
Dense Oscillations for the Euler Equations II

J.-L. Joly �

CEREMAB URA 226 CNRS

Universit�e de Bordeaux I

33405 Talence, FRANCE

G. Metivier�

IRMAR URA 305 CNRS

Universit�e de Rennes I

35042 Rennes, FRANCE

J. Rauch�

Department of Mathematics

University of Michigan

Ann Arbor MI 48109, U.S.A.

The fact that the resonant interaction of a �nite number of oscillatory
wave trains might lead, to the creation of an in�nity of waves was suggested
by Hunter, Majda, and Rosales in x6.2 of [1]. To avoid this possibility they
systematically assumed suitable �niteness hypotheses on their phase func-
tions. Joly and Rauch [2] constructed a system of semilinear wave equations
in spacetime of dimension 1+2 where waves propagating in a set of direc-
tions dense in the unit circle were created. Their intent was to show that
nonlinear geometric optics in higher dimensions would not be possible with-
out a �niteness hypothesis. Exactly this unlikey goal was achived in [3, 4].
Schochet [6] then gave an alternate proof in a special case su�ciently gen-
eral for the examples of this note. Our paper [5] proved that such dense
oscillations can be generated by the 1+2 dimensional inviscid compressible
Euler equations. In this note we recall and re�ne that result, answering one
of two questions posed at the end of that paper.

The isentropic Euler equations are a 3�3 system of quasilinear equations
of the form

@tu+
X

1�j�2

Aj(u)
@u

@xj
;

with coe�cient matrices Aj(u) de�ned from
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(@t + v1@1 + v2@2)v1 + (p0(�)=�)@1� = 0 (1)

(@t + v1@1 + v2@2)v2 + (p0(�)=�)@2� = 0 (2)

(@t + v1@1 + v2@2)�+ �(@1v1 + @2v2) = 0 (3)

The same phenomena occur in the nonisentropic case. The present set-
ting is chosen for simplicity. The state vector is denoted u := (v1; v2; �).
Our solutions will be close to a background state u := (0; 0; �) which has
the uid at rest and the density constant. In [5] we constructed a family of
smooth solutions

u� = (0; 0; �) + � U(t; t=�; x1=�; x2=�) +O(�2) 2 C1([0; t1]�R
2) : (4)

The smooth pro�le U(t; T;X) is a periodic function of T;X and the solutions
u� are periodic in x. The error is measured in the L1 norm with a loss of a
factor 1=� for each derivative taken, that is
���
���@�

�
u� � ((0; 0; �) + �U(t; t=�; x1=�; x2=�))

����
���
L1([0;t1]�R2)

= O(�2�j�j) : (5)

More general oscillatory solutions would have pro�les U(t; x; T;X) depend-
ing also on x. For the solutions in 4, the oscillations at time t are essentially
the same at all positions x. For this reason we refer to them as homogeneous
oscillations in analogy with homogeneous turbulence.

The theory of Nonlinear Geometric Optics [3, 4, 6] provides the following
recipe. Given smooth periodic initial data U(0; 0;X) there is a nonlinear
evolution equation which is locally solvable determining U(t; T;X) for 0 �
t � t1 for some t1 > 0. Then for � small, the solution of the Euler equation
with initial data

u(0; x) = u+ � U(0; 0; x=�) ; (6)

is smooth on [0; t1]�R
2 and the relation 5 holds.

Denote by L(@T ; @X) the linearization of the Euler equations at the back-
ground state u. Then L is a constant coe�cient strictly hyperbolic partial
di�erential operator. For any  = (0; 1; 2) 2 R

3, L() denotes the symbol
of L. The characteristic variety of L is given by the equation

det L() = 0(
2
0=c

2 � 21 � 22) = 0 ; c :=
q
p0(�) : (7)

Here c is the speed of sound and the characteristic variety is the union of
the horizontal plane 0 = 0 and the speed c light cone.
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The �rst of the equations determining U is that, as a function of the fast
variables T;X, U is a solution of the linearized equation

L(@T ; @X)U(t; T;X) = 0 :

Thus standard linearization yields the approximate solution u+�U(0; t=�; x=�)
, which is accurate only for times t small compared to �. Expanding U in a
Fourier series yields

U(t) =
X


U(t) e
i:(T;X) : (8)

The sum is over  from the characteristic variety and the corresponding
amplitude U belongs to the kernel of L(). The solutions 1.4 have as
principal contributions the terms

� U(t) e
i:(T;X)=�

which are plane waves of amplitude and wavelength of order �. When 0 = 0,
the corresponding waves are stationary and are called entropy or vorticity
waves. Otherwise, they are acoustic waves which move with speed c in the
direction of the unit vector (1; 2)=j1; 2j.

Denote by E the spectral projection ofR3 onto kernelL(). Then E =
jr >< l j for normalized right and left eigenvectors r and l . Introduce
the operator E on trigonometric series by

E(
X


V(t) e
i:(T;X)) :=

X


EV(t) e
i:(T;X) : (9)

The equations determining the pro�le U from its initial data U(0; 0;X) are
then

EU = U ; and E

�
Ut +

X
j

(Aj U)
@U

@Xj
) = 0 ; (10)

Aj := DuAj(u) :

The main result of [JMR ] studies the behavior of the solution of 10 with
initial data so that

U(0; T;X) = r� f(�:(T;X)) + r� f(�:(T;X)) + r� f(�:(T;X)) (11)

� := (c; 1; 0) ; � := (0; 1; 0) ; and � := (0; 3; 4) ;

consists of three plane waves. The function f is given by

f(�) :=
X
n2Z

e�jnj ein� : (12)
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De�niton 1 Denote by � the lattice of integer linear combinations of the

vectors �, �, and, �.

The characteristic covectors in � are precisely the wavenumbers one ex-
pects to �nd in the spectrum of U generated by nonlinear e�ects. In [5] we
analyse the initial value problem 1.10, 1.11. There is a unique local solution
U 2 C1([0; t1]�R

3) which is 2�=c; 2�; 2� periodic in T;X1;X2. The spec-
trum of U(t) is contained in the characteristic points of �. Concerning the
set of amplitudes which are ignited we prove the following.

Theorem 1 The set of characteristic points  := (�; �) in � \ f� = cj�jg
have directions �=j�j dense in the unit circle. In addition for any  in this

set which is not proportional to any of the �ve vectors (7;�24), (�3; 4),
(1; 0), (0; 1) one has

d2U(0)

dt2
6= 0 ; and;

djU(0)

dtj
= 0 for j = 0; 1 : (13)

This result asserts that waves traveling in directions dense in the unit
sphere are generated by the nonlinear interaction of three waves present
initially. The above result does not asssert that the U�;�(t) are all nonzero
for a particular t. In this note we provide a simple proof that they are all
nonzero except for at most a countable number of t. We leave unanswered
the question of whether for some 0 < t2 < t1, they are all nonzero for
0 < t < t2.

Theorem 2 For the solution U(t; T;X) of the last theorem, each of the

functions U(t) is real analytic on [0; t1] . In particular, for the �; � for

which 13 is proved, the U�;�(t) vanishes for at most a �nite set of t 2 [0; t1]
.

Proof. We indicate two di�erent arguments showing that U(t; T;X) is real
analytic. The �rst is an application of the abstract Cauchy-Kowalewski
theorem to the initial value problem 11-12. Toward this end introduce a
scale of Banach spaces.

De�niton 2 Bs is the Hilbert space of triply periodic solutions of the lin-

earized equation,

F (T;X) =
X
�2�

F�e
i�:(T;X); E�F� = F� (14)

such that X
jjF�jjC3 esj�j <1 : (15)
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The abstract treatment of the Cauchy-Kowalewski Theorem (see [9] and the
references therein) applies virtually without change in the present setting.
It shows that if U(0) belongs to B� for some � > 0, then there is a t3 > 0
and a unique solution U of 10,11 on t < t3 such that for all t < t3 U is
continuous on [0; t[ with values in Bs(t) with s(t) of the form � � �t for
some constant �. Using the equation to express time derivatives in terms of
spatial derivatives it follows that U is a real analytic function of t; T;X for
0 � t < t3. Therefore all the Fourier coe�cients U�(t) are real analytic on
[0; t3[.

The advantage of this method is that it is quick and easy. The disadvan-
tage is that it applies on a possibly shorter interval [0; t3]. For hyperbolic
Cauchy problems the analogous gap was �lled by the result of Mizohata [7] in
the linear case and by Alinhac and Metivier [8] in the nonlinear case. They
show that for real analytic initial data, solutions remained real analytic as
long as they are C1. Their proof extends to the present context without
essential modi�cation. The main di�erence is the presence of the factor E
in the equation for the pro�le U . However, E commutes with derivatives
and is bounded on H2(T3) which is all that is needed to control it. For the
proof one estimates the rate of growth of the derivatives of U as the order
of derivation increases. One proves by induction on j�j > 1 that there are
constants M;�; � such that for t < t1

jj@�T;XU(t; :; :)jjH2(T3) �M�1�j�j (j�j � 1)!

j�j2
e(j�j�1)�t : (16)

To prove 16, di�erentiate the equation for U to �nd

@t @
�U +E(

X
j

(AjU) @Xj
@�U) = EG� ; (17)

G� :=
X

0<���

(��)Aj @
�U @Xj

@���U : (18)

The basic energy estimate for the pro�le equation then shows that

jj@�U(t)jjH2(T3) � jj@�U(0)jjH2(T3) + C

Z t

0
jjG�(t

0)jjH2(T3) dt
0 (19)

with a constant C that depends on the C1 norm of U . For the details of the
proof of 16 using 18 and 19 see [8].

This shows that U is real analytic on [0; t1] � R
3 which implies the

analyticity of the Fourier coe�cients U(t). }
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