition (2.36) implies that kerIT, NkerI'; = {0}.
Moreover each space has dimension equal to N. Thus there is a constant C
such that for (p, () in a neighborhood of (p, (), one has:

vwec V< (O (p, QV] + IT1p, OV]).

Thus, for k4 /k_ large enough, the right hand side of (2.50) is larger than
dky|V|? — Ol V|? and (2.49) follows for s large enough. O

For ¢ = 0, we construct a symmetrizer for the matrix Go = V; 1G>y in
(2.37), and more precisely for each block P and H. The associated bound-
ary conditions are I'y = I}V = T'W(0,-)V. We will use the notations of
Lemma 2.10. In particular, we use the polar coordinates (2.40), S denoting
the sphere || = 1 and S¢ the closed half sphere where 5 > 0.

Lemma 2.13 (Symmetrizers for low frequencies). i) There is a neigh-
borhood w of (p,0) and there is a C>° N x N matriz S on w such that

SQ = (52)* y Re (SQP) > Id.

ii) There is a C*° matriz S1 on a neighborhood & of {p} x S¢ x {0}
such that Sy = (S1)* and

(2.51) Re (S1H) =Y (V)*K;V,
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where {V}} is a finite collection of C* N x N matrices and {K;} is a finite
collection of C'°° matrices having the following block structure

(2.52) K=

with either Bj = B]* positive definite or Bj = '?Bm + pBM with Bj,o and
B o positive definite. Moreover, Y V;*V; is positive definite on w.

| S0 :

i11) The matriz S = [ 0 S ] with
satisfies
(2.54) (SU,U) + CI0U1> > |UJ?

for some constant C' independent of the parameters in @.

The proof is given in Appendix A. It is a modification of Kreiss’ construc-
tion where the new ingredient is to control the dependence on the additional
parameter p.

We now consider the case where ¢ is large. The reduction to (2.30) is
not true uniformly and we make a direct analysis of (2.25). This analysis is
possible in the high frequency regime, because the parabolic properties are
dominant. As in the proof of Lemma (2.5), we introduce “parabolic polar
coordinates at infinity”

(7,,9) = (A*r, X, A%y)  with
(€7 =+ + Il

> I
I

(2.55)

and A is small. Then

M(z,p,¢) = (O)*M(2,p,C,A)  A(z,p,¢) = (O)Al2,p,{, M)

where M and A are smooth for p close to P, ¢ in the “sphere” §% := {{¢) =

1} and A € [-1,1]. We denote by 5”1 the closed half sphere {¥ > 0}.
It is convenient to reduce G to first order as in the proof of Lemma 2.5,
introducing the change of unknowns

(2.56) up = (Qu, v =w.
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Then, (2.25) is transformed into

(2.57) 8.U1 = (O)G1(2)Us + F1, TU(0) = u(0) =0,

Gi(2,p:C) = Ga(2ap.C, ) = ( o > |

Lemma 2.14 (symmetrlzers for high frequencies). There is a nezgh—
borhood & of {p} x Sd x {0} and there is a C°° self adjoint matriz S on
[0, +o0[xw such that

i) S and its derivatives converges with an exponential rate at z = +00.

i) Re(SG;) > Id.

iii) S),— > 1d — CT"T.

Proof. We note that the coefficients C*(z,p) of M and A are functions of
(z,p) through the substitution C*(z,p) = C(p,w(p,z)). Thus G can be
written as R X B R

gl(zapv ¢ )‘) = gl(pv ’LU(p, Z)a ¢ )‘)
Moreover, w(p, -) takes its values in a compact set. Therefore, we construct
S as a function of

S(z,p,¢N) = S(p,w(z,p),C, \)

Lemma 2.5 implies that for A small the spectrum of le remains in a com-
pact set which does not intersect the imaginary axis when 4 > 0. Therefore,
the spectral projectors It (p, w, ¢, A) on the invariant spaces F(p, w, (, A)
of Gy (p,w,é ,A) associated to eigenvalues with positive/negative real part
are defined and smooth for A small. There is a smooth matrix )A/(p, w, f )
such that

o [P0
(2.58) 1% Q1V—( 0 P_>

where the spectrum of Py [resp. P_] remains in a compact subset of {Re pu >
0} [resp. {Rep < 0}]. One constructs ¢S as in Lemma 2.12

~ 1 [ KaS 0 _
S:(V 1)( +0+ _K_S_>V 1.

with k4 > 0 large enough. This implies properties i) and 7).
To get the property ii), we use that there is €' and Ag small, such that
for (p,w) in a neighborhood of (p,0), ¢ € Si and A € [0, Ao

U| < C(ITU| + L4 (p,w, ¢, MUJ).
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This follows from the transversality
(2.59) F>(p,w,,A) NkerT = {0}

Indeed, for z = 0, we note that w(p,0) = c is small and and therefore one
can chose the parameters k1 such that S(p,w, é, A) > Id — CT*T provided
that w and A are small, implying éi7).

We now prove (2.59) when A = 0 and w = 0. The property remains true
when w and A are small enough. Towards this end, we give a link between
the spaces F>°(p, 0, ¢, 0) and the spaces E_ (b, u, () introduced in section 1.

Recall that E_(b,u, ¢) is the set of (¢, A=*%) such that the solution U =
(u, v) of the homogeneous equation (2.25) with initial data (1, ) is bounded.
Introduce then the change of unknowns and variables

w(3) = u(z/A),  wa(3) = %U(Q/A).

Then the homogeneous equation (2.25) is transformed into
(2.60) 0:Us = Ga(2/ A, p, {, U2

with
6o 6)\) < 0 Id )
202, P, G, = N2 A A\ A
v KA

The coefficients of M and A are functions of p and w(p, z). Remember that
w(p,0) = 0. Therefore, as A\ tends to zero (or equivalently, as A tends to
infinity),

2 r 1 2 0 Id
Go(2/A,p, 6, \) = Ga(p,0,,0) = ( o B )

where My and Ag are the evaluation at w = 0 of the functions M and A
defined at (2.31). By definition, E_(p, u, () is the set of initial data (i1, 02)
such that the corresponding solution of (2.60) is bounded. The similar space
for the equation

(2.61) .U = G1(p,0,¢,0)

is F>°(p, 0, é ,0). Using the exponential convergence of the coefficients and

the fact that 51 has no eigenvalues on the imaginary axis, one easily shows
that

E_(p,u,¢) — F¥(p,0,¢,0)
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as A — 0 and ¢ = (A 727, A7, A724) with ¢ £ 0, 4> 0.

The uniform stability condition implies that the spaces E_ and kerI" are
uniformly transverse to each other. This remains true for the limit, implying
(2.59). O

Remark 2.15. The transversality condition (2.59) is equivalent to the re-
quirement that the problem

(2.62) —0%u+ Agdu+ Mou=0,  u(0)=0

has no solution in H?([0, oo[). Suppose that the parabolic problem is sym-
metric, i.e. that there is a matrix S(b,u) such that

Re ) &66S(b,u)Bjx(b,u)
is definite positive. If u € H? satisfies (2.62), taking the real part of the
scalar product in L? with (SBggq)u yields

d—1
Re (Sdeu, u) + Z Rein; ((BM + By j)0u, u)
j=1
d—1
+ Z Renjnk((BMu,u) —i—’y(Su,u) =0.
k=1

The assumption on B implies that the sesquilinear form on the left hand
side is coercive on the space H{ ([0, +00]), as easily seen by extending u by 0
for negative z. Thus (2.62) has no non trivial H2. Therefore, the symmetry
of the Parabolic operator implies te transversality (2.59) and thus that the
uniform stability condition is automatically satisfied for large (.

2.6 Proof of Theorem 2.3

We prove the estimate (2.29) in the three different regimes.
a) Medium frequencies. Lemmas 2.12 and 2.2 imply that for all ¢ # 0,
there is a neighborhood w of (u, ) such that the solutions of (2.30) satisfy

U7+ [U1(0)]% < || 4]

Therefore, shrinking w if necessary, the solutions U = WU of (2.25) satisfy
U +1U0)* < | F|?,

which implies (2.29) for (p,() € w.
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b) Low frequencies. Let V be given by Lemma 2.9. Then Uy = V=1,
satisfies

(2.63) 0.Uy — GolUy = Fy =V IF,  T9V,(0)=0.
We use the symmetrizers S; and So given by Lemma 2.13. One has
Re (S1H) = cp(3 + p) = ey + CP) ~ B2, Re(SpP) > 1d.

Therefore, the components (ug,v2) and (f2,g2) of Us and Fy respectively,
satisfy

1
h?[lug||® + (S1u2(0), u2(0)) < Cﬁ||f2”2,
[va][* + (S2v2(0),v2(0)) < Cllg2]|* .
Summing, and using the third part of Lemma 2.13, we obtain that

1
B uzl|? + [leal? + 1U2(0)] < C (5112l + llg2]12) :

thus
h?|lug|| + hllva|l + h|U2(0)] < C (Il f2ll + hllgall) < ClIF2] -

Lemma (2.9) implies that U; = VU and Fy = VF; satisfy

up =O0(1)Uz, v =01)va+ O(Qua, Fy=0()F;.
Since h < 1 and || < h, this implies that |¢|h < h? and

B2 (|u|| + h|v1]| + R|U1(0)| < C||F1| -

Since W = Id + O(e~%), U = WU}, one has

w=01)U;, v=0M)v +0(e ™, F=0Q1)F.
We use here the following inequality:
(264) e url2qooey < C (Jur(0) |+ I0zunlp2 0.0 )
Here, the equation (2.30) implies that d,u; = v;. Thus

le™"%ur ]| < C(IU(0)] + Jfor ),

and therefore
h?||ull + R[v]| + AU (0)| < C||F||.

This implies that (2.29) holds for (p, () in a small neighborhood of (p,0).
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c) High frequencies. ~With notations as in Lemma 2.14, we use the
symmetrizer

S(z,p, C) - S(zapv CAa /\)

Then
ReSG) > 1d
and Lemma 2.2 implies that
2 2 1 2 2
QU + 00O < (7S IAIP + [0:8l= 1))

Thus, for (¢) large enough, the second term in the right can be absorbed by
the left hand side and

(OO + ()2 UL(0)] < || Fall.

Going back to u = (¢)~!u; and v = v; this shows that (2.29) is valid for ¢
large enough. O

39



3 Pieces of paradifferential calculus

We construct symmetrizers as para-differential operators in the variables
(t,y), depending on the parameters z, ¢ and . The analysis in section 2
shows that different homogeneities occur in different regions of the frequency
space. We first recall from [Mok], [Mé1] (see also [Mé2]) the handbook of
results about the homogeneous paradifferential calculus with parameter, to
be used in the hyperbolic regime. It is a modification of the original calculus
introduced by Bony ([Bo], [Mey]). Next we will state the similar results
for a semi-classical calculus associated to symbols having a parabolic type
homogeneity. This calculus will be used in the middle and high frequency
regimes. The symmetrizers will provide the basic L? estimates. However,
the estimates of the derivatives also require a microlocal analysis. Indeed, a
direct differentiation of the equation reveals unbounded terms in e~! and a
detailed analysis of commutators yields to distinguish the different regimes.
This yields to study the action of the para-differential operators in conormal
spaces H™ (see the definition (1.28)). The idea is to replace the base space
L? by H™, and to show that the calculus extends to this framework. Since we
make strong assumptions on the smoothness of the coefficients, this follows
from repeated application of Leibniz formula.

3.1 The homogeneous calculus

We consider operators on R%. The variables are denoted 7 = (t,y) and the
frequency variables 77 = (7,717). The symbols and operators also depend on
a parameter v which plays a distinguished role. We denote by ]Ri+1 the set
of frequencies ¢ := (7, y) € R¥1\ {0} such that v > 0 and by S? the set of
(7,7) € ]R‘_frl such that || = 1.

Definition 3.1 (Symbols). Let u € R. i) T'lj denotes the space of locally
L™ functions a(g,¢) on R x Rf‘l which are C*° with respect to ¢ and such
that for all a € N? there is a constant Cy such that

(3.1) V(§,0), 105a(d, Q)] < Cal¢l*1.
i) I denotes the space of symbols a € Ty such that for all j, J5,a € ry.

For example, functions a(g, ) which are C*° and homogeneous of degree
m in (7,7) € ]R‘frl and bounded on R¢ x S, are symbols in T'Z".

In the applications, we consider families of symbols a®(z) in '}, depend-
ing on parameters € € [0,1] and = € [0,00[. The key argument is that they
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are bounded in I'}". Moreover, we want to study the action of the operators
in conormal spaces. Consider the following set of vector fields on Ri“ with
variables (t,y) € R? and z > 0 :

(3.2) Zo=0, Z;=0, for 1<j<d—1, Zs=a0,.
They commute, and for a € Z4T! Zo = Z§° ... 7.

Definition 3.2. For p € R, m € N and k € {0,1}, ka is the set of
functions a(z,§,C) such that for all o € Z9" with |a| < m, the functions
(Z%a)(,-,-) form a bounded family in T

The spaces F’,i m are equipped with semi-norms

(33) lallukmn = sup sup sup sup [ 27020 a(x,5,¢)] .
la[<N |B|<k |o|<m (2,9,C)

A family of symbols is bounded in F’,“: m When for all N, the semi norms are
bounded.

Example 3.3. Suppose that a(z, 7, C, p) is a function on [0, co[xR? fol X
[0, oo[, C*° with respect to (¢, p), homogeneous of degree u in ¢, supported in
{p < 1} and such that Z%a and Z®0za are bounded on [0, co[xR?x 54 x[0, 1]
for all |a] < m. Then, the family of symbols a® defined by

(34) CLE(.T,:I],TN],’)/) :a(x,gj,g,d(\)

is bounded in T}, .
The para-differential calculus is a quantization of symbols in a € T'fj to
which are associated operators denoted by Ty; see Appendix B. They act

in the scale of Sobolev spaces H S(]R{d). These spaces are equipped with the
family of norms

(3.5) |u

wr= ([ 0+ 1Py o an)

Adding the normal variable z, we introduce the norms

%
HUHO sy = ‘U ‘OS’Y ) )
[llm,sy = Z o

laj<m

(3.6)

777’
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which are parameter dependent norms on spaces called H%* and H™* re-
spectively.

When a € T, for all z, a(z) = a(z,-) € T, and the action of para-
differential operators is extended to x-dependent functions:

(3.7) (T)u)(z,-) = Tg(x’_)u(x, ).

The paradifferential calculus in R?, was introduced by J.M.Bony [Bo]
(see also [Mey]| , [Hor|, [Tay]) with v fixed, say v = 1. The parameter
dependent version 77 is introduced in [Mé1] [Mok] and applies in the scale
of spaces H%*. The extension to the scale H™* is immediate since one can
construct the 77 so that

(3.8) ZTju=T)Zu+ T} u.

This is explained in Appendix B, together with the details of the following
results.

Proposition 3.4 (Action). i) When a(¢) is a symbol independent of 7,
the operator T, is defined by the action of the Fourier multiplier a.
i) For all a € T ., the family of operators {Tq },>1 is of order < p,

0,m~’

meaning that for v > 1:

173 ullmsy < C lltllm,stuy
where C' is independent of v > 1 and u.
Proposition 3.5 (Symbolic calculus). Consider a € T, and b € I“flm
Then ab € I“f;l” and {T7 o T, — T} },>1 is of order < p+ p/ — 1, meaning
that for v > 1:

H(TJTJ - T;/b)uum,s,v <C HuHm,SﬂL—&-#’—LW

where C is independent of v > 1 and u.
If b is independent of §, then T, o T,) =T, .

These results extend to matrix valued symbols and operators.

Proposition 3.6 (Adjoints). Consider a matriz valued symbol a € T .
Denote by (T7))* the adjoint operator of T, in LQ(RiH) and by a*(y,() the
adjoint of the matriz a(y,¢). Then {(T4)* — T,.}y>1 is of order < m — 1,
meaning that for v > 1:

I(T2)" = To-)ullosy < ClIVgalluo0,5) lullostu-14

where C' and N only depend on the indices s and .
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Proposition 3.7 (Garding’s inequality). Consider a N x N matriz sym-
bol a € F’io, a N x M matriz symbol w € F(l),o; and a scalar symbol x € I’%O.
Assume that xw = w and there is constant ¢ > 0 such that

(39 V(5,0 xX*(z.§.¢)Realx,§,0) = ex?(z,4.¢) I¢]*
Then, there are C' that for all v > 1 and u

c

3 ||Tgu||§7%’7 < Re (T)TJu, Tju),, + C||u|\0

where C' is bounded the symbols remain bounded and (3.9) holds with a uni-
form constant c.

Remark 3.8. The meaning of the assumption is that Re a is definite positive
on the support of w. The symbol x only plays an intermediate role. We give
two applications. Consider two open sets w ¢ and w with w relatively compact
in w. Consider two cones in Rd+1 C and C such that the base of the cone
C,Cn S is relatively compact in CN Sd

1. Suppose that a and w are homogeneous of degree p and 0 respec-
tively, that w is supported in w x C and that Rea > ¢|(|* on @ x C. Then
there is x € P(l],O supported in w x C such that x = 1 on the support of w.
Thus yw = w and (3.9) holds.

2. Suppose that a® and w® are bounded families of homogeneous
symbols of degree y and 0 respectively with w supported in w x (CN B, /.)
where Bg denotes the ball {|¢| < R}. Suppose that Rea > c|¢|* on w x (Cn
B,/ /) where 7' > r. Then, there is x € F?,o supported in w x (CN By /.)
such that y = 1 on the support of w. Thus yw = w and (3.9) holds

Bounded functions of § are particular examples of symbols in the class
I'Y, independent of the frequency variables ¢. In this case, T is called a
para-product in [Bo]. In our case, we introduce the spaces W™* of function
on Rﬂlfl such that Z“@gu € L“(Riﬂ) for all || < m and || < k, equipped
with the norms
(3.10) lalyyme = > > ||zaa§u||Lw(Rd++l) .

la]<m |B|<k
When k£ = 0, we simply denote by W™ the corresponding space.
Proposition 3.9 (Para-products). There is a constant C' such that for
alla € W™ and all u € H™0
law =T ullm1y < Cllallymalulmony
Mavw =T ullmos < Cllallyym|[ullm.oy
ladju — T3 Ojullmoy < Cllallwmllulmon -
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3.2 The semi-classical parabolic calculus

In the high frequency regime, the parabolic character of the equations pre-
vails. In this regime, the quasi-homogeneity is associated to the dilations
M- (t,y) = (\*t, \y) and similarly X - (7,7,1) = (A®7, A%y, An). The corre-
sponding quasi-norm is

(3.11) (@ = (" +7"+1nl*) "
We also introduce the weight
(3.12) AQ) = (14 (N5

Typical example of symbols are smooth quasi-homogeneous functions of de-
gree 1 away from the origin. They satisfy

|02a(¢)| < CafQ)™ @
where, for a = (a;, ;) € N x N1
((ar, ap)) = 2]az] + [y

Next we consider a semi-classical quantification of the symbols. In particu-
lar, when a(¢) is independent of g, the associated operator is defined by the
the Fourier multiplier a(en,e7) :

(3.13) P = a(eDy, e7).

Note that we use here the standard multiplication by &, not the parabolic
dilation € - 7. We also extend the calculus to z dependent symbols and
functions, x being considered as a parameter. We also consider the action
in conormal spaces.

Definition 3.10 (Symbols). Let 1 € R.

i) PI'lj denotes the space of locally L> functions a(g,¢) on R? x ]Rff_“
which are C*™ with respect to ¢ and such that for all o € N there is a
constant C,, such that

(3.14) ¥(§,0),  105a(d, i) < Ca MG

i) PI') denotes the space of symbols a € PTl such that for all j, 05,0 €
PrY.

i) For m € N and k € {0,1}, PI'}  is the set of functions a(z,,()

such that for all o € Z with || < m, the functions (Z%a)(x,-,-) form a
bounded family in PI',.
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Examples 3.11. 1. If a(g,() has compact support in ¢, is C* in ¢ and
the derivatives 0%a are bounded, then a € PI')).

2. If a(yg, ¢) is C*° and quasi-homogeneous of degree p in ¢, with deriva-
tives 9%a bounded and bounded on R x S, then (1 — x(¢)a) € T for all
X € C§°(R4*1) which is equal to 1 on a neighborhood of the origin.

3. Suppose that a(x, 7, (, ) is a function on [0, co[xRY x R‘fl x [0, o0,
C* with respect to ((, p), quasi-homogeneous of degree p in ¢, supported
in {6 <1} and such that for all || < m, the derivatives Z%a and Z*0ja are
bounded on [0, co[xR? x {{¢) = 1,7 > 0} x [0, 1[. Then, the symbol defined
by

1
AL

belongs to PF‘IL’m if x € C§° is equal to one near the origin.

(3.15) a(z,¢) = (1-x(¢)) a(z,9,¢,

The spaces PFZ m are equipped with semi-norms

(316) Jlallgupmny = sup sup sup sup A H|Z79200a(x,5,0)|.
(<N |BI<k |o|<m (2,§,0)

The natural scale of Sobolev spaces are the spaces PH?® of functions
whose Fourier transform belong to the L? space with weight A%°. Because
we use a semi-classical analysis, this leads to introduce on PH?® the following
family of norms

1

o ~ 25 |5 (2V2 a5 2
(3.17) e = ([ Meren) i) )
Adding the normal variable z, we introduce the norms

1
2
falloncr = ( [ e, o)

lllms,en = D 7™ N Z%l0 567

la]<m

(3.18)

which are parameter dependent norms on spaces called PH%* and PH™*
respectively.

One first constructs the operators P;” for symbols a € PI'}j, acting in
the scale PH? of functions of §. Next the action is extended to x dependent
functions in PH™* and symbols in PI'f ;:

(3.19) (Peu)(x, ) = P julz, ).
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The study is finally extended to functions in PH™* and symbols in Pl“g’m
using the identity

(3.20) ZP;Yuw=P;"Zu+ Pylu.
We refer to Appendix B for details and proofs of the following results.

Proposition 3.12 (Action). i) When a(() is a symbol independent of g,
the operator Py is defined by the action of the Fourier multiplier a(ef), €).
ii) For all a € Pfg’m and s € R, there is C' such that for e €]0,1], v > 1
and u € PH™*® :
1P "l s—pey < Clluflm,s,e,y -

The constant C' is bounded when a remains in a bounded set of PFg’m.

iii) If a € PIly is supported in R? x {A(¢) < R}, then, for all u, the
spectrum of Py u is contained in {A(e¢) < 2R}

) There is 6 > 0, such that If a € PI'ly is supported in R? x {A(¢) > R}
then, for all u, the spectrum of P u is contained in R? x {A(e¢) > 6R}.

Proposition 3.13 (Symbolic calculus). Consider a € PI'f,, and b €

PF’f:m. Then ab € PF’f;L“I and there is C' such that for e €]0,1], v > 1 and
u € PH™ :

H(Pg,’y 0 Pbgy7 - P;év)uHm,s—y—w—i—l,e,y < Ce ”U’HWL,S,E,')/-

The constant C is bounded when a and b remain bounded in PF’l‘m and Pl“ﬁ”lm
respectively.
Moreover, if b is independent of §, then Py o Py = P37 .

Proposition 3.14 (Adjoints). Consider a matriz valued symbol a € PF&L’O.
Denote by (P;")* the adjoint operator of Py’ in LQ(RiH) and by a*(x, 9, ()
the adjoint of the matriz a(x,y,(). Then there is C' such that for e €]0,1],
vy>1andue PH™® :

1((P7)* — Pgﬂ)“”m,sfwl,sﬁ < Cellullmsen-

The constant C' is bounded when a remains in a bounded set of Pl"‘f’o.
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Proposition 3.15 (Garding’s inequality). Consider a N x N matriz
symbol a € PF’f,O, a N x M matriz symbol w € PF%O and a scalar symbol
X € PF(l)’O. Assume that xyw = w and there is constant ¢ > 0 such that

(3.21) Y(@,3.0) + x*(2,9,¢)Rea(z,7,¢) > ex*(x,5,¢) A(C)".
Then, there is C' such that for all v > 1, all € €]0,1] and u

c
3 \\P5’7U||3,g,aq < Re ((P;ﬁpi’“/u’ Pifﬁ/“)),;z + C &2 ||qu7%—1757’7'

Moreover the constant C is bounded when the symbols remain in bounded
sets and (3.21) is satisfied with a uniform constant c.

Remark 3.16. Again, the meaning of the assumption is that Re a is definite
positive on the support of w. We give here two examples. Consider two open
sets w and w with w relatively compact in @.

1. Consider two bounded open sets C and Cin RdH

with C relatively

compact in C. Suppose that w is supported in w X C and that Rea > cl¢|*
on & x C. Then there is x € Pr¢ o supported in w x C such that x =1on
the support of w. Thus yw = w and (3.21) holds.

2. Suppose that w is supported in wx {(¢) > R} and that Rea > c¢(¢)*
on @ x {(¢) > R'} where R > R’ > 0. Then, there is x € I‘%O supported in
W x {{¢) > R'} such that y =1 on w x {{{) > R}. Thus yw = w and (3.21)
holds

Next we consider para-products, i.e. symbols independent of ¢ in the
class W™! introduced just before (3.10).

Proposition 3.17 (Para-products). For all a € W™ (R?), there is a
constant C such that for all w € PH™!', £ €]0,1], and v > 1:

law — Py ullm,eq+ Y elladgu — Pe705ullm,oen
(3.22) la|=1
< Cellullmoey

Ylau = Peullm o, + ladeu = Pe Oyullin,o.e0

(3.23) + 3 elladiu — Po0%u]lmo ey < Cllullmicn
|a|=2

Corollary 3.18. For all a € W™2(RY), there is a constant C such that for
all uw € PH™?2, € €]0,1], and v > 1:

HCLU — P;NUHm,Z,E,'y < CeHUHm,l,s,’ya
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We now give a link between the two calculi. Remark first that for con-
stant coefficient symbols a, T, and P;” are Fourier multipliers by a(,7)
and a(e7,e7y) respectively. Thus

(3.24) P27 =T with a°(() = a(e) whenaisindependent of (z,7).

The next result extends this relation to symbols which also depend on
the variables §. The proof is given in Appendix B.

Proposition 3.19. Suppose that b € PF(lJ’O has compact support in (. Then
the family of symbols

(3.25) b*(x,,¢) = b(,, ()

is bounded in I‘(io and there is a constant C' such that for all u, € €]0,1] and
v > 1:

(3.26) YNTw — Pyl 2 + | T Vgu — Py 'Vl g2 < Cllul| gz -
Moreover, in the scale of norms (3.6)

(3.27) ITheu — Py ulloon < Cllullo,—14 -

3.3 Calculi on the boundary

We have developed above the para-differential calculus in the half space
{z > 0}. By construction, x acts as a parameter, see the definitions (3.7),
(3.19) and Appendix B. When x = 0, we obtain two calculi, still denoted by
T7 and P*7, on the boundary. We do not make specific statements in these
case, they are in fact particular cases of the results above, provided that the
set of vector fields {Z;} is restricted to the fields dy,. Taking traces, (3.7)
and (3.19) imply that

(3 28) { (TJU)\:UZO = Tglx:OU|z:0 )
' (

677 f— 677
P, u)\m:O = Pa‘xzou\xzo .
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4 L? and conormal estimates near the boundary

In this section, we start the analysis of the stability of the linearized equa-
tions (1.25). We concentrate here on the most difficult part, which is the
proof of the L? and H™ conormal estimates for functions localized near a
point of the boundary. The main estimate is stated in Theorem 4.1. The
strategy is as follows : we mimic the analysis of Section 2, substituting the
paradifferential calculus to Fourier multipliers technics. We first replace the
differential linearized equation by paradifferential equations, at the price of
acceptable errors. This being done, we use the results of Section 3 : the
symbolic calculus only produces acceptable errors, and the calculus on sym-
bols is precisely the calculus on Fourier multipliers developed in Section 2.
Again we separate the three different regimes : low, medium and high fre-
quencies. At the end, we glue the estimates together using a partition of
unity. In each regime, the symmetrizers are paradifferential quantizations
of the multipliers constructed in Section 2; these are used to prove the ba-
sic L? estimates. Finally, we prove the H™ estimates by differentiating the
equations, which requires a lot of care due to the presence of singular terms
in the equation.

4.1 The main estimate

Recall that (Zp,...,Zy) denote a basis of vector fields on R'*¢ tangent to
R x 9Q. With m > 0, we consider ug in W2 ([T, Ty] x ) and by
in Wm+2:20([—Tp, Tp] x Q). Following the notations of the introduction, b
denotes the function (¢,x) — (t,z,bo(t,z)). We always assume that (b, ug)
is valued in a compact subset of O.

In addition, we consider a family v in W™ +2:°°([~Ty, Ty] x ) such that

(4.1) sup sup || Z;v%||pe + €|| Vo Zsv°|| Lo +52HV920ZJUEHLOO < 0.
e |JI<m

where Z; = Z;, --- Zj_, when J = (j1,...,j;) and |J| = k. Introduce
(4.2) ug, = W(b(t,x),uo(t, z), p(x)/e) + ev°(t,x)
The linearized equations from (1.1) around uf read

d d
1
z : 2 —
8t'LL+ E lAjaj’U/—E Bjkf)]’ku—f- EEEU = f,
]:

(4.3) e

U [~y T xo0 = 0
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with
Av=Aw—e> (B -v)okus —e > (By; - Oui)v,
k k

15 — ~.
Bj,k‘ - szk ?

B =23 (A 0)0ju — 23 (B - 0) g + Bl (v, 0ju5)0pc,
J Ji.k

where A stands for the function A evaluated at (b(t, ), us(t,z)) and A’ is
the derivative of A with respect to the variable u.

It is convenient to extend ug, b and v¢ to R x €, as W2 functions.
We still denote by ug, b and v® the extended functions. We can assume
that the extended v° is bounded in W™*2°°(R x ) and that the extended
functions are independent of ¢ for |t| > |T7 > Tp. We denote by u the
extension of ug given by (4.2) and we consider the linearized equation (4.3)
around u?.

Consider a point y € 9 and local coordinates (y,z) € R4~! x R near y
such that y corresponds to 0 and the defining function @ of Q) is x, so that
Q lies on the side {x > 0}. From now on, we work in these coordinates and
restrict attention to functions v and f supported in a small fixed neighbor-
hood @ of (t,0), where the coordinate patch is defined. We still denote by
u, b, f etc the functions in the local coordinates. For convenience, we keep
the notations in (4.3) for the linearized equations, x being the d-th spatial
variable. However, the new coefficients A; and B; ;. involve the derivatives
of the change of variables, which just introduce a new dependence of the
coefficients on the function b.

We do not give the explicit relation between the coefficients in the new
and old coordinates. We simply note that in the new set, they write as a
principal term plus a remainder as follows

(4.4) As=Af 4 eA5,, B, =B, E=F+ckf

where:

- Ag, Bj]j.’,~C and E* are C*™ functions of z € [0, 00 and p = (b, u,c) in a
neighborhood of p = (b, u,0). Here, b = b(t,0) and u = ug(t,0). They have
the general structure

F*(z,p) = F(b, W (b, u, 2) + ¢).

Moreover, when z = 0, that is when b € By, the coefficients Ag, Bg  and E?
are those introduced in section two at (2.6).
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- In (4.4), F* stands for the function F! evaluated at (p°(t,y,x), 2)
with
Pty x) = (b(t, y, 2), uo((t,y, @), ev°(t, y, ).
By (4.1) there holds

(4.5) sup  sup || Z;Viyep®|l pee(w) < +00.
£€]0,1] |J|<m

- The remainders A;l and EY are smooth functions of (¢,y, z), uj and
its first and second derivatives, ev and its first order derivatives, e?v and its
second order derivatives and z = x/e. In particular, (4.1) implies that the

remainders satisfy

(4.6) sup sup || Z;F7|peewy < +00.
e€l]0,1] |J|<m

We write (4.3) in the condensed form

1
—ed2u+ A°Ou + gMeU = (Bga) '/,

(4.7)
Ur=0 = 07
where
d—1
AT = (Bi,) ( > (Bsa+ Bi) 58)
7=1
d— _
M® = (BSy)" (eat+z,4§ga Z 20+ ).
j=1 G k=1

A is a first order operator in €0,, while M¢ is first order in €0; and second
order in £0,. Write (4.7) as a system for U = '(u,v), v = ed,u :

1
axU - EGEU = F,
FU|QC:0 = Oa

U e 0 Id _ 0
F(v)”’ ¢ ‘(ME A€>’ F‘(—(Bz,drlf)'

o1

(4.8)

with



To prove weighted estimates for the solutions of (4.3) or (4.8) we introduce
U=e U and f = e " f. Then, (4.8) is equivalent to

0, U — éGEWﬁ —F = < 0~> ,

(4.9) -
Ffj|cz::0 =0,

h G® = 0 Id d M%7 has th definiti ME¢ with 0O

where = Msfy AE an as € Same aennition as w1 t

replaced by 0; + 7.

Following the analysis of section 2, we consider the following weight
functions : with ¢ := (1,v,n),

=

(4.10) A=AEQ) = (1+(=9)? + ) +[enl*) .

N

(v +elc?) when  |e¢] <1,
(4.11) p={ ~e2 when 1< |e¢] <2,

% ~ (v + |7l +elnl?) when |e¢| > 2.

1
2

Note that the three terms have the same order when |e(| =~ 1.
Given a weight function ¥ (7,7), we introduce the norm

(1.12) il = ([ etr? it dran)

where @ is the Fourier transform of u(t,y) defined on RY. When u also
depends on the variable , we denote by ||u||(y) the norm

(4.13) lull gy = (/OOO u(@)lyds)

We use different weight functions, o, ¢2, ¢/A etc. In these case, the weights
and the norms depend on the parameters € and v, but we do not make this
dependence explicit and use the notations || - [|(,) etc.

Next, we introduce the conormal spaces. In the local coordinates, we
can choose

(4.14) Zo=0, Zj=0, forl<j<d—1, Zgj=uad,.
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Indeed, one should take ¢(z)d, in place of z0, with ¢(z) = z for |z| < 1
and {(z) = 1 for x large. Because, we only consider compactly supported
functions, we make the choice above.

For m € N, define

(4.15) el ) = Y 7™ NZ%ull ).
laj<m

They are norms, depending on the parameters € and v on a space called
H;. Note that the norms || - [|m s~ introduced in section 3, correspond to
the weights A®. The L? norm corresponds to m = 0 with weight 1 = 1. We
denote it by || - [lo = || - [lo,1)- More generally, we note || - [ = || - [|;5,,(1) the
norms associated to the weight ¢ = 1.

Theorem 4.1. There are a neighborhood w of (t,0) in R}fd, constants o,

go > 0 and C, such that for all U and f supported in w and satisfying (4.9),
for all v > 9, € €]0,e0] with ey < 1, one has

- 1 . - ~
(4.16) il 2y + 721 + 8O oz < I

Dropping the tildes, we will prove the apparently weaker estimate

1
[l (p2) + %anm,(tp) 0O opvmy <

(4.17)
C (I flbn + el ny -+ 1ol + [0(0)my) -

Since ¢ > ¢,/7 and ©? > ¢/, one has

HuHm,(A) 5 771/2Hu||m,(<p2) ) HUHW S 771/2Hva,(<p)
0O S 70O o)
where < means that the left hand side is estimated by constant times the

right hand side, with a constant independent of €, v, U and f. This shows
that (4.17) implies the estimate (4.16) when + is large enough.

Next we simplify further the equation. Using (4.4) and replacing the
coefficients A; and E° by /Tg and Eﬁ, one obtains operators A* and M* such
that

d—1
(4.18) AT = APt edy,, M =M'+ed A520; +cEf.
j=1
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Using (4.6), we see that
1450 = Aotll S ellollms M50 — Moullo S e(ullm + llcdyullm).
Therefore, if (U, f') satisfy (4.9), one has

1
_—tu=F

I R O I ¢

I’UL,E:O:O ME A I

with
£l S W M+l + [0l + edyullm S 1 T+ Tl a) + 0]l -
Therefore, Theorem 4.1 follows from the following estimate.

Theorem 4.2. There are w, v and €9 > 0, such that the estimate (4.17)
is satisfied for all U and f supported in w and satisfying (4.19).

The strategy is as follows. We replace the equation (4.19) by a paradif-
ferential equation, at the price of adding a new source term with H"™ norm
controlled by [[u[,(a)+[|v[lm- Then we microlocalize the estimate. Next, we
prove the estimate with m = 0, using symmetrizers which are paradifferen-
tial operators whose symbols are given by the constant coefficient analysis
of section 2. Finally we prove the conormal estimates, using the special
structure of commutators

4.2 Paralinearisation

As in section 2, we introduce for z € [0,00[, p in a neighborhood of p =
(b(t,0), ug(t,0),0) and ¢ = (7,7,7) € R

A(zp,) = (B )7 (4] Eyu(ﬁ3>)

_ d—1
M(z,p,¢) = (B ) ((z’r +9) + Z i A%+ > mmkBl, + Eﬁ) :
=1 k=1

Substituting p® in place of p, we define
x
as(tv Y, x, C) = ’il(ta Y, 'I)A(gvpg(t? Y, IL’), C) >
T
ms(t’ y’ LE, C) = lil(t7 y7 x)/\/l(—’pe(t’ y? :L’), C) )

where k1 € C§°(w) and k = 1 on a smaller neighborhood w;.
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Lemma 4.3. The families {a®} and {m®} are uniformly bounded in PF%m
and PF%m respectively. Moreover,

k1 MFu — Prlullm S e lullma)

k1A% — P ollm S € fl0]lm -

Proof. a® and m® are symbols of differential operators. a® is of degree one
in 1 (independent of 7 and ~ ) while m is first order in 7 — iy and second
order in 1. By (4.5), the coefficients are bounded in W™!, implying the first
statement of the lemma.

The paradifferential operators P*? are those introduced in section 3.2.
Recall that P = Pg7ed,., P} = P;"ed; and P5; = eyP;”". The

ian; Yo waT
estimates immediately follow from (4.5) and the para-linearization Proposi-
tion 3.17. O

Suppose that (U, f) are supported in &1 and satisfy (4.19). Then G*U =
k1GIU and the lemma implies that

Lo, /
. ]-—‘U‘ - 0 I mg ae 9 f/ 9
=0 —
where f satisfies

(4.21) 1 e S 1 F o+ el ) + 0l

Suppose that we have a finite collection of symbols independent of (¢, y, x),
xi € PI'%, such that

(4.22) d x(@Q) =1 on R ={¢eR™ [ y>0}.
!
In addition, suppose that x € C§°(w1) and k£ = 1 on the smaller neighbor-
hood w. Then, if U is supported in w, U = kU and
U=(k—PMU+> PJU.
Proposition 3.17 and Corollary 3.18 imply that

1(5 = P ullim,a2) S ellwllmay, (5 = Pe)ollmy ) S ellolim -

Since p? < A?/e, the definitions (4.13) and (4.15) of weighted norms implies
that

1 1
(4.23) ullmp2) < Zltllm,a2) 5 10l e) < %anm,(A)‘
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Therefore,

1
(& = 5 ullm,p2) S lltallm,(a) » \@II(F» = P )ollm,e) S M0llm-

One has similar estimates for the traces. Therefore, the estimate (4.17)
and therefore Theorems 4.2 and 4.1 follow from the following microlocal
estimates.

Proposition 4.4. There are a neighborhood w of (t,0) in Ri“, k€ C§°(wr)
equal to one on w, a finite partition of unity (4.22) and constants C' and
Yo > 1, such that for all v > ~g, € €]0,1], all I and all solution of (4.19)
supported in w, one has

IPE et + 2P+ 1P ) <
C(1fllm + el gy + [0lhn + [0(0)m ) -

As in section 2, there are three different analysis according to the size of
leC|. We consider successively, the high, medium and low frequencies.

(4.24)

4.3 The high frequency regime

We consider here the case where x is supported in a domain where A is large
enough :

(4.25)  x(¢)=0 when |[(|<R+1 and x(¢)=1 when [(| >2R,

and we assume that, at least, R > 2.
As in section 2, in the high frequency regime, it is convenient to reduce
the symbol ¢° to first order, so we introduce:

0 AId
(4'26) g; - <msA—1 a >

To prove the L? estimates, we use the symmetrizers of section 2.

Lemma 4.5. There are R > 2, ¢ > 0, a neighborhood wi of (t,0,0) and a
bounded family of self adjoint matriz valued symbols o%(x) € PF%,O such that
£0,0°(x) is bounded in PI'§ o and, for allU € C*N, alle €]0,1], (t,y,z) € wy
and ¢ such that |(| > R, one has:

i) Re (0°g5U,U) > cA?|U .

i) Re (65(0)U,U) > cA |v]* when u = 0.
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Proof. With the notation G; introduced just before Lemma 2.14, there holds

95t y,2,¢) = Ak (t,y,2) Gi(2,p°, ¢, 1/A)

with z = z /e, p* = p°(t,y,x), A = A(¢) and, using the parabolic dilation as
in (2.55), ( = A1 ¢ = (7/A%, /A, v/A?).

Lemma 2.14 provides us with a symmetrizer S (z, D, f ,A‘l) for G1, de-
fined for p in some neighborhood of p and A(() large enough, thus for
IC| > R/2 if R is large. According to Example 3.11 3), the symbols

7(@.5:.0) = ralt. 2 2 OAQ) S (2.7 (19.2).C )

are well defined bounded in PFiO if x2 € C*° vanishes for |¢| < R/2 and is
equal to one on |(| > R and kg € C° is supported in a small neighborhood
of (¢,0) and equal to one on some smaller neighborhood w; C @;. Moreover,
the properties of S imply that o¢ satisfies the desired conditions for ¢ large
enough. O

The neighborhood w; and R being given by this lemma, we choose x
satisfying (4.25) and k € C3°(w1) equal to one on a smaller open set w. We
also choose £’ € C§°(w1) and X’ supported in {|¢| > R} such that

(4.27) Kk =K, X'x = x.
Introduce
(4.28) U1 = PEQU = t(ul, Ul).

Since kY is scalar, the matrices m® and a® commute with kyId. Thus, by
Proposition 3.13, the commutators satisfy

1P, Pelullm S ellullm,ay, NP Pegdlvllm < ellollm -
We have used that the norms || - |, (rs) are the norms denoted by || - ||im,s ¢~

in section 3. Hence,

1 N
Oy — =P Uy = F =
( - g ) 1 1 <91)7

(4.29)
FUI\m:O = Ul|g=0 = 07

with fi = P57l wand g1 = f' + P57l v+ [P, Bollu+ L[P, Pillo.
Thus

(4.30) 1 f1llm, ) + Ngallm < L Nl + el a) + 0l -
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The boundary condition in (4.29) follows from the trace relations (3.28).
Next, introduce Us = *(ug, ve) with

(4.31) Ug = Pf\’wul , V2 =11.

Then, (4.29) implies that
1
(432) 0. Usy — EPQES"YUQ = Fy U2|z=0 = 0.

with Fy = {(fa,92), fo = Pf\"yfl and go = g1. We have used that u; =
P ug and Pp" P70, = Pl Because ¢ < A/a\@ (indeed ¢ = A//e on
the support of x), the estimate (4.24) for U; = PgU is implied by

1 1
(4.33) N0zl 8y + %\02(0)!%(\@ <

[E2[lm =+ [1tellm,a) + 0]lm + [0(0)]m
since [|[Follm S 1 lm + [1wllm,a) + [0llm Dy (4.30).

Proposition 4.6. If R is large enough, for all v > 1, all £ €]0,1] and all
(U, f) € C§°(w) solution of (4.19), one has

1 1
gllpj/’;/(b”om) + \ﬁ!PE?ZM(O)lo,(\@ N

[ F2llo + [|U2]|o + |v2(0)]o -

(4.34)

Proof. Introduce U} = P,i,’;, Us. Then, using the symbolic calculus,

1
axUé - EP%’WUQ = Fé ) u/2|:c:0 =0,
with
I3]0 S I1F2llo + 1Uz]lo -

Consider the symmetrizers S = Re Py’ = £(P; +(P5")*). By Proposition
3.14, since the symbols o¢ € PI'  are self adjoint, S — P57 is of order 0 in
the sense of section 3.2. The following identity holds:

(SO)U3(0), U3(0)) +Re (G20, U) =
— ([0, S]US,U3)) — 2Re (SF3, US),
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where Gy = P;S’"’. The symbolic calculus in Proposition 3.13 implies that
SGy = PE’VE + eR with R of order one. Thus

(SG2U3,U3) = (P35 U3 Us) + O(< [Tsllo.a)1U3lo ).

Moreover, o°g5 € PI‘%O and its real part is elliptic on the support of ky.
Thus, with Remark 3.16, we are in position to apply Garding’s inequality
of Proposition 3.15, and therefore

Re ((SG2U§7 Us) = el|lUs][5 ) — C e Uallf -
Similarly, since u2(0)

Using the symbolic calculus, we also have
* Ce
|(SF3. U3)| < [1F3]l0 18" Usllo < = HUzHo ) T FHFzHg

for all B > 0. We have used that S and thus S* are of order one.
Since €0,0° is bounded in PI‘(l],O, [€0y, P;2"] is of order 1, as well as its
adjoint. Thus €[0;, S] is also of order 1 and

This implies that

1 1 g
g”UéHg,(A) + [v3(0) (2)’(\/@ <Ci EHUQH?),(\/K) +t U315, a)

(4.35 c
+ Cz(BHFéH% +e[| U213 + €2[v(0)[5) -
We first choose 3 < 1/4 so that the second term in the right hand side can
be absorbed from the right to the right.

Next, we note note that the constant C; depends only on norms of
the symbols ¢°. In particular, it is independent x. If R is sufficiently
large in (4.25), the symbol x’y’ is supported in (¢) > v/R/2. Thus, by
iv) in Proposition 3.12, the spectrum of U} is also contained in a domain
(e¢) > 6v/R with 6 > 0. If R is large enough, one has C; < %\/K(eo on the
spectrum of Uj and thus

AC1|Uallg (xy < 1021lo,ca)

Therefore, the the first term in the right hand side of (4.35) can be also
absorbed by the left hand side, implying (4.34). O

99



Proposition 4.7. If R is large enough, there are C and vy > 1 such that
the estimate (4.24) is satisfied by P/U, for all v > o, all € €]0,1] and all
(U, f) € C§°(w) satisfying (4.19).

Proof. Differentiate (4.32) with respect to Z¢, for || < m. The commuta-
tion relation (3.20) implies that

(27 P = Y (3)P7lag 2
B<a

Since g§ is bounded in PI'} .m» the following estimates hold for w € PH™:

112, Py wllo £ ) 12°wllo,a)

B<a
Thus,
"z P Ollo S v 1T o) -
Therefore,
0. 72Uy — %ng"yZaUl =7Z%5 + éFa ,
Z%Ugp—0 = 0,
where

Y Fallo £ A7 T2 )
Proposition 4.6 implies that
1
S 2Vl + PR 20Ol 5, S
(4.36) 1
1% Eallo + Zl[Fallo + 12°U2llo + 200 (0)o.-
We use the following Lemma.

Lemma 4.8. Suppose that a € PFl m and b € Fl m Satisfy ab = b. Then,
with ho = b’wh, one has

h2llmwy S Y A" P2

laj<m

Taking this lemma for granted, since Us = P,i,’;, U’ with v} = P{""u and
v/ = v, with (4 27) and (4. 36) and the estimate of F,, we obtain

||U2”m +7|U1( )| J(VA) S
al\Uzllm,(m + [1Follm + [0l + [0(0)]m

For v large enough, this implies (4.33) and thus (4.24) for P:3U. O
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Proof of Lemma 4.8
The symbolic calculus implies that Py hy = P"h + R where R is of
order —1. Because ab = b, this shows that P;"hy = hg + eRh. Thus

h2llmay S D A" NZ P hallo,ay + €l .

|or|<m
Next we commute Z% and P;'7: [Z%P;"|ho is a sum of terms

— p&Y pEY -B-p
k=P P 2078

with 8> 0 and 8+ ' < a. Because a = 1 on the support of b, for § > 0,
(ZPa)(Z"'b) = 0, and the symbolic calculus implies that

YKo,y S ey N2 o < ellllm

The lemma follows. U

4.4 Bounded frequencies

From now on, we consider bounded frequencies ¢. Fix { = (7,n,7) € RA+L

with v > 0 and ¢ # 0. Lemma 2.6 provides us with invertible matrices
W(z, p, () defined for (p, () close to (p,¢) and such that

(4.37) OW +WG =GV,

where Ga(p,() is independent of z. Lemma 2.12 provides us with a sym-
metrizer S(p, () for Gy in a neighborhood of (p, ¢). Introduce

= ko(t,y,z) x2(€)G2(p°(x,79), (),
= "33(t7 Y, x)x3(<)8(p6(t, Y, x)’ Q )

Wy (1. 2.6) = ralt,, ) x2(OW T (C. 07 (1 2). ).
fe(tv ya C = Fwe—l(ta ya 05 C) 9

with C'°° cut-offs k9, k3 and Y2, x3, supported on small neighborhoods of
(t,0) and ¢ respectively. We further assume that koks = K3, X2X3 = X3,
and that p° remains in the domain of definition of Go,S and W for (t,y,x)
in the support of ko. We also assume that k3 = 1 and x3 = 1 on smaller
neighborhoods w;, and C;. Thanks to (4.5), these symbols are bounded in
PF(f’m for € €]0,1]. Note that the order, has no real meaning here, since the
symbols are compactly supported in (. Moreover, since & does not depend
on z, the family 0,0° is also bounded in PI‘87m. Lemma 2.12 implies:

g5(t,y,z,¢
o (t,y,z,¢

~—  ~— ~— ~—
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Lemma 4.9. With notations as above, there are constants C' and ¢ > 0 such
that the self adjoint matrices o° for e €]0,1] form a bounded family in PI’%O
with 8,0° bounded in PF870 and for allU € C?N, ¢ €]0,1], (t,y,z) € wy and
CeCy:

i) Re (095U, U) > c|U|2.

ii) Re (0°(0)U,U) + C[TU|* > ¢|U%.

With £ € C§°(w1) equal to one on w and x € C§°(Cy) equal to one on
C, introduce

x

(4.38) w(t,y, 2, ¢) = k(L y, 1) X(OW(Z,p7 (L y, 2), ) -
The intertwining relation (4.37) is transformed to

(4.39) e0,w° + w g® = gsw® +er

with r* = 0,kxW + kx0:pV,)V bounded in Pfg,m.

Consider Uy = P, U. Then, with (4.20) and (4.39) and using the sym-
bolic calculus, we obtain
0:Uy = PP 0,U + Py .U
1 1
= gPg‘%’jﬂsU + - (P P — P2 YU + PU + P F

—1 €Y £,V PESY —1 €Y &, PESY 3
But ¢ (ngws — P Py ) and €7 (P,=,- — Py P2") are of order zero, since

w® is of any negative order, being compactly supported in (. Here, the im-
portant fact is not about the order of the operators, but that the remainders
in the the symbolic calculus are smaller by a factor €. Thus

1
(4.40) 0:Us = =P Uz + F3,

e 92
where F, satisfies
(4.41) 1E2llm S ALF Ml + U -

Next, the symbols satisfy w® w® = kxId. Thus,

(4.42) PRU =P, Uy +eRU,
where R is of order —1. Thus

(4.43) 1P Ullm S 102l + el Ullm -
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The boundary condition u(0) = 0 and (4.42) imply that

(4.44) | P2 T2(0)],,, < €|R(0)0(0)],,, < e|u(0)],-
Similarly, (4.42) implies that
(4.45) |P0(0)], < [U2(0)], +elv(0)]

Moreover, since w® and y are compactly supported, the spectrum of Pc}’
is contained in a domain where £¢ is uniformly bounded. Hence ¢ < 1/4/¢
on this domain and

1
1P wlim, ) 1PVl o) S ZIPS Ul -

\[l
Similarly,

PO ) S PO
Therefore, with (4.43) (4.45), we conclude that the estimate (4.24) for P/ U
is implied by

L ta(0)]

1
4.46 —02]|m + —=
I L =

S 1E2llm + Ul + [0(0)]m

Proposition 4.10. With notations as above, there are C' and vg > 1 such
that the estimate (4.24) is satisfied by Pl U for all v > 7o, all € €]0,1] and
allw € C§°(w).

Proof. We prove (4.46).
a) Choose k] € C§°(w1) and x' € C§°(C) such that K’k = K, X'x = x
and introduce U} = PS;Z(, Us. Then, using the symbolic calculus,
1

1
10:U3 — ~PeUsllo S 1 Bsllo + Wallo,  IPETUSO)lo S IPETV2(0)l

Consider the symmetrizers S = Re P = $(P57 + (P;)*). We now repeat

s
the proof of Proposition 4.6 using the symmetrizer S = Re P:.". The main
difference is that [0, S] is now a term of order 0, since

0z, 5] = *Pa’asJF (Pa )
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and 0,0° is bounded in PF870. Therefore, there is now no term in Cre~1(|Uj||o
in the right hand side of (4.35). In addition, 4i) in Lemma 4.9 implies that

(S(0)U3(0), U3(0)) + CIPU2(0)|o > c|U3(0)[3 — C'*|U2(0)5 -

Adding up yields

1 1
EHPZ&/UZHO + %‘Pz{;/UQ(O”O S 1E2 o + (| U210 + |U2(0)]o -

b) The second part of the proof is identical to the proof of Proposi-
tion 4.7. We differentiate the equation (4.40) with respect to Z%. Using
part a), one obtains:

1
NG

With Lemma 4.8, this implies

Lo o _ 1
NP2 Vellot =P 2702000 S 1B flm+ (14 )N Uallm+[U2(0) m -

1 1
10zl + O)lm S 1F2[lm + 5|!U2Hm F Ul + [U(0) ]

1
—|U.
Nt
For ~ large, this implies (4.46), finishing the proof of the proposition.  [J

4.5 The low frequencies

We now turn to the most delicate part, where we consider frequencies sup-
ported in a small neighborhood of {( = 0. We start the analysis as in the
previous subsection. With W and V given by Lemmas 2.6 and 2.9, we define
T = WV. Then, (4.37) reads

0T +TG=GT, Goe (Ig ](_?)) .

We define
92(t,y, %, Q) = ra(t,y, 2) X2(Q)G2(p" (2, 9), C) ,
w4 (1. 2.) = ralt.y,2) x2(OT H(2.p7(1,9.2),0).
L*(t,y,¢) = T, (t,9,0,()

with C* cut-offs k9 and y2 supported on small neighborhoods of (¢,0) and
¢ respectively and equal to one on smaller neighborhoods. Now g5 is block

diagonal:
. (R 0
g2 = 0 e .
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Again we use symmetrizers but we now have to combine the P%7 calculus
for the second block and the T calculus for the first one. We start with
some preparation. By definition,

hE(t,y, 2, Q) = ra(t,y, z)x2(Q) H (p° (L, v, 2), () -
Moreover, H vanishes at the origin. Therefore, using a Taylor expansion of
H, we obtain
d—1
(4.47) he =iThy + Y ingh§ +vhi,
j=1
where the hj, are bounded families of symbols in PF%O, with compact support
in ¢. Introduce the symbols

hi(t,y, 2, C) == hi(t,y, z,2(),
d—1

he(t,y,$, C) = 'L'Thé(t,y,l‘, C) + Z’L?’]th(t,y,l’, C) + "}’hé(t,y,l’, C) .
j=1

Then, since the hj have compact support in ¢, the hf, are bounded families
in T and the h® are bounded in I't  (see Example 3.3).

We now proceed to the construction of symmetrizers.

Lemma 4.11. There are neighborhoods wi of (t,0) and Cy of the origin in
Riﬂ and there are C' and ¢ > 0 such that:

i) there is a bounded family of self adjoint matriz valued symbols 0§ €
PI’?,O such that 0,05 is bounded in PF8 and, for allv € CV, all € €]0,1],
(t,y,x) € wy and ¢ € Cq, one has Re (o57v,v) > c|[v]|? .

it) there is a bounded family of self adjoint matriz valued symbols s] €
F%O such that 0,57 is bounded in F870 and

(4.48) Re (sh?) = > (v§)"kivy

where i

a) the ve(t,y,z,() are bounded families matriz valued symbols in
I such that Y (vE)*ve > cld when (t,y,x) € w1 and e¢ € Cy,

b) the ki (t,y,x,() are bounded families of matriz valued symbols
in T} having the following block structure:

(4.49) K =
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and either § i
b5 (t, y, 2, ¢) > [C]
or b5 =vbjo + b2 and

bSo(t,y,2,¢) > ¢ and Db5o(t,y,x,C) > clC]?

when (t,y,z) € wy and ¢ € Cy.
3 ~ ~
i11) the matrices s° = [ Sol sog } with s5(t,y, x, ¢) = o5(z,9,eC) and

g (t,y,C) == fs(t,y,sé) satisfy for (t,y) € w1 N{z = 0}) and e € Cy

(4.50) (s°(0)U,U) + C|g°U|)* > c|U|?.

Proof. This is a direct consequence of Lemma 2.13. In this lemma, two
symmetrizers S1(p, ¢, p) and Sa2(p, () are constructed for the blocks H and
FE respectively. Define

(19,2, 8) = ra(t,y,2) x3(e0) S (t,y, ) eld))

(4.51) €]
o5(t,y, 2, ¢) = k2(t,y, z) x3(¢)S2(p° (¢, 9, 2), ()
with k3 and x3 appropriate cut off functions near (¢,0) and ¢ = 0, such that

KoK3 = K3, X2X3 = X3 and 3 on wi and y3 = 1 on Cj. Thgn, Lemma 2.13
implies the properties ), i) and iii) above. O

Given w; and Cy, we choose k € C§°(wq) and x € C§°(Cq) with k1 =1
and y = 1 on smaller neighborhoods w and C. With

wf (1 y,2,€) = K(t,y,2) X(OT (. p7(9,2),0).

we first give estimates for Uy = P,7U. With these notations, the intertwin-
ing relation (4.39) still holds, as well as equation (4.40) which now decouples
in two parts

(4.52) Oy = %PEQUQ + fo,
(4.53) vy = 1P o+ go,

where Uy = t(ug,v9) and Fy = !(fa, go) satisfies (4.41).

We also choose k' € C§°(wi) and x’ € C§°(Cy) such that x'k = k and
XX = x. We introduce U} = PE&,UQ = Y(uf,v). These functions have
their spectrum contained in a domain where ¢ is bounded (see Proposition
3.12). In this case p? ~ v + ¢|7j|? and for such functions

(4.54) lullo,p2) = vllullo +elldFullo,  Nvlloe) = VAllvllo + vVElldzulo-
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Proposition 4.12. There is C' such that for all u € C§°(w)

1
[[ugllo 2y + %HUQHO,(@) +1U3(0)[o,¢) < C<||f2Ho + Vellgzllo,p)

+ [P U5(0)

o)+ u2llo ) + leallo + [U2(0) o)

Proof. Applying PS;;/ to (4.52) and (4.53) yields

(4.55) Opuy = LPlub+ fy,

(4.56) vty = 1P v+ gh,

where

(4.57) 1f3llo < Il f2llo + lluzllo,  llgallo < llg2llo + [lv2llo-

From (4.47), it follows that
1 d—1
P = PO + > Pr{ Oy + Y P
j=1
With Proposition 3.19, this implies that
1
(4.58) ||gPZé7U/2 — Tiubllo < [lusllo -
Therefore, we can replace equation (4.55) by
where f} satisfies || f3llo S [l fallo + [[uz]lo-
Introduce ¥; = Re T’ % and Y3 = Re P;g’. We consider the symmetrizers
d—1
Skzvﬁk—25aj2k8j, fOl"kZl,Q.
§=0
We start from the identities

(S1(0)u5(0), u5(0)) + Re (S1T7-wsy, us)

4.60 B
(4.60) = — ([0, S1ub, uh) — 2Re (fh, S1uh)
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1 e
((SQ(O)U&(O), vé(O))) + gRe ((SQPEE”YU/Q, vé)))
= — ([0252)vh, v5)) — 2Re (Sagh, v5) -
We now estimate the different terms.

a) The right hand side of (4.60). By Proposition 3.6, since J,s° is
bounded in TG [0z, T, %] and therefore its adjoint and hence [9,,¥1], are

uniformly bounded in L?. Thus

(4.61)

| ((9a51)us, w'2) | S AllualIF + e Vauallg < luzllf )

where the second inequality follows from (4.54).
Similarly, ¥; is of order zero in the sense of Proposition 3.4 and

[((F, S1ut))| < [ Fllo1S1ubllo < N F5llo (Vb llo + &l Ve lo)
S 13 lo leialo 2 -

b) The right hand side of (4.61). Since 0,05 is bounded in PIj o, the
commutators [0, ¥a] are uniformly bounded in L? and

| ((0252)v5,v5) )| < w3l + el Vgvall§ < 1/

2
0,(¢p) -

For the second term, we give a symmetric role to go and wvo, using that Yo
is uniformly bounded in L?:

| ((S2g2: )| < Allgallo llvallo + > ell9igallo 19505110
J
< l192llo,e) l12ll0,p) -

c) We apply Gardings’ inequality to the second term in the left hand
side of (4.60). Since, s° is bounded in T o, (T)* — TiL) is of order —1 by
Proposition adjoint. Thus 3y — 7} is also of order —1. Together with the
symbolic calculus in Proposition 3.5, this implies that

SlT}?s =7 (T%ha + RO) + ZEaj (T%haf)j + le) ,
J

where Ry is of order zero and the R{ are of order one in the sense of section
3.1. With notations as in Lemma 4.11, we have

ReTl,. = Z(T%)*Tkleij + Ry
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with Ry of order 0. Thus,

(S1Tuy,uy) — Z’y((kalegu/Q,T‘;Ylgué)) - Zs((TklaT%Bju/Q,TJlsﬁjué))
l l,j
— O( s 13 + llBu4113) = O(us 2,
Next, T%T:,X, — T;’E X is of order —1. Since ki is of order 1, in the for-
1

oy v 9.
mula above we can replace TV? uy and Tvlg djuly by T

vEr 1y U2 and TV

KX 8ju2
respectively, at the price of an error of order O(|uz ||} (@))
We estimate the scalar products ((TklsTJlgu,T\;Ylgu)) using Garding’s in-
equality. According to the block structure of kj, there is a decomposition
Vi

Vi =

1>
Vgl

so that .
(Ti T, T z; (Ths T uT: )
j:

When b; is elliptic on wy x e71Cy and w € F%O is supported in this set,
Garding’s inequality implies that

(T Ton, T3 > Tl — Clul? |
with norms as in (3.6) (see Proposition 3.7 and Remark 3.8 ).

When b; = vbj o + b2 with b;o € F(1),0 elliptic and b;» € F%,o elliptic,
then Garding’s inequality implies that

(To: T, Thu) = e (41|

6.1) = COrllullg -1, + ellull3)-

On the spectrum of Tyyu, we have |¢| > v+ £|¢|?; thus in both case case, we
have

(Toe T, Tou) > (Y| T3ull§ + el Thullg 1 ) — Cv~Hlullg

We apply these estimates to u = ug or u = dyus and w = V;ln/ xX'. Adding
up, and using (4.54) for the remainders, we obtain

Re (S Tyeub) > €3 (T2 yual + el T g l1.,)

l
3 eI Bsuallf, + T Dyl ) — Clluall )
lL,j
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Next we use the ellipticity of Y (v;)*v; on the support of x’x’ which
implies that there are bounded families of symbols vj in F[io such that

k'Y = ZV?V?/—@’X,
!
Thus
2 2
,UH ZH vi nx’uHO—i_ HUHO,—l,'y'
Adding up all the estimates, and using (4.54), we have proved that
Re ((Sl Uz,u2)) > C ||UQ||0 C,||u2”(2)7((p)

d) The second term in the left hand side of (4.61). The analysis of this
elliptic term is quite similar to the analysis made for bounded frequencies
in Proposition 4.10. The symbolic calculus implies that

YoPr? = Pl + <R

w =

with R of order 0 (in the calculus of section 3.2). Moreover [0y, Prt'| = Pa’zg
is also of order zero.

SoPr =y Pyl +evyRo + Y e0;(Poi-0; + R +eR}0;)
J

where the remainders R are of order 0. By Garding’s inequality (cf Propo-
sition 3.15 and Remark 3.16),

vRe (Poievs,v5) > evlvallg — Ce?|luallf,
eRe ((Pj’zrgﬁ vy, Ogvh) > cel|0gub||g — Ce® || 95v2I3 .
Since €y and €0y are bounded in our domain of analysis and using also
(4.54), we conclude that
TRe (P20, 14) > ol ) — Clls
- 2L77e U2, Ug = e 2110,(¢) 2110 -

e) The boundary terms. Since a® := s® 4+ Cy(g®)*g® is definite positive
on wy X e 1Cyq, Proposition 3.7 implies that

c|U3(0)[; < (TLU3(0), U3(0) + C|Ua(0)][5 _,
Next, we use again Proposition 3.19 and write

ng'y

_ Y &Y Y
os(0) = Ligo) T B-15 PP =Ty + B
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where the remainders R_; are of order —1 in the sense of (3.27). The
symbolic calculus yields ¥o(0) = T (o) + B-1 and thus
2

(0) = (EI(O) 0 ) ~ T 4 Ry

¥2(0)
and
T =%(0)+C(P) P + Ry
Therefore,
2 2 2
U50)]2 S (SO0)U5(0), U5(0) + [PEITU50)]2 + |20, .

There is a similar estimate for 93U. Using again (4.54), yields
2 2 2
|U200)[y, () < (S(0)T2(0), U(0)) + [P T2(0)][ ) + [U2(0) -
f) Adding (4.60) and (4.61) and using the estimates above, one obtains

1 2
/112 /112 /
HU2||0,(¢2) + EHU2||0,(@) + ‘U2(0)‘o,(<p) S

120 [l

2
0.2 + I192llo.o) 102llo.c) + [PRIU2(0)]g
2
+ [luallf (py + o2l + [U2(0) |5

and the proposition follows. ]

Proposition 4.13. There are C' and o such that for allu € C§°(w), € €]0,1
and vy > o, the function Uy = P2U satisfies

1
w2l (p2) + %H’U2Hm,(g@) + U2(0) [, (o) < C(||f2”m
+ VEllg2lim, (o) + PR U2(0)m (o) + U lIm + IU(0)|m> -
Proof. We differentiate the equations (4.52) and (4.53) with respect to Z¢,

la| < m.
a) Equation for Z%us.

(2% P =Y () Pydape 27
B<a

71



Using (4.47), one obtains
6?7 JR— 677 677
Pappe =€ (Pza ﬁh5+ZZPZa ﬁhf )

Since h® and thus the A% are bounded in PF(I)’m, the Zo‘_ﬁh; are bounded in

Pr(f,o and the operators P )

a—ih are uniformly bounded in L?. Since 3 < a,

we can incorporate the extra Jy; to ZB to obtain a conormal derivative Z°'
with |3| < |a|. Therefore

mlel) (2o, Piusllo S € lluzlm -

The commutator [Z?, d,|us is a sum of terms ZB0,uy = ZP fo +5_1Z5P;;7uQ
with 3 < a. We repeat the same argument to commute Z% to P,f;v, using
that |3| < m. This shows that

02 %ug = 1P,f;”Z“uz + £,
(4.62) €
Yo S M o + N2l -

b) Equation for Z%vy. We note that for w € PF(I),O and v such that ¢
is bounded on its spectrum one has

125 vllo,0) S Ivllo,e)
Indeed, using Proposition 3.4 and (4.54), there holds

o) < VIS o + VEllog Py vllo
S VAllvllo + VEldgullo < Hlvlloy) -

175

Thus
1127, P2 wallo,(p) S Z ”Z%QHO,(@)

f<a

and 1
m=lel |12, P2 wsllo ) S |!U2||m,(<p)

For future use, we note that we have proved that
(4.63) 125 0l ) S 10l e)

if ¢ is bounded on the spectrum of v.
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The commutator [Z7, 9, ]vs is a sum of terms Z%go + EleﬂPesﬂuQ with
(8 < « and, finally, we see that

1
0pZ %9 = =P Z%9 + g%,
€
(4.64) N .
gl 19%ll0 S g llm, () + aHUsz,(@)-

c) The traces. One has Z*Us(0) = 0, except when Z% = 97 contains
no xd, derivatives. In this case, repeating the analysis in b), one obtains
1
— |U2(0)
S20)

d) We apply Proposition 4.12 for each Z*Uy and |a| < m. together
with the commutator estimates above, this yields

m—|a (o &,
Y o |[Z 7Pfs ]U2(O)‘O,(<p) S m,(p)

_ 1
’Ym |C¥| (||P§;;/ZQU2”O7(¢2) + %HPS;;Z/ZOL’U2’ 0’(90) + |P§;;/ZQU2(O)’07(¢)>

S 1 f2llm + Vellgallm, o) + [PETU2(0) |, () + 1uzllm, o)

1 1
m A U2(0) [ + ——=][v2]|, ~1U(0) ] (0 -
+v2llm + [U2(0)] +%ﬁllvzll ,(@)+7! 2(0)m, ()

We now argue as in Lemma 4.8, using that Uy = P.7U and )}’ = 1 on the
support of w®. Using (4.54), we see that

luzllm 2y S D A" NPEY Z%Uz2]l0,(p2) + 1Tl

laj<m

o2llm,) S D A" NPELZ%v:2ll040) + VENU I

laf<m

U2(0) o) S D 4™ NPELZU2(0)o p2) + VEIU(0) I -

la]<m

Therefore,

1
w2 llm, (p2) + %“02”771,“0) +1U2(0) I,y S lf2llm
+Vellg2llm, (o) + 1P U2(0) |, (o) + 1Tl + [U(0)[m
1 1
+ HuQHm,(go) + r\/gHUQHm,(tp) + ?’UQ(O)‘m,(g@) .

When ~ is large enough, the last three terms the right hand side can be
absorbed from the right to the left and the proposition follows. O
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Having proved the estimates for Us, we now prove the estimates for
Uy = P, U.

Proposition 4.14. With notations as above, there are C' and vy > 1 such
that the estimate (4.24) is satisfied by Py U. for all v > ~o, all € €]0,1] and
all w € C§°(W).

Proof. We fix the neighborhoods and cut-off functions so that Proposi-
tion 4.13 applies. Before estimating U; we need some preparation.
a) First, we remark with (4.54) that

1
(4'65) ‘|U2Hm,(ap)2 S %”UQHWL,(@)?

(4.66) Velgzllim,p) < Nlgzllm -

Next, we note that for €|¢| bounded, ¢|(| < Cy/ep and thus ¢|(|p/\/€ <
C¢?. This implies that
1 1 <
ﬁ||53§u2Hm,(¢) + %"57u2‘|m,(gp) S Mz, p2) -

Ifwe PF%m has compact support in ¢ and vanishes at ( = 0, one can write
w =Y wjii]; +ywq with w; € PIY, and Py” = Y Pyedy, + Py ey. Using
(4.63) for the action of the Py, we get

1
(4.67) —=1P5 uzllim (o) S luzllm,p2) -

Ve
Moreover, ep/+/c is bounded when |¢] is bounded and thus
1 <
%Hgf.?”m,(np) S N f2llm -

With equation (4.52), and applying (4.67) to w = h® which vanishes at
¢ = 0, we conclude that

1
(4.68) %He@mwllm,@) S luzllm,e2) + lfallm -

Writing
uz(x) = u2(0) +/ Opus(2)dx’
0
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one obtains that for 8 > 0,

e/ ually < € (Valua(O)], +lIediuall).

This also holds for the tangential Fourier transform of wg, and extends to
any weighted space with weight depending only on (, in particular to the
norms (0, (¢)). Next we commute with Z. Commuting with 05 is trivial.
Next we write

e 020, uy = B(2/e)edpuy  with (2) = ze 2,
yielding the estimate
@69) el ey < C (VEua(O0)],, ) + Brtaln)-

With (4.68), we conclude that
1 —Ox/e
(4'70) %He / U’?Hm,(tp) S Hu2||m,(<p2) + ‘uQ(O)‘m7(¢) + Hf?Hm

b) We now proceed to the proof of (4.24). The symbol w® ; satisfies
w?yw® = k(ty, @) x(¢)Id.
Therefore
(4.71) Ur=PU=P7 Us+eRU,

where R is of order zero. Moreover, € is bounded on the spectrum of the
first two terms and thus on the spectrum of RU. Therefore

(4.72) e RU|m,(2) eRUlm,p) S 1BUllm S U]l -

<L
~ovE
From (4.71) and the symbolic calculus, we get that

87
U] = ngUngsr,

where w{ is the upper N x 2N block of w®; and er satisfies estimates
analogous to (4.72). As for (4.63), we note that

(4.73) 1P Uallin o2y S V2]l (p2) -
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Indeed, since € is bounded on the spectrum of Us and PEQUQ, one has

15 Uallo,(p2) = YIIPLE Uzllo + 5_1||P|2’%Pi’§U2||0 :

Since

&,y EY &Y €,
Peptug = Pup Fige + 2R

with R of degree zero since w; is bounded in PF(l),O. Therefore,

1P57 Uallo,p2) < IIU2]l0 + & HIPEEU2llo + [1U2llo < [1U2]lo,p2)

Commuting Plig and Z“ for |a| < m and using that Z* Pw¢ € PI}  yields
(4.73). Together with (4.72) we get that
(4.74) [utllmye2) S 1U2llm ()2 + U]l -

Next we remember that the matrices W and V which enter in the defi-
nition of w® | satisfy

W(z,p,¢) —Id = e *W(z,p,(), V(p,0) = <I(§1 Iil) :

with W uniformly bounded and smooth. This shows that
v = ijgvg + P ug + P;’,V(efex/aug) +eRU,

where wy, we and w’ are symbols in PF[im such that wi(t,y,2,0) = 0, and
R is of degree zero as in (4.71). With (4.63), (4.67) and (4.70) we deduce
that
1 1
%HUle,w) S ﬁHvsz,(@) + [[uallm, 2

+ |u2(0)],, () + If2llm + 1Tl

(4.75)

Similarly, one has T5uw? = ry T and thus P = PP + R with R
of order 0. Since I'U = u = 0 at = 0, one has P;;’YU2<O) =eRU(0). Thus

(4.76) |PEU(0)],,, ) S [U2(0)]

m, m’

Collecting the various estimates, Proposition 4.14 implies that

1
|21 [, (p2) + \ﬁHUle,w) + [0(0) () S

[f2llm + llg2llm + 1Ullm + [U(0)|m -

Together with the estimates (4.41) for F» = (f2, g2), this implies (4.24) and
the proposition is proved. O
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4.6 Proof of Proposition 4.4

One first uses Propositions 4.7 and 4.14 to find a neighborhood w and cut-off
functions yg and x g with xo supported in a small neighborhood of the origin
and xyg = 1 for large ¢. In the intermediate zone, we use Proposition 4.10
to find a finite covering, decreasing w a finite number of times.
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5 Linear stability

In this section, we prove the main stability estimates announced in Theorems
1.9 and 1.10. Note that they contain both conormal H™ estimates and L™
type estimates, which are crucial for the analysis of nonlinear stability in the
next section. The basic conormal estimates for functions globally defined
in time are stated in Theorem 5.1. By standard techniques, they imply
local in time estimates and the well posedness of the linearized equation
(Section 5.1). In Section 5.2, we show that the estimates of Theorem 5.1
are combinations of the estimates of Theorem 4.1 near the boundary and
of estimates in the interior that are stated in Proposition 5.5 and proved in
Section 5.3. Finally, the L™ estimates are proved in Section 5.4.

Consider functions ug, by, and v in W™2:°°([~Ty, Tp] x ), with v* sat-
isfying (4.1). Introduce u, as in (4.2), and consider the linearized equation
(4.3) of (1.25) around u,. As in section 4, we extend ug, v® and thus u, to
R x ©, and we assume that the extended function are independent of ¢ for
|t| > T1 > Tp. We first consider the linearized equation on R x Q :

d d
1
Pu = Opu + Z A50;u — ¢ Z B;k@iku +-FEu=f,
(5.1) = i €
U rxon =0.

We introduce the space H7' of functions u € e L2(R x Q) such that Z'u €
e L2(R x Q) for all sequence I = (iy,...,i) of length k = |I| < m, where
7! = Z; -+ Z; . As usual, we agree that Z! = Id when |I| = 0. This space
is equipped with the norm

(5.2) [ullpe = Z v M le™ Zul 2y,
[7]<m
The basic estimate is the following.

Theorem 5.1. There are C > 0 and ~y such that for all e €]0,1], all v > v
and all u in C§°(R x Q) vanishing on R x 982, one has

Yl + VEIVaullrg + VEllOpullrg + 2V iullre

(5.3) ’
< C|Peul[pzp -

5.1 Proof of Theorem 1.10 part one, assuming Theorem 5.1

Denote by HT!, the space of functions f € H™ which vanish for ¢ < 0.
Introduce next the space ICQ” of functions u € ng such that V; ,u € 7_@17
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V2u € HY" and vanishing on the boundary R x 9. Let KT, denote the
subspace of the u € K" which vanish for ¢ < 0. Note that for all e > 0, P°
is a bounded operator from K5 to HY' and from KT, to ‘HT',. We denote
by P5 this mapping.

Lemma 5.2. For all v > 79 and € €]0, 1], Ps is an isomorphism from K
to HTy and for all u € KTy the estimate (5.3) holds.

Moreover, if f € HJ vanishes for t > Ty, then u = (P,‘;)_lf also
vanishes for t < Tj.

Proof. By density, the estimate (5.3) extends to functions u € K7, and thus
P, is injective for v > .

Next, we use the classical theory of parabolic systems, for a given fized
e €]0,1]. It implies that there is y(¢) such that for v > y(e) and f € HI
there is a unique solution u of (5.1) in KT;. This shows that P5 is an
isomorphism from K7y to HT, for v > 7(e). We show that (5.3) implies
that it is an 1somorph1sm for 'y > - Indeed, let v, denote the infimum of
the set of v > 79 such that P is an isomorphism. For the given €, the norms
of P5 and, by (5.3), the norms of (77,";)_1 are bounded by uniform constants
when 7, < v < 7(g). Therefore, there is §y = dp(¢) > 0, independent of
¥ > 7. such that PJ —6Id is an isomorphism from Ky to HI', for [d] < do.
Next we note that

Pis = e (P —old) e

Therefore, if v > v, > 70, P, is still an isomorphism for 4" € [y —dg, v+ do).
This implies that v, = 9 and the first part of the lemma follows.

Suppose that f vanishes for ¢ < Tp. Since HJy C HI, for v > 7,
we can use estimate (5.3) for m = 0 and 4" > ~. It implies that the L?
norm of €’ M=%y is bounded as +' tends to infinity and thus v = 0 on
} — 0Q, To[XQ. O

Consider now f € H"™([—To,Tp] x ©2) which vanishes for ¢ < 0. We can
extend it to t > Tp, as a function f* € H™ (R x ) which vanishes for ¢t > T,
for some given 77 > Ty. Therefore, f* € HT', for all v > 1. Moreover, we
can construct the extension so that

(5.4) 1l < C I fllaem s

where 7 is given by Theorem 5.1 and we use the notation || - ||3m for the
norm in H™([—Tp, Tp] x §2) as in section 1.
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Lemma 5.2 implies that the equation (5.1) with right hand side f* as a
solution u* € KT/ . Therefore u = u*|(;<7;} is a solution of

Pu=f, wurnmxeo=0, uicpo=0.

The second part of the lemma implies that u is independent of the extension
f* of f. By standard uniqueness for parabolic systems, it is also independent
of the extension of the coefficients.

For t € [—Tp, To] the weight €7 is bounded and thus, with notations as
in section 1,

(5.5) [ullpm < Cllu” e -

There are similar estimates for the derivatives.

This proves the existence and uniqueness part in Theorems 1.9 and 1.10,
and it is now clear that the L? and H™ estimates in these theorems follow
from (5.3) (5.4) and (5.5).

5.2 Reduction to interior estimates

It remains to prove Theorem 5.1. As in section 4, we change the unknown u
to & = e~ and the source term f to f = e 7' f. In this case, the equation
(5.1) reads

56) {7’5%7:: (P +y)u="f,

Urxon = 0.

We introduce the weighted norms

(5.7) [ull#m == Z Y Z 0]l 2wy -

[]<m

Since the commutators of Z! with e~ are of the form 47121~ it is clear
that

1 _
(5-8) cle Yullpm sy < lullrg < Clle™ ullyem 4

with C' independent of v > 1. Therefore, it is sufficient to prove that there
are C' and g such that for v > 7, € €]0,1], u € C°(R x Q) and f given by
(5.6), one has

Nl 5 + VEVIVatllzem 5 + Vel Oetillrm
+ 2| V2ullrny < Cllflpemy -
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Enlarging vy and C' if necessary, it is sufficient to prove that

Vallreny + VENVatlpny + Veldelny + 2Vl

(5.9) . ~ _
< Ol fllrmy + l[llrmy + Vel Vaiillpmy -

We show that this estimate, and therefore Theorem 5.1, follow from the
next result.

Proposition 5.3. For all (t,z) € R x §, there are a neighborhood w and
constants C' and vy such that the estimate (5.9) is satisfied for all v > o,
e €]0,1] and u € C§°(w N Q) which vanishes w N (R x OL).

Assuming this proposition, we cover [—T7,T1] x € by a finite number
of open sets where the conclusion of the proposition holds. Refining the
covering gives C, 7o, a finite covering |J; of Q and § > 0 such that the
estimate (5.9) holds for v > 0, ¢ €]0, 1] and u supported in w; ;N vanishing
on wjr N (R x 08), with w;, = [(k — 1)6, (k + 1)6] x §;, for all j and all
ke [—kl, kl], where (kl — 1)(5 > Ti.

Because the coefficients of P¢ are independent of time for ¢ > T7, the
estimate on wjy is implied by the estimate on w;y, for £ > k; since the
equation is invariant by the translation t +— ¢ — (k — k1)d from wjy to wj, .
Similarly, the estimate on wj ;. is implied by the estimate on w; _, for k < k.
Therefore the estimate holds for all 7 and all k& € Z.

Choose a partition of unity Y y;(z) = 1 on Q, with x; € C§°(Q;).
Choose next 8 € C3°(] — 9, 6[) such that >, 6,(t) = 1 on R where 0(t) =
0(t — k). For all u € C§°(R x Q) which vanishes on R x 9, we can apply
the estimate (5.9) to @, = x;(x)0k(t)u. We note that

d
Pl =Xi0kf + (00k)x5T + > ASO(Opx;) i
p=1

d
— 2 37 By o0 ((0pxi) 04 + (90x3)0pi1 + (83,3, -
p,q=1

Therefore, since 02 = 0k—1 + 05 + Ox+1 = 1 on the support of ;, one has
1Pesllrem o < 150k Fllrm sy + C (165 o, + |0 Vrtllpem )

The left hand side of (5.9) for w, is clearly less than or equal to the sum of
the left hand sides for the w;;. Moreover, since the supports of the ¢ do
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not overlap three by three, one has

> %30 Fllrem < CllFllaem sy 05Tl < il

J.k
where C' is independent of v, u and f. There is a similar estimate for the x
derivatives. Therefore, adding the different estimates (5.9) for the wu; j, yields
an estimate (5.9) for u, where the only modification is that the constant C
is increased.

Proposition 5.4. For all (t,z) € R x 0N, there are a neighborhood w and
constants C' and 7o such that the estimate (5.9) is satisfied for all v > o,
€ €]0,1] and u € C§°(w N Q) which vanishes wN (R x 98).

Proof. We consider local coordinates near (f,z) and use the notations of
section 4, where x denotes the normal coordinates and y = (y1,...,Y4—1)
the tangential variables.
With notations as in Theorem 4.1, we remark that the weight function
¢ defined in (4.11) satisfies
p? > c(y +elnl® + min(er?, |7))) .
Thus

> > (v +Evml + elnl? + Velr)) . o> (v + veml).

Therefore, for u supported in w satisfying u = 0 on {x = 0}, since v = €0,u,
Theorem 4.1 implies that

Yllllzem o+ VEV IV yllem 5 + VEl|Oeullm sy + & [Vyullrm
+ Vv ll0zullim 5 + e [Vydrullpm 5 < Cllfllm sy,

where, for simplicity, we have dropped the tildes. From the equation, we
have

(5.10)

e02u = —®5 f+5(0pu + yu) + P5V u
(5.11) ) 1
+e@iViu + @50 u +eP6Vy0ru + gEsu ,

where the ®7 are coefficients depending on u, as in (4.7). In particular, by
4.1 they satisfy

(5.12) sup sup |[|[Z9®5|L~ < +o0.

€ Jal<m
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Multiply the identity (5.11) by /2. Then, all the terms in the right hand
side are controlled by || f|l3m.  and the left hand side of (5.10), except

e V2Eey.

Here we use that E° = Ef 4 ¢F5 (see (4.4)) and Ef = ¢~ 9%/ E5 where Ef
and Ej5 satisfy (5.12). By (4.69), we have

e 2 e M Fupm o, < C V2| Opullgm
and thus
e V2| ullym < C (21 00ullrem  + VElullrm 5) -

With (5.11), we see that %/2||02ul|3ym , can be added to the left hand side,
increasing the constant C'. In order to have a formulation invariant under
the change of coordinates, we give a symmetric role to the second normal
and tangential derivatives, and (5.10) implies

’YHUHH"’,V + \/5’YHvy,quHmﬁ + \@HaﬁUHHmﬁ
+ &2 |V2 ullymy < Clfllpm sy -

Going back to the original coordinates, this implies (5.9) O

The next result implies that the statement in Proposition 5.3 is satisfied
when z € ), finishing the proof of this proposition and therefore of The-
orem 5.1. The estimate we prove below is indeed a slight improvement of
(5.9) for functions supported away from 0.

Proposition 5.5. Suppose that Qp is an open set such that Qy C Q. Then,
there are C' and ~yo such that for e €]0,1], ally > vy and all w in C§°(Rx ),

lwllrem o+ VENVatillzem 5 + Ve [Otllzem o + el Vaullrem

(5.13) _
< C(II(P + Nullrmy + lullzmy + 6|!qullww)~
Introduce
d _ d »
(5.14) PP =0+v+ > Aj0;—¢ > Bjrdiok,

j=1 k=1

where A stands for the function A evaluated at (t,z,uS(t,2)). For simplic-
ity, we do not mention in the notation that this operator depends on the
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parameters € and . The definition of the coefficients given after (4.3) shows
that
PE—P =) Aled; + E',
J
where the coefficients have the form

Al = dopu,, E = Z &’Bjua ,+ Ze%@ikua + Zs&)ajuaakua,

where the ®’s are smooth functions of (¢, z,u) and ® stands for the evalua-
tion of ® at u = u,(t,x). Since 5 is compact in 2, the assumptions (4.1)
on ug and v® imply that

(5.15)  sup sup (D110 A e ren) + 108 E |1 aay)) < oo
J

€ lolsm
Therefore,
b
(P = P)ullrm S Nlullrem y + el Vaullpm 5 -

Moreover, the conormal vector fields generate all the derivatives on w,
and the spaces H™(w) are the usual Sobolev spaces H™(w). Thus, intro-
ducing the norms

(5.16) [ullmey = > 4™ 08 ull e,
la|<m

we see that Proposition 5.5 follows from the estimate

allmy + VEVIVatllmy + Ve l0ullmy +5”v3:“Hmﬂ
< C(IP"ullmey + lullmy + £Vt )

(5.17)
for u € C3°(R x Q). We first prove this estimate for m = 0 and next prove
it for general m, differentiating the equation.

5.3 Proof of Proposition 5.5

The analysis is quite similar to the analysis made in section 4, but much
simpler since there are no boundary conditions, no glancing modes and no
singular terms. However, the proof relies again on the construction of a
(para-differential) symmetrizer, where we now use the “usual” Bony-Meyer
paradifferential calculus (see Appendix B). To avoid repetitions, we just give
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now the general scheme of the analysis, leaving the details to the reader, who
can easily fill in the gaps repeating the computations of section 4 and using
the results recalled in Appendix B.

We start with a symbolic analysis. With obvious notations we write

(5.18) P’ = (8, +)Id + A(t,3,0,) + eB’(t,z,0,) .

The symbol of A* and B are

d d
(5.19)  a*(t,,&) =Y i& Aj(t,x), D(Lz,€) = D & Bkt x).
j=1

j=1k

We look for symmetrizers s°(¢, z,£) that are N x N matrix valued symbols
of degree zero, i.e. such that

Vae N, 3C,, Vee€]0,1], V(tz,&) e RFIxR?:

(5.20) _
‘8?s(t,x,§)| + ‘a?vt,xs(tvxaf)‘ <C(1+[¢]) o

In the sequel, we fix k € C§°(€2), non negative and equal to one on 4, and
Y € C®(RY) equal to one for |¢| > 2 and vanishing for |£] < 1.

Proposition 5.6. There are families of symbols s*(t,x,§) and r¢ which
satisfies (5.20) and

(5.21) s = (5°)" and k*° > k%Id,
22) Re (s°(a® + b)) = ¢|¢[%r®,  with k*1° > k?¢?1d.

Proof. The symbols a® and b® are the evaluation at u = uS(t,z) and b =
b(t,z) = (t,z,by(t, x) of smooth symbols

d

d
A(byu, &) = i&5 Aj(byu), Blb,u,&) = D &k Bjx(b,u).

j=1 =1,k

We construct symmetrizers S€(b, u, £) and next choose s° = k1 (t, x)S(us (¢, x), &)
with k1 € C§°(R2), such that Kk = k.

We proceed in two steps. When ¢|¢| is small, we consider B as a per-
turbation of A. Introduce the notations £ = |§]§:, p = €l¢| so that, forgetting
the dependence on the parameter (b, u),

A(€) +eB(&) = [¢](AE) + pB(E)) .
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The constant multiplicity Assumption (H2) implies that there is a smooth
invertible matrix V(¢), homogeneous of degree zero, such that V1AV is
block diagonal. Thus, there is pg > 0 such that for p € [0, po[, there is
V(&, p) such that

iMId+pB; 0

“HE ) (AE) + pBE))V(E, p) = 0 0
0 i\Id+ pB,

Moreover, Assumption (H3) implies that the eigenvalues of the blocks By (€, p)
remain in Re p > ¢ when é is in the unit sphere and p remains small. There-

fore, there are matrices (é , p) such that S; = S5 and Re S; B; are uniformly

positive definite. With

and

S5(6) = v(OS(Sr. <le)

€1’

we obtain a symmetrizer for €|¢| < po.
When €|£| > po/2, we consider that the leading term is eB and write

A(€) +eB(€) = el¢*(ANA(E) + B(E))

w1thA)\ = 1/el¢] < Ao := 2/po. By Assumption (H3), the eigenvalues of
) 4+ B(€) remain in Rep > ¢ > 0 and thus there is a symmetrizer

AA(
S(E, ) for MA(€) 4+ B(€). With

§5(6) = S(E. 1/2I¢)

€1

we obtain a symmetrizer for |£| > pa.
We paste the two symmetrizers, defining

S°(&) = x(&/p0)Si(§) + (1 = x(§/po) S5(8)

with x € C§°({|¢| < 1} equal to one for |£] < 1/2.
The construction holds as long as the parameters (b,u) remain in a
compact of the set O where Assumptions (H2) and (H3) are satisfied. Thus,
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it holds for b = b(t, z) and u = u$(t,x) when z remains in the support of x
and ¢ is small enough (note that ug is independent of time when ¢ is large).
Thus s°(t, z, &) = S¢(ué(t, x), &) satisfies the properties listed in Proposi-
tion 5.6. When € > ¢¢ > 0, it is sufficient to use Assumption (H1), because
in this case A is a bounded perturbation of e83 when [¢]| > 1.
Since k1 = 0 near 02, note that u; is smooth in the support of x; so
that x derivatives are allowed as in estimate (5.20). O

Proposition 5.7. There are constants C' and 7y such that the estimate
(5.17) with m = 0 holds all € €]0,1], all v > o and u € C§°(R x Q).

Proof. We use para-differential operators acting on functions of in = € R¢,
t being considered as a parameter (see Appendix B). For a symbol a, we
denote by Ty the corresponding operator.

We fix a cut off function k; € C§°(f2), which is equal to one on the
support of x, and thus on €. Therefore, for u € CF°(Rx ), Pu = k1 P’u.

The coeflicients k1 A; and lflgj,k, extended by zero outside €2, are bounded
in WHo°(R1*+4). Therefore

1A% = Tpacullo S llullo,  [1B’u = Tagpeullo S [[Vaullo
and it is sufficient to prove (5.17) with P’u replaced by
(5.23) =0 +7)u+ Tijacu+ Ty peu.

We use the symmetrizer S =43 — e 0y, %0,,, where 3 = ReTi and
s is the family of symbols given by Proposition 5.6. S is self adjoint in
L?(R'*9). Moreover, [0;,%] = ReTys and 0ys° is a bounded family of
symbols of degree zero. Thus

d
Re ((S((?t +Y)u, u)) =2 ((Zu, u)) + E’}/Z ((Eaju, 8ju)) +erry,
j=1
where erry = (([S, 9¢Ju, u) satisfies
(5.24) lerri] S Allullg + € | Voullg.

The symbolic calculus (see Appendix B) implies that X7}, ac = Ty scac

is of degree zero while [0}, T; =] = Tp, (x,ac) is of degree one. Thus,

d
Re ((ST,ﬂasu, u))) = vRe ((Tmseaau, u)) + € Z ((Tmssaa@ju, aju)) + erry,
j=1
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where erry satisfies (5.24). Similarly, since b® is of degree two,
d
Re ((STmbau, u))) = ~Re ((T,ﬂsebau, u)) + € Z ((T,ﬂssbsaju, Gju)) + errs,
j=1

where
lerrs| < Ylullol Vaullo + & IVaullolViulo -

Next we use that s°(a® 4 eb®) = er®|¢|* and that T, yeje2 + g OTreyre O is
of order one. Thus, adding the various estimates above, we get that

d d
72 ((Eu, u)) + ey Z((Z@ju, 8ju)) + e Z Re ((T,ﬂrs Opu, 8ku))
j=1 k=1
d
+2 > (Tpr=050ku, 0;05u) = Re (Sf,u) + err
Jk=1

with
lerrl < (llullo + el Vaullo) (llullo + el Vaulo)
(we have used that ||V ul|2 < ||ullo]|V2ullo ). Moreover,

[(Sfu)l = 1(fSu)l < [1flo (Vlwlo + el V2ulo) -

For v € C§°(R x ), writing that v = kv, the positivity conditions
(5.21) and (5.22) imply that

Hollf £ (Bv,0) +10lE, 195015 < (2050, 950) + Ilvll§

and
10k [I5 S (T2 Okv, Oxv) + [|0]l -

Therefore, we have proved that
Pl +exlIVaulls+* V2o S (1fllo+l[ullo+ 1 Vaullo) (v]lullo +el VZullo)
and thus
(5.25) Nl + VETIVaullo + el V21 S 1fllo + llullo + [ Vaullo-
Moreover, (5.23) implies that

1Bcullo S 11/ llo + Yllullo + [[Vaullo + el Vaulo

and (5.25) also provides an estimate for /||0yullo. Adding up, we obtain
the estimate (5.17) for m = 0. O
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Proof of Proposition 5.5

It remains to prove that the estimate (5.17) holds for all m > 1. We
differentiate the equation in space time. Using that the derivatives of the
coefficients of A” and B® up to order m are bounded on R x Qy, one has for
all |o| < m, PO, u = 08, P’u + ga, With

Y gallo < Ml + el Vatullmy -

[e}

Applying Proposition 5.7 to the derivatives 9;',u and adding the various
estimates one obtain (5.17). O

5.4 Proof of the L>* estimates

We now prove the estimates (1.32), finishing the proof of Theorem 1.10.

Theorem 5.8. If m > % + 2, there is a constant C' such that for all
e €]0,1], all f € H™([-Tb,To] x Q) vanishing for t < 0, the solution u of
(5.1) which vanishes for t < 0, satisfies

(5.26) D N Zrullpe +€ Y 1 Z1Vigulpe < C|l fllrm -
1]<2 171<1

If in addition f € L>®([-Tb,To] x ), then

(5.27) | Vaullpee < C(IIfllem + el fllze) -

Proof. a) By Theorem 1.10, we already know that

(5.28) [ullrm + Ve [ Vaulzem S 11 llrem

Because m > d’LTl + 2, the Sobolev embedding implies that for all open set

Q; with Q; C Q, one has

]l w2.00 (=15, 10) x01) < Cllufl3gm -

Therefore, it is sufficient to prove the L* estimates near the boundary.

Near y € 01, consider a coordinate patch with coordinates (z,y) €
R x R41 such that Q is defined by {x > 0}. With x € C(w), u; =
ku satisfies Peuy = f with fi = kf + [¢P®, klu € H™ and, using (5.28),
| fillHm S || fll#m. Therefore, to prove (5.26), it is sufficient to prove it for
u1, that is:

(5.29) Yo 2%l +e Y 12°Vegouillze S [1fllpme1 -
|af<2 o<1
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b) In the local coordinates, the equation reads
1
(530) —s@%ul + A0, uq + ngul = (Bé,d)flfl

(see (4.7)). We put in the right hand side all the derivatives dyu1 Oyuq,
€0,0yu1 and 5B§u1, which satisfy

10y tllpm—1 + el Oy yullpm—r S Nullrm + el Vyzullren <[ fllem -

Hence, using the notations introduced in (2.6), we obtain
1 ~
(531) —88:%11,1 + Aﬁaxul + gESUl =fi

with _
[ fillzgm—1 S N fllrm

and
5= (Bog)tAY, E5 = (B3, TUE.

We write this equation as a first order system:

1
(5.32) 0,U1 = EGEUI +

(U1 e 0 Id . 0~
Ul‘(m)’ G°_<E8 AE)’ FI‘(—fl '

We prove that

with

1
6:33) 312Ul S [Flenes + ol + - lor e
o <2

By (5.28), the right hand side is < || f|lx= and therefore (5.33) implies
(5.29).
c) With notations as in sections 2 and 4, one has

GS(t, x) = g(g,pe(t, y,2),0).

Moreover, Go(z,p) := G(z,p,0) converges at an exponential rate to a limit
G°(p) as z tends to infinity and the limit has the form

wo=(3 )
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By Lemma 2.6, there is a smooth matrix Wy(z,p) = W(z,p,0) such that
W(z,p) —Id = O(e~%%) and

(5.34) 0:Wo = GoWo — WoG5°.
Moreover, by Lemma 2.9 there is a matrix Vy = V(p,0) such that

s () oy ) = ( ).

With these notations, we introduce Ro(z,p) = Wo(z,p)Vo(p) and
Ry(t,y, @) = Ro( Py, ), Dyt y, @) = Do(p*(t,y, ).

Introduce Uy = (RS)_lUl. Then, (5.34) implies that
1 0 0 fo
(5.36) 8, Us = < 0 D >U2 + <g2>

where Fy := (f) = F1 + (0.p°) - VpR(£,p°)U; satisfies
2

[ E2ll3gm—1 S 1 lgm—1 + [[Un [l 3gm—1 -
The commutators of R® and (R°® )_lwith Z* are bounded for |a| < m, thus
Yzl £ ) N2l 1Uallen S U |7em -
|| <2 o <2

Moreover, (5.35) implies that vy = v; + O~%%/<(J,. Therefore,

—Ox/e

[v2l7m S llvllgm + le u [|pm .

Using that ujj,—g = 0, (4.69) implies that le=0%/2uy ||pgm < ||epuy ||3m =
|v1]|#¢m. Thus

[uzllpm + —=lvallrm S Jlutllmm + —=lvillzem -
f f

Therefore, (5.33) follows from the estimate

(5.37) Y 1200l S N Fellpgm—1 + lluzllpen +

laf<2

[v2[¢m -
\[

d) Introduce the Sobolev spaces of tangentially smooth functions: we
say that u € H{y if the tangential derivatives 0, u of order |a| < m belong
to L2([~Tp, To] x R%), equipped with the obvious norm. Then H™ C H}?
and

el < Nl

Next, we use the following lemma
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2
Oyu € Hfgfl, one has u € L*®([—Tp, To] x R‘i) and

Lemma 5.9. If s > 2L there is C such that for all u € Hi, such that
2
lullzee < Cllullm, [0wull g1 -
Applied to Z%u for |a| < 2, since m — 2 > %, this lemma implies that
(5.38) 1Z%u|Fe S Nullpem [0wtullpm-1 -

~

By (5.36),

1
|0zuz|[pgm—1 = || follpgm—1  and [|Ozvalpgm—1 < EHUQHH’“* + [lg2ll3gm-1 -

Therefore, (5.38) implies that

1
12%us]Zoe S Nlullfen + [ follzn-1 . [1Z2%02l0 S Zlvallfen + llg2l3gm- -

The estimate (5.37) follows and the proof of (5.29) is complete.

e) It remains to prove (5.27) near the boundary, that is for localized
functions u;. The only missing estimate is for the second normal derivative
£20,up. Using (5.30), one obtains

e2)|07ur || S ell fllzee + lullzoe + &l Veyouall Lo

+e?|Viui|| oo + €| Vydpun || Lo -

With (5.29) this implies (5.28) and the proofs of Theorems 5.8 and are
complete. 0
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6 Nonlinear stability

d+1
2

so >m+3+ %. Consider the hyperbolic boundary value problem (1.1)
(1.8):

In this section we prove Theorem 1.11. Consider integers m > and

d

(6.1)  L(b,u,0)u:=u+ Y _ Aj(bu)dju=F(bu), U, mypon € €

j=1
with a forcing term F'(b,u) such that F'(0,0) = 0 and b € H*°([—Tp, Tp] X
) such that b = 0 for t < 0. We assume that the state u = 0 belongs
the domain of hyperbolicity @ in Assumption 1.1. The Assumption 1.4
implies that (6.1) satisfies the uniform Lopatinski condition. Shrinking T} if
necessary, consider a solution ug € H*0([—Tp, Tp] x Q) of the mixed Cauchy
problem (1.1) (1.8) which vanishes for ¢ < 0. Since s > L +m + 3, one
has

(6.2)  ug € WMT3([=Ty, Ty] x ), bo € WT3([—Ty, Tp] x Q).
Consider
(6.3) ug(t, x) = W (b(t, ), uo(t, z), p(z)/e) .

Then v vanishes for ¢ < 0 and thus is an exact solution on [—Tj, 0] x € of

d
(6.4) L(bu,0)u—e >  9;(Bjr(b,u)dpu) = F(bu),
7,k=1

u‘ [7T0,T0} X O - O ’

We assume that for all (t,x) € [~Tp, To] x Q), (b(t, z),uo(t,r)) remains in a
compact subset of O where the Assumptions 1.1, 1.2 and 1.4 are satisfied.

Theorem 6.1. There is g9 > 0 such that for all € €]0,e0] the problem (6.4)
has a unique solution u® which vanishes for t < 0. Moreover,

(6.5) [0 = upllrm + [lu = ugllee = O(e) .

We first construct a corrector uj such that u;, = uj + cuj is a solution
of (6.1) up to an error of size O(g).

93



Lemma 6.2. There is a family u§ in W™T2°([~Ty, Ty] x Q) such that
uy =0 on [—Tp, Tp] x O and on {t < 0},

66) 5w s (125 + el Vea ol + V22 1) < oo,
e |J|I<m

and ug = ug + €uj satisfies
(6.7) L(b,ul,0)u; — e Z 95 (Bj (b, ug)opuy) — F(b,uy) =ef*,
1<j,k<d

with

(6.8) sup (|15l + 11/l < +oo.
€€]0,1]

Proof. By definition
uf —ug = W'(x,b,ug, p/c),

where W' (x,u, z) is a smooth function of its arguments which converges at
an exponential rate to zero when z tends to infinity. When ug is substituted
in a smooth function A(b,u), one has

A(b(t, ), uf(t, ) = A(b(t, ), uo(t, ) + A'(b(t, ), uo(t, ), p(x)/e)

where A’ is a smooth function of (z, b, u, z), exponentially decaying at infinity
in z. This implies that

L(bug,0)uf —e Y 9;(Bj(b,u’)0pus) — F(b,u)
(6.9) 1<jk<d

1
=~ Ro(b,uo, ?) + R'(q(t, ),

r €
- )+efs,

o6

where

Ro(b,ug, 2) = An(b, W)W — 0. (B (b, W)2.W) .

R'(q,z) is a smooth function of its arguments, exponentially decaying at
infinity in 2, and g = (b, ug, 0y b, O zu). Moreover

d
f5 == 0;(Bjr(buo)Okuo) + R (z,G, p(z) /),

Jk=1
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where R’ is similar to R’ with now ¢ = (b, ug, O¢ b, O¢ wu, 02b, O%up). In
particular,

sup ([1f5llren +5llz=) < oo
€€]0,1]

By Lemma 1.8, Ry = 0 when (b,u) € C. Because ug satisfies the boundary
condition, this function vanishes when b = b(t,z), u = ug(t,z) and = €
0Q. Thus one can factor out = in Ro(b(t,x),uo(t,x),2) and, since W is
exponentially decaying

~ R0, ), w0(t, ), £) = Rialt,0), 2.

Define Ry = R’ + R).
We look for uf as a function

(6.10) ui(t,z) = Wi(q(t, z), o(z) /)

with W C° in the variables (g, z), and exponentially converging to a limit
at z = co. With (6.9), we get that the left hand side of (6.7) is

(Rl +EW1)(‘T,q, (10/5) + 5f§ + SR‘E(:L‘??]:? (10/6),

where EV = (q, 0.2q, 02q) belongs to W™ and L is the linearized operator
defined in (1.9):

LWy = Ay(W) W1 +(A,(W) - W1)d W
— 9, (Bn(W)an\il +(BLOW) - Wl)azv) ,
where A, =) 0j0A;, B, =) 0j90;kBj} and the coefficients also depend

on the parameters (x,b). Since R’ is exponentially decaying at infinity, the
Assumption 1.2 implies that the equation

(6.11) LW =—-R', Wi,—0=0,

has solutions W, which converge at an exponential rate at infinity. With
this choice, the left hand side of (6.9) is ef® with f® = f§5 + R°(x,q, ¢/e)
which satisfies (6.8).

In addition, since ¢ € W™*2% and W is smooth, the estimates (6.6)
are satisfied. O

Remark 6.3. In [Gr-Gu],the authors construct approximate solutions at
all order, using BKW expansions. The construction of W is just one piece
of their construction of the first corrector.
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Next we solve the equation (6.4), looking for a solution u® = ug + ev®.
The equation for v® reads

(6.12) Pusv® + Q°(v°) = f°,

where P, is the linearized operator defined in (5.1) and QF is a family
of second order nonlinear operators acting on v®. An examination of the
expansions, shows that Q¢(v®) is a sum of terms of the form

Q1 = e®(b, ug, ev°) v° 95v°,

Qo = e®(b, ug, ev®) v° v° djug ,

Q3 = %0, (<I>(b, ug, £v°) ueajqﬁ) ,
Q4 = £20;, (@(b, ug, ev®) v v° Bjui) ,

where the ®’s are smooth functions of their arguments, ©; and Qs stand for
bilinear expressions in v* and 9;v°, while Q2 and Q4 are bilinear in v* and
linear in O;u;. Moreover, indices j and k run in {1,...,d}, which means
that only spatial derivatives are present in Q. The terms Qs and Q4 involve

Q11 = e2®(b,us, ev®) v¥ Ajv b,
Q10 = B (b, uS, ev®) v v° DjusOyb,
Q31 = 2®(b,us, ev°) v° 82 €,

Q30 = £2® (b, uS, ev) Opv® Ojv°

Q33 = 2®(b,us, ev®) v Dy aku
Qi1 = 2®(b,us, ev®) v° v Ojus,
Quo = 20(b,us, ev°) v° 8ku56 u
Qu3 = 2®(b,us, ev®) v¥ v 82 c

Introduce the norms

(6.13) [fllyme s=[Fll2em + ell fllzee

llaem e = [lallpem + &2V aullpgm +2(Vaull2em

(6.14) + > 1 Zrulle +€ > 1 21Vaull L~ + €2 Vaul| e .
[11<2 17]<1

We denote by V" and X" the natural spaces (independent of €) associated
to these norms. We denote by )" [resp. A" | the subspace of v € Y™
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[resp. A™ ]| which vanish for ¢ < 0 [resp. which vanish for ¢ < 0 and satisfy
the boundary condition v = 0 on [T, Tp] x 9 |. In section 5, we have
proved that there is a constant Cp such that for all € €]0,1] and f € V" the
problem

(6.15) Po=f, veA"
has a unique solution which satisfies
(6.16) [vllam e < Coll fllym.e -

In order to use the implicit function theorem to the equation (6.12), the
main step is to prove the following estimates.

Proposition 6.4. For all M > 0, there is a constant C(M) such that for
all € €]0,1] and all vi and vy in XF", Q°(v1) and Q°(ve) belong to Y§* and

(6.17) 19 (v) ly < /1 O(MM),
(6.18) 19°(v1) — Q*(va)llym < £/ C(M) |[or — 2l ,

provided that

(6.19) ellvrlle <1, eflvaflp> <1,
and
(6.20) |vi]|ame < M, lvg]|ame < M.

We first investigate the L°° bounds. The expressions O, are bilinear
in v, eV, 2V, v with coefficients C(b, uS,ev), Vb, eVius, and 2V us

) a’ a’

which are bounded when |ev| < 1. Therefore, if v; and vy satisfy (6.19) and
okl cee := llvkllzoe + €l Vavklle + €| Vavkl e < Jlogllam < M,

one has

1Q°(v1) || < C(M),

(6.21) 195 (v1) — Q% (va) ||z < C(M) |Jor — va| oo -

Next we consider the H"-bounds. We use he following estimates, which
follow from Gagliardo-Nirenberg inequalities.
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Lemma 6.5. i) There is a constant C' such that for all v and w in H™NL*:
(6.22) lvwllzen < C(Ivllpm lwllpoe + ([0l Loellwlipem) -

ii) If ®(b, u,v) is a smooth function of its arguments such that ®(b, u,0) =
0, then for all v € H™ N L) which satisfies ||ev|p~ < 1, the function
(t,z) = (b(t,z), u5(t,x),ev(t, x)) satisfies

In addition, one has the following estimates, where ¢ denotes the defining
function of 0€).

Lemma 6.6. There is a constant C' such that for allv € X™ which vanishes
on the boundary and all €' €]0,1],

(6.24) le=?/%"v|j3em < CE'||Vgv]|pgm -

Proof. For ¢ away from zero, or in any compact domain ; C Q such
that e~#/¢ < &, the estimate follows from Poincaré’s inequality. Near the
boundary, one can prove the estimate in local coordinates patches, and then
the estimate follows from (4.70). O

Proposition 6.7. Suppose that Q is a bilinear mapping on CN x CV and
0 > 0 is given. There there is a constant C' such that for all € €]0,1] and
all vi and vy in A", one has

(6.25) 1Q(v1,£05v2) 1gm < C* [[vy ]| aom ¢ [[va| am e

(6.26) 1Q(v1, 2205 jv2) [gm < C Y4 ol am ¢ [[vallam <.,
(6.27) 1Q(e0kv1,£0502)[l3m < C e vrllam  lvallam < ,
(6.28) le™%/= Q(v1, va) 3em < C M2 |Jur]|am e [[v2]lam e -

Proof. The estimate (6.27) follows directly from the inequality (6.22) in
Lemma 6.5, since

(6.29) [eVavllLe < fvflame and  [leVevlpm < VE[vllame.
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Similarly, the estimate (6.28) follows from Lemma 6.5, since, by Lemma
6.6,

le™%v]| o < [Jollame and e v]lpm S [eVavllrn S VElvllam e
The proof of (6.25) is a little more subtle. With ¢’ = £3/4, we split the
Q(v1,€05v92) into
Q vy, EajUQ) = Q(e_‘p/glvl, EajUQ) + Qvy, (1 — 6_90/8,)68]"02)
Using (6.29) for vy and the bounds

loillze < Jorllame and o)l S € Vavillame S e/ orfam,e

~

for vj = e ¥/¥'vy, the estimate (6.22) implies that ||Q(v},ed;v)|l3m is
bounded by the right hand side of (6.25).
On the other hand, we use that

villzee < lvillame,  [villam < [Jvrllam e

Moreover, w = (1 — e~%/¥)ed;v satisfies
[wlizem S lledjvallzem < Vellvallam e -

since, for all I, the functions Z;(1 — e~%/¢') are bounded on € uniformly in
¢’ €]0,1]. In addition, since 1 — e * < z, for z > 0, we have

[wlroe < eV lpdjvallee SV 1 Z1vall e S €V |lval|am e -
11|=1
Thus, using (6.22), one obtains that ||Q(v1,w)||xm is bounded by the right

hand side of (6.25).
The proof of (6.26) is similar. One has

1203 vzl < lloallame, 16207 kvallzem < €'/2||va]lam e

Hence, with v} = e~%/¢'v; as above, ||Q(v},£20; xv2)||3m is bounded by the

right hand side of (6.26). On the other hand, w' = (1 — e %/¥')%9; v

satisfies

[w'l[wm < Velvallam,e -
lw'|| oo < /020 jvallroe S eV D 1eZrVave|lre S € vaflam e
17]=1

Therefore, ||Q(v1, w)||xm is also bounded by the right hand side of (6.26).

O
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Proof of Proposition 6.4
a) Recall that the L> bounds follow from (6.21). We prove the estimates
(6.17) (6.18) with H™ norms in the left hand sides, for each term Q; ... Q4 3.
We write
b (b, us,ev) = ®(b,u,0) + &' (b, us, ev),

» a?

where the function ®'(b,u,v) vanishes when v = 0. We first consider the
terms QU obtained by replacing ® (b, uS,v) by ®°(b,us) = ®(b, us,0) in the
definition of Q,. Then Q° = ®°Q,, with @, one of the following quadratic
terms:

(6.30)
Q(U,ij) ) Q(@kv,ﬁjv) ) Q(Uvaikr(}) ; Q(U7v)h’6 ) Q(Uaajv)he )

with h® either edyut, €0ib, 528ju28kb, 528ju28ku2 or 528j7ku2. In any case,
we see that
h® = eV + H(z,b,up, p/c),

where the conormal derivatives Z; W€ are uniformly bounded for |I| < m, and
H(z,b,u, z) is smooth and exponentially decaying in z (it is a z-derivative of
the profile W, multiplied by derivatives of ). In particular, one can factor
out a small exponential e=% in H and write

he = eW° + e~ 09/5 05

with ¥§ uniformly bounded with uniformly bounded conormal derivatives.
The conormal derivatives of the coefficients ®° are uniformly bounded and
thus

12°QlI3m < (1Qllem -

Therefore, to prove the estimates (6.21) for Q2 it is sufficient to prove them
for Q. Thus, they directly follow from Proposition 6.7 in the first three
cases. In the fifth case, it also follows from (6.25) using that the conormal
derivatives of h® are bounded. In the fourth case, we split h® as indicated
above and reduce the problem to estimating

E':CQ(UD UQ) 5 e_elp/EQ(Ub UQ) .

The second case also follows from Proposition 6.7 and the first case is easier:
thanks to the extra factor e, it is an immediate consequence of the estimate
(6.22).
b) It remains to prove the estimates (6.21) in H™ norm for Q, — Q2
which has the form
&' (b, u, ev°) Qo (v,v) .

y Har
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To prove the estimates simultaneously, it is sufficient to prove that if ®'(b, u, v)
vanishes when v = 0, then

(6.31)  [|®'(D, ug, ev3)Qalv1,v2)|lHm S ellvillmm e lvallrm e Jvs]|#m e -

We use the estimate (6.22):
12" Qallrm < 12l Qallrem + 112 [l2m[|Qall Lo -
Since ®’ vanishes when v = 0, one has, when ¢||v||f~ <1,
127(b, ug, evs)l Lo < lusllo
and, with Lemma 6.5,
127 (b, ug, evs)lrem < € [lvg]lzem -

The H™ norms of @), are given by step a). It is sufficient here to use the
weaker estimates which follow directly from (6.22) in Lemma 6.5:

1Qa(v1,v2) |l + [|Qa(v1,v2)|l1m S [Jvillam e [[va]lxm e -

Thanks to the extra factor ¢ in the estimates of ®’, these estimate imply
(6.31) and the proof of Proposition 6.4 is now complete. O

Proof of Theorem 6.1
Theorems 5.1 and 5.8 imply that P is an isomorphism from A" onto
Yg*. Thus the equation (6.12) is equivalent to

(6.32) v* = (P)Hf - Q% (v)), €A,

The estimates in Theorems 5.1 5.8 and Lemma 6.2 imply that there is a
constant C such that for all £ €]0, 1]

1(P*)~ o lam e < Cr.
For all M > 0, introduce
X (M, e) ={ve X", e|v]lre <1 and |jvfjams <1}.

Moreover, Theorems 5.1 and 5.8 and Proposition (6.4) imply that for all
M > 0, there is C'(M) such that for all € €]0,1] :

I(P9) 1 Q°(v)llaemm < e C(M),
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1(P*) 71 Q% (v1) — QF (va)|lam < €4 C(M) ||v1 — valarm

for v’s in A§"(M, €). Choosing first M > C1, the estimates above imply that
there is €9 > 0 such that for all € €]0, g¢], the equation (6.32) has a unique
solution in A§*(M,¢). In particular

Ve €]0,e0], v lrm + [[0%[lLoe < 05 [lam e < M

Thus we have constructed a solution u® = uf + ev® of (6.4) and u® — uf =
e(uj + v°) satisfies the uniform estimates (6.5), proving Theorem 6.1. O
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A  Appendix A. Kreiss symmetrizers

The goal of this appendix is to construct symmetrizers in the low frequency
regime, as indicated in Lemma 2.13. This is an extension to our hyper-
bolic/parabolic setting of Kreiss’ construction for hyperbolic systems (see
[Kr] or [Ch-P] for another presentation). We first prove the block decom-
position announced in Lemma 2.10. Next we define the extension of the
spaces E_ to p = 0 and prove (the main part of) Proposition 1.6. Finally
we proceed to the construction of the symmetrizers.

A.1 The block structure condition. Proof of Lemma 2.10

We use the notations of section 2 assuming only that Assumption 1.1 is
satisfied. The matrix H is given by Lemma 2.9 and in polar coordinates
¢ = p¢ we write H(p,¢) = pH(p,C,p) as in (2.40). We start with several
remarks about the symbols of the equations. We denote here by

pv 777 an +£Ad( )

j<d

the symbol of the hyperbolic part of the equation and by

Bp,n.&) = Y _ njmBjx®) + > &n;(Bjalp) + Ba;(p)) + & Baa(p)

J.k<d j<d

the symbol of the parabolic part. Then

det ((i +~)Id 4+ iA(p,n, &) + B(p, 7, €)) = det (Bga(p)) det (i€1d — G(p, ())

and in the polar coordinates (2.40)

det ((i7 4+ ¥)Id + iA(p, 9, €) + pB(p,1,€)) =
det (Bga(p)) det (i€ld — H(p, ¢, p)) det (ip¢ — P(p, p()) -

Denote by Aj(p,n,&) the eigenvalues (of constant multiplicity by (H2))
of the hyperbolic symbol A(p,n, ) and by II;(p, §) the associated eigenpro-
jectors. For p small, there is spectral projector IL;(p,&, p) of iA(p,n,&) +
pB(p,n,&) yielding a diagonal block decomposition, with a; x «; diagonal
blocks

(A.1)

ixj(p,n,©)Id + pBj(p,n,&, p).

where «a; is the multiplicity of A;. The eigenvalues of iA(p, &) + pB(p, &, p)
close to i\; are i\; + pX + O(p?), N being an eigenvalue of Bl By (H3),
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one must have Re X > 0 and therefore the spectrum of B; is contained in
{Re X > 0}. One has

(A.2) A(p, 7,1, p) := det (irld +iA + pB) = [ [ Aj(p, 7.7, p)
with
(A.3) Aj(p, 7,0, p) = det (i(T + A\j)Id + pBi(p,n,€, p)).

We now proceed to the proof of Lemma 2.10. Denote by Hj the leading,
first order part of H:

d—1
Ho(p,) = —(AF(p)) "L (iF + 7)1+ D _ i AZ(p)) .
j=1

Then § 5 3
H(p,¢,p) = Ho(p,¢) + O(p).

The hyperbolicity assumption (H2) implies that the real part of the eigen-
values of Hy do not vanish when 4 > 0. This remains true for small p. Thus,
when ¥ > 0, the block reduction (2.41) holds in a neighborhood of (p, ¢,0)
with two blocks corresponding to the eigenvalues with positive/ negati;e}eal
part. The first block satisfies item ) in Lemma 2.10 and the second satisfies
i1).

Next consider the critical case that ¥ = 0. We can perform a first smooth
spectral block reduction around (p, ¢, 0):

(A.4) V~'HV = Diag(Qx + pRy)

which corresponds to distinct eigenvalues of Hy(p, é) The blocks corre-
sponding to eigenvalues with positive or negative satisfy i) and i) respec-
tively.

Consider a purely imaginary eigenvalue p = 1§ of Hy(p, g) Note that
(1, § d) # 0 since (7,7) # 0. We proceed by a series of steps paralleling the
approach of [Mé3].

Since p = 2§ is an eigenvalue of Hy(p, é ), there is a unique eigenvalue \;
of A(p,n,&) such that 7+ X\;(p, 7, €) = 0. Since Aj is real analytic in &, there
is an integer v > 1 such that

8§Aj:“':ag_1)‘j:07 agA]:V'ﬁ#O at (B7ﬁ7§>
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Note that 3 is real. Then, with ¢’ = ¢ — € and 7/ = 7 — 7, possibly complex,
there holds

Aj(p,m,m,€, p) =det ((i(r' + ") 1d + pBY)
+O((lpl + ') (17| + €' + p))

with a; equal to the dimension of the block, i.e. the multiplicity of A;,
B’ = Bi(p,1,§,0). Indeed,

(A.5)

(iT + X\i(p, 0, §))Id + pB§~ =i(7 + BEId + pﬁ; + O(|§'\”+1 + pl€'| + p2)

and (A.5) follows.

In the block reduction (A.4) of the boundary problem near (p,7,1,0),
the eigenvalue i€ yields for p0 small a block Q(p,¢) + pR(p, ¢, p). According
to [Mé3] applied when p = 0, the constant multiplicity assumption (H2)
implies that one can choose the conjugation matrix V' such that

Q ... 0
(A.6) Qp,O)=1{ 0 . 0
0 - Q

with a; diagonal blocks all equal to the same matrix @) of size v. Moreover,
at the base point

Q(p.¢) = Q = i(¢ld+ Ny),

where N; is the Jordan’s matrix of size o. This proves (2.44).
In addition, following [Ral] [Ch-P] one can choose the basis such that @
has the form

* 0...0
(A7) Qp,O)=1|: 0...0
a 0...0

and @ is purely imaginary when v = 0 (see [Mé3]).

Write R as a block matrix, with blocks R, 4 as in (2.43). One can perform
a change of basis such that, in addition to the other properties, there holds
at the base point (p, é, 0)

* 0...0
(A8) RP#Z(B? gﬂ 0) = Bp,q = 0...0
Tpq 0...0
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The change of basis is Id + p7. Then,
(Id+pT)"'QUId + pT) = Q + pR + p[Q, T] + O(p?).

Denoting by T}, the blocks of 7, at the base point (p, ¢,0), the blocks of
R+[Q,T]are R, ,+[N,T, ]. Thus, to get (A.8), it is sufficient to choose the
blocks T}, ; such that the columns of index 2 to v in R, , + [N, T, /| vanish.
Dropping the indices (p,q) for simplicity, this can be achieved as follows.
Consider the canonical basis (ej,...,e,) of C¥. Then Ne; = 0 and Ne; =
e;—1 for [ > 2. Define T by Te, = 0 and inductively Te; = NTe;+1 + Rejyq
for | < v. Then [T, Nl]e; = Re; for | = 2,...v. This reduction is already
used in the proof Ralston’s lemma to prove that (A.7) can be achieved (see
[Ral] and the proof of Lemma 5.4 chap 7 in [Ch-P]).

Comparing the eigenvalues equations (A.1) and (A.2) we see that

with ¢ # 0 near the base point. We now compare the Taylor expansion
(A.5) of A; to the Taylor expansion of the right hand side. There we use
the following lemma, in which N is the block diagonal matrix

N, ... 0
N=10 . 0
0 --- N

Lemma A.1. Suppose that M(h) is a ajv X oijv matriz with blocks M, 4(h)
depending smoothly on the parameter h, satisfying (A.8) and such that
M(0) = 0. Then there holds

det (€Id — N +iM(h)) = det(€”1d + ihd, M (0))
+O((Ih] + l€D) (" + [R)*),

where M is the o X a5 matriz with entries my, which are the lower left
hand corner coefficient of My, .

We apply this lemma first with A = v and M(h) = Q(p,7,7,7) — Q

Then M° = ald where a is the lower left hand corner coefficient of Q as;a
(A.7). Then with ¢’ =& — ¢,

det (i€ — Q(p, 7,7, ’y)) = det (ig'Id — iN — M)
= "% det (¢'Id — N 4 iM)
= Y% (g’” + iv0ya(p, é))aj + h.o.t.
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where h.o.t. stands for higher order terms which are O (y+[£'])(|€']" +7)%).
On the other hand,

Thus ;
iy + BE" = iV (" + indya(p, )
and §
8’7(1(85 Q = ﬂ_l .

Since a is holomorhic in 7 —47y and purely imaginary when v = 0, we already
knew that 0ya is real when v = 0. Thus, we have

(A.10) dya(p, g) = d,Rea(p, é) =571,

In particular, since 5 # 0, we recover here that 0 a(p,() # 0 as already
shown in [Kr] [Ch-P] [Mé3]. With (A.10), we will be able to discuss its sign.

Next, we make a second application of Lemma A.1 with parameter h = p
and M = pR(p,{, p). Thus

det (i€Id — Q—pR(p,{, p))

(A.11) e w R
=i"% det (¢VId + ipR’) + h.o.t.

where R’ is the a;j X a;j matrix with entries r, , and Eb its value at the base
point. Thus, comparing the Taylor expansions (A.5) and (A.11), we find
that

det (B¢""1d + ipB}) = ci? V% det (¢1d + iR") .

Therefore, the eigenvalues of R’ are the eigenvalues of 37! ﬁ;. In particular,
(A.12) Spectrum(ﬁﬁb) C {ReX >0}.

With (A.10), we see that the real part of the spectrum of R’ has the same
sign as dya(p, ¢), which we call k.

From (A.12), it is a standard fact that there there is a basis such that
Re (kR’) is positive definite, as claimed in Lemma 2.10. Thus, let 7' be a
a;j X o matrix such that Re T~15R"T is positive definite. Consider 7 the
vaj; X voj; matrix with v x v blocks Ty, ; = 5, JId where t,, ;, are the coefficients
of T. Then & = 7! has blocks Sp.q = Spqld where the s, , are the entries
of S = T~!. Straightforward computations show that

T'9T =Q,
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since the blocks of the first matrix in the left hand side are

Zt;rletn,q =Qbpgq-
n

Next, the blocks of R =T 'RT are

(A.13) Ryq = Z Spn R mtm.g -

At the base point (p, é, 0) the columns 2 to v of the R, ,, vanish. Since

n,m
the s,, and t,,, are scalar, the same property holds for Epg. Therefore,
the form of the matrix R at the base point is unchanged. Moreover, (A.13)
implies that the matrix of lower left hand corner elements in R is R* =
T~ R°T and thus (R’ + (R?)*) is positive definite at the base point.

This finishes the proof that one can chose a basis such that the blocks
Q + pR associated to eigenvalues v which are purely imaginary satisfies the
properties iv) listed in Lemma 2.10.

Note. We have given an argument valid for either of cases i) or iv). When
v = 1 (nonglancing modes), case #ii), the construction above is much sim-
pler, with “blocks” @ of dimension 1, and the matrix R’ = R.

Proof of Lemma A.1
a) We start with a general remark. Consider a N x N matrix A with
entries a;; depending on variables x. Assume that

ajk(z) = a;,(z) + h.ot.

where a; ;. is homogeneous of degree pj — v4 and h.o.t means something of
higher degree, here O(|x|[#~*1). Then

(A.14) det A(x) = det A(z) + h.o.t.

and det A is homogeneous of degree p:= " pj — > v4. Indeed,

det A = Ze(a)aghl SOy, N

where the sum is extended over all the permutations o of {1,..., N} and
€(0) is the signature of 0. Each monomial is equal to the corresponding one
with @ in place of a plus higher order terms, and the term with the a is
homogeneous of degree

D o, —VE) =D oy = Y Vk=D pj— Y k=4
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b) In our case, we consider the matrix A = £Id — N +ipM. Be denote
by Apq the blocks in A and by A, the entries of A, ;. Remember that
1 <pg<aandl <a,b < v. We use a quasi-homogeneous version of
(A.14). We consider using weight 1 on the variable { and weight v on the
variable p. To be more specific, with & and hg fixed, consider & = t§; and
h = t"ho with ¢ € [0,1]. Introduce the weights

Mpa=0a+1, vgp=0.

The diagonal terms in A are equal to £, homogeneous of degree 1 = 11, o, —1p 4
in ¢t. The entries N, 4 44 of N are zero or equal to —1 when p = g and b = a+1
which is homogeneous of degree 0 = i o — Vp q+1. Introduce M = 9, M(0).
Then the form (A.8) of M implies that M, ,45(th) vanishes when b > 1.
When b=1

Mp.ag1(th) =t"hoM,, , . + O(*).

The leading term is homogeneous of degree v which is strictly larger than
Ipa — Vg1 = a if a < v, and exactly equal to ppq — V41 = v if a = v. Thus,
only the lower left hand corners of M, , have a non vanishing principal part
in the sense of a). Thus

det (t&old — N+iM(t"ho)) =

(A.15)
det (t&1d — N + it"hoM”) + Ot )
where the leading term is homogeneous in ¢ of degree arv and M’ is the
. . . b .

matrix with all entries equal to zero except M, , .1 = m,, .

c) Grouping the indices the other way, i.e. considering the matrix 4 as
a the block matrix with blocks A, with entries A, , 3, we see that there
is a permutation matrix P such that

0 —Id 0
PY -N+mM)P=| U 0 0 =M
0 0 —Id
M 0 0

»q- Thus u € ker(éld — N + AM’)
if and only if v = P~y € ker(¢Id + M\), which means that the blocks
components v, of v satisfy v, = f’a_lvl and vy € ker(hMb + 5’”_1Id).
Therefore

where M > is the matrix with entries m

det (£1dN + ihM”) = det (€1d + hM") .
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With (A.15) this implies that

det (t&old — N+iM(t"ho)) =
(A.16) 1 o .
et ((t&)"Id + it"hoM’) + O(t )

and the Lemma follows. O

A.2 Stability for low frequencies. Proof of Proposition 1.6

We now assume that Assumptions 1.1 and 1.2 are satisfied. By Lemma
2.6 and (2.35), for ¢ # 0, the spaces E_(p,() are related to the spaces
F_(p,() generated by the generalized eigenspaces of G*°(p, () associated to
eigenvalues in {Rep < 0}:

E_(p,¢) = W(0,p,)F_(p, ().

Since the mapping W is smooth up to ¢ = 0, the limits of E_ as ( — 0 are
related to the limits of F_. By Lemma 2.5, F_ and thus E_ have dimension
N and depends smoothly on ¢ for ¢ # 0.

Consider polar coordinates ¢ = pg: , with |é | = 0. We use the notations

E_(p.¢,p) =E_(p,p,C), F_(p,¢.p) =F_(p,p,{).

They are defined for p > 0.

Lemma A.2. Under Assumptions 1.1 and 1.2

i) the vector bundles B_ and F_ have C* extensions up to p = 0 near
points where 7 > 0. We denote them by EY (p, Q:) and FY (p, é),

ii) the vector bundles EY and FY have continuous extensions to § = 0.

Proof. a) By Lemma 2.9, G is conjugated to the block diagonal matrix
G (see (2.37)). Thus, for ¢ # 0 small

(A.17) F_(p,¢) = V(p,)G-(p,()

where G_ is the space generated by the generalized eigenspaces of Ga(p, ()
associated to eigenvalues in {Rey < 0}. In addition, in the block decompo-
sition (2.37),

(A.18) G-(p.¢Q) =G (p,) G (p,Q)

where the spaces G and G are associated respectively to H and P. Since
P(p, ¢) has no purely imaginary eigenvalue, it follows that G (p, ¢) is smooth
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in a neighborhood of { = 0. Therefore, it is sufficient to study the spaces

G2(p, Q). ) )
There we use the polar coordinates ( = p(, H = pH, and we have
(A.19) GH(p, Q) =H-(p,¢, p)

where H_(p, {, p) is associated to H(p, ¢, p).

Suppose that 4 > 0. Then (H2) implies that Hy(p,¢{) = H(p,¢,0) has
no eigenvalues on the imaginary axis. This remains true for p small, and
therefore F_(p,(, p) is a C™ vector bundle for p in a neighborhood of p,
and ((,p) € R¥2 with [(| =0, % > 0, p > 0 and 5p > 0. In particular,
H_(p,¢,0) is well defined for 5 > 0.

Tracing back, we see that this defines F(p, ¢, p) as a C* vector bundle
for ¥ > 0 and p > 0, and

(A.20) F_(p,(,0) = V(p,0) (H-(p, ¢,0) & G (p, 0)) for ¥ > 0.

This is transported to E_ using 2.35, proving that E(p, ¢, p) as a C™ vector
bundle for ¥ > 0 and p > 0 with

(A.21) E_(p,{,0) = W(0,p,0)0F_(p,{,0)  for 5 > 0.

This proves 7).

b) To prove ii) it is sufficient to show that H_(p,,0) extends contin-
uously to ¥ = 0. We can argue locally, and work around p and ¢.

In a small neighborhood of (p, é ), we use the block decomposition (A.4)
of H given by Lemma 2.10. There, one has

(A.22) H_(p, ¢, p) = ®HF (p,C, p)

where the H* are associated to Qj + pRy. Recall that Q; = Diag(Qy) as
in (A.6) or (2.43). We investigate the different possibilities.

i) If the spectrum of Qg (p, () is contained in {Re p > 0}, this is true
for Q and remains true for Qp + pRi. Thus, for p small

(A.23) H” (p, ¢, p) = {0}

ii) Similarly, if the spectrum of Qy(p,() is contained in {Rep < 0},
then, for p small
(A.21) HE (p, ¢, p) = CY%

where N is the dimension of the k-th block Q.
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Only these two cases can occur when 4 > 0, and we recover here that
H_ is smooth up to p = 0. Suppose now that ¥ = 0. We consider next the
other two possibilities. B

1i1) Suppose now that the blocks @) have dimension vy = 1. Then
Qr(p, ¢ ) is a complex number, purely imaginary when ¥ = 0 and 0sRe Q) #
0 on the given neighborhood of (p,¢). If it is positive, then Re Q) > 0
when 4 > 0. In addition, we have that R}, is positive definite. Thus the
spectrum of Qi + pRy = Qxld + pRy is contained in {Re p > 0}. Similarly,
if 05Q < 0, the spectrum of Qj, + pRy, is contained in {Re o < 0}. Thus

(A.25) H* (p.¢,p) ={0}  if 95Qk >0,
(A.26) HE (p, ¢, p) =CNeif 95Qp < 0.

In the cases ©),ii) and ii) the formulas (A.23) to (A.26) have clear C*
extension to p =0 and ¥ = 0.

iv) This is the most delicate case of glancing modes. Our goal is to
continuously extend to 5 = 0 the bundle H¥ (p, ¢, 0). This space is associated
to the operator Q. In the block decomposition (2.43) Q = Diag(Qy), we
see that for ¥ > 0

H* (p,{,0) =HE (p,{) & - @ H" (p, ()

where H” is the negative space associated to Q and the sum has aj, terms,
oy, being the number of blocks Q. in Q. Recall that, by (H2), @y has no
purely imaginary eigenvalues when 5 > 0, so that the spaces H* are well
defined for 4 > 0.

From (2.44), Q is a perturbation of the matrix i(uId+ Ny ). We are now
in the classical situation met in the analysis of strictly hyperbolic bound-
ary value problems. It is known (see, e.g. [Kr],[Ch-P], [ZS], [Z]) that the

subspaces H* have well-defined limits when (p, ) — (p, ). In addition (see
e.g. Remark 3.6 and Proposition 3.7, chap 7 in [Ch-P])

(A.27) Hli(ﬂ, é) — CPr % {O}Vk*ﬁk

the space generated by the first Gy elements of the canonical basis in C"*
where

Vi, when vy, is even,

(A28) = { vp £1) when v isodd  and F0sReay > 0.

D=0 =

Recall that ay is the lower left hand corner entry of Q.
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Adding the different blocks, this shows that HF (p, C,O) and thus
H_(p,¢,0) have limits when (p,¢) with § > 0 converge to (p,{). Since
(p,¢) is arbitrary, the limit is defined for all p and ¢ with { = 0. As in
[Ch-P], one can show that the bundle H_ is continuous also on 4 = 0. and
this finishes the proof of the lemma. O

From the proof above, we see that the bundles on p = 0 are linked by
the identities:

E (p,{) = W(0,p, 0)F% (p, (), F%(p,) = V(p,0)G (p, (),
G2 (p,{) = H-(p,{,0) © G (p, 0).
We also supplement the discussion above with the following definition.
We consider a point (p; ¢) with [(| =1 and 5 > 0.
e If the block Qy(p, é) satisfies property i) in Lemma 2.10, we define

(A.29)

HY (p,¢,0) = CM.

where IVj is the dimension of the k-th block Q.
oIf the block Qi (p, () satisfies property i7), then :

HY (p, ¢, p) = {0}
o If ¥ = 0 and the block Q(p, {) satisfies property 4ii), then we define
HE (p,(,0) =CN if  95Q) >0,
0)={0}  if 05Qi<0.

In the three cases above the spaces H are associated to the eigenvalues
of Qp with positive real parts. For glancing modes, this construction fails
since the limits of positive and negative spaces intersect when 4 = 0. Instead,
we choose the supplementary space as in [Kr].

o If ¥ = 0 and the block Qy(p, () satisfies property iii), we first define

Hi(ﬂ’ Q — {O}ﬁk x CVk—Bk

where [ is defined in (A.28). In the block decomposition Qj = Diag(Qy),
we next define

where the sum has «; terms.
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Adding up, we next introduce
(A.30) GY(p,¢) = Hy(p, ¢, 0) ® G (p,0)

where Gi(p, () is the space spanned by the eigenvectors of P(p,() with
eigenvalues in {Rep > 0}.
Clearly, there holds

GZ(p,0) ® G{(p,0) =C",
(A.31) H_(p,¢,0) ® Hy(p,¢,0) =
G2 (p,Q) ® Gl (p, ) = C*.

We denote by IIZ(p), I (p,{) and M4 (p,{) = ¥ @ IIE the projectors
associated to these decompositions.

Recall that T'(p,¢) = TW~1(0,p, ) is the boundary operator deduced
from T through the substitution U(z) = W(z,p,{)Ui(z). We will also use
the substitution Ui (z) = V(p, ()Ua(z) and the corresponding boundary con-

dition is T'a(p, ¢) = V(p, O)T1(p, C).

Proposition A.3. In addition to Assumptions 1.1 and 1.2, suppose that As-
sumption 1.4 holds. Consider (p, é) with |{| =1 and ¥ > 0. Then, E® (p, 0),
FO (p,¢) and G (p,¢) are transverse to kerT, kerT'y(p,0) and ker T'y(p,0)
respgctively. In pa;t;cular, there is C' such that B B

(A32) wWeC™:  |(pOV] < C(INap,0)V] + M, OVI)

Proof. If E is a N-dimensional space transversal to ker I', there is an N X
N matrix such that E = {(u,v) € CV¥ x CV;v = Av}. In this case, an
orthonormal basis in E is obtained as the image of the canonical basis in
CN by u — (Ou, AOu) with O = (Id + A*A)~Y/2. Thus det(E, kerD") =
det(Id+A* A)~1/2. This shows that if det(E, ker I') is bounded from below by
a positive constant, then A is bounded. Therefore, Assumption 1.4 implies
that there is C' such that for all ¢ with 0 < || < 1 and v > 0, one has

YU € E_(p,(Q) : Ul < C|T'U|.
Thus for all p €]0, 1], ¢ such that |{| =1 and 5 > 0,

VU eE_(p.Cp) s U] <MD
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By continuity, this extends to p = 0, proving that for all¢ such that |{| =1
and ¥ > 0, there holds

VU € E% (p,() : |U| < C|ru|,

with the same constant C. By continuity, this extends to ¥ = 0. This
implies that E°(p, () is transverse to kerI. This is transported to F* and
G% using wW(0,p,0 1 and V(p, 0)~!. The estimate (A.32) follows since
GQ(Q,Q):kerl_h( ,Q ]

The next result establishes the main assertion (for our purposes) of
Proposition 1.6.

Proposition A.4. The hyperbolic boundary value problem (1.1) (1.8) sat-
isfies the uniform Kreiss-Lopatinski stability condition.

Proof. The Fourier Laplace transform at frequency ¢ of the frozen coefficient
linearized hyperbolic problem at (b, u) reads

82“ - HO(Ba C)’LL = f7 ’LL(O) S TQCQ7

with (p = b,u,0) as in section 2. The spaces generated by eigenfunctions of

Hy associated to eigenvalues in {Reu < 0} are precisely H_ (p, ¢,0). Thus,
the uniform Kreiss-Lopatinski condition for (1.1) (1.8) reads : for all p and

éwith || =1 and 5 > 0, one has
i) the dimension of H_(p, é, 0) is equal to N — N_,

(A.33) “ .
it) H_(p,¢,0) and T,Cy are transverse.

Conditions (i)-(ii) of Definition 1.3 imply that 7,Cp is the set of end
state values of solutions to the linearized equation (1.9). Written as a first
order system, this equation reads

8.U —G(z,0U =0, TU(0)=0.

Through the change of unknowns U(z) = W(z,p,0)V(p,0)Uz(2), the equa-
tion is transformed into

0 Id

0:Uz — [ 0 P(p,0)

:| U2 :0, FQ(E,O)UQ(O) =0.
Moreover, since W(z) — Id at infinity, and thanks to the special form (2.38)
of V(p,0), u(z) has a finite limit at infinity if and only if v5(0) € GE(p,0)

and in this case limu(z) = ua(0).
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Therefore, T,,Cy is the set of u € C such that there is v € GZ(p,0)
such that Us(0) = (u,v) € kerI'a(p,0). Thus, if u € T,C, NH_(p, ¢,0), with
(A.29), one must have (u,v) € G% (p,{)Nker I'z(p, 0) and therefore (u,v) = 0
by Proposition A.3. This shows that T3,C, N H_(p, ¢,0) = {0}.

By Lemma 2.9, P(p,0) = (Bgfd)_lAgo. It has N_ eigenvalues in {Re u <
0}. Thus G”(p,0) has dimension N_. Since the total dimension of G° (p, 0)

is N, by (A.29) we deduce that H_(p, ¢, 0) has dimension N — N_.
Therefore (A.33) holds and the proposition is proved. O

A.3 Symmetrizers. Proof of Lemma 2.13

We now proceed to the construction of the symmetrizers. We work in a
small neighborhood of p. We use the block structure of Go and construct
a symmetrizer for each block separately. We first construct a symmetrizer
Sa(p, ¢) for P(p, ¢) for p close to p and ¢ small. Next we construct Si(p, ¢, p)
adapted to H(p,¢,(), for p close to p, |(| = 1 with ¥ > 0 and p > 0. We
first argue locally around a given point ¢ of length one, with 5 > 0.

For the estimate S 4+ CI'5T'y > cld, for some ¢ > 0, to hold on a small
neighborhood of (p,{,0) it is sufficient that it holds at (p,(,0), since the

symbols S(p, ¢, p) will be C*® up to p = 0 and ¥ = 0. Thus, by estimate
(A.32) of Proposition A.3, it is sufficient that for all k9 > 0 large, one can
choose S7 and S such that there is C' > 0, possibly depending on kg, such
that

(S(p. €. 0))U.U) = C (o[ (p, OUI* = 1L (p, OU?).

This is satisfied, if for all kg one can choose S and Sy and C' > 0 such that

(A.34) (S1(p, ¢, 0)u, u) > C (ko T (p, O)ul* — T (p, )u I)

(A.35) (Sa(p, 0)v,v) > o(ﬁo\ni(@v;? - \HI_’(B)UP) .
a) Sy is constructed as in the proof of Lemma 2.12. We can assume

that
| Py O
r=[

with Py having their spectrum in {+Reu > 0}. We choose

. RSQ,_i_ 0
SZ B |: 0 _5277 :|
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with S 4 = S5 | > Id such that +Re (S2,+P+) > 1d. If & is large enough,
then (A.35) is satisfied.

b) To construct Sy, we argue similarly as in [Kr] [Ch-P]. We construct
Sy in the block decomposition of V"*HV = Diag(Q},) of Lemma 2.10 :

S1
Sl — (Vfl)* V*l'
Sk

o If Oy, satisfies condition i) of Lemma 2.10, we choose S = kSj 1
where S 1 = S,’;l > 1d and Re (Sy,1 Q) > Id.

o If Q; satisfies condition i) of Lemma 2.10, we choose S = S =
S;;l > Id and —Re (S Qy) > Id.

e Suppose now that ¥ = 0 and Q, satisfies condition 4i). Then

k(p,¢sp) = Qr(p: Q) + PR (p, C, )Wlth Qp. scalar, and purely imaginary
when 4 = 0. Thus, Re Qx(p,{) = Q. (p ,¢) with Q}, smooth near (p, g)

1) If 0,Qx(p,{) < 0 and R(p,¢,0) is negative definite, we choose
Sk(p7 57 p) = —Id so that

Re (—Qk) = H(—Q}Id) 4+ pRe (—Ry)

where (—Q4Id and Re (—Ry) are positive definite at (p, ¢, 0).
2) If 9,Qx(p, g) > 0 and R(p, g, 0) is positive definite, we choose
Sk(p, ¢, p) = kId so that
Re (Qk) = £7(Q}1d) + pRe (Ry)

where (Q}Id and Re (R},) are positive definite at (p, é, 0).

e We now come to the most delicate part when 7=0 and Q,, satisfies
condition iv). Next, in the block reduction of Qj, we choose the Sy diagonal:

S 0
S.=1| 0 Sk
(A.36)
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where Ej, and Ej are real symmetric matrices, and Fj and Hj, are real and
skew symmetric. Moreover, E; have the special form

0 v 00 e
€k,2
Ek - . )
0
| €k,1  €k2 €k |

and Ek(g, ¢)=0.
The order of the construction is as follows. One first chooses EJ, E’k and
F}, as in [Kr] to construct a symmetrizer for Qy, that is for p = 0. The new

part lies in the choice of Fj.
1. Choose E;, such that

(A.37) Re (E,0,Qx(p, é)w,w) > 2lun |2 — Clu'|?

with w; the first component of w € C** and w’ € C"*~! denotes the other
components, and

(A.38) (E,U,U) > Cy (K|H’iU|2 - |H’3U]2),

where TI% is the projection onto HA (ps é ) in the decomposition C** = Hi &
H”* . This is one of the basic points of the construction in [Kr]. According
to [Ch-P], one first chooses the coefficient ey, ; such that

(A.39) ex,10,Re ax(p, é) > 3.

This is sufficient to imply (A.37) (cf (equation (5.5.3) in [Ch-P], Chap.

7). Next, the coefficients ey for [ > 1 are chosen successively to achieve

(A.38) (cf Lemma 5.6 in [Ch-P], Chap. 7).2 Note that the constant C in

(A.37) depends the coefficients ey ; thus on &, but the condition (A.39) is
independent of k.

2. Recall that Q(p,¢) = i(upld + Ni) with p, € R and Ny, the

Jordan’s matrix of size 1. The form of Ej, is chosen so that Ey (peld + Ny)

is real and symmetric. Next, the real matrix Ej(p,() is chosen so that such
that (Ej, + Ey)(+Qg) is real and symmetric when 4 = 0. This is achieved in

2The reader must be aware that the symbol of our symmetrizer is the opposite of the
symbol constructed in [Ch-P], where the symbol of the equation A is %H in our notation,
so that Re (SH) = Im (—SA).
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[Kr] [Ch-P] using the implicit function theorem and the property that +Qy
is real when § = 0.
3. Following [Kr] [Ch-P], for all C, there is F}, real and skew symmetric
such that
Re (Fp Njw, w) > —|wi|* + (C + 1)|w'|%.

We take C the constant found in (A.37). As a consequence, we have

Re ((Ey + Ex — i7F,)Qr) = YDk,

(A.40) v
Di(p, ¢) = Re (E0,Qi(p, ¢) + Re (FNy,) > 1d..

4. We come to the new part. Denote by & the block diagonal matrix
Diag(Ey). A vector w € CVk, N = vpay being the dimension of Qy, is
broken into aj, blocks w, € C"*, with components denoted by wy,. We
denote by R, , the v} x v blocks of Ry, and by R, , 44 their entries. The
entries of Ej, are denoted by E, ;. Then, since R, 45 = 0 when b > 1 and
taking into account the special form of Ej,

Re (E&xRiw, w) = Re Z EqcRpa,q1Wq1Wp,e
=Re Y _ e 17p,qWq1Wp1 + O(Jwi | [wl])

where w,; € C® is the collection of the first components w1, w, the
remainder components and r, ; = Rp 1, 41 the lower left hand corner entry
of R,,. The matrix Re (RZ) is definite, positive or negative according to
the sign of 0yar. Moreover ey ; has the sign of d,ar by (A.39). Thus,
multiplying E} by some positive constant, we can achieve that in addition
0 (A.38) (A.40), the following inequality holds:

(A.41) Re (ExRk(p, ¢, 0)w, w) > 2w, 1|* — C'|w)|?.
5. Next, as in 3, there is F}, real and skew symmetric such that for all

w € C:
Re (F{ Njw,w) > —|wi|* + (C' + 1)|w'|*.

Thus, with F|, = Diag(F}), N = Diag(N;) and w € CVk:
Re (FpNpw, w) > —[ws1|* + (€' + 1w [
Therefore, with (A.41), we have

(A.42) Re (ExRi(p, ¢, 0) — iF Qk(p,¢)) = 1d.
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Adding up, we see that the matrix defined in (A.36) satisfies

Re (Sk(Qk + pR1)) = 7Dk (p,€) + pDi(p, C, p)

with Dy = Diag(Dy) and at the base point

D;(p,¢,0) = Re (& Ri(p, ,0) — iF7,Qu(p, <)) -

By (A.40) and (A.42), the matrices Dy and Dj, are positive definite on a
neighborhood of the base point (p, g, 0).

This shows that the symmetric matrix $; = (V~1)Diag(Sp)V " is de-
fined on a neighborhood of the base point (p, ¢, 0) and satisfies

Re (S1H) = (V™ ")Diag(Re S(Qk + pRi)) V™

and the blocks Re Sg(Qk + pRy) are either positive definite or of the form
3Dy + pDj, with Dy, and Dj, are positive definite. Moreover, recalling the
form of the spaces H_ and H, we see that the condition (A.34) is satisfied
on a neighborhood (p, é, 0).

c) So far we have constructed S; on a neighborhood of a given point
(Q,é, 0) with é in the closed half unit sphere Siﬂ = {|{| = 1,5 > 0}.
Using a partition of unity on Sd+1, we define S; = > &(V, _1)*§1V_1¢l
where (bl is nonnegatlve smooth and supported on a small neighborhood
of (p, Cl, 0), H; =V~ LAV, block diagonal on this neighborhood and Sl is
block diagonal as in part b) above. Moreover, qﬁl = 1 on a neighborhood
of {p} x ST % {0}. We see that 3 ¢2(V, 71)"“/{1 is positive definite on this
neighborhood, that Re (S1H) = YooV, ) (SlHl)V Lo, satisfies the
properties listed in part i) of Lemma 2. 13 In addition, because the ¢; are
non negative and Y ¢? = 1, the condition (A.34) holds on a neighborhood
of {p} x ST x {0}.

The proof of Lemma 2.13 is now complete.
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B Appendix B. Para-differential calculus

In this appendix, we prove the different results stated in section 3. Most
of the analysis follows known results from [Bo] [Mey] (see also [Hor] [Tay])
for the classical calculus and from [Mok| [Mé1] for the calculus with a large
parameter «. Most of the present work is to check that these results extend
to symbols with parabolic homogeneity and next to a semi-classical calculus.

B.1 The quasi-homogeneous calculus

To include in the same analysis both the homogeneous case and the parabolic
case, we first consider a general quasi-homogenous framework. With little
risk of confusion with our previous notation, we denote by x the variable in
R?, and ¢ its dual variable.

For given positive integers p;, consider on R!*? the quasi-homogeneous
pseudo-norm

d
B1)  for (= (£7) : <c>=(v2p0+25§"j)”2p7 p = maxp;.

j=1

The case pj = p = 1 for all j corresponds to the usual Euclidean norm. It
will be referred to as the homogeneous case. The parabolic case corresponds
to p; = 2 for the spatial directions and p; = 1 for the time direction. We
agree that (£) = (£,0). We also introduce the weight

(B.2) A(Q) = (L4 ().

Note that

(B.3) (C+) <O+ ACHT) <A+ ()
Introduce the quasi-homogeneous dilations

(B4) p (&) = (PP, pPIPIEq, pPP0)
and define similarly p - ¢. Then

(B.5) {p- Q) =p(C)-

The pseudo-norm defines a distance d(§,n) = (£ —n). Denote by B(n, p) the
ball centered at 7 of radius p, i.e. the set of € R% such that (n — ) < p.

121



The following properties are elementary :

d
(B.6) measB(n, p) = p’measB(n,1) with D = Zp/pj :
1

B.7) There is an integer N, such that for all n and p, the ball B(n, p)
' is contained in the union of at most N balls of radius p/2.

The dilations and quasi-homogeneous norms are also defined in the x space :

1/2p

d
pw= (PP, P ig), (@) = (D (w))

J=1

B.1.1 The Littlewood-Paley decomposition
Introduce x € C§°(R), such that 0 < x <1 and
(B.8) xX(A) =1 for|A] <1.1, x(A) =0 for |\ >1.9.

For k € Z, introduce xx(§,7v) := X(2"“A(£,7)), X;(x) its inverse Fourier
transform with respect to & and the operators

(B.9) S,Zu = )A(/]Z, * U = Xp(Dz, V), Az—f—l =5

_ QY
k+1 Slc

For all temperate distribution u, the spectrum of AZu (i.e. the support of
its Fourier transform) satisfies

(B.10) spec(Aju) C {f c 2Pl A(E) < 2’”‘1}.

Hence Aju = 0 when (1 4 4270)1/2P > 25+ and in particular when & < 0.
Thus, for all temperate distribution w, one has for v > 0:

(B.11) u:ZAZu.
k>0

The natural Sololev spaces associated to the weights A®, s € R, are the
spaces H*(R?) of temperate distributions u such that their Fourier transform
u satisfies A(£,0)°u € L%(R?). This space is equipped with the family of
norms :

(B.12) Jull2, = [ A laP de.

The next propositions immediately follow from the definitions. The im-
portant point is that the constants C' do not depend on v > 0.
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Proposition B.1. Consider s € R and v > 0. A temperate distribution u
belongs to H¥(R?) if and only if
i) for all k € N, AJu € L*(R%).
ii) the sequence 0 = QkSHAZUHL2(Rd) belongs to £%(N).
Moreover, there is a constant C, independent of v > 0 and u in H®, such
that

1
Sz, < Y S < Cllull?,
k>0

Proposition B.2. Consider s € R, v > 0 and R > 0. Suppose that {uy }ren
is a sequence of functions in L*(R?)such that:
i) the spectrum of uy, is contained in {%2]C < A(¢,7) < R2F}.
ii) the sequence 0 = 2kSHUkHL2(Rd) belongs to £*(N).
Then u = uy belongs to H*(R?) and there is a constant C, independent
of v > 0 and the sequence {uy}, such that

2 2
||uHs,7 < CZ 516 :
k
When s > 0, it is sufficient to assume that the spectrum of uy is contained
in {A(&,y) < R2F}.

We also use the space W1H(R9) of functions u € L such that V,u €
L. Tt is equipped with the obvious norm. With y as in (B.8), we denote
by Sk, Ay the Littlewood-Paley decomposition associated to the Fourier

multipliers xx (&) = x(27%(¢)) = x((27% - €)), that is with v = 0:
(B.13) Sp = xx(Dz), Ap=S)—Sp_1.

Proposition B.3. There is a constant C such that :
i) for allu € L™ and all k € Z, one has

1Skullze < Clull e .
i) for all u € WH*° and all k € N, one has
|Agul|pe < C27F |V, |Ju— Spullpe < C27F||Vaulpe .

Proof. Sy is a convolution operator with kernel Sy () = 2¥P (2% - 2) where
So(+) is the inverse Fourier transform of xo(¢) = x((€)). Since xo € C§°(RY),
S'q(-) belongs to the Schwartz class, hence to L'. Thus Si(-) € L' and
1Skl = 150l 1, implying ).
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Since x(0) = 1, the integral of the kernel S, is one and
uw) ~ Su(o)] =| [ Selo)(ule) — uta )y

< |Vull - / 186(w)] Iyl dy

where |y| denotes the Euclidean norm of y € R™. Then the second estimate
in i7) follows from the inequalities

/ 10()] ] dy = / So()][27 - yldy

< Z? ko/p) / 1So()| [yyldy < 2,

The proof of the estimate for Aju is similar. O

B.1.2 Paradifferential operators with parameters

If a(¢) is smooth then

9¢(a(r-¢)) = A (@2a)(A - x)

where

d
(B.14) for aeN?: Z

'E‘»@

In particular, if a(¢) is smooth and quasi-homogenous of degree u for ¢ # 0,
meaning that a(p - ¢) = p"a(() for all p > 0, then its derivatives J¢'a are

quasi-homogeneous of degree 1 — () and thus are bounded by C/(¢)*~ (@),
Similarly, for all @ € N%, there is C,, such that

(B.15) V() JOEAE )] < Cal(€ )

This motivates the following definition.

Definition B.4 (Symbols). Let pu € R.

i) T4 denotes the space of locally bounded functions a(z,&,~) on RY x
R? x [0, 00[ which are C with respect to & and such that for all o € N¥
there is a constant C,, such that

(B.16) Y(z, &), 108a(z,& )] < CaA(&,7)" (.
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i) T denotes the space of symbols a € Tl such that for all j, Oy,a €
ry.

i) For k = 0,1, X} is the space of symbols o € T, such that there
exists § €)0,1[ such that for all (§,v) the spectrum of x +— o(x,&,7) is
contained in the quasi-homogeneous ball {(n) < JA(£,7)}.

The spaces I'fj are equipped with semi-norms

(B.17) lallguny := sup  sup  A(E,7) Y THOFa(x, &)
|a]<N RexR4x[0,00[

Consider a C™ function (n, £,v) on R? x R% x [0, oo such that:
1) there are §; and 9 such that 0 < §; < d3 < 1 and

Y(n,&y) =1 for (n) <AL, 7)
Y(n,&,y) =0 for (n) > 52A(E,7) -

2) for all (o, ) € N% x N4, there is C,, 5 such that

(B.18)

(B.19) V(1,69), 10805010, &7)| < CagA(E, 7)™ =).
For instance, with N >3, §; = 27V=2 and §, = 227, one can consider
(B.20) P, 67) = D o x@FN ) (€)= xa-1(6,7))-

k>0

We will say that such a function % is an admissible cut-off. Consider next
GY(-,€,7) the inverse Fourier transform of ¥( -, &, 7). It satisfies

(B-21) V&), 198G &M me < Call€n)™.
Indeed, G¥(z,¢) = AP GE (A - x) where G'Z is the inverse Fourier transform
of wZ(n) =¢Y(A-n,¢) and A = A(¢). The estimates (B.19) imply that the

@ZJE are bounded in C*°(R?) with support in the ball {(n) < d}. Thus the

GZ and hence the G¥ (-, ¢) are uniformly bounded in L!. The analysis of the
& derivatives is analogous.

The argument above applied to a fixed (, implies the following version
of Bernstein’s inequality which is used at several places:

Lemma B.5. If the spectrum of a € LP(R?) is contained in the ball {(¢) <
A}, then a € C* and for all o € N¢

|0allze < OA la]| 1o

with C,, independent of a and .
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Remark B.6. The main difference with [Bo] [Mey] in the choice of admissi-
ble cut-off functions ¢ (B.18) is the treatment of low frequencies : we assume
that 1 is one for small 7, even when £ is small. This has no importance in
the study of smoothness, but it plays a crucial role in the semi-classical ver-
sion of the calculus and also when one considers parameters to absorb lower
order terms.

Proposition B.7. Let ¢ be an admissible cut-off. Then, for all p € R and
k=0,1, the operators

(B.22) ar ag(2,€,7) : /wa—yfv) aly,&,7) dy
are bounded from FZ to ZZ and
178 | vy < Onlall vy -

Moreover, if a € T'Y, then a — O'a el ' In particular, if 11 and Py are
admassible and a € F‘f then 04! a = Eg L More precisely

o2t — 022l (-1.5) < CNIIVaall () -

Proof. The bounds (B.21) imply that the estimates (B.16) are preserved by
the convolution (B.22). Thus of € T if a € T. Moreover, d,08 = ag; “
and the operator (B.22) maps I'} into itself. On the Fourier side, one has

gl (&) = v(n, &) an, &)

Thus, the spectral property is clear and the first part of the proposition is
proved.

For fixed ¢ = (£,7), the mapping a(-,¢) — o2 (-,¢) is a convolution
operator with the inverse Fourier transform of ¢ (-, ). The estimates (B.19)
imply that the family of mappings n — ¥ (A-n, () with A = A(¢), is bounded
in Cgo(Rd) with support in a fixed ball. Therefore, arguing as in the proof
of Proposition B.3 part two, one shows that

l(a— o)+ &M < CAEY) I Vaal-, &) Lo

One has similar estimates for the ¢-derivatives. Thus a — ol e Iy~ Uit
aeTll. O
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The spectral property and Lemma B.5 imply that the symbols o € Xf
are C'™ in x too and satisfy:

(B.23) 0708 (2, 6,7)] < Capht™ @0,

The associated pseudo-differential operators are defined as
B2)  OP(oule) = g [ ol ) () de
or on the Fourier side

(B.25) O (ule) = [ 3¢ - €. ) ae) ¢

where ! denotes the Fourier transform of o with respect to x. They act
continuously in the Schwartz class. Using Proposition B.7 we can associate
operators to symbols a € Tj. Given an admissible cut-off ¢, define

(B.26) TV u == OpY(c¥)u.
Introduce the following terminology.

Definition B.8. A family of operators {P7} is of order less than or equal
to p if for all s € R, PY maps H® into H*™* and there is a constant C such
that

vy 20, Yue B'RY) : [P ullspy < Cllullss.

Proposition B.9. i) For all o € Xf}, the family of operators Op? (o) extends
as a family of operators of order < u. More precisely, one has

10p™(0)ullsy < Cllolluny llllstun

where C' and N only depend on the indices s and m and on the confinement
parameter § of o.

i) For all admissible cut-off ¢ and all a € T'fy, the family of operators
Tffw is of order < .

i) If 1 and 1o are admissible and a € T, then TV — T2 s of
order < u— 1. More precisely, one has

(T = T2 Mullsy < ClVaall gy ullstu-1,

where C' and N only depend on the indices s and p and on the confinement
parameters & of W1 and ¥s.
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Proof. Using (B.11), one obtains that

Op’(o) = Z Op(op)A]
1] <2

where
Uk(:E? 57 7) = (Xk(£7 /7) - Xk‘—l(£7 /7)) O-(:Ev 3 7) :
The estimates (B.23) imply that

&k(x7§77) = o-k‘(zik * T, 2k ' (577))
is supported in {(¢) < 2} and satisfies

1020751 (2,€,7)| < Cap 2.

Therefore, by Calderon-Vaillancourt’s theorem, the operators Opwl(gk) are
bounded in L? with norm O(2%#) (see e.g. [Co-Me] ). Since Op?(oy) =
H,,0p” (Gx)H, ! with o/ = 27FP/Poy and Hyu = u(2" - z), this implies that

10D (0w )ullz2 < C llorfl o2 lull 2 -
Moreover, by (B.25), the spectrum of Op? (o )u is contained in the set of &

such that there is ¢ satisfying (€ — &) < 6A(€',7) and 2871 < (A(¢,7)) <
2k+1 Hence, it is contained in the domain

{0921 < Aey) < (L6201
Proposition B.2 implies that uy = le—k\§2 AJu satisfies
Jugl|p2 < C27% ey ||ulls, with Zsi <1.

Therefore

10D (0%) k|2 < C2¢= ey [lo] ) l1ulls,r -

Using Proposition B.3, these estimates and the spectral localization imply
i). The other two parts follow from Proposition B.7. O

Remark B.10. It follows directly from the definition (B.25) that if the
symbol o € X} [resp. a € T'j] is supported in R? x {A(¢) < R}, then, for
all u, the spectrum of Op”(c)u [resp. ToVu | is contained in {A(¢) < 2R}.
Similarly, if a is supported in {A(¢) > R}, then the spectrum of TV is
contained in {A(¢) < (1 — ;) 'R} with 6; as in (B.18).
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B.1.3 Paraproducts

A function a(z) € L™ can be seen as a symbol in I'), independent of (,7).
With ) given by (B.20) the symbol (B.22) associated to a is

0a(,6,7) = (Sk-na) (@) (xr(67) = xe-1(6,7))
k>0
and the associated operator is

(B.27) T)u =TV u = Zsk_NaAzu.
k>0

Theorem B.11. i) For all a € L™, T, is of order < 0.

ii) There is a constant C such that for all a € W1 and all u in the
Schwartz class S(RY):

(B.28) lauw = Tgull1y < ClIValLee]lullo,
(B.29) Maw = Tulloy < ClValrellull 2 1,
(B.30) ladju = Tgdjullos < CHVGHLO"HUHZ%*LT

Proof. The first statement is clear from Proposition B.9.
a) Because [0;,T7] = nga, p/pj —1>0, and

(B.31) 1(05a)ullrz + T3 qullre < 1(05a) || Lo llul L2 ,
the estimate (B.30) follows from

(B.32) 10j(au = TJw)llz2 < ClValz=llull 2 -1y -
Thus we prove (B.28), (B.29) and (B.32). Start from the identity

R(u) :==au—T]u = Z AkaS,Z+N_1u.
k>—N
We first consider
Ry(u) = Z Vg, Uk i= Aka< Z A?u)
E>—N [l—k|<N

Propositions B.1 and B.3 imply

lorllzz S 27 [ Val g 280 Dey [fullg-1,
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where Ea% < 1. Moreover, the spectrum of Aja is contained in the ball
{(¢') < 21} while the spectrum of AJu is contained in the set {A(¢”,7) <
2141} Therefore the spectrum of vy is contained in {A(£,7) < 2FN+2}1
Thus, Proposition B.2 implies that for ¢ > 0

(B.33) [Riullgy S IVallze [lullg—14, a>0.

Because

7 < A(é,’y)p/m and |[¢] < A({jfy)p/pjy
we conclude that

|Ri(u)||r2 < [|[Ra(u)l1y S IValzee [|ullo,y,
(B:34) WRW)l|z2 < [Ri(w) 2, S [Vallz= ull 21,y

195 Ba ()22 < [Ra(w)ll 2 S [IVallzee llull2 -1
b) It remains to prove similar estimates for
Ro(u) = Z AkaS,Z_Nu.
k>—N
Since N > 3, the spectrum of wj, := Ara SZ—NU is contained in the set

{2F=2 < A(¢,7) < 282}, Moreover,
1AV ull2 S 2" Derfullg-1,
with >~ e? < 1. Therefore,

lwhllze S IVallzllullg—1,27598, with & = Y 207P0-0g
I<k—N

If <1, Y &% < > ef and Proposition B.2 implies that
(B.35) [Ro(u)llgr S [IVallzellullg-14, g <1

c) For j >0, we write 0; Ro(u) = Ra(9ju) + I}

R; = Z A;ﬁjangNu.
k>—N

Suppose that we have proved the estimate

(B.36) 1Rjllz2 < [IVallLoe[|u

0,y -
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Applying (B.35) with ¢ = 0, we obtain that
lvRe(u)lz2 S IVallzeellyull-14 S IVal oo llul 2 1,

With (B.34), this implies (B.29). Similarly, (B.35) implies that

1R2(05u)llzz S IVallzee 05ull -1y S IValleflull 2 -1,

With (B.36), this implies that

195 Ra ()2 S IVallzo<flull 21,

and with (B.34), the estimates (B.32) and (B.30) follow. This result still
holds for j = 0, replacing d;u by yu in the estimates above. With the second
estimate in (B.34) this implies (B.29).

Next, we note that

14 ~yAlP/Po 4 Z |Q|A1*p/pj ~ A
implying
(B.37) [Ra(w) 17 < [Ra(w) oy + ]| Ba(w)l1-2 o + Y 19 Ra(u Wh-2 -
The first term is controlled by (B.35) which implies

[1R2(u)llon S [[Vallpeellull -1 S [ Vallpe|[ullo -

Similarly, (B.35) implies that

B2z 5 S IValz=lvul -2 S [ Valz<lulloy
1R2(05u)lh-2 o S IValz=llfjull -2 o S [ValLellullo

7’7

Together with (B.36), the later inequality implies

195 Ra(u)l1-2 5 S |

Therefore, we have proved that each term in the right hand side of (B.37)
is dominated by the right hand side of (B.28), which finishes the proof of
(B.28).
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d) It only remains to prove (B.36). The spectrum of w}/ := Apd;a S;_yu
is contained in the set {272 < A(&,v) < 2F+2}. Hence,

IR < D iz
k>—N

Thus, the inequality stated in the next proposition implies (B.36), finishing
the proof of Theorem B.11. ]

Proposition B.12. There is a constant C such that for allb € L, u € L?
and v > 0:

(B.38) D 1Ak S jullze < ClblIFo [fullZs -
k>—N

This is a classical result from Harmonic Analysis (see [Co-Me], [St], at
least in the homogeneous case), based on the fact that 3", |Arb(2)[2®8,_o—x
is a Carleson measure, which is true if b € BMO. For the convenience of
the reader, and to cover the quasi-homogeneous case, we sketch a proof of
(B.38) in the easier case b € L. The first step is the following.

Lemma B.13. There is a constant C such that for all b € L= (R?) and all
open set Q C RY :

(B.39) D 1AkblF2(,) < C meas(Q) [bl[7- ,
k>—N

where Q, denotes the set of points x € Q such that the ball B(x,27F) =
{y eR? : (x —y) < 27*} is contained in Q.

Proof. Write b = b/ +b” with ¥’ = blg. Denote by I(b) the left hand side of
(B.39). Then I(b) < 2I(b') + 21(b"). Therefore, it is sufficient to prove the
inequality separately for o' and b”. One has

S 1A ey < D0 1A I3a(ga) < 132 < b3 meas(s).
k>—N k>—N

Thus, it remains to prove (B.39) for b”.
The kernel of Ay, is Gi(z) = 2¥PGo(2F - ) where G belongs to the
Schwartz class S. Thus

B/ (w) = [ 20Gu(2" - o~ )" (0) dy.
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On the support of b, y ¢ Q and for x € Q, the distance (z — y) is larger
than 2. Thus, for z € O

ARy ()] < (16" L / 287 |Go (2" - )| dy = [Ib"]| 2 gfy

{w)=2"1}
with
si=[ Gl
{(w)=2'}

Let Q' :=Q_y and for I > —N, let Q) = @\ @;_1. Then the pointwise
estimate above implies that

. « 2
(B.40) HAkaH%Q(Q;) < [[bl17 meas(2) (gi-1)" -

k
> 1A 1Z2(0,) = > > HAkaH%Q(Q;)'

k>—N k>—NIl=—N

Using (B.40), this implies

S IA 220 < D0 S b3 (g5) *meas(2) .

k>—N I>—N k>I

Since Go € &, the sequence g; is rapidly decreasing and thus in 2(N).
Therefore,

Y AW 72, S IIblF D meas(€) = [1b]|7 meas().
k>—N I>—N

O]

Corollary B.14. There is a constant C such that for all b € L>=(RY) and
all sequence vy, in L?, one has

(B.41) > A vell7z < ClIblIE llonl72
k>—N

where

(B.42) ve(x) = sup sup |vg(y)|.

k>—N B(x,2-F)
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Proof. Let by = Apb. Then
Ibevals =2 [~ AlbulBa oy 0. where Ui() = {foe] > A}

For A > 0, let Q(A) = {|v.| > A}. This is the set of points x such that there
are k > —N and y such that (z —y) < 27% and |v,(y)| > A. Thus Q()) is
open and if |vg(y)| > A, the ball B(y,27%) is contained in Q()). This shows
that for all k, Ug(A) C Q(N), where the (;’s are defined as in Lemma B.13.
Thus

Z ||bk”%2(Uk(,\)) < Z ||bk”%2(gk(,\)) S Hb”%oo meas(€2(A)) ,
k>—N k>—N

and
> lbkvellze S HbII%oo/ 2 meas(Q(A)) dA = ||b]| 7o [|vs]|72 -
E>—N 0

O]

Lemma B.15. There is a constant C such that for allu € L? and all v > 0,
the function v, defined by (B.42) and v, = S} _yu satisfies

1

(B.43) ve(z) < Cu*(z) = il;%) m /B(w) lu(y)|dy -

Proof. S} is a convolution operator with kernel Gy (-,7) equal to the inverse
Fourier transform of £ — x(27¥A(¢,7)) Note that

A ) = (27 27 (E)™)

Thus,
Gr(,7) = 2*P H (28 -z, 27Fp/Poy)

where Hy(-,7/) is the inverse Fourier transform of y((27*7 + <-,7’>2p)1/2p).
It vanishes when 4/ is large, more precisely when (0,+’) > 2. For v/ < 2, the
Hi(-,+") remain in a bounded set of the Schwartz’ space S. Thus

Gj = supsup |Hk(13a7,)| )
kv Ay
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where A; is the annulus {2!7! < (2) < 2!} for I > 0 and the ball {{z) < 1}
for [ = 0, is rapidly decreasing. In particular

(B.44) > 2PGr < .
>0

With o/ = 2(N=k)p/Pory one has
o (z — a')| < 207D / [He (25N -y, ) ule — 2" — y)|dy.

Splitting the domain of integration into the union over [ of the Af ={y:
2F=N .y € A}, yields

oo =) < 25790 7 67 [ Jule — '~ y)ldy.
1>0 h

When y € AF, (y) < 21=F+N_If in addition (z — 2/) < 27F < 2I7F+Nthen
2’ +y belongs to the ball centered at z of radius 2~ * TN+ whose measure
is equal to cg2!=F+NFTDD (see (B.6)). Thus

[ oo iy < o2 HNIP
1

and therefore

sup |vp(z —2")] < 2 Z2IDG?‘ u*(x).
|| <2F 1>0

With (B.44), the estimate (B.43) follows. O

Proof of Proposition B.12
The Corollary B.14 and Lemma B.15 imply that

S IAbS]_yul2s < C (b3 (w12
k>—N

That [|u*||z2 < C||lul|z2 is a general fact about maximal functions (see e.g.
[St], [Co-Me]) which only uses the properties (B.6) (B.7). O
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B.1.4 Symbolic calculus

Theorem B.16. Consider a € T and b € T . Then ab € T* and
Ty o TI;Y — Tgb is of order < u+ ' — 1. More precisely, one has

V@1 = T3l < € (lall g [ Vabl g vy
192l o) 18l ) ) Nl

where C' and N depend only on the indices s and p.
This extends to matriz valued symbols and operators.
Moreover, if b is independent of x, then Tg o T,)) =T, .

Remark. The definition of the operators T}, involves the choice of admis-
sible functions 1. Proposition B.9 implies that the result does not depend
on the particular choice of ¥. To be precise, in the statements below, we
consider that the quantification T is associated to a fixed given admissible
function ¢, for instance (B.20) with N = 3. However, within the proofs,
we use other functions v, at the price of error terms controlled by Proposi-
tion B.9.

Proof. a) The last statement of the theorem is clear using the definitions,
since T} is just the action of the Fourier multiplier 5(¢). We now focus on
the main part of the theorem.

b) We first consider two symbols o1 € ¥4 and o9 € Z‘f/ satisfying the
spectral condition in Definition B.4 with a parameter 6 < 1/3. Using (B.24)
and (B.25), one gets that Op”(o1) o Op?(o2) = Op? (o) with

1 , -
0'($, 57 fy) = (27T)d /6”7(77_5) 01 (:Ca 7, 7) 0—% (77 - fa 57 7) d77

1 ‘
- (Qﬂ)d/emal(fﬂwf+77,7)3%(77>§>7)dn.

Thus

A 1 N ~
7067 = Gy /0%(77 =& +n',7) 53 (0, &) dif
On the support of the integral, (n —n') < 0A(§ +1/',v) and (') < JA(E, 7).
Thus (n) < (1 +8){(n) + JA(E,v) < (26 + §%)A(&,7) and o satisfies the

spectral property in iii) of Definition B.4, since 6 < 1/3.
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Since o9 satisfies the spectral property, there is an admissible function 6
such that 65} = 5. Inserting @ in the definition of o yields

o(x, &) = /H(x,y,é,'y) o2(y,&,7) dy

with
1
(2m)e

Next, we use Taylor’s formula,

01($»f+7777) = 0'1(5(3,5,’)/) + Zal,j(%ﬁafﬁ)ﬁj

H(z,y,6,7) = /kﬂfymm0a5+n;wwmsxwdn

with .
Ul,j(%??,gﬁ) :/0 65J01(1‘75+t7777)dt

Note that here, tn is the usual multiplication of i by ¢, not the dilation t - 7.
The first term contributes in o to o1(z,&,v)o2(x,&, 7). The remainder
r = o — 0109 satisfies

d
7@@w=2/@wmw@w@WM@wm
j=1

Gj(z,y,6,7) = (2::)(1 /eiy”ffl,j(w,n,5,7)9(?775,7) dn.

For (n,&,~) in the support of 6 and for ¢ € [0, 1], (tn) < (n) < dA(&,~) and
thus A( +tn,v) =~ A(§,7v). With the estimates (B.19) for § and (B.16) for
o1, this implies that

1080 (01,30) (1,€,7)| < Ca g (€, 7)1~ (=D =p/pi

(Recall that o ; involves the derivative O¢;01, yielding the extra factor p/Dj
in the estimate above). As for (B.21), these estimates imply

Hagan(x, ‘7577)||L1(Rd) < CaA“*1*(01> '

We have used that p/p; > 1. Together with the estimates (B.16) for 0,02,

this shows that r € T} "1 More precisely, there is N’, such that for all
N, there is C such that

(B.45) 17/l et =18 < Cllonllu,nnm) V2ol o v)-

Because o and o109 both satisfy the spectral condition, we conclude that
re E’Sﬂ‘ 1
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c) Consider a € T} and b € F’f,. By Proposition B.9, changing the
admissible function in the definition of 77 changes T, and T, by operators
of order  — 1 and p’ — 1, with norms controlled by the semi-norms of V,a
and V b. This does not alter the result. Therefore, changing ) (for instance
increasing N in (B.20)) if necessary, we can assume that the parameter o
occurring in (B.18) is small enough. In this case, the associated symbols
o, € X} and o, € E’fl satisfy the spectral condition with a parameter
§ < 1/3. Therefore, T, o T)) = Op?(04) 0 Op?(03) = Op”(040p) + Op? (1)
with r € 26””/71.

On the other hand, Proposition B.7 implies that a — o, € Fg_l, b—oy €
I‘g/_l and ab — oy € Fg”L“/_l. Thus, 7" = 040 — 0gp € Zg+”,_1. Moreover,
the norms of 7 involve bounds of V,a or V;zb. One has T}, = Op”(oq) =
Op?(cq0p) —Op? ('), and thus T3 o T})) — T} = Op” (r+r'), which is of order
< p+ p' —1 and the theorem follows. O

Similarly, the next two theorems are extensions of known results ([Bo],
[Mey]) to the framework of quasi-homogeneous symbols.

Theorem B.17. Consider a matriz valued symbol a € TY. Denote by
(Td)* the adjoint operator of T, and by a*(x,&,v) the adjoint of the matriz
a(z,&,7). Then (T7))* — T is of order < u— 1. More precisely, one has

I(T2)" = T )ullsy < CllVaal uny lullstu-1.4
where C' and N only depend on the indices s and .

Proof. 1t is sufficient to consider scalar symbols.

a) Consider o € X} with parameter § < 1/2. On the Fourier side, the
kernel of Op” (o) is 71 (€ —n,n,7) (see (B.25)). Thus the kernel of its adjoint
is W -5 (& —n,&,7). Therefore, the adjoint (Op?(0))* is the

~1 ~
operator Op?(g) with symbol & defined by o (§ —n,n,7) = 5 (&—=n,&7),
that is . .
o &) =0 n&+n,7).
~1

On the support of o , (n) < JA(E+n,v) < 6(A(&,v) + (n)), and therefore
(n) < 1%{5/\(5,7). Since 0 < 1/2, the spectral condition is satisfied.

Since both &'(n,&,7) and 5! (n,& + n, ) satisfy the spectral condition,

~1

~ =1
there is an admissible cut-off function # such that 65! = ! and 05 =& .
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Then

d

~1 ~1 ! ~1
G (mE+n7) =05 (n,§,7)+29(n,€,7)/0 n; 0,0 (0, & + tn,y)dt.
j=1

Taking the inverse Fourier transform with respect to the first set of variables,
we obtain that ¢ = & + r, where

1 o
T($7£’7) = Z (QT)d /el(a: y)npj(yvnagaly) dy d77,
J

and .
pj(x,n,§,7) = —1'9(7775,7)/0 Or; 06,0 (, & +-tn,y) dt .

As in the proof of Theorem B.16, (n)d < A(§,~) and A(§ +tn,v) = A(&, )
on the support of 8(n,&,v)o(x, & + tn,v) and for |a| + |F < N,

10805 pj(x,m,€,7)| < Cl[ Va0l 1) MGy Op/e

Therefore, the integrals

Gj(z,y,€,7) = /e”‘“"pj(y,m&v) dn

1
(2m)4
satisfy for all o and N':

AD
1+ (A-a))N

with A = A(§,v). Thus, with N’ large enough

108Gz = &N 1Ry < CallVaollgunn A

|8§Gj(l‘,y,§,’y)| < C||an\|(u’N+1+N,) An—{@)—1

This implies that r € T _1, and, because both & and o satisfy the spectral
property, r € 26‘_1 and Op?(r) = (Op”(0))*—Op7(7) is of order u— 1, with
bounds depending on the semi-norms of Vo in I'f.

b) Consider now a € T'f. Changing the admissible function ¢ in the
definition of T, changes T, by an operator R of order < y— 1. The adjoint
R* is also bounded from H* to H*~#*+! for all s € R. Moreover, the norms
only depend on semi-norms of V,a. Thus, to prove Theorem (B.17), we
can assume that the parameters § of the admissible cut-off ¢) are smaller
than 1/2. In this case, the analysis in a) applies to o, and the theorem
follows. O
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Theorem B.18. Consider a N x N matriz symbol a € T and a N x M
matriz symbol w € TY. Suppose that there is a scalar real symbol x € T and
c > 0 such that x > 0, xw = w and

V(z,&,7) : X2, &) Rea(z, £,7) > ex®(z, & v) A€, 7).

Then, there are C' and N such that for all u € H¥? and all v > 0,

C
(B46) STl < Re(T2TJuThu) e + CKNully

where
K = [|Vzall(uny + IVaxllo.n) + [[Vawllo,3)

and C' is bounded when a, x and w remain in bounded sets.

Here, ((-, )) denotes the scalar product in L?(R?), which can be extended
as the duality pairing H®* x H™%.

Proof. The assumption implies that Rea — %A“ is positive definite on the
support of x. Therefore, one can define

b=10b"=x(Rea— %A“)l/2 € F’f/Q.
Then,

Rea = b"b+ 3CA“ +d, d:=0-x*Rea— %A”).

4
One has

Re (T7v,0) = 5 (T2 + (T2))v,0).

N =

The symbolic calculus implies that

3c

T2+ (T)) = Tioq + R} = ()T + 5

a T).+T) + R
where Ry and Ry are families of order < u — 1. Hence,
3c
Re (T)v,v) = ||T;) 0|72 + ZHUHQ%W + Re (T} v,v) + Re (RJv,v) .

We apply these identity to v = Tyu. Note that a’w = 0 since (1 —x?)w = 0.
Thus, T, T, = Rj is of order p — 1. This implies that

3¢

%\ rul} < Re (T3Tgu Tqu) + Mijulls |1 T30,
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with M = ||R]|| + ||R3T%)||, where the norms are taken in the space of
bounded operators from H2 ! to H 2. The symbolic calculus implies that

M < C(HVmGH(N,N) + IVablluy2.n) + I Vaxllo,3) + V2wl o, )
for some N. Therefore M < CK and the theorem follows. OJ

B.2 The semi-classical calculus

The semi-classical quantization associates to a symbol o (7, 77,y) the operator

Ob 7 (e)u@) = 5z [ €77 e en) i) i

so that, if o is independent of ¥, the operator is defined by the Fourier
multiplier o (e, 7). Note that here €7 is the usual multiplication by €, not
the quasi-homogeneous dilation ¢ - 77. An alternate definition is

Opey’Y(g) = (HE)—lop’Y’ (O'E)Hg for /7/ = ey,

where Hou = e¥? u(ex) and o°(z,€,7) = o(ex, £, 7). We extend this defini-
tion to the para-differential context.

Definition B.19. For a symbol a € Th, ¢ > 0 and v > 0, P;" is the
operator defined by

(BA7) P97 = (H.) TV H. for v = ey and a5(,€,7) = a(ex,£,7).

On H?, we introduce the norms
1/2

(8.13) fulleco = ( [ Atceen™ @ ag) .
We note that
(B.49) lullser = |Heullsr,  with v =ey.

When a € T'ff, the family {a® : € €]0,1]} is bounded in T'fj. Therefore, by
Proposition B.9 there is a constant C' such that for all € €]0,1], all v/ > 0
and all v € H?,

||TJEUHS—M,7’ < C”UHS,’y’-
Applied to v = H.u and +' = e, we deduce that

Proposition B.20. For a € Tl there is C such that for all ¢ €]0,1], all
v >0 and all uw € H?,

I1Ps " ulls—pey < Cllullsey -
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Next, we remark that when a € TI'}, the V,a® are O(e) in T'j. Thus,
Theorem B.16 implies that for a € I'f and b € T ', one has

”(TJETI;YE - Tgsbs)vusn’ < Ce ||vllstptp -1,
Using (B.47) and (B.49), this implies the next result.

Proposition B.21. Fora € I and b € 1”1“/, there is C' such that for all
£ €]0,1], all v > 0 and all u € H A -1,

I(Pe7 By = Py )ullsey < Cellullstpp—1,00-
Since the H, are unitary,
(Pe7)" = (He) N(T5)) " He,

and Theorem (B.17) implies

Proposition B.22. Consider a matriz valued symbol a € F’f. There is C
such that for all e €]0,1], all v > 0 and all u € HSTH1,

I(PE7)" = PeMullsery < Ccllullstu-te-

Similarly, applying Theorem B.18 to TJEI and Tg; implies:

Proposition B.23. Consider symbols a € T and w € I'Y. Suppose that
there is x € T and ¢ > 0 such that x > 0, xw = w and

V(z, &)+ (@67 Reala, €,y) > ex®(x,&,7) M (€, 7).
Then, there is C' such that for all € €]0,1], all v > 0 and all u € H*/?
c
5 ||P5}”YUH2%757,Y S Re ((P(fﬂpfﬂ“a Pliﬁu))[g + 052 ||u||%71,6,'y :
Finally, we note that for a € W1H°(R?)
au — P2V = (H.) ' (a°Hou — TJ;Hau) ,

with +' = ev. Since 0;H.u = ¢H.0;u, one also has

1 /
adju — P27 0ju = E(HE)_I (a®0;Heu — T2 0;Heu) .
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By Theorem B.11, using that ||Va®|pe~ = O(e),
la*v = Tgevlly S €llvlloqy
/
Vla*v - Toevllz S ellull 21

/
la®0jv = Tge 00l L2 < elloll 21,
J

Using (B.49), this implies
Proposition B.24. For all a € W4, there is C such that for all € €]0,1],
ally >0 and all w € L?,

lavw — Py ull1ey < Cellul

Ylaw — P52 < CHUH%—LEW )

0,e,7»

lladju = PeOjullra < Cllvll e —1c -

B.3 The homogeneous calculus

We now prove the results announced in section 3.1 and we take the notations
used in that section. On one hand, we consider the variables § = (¢,y) € R%.
On the other hand we consider and extra variable z € R, considered as a
parameter.

Denote by 77 the dual variable of y. We consider here the homogeneous
case where all the weights p; and p in (B.1) are equal to one. In this case
€)= K| = (v* + (®@;)*)"/?. We restrict attention to v > 1, and thus
A(¢) ~ [¢|. In this framework, the Definition 3.1 of class of symbols I'!
coincide with Definition B.4. For a € I'fj, the operator T, is thus defined
accordingly. In the homogeneous case, the spaces H*(R?) introduced in
section B1, are the usual Sobolev spaces H*(R?) and the norms in (B.12)
are equivalent to the norms (3.5), with constant independent of v > 1.

A symbol a is in the class Flli,o introduced in Definition 3.2, if and only
if {a(z,-) : # € R} is a bounded family in T'. Thus the definition

(T (e, ) = T0), yule,)

makes sense for u in the space L?(R; H*(R%)), called H%* in section 3.1.
As in section 3, introduce the vector fields Zy = zd, and for j €
{1,...,d}, Z; = 95 For a € I'j, such that Z;a € I, the definition
of T shows that
ZiT)u=T)Zju+ ngau.
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Indeed, for the pseudodifferential operators, Op” (o) defined in (B.24), one
has [95,,0p(0)] = Op™(93,0). Moreover, = being a parameter, one also
has [20,,0p”(0)] = Op”(20,0). Finally, TJ = Op”(0,) and Zjo, = 07,4
since the mapping a — o, is given by a convolution in the variables y, x
and (77,7y) being parameters. More generally, the following Leibniz’ formula
is valid for a € Tfy,,, and |a| < m:

(B.50) 2T =% (§) Ty, 2%
BLa

Proposition B.9 implies, with notations as in section 3.1, that for a €
FS’O, there is C' such that for all z € R and all v > 1 :

‘(T,]u)(x, ')‘078 <C ‘u(a:

= ) .)|0,s+#:’7'

Squaring and integrating in x, yields
1T ullo.sy < C llullospuy -

Using (B.50), one obtains that for a € Ffim one has, for v > 1,
1T wllm,sy < C llullm,stpe -

This proves Proposition 3.4.
Similarly, Theorem(B.16) implies that for a € Ty and b € T}, R7(a, )
TJ o T, — T,), satisfies

}(RV(a, b)u)(z, ')‘o,s,y <C |“(m’ ')’0,s+u+u’—1,y

and thus
[(RY(a,b)u)

0,57 < C lwflostprp—14

where C' is independent of v > 1 and u. Repeated applications of Leibniz’
rule (B.50) implies that

Oé! 1 2 3
ZOLR’Y(G, b) = Z WRV(ZQ a, Za b) Za
al+a?+ad=a

Therefore, for a € T, and b € I”f:m, there is C' such that for all v > 1 and
all u € Hmsthtu' =1

H(Rﬂy(a? b)U)Hm,S,’Y < C ”uHm,sﬁuJﬂu’fl,'y
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and Proposition 3.5 is proved.

Propositions 3.6 and 3.7, which involve estimates with m = 0, directly
follow from Theorems B.17 and B.18.

Next, Theorem B.11 implies that for a € L such that Vja € L™, the
operators Ryu = y(au — T, u) and Rju = ady;u — Tgagju, satisfy

[(Ryu) o1y < ClIVgallLe<lullo,0,-

Since

Z°RY = (5)R%s, 277,
BLa

this implies that for a in the space W', and u € H™9,
(B lm,1y < Cllallyma|[wllm,osy

implying Proposition 3.9.

B.4 The semi-classical parabolic calculus

We now prove the results announced in section 3.2. We consider the parabolic
weights pg = p1 = 1 for the variables v and 7, and p; = 2 for the spatial
tangential variables y; (compare (3.11) and (B.1)). = € R is an extra vari-
able.

The class of symbols PI'; in Definition 3.10 is the class T} of Defini-
tion B.4 corresponding to our present quasi-homogeneous structure. For a
is in the class PI') o, {a(z,-) : © € R} is a bounded family in PI'}; and thus
we can define

(sz”yu)(x7 ) = P;{Z,.)U(% )

for u in the space L?(R;H*(R%)), called PH** in section 3.2.
We consider again the vector fields Zy = 20, and Z; = 0y,. Fora € PF’iO,
one has

(B.51) 7P = P Zju + P .

To prove this identity, we use the definition (B.47) of P%7Y. The equality
(B.51) is quite clear for Z since H. and zd, commute and [20,,T,-] =

Tlaxas = T&/ama)s. Next, for j € {i,...,d}, (B.51) follows directly from the
identities : . ) )
Oy, (He)™ = (He)™ 0y, ,

- ,y/ . ,\// o ,\//
195, Tae] = T, (ae) = €T (5,0 -

angg = 5H56§j .
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The identity (B.51) extends to a € PI'j,,, and |a| <m :

(B.52) ZoP7 = (5) Py, 277
B

As in section B.3, the Propositions of section B.2 immediately imply
Propositions 3.14 (adjoints) and 3.15 (Garding’s inequality) and the esti-
mates in Propositions 3.12 and 3.13 when m = 0. Using Leibniz’s formula
and (B.52) they immediately extends to general m, as in section B.3. The
localization of the spectrum of P;”u when a is compactly supported or sup-
ported outside a ball, as stated in i) and iv) of Proposition 3.12, follows
directly from Remark B.10.

Moreover, Proposition B.24 immediately implies

latw = Petullnen + 37 elladiu — PE0%ullogen < el
la|=1

0,0,e,v

and
Yllau — Py ullo,0,6,y + [[adiu — Py 0pu

070767’7 S Hu‘|071157’y °
Moreover, it also implies that
> elladyu— P70
|a|=2
This shows that the estimates (3.22) and (3.23) of Proposition 3.17 are
satisfied when m = 0. Commuting with the Z% and using the Leibniz’
formula (B.51) to the remainder Ry u = au— Py u, we obtain the estimates
for m > 0 and the Proposition 3.17 follows.
To prove Corollary 3.18, we use that
[R[m2.ex S [ Bllm0eny + VI Rlm0eny + Ell0R]|m 0,4
+elVyRllmoeq + 2| VLR

‘070757’Y S ||Evyu’ 0,0,e,y S/ ||u 0,1,e,7 -

m,0,e,7 +

We apply this estimate to R = R(a,u) := au — Py u and show that each
term is bounded by

C(elVal p +e2[[V2al L) [ullm,1..4

This is true for the first two terms, by Proposition 3.17. Next we write
that OR(a,u) = R(a,du) + R(da,u) and 0, R(a,u) as a linear combination
of R(a,@iu), R(0ya, 0yu) and R(@ga,u). The terms R(b,u), b = Oy ya or
b= 65@ are controlled by Proposition 3.12 for the part Pbe 7 and directly by

Leibniz’s rule for the part bu. The other terms are estimated by Proposition
3.17 applied to u or €d;u.

It only remains to prove Proposition 3.19.
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Proof of Proposition 3.19
The goal is to compare P;*" and T;. when b € PI'{ ; has compact support

in ¢ = (77,7) and b*(z,y,¢) = b(x,y, ().
a) First, we note that b can be expanded into a rapidly convergent series

b(z,y,C Zb (z,9) cu(C

where ¢, € C°(RY), b, € Wh(R!*9) and for all @ € N1 the sequence
16y |[1371,00 ||0%cy || Lo is rapidly decreasing. Indeed, since b has compact sup-
port in ¢, there is § € C§° such that 8(¢)b = b. Let L be so large that the
support of 6 is contained in the box B = [~L, L]4*!. Then, since b is C*°,
0(-) b(x,y, ) can be expanded into rapidly convergent Fourier series, yielding

.I y? Z b @9 2i7r1/(/L.

veZ4+1

b) Next, we note that when ¢ = ¢(¢) and ¢(¢) = ¢(e(), then

PV =T, = c(eDy,ev)

cs T
is the operator defined by the Fourier multiplier 77 +— ¢(en, 7). Moreover,

the definitions imply that

Y __ £, DE,Y Y
Pbuc,, = Pby P, T

bycg

— 7YY
=T T .

Therefore
P —T) = Z (P =1, )P

v

. 15
Since 9y, and P.7 commute, one also has

(Pbs,’v _ Tbl)ayj = Z (Plfy"yagj - Tzlaﬂj)PcE,ﬁ )

14

Propositions 3.9 and 3.17 imply that

Yoww =Ty ullp2 + 16y Viu = Ty, Viull2 S 1[VgbyllLoellull 2 ,
oww = B ull 2 + 1100 Viu = By Viull e S 1V llze [wlloeq -

Moreover,
1T ullrz < llevlnee [Jull 2
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and, since ¢, is supported in a fixed compact set,
1P ulloeqy S llevllzee [lullze.
Therefore,

7||Tl;y — Pbs,'y u||L2 + ||TI;Z/C5V§U—P§;ZVV:§UHL2

VCI_E/ vCv

S IVgbyllzee eyl oo [[ull 2 -
Since the series ) || Vb, [ o< ||cy ||z is convergent, we conclude that
(B.53) Ty = By ullpe + 1Ty Viu — By Viull s S flull 2 -
c) For all temperate distribution v and v > 1, there holds

u = yvg + Z@gjvj,

where the Fourier transform of the v;’ are given by
Bo(i) = CI7a() () = =iy /¢~ a (i) -

Thus, for all j, one has in the scale of norms (3.6):

[vjllz2 < llullo,~1,-
Therefore, using (B.53) for the v;, we obtain that

T u— Py
b b

0,0~ S llullo,~1, 5

finishing the proof of Proposition 3.19.
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