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1. Introduction

This paper describes focusing effects near general caustics for high frequency solu-
tions of semilinear dissipative equations. Several consequences of focusing mech-
anisms have already been described. In [JMR 1] and [JMR 2] it was shown that
nonlinear interactions can amplify the growth of amplitudes due to focusing and
lead to non continuation of solutions, even as weak solutions. For globally Lips-
chitzean or disssipative nonlinearities this phenomena does not occur. There are
unique global solutions and one can pose the problem of describing the behaviour
of oscillations beyond caustics. In [JMR 2] we proved that strong dissipation can
absorb radial oscillations. In [JMR 3] we showed how nonlinear oscillatory waves
cross caustics when the nonlinearity is globally Lipschitzean. In the latter paper
the solutions are described by oscillatory integrals which define bounded families
in L2 spaces.

The analyis in this paper relies on sharp uniform bounds for the Lp norm of such
oscillatory integrals. Such estimates have already been obtained in [R 1] [R 2] [Sv].
However, the assumptions used in these papers are not adapted to our purpose.
In section 3, we state and prove the uniform Lp estimates which we need. We
use them to study a class of dissipative equations and consider general caustics.
The analysis reveals a critical exponent pc, associated to each point of the caustic
set where rays focus. For generic caustic points, this exponent is 3. For radial
focusing in Rd, d ≥ 2, it is 1 + 2/(d− 1).

When the nonlinearity grows at infinity faster than |u|pc the dissipative mecha-
nism is strong and oscillations are absorbed at caustics : there are no oscillations
past the focusing point. This extends [JMR 2] to general caustics. When the
nonlinear term grows at infinity at a strictly slower rate than |u|pc , oscillations

1



cross caustics and amplitudes can be computed after focusing. This generalizes
[JMR 3] to superlinear dissipative equations.

We now sketch the results for a typical example. Consider the semilinear dissi-
pative wave equation

(1.1) u + |∂tu|p−1 ∂tu = 0 .

with oscillatory Cauchy data

(1.2) uε|t=0 = u0(x) + εU0(x, ψ(x)/ε) , ∂tu
ε
|t=0 = u1(x) + U1(x, ψ(x)/ε) ,

where ψ is a smooth function with nonvanishing differential on ω ⊂ Rd, U0(x, θ)
and U1(x, θ) are smooth, 2π-periodic in θ with mean 0 and compactly supported
in ω×T and u0, u1 ∈ C∞0 (Rd). Later these regularity assumptions are considerably
weakened.

Since the Cauchy data (1.2) define bounded families in H1(Rd) and L2(Rd), the
corresponding weak solutions uε are bounded in C0([0,+∞[;H1(Rd)) with ∂tu

ε

bounded C0([0,+∞[;L2(Rd)) ∩ Lp+1([0,+∞[×Rd), see [L], [LS], [Str].
The behaviour of uε for small times is given by [JR]. The solution satisfies

(1.3) uε = u + εU+(t, x, ϕ+(t, x)/ε) + εU−(t, x, ϕ−(t, x)/ε) + ε2 . . . ,

where ϕ± are the solutions of the eikonal equation for with data ψ at t = 0 and
the profiles U± satisfy transport equations, coupled to a nonlinear wave equation
for u.

In general, ϕ± develope singularities in finite time. The singular locus is called
the caustic set C. As one approaches C, amplitudes tend to infinity and the de-
scription (1.3) breaks down. For linear equations, the substitute to (1.3) is well
known. The phases are replaced by Lagrangian manifolds Λ± which are globally
defined and smooth and the oscillations U±( . , ϕ±/ε) are replaced by Lagrangian
distributions associated with Λ± (see e.g. [Du],[DH], [Hö 1], [Hö 2]). This repre-
sentation shows that after C more phases are required to describe the asymptotics
of uε. In the nonlinear case the situation can be worse since amplitudes may blow
up before caustics [JMR 2]. This does not happen for dissipative equations.

For the wave equation, the Lagrangian distributions are given by integrals of
the form

(1.4) (2πε)−d
∫∫

eiΦ±(t,x,y,ξ)/ε a(t, y) dy dξ ,

with

(1.5) Φ±(t, x, y, ξ) := ± t |ξ| + (x− y) · ξ + ψ(y) .
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In the nonlinear case one must take care of harmonics and consider symbols de-
pending on the extra variable θ ∈ T := R/2πZ. This leads to periodic symbols
with mean 0

(1.6) A(t, y, θ) =
∑
n 6=0

an(t, y) ei n θ

and oscillatory integrals

(1.7) Iε±(A) =
∑
n 6=0

|n|d
(2πε)d

∫∫
ei n Φ±(t,x,y,ξ)/ε an(t, y) dy dξ .

Recall that in the linear case (see e.g. [Du], [Hö 2])

(1.8) uε ∼ u + ε Iε
+

(U+) + ε Iε−(U−) .

The caustic set C, is the set of points (t, x) where at least one of the critical
point of (y, ξ) → Φ±(t, x, y, ξ) is degenerate. Thus, outside the caustic set, the
classical stationnary phase expansion yields a phase-amplitude expansion of the
form

(1.9) Iε±(U) =
∑
k

U±,k(t, x, ϕ±,k(t, x)/ε) + O(ε) .

The sum (1.9) runs over the set of critical points of (y, ξ) → Φ±(t, x, y, ξ). In
particular, for small times, there is a unique critical point and (1.8) is identical to
(1.3). Sometimes refined stationnary phase theorems yield precise descriptions of
uε near the caustic, [Lu], [Du], [Hö 2].

In [JMR 3], Lagrangian distributions are at the center of our analysis for the
nonlinearities which are globally Lipschitzean. The goal of this paper, is to show
that the description (1.8) is true for all dissipative equations (1.1), provided that
the Lagrangians Λ± satisfy a non resonance condition and some technical assump-
tions.

The analysis in [JMR 3] uses the fact that families of integrals like (1.4) or
(1.7) are bounded in L2, even on neighborhoods of caustics. This expresses the
boundedness of energy. Near the caustics, these families are not bounded in L∞.
Therefore, it is a natural question to determine the supremum of the real numbers
q ≥ 2 such that Iε±(A) is bounded in Lq. In addition these Lq estimates are needed
to control nonlinear terms.

The analysis reveals a critical exponent

qc := 2 + 2/µ

which does not depend on the full complexity of the caustic but, for the phases
Φ± in (1,5), only on the algebraic order µ to which the determinant of the Hessian
matrix of Φ± vanishes at degenerate critical points.
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When the C∞ symbol A is supported in a small neigborhood of a degenerate
critical point of multiplicity µ, then Iε±(A) is bounded in the weak Lqc space,
i.e the Lorentz space Lqc,∞. In particular, for all q < qc, I

ε
±(A) is bounded in

Lq.

This is proved under a locally constant rank condition for degenerate critical
points. We refer to §2 and §3 for a precise statement. Similar estimates can
be found in [R 1], [R 2] and [Sv], where convexity assumptions are used. The crit-
ical index qc is sharp. If A 6= 0 at the degenerate critical points, then for q ≥ qc,
the Lq norms of Iε±(A) are not bounded. To guarantee their boundedness in Lq

requires some vanishing of A on S± the set of degenerate critical points of Φ±.
Results in this direction can be found in [CDMM] (see also references in [Ste]).
Note that the condition q < qc is also necessary for the right hand side of (1.9) to
define bounded families in Lq.

These estimates are not and do not follow the from sharp Lp estimates on
Fourier Integral Operators which can be found in [Ste] and [So] and references
therein.

We show that
there are u and profiles U+ and U− such that the solutions of (1.1) (1.2) satisty
(1.8). u and A± are related by a coupled system of transport equations and a
wave equation. With B± := ∂θU±, the equations are of the form :

(1.10) ∂t B± + E±(u,B+,B−) = 0 , u + E (u,B+,B−) = 0 .

(1.9) provides a phase-amplitude representation of uε outside C. The propagation
equation for the amplitude U±,j follows from the equation for U±. The U±,j
satisfy transmission conditions which include the usual phase shift, as in [JMR 3].
The system (1.10) inherits dissipativity from the original one. The nonlinear
interactions E± are singular above the caustic set C. This fact was exploited in
[JMR 3] to reveal the possible occurence of nonsmooth tranfer of energy at caustics.
Here, the singularity of E± is augmented by the stronger nonlinearity in (1.1), and
E±(u,B+,B−) is not always locally integrable near the caustic points. Thus the
transport equations in (1.10) must be interpreted with care. The discussion again
involves the critical index qc attached to degenerate critical points, indicating
consistency with the property that ∂tuε belongs to Lp+1. If p + 1 ≥ qc, then
E±(u;B+,B−) is not necessarily integrable near the corresponding point. But
there, strong dissipation and absorption occur. The transport equation (1.10) is
satisfied along the rays before the singular point, B± tends to zero at this point,
and B± vanishes after it. On the contrary, when p + 1 < qc, then E±(u;B+,B−)
is locally integrable so that the transport equation in (1.10) makes sense and is
satisfied across the singular point.

Denote by T±(y), the smallest focusing time t along the ray y± t dψ(y)/|dψ(y)|
and such that the critical exponent qc at (t, y) is less than or equal to p + 1. For
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the wave equation, the times of focusing along the rays from y are ± the radii
of curvature of the level surface ψ(y) = ψ(y). The multiplicity µ±(t, y) is the
multiplicity of the corresponding principal curvature. Then the precise meaning
of (1.10) is the following.

B± = 0 for t > T±(y) and the transport equations ∂tB± = E±(u,B+,B−) are
satisfied in L1

loc for t < T±(y).

When p ≥ 3, then p+ 1 is always larger than 2 + 2/µ since µ ≥ 1. Thus T±(y) is
the first time of focusing along the ray from y.

For generic caustics, the multiplicity µ = 1 and the critical index qc = 4. Thus,
if (almost) all the rays have only generic focusing points, absorption occurs at
caustics points if and only if p ≥ 3, which is the supercritical case. On the other
hand, in the subcritical case, that is when p < 3, oscillations cross the caustics
(Figure 1.1 below).

Subcritical case Supercritical case

Figure 1.1

For radial phases ψ(y) = χ(|y|), the multiplicity µ is equal to d − 1. Thus
absorption occurs at the caustic set {x = 0} if and only if p ≥ 1 + 2/(d− 1). For
such radial phases, and for p ≥ 1 + 2/(d − 1), absorption was proved in [JMR
2]. The present paper improves the asymptotics near the caustic, shows that the
index 1 + 2/(d − 1) is sharp and that, for smaller p, oscillations continue after
focusing.

When p < 1 + 2/(d − 1), absorption never occurs and oscillations persist after
crossing the caustics, since the multiplicity µ is at most equal to d − 1. This
includes the limit case, p = 1 which corresponds to linear equations (1.1) and also
to globally Lipschitzean nonlinearities.

2. Notations and main results

2.1. The time evolution
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In R1+d, consider the Cauchy problem for a semilinear system

(2.1.1) ∂tu −
d∑
j=1

Aj∂ju + f(t, x, u) = 0 , u|t=0 = u0

where ∂j := ∂/∂xj . L := ∂t −
∑d
j=1Aj∂j is assumed to be a symmetric hyperbolic

first order system of constant multiplicity. For simplicity, we assume it has constant
coefficients.

Assumption 2.1.1. The Aj are constant real symmetric N × N matrices

and the eigenvalues λk(ξ), 1 ≤ k ≤ k0, of A(ξ) :=
∑d
j=1 ξj Aj have multiplicity

independant of ξ ∈ Rd\0.

The nonlinear interaction f is assumed to be dissipative.

Assumption 2.1.2. f is a C1 function from [0,+∞[×Rd × CN to CN , with
f(t, x, 0) = 0 and there are p ∈ [1,+∞[ and constants 0 < c < C < +∞ such that
for all (t, x) ∈ R1+d and all u and v in CN ,

(2.1.2) | f(t, x, u) | ≤ C |u |p , | ∂u,uf(t, x, u) | ≤ C |u |p−1 ,

(2.1.3) Re
((
f(t, x, u)− f(t, x, v)

)
· (u− v)

)
≥ c |u − v |p+1 ,

In (2.1.2), ∂u,uf denotes the set of derivatives ∂uf and ∂uf . Remark that
f(t, x, 0) = 0 and (2.1.3) imply that

(2.1.4) c |u |p+1 ≤ f(t, x, u) · u .

Example. f := ∂uΦ : CN → CN satisfies Re
((
f(u) − f(v)

)
· (u − v)

)
≥ 0,

when Φ is a convex function from CN to R. The stronger condition (2.1.3), and
the other assumptions are satisfied for example for Φ(u) := |u|p+1.

In most applications, u is real valued and f is defined for real values of u, but
the use of complex exponentials in place of sin and cos is convenient and we
systematically introduce complex values for u. This is not a restriction, since when
f is a C1 function from [0,+∞[×Rd × RN to RN which satisfies the analogues of
(2.1.2) (2.1.3) for u and v in RN , the extension to complex u+ iu′ ∈ CN , defined
by f̃(u+ iu′) := f(u) + i g(u′), satisfies (2.1.2) (2.1.3) if g has the same properties
as f .

Assumption 2.1.2 can be slightly weakened. In particular, in §7, we give modifi-
cations of (2.1.2) (2.1.3) adapted to the first order reduction of the wave equation
(1.1).
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Solutions of the Cauchy problem (2.1.1) are constructed in [Str] (see also [LS]
or [Ha]).

Theorem 2.1.3. For u0 ∈ L2(Rd), the Cauchy problem (2.1.1) has a unique
solution u ∈ C0(R ;L2(Rd)) ∩ Lp+1([0,+∞[×Rd). Moreover, if u0 and v0 are
Cauchy data in L2(Rd), the solutions u and v satisfy

(2.1.5) sup
t≥0
‖u(t)−v(t) ‖2L2(Rd) + 2c ‖u−v ‖p+1

Lp+1([0,+∞[×Rd)
≤ ‖u0−v0 ‖2L2(Rd) .

2.2. Lagrangians, caustics and phases

Consider Cauchy data of the form

(2.2.1) uε0(x) = u0(x) + U0(x, ψ(x)/ε),

where U0(x, θ) is periodic in θ with vanishing mean value. We assume that ψ
satisfies

Assumption 2.2.1. ω is an open subset of Rd and ∂ω has d-dimensional
Lebesgue measure equal to zero. The initial phase ψ is real valued and C∞ on a
neighborhood of ω and dψ does not vanish on ω.

Extensions to phases with isolated critical points or singular points are possible,
as in [JMR 3] §6.5.

We assume that U0(x, θ) = 0 when x /∈ ω. Then the Cauchy data (2.2.1) is
defined on Rd.

Thanks to Assumption 2.1.1, the eiconal equation detL(dϕ) = 0 splits into

(2.2.2) ∂tϕ − λk(∂xϕ) = 0 , ϕ|t=0 = ψ ,

for k ∈ {1, . . . , k0}. The geometric global solutions of (2.2.2) are Lagrangian
manifolds Λk in T ∗R1+d. As in [JMR 3], we take global coordinates (t, y) on
theses manifolds. Precisely, introduce

(2.2.3) G := [0,+∞[×ω ,

and the mapping k : G = [0,+∞[×ω → [0,+∞[×Rd

(2.2.4) k(t, y) = (t, x) with x = qk(t, y) := y − tλ′k(dψ(y)) .

Introduce the set of points where k is not a local diffeomorphism,

(2.2.5) Sk := {(t, y) ∈ G | det ∂y qk(t, y) = 0} .
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The caustic set Ck is

(2.2.6) Ck := k(Sk) ⊂ [0,+∞[×Rd .

Introduce

(2.2.7) gk(y) := λ′k(dψ(y))

and its Jacobian matrix g′k(y). Then (t, y) ∈ Sk if and only if 1/t is a positive
eigenvalue of g′k(y).

The analysis of the singularities near the caustic set depends on the proper-
ties of the mappings k. We make the following finiteness hypothesis which is
automaticlly satisfied when ψ is real analytic, since λ is also real analytic.

Assumption 2.2.2. There is an integer `∗, such that for all k, and all (t, x) /∈ Ck,
the number of points y ∈ ω such that x = qk(t, y), is less than or equal to `∗.

As in [JMR 3], introduce the following terminology

Definition 2.2.3. A subset Ω ⊂ [0,+∞[×Rd is k-regular if and only if

i) Ω is relatively open in [0,+∞[×Rd and connected,

ii) there are smooth functions ρk,1, .., ρk,` from Ω to ω such that ρk,j 6= ρk,l
for j 6= l and

(2.2.8) ∀(t, x) ∈ Ω , {y ∈ ω | qk(t, y) = x} = {ρk,j(t, x)}1≤j≤` .

A subset Ω ⊂ [0,+∞[×Rd is called regular, when it is k-regular for all k.

Note that the ρk,j(t, x) are the feet of the bicharacteristics passing through (t, x).
In ii) the number ` is allowed to be zero. In this case, condition ii) means that
{y ∈ ω | qk(t, y) = x} is empty. A k-regular set is necessarily contained in
[0,+∞[×Rd\Ck. As noticed in [JMR 3], the converse is not true, since the number
of preimages of x can change when one of them reach the boundary ∂ω. However
one has the following result (see §4 in [JMR 3]).

Proposition 2.2.4. Introduce

(2.2.9) C̃k := Ck ∪ k([0,+∞[×∂ω) , C̃ = ∪kC̃k .

Then C̃ ⊂ [0,+∞[×Rd and, for all k, −1
k (C̃) ⊂ G have zero Lebesgue measure. For

all (t, x) /∈ C̃k, −1
k ({t, x}) is contained in G. The number of points in −1

k ({t, x})
is locally constant on [0,+∞[×Rd\C̃k. In particular, every point (t, x) /∈ C̃k has a
k-regular neighborhood.
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If Ω is a k-regular open set, −1
k (Ω) is the disjoint union of open sets Gk,j ⊂ G

such that k is a diffeomorphism from Gk,j onto Ω. The inverse mappings are
(t, x) → (t, ρk,j(t, x)) where the ρk,j are as in (2.2.8). This defines a family of
phases ϕk,j on Ω, (k, j) ∈ Z,

(2.2.10) ϕk,j(t, x) := ψ(ρk,j(t, x)) .

The ϕk,j satisfy the eikonal equation (2.2.2). They are present in the oscillations
of the solutions of the linear equation Luε = 0 with Cauchy data (2.2.1). These
phases may resonate and nonlinear interaction occur, creating new oscillations for
the solutions of (2.1.1) (see e.g. [McLPT], [HMR], [JMR 4] and references therein,
for several studies on the mechanism of nonlinear resonance of oscillations). In
this paper, which is mainly concerned with caustics, we assume that the phases
ϕk,j do not resonate. The reader is refered to [JMR 3] where it is shown that this
assumption is satisfied by a wide class of examples.

Assumption 2.2.5. For all regular open Ω the set of phases ϕk,j , (k, j) ∈ Z,
given by (2.2.10), satisfy the following property :

for all integers {αk,j}(k,j)∈Z at least two of which do not vanish,

(2.2.11) det L (
∑
k,j

αk,j dϕk,j) 6= 0 a.e. on Ω .

2.3. Lp estimates of oscillatory integrals

Our goal is to represent the solutions uε of equation (2.1.1) with Cauchy data
(2.2.1), as a sum of Lagrangian distributions associated to Λk. Let T = R/2πZ.
Suppose T equipped with the measure dθ with total mass equal to 1. Each term
is given by an oscillatory integral with a symbol U defined on G× T with mean 0
on T. The variable θ in T takes care of harmonics.

Definition 2.3.1. A trigonometric polynomial is a finite sum

(2.3.1) A(t, y, θ) :=
∑
n 6=0

an(t, y) einθ , an ∈ C∞0 ([0,+∞[×ω)

The space of trigonometric polynomials is denoted by P.

For A ∈ P, introduce the oscillatory integral

(2.3.2) Iεk(A) (t, x) :=
∑
n

(|n|/2πε)d
∫
ei nΦk(t,x,y,ξ)/ε an(t, y) dy dξ ,

with

(2.3.3) Φk(t, x, y, ξ) := t λk(ξ) + (x− y) · ξ + ψ(y) .
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A crucial point in this work is to study the asymptotic behaviour of such in-
tegrals, in Lq spaces. The boundedness in L2 is clear, as well as the blow up in
L∞ near caustics. The question is to determine the set of q such that Iεk(A) is
bounded in Lq. The analysis reveals a critical exponent, which surprisingly does
not depend on the full complexity of the caustic but only on the multiplicity µk.

Definition 2.3.2. The multiplicity of Sk at a point (t, y) is the algebraic
multiplicity of 1/t as an eigenvalue of g′k(y). We denote it by µk(t, y).

The geometric multiplicity, that is the dimension of ker(Id−tg′k(y)), is denoted
by νk(y).

Assumption 2.3.3. There is an open subset ω0 ⊂ ω such that ω\ω0 has
Lebesgue measure equal to 0 and for all k and all (t, y) ∈ Sk with y ∈ ω0, one has

i) µk and νk are constant on a neighborhood of (t, y) in Sk,

ii) either νk = 1 or νk = µk.

The assumption is satisfied for the wave equation or Maxwell equation when ψ is
real analytic. It implies that on a neighborhood of (t, y) ∈ Sk with y ∈ ω0, Sk is
a smooth manifold of codimension one.

Definition 2.3.4. For q ∈ [2,+∞], S−k (q) denotes the set of points (t, y) ∈ Sk
such that y ∈ ω0 and µk(t, y) < 2/(q − 2). The remaining set is denoted by
S+
k (q) := Sk\S−k (q).

Theorem 2.3.5. Suppose that Assumptions 2.2.2 and 2.3.3 hold. Let q ≥ 2,
and A ∈ P. Suppose that the coefficients an vanish on a neighborhood of the
points (t, y) ∈ S+

k (q). Then,

(2.3.4) sup
ε∈]0,1]

‖ Iεk(A) ‖Lq(R1+d) < +∞ .

Remark 2.3.6. The limit µk < 2/(q − 2) is sharp. If y ∈ ω0 and A does not
vanish at a point (t, y) ∈ S+

k where µk ≥ 2/(q − 2), then Iεk(A) is not bounded in
Lq (see §3).

2.4. Oscillations and profiles

When (t, x) /∈ Ck or when the coefficients an vanish on a neighborhood of Sk, the
relevant stationnary points with respect to (y, ξ) of the phase Φk, are nondegen-
erate. Therefore, the standard stationnary phase expansion implies that

(2.4.1) Iεk(A) = Jεk(A) + O(ε)
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where

(2.4.2) Jεk(A) (t, x) :=
∑

{y | qk(t,y)=x}

1
∆k(t, y)

(∑
n>0

imk(t,y) an(t, y) ei nψ(y)/ε

+
∑
n<0

i−mk(t,y) an(t, y) ei nψ(y)/ε
)

=
∑

{y | qk(t,y)=x}

1
∆k(t, y)

(
Hmk(t,y)A

)
(t, y, ψ(y)/ε) ,

with

(2.4.3) ∆k(t, y) := | det dy qk(t, y) |1/2

(2.4.4) mk(t, y) :=
1
2

sign ∂2
(y,ξ)Φk(t, x, y, dψ(y)) , with qk(t, y) = x

and H is the Hilbert transform acting on Fourier series by

(2.4.5) H
(∑
n 6=0

an e
inθ
)

:=
∑
n 6=0

isignn an e
inθ .

In (2.4.4), sign A denotes the signature of the symmetric matrix A. Remark that
∆k(t, y) 6= 0 for (t, y) /∈ Sk and that mk(t, y) is locally constant on G\Sk.

Suppose that Ω is a regular open set. The matrix ∂2
(y,ξ)Φk(t, x, y, dψ(y)) is

nondegenerate for (t, y) /∈ Sk and x = qk(t, y). Since Ω is connected, the signature
mk(t, y) is constant on each component Gk,j of −1

k (Ω). Call mk,j its value. Then,
using the notations (2.2.8) and (2.2.9), one has on Ω

(2.4.6) Jεk(A)(t, x) =
`k∑
j=1

Ak,j (t, x, ϕk,j(t, x)/ε)

with

(2.4.7) Ak,j(t, x, θ) := ∆k(t, ρk,j(t, x))−1 (Hmk,jA) (t, ρk,j(t, x), θ) .

This formula links the profile A on the Lagrangian and the profile A on the base.
Note that ∆k vanishes exactly to order µk/2 on Sk. Using the nonresonance
Assumption, the Lq norm of Jεk(A) is asymptotically estimated to be the Lq norm
of the profiles Ak,j . Since k is a diffeomorphism from Gk,j to Ω whose Jacobian
is ∆2, the Lp norm of Ak,j is equal to a weighted Lq norm of A on Gk,j ×T. This
suggests the following definition.
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Definition 2.4.1. For q ∈]1,+∞[ and T > 0, Lqk([0, T ] × ω × T) denotes
the space of Lq integrable functions on [0, T [×ω × T with respect to the measure
∆k(t, y)2−q dt dy dθ.

For 0 < s < 1, Ls,qk ([0, T ]×ω×T) denotes the space of functions U ∈ Lqk([0, T ]×
ω × T) such that

∫ 1

0

∫
[0,T ]×ω×T

∆k(t, y)2−q
∣∣∣ Uk(t, y, θ + h) − Uk(t, y, θ)

hs

∣∣∣qdt dy dθ dh
h

< +∞

The definition trivially extends to T = +∞. For a trigonometric polynomial,
belonging to Lqk requires no condition on S−k (q) but some vanishing on S+

k (q). Ls,qk
is the space of Lq integrable functions on [0,+∞[×ω with respect to the measure
∆k(t, y)2−qdt dy with values in the Sobolev space W s,q(T). Recall that

‖w‖qW s,q(T) = ‖w‖qLq(T) +
∫ 1

0

∫
T

∣∣∣ w(θ + h) − w(θ)
hs

∣∣∣qdθ dh
h
.

When q = 2, note that L2
k([0, T ]× ω × T) = L2([0, T ]× ω × T).

Proposition 2.4.2. i) For all q ∈]1,+∞[, there is a constant C > 0 such that
for all trigonometric polynomials A which vanish on a neighborhood of Sk and all
T ≥ 0,

(2.4.8)

1
C
‖A‖Lq

k
([0,T ]×ω×T) ≤ lim inf

ε→0
‖ Jεk(A) ‖Lq([0,T ]×Rd)

≤ lim sup
ε→0

‖ Jεk(A) ‖Lq([0,T ]×Rd) ≤ C ‖A‖Lq
k
([0,T ]×ω×T).

ii) For 1/q < s < 1 and each ε ∈]0, 1], Jεk extends to a bounded linear operator
from Ls,qk to Lq([0,+∞[×Rd) and

(2.4.9) sup
ε∈]0,1]

‖ Jεk(A) ‖Lq([0,T ]×Rd) ≤ C ‖A‖Ls,q
k

([0,T ]×ω×T) .

Our method is by duality and requires nonsmooth profiles. Estimate (2.4.8) im-
plies that Jεk can be extended asymptotically as a map from Lqk to
Lq([0,+∞[×Rd), so that the substitution θ = ψ(y) in A(t, y, θ), which has no
direct meaning for A ∈ Lqk, makes sense asymptotically. More precisely, one has
the following result.
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Proposition 2.4.3. For all T ∈]0,+∞] and for all U ∈ Lqk([0, T ] × ω × T)
there exists a bounded family uε in Lq([0, T [×Rd) such that for all δ > 0, there
are εδ > 0 and a trigonometric polynomial Uδ which vanishes near Sk, such that

(2.4.10) ‖U − Uδ ‖Lq
k
([0, T ]× ω × T) ≤ δ ,

(2.4.11) ∀ε ∈]0, εδ] , ‖uε − Jεk(Uδ) ‖Lq([0,T [×Rd) ≤ δ .

When uε satisfies (2.4.10) (2.4.11), we write uε ∼ J̃εk(U) in Lq([0, T ]×Rd). If uε ∼
J̃εk(U) and vε ∼ J̃εk(U) in Lq, then uε−vε converges strongly to 0 in Lq([0, T [×Rd).
More generally, we write uε ∼ vε in Lq, when uε and vε are bounded families in
Lq([0, T [×Rd) such that uε − vε converges strongly to 0 in Lq([0, T [×Rd).

The notations are consistent : when U ∈ Ls,qk ([0, T ]×ω×T) and s > 1/q, Jεk(U)
is defined for each ε, and

(2.4.12) Jεk(U) ∼ J̃εk(U) in Lq([0, T [×Rd)

in the sense defined above.
There is a similar treatment for functions on Rd, i.e. for initial data. Given

U0 ∈ L2(ω × T), one defines bounded families in L2(Rd), denoted uε0 ∼ J̃ε0 (U0),
and such that

(2.4.13) Jε0 (U0) (y) := U0(y, ψ(y)/ε) ,

when U0 is smooth, or more generally whenever the substitution θ = ψ(y) makes
sense, for example when U0 ∈ L2(ω × T) and ∂θU0 ∈ L2(ω × T).

2.5. Sketch of the main results

Consider Cauchy data such that

(2.5.1) uε0 ∼ u0 + J̃ε0 (U0) in L2 ,

where u0 ∈ L2(Rd), U0 ∈ L2(ω×T) and the mean value
∫
T U0(y, θ) dθ vanishes for

(almost) all y ∈ ω.
The family uε0 is bounded in L2(Rd), and therefore, there is a unique bounded

family uε in C0([0,+∞[;L2(Rd)) ∩ Lp+1([0,+∞[×Rd), such that uε satisfies
(2.1.1) with the initial condition

(2.5.2) uε|t=0 = uε0 .

An abbreviated version of the main result is the following. We suppose that the
various assumptions in §§2.1, 2.2 and 2.3 are satisfied.
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Theorem 2.5.1. There are unique Uk ∈ Lp+1
k ∩ C0([0,+∞[;L2(ω × T)) and

u ∈ C0([0,+∞[;L2(Rd)) ∩ Lp+1([0,+∞[×Rd), such that for all T < +∞,

(2.5.3) uε ∼ u +
k0∑
k=1

J̃εk(Uk) in Lp+1([0, T ]× Rd) .

When ∂θU0 ∈ L2(ω × T), the profiles Uk belong to Ls,p+1
k for all s < 2/(p+ 1)

and one has the stronger result

(2.5.4) uε ∼ u +
k0∑
k=1

Jεk(Uk) in Lp+1([0, T [×Rd) .

The first step is to introduce the weak limits u in Lp+1 and f in L1+1/p of uε

and fε := f(uε), extracting subsequences if necessary. Extracting further subse-
quences, we introduce profiles Uk and Fk such that for all A ∈ P which vanish on
a neighborhood of Sk

(2.5.5)
∫
uε Jεk(A) dt dx −→

∫
UkA dt dx dθ ,

(2.5.6)
∫
fε Jεk(A) dt dx −→

∫
FkA dt dx dθ .

The convergence (2.5.5) (resp. (2.5.6)) holds for A ∈ L1+1/p
k (resp. A ∈ Lp+1

k ).
Alternatively one can replace Jεk by Iεk in (2.5.5), (2.5.6) to find

(2.5.7)
∫
fε Iεk(A) dt dx −→

∫
FkA dt dx dθ .

It is crucial to observe that (2.5.7) holds for A ∈ P which vanishes on a neigh-
borhood of supercritical points S+

k (p + 1). This is true because fε is bounded in
L1+1/p and Iεk(A) is bounded in Lp+1 for such A, thanks to Theorem 2.3.5.

Proposition 2.5.2. The profiles Uk ∈ Lp+1
k satisfy the polarization condition

(2.5.8) Pk Uk = Uk .

Moreover, Fk ∈ L1+1/p
k and Uk satisfies on G\S+

k (p+ 1)× T

(2.5.9) ∂tUk + Pk Fk = 0 , Uk|t=0 = PkU0 .

The weak limits satisfy u ∈ Lp+1([0,+∞[×Rd), f ∈ L1+1/p([0,+∞[×Rd) and

(2.5.10) Lu + f = 0 on [0,+∞[×Rd , u|t=0 = u0 .
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In (2.5.8) (2.5.9) Pk(y) denotes the spectral projector of A(dψ(y)) corresponding
to the eigenvalue λk(dψ(y)). Formula (2.5.9) follows from (2.5.7) and the known
asymptotic behavior of L(Iεk(A)) (§6). It holds outside S+

k (p + 1) because test
profiles in (2.5.7) are required to vanish on S+

k (p+ 1).

The proof of (2.5.3) uses the energy identity

(2.5.11)
‖uε(t)− vε(t) ‖2L2 − 2 Re

∫
[0,t]×Rd

L(vε − uε) · (vε − uε) =

‖uε(0)− vε(0) ‖2L2 .

This implies

(2.5.12)
‖uε(t)− vε(t) ‖2L2 + c ‖uε − vε ‖1+p

L1+p([0,t]×Rd)
≤

‖uε(0)− vε(0) ‖2L2 + 2 Re
∫

[0,t]×Rd
(Lvε + f(vε)) · (vε − uε) dt dx .

We chose vε ∼ u +
∑
J̃εk(Uk). Note that the profiles are not yet known to be

smooth and we need here the extended definition J̃ . An important step is to
show, using Proposition 2.5.2, that one can also choose vε so that

(2.5.13) Lvε ∼ f +
∑

J̃εk(PkFk) in L1+1/p

The next important step is to analyse f(vε). For vε ∼ u+
∑
J̃εk(Uk), one has

(2.5.14) f(vε) ∼ E(v,U∗) +
∑
k

J̃εk(PkEk(v,U∗)) + hε ,

where U∗ := (U1, . . . ,Uk0), E and Ek are nonlinear operators acting from Lp+1 ×∏
Lp+1
l into L1+1/p and L1+1/p

k respectively. The family hε is bounded in L1+1/p

and has no oscillations in the characteristic variety of L. This follows from the non
resonance Assumption 2.2.5. Since L(uε − vε) is bounded in L1+1/p by (2.5.13),
Proposition 5.2.2 and Corollary 5.2.4 show that

lim
ε=0

∫
hε(uε − vε) = 0

The weak limit and the profiles of uε − vε vanish. This implies that

(2.5.15)
∫

[0,t]×Rd

(
f + E(u,U∗) +

∑
J̃εk
(
Pk(Fk + Ek(u,U∗)

))
· (vε−uε) dt dx

−→ 0 .

Thus the right hand side of (2.5.12) tends to zero and uε−vε tends to zero strongly
in L1+p ending the proof of (2.5.3).
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The strong convergence implies that f(uε) ∼ f(vε) in L1+1/p. Therefore (2.5.13)
yields

(2.5.16) f = E(u,U∗) , PkFk = Pk Ek(u,U∗) .

With Proposition 2.5.2, we obtain the following equations for the profiles

(2.5.17)

Lu + E(u,U∗) = 0 ,
Pk Uk = Uk,
∂tUk + Pk Ek(u,U∗) = 0 on G\S+

k (p+ 1)× T .

The initial conditions are

(2.5.18) u|t=0 = u0 , Uk|t=0 = Pk U0 .

Knowing that U∗ satisfies the profile equations (2.5.17) (2.5.18), one shows that
Uk ∈ Ls,p+1

k for all s < 2/(p + 1) when ∂θU0 ∈ L2. Thus the Jεk(Uk) are defined
for each ε, and (2.4.12) implies the stronger form (2.5.4) of the asymptotics.

Note that Ek(u,U∗) belongs to L1+1/p
k . Near supercritical points, L1+1/p

k is not

included in L1
loc, since this would imply that L∞ ⊂ L1+p

k near S+
k (1 + p) which

is impossible from Definition 2.4.1. Thus the meaning of the third equation in
(2.5.17) is not clear near S+

k (p + 1). However, the third equation does determine
Uk because near supercritical points, strong dissipation intervenes, and there, the
absorption phenomenon occurs. This suggests the following terminilogy.

Definition 2.5.3. For y ∈ ω, the k-time of absorption along the ray issued
from y is the smallest value of t > 0 such that (t, y) ∈ S+

k (p+ 1) the set of p+ 1-
supercritical point in Sk, i.e. satisfying µk(t, y) ≥ 2/(p − 1). It is denoted by
T absk (y).

1
Tabs
k

(y)
is the largest positive eigenvalue of g′k(y) of multiplicity larger than or

equal to 2
p−1 . T absk (y) is infinite if there is no such eigenvalue.

Introduce

(2.5.19)

G−k := {(t, y) ∈]0,+∞[×ω0 | t < T absk (y) }

G+
k := {(t, y) ∈]0,+∞[×ω0 | t > T absk (y) }

T absk is C∞ on ω0 where the eigenvalues of g′k(y) are smooth. Thus G−k is open.
Moreover, G\S+

k (p+ 1) is the union of G−k , G+
k and a negligible set.

Theorem 2.5.4. With notations as in Theorem 2.5.1, the profiles Uk vanish on
G+
k ×T, and the third equation in (2.5.17) holds in L1

loc on the domains G−k ×T.
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2.6. Remarks and Examples

1) Note that g′k(y) = λ′′k(dψ(y))ψ′′(y). Since λ′k is homogeneous of degree 0, λ′′k(ξ)
has always a nontrivial kernel which contains ξ. Thus 0 is always an eigenvalue of
g′k(y). As a consequence, the multiplicities µk satisfies

(2.6.1) ∀k ∈ {1, . . . , k0} ,∀(t, y) ∈ Sk , 1 ≤ µk(t, y) ≤ d− 1 .

In particular, in space dimension d = 2, the only possibility is µk = 1 and As-
sumption 2.3.3 is always satisfied.

2) The Lagrangian Λk associated to the eiconal equation (2.2.2) is the set of
(t, x, τ, ξ) such that

(2.6.2) x = qk(t, y) , ξ = dψ(y) , τ = λk(dψ(y)) .

It is also associated to the defining phase function

(2.6.3) Φk(t, x, y, ξ) := t λk(ξ) + (x− y) · ξ + ψ(y) .

Sk corresponds to the set of points in Λk where the projection π : (t, x, τ, ξ) →
(t, x) restricted to Λk, is not of maximal rank d+ 1. The multiplicity µk is equal
to the order of vanishing of det d(π|Λk). It is larger than or equal to the dimension
of the kernel of d(π|Λk). For the wave equation, these two numbers are equal, see
§3.5.

3) If p ≥ 3, all points in Sk are supercritical, since then 2/(p− 1) ≤ 1 ≤ µk(t, y).
Thus T absk (y) is the first time of focusing along the ray.

In the extreme opposite case, all points in Sk are subcritical when p < 1 + 2
d−1 ,

since then 2
p−1 > d− 1 ≥ µk(t, y), see (2.6.1). In this case T absk is infinite.

4) For radial focusing in a wave equation, λ(ξ) := |ξ| and ψ(y) := χ(|y|). Then,
g′ has only one positive eigenvalue equal to 1/|y|, of multiplicity d − 1. Thus
absorption occurs if and only if p ≥ 1 + 2/(d − 1). The if part was proved in
[JMR 2].

5) In many examples, µk(t, y) = 1 for all points (t, y) ∈ Sk. Then Assumption
2.3.3 is satisfied. This happens when all the rays meet the caustic at generic points
(folds) (see Remark 3.5.2). It also occurs when π|Λk has a cusp. In these two cases
The critical exponent is p = 3. If p < 3, T absk (y) is infinite. Conversely if p ≥ 3,
absorption occurs at the first crossing of caustics. Examples in space dimension 2
for the wave equation are the familiar phases

(2.6.4) ψ1(y1, y2) = y2 + y2
1 , ψ2(y1, y2) = a1y

2
1 + a2y

2
2 with 0 < a1 < a2 .
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For ψ1 the caustic set is the manifold C with equation x2
1 = (t2/3 − 1)3, which has

a cusp singularity at x1 = 0, t = 1, corresponding to the rays from y1 = 0.

6) Again for the wave equation, λk(ξ) = |ξ|, in Rd consider

(2.6.5) ψ3(y) := yd + (y2
1 + · · · + y2

d−1)/2 =: yd + |y′|2/2.

For y′ 6= 0, there are two distinct positive eigenvalues : 1/δ of multiplicity d − 2
and 1/δ3 of multiplicity 1, where δ2 := 1 + |y′|2. For y′ = 0, these eigenvalues are
equal. Therefore, (t = 1, y′ = 0) is a crossing point for two different eigenvalues,
but it is the only point where multiplicities are not locally constant. Nevertheless
Assumptions 2.2.2 and 2.3.3 are still satisfied.

There are two focusing times, δ and δ3. Accordingly, the caustic set has two
components. The first one is the plane C1 = {x′ = 0}. The second is the manifold
C2 with equation x′2 = (t2/3 − 1)3, which has a singular locus at x′ = 0, t = 1,
corresponding to the rays from y′ = 0. Since δ < δ3, the rays cross C1 before C2.

If p ≥ 1 + 2/(d − 2), then C1 is supercritical. Oscillations are absorbed at C1
and never reach C2. If p < 1 + 2/(d − 2), then both C1 and C2 are subcritical.
Oscillations cross C1 and C2.

3. Lp estimates for oscillatory integrals

The aim of this section is to provide uniform Lq estimates for oscillatory integrals
including Iε(A). Because the question is interesting in its own, we consider more
general classes of oscillatory integrals. At the end of this section the results are ap-
plied to the context developped in §2. The estimates are proved under assumptions
which are satisfied for generic caustics, cusps, and spherical focusing.

3.1 Statement of the main estimate

Consider integrals of the form

(3.1.1) uε(z) := ε−n/2
∫
Rn
eiΦ(z,α)/ε a(z, α, ε) dα , z ∈ Rm,

where Φ and a are C∞ functions on Rm × Rn and Rm × Rn × [0, 1] respectively.
Φ is real valued and a is compactly supported. Our goal is to obtain bounds for
the Lq-norm of uε.

Results in this direction can be found in [R 1], [R 2] and [Sv]. Typically, they
concern phases of the form Φ(z, α) = z ·α−h(α) with h real analytic and convex,
or n = m = 1 and h′′ vanishes at finite order at isolated points. For example, it is
proved in [R 2] that, for amplitudes with small support,

(3.1.2) sup
ε∈]0,1]

|uε(z))| ≤ C |deth′′(α(z)|−1/2
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where, α(z) is the unique critical point of α 7→ Φ(z, α). Note that the stationary
phase theorem implies that a control of uε by |deth′′|−1/2 is the best estimate
that one can expect. However, an estimate like (3.1.2) is certainly not true in
general. In the simplest case where n = m = 1 and Φ = zα − α3 which leads to
Airy integrals, there is no critical point in the shadow region z < 0 but uε is not
uniformly bounded in this region. We refer to [R 1] for a substitute of (3.1.2) for
phases of the form zα− αk which lead to regular caustics.

The convexity assumptions are not always satisfied. For example, a typical
phase for which the caustic set is a cusp, is Φ(z1, z2, α) = z1α + z2α

2 + α4. For
the phases (2.3.3), there is no substitute in general for the convexity assumptions.
We are not able to prove estimates like (3.1.2), but we have a reasonable answer
to the question of determining the supremum of the real numbers q such that the
family uε is bounded in Lq.

Patching local estimates with a partition of unity, it is sufficient to assume
that the amplitude a in (3.1.1) is supported in a small neighborhood of a point
ρ := (z, α). Because uε = O(ε∞) when the phase has no stationary points in a
neighborhood of the support of a, and uε = O(1) for a nondegenerate stationary
point, we study the remaining case where ρ is a degenerate stationary point, i.e.

(3.1.3) dαΦ(ρ) = 0 , D(ρ) = 0

where D := det Φ′′αα is the determinant of the Hessian matrix

(3.1.4) Φ′′αα(z, α) :=
( ∂2Φ
∂αj ∂αk

(z, α)
)

1≤j, k≤n
.

The behavior of uε depends on the structure of the set of degenerate stationary
points. We consider simple cases of degeneracy, which naturally occur in the
study of integrals Iε(A), see §3.5. Our first assumption is that the phase Φ is
nondegenerate (see e.g. [Hö 1]), which means that Φ′α is of maximal rank at ρ:

(3.1.5) rank
(
d(z,α) Φ′α(z, α)

)
= n .

Then, near ρ, the set of stationary points

(3.1.6) CΦ := {(z, α) ; Φ′α(z, α) = 0 }

is a smooth manifold of dimension m. The set of degenerate stationary points is

(3.1.7) SΦ := {(z, α) ∈ CΦ ; D(z, α) = 0 } .

First we give a necessary condition for the family uε to be bounded in Lq.

Theorem 3.1.1. There is a neighborhood ω of ρ such that if q > 2 and
a ∈ C∞0 (ω × [0, 1]) are such that the family (3.1.1) is bounded in Lq, then the
restriction of |D|1−q/2(ρ) |a(ρ, 0)|q to CΦ is integrable.
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Next we turn to sufficient conditions. Sharper results are obtained if one uses
the Lorentz spaces. Recall that a measurable function u belongs to the weak-Lp

space if

‖u‖p,∞ := (sup
s>0

sp meas{x, |u(x)| > s})1/p < +∞,

and that locally Lqloc ⊂ L
p,∞
loc for every q ≥ p.

Denote by D∗ the restriction of D to CΦ.

Theorem 3.1.2. Suppose that there exist a neighborhood O of z and an integer
` such that for almost all z ∈ O the number of critical points (z, α) ∈ CΦ is not
larger than `. Suppose in addition that the dimension of ker Φ′′αα(ρ) is equal to 1.

If r > 0 is such that D−r∗ ∈ L1,∞ [ resp. L1 ] on a neighborhood of ρ in CΦ,
then there exists a neighborhood ω of ρ such that for all a ∈ C∞0 (ω × [0, 1]) the

family uε is bounded in L2+2r,∞ [ resp. L2+2r ].

When the phase Φ is real analytic, the first assumption in Theorem 3.1.2 is
automatically satisfied. Thus when the dimension of ker Φ′′αα(ρ) is equal to one
and Φ is real analytic, Theorems 3.1.1 and 3.1.2 give a a complete answer to our
question.

When the dimension of ker Φ′′αα(ρ) is larger than one, our results are much less
complete. The following theorem covers the important case of radial focusing in
Rd, d ≥ 3.

Theorem 3.1.3. Suppose that SΦ is a smooth submanifold of codimension one
in CΦ, the dimension ν of ker Φ′′αα(ρ) is constant and ≥ 2 for ρ in a neighborhood
of ρ in SΦ and D∗ vanishes exactly to order µ = ν on SΦ. Then there exists a
neighborhood ω of ρ such that for all a ∈ C∞0 (ω× [0, 1]) the family uε is bounded

in L2+2/µ,∞.

Remark 3.1.4. When SΦ is a smooth submanifod of codimension one in CΦ

and D∗ vanishes exactly to order µ on SΦ, then D−2/µ
∗ ∈ L1,∞. Thus either when

the dimension of ker Φ′′αα(ρ) is equal to 1 and the number of critical points is
bounded, or when this dimension is localy constant and equal to µ, the family uε

is bounded in L2+2/µ,∞, provided that a is supported in a small neighborhood of
ρ. In particular uε is bounded in Lq for all q < 2 + 2/µ. The index qc = 2 + 2/µ
is sharp, since Theorem 3.1.1 implies that whem a(ρ, 0) 6= 0, the family uε is not
bounded in Lq for q ≥ 2 + 2/µ.

Remark 3.1.5. The assumptions are invariant under change to equivalent
phase functions. They have the following intrinsic formulation. Consider

(3.1.8) Λ := ι(CΦ ∩ ω) ⊂ T ∗Rm , where ι : (z, α)→ (z,Φ′z(z, α))
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an ω is a neighborhood of ρ. If ω is small enough, then the equation (3.1.5) implies
that Λ is a smooth Lagrangian manifold and that ι is a local diffeomorphism from
CΦ ∩ ω to Λ. Let π denote the restriction to Λ of the projection (z, ζ) → z. The
kernel of π′ at (z, ζ) = ι(ρ) is exactly the image by ι′(ρ) of the space {0}×ker Φ′′αα
which is tangent to CΦ at ρ. In particular,

(3.1.9)

{
ι(SΦ) = S := {(z, ζ) ; rankπ′(z, ζ) < m } ,

dim kerπ′(z, ζ) = dim ker Φ′′αα(ρ) , for (z, ζ) = ι(ρ) ∈ S .

Therefore, the assumptions in Theorem 3.1.2 are : 1) for almost all z in a neigh-
borhood of z the number of preimages of x by π in Λ is less than or equal to `,
2) kerπ′(z, ζ) has dimension 1.

Similarly, the assumptions in Theorem 3.1.3 are 1) S is a smooth submanifold
of codimension 1 in Λ, 2) kerπ′(z, ζ) has constant dimension ν for (z, ζ) in a
neighborhood of (z, ζ) in S, 3) detπ′ vanishes exactly to order ν on S.

This shows that the assumptions are invariant under change of phase functions
which define the same germ of Lagrangian Λ.

3.2. Proof of Theorem 3.1.1

Using the Theorem of equivalence of phase functions (see [Hö 1] [Du]), shrinking
neighborhoods and multiplying uε by ei ϕ(z)/ε if necessary, we can assume that
m = n and on a neighborhood ω = Ω× U of ρ = (z, ζ), Φ is of the form

(3.2.1) Φ(z, α) = x · α − h(α) .

where h is C∞ on a neighborhood of U . In this case, CΦ = {(z, α) ∈ Ω× U | z =
h′(α)}, and D∗(α) = deth′′(α). Consider a ∈ C∞0 (ω × [0, 1]).

For f ∈ C∞0 (Ω), one has

(3.2.2)
∫
f(z) |uε(z)|2 dz =

∫
F ε(η, α, α+ εη) ei (h(α)−h(α+εη))/ε dξ dη ,

where

(3.2.3) F ε(η, α, α′) :=
∫
ei zηf(z) a(z, α, ε) a(z, α′, ε) dz = O((1 + |η|)−∞) .

The estimate is uniform, and Lebesgues’ dominated convergence theorem implies
that

(3.2.4)
∫
f(z) |uε(z)|2 dx → (2π)d

∫
f(h′(α)) |a(h′(α), α, 0)|2 dα ,

as ε→ 0. Therefore, if the family uε is bounded in Lq, there is a constant C such
that for all f ∈ C∞0 (Ω),

(3.2.5)
∣∣∣ ∫ f(h′(ξ)) |a(h′(ξ), ξ)|2 dξ

∣∣∣ ≤ C ‖ f ‖Lr(Ω) , r := q/(q − 2) .
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Introduce the measure λ on Ω which is the image of |a(h′(α), α, 0)|2 dα by h′. The
left hand side of (3.2.5) is equal to

∣∣ ∫ f(z)λ(dz)
∣∣. Thus (3.2.5) implies that

(3.2.6) λ = `(x) dx , where ` ∈ Lr′(Ω) , r′ = q/2 .

Introduce S = {α ∈ U : D∗(α) = 0}, where D∗ := deth′′. Introduce next
C = h′(S1) ∩ Ω1. For all z ∈ Ω\C, the set of α ∈ U such that h′(α) = z is finite
and there is a neighborhood G of z such that h′−1(G) is the union of finitely many
pairwise disjoint open sets Vj , such that h′ is a diffeomorphism from Vj onto G.
This implies that on Ω\C

(3.2.7) `(z) =
∑

α∈h′−1({z})

|a(z, α)|2
|D∗(α)| ≥ 0 .

Sard’s theorem implies that the Lebesgue measure of C is equal to 0. Therefore
the density ` is completely determined by (3.2.7). Since ` ∈ Lr′ , one has

(3.2.8)

∫
`(z)r

′
dz =

∫
`(z)r

′−1 λ(dz)

=
∫
`(h′(α))r

′−1 |a(h′(α), α, 0)|2 dα < +∞ .

For α /∈ h′−1(C), (3.2.7) shows that

(3.2.9) `(h′(α))r
′−1 |a(h′(α), α, 0)|2 ≥ |D∗(α)|1−q/2 |a(h′(α), α, 0)|q .

In addition, (3.2.6) implies that λ(C) = 0, hence h′−1(C) is a null set for the
measure |a(h′(α), α, 0)|2 dα. Therefore (3.2.8) and (3.2.9) imply that

(3.2.10)
∫
|D∗(α)|1−q/2 |a(h′(α), α, 0)|q dα < +∞ ,

which finishes the proof of Theorem 3.1.1.

3.3 Proof of Theorem 3.1.2

1. By a linear change of variables, one can split the variables α into (α′, α′′) ∈
R × Rn−1, so that Φ′′α′,α′(ρ) = 0 and Φ′′α′′α′′(ρ) is invertible. Thus, near ρ, the
phase α′′ → Φ(z, α′, α′′) has a unique critical point, α′′(z, α′) which is nondegen-
erate. Therefore, if a is supported in a sufficiently small neighborhood of ρ, the
stationnary phase theorem implies that

(3.3.1) ε−(n−1)/2

∫
Rn−1

eiΦ(z,α′,α′′)/ε a(z, α′, α′′, ε) dα′′ = b(z, α′, ε) eiΨ(x,α′)/ε ,

where b is C∞ on U ′ × [0, 1] and Ψ(z, α′) := Φ(z, α′, α′′(z, α′)). Thus

(3.3.2) uε(z) = ε−ν/2
∫
Rν
eiΨ(z,α′)/ε b(z, α′, ε) dα′ .

Since Ψ and Φ define the same germ of Lagrangian manifold, Ψ satisfies the same
assumptions as Φ. Therefore, it is sufficient to prove Theorem 3.1.2 when n = 1
which we assume from now on.
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2. The phase Φ is nondegenerate and ρ ∈ SΦ. Therefore, there are coordinates
z = (t, y) ∈ Rm−1 × R such that ∂2

y αΦ(ρ) 6= 0. Using the Theorem of equivalence
of phase functions (see [Hö 1] [Hö 2] [Du]) with t as parameters reduces to the case
where

(3.3.3) Φ(z, α) := y α − h(t, α) , z = (t, y) ∈ Rd−1 × R .
From now on, we assume that Φ is given by (3.3.3) on ω = Ω×I where Ω = Ωt×Ωy
is a relatively compact neighborhood of z = (t, y), I is an open interval which
contains α, h is C∞ on Ωt×I and h′α(Ωt×I) ⊂ Ωy. In this case, CΦ is parametrized
by y = h′α(t, α) with (t, α) as parameters. Taking (t, α) as coordinates on CΦ, one
has D∗(t, α) = h′′α,α(t, α). Sϕ is the set of (t, α) such that D∗(t, α) = 0.

Lemma 3.3.1. There is a negligible set N ⊂ Ω such that for all x ∈ Ω\N , the
equation Φ′α(z, α) = λ has at most ` solutions α in I for almost all λ ∈ R.

Proof. Shrinking neighborhoods if necessary, the assumptions in Theorem 3.1.2
imply that there is a negligible set N ′ ⊂ O such that for all z ∈ O\N ′, the
equation Φ′α(z, α) = y − h′α(t, α) = 0 has at most ` roots in I. Therefore, there
is a negligible set Nt ⊂ Ωt such that for all t ∈ Ωt\Nt, the set {y : (t, y) ∈ N ′} is
negligible, implying that for almost all y ∈ Oy, the equation h′α(t, α) = y has at
most ` roots in I. Since h′α(Ot × I) ⊂ Ωy, the lemma follows with N = Nt × Ωy.

From now on, we fix a ∈ C∞0 (O × I × [0, 1]).

3. Consider δ > 0 and z ∈ Ω\N . Introduce

I(z, δ) := {α ∈ I : |Φ′α(z, α)| > δ } , J (z, δ) := {α ∈ I : |Φ′α(z, α)| < 2δ } .
Fix χ ∈ C∞(R) such that χ(λ) = 0 for |λ| ≤ 1 and χ(λ) = 1 for |λ| ≥ 2. In the
integral (3.1.1), use the partition of unity 1 = χ(Φ′α/δ)+(1−χ(Φ′α/δ)). This splits
uε into into two pieces. The second integral is carried by J (z, δ) and is estimated
by

(3.3.4) ‖ a ‖L∞ measJ (z, δ)/
√
ε .

In the first integral, one integrates by parts to find

i
√
ε

∫
eiΦ/ε ∂α(aχ(Φ′α/δ)/Φ

′
α) dα

= i
√
ε

∫
eiΦ/ε a ∂α(χ(Φ′α/δ)/Φ

′
α) dα +O(

√
ε ‖ ∂α a ‖L∞ /δ) .

Note that ∂α
(
χ(Φ′α/δ)/Φ

′
α

)
= O(|Φ′′α,α|/(Φ′α)2) is supported in I(z, δ). Therefore,

the first term is estimated by

(3.3.5) C
√
ε

∫
I(z,δ)

|Φ′′α,α|
|Φ′α|2

dα + C
√
ε/δ

Next, we apply to the function 1/Φ′α the following lemma.
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Lemma 3.3.2. Suppose that f is a bounded and C1 function from and open
set O ⊂ R to R. Suppose for almost all λ ∈ R the equation f(α) = λ has at most
` solutions. Then

(3.3.6)
∫
O

| f ′(α) | dα ≤ 2 ` ‖ f ‖L∞(O) .

In fact, (3.3.6) follows from the more precise following result. Consider a C1

function f from the open set O ⊂ Rd into Rd. Suppose that, for almost all λ ∈ Rd,
the number `(λ) of points α ∈ O such that f(α) = λ is finite. Then

(3.3.7)
∫
O

| det f ′(α) | dα =
∫
f(O)

`(λ) dλ ,

This proof is by a combination of Sard’s Theorem for eliminating the critical values
and the theorem of change of variables near regular points. (See e.g. [E G]).

Thanks to Lemma 3.3.1, for z ∈ Ω\N one can apply Lemma 3.3.2 to the function
α 7→ 1/Φ′α to find the estimate∫

I(z,δ)

|Φ′′α,α|
|Φ′α|2

dα ≤ C/δ .

With (3.3.4) et (3.3.5), we have proved that there is a constant C such that for all
ε ∈]0, 1], all δ > 0 and all z ∈ Ω\N

(3.3.8) |uε(z) | ≤ C
(√ε
δ

+
measJ (z, δ)√

ε

)
.

4. Next we apply Lemma 3.3.2 to the function α 7→ Φ′α(z, α) when z /∈ N . This
shows that ∫

J (z,δ)

|Φ′′α,α(z, α)| dα ≤ 2 ` δ .

Therefore

(3.3.9)
meas

(
{α ∈J (z, δ) : |Φ′′α,α(z, α)| ≥ δ2/ε}

)
≤ ε/δ2

∫
J (z,δ)

|Φ′′α,α(z, α)| dα ≤ 2`ε/δ .

Introduce

(3.3.10) K(z, δ, ε) := {α ∈ I : |Φ′α(z, α)| ≤ 2δ and |Φ′′α,α(z, α)| ≤ δ2/ε } .
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Then, (3.3.8) and (3.3.9) imply that there is a constant C1 such that for all ε ∈]0, 1],
all δ > 0 and all z ∈ Ω\N

(3.3.11) |uε(x) | ≤ C1

(√ε
δ

+
measK(x, δ, ε)√

ε

)
.

5. For s > 0 and ε ∈]0, 1], introduce

(3.3.12) A(s, ε) := {z ∈ O : |uε(x) | ≥ 2C1s}
Our goal is to estimate the measure of A(s, ε). We apply (3.3.11) with δ = δs :=√
ε/s. For z ∈ Ω\N ,

|uε(z) | ≤ C1 s + C1
measK(z,

√
ε/s, ε)√

ε
.

Therefore, for z ∈ A(s, ε)\N , one has

(3.3.13) measK(x,
√
ε/s, ε) ≥

√
ε s := ρs .

Introduce

(3.3.14)
B(s,ε) :=

{(z, α) ∈ Ω× I : |Φ′α(z, α)| ≤ 2
√
ε/s and |Φ′′αα(z, α)| ≤ 1/s2} .

Then B(z, s, ε) := {α ∈ I : (z, α) ∈ B(s, ε)} = K(z,
√
ε/s, ε). Since measN = 0,

(3.3.13) implies that

(3.3.15)
measB(s, ε) =

∫
mesB(z, s, ε) dz

≥
∫
A(s,ε)

measB(z, s, ε) dz ≥ ρs measA(s, ε) .

Since Φ′α(z, α) = y − h′α(t, y) and Φ′′αα(z, α) = −h′′αα(t, α) = −D∗(t, α), one has

(3.3.16) measB(s, ε) ≤ 4 δs meas A(s2)

where A(σ) := {(t, α) ∈ Ωt × I : |D∗(t, α)|−1 ≥ σ}. Therefore, (3.3.15) implies

(3.3.17) mesA(s, ε) ≤ 4 δs
ρs

mes A(s2) =
4
s2

mes A(s2) .

6. If D−1
∗ ∈ Lr,∞, then meas A(σ) ≤ Γσ−r. Thus measA(s, ε) ≤ Γ s−(2+2r)

and therefore

(3.3.18) sup
ε∈]0,ε0[

‖uε ‖L2+2r,∞ < +∞ .

Similarly, (3.3.17) implies that

‖uε ‖L2+2r ≤ C

∫ +∞

0

s1+2r mesA(s, ε) ds

≤ 4 C
∫ +∞

0

s2r−1 mes A(s2) ds ≤ C ′‖D−r∗ ‖L1(Ot×I) ,

which completes the proof of Theorem 3.1.2.
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Examples and Remarks 3.3.3. The assumptions of Theorem 3.1.2 are sat-
isfied when

(3.3.19) Φ(t, y, α) = y α − ψ(t, α) , (t, y) ∈ Rd−1 × R , α ∈ R ,

and ψ is a polynomial in α of degree k ≥ 2, whose leading coefficient does not
vanish for almost all t. In this case, CΦ = {y = ϕ′α(t, α)} and Sϕ = CΦ ∩
{ψ′′α,α(t, α) = 0}. No smoothness assumption is imposed on SΦ.

The examples ψ(t, α) = α3 and ψ(t, α) = t1 α
2 + α4, yield caustics which are

folds and cusps. In these two examples the critical index qc is equal to 4. In
particular, this shows that the critical index qc is not related to the order of the
caustic as introduced in [Du].

3.4. Proof of Theorem 3.1.3

We consider oscillatory integral (3.1.1), assuming that SΦ is a smooth submanifold
of CΦ of codimension one, that the dimension ν of ker Φ′′αα(ρ) is constant for ρ ∈ SΦ

and that D∗, the restriction of det Φ′′αα to CΦ vanishes to order µ = ν on Sϕ. In
addition, ν ≥ 2.

By a linear change of variables, one can split the variables α into (α′, α′′) ∈ Rν ×
Rn−ν , so that Φ′′α′,α′(ρ) = 0 and Φ′′α′′α′′(ρ) is invertible. Therfore, using the
stationary phase theorem in the α′′ variables reduces the proof to the case n = ν.

From now on, we assume that ν = n, which means that

(3.4.1) ∀ρ ∈ SΦ : Φ′′αα(ρ) = 0 .

Since the phase is non degenerate

(3.4.2) rank Φ′′zα(ρ) = ν.

In particular, m ≥ ν. After a linear change of coordinates, one can split the
variables z into z := (t, x) ∈ Rm−ν × Rν , so that

(3.4.3) det Φ′′xα 6= 0 .

Considering t as a parameter, (3.4.3) implies that

CΦ(t) := {(x, α) ; Φ′α(t, x, α) = 0}

is a smooth manifold of dimension ν. The associated Lagrangian manifold is

ΛΦ(t) := {(x, dxΦ(t, x, α)) | (x, α) ∈ CΦ(t) } .

Moreover, the mapping (x, ξ) → ξ is a local diffeomorphism from ΛΦ(t) to Rν .
Therefore ΛΦ(t) can be parametrized by ξ as the set {(dξh(t, ξ), ξ)}, with a smooth
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function h defined near the point (t, ξ) corresponding to ρ. Consider the phase
function

(3.4.4) Ψ(t, x, ξ) := x · ξ − h(t, ξ) .

The function h is uniquely determined if one requires that Φ(ρ) = Ψ(t, x, ξ).

The Theorem of equivalence of phase functions (see [Hö 1] [Du]), with t as
parameters, implies that there exists a mapping (z, α) → ξ(z, α) which is, for all
fixed z, a local diffeomorphism α→ ξ such that

(3.4.5) Φ(z, α) = Ψ(z, ξ(z, α)) .

Changing variables implies that, for a supported in a sufficiently small neighbor-
hood of ρ, one gets

(3.4.6) uε(t, x) = ε−ν/2
∫
Rν
eiΨ(t,x,ξ)/ε b(t, x, ξ, ε) dξ ,

where b is a smooth function on U × [0, 1], with U a neighborhood of (t, x, ξ).

The new phase Ψ defines the same Lagrangian manifold Λ as Φ. Thus Ψ satisfies
the same assumptions as Φ. The manifold CΨ is given by the relation x = h′ξ(t, ξ)
and is parametrized by (t, ξ). In this parametrization the manifold SΨ is locally
given by an equation

(3.4.7) f(t, ξ) = 0 with df(t, ξ) 6= 0 .

Then (3.4.1) means that

(3.4.8) h′′ξξ(t, ξ) = 0 when f(t, ξ) = 0 .

In addition, the condition that D∗ vanishes exactly to order µ on SΦ means that

(3.4.9) deth′′ = fµ e with e(t, x, ξ) 6= 0 .

Lemma 3.4.1. There is a neighborhood ω of (t, x, ξ) and a C∞ function g(t)
near t, such that g(t) = 0, dg(t) 6= 0 and

(3.4.10) h′′ξξ(t, ξ) = g(t)r E(t, ξ) , with detE(t, ξ) 6= 0 .
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Proof. (3.4.8) implies that there is a smooth symmetric matrix E(t, x) with

(3.4.11) h′′ξξ(t, ξ) = f(t, ξ)E(t, ξ) .

Since µ = ν, (3.4.9) implies that detE(t, ξ) 6= 0. We show that (3.2.13) implies
that dξf = 0 when f = 0. This implies that SΨ := {f = 0} is also given by an
equation g(t) = 0 and the proposition then follows.

Differentiating (3.4.11) with respect to ξ shows that

h′′′ξξξ(t, ξ)(δξ1, δξ2, δξ3) =

f ′ξ(t, ξ) (δξ3)E(t, ξ) (δξ1, δξ2) + f(t, ξ)E′ξ(t, ξ) (δξ3, δξ1, δξ2) .

The left hand side is symmetric with respect to (δξ1, δξ2, δξ3). Therefore, where
f(t, ξ) = 0,

(3.4.12) f ′ξ(t, ξ) (δξ3)E(t, ξ) (δξ1, δξ2) = f ′ξ(t, ξ) (δξ1)E(t, ξ) (δξ2, δξ3) .

Since ν ≥ 2, there is δξ1 6= 0 such that f ′ξ(t, ξ)(δξ1) = 0. Since E(t, ξ) is symmetric
and nondegenerate, there is δξ2 such that E(t, ξ) (δξ1, δξ2), 6= 0. Therefore (3.4.12)
implies that f ′ξ(t, ξ) (δξ3) = 0 for all ϕξ3. This shows that dαf(t, ξ) = 0 when
f(t, ξ) = 0 and the lemma is proved.

Changing Ψ into Ψ(t, x, η) + ψ(t, x) does not change the modulus |uε| of the
oscillatory integrals (3.4.6). Thus, we can also assume that η = 0 and that h(t, 0) =
0. Therefore, for η in a neighborhood of 0, one has

h(t, η) = h′η(t, 0)(η) +
∫ 1

0

(1− s) h′′ηη(t, sη) (η , η) ds .

The change of variables (t, x)→ (t, x−h′η(t, 0)) reduces the proof of Theorem 3.1.3
to the case where h′η(t, 0) = 0. In this case, (3.4.10) implies that

(3.4.13) h(t, η) = g(t)ψ(t, ξ) , with detψ′′ξξ(t, 0) 6= 0 .

In addition, dg(t) 6= 0. All the reductions above being performed, Theorem 3.1.3
is a consequence of the following estimate.

Proposition 3.4.2. Consider the phase function (3.4.4) with h satisfying
(3.4.13). There is a neighborhood ω of ρ = (t, x, ξ), such that for all b ∈ C∞0 (ω ×
[0, 1]), there is a constant C such that the oscillatory integrals (3.4.6) satisfy

(3.4.14) |uε(t, x) | ≤ C (|g(t)| + |x|)−ν/2 +∞ .
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Proof. Introduce the oscillatory integrals

(3.4.15) vδ(t, y, x) := δ−ν/2
∫
ei (y·ξ−ψ(t,ξ))/δ b(t, x, ξ) dξ .

There are R > 0 and c > 0 such that for |y| ≥ R, |dξ(y · ξ − ψ(t, ξ)| ≥ c|y| on the
support of b. Integrations by parts show that for all N there is CN such that

(3.4.16) ∀|y| ≥ R , ∀δ ≤ |y| , | vδ(t, y, x) | ≤ CN (|δ|N−ν/2 |y|−N ) .

Since ψ′′ηη is nondegenerate at the origin, if the support of b is sufficiently small,
then vδ is also uniformly bounded for bounded y and bounded δ : there is C such
that

(3.4.17) ∀|y| ≤ R , ∀|δ| ≤ 1 , | vδ(t, y, x) | ≤ C .

Moreover vδ is compactly supported in (t, x).
For g(t) 6= 0, one has

(3.4.18) uε(t, x) = g(t)−ν/2 vδ(t, x/g(t), x) , with δ = ε/g(t) .

1. For |x| ≤ R |g(t)| and ε ≤ |g(t)|, (3.4.17) shows that uε = O(|g(t)|−ν/2) =
O((|g(t)|+ |x|)−ν/2).

2. For |x| ≥ R |g(t)| and ε ≤ |x|, (3.4.16) implies that uε = O(εN−ν/2|x|−N ).
Taking N ≥ ν/2, this implies that uε = O(|x|−ν/2) = O((|g(t)| + |x|)−ν/2). This
estimate extends to the case g(t) = 0, since then the phase has no critical point.

3. In the other cases, one has |g(t)| + |x| ≤ 2ε, and uε = O(ε−ν/2) =
O((|g(t)|+ |x|)−ν/2).

Summarizing, we have proved that when the support of b is contained in a
sufficiently small neighborhood of (t, x), the estimate (3.4.14) holds.

Example 3.4.3. Typical phases are Φ(t, x, ξ) = x · ξ − t |ξ|2, for (t, x, ξ) ∈
R× Rν × Rν . Spherical focusing leads to such phases.

3.5. Subcritical Lp estimates for Iε(A)
This section is devoted to the proof of Theorem 2.3.5. For the convenience of the
reader we recall severall notations and assumptions from §2. Consider oscillatory
integrals of the form

(3.5.1) Iε(A) (t, x) :=
∑
n

(|n|/2πε)d
∫
ei nΦ(t,x,y,ξ)/ε an(t, y) dy dξ ,

with

(3.5.2) Φ(t, x, y, ξ) := t λ(ξ) + (x− y) · ξ + ψ(y) ,
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where ψ satisfies Assumptions 2.2.1 on ω ⊂ Rd, λ(ξ) is a C∞ function on Rd\{0}
homogeneous of degree one and

(3.5.3) A(t, y, θ) :=
∑
n 6=0

an(t, y) einθ , an ∈ C∞0 ([0,+∞[×ω)

is a trigonometric polynomial. This is a particular case of integrals (3.1.1) with
space variables z = (t, x) and phase variables α = (y, ξ) except that the domain
of integration is not compact in ξ.

Φ is nondegenerate and the set CΦ is parametrized by R× ω as follows

(3.5.4) ι : (t, y) 7→
(
t, y−t g(y), λ(dψ(y)), dψ(y)

)
, with g(y) := λ′(dψ(y)) .

One has

(3.5.5) det Φ′′αα(ι(t, y)) = det(I − t g′(y)) .

Therefore the singular set SΦ is equal to ι(S) where

(3.5.6) S := {(t, y) : det(I − t g′(y)) = 0} .

The Caustic set is C := (S) where (t, y) := (t, x) with x = q(t, y) := y − tg(y).
(3.5.6) shows that (t, y) ∈ S if and only if 1/t is an eigenvalue of g′(y). Follow-
ing Definition 2.3.2 we call µ(t, y) the algebraic multiplicity of the corresponding
eigenvalue and ν(t, y) the dimension of the eigenspace. Saying that the multiplic-
ity µ is constant on a neighborhood of (t, y) in S is equivalent to saying that the
eigenvalue has constant multiplicity on a neighborhood of y. Therefore,

Lemma 3.5.1. Consider (t, y) ∈ S. Suppose that µ and ν are constant on a
neighborhood of (t, y) in S. Then, on a neighborhood of (t, y), S is a smooth
manifold of codimension one and the determinant det(I− t g′(y)) vanishes exactly
to order µ on S.

Remarks and Examples 3.5.2. a) One has 1 ≤ ν ≤ µ ≤ d − 1, see (2.6.1).
In particular, in space dimension d = 2, the only possibility is ν = µ = 1.

b) The condition µ = ν means that the corresponding eigenvalue is semi-simple.
If either λ′′k or ψ′′ is positive (or negative) semidefinite, then the nonzero eigenval-
ues of g′k(y) = λ′′(dψ(y))ψ′′(y) are semi-simple.

This applies in particular to the wave equation, where λk(ξ) = ±|ξ| is con-
vex (concave). In this case, the eigenvalues of g′k(y) are 0 and ± the principal
curvatures of the manifold ψ(y) = ψ(y).

The same remark applies to the Maxwell equations, the linearized Euler equa-
tions, and linear elasticity for each of which all eigenvalues are convex.
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c) Generic caustics occur when ν = µ = 1, and V c 6= 0 where V (y) is a smooth
nonvanishing eigenvectorfield V (y) ∈ ker(c(y)I − g′(y)) and c(y) is the eigenvalue
of g′(y) under consideration (see [Hö 2][Du][JMR 3]). In this case, C is smooth
and π|Λ is a fold.

d) When ν = µ = 1 and V c(y) = 0, V 2c(y) 6= 0, the caustic C has a cusp. This
applies for example to the wave equation in R1+2 and the phases (2.6.4), where
only folds and cusps are present.

e) For the wave equation and radial phases ψ(y) = χ(|y|), there is one positive
eigenvalue, c(y) = |y|, semisimple and of multiplicity µ = ν = d− 1.

The Assumptions 2.2.2 and 2.3.3 read

Assumption 3.5.3. i) There is an integer `∗, such that for and all (t, x) /∈ C,
the number of points y ∈ ω such that x = q(t, y), is less than or equal to `∗.

ii) There is an open subset ω0 ⊂ ω such that ω\ω0 has Lebesgue measure
equal to 0 and for all k and all (t, y) ∈ Sk with y ∈ ω0, one has

a) µ and ν are constant on a neighborhood of (t, y) in S,

b) either ν = 1 or ν = µ .

Remark 3.5.4. a) When λ and ψ are real analytic, the phase Φ is real analytic
and the Assumption i) is satisfied.

b) The eigenvalues of g′(y) are locally of constant algebraic and geometric mul-
tiplicities multiplicity on a dense open subset of ω. Part a) of Assumption ii) says
that this set has full measure in ω. In particular, this is true when λ and ψ are
real analytic.

c) Combined with Remarks 3.5.2 a) and b) above, this implies that Assumption
3.5.3 is satisfied in the following three cases :

1) real analytic λ and real analytic convex phases ψ
2) real analytic phases for the wave equations,
3) real analytic λ and real analytic phases in space dimension d = 2.

d) Assumption 3.5.3 is also satisfied in the example 6 of §2.6, where λk(ξ) = |ξ|
and

(3.5.7) ψ(y) := yd + (y2
1 + · · · + y2

d−1)/2 ,

with ω0 := {y′ 6= 0}.

For q ∈ [2,+∞], the set of supercritical points S+(q) is the set of (t, y) ∈ S
such that either y ∈ ω\ω0 or µ(t, y) ≥ 2/(q − 2). Theorem 2.3.5 is an immediate
corollary of the following result.
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Theorem 3.5.5. Suppose that Assumption 3.5.3 is satisfied. Let q ≥ 2. As-
sume that the coefficients an of A are compactly supported in [0,+∞[×ω and
vanish on a neighborhood of points (t, y) ∈ S+(q). Then,

(3.5.8) sup
ε∈]0,1]

‖ Iε(A) ‖Lq(R1+d) < +∞ .

Proof. a) It is sufficient to consider the case where A is a monomial. Changing
ε to ε/|n| and taking complex conjugate it is sufficient to consider integrals of the
form

(3.5.9) uε(t, x) := ε−d
∫
a(t, y) eiΦ(t,x,y,ξ)/ε dy dξ ,

b) Choose χ ∈ C∞(Rd) such that 1− χ has compact support disjoint from the
origin and χ = 0 on a neighborhood of the support of dψ. Let

(3.5.10) uεχ(t, x) := ε−d
∫
a(t, y)χ(ξ) eiΦ(t,x,y,ξ)/ε dy dξ .

Since |∂yΦ| ≥ c(1 + |ξ|) on the support of a(t, y)χ(ξ), integration by parts in y
yields uεχ = O(ε∞) uniformly in (t, x).

To estimate the L2 norm, write

uεχ(t . ) = ei t λ(D) χ(εD)
(
ei ψ/ε a(t, . )) .

The L2(Rd) norm is the same as that without the factor ei t λ(D). The expression
(3.5.10) without λ has phase Φ̃ = (x−y)·ξ+ψ(y) which satisfies |∂yΦ̃| ≥ c(1+|ξ|) on
the support of χ and |∂ξΦ̃| ≥ c|x| on the support of a if |x| is large. So, integrations
by parts in (y, ξ) yield∣∣ (e−i t λ(D) uεχ) (t, x)

∣∣ ≤ O( εN/(1 + |x|)N ) ,

for all N . Therefore uεχ(t, . ) = O(ε∞) in L2. This proves that for all p ≥ 2,

(3.5.11) ‖uεχ(t, · )‖Lp(Rd) = O(ε∞) .

c) Consider

(3.5.12) uε1−χ(t, x) := ε−d
∫
a(t, y) (1− χ(ξ)) eiΦ(t,x,y,ξ)/ε dy dξ ,

Since a is compactly supported in y, |dξΦ| ≥ c(|x|+ 1) when |x| is larger than R.
Therefore, uε1−χ is O((ε/|x|)∞) for |x| ≥ R. Therefore

(3.5.13) ‖uε1−χ(t, · )‖Lp(|x|≥R) = O(ε∞) .
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d) Thus, it is sufficient to bound the Lq norms of uε1−χ on compact sets in
[0,+∞[×Rd. The nonstationary points contribute O(ε∞), and the nondegenerate
stationaty points contibutes O(1). Therefore, using a partition of unity, it is
sufficient to prove that the Lq norm of uε1−χ is bounded independently of ε when
a is supported in a small neighborhood of (t, y) ∈ S and (1 − χ) is supported in
a small neighborhood of ξ := dψ(y). In addition, since the original a is supported
away from S+(q) it is sufficient to consider points (t, y) ∈ S such that y ∈ ω0 and
µ(t, y) < 2/(q − 2). In this case, Assumptions 3.5.3 implies that either Theorem
3.1.2 or Theorem 3.1.3 applies (see Remark 3.1.4) and Theorem 3.5.5 follows.

Remark 3.5.6. If the hypothesis of Theorem 3.5.5 is satisfied for q ≥ 4 then
the conclusion 3.5.8 can be strengthened. In fact, 3.5.8 then holds for all q ≥ 2.
To see this note that 2/(q − 2) ≤ 1 for q ≥ 4, which implies that all points in
S are supercritical. Thus the hypothesis implies that A vanishes for (t, y) in a
neighborhood of S. Therefore the critical points of the phase Φk located in the
support of the coefficients are nondegenerate, so the family Iεk(A) is bounded
in L∞. With L2 estimates provided by the Plancherel identity, this implies that
(3.5.8) holds for all q ≥ 2.

On the other hand, when q < 2 + 2/(d − 1), (3.5.8) holds for all trigonometric
polynomials with coefficients in C∞0 ([0,+∞[×ω0), since the multiplicity µ is at
most d − 1 < 2/(q − 2). Thus the index 2 + 2/(d − 1) which occurs for spherical
focusing is the worst case.

4. Oscillations and profiles

In the first part of this section, we introduce families Iε(A) and Jε(A). They are
defined in (2.3.2) and (2.4.6) when A is a smooth trigonometric polynomial. The
definition of Jε is extended to Ls,qk for s > 1/q and also, in an asymptotic sense, to
Lqk. In the second part of the section, we introduce profiles associated to families
uε. This is a modification of the multiscale analysis introduced in [N], [A], [E],
[ES], [JMR 2] with phases replaced by Lagrangians.

In this section we suppose that Assumptions 2.1.1, 2.2.1, 2.2.2, 2.2.5 and 2.3.3
are satisfied.

4.1. Estimates for Jε(A) and Iε(A)

Definition 4.1.1. Pk ⊂ P denotes the space of trignometric polynomials
whose coefficients vanish in a neighborhood of Sk.

Pk(q) is the space of trigonometric polynomials which vanish on a neighborhood
of the set of supercritical point S+

k (q) introduced in Definition 2.3.4.

For A ∈ Pk the family Jεk(A) is defined by (2.4.2).
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Proposition 4.1.2. For A ∈ Pk, and ε > 0, Jεk(A) ∈ C∞0 ([0,+∞[×Rd). For
each q ∈]1,+∞[, there is a constant C such that for all A ∈ Pk ,

(4.1.1) lim sup
ε→0

||Jεk(A) ||Lq([0,∞[×Rd) ≤ C || A ||Lq
k
.

For 1/q < s < 1, there is a constant C such that for all A ∈ Pk ,

(4.1.2) sup
0<ε≤1

||Jεk(A) ||Lq([0,∞[×Rd) ≤ C || A ||Ls,q
k
.

Proof. a) The support of A ∈ Pk is contained in K × T where K is a compact
subset of G which does nor intersect Sk. Therefore, there is a covering of K
by relatively open sets Gα ⊂ G, such that k is a diffeomorphism from Gα onto
Ωα := k(Gα). Denote by σα the inverse mapping from Ωα onto Gα. Introduce
a finite partition of unity, χα ∈ C∞0 (Gα), such that χα ≥ 0 and

∑
χα = 1 on K.

Thus A =
∑
χαA, Jεk(A) =

∑
Jεk(χαAα) and

(4.1.3) Jεk(χαA) (t, x) =
χα(σα(t, x))
∆k(σα(t, x))

(Hmk,αA) (σα(t, x), ϕα(t, x)/ε) ,

where ϕα(t, x) := ψ(σα(t, x)) and mk,α is the value of mk(t, y) on Gα. This proves
that Jεk(A) is C∞ and has compact support contained in k(K).

b) The finiteness Assumption 2.2.2 implies that

|Jεk(A) (t, x) |q ≤ `q−1
∗

∑
{y | qk(t,y)=x}

1
|∆k(t, y)|q

∣∣ (Hmk(t,y)A
)

(t, y, ψ(y)/ε)
∣∣q .

Introduce B := HmkA. B is smooth in t, y since mk is locally constant on the
support of A and therefore B ∈ Pk . The identity |B|q =

∑
χα|B|q where χα is

the partition of unity introduced in a), implies that

|Jεk(A) (t, x) |q ≤ `q−1
∗

∑
α

χα(σα(t, x))
|∆k(σα(t, x))|q

∣∣B (σα(t, x), ϕα(t, x)/ε)
∣∣q .

Since ∆2
k is the Jacobian of qk, one has

(4.1.4) ||Jεk(A) ||qLq ≤ `q−1
∗

∑
α

∫
Gα

χα(t, y)
|∆k(t, y)|q−2

∣∣B (t, y, ψ(y)/ε)
∣∣q dtdy .

c) |B(t, y, θ)|q is a compactly supported and continuous function. Expanding in
Fourier series, we see that∫

Gα

χα(t, y)
|∆k(t, y)|q−2

∣∣B (t, y, ψ(y)/ε)
∣∣q dtdy →∫

Gα×T

χα(t, y)
|∆k(t, y)|q−2

∣∣B (t, y, θ)
∣∣q dtdydθ
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as ε→ 0. Therefore

(4.1.5) lim sup
ε→0

||Jεk(A) ||qLq ≤ `q−1
∗

∫
|∆k(t, y)|2−q

∣∣B (t, y, θ)
∣∣q dtdydθ .

For q ∈]1,+∞[, the Hilbert transform is bounded in Lq(T). Thus∫ ∣∣B (t, y, θ)
∣∣q dθ ≤ Cq

∫ ∣∣A (t, y, θ)
∣∣q dθ .

With (4.1.5) this implies (4.1.1).
d) For s > 1/q, we use the Sobolev inequality

sup
θ∈T
| B(t, y, θ) | ≤ C ‖B(t, y, . ) ‖W s,q(T) .

Then, by definition of Ls,qk , there is a constant C such that

(4.1.6) sup
θ∈T
| B(t, y, θ) |q ≤ Cb(t, y)

with

(4.1.7)
∫
G

∆2−q
k b(t, y) dt dy ≤ ‖B ‖qLs,q

k

≤ C ‖A‖qLs,q
k

,

where the second inequality uses the fact that the Hilbert transform is bounded in
W s,q(T). Plugging (4.1.6) in (4.1.4), and using (4.1.7) yields (4.1.2) and Proposi-
tion 4.1.2 is proved.

Proposition 4.1.3. i) For all trigonometric polynomial A,

(4.1.8) lim sup
ε→0

|| Iεk(A) (t, · ) ||L2(Rd) = || A(t, · ) ||L2(ω×T) .

The limit is uniform on bounded intervals of time. In addition, for all T > 0

(4.1.9) || Iεk(A) − Jεk(A) ||L2([0,T ]×Rd) → 0 , as ε→ 0 .

ii) For all q ∈ [2,+∞[, there is a constant C such that for all trigonometric
polynomial A ∈ Pk(q) ,

(4.1.10) lim sup
ε→0

|| Iεk(A) ||Lq([0,T ]×Rd) ≤ C || A ||Lq
k
,

and

(4.1.11) || Iεk(A) − Jεk(A) ||Lq([0,∞[×Rd) → 0 , as ε→ 0 .
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Proof. a) Part i) is a consequence of the standard L2 estimates for oscillatory
integrals (2.3.2). For a detailed proof, see [JMR 3].

b) To prove part ii), consider A ∈ Pk(q). Estimates (3.5.11) (3.5.13) imply
that the Lq norm of Iεk(A) outside a compact subset K in [0,+∞[×Rd is O(ε∞).
Therefore, it is sufficient to prove that

(4.1.12) lim sup
ε→0

|| Iεk(A) ||Lq(K) ≤ C || A ||Lq
k
.

c) A vanishes near points in S+
k (q). Thus, points (t, y) in Sk ∩ suppA satisfy

µk(t, y) < 2/(q − 2). By compactness, one can find r > q such that µk(t, y) <
2/(r − 2) and hence A ∈ Pk(r). Therefore, Theorem 2.3.5 implies that Iεk(A)
is bounded in Lr([0,+∞[×Rd). Thus, there exists M such that for all bounded
domains D, one has

(4.1.13) || Iεk(A) ||Lq(D) ≤ M (measD)1/q−1/r .

d) Since the caustic set Ck has Legesgue measure equal to zero, (4.1.13) implies
that in order to prove (4.1.12), it is sufficient to show that for all bounded open
sets Ω such that Ω ∩ Ck = ∅

(4.1.14) lim sup
ε→0

|| Iεk(A) ||Lq(Ω) ≤ C || A ||Lq
k
.

On such domains, the stationary phase theorem applies, and Iεk(A)−Jεk(A) = O(ε)
in L∞. Therefore (4.1.10) follows from Proposition 4.1.2.

e) Similarly, Proposition 4.1.2 implies that Jεk(A) satisfies estimates analogous
to (4.1.13). Since Jεk(A) is compactly supported, to prove (4.1.11), it is sufficient
to show that

(4.1.15) || Iεk(A) − Jεk(A) ||Lq(Ω) → 0 , as ε→ 0 .

for all bounded open sets Ω such that Ω∩Ck = ∅. But there, Iεk(A)−Jεk(A) = O(ε)
in L∞, implying (4.1.15). The proof of Proposition 4.2.3 is complete.

Proposition 4.1.4. If A and B belong to Pk then, as ε→ 0,

(4.1.16)
∫
Jεk(A) Jεk(B) dt dx →

∫
A B dt dy dθ .
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Proof. It is sufficient to prove (4.1.16) whenA = a(t, y) ei nα θ and B = b(t, y) ei nβ θ

where a and b have small supports. Thus one can assume that they are supported
in Gα and Gβ respectively, where k is a diffeomorphism from both Gα and Gβ
onto a regular open set Ω. In this case, with notations as in (4.1.3),

(4.1.17) Jεk(A) (t, x) =
imk,α

∆k(σα(t, x))
a (σα(t, x)) ei nα ϕα(t,x)/ε ,

and a similar formula for Jεk(B). There are two cases.
1) Gα = Gβ , σα = σβ and ϕα = ϕβ . If nα = nβ the two sides of (4.1.16) are

independent of ε and are equal since ∆2
k(t, y) is the Jacobian of k. If nα 6= nβ ,

the right hand side vanishes and the left hand side tends to 0, since dϕα does not
vanish.

2) Gα∩Gβ = ∅. Then the integrand in the right hand side vanishes. The left
hand side tends to 0, since nαdϕα − nβdϕβ 6= 0 almost everywhere, thanks to the
nonresonance Assumption 2.2.5.

4.2. Extension to nonsmooth profiles

Proposition 4.2.1. i) For all q ∈ [1,+∞[ and s ∈]0, 1[, Pk is dense in Lqk and
in Ls,qk .

ii) For 1/q < s < 1 and each ε ∈]0, 1], Jεk extends to a bounded linear operator
from Ls,qk to Lq([0,+∞[×Rd) and inequality (4.1.2) extends to Ls,qk .

Proof. Sk is the set of (t, y) such that 1/t is a positive eigenvalue of g′k(y). Thus its
Lebesgue measure is zero, and the space of compactly supported functions which
vanish on a neighborhood of Sk is dense in Lqk and in Ls,qk for all q ∈ [1,+∞[ and
s ∈]0, 1[. Using mollifiers, this implies that the space of compactly supported C∞

functions on [0,+∞[×ω × T, which vanish on a neighborhood of Sk, are dense.
Truncating the Fourier series proves i). Part ii) follows.

For general profiles, the definition of Jε must be understood in an asymptotic
sense, i.e. they are bounded families in a Banach space defined up to families
which converge strongly to zero in the same space. A convenient setting is the
following.

For a Banach space E, BE denotes the Banach space of bounded families
{uε}ε∈]0,1] normed by sup ‖uε‖E . NE is the closed subspace of families with
uε → 0 as ε→ 0. AE is the quotient space BE/NE. The norm in AE is equal to

(4.2.1) || [uε] ||AE = lim sup
ε

||uε ||E .

As usual the aspect quotient space in the following discussion is systematically
suppressed, and we denote uε ∼ 0 in E, whenever uε ∈ NE and similarly uε ∼ vε
in E when uε − vε ∈ NE.
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Proposition 4.2.2. For all q ∈]1,+∞[, the family of mappings Jεk defines a
bounded mapping Jk, from Lqk to ALq([0,+∞[×Rd). It satisfies

(4.2.2)
1
C
|| A ||Lq

k
≤ || Jk(A) ||Lq([0,∞[×Rd) ≤ C || A ||Lq

k
.

Suppressing as always the quotients, the notation Jk(A) is replaced by J̃εk(A).
Then

(4.2.3) uε ∼ J̃εk(A) in Lq ,

means that the class of [uε] of uε in ALq([0,+∞[×(Rd)) is Jk(A). This is equiv-
alent to saying that uε is a bounded family in Lq([0,+∞[×Rd) such that for all
δ > 0 there is an A ∈ Pk and εδ > 0 such that

(4.2.4)

 || A − Aδ ||L
q
k
≤ δ , and

∀ε ∈]0, εδ] , ||uε − Jεk(Aδ) ||Lq([0,+∞[×Rd) ≤ δ .

Thus, Proposition 4.2.2 is a restatement of Propositions 2.4.2 and 2.4.3.

Proof. The extension and the second inequality follow from the density Lemma
4.2.1 and Proposition 4.1.2.

Propositions 4.1.2 and 4.1.4 imply that for trigonometric polynomials A and B
in Pk, one has

(4.2.5)
∣∣ ∫ A B dt dy dθ ∣∣ ≤ C lim inf ||Jεk(A)||Lq || B ||Lq′

k

with 1/q + 1/q′ = 1. The density of Pk in Lq
′

k and the converse Hölder inequality
imply that for A ∈ Pk,

1
C
|| A ||Lq

k
≤ lim inf

ε→0
||Jεk(A) ||Lq([0,∞[×Rd) .

By density, this extends to A ∈ Lqk and the proposition is proved. This estimate
also finishes the proof of Proposition 2.4.2.

There is a similar treatment for the Cauchy data, and the subtitution

U0(y, ψ(y)/ε)

which is defined for U0 ∈ C0(ω×T) with compact support and extends asymptot-
ically from L2((Rd × T) to AL2(Rd). The analogous notation to (4.2.3) is

uε0 ∼ J̃ε0 (U0) in L2(Rd) .
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Remark 4.2.3. The operators Jεk are defined for fixed ε when A ∈ Pk or
more generally for A ∈ Ls,qk , s > 1/q. In these cases, Jεk(A) is a representative of
Jk(A), that is,

Jεk(A) ∼ J̃εk(A) .

It would be tempting to use (4.1.10) to extend Iε asymptotically. By (4.1.11)
this would yield Ĩε ∼ J̃ε and therefore nothing new. Note that the problems
of extending Iε and Jε are different. For Jε the difficulty is the substitution
θ = ψ(y)/ε in (2.4.2). On the other hand, when A is smooth in θ, for example
when A(t, y, θ) := a(t, y) ei θ, Iε(A) is defined for each ε, at least in the sense of
distributions, but need not be bounded in Lq when a ∈ Lq. This is not due to the
caustic but to the fact that Fourier Integral Operators of degree 0 are not bounded
in Lq for q 6= 2. In particular, the limsup in (4.1.10) cannot be replaced by sup.

In the sequel, the operators Iεk act only on smooth profiles A ∈ Pk(q). The
Iεk(A) serve as test functions.

4.3. Weak profiles

The analysis of weak convergence has been refined to a multiscale analysis, associ-
ating profiles to sequences of functions (see [N], [A], [E], [ES], and [JMR 2]). Given
a phase ϕ, the idea is to test uε against functions of the form B(t, x, ϕ(t, x)/ε).
Near a caustic there are several phases involved and the objects are better de-
scribed by tests against functions of the form Jε(A).

Definition 4.3.1. If 1 < q < ∞ and {uε}0<ε<1 is a bounded family in
Lq(R1+d) then U ∈ Lqk(G × T) is called a Λk-profile if there is a subsequence

uε
′

so that for all A ∈ Lq
′

k (G× T) and all vε ∼ J̃εk(A) in Lq
′
.

(4.3.1) lim
ε′→0

∫
vε′ uε

′
dt dx =

∫
A Uk dt dy dθ .

We say that a sequence uε is k-pure when it converges weakly and the convergence
(4.3.1) holds for the full family uε. It is pure, when it is k-pure for all k.

The estimate (4.1.1) and Lemma 4.2.1 show that it suffices to verify (4.3.1) for
A ∈ Pk. The next proposition implies that any bounded family in Lq has pure
subsequences.

Proposition 4.3.2. If 1 < q < +∞ and uε is bounded in Lq(R1+d), then the
set of Λk-profiles of uε is nonempty.

There is a constant C independent of the family uε such that every Λk-profile
satisfies

(4.3.2) || Uk ||Lq
k
≤ C lim sup

ε→0
||uε ||Lq .
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In addition, if A ∈ Lq
′

k (G× T) and

(4.3.3) vε ∼ J̃εk(A) in Lq
′
(R1+d) ,

then

(4.3.4)
∫
vε
′
uε′ dt dx →

∫
A Uk dt dy dθ .

Proof. a) Choose G′ such that k is a diffeomorphism from G′ ⊂ G onto Ω′ ⊂
[0,+∞[×Rd. Denote by σ the inverse mapping from Ω′ onto G′. Then, for A ∈ P
supported in G′ × T,

(4.3.5) Jεk(A) (t, x) =
1

∆k(σ(t, x))
(HmA) (σ(t, x), ϕ(t, x)/ε) ,

where ϕ(t, x) = ψ(σ(t, x)) and m is the value of mk(t, y) on G′. Assumption 2.2.1
implies that dϕ(t, x) 6= 0 for all (t, x) ∈ Ω′. Therefore, there exists a subsequence
ε′ and U ∈ Lq(Ω′ × T) such that for all B ∈ C∞0 (Ω′ × T),

(4.3.6)

∫
Ω′

B(t, x, ϕ(t, x)/ε′) uε′(t, x) dt dx →∫
B(t, x, θ) U(t, x, θ) dt dx dθ .

(see [N], [A], [E], [ES], [JMR 2]). In particular, for all A ∈ P supported in G′, the
integrals

(4.3.7)
∫
Jε
′

k (A) uε′ dt dx

converge as ε′ → 0.
b) Since G\Sk is the countable union of open sets Uα which satisfy the condi-

tions in a), we see that there is a subsequence ε′ such that the integrals (4.3.7)
converge, for all A ∈ Pk. The limit defines a linear form ` on Pk. Proposition
4.1.2 applied with the conjugate exponent q′ ∈]1 +∞[, implies that

(4.3.8) | `(A) | ≤ C || A ||Lq′
k

lim sup
ε→0

|| uε ||Lq .

Since Pk is dense in Lq
′

k this implies that ` extends uniquely as a continuous linear
form on Lq

′

k . Hence, there is Uk ∈ Lqk such that

(4.3.9) `(A) =
∫
A Uk dtdydθ .

This proves (4.3.1), and (4.3.2) follows from (4.3.8).
c) If (4.3.3) holds and δ > 0, introduce the approximations (4.2.4) and use the

convergence (4.3.1) for Aδ. The convergence (4.3.4) follows for the subsequence
ε′, completing the proof of the proposition.
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Proposition 4.3.3. If 1 < q < +∞, U ∈ Lq` , and uε ∼ J̃ε` (U) in Lq(R1+d)
then, the family uε is pure and converges weakly to 0. If k = `, the Λk-profile is
equal to U while if k 6= ` the Λk-profile is equal to 0.

Proof. a) Using the approximations (4.2.4), it suffices to show that for all trigono-
metric polynomials A ∈ Pk and B ∈ P`, one has

(4.3.10)
∫
Jεk(A) Jε` (B) dtdx → δk,`

∫
A B dtdydθ

where δk,` denotes Kronecker’s symbol. One can reduce further the problem to
the case where A and B are supported in G′ × T and G′′ × T respectively, such
that k and ` are diffeomorphisms from G′ to Ω′ and from G′′ to Ω′′ respectively.
Denote by σ′ and σ′′ the inverse mappings. Then

(4.3.11) Jεk(A) (t, x) = A(t, x, ϕk(t, x)/ε) , Jεk(B) (t, x) = B(t, x, ϕ`(t, x)/ε) ,

where

(4.3.12) A(t, x, θ) :=
1

∆k(σ′(t, x))
(HmA) (σ′(t, x), θ) ,

and the definition of B is similar. In (4.3.11) ϕk := ψ ◦ σ′ and ϕ` := ψ ◦ σ′′.
b) When k 6= `, (4.3.10) follows from the convergence

(4.3.13)
∫

Ω′∩Ω′′
A(t, x, ϕk(t, x)/ε) B(t, x, ϕ`(t, x)/ε) dt dx → 0 .

To prove this convergence, expand A and B in Fourier series. Since the mean
values of both vanish, it is sufficient to show that for all α ∈ Z\{0}, β ∈ Z\{0}
and a ∈ C∞0 (Ω′ ∩ Ω′′) ,

(4.3.14)
∫

Ω′∩Ω′′
a(t, x) ei (αϕk(t,x) + β ϕ`(t,x) )/ε) dt dx → 0 .

This convergence follows from the nonresonance Assumption 2.2.5, which implies
that αdϕk + βdϕ` 6= 0 almost everywhere on Ω′ ∩ Ω′′.

c) When k = `, one can assume that Ω′ = Ω′′ and G′ = G′′. Expanding A B
in Fourier series, and using the property that dϕk 6= 0 on Ω′, one obtains that

(4.3.15)

∫
Ω′

A(t, x, ϕk(t, x)/ε) B(t, x, ϕk(t, x)/ε) dt dx →∫
Ω′×T

A(t, x, θ) B(t, x, θ) dt dx dθ .

Using (4.3.12) and the fact that ∆2
k is the Jacobian of k, we see that the right

hand side is equal to

(4.3.15)
∫
G′×T

(HmA) (t, y, θ) (HmB) (t, y, θ) dt dy dθ .

Since H is unitary, this integral is equal to the right hand side of (4.3.10) and the
proof of Proposition 4.3.2 is complete.
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Proposition 4.3.4. Suppose that uε is is a pure bounded family in Lq, 1 <
q ≤ 2, with profiles Uk. Then, for all A ∈ Pk(q′),

(4.3.16)
∫
Iεk(A) uε dt dx →

∫
A Uk dt dy dθ .

This is a consequence of Proposition 4.3.1 and the equivalence Iε(A) ∼ Jε(A)
in Lq

′
given by Proposition 4.1.3, part ii).

5. The nonlinear interaction operators

In this section we define and study the nonlinear operators E and Ek which appear
in the profile equations (2.5.17). They involve the nonlinear term f(t, x, u) which
satisfies Assumption 2.1.2.

5.1. The interaction operators for profiles

Consider u ∈ Lp+1([0,+∞[×Rd) and for each eigenvalue λk, a profile Uk(t, y, θ)
on G× T belonging to the weighted space Lp+1

k . Suppose that

(5.1.1) uε ∼ u +
∑
k

J̃εk(Uk) in Lp+1 .

Our goal is to analyse f(t, x, uε).
Suppose that Ω is a regular open set in the sense of Definition 2.2.3. Then k

is a diffeomorphism from open sets Gk,j onto Ω. We denote by σk,j the inverse
mappings, and by mk,j the value of mk(t, y) on Gk,j . Let Z denote the relevant
set of indices (k, j). The formula (2.4.7) introduces profiles Uk,j on Ω × T and,
formally, one has on Ω,

(5.1.2) uε(t, x) ∼ u(t, x) +
∑

(k,j)∈Z
Uk,j(t, x, ϕk,j/ε) ,

with ϕk,j := ψ ◦ σk,j . Introduce on Ω× (T)Z , the function

(5.1.3) I(u,U∗) (t, x, θ∗) = u(t, x) +
∑

(k,j)∈Z
Uk,j(t, x, θk,j) ,

where θ∗ := {θk,j} and U∗ := {Uk}. Then, formally

(5.1.4) f(t, x, uε(t, x)) ∼ f
(
t, x, I(u,U∗)(t, x, ϕ∗(t, x)/ε)

)
,

As in [JMR 3], we analyze the oscillations of f(uε) by expanding f(I(u,U∗)) in
Fourier series. Introduce the average over all the angular variables.

(5.1.5) E(u,U∗) (t, x) :=
∫

(T)Z
f
(
t, x, I(u,U∗) (t, x, θ∗)

)
dθ∗ ,
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Recall that the total mass of dθ is equal to 1. The function E(u,A∗) is defined
on any regular Ω and thus outside C̃ =

⋃
C̃k. In particular, it is defined almost

everywhere on [0,+∞[×Rd as noted in Proposition 2.2.4.
Consider next one index k, and a component Gk,j of −1

k (Ω). Introduce Z ′ the
complement of {k, j} in Z. For (t, y) ∈ Gk,j introduce

(5.1.6) F (1)
k,j (u,U∗) (t, y, θ) :=

∫
(T)Z′

f
(
k(t, y), I(u,U∗) (k(t, y), θ∗)

)
dθ′∗ .

where θ∗ is identified with (θ, θ′∗), with θ in the (k, j)-th position. The average in
θ of F (1)

k,j (u,U∗)(t, y, θ) is E(u,U∗)(k(t, y)) and thus its oscillating part is

(5.1.7) Fk,j(u,U∗) (t, y, θ) := F (1)
k,j (u,U∗) (t, y, θ) − E(u,U∗) (k(t, y)) .

Finally, lift Fk,j(u,U∗) to Gk,j , introducing

(5.1.8) Ek(u,U∗) (t, y, θ) := ∆k(t, y) (H−mk,jFk,j) (t, y, θ) .

This defines Ek(u,U∗) on Gk,j , thus on the disjoint union
⋃
j Gk,j = −1

k (Ω) and
therefore outside −1

k (C̃k), in particular almost everywhere on G× T. In the same
way , define Fk and F (1)

k from their restrictions Fk,j and F (1)
k,j

Proposition 5.1.1. i) If u ∈ C∞0 ([0,+∞[×Rd) and Uk ∈ Pk, then E(u,U∗) ∈
C1

0 ([0,+∞[×Rd) and Ek(u,U∗) ∈ C1
0 (G× T).

ii) The mappings E and E∗ := {Ek} are bounded from Lp+1([0,+∞[×Rd) ×
Lp+1
∗ to L1+1/p([0,+∞[×Rd) and L1+1/p

∗ respectively, where Lq∗ denotes the prod-
uct space

∏
k L

q
k. They are Lipschitzean on bounded sets of Lp+1([0,+∞[×Rd) ×

Lp+1
∗

iii) For each k, the support of Ek(u,Uk) is contained in the support of Uk.

Proof. It is analogous to the proof of Proposition 4.1.2.
a) Suppose that u ∈ C∞0 ([0,+∞[×Rd), and Uk ∈ Pk. Since Uk vanishes on a

neighborhood of Sk, all (t, x) has a neighborhood Ω′ such that suppUk ∩ −1
k (Ω′)

is the disjoint union of G′k,j ⊂ G such that k is a diffeomorphism from G′k,j onto
Ω′. Thus, only the corresponding variables intervene in the definition of I(u,U∗)
implying that E(u,U∗) is C1 with compact support.

A similar argument shows that Ek(u,U∗) belongs to C1 and vanishes outside a
compact, which achieves the proof of i).

b) For a ∈ C∞0 (G) which vanishes on a neighborhood of Sk, introduce

(5.1.9) (Ska) (t, x) :=
∑

{y ; qk(t,y)=x}

1
∆k(t, y)2

a(t, y) .
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Then, by linearity,

(5.1.10)
∫

(Ska) (t, x) dt dx =
∫
a(t, y) dt dy ,

since this is true when a is supported in G′ ⊂ G which is diffeomorphic to k(G′).
By density, this extends to a ∈ L1(G).

Conversely, consider a nonnegative function g ∈ C∞0 ([0,+∞[×Rd). The finite-
ness Assumption 2.2.2 implies that

(5.1.11) Sk
(
∆2
k g ◦ k

)
≤ m∗ g .

Thus

(5.1.12)
∫

∆k(t, y)2 g(k(t, y)) dt dy ≤ m∗

∫
g(t, x) dt dx .

By density, this extends to g ∈ L1([0,+∞[×Rd).
c) Consider u ∈ Lp+1 and A∗ ∈ Lp+1

∗ . Introduce

(5.1.13) ak(t, y) := |∆k(t, y)|1−p
∫
T
|Uk(t, y, θ)|p+1 dθ .

Thus

(5.1.14)
∫
G

ak(t, y) dt dy := || Uk ||p+1

Lp+1
k

.

Consider (t, x) /∈ C and Ω a regular neighborhood of (t, x). Introduce I(u,A∗) as
in (5.1.3). Assumption 2.1.2 implies that

(5.1.15) | f(t, x, I(u,U∗)(t, x, θ∗)) |1+1/p ≤ C | I(u,U∗)(t, x, θ∗)) |p+1 .

Integrating in θ, and using the finiteness Assumption 2.2.2, shows that there is a
constant C ′ such that
(5.1.16)

| E(u,U∗)(t, x) |1+1/p ≤ C ′
(
|u(t, x) |p+1 +

∑
Z

∫
|Uk,j(t, x, θk,j) |p+1 dθk,j

)
.

Using the boundeness of the Hilbert transform in Lp+1(T) and the notations (5.1.9)
(5.1.13), (5.1.16), yields

(5.1.17) | E(u,U∗)(t, x) |1+1/p ≤ C ′
(
|u(t, x)|p+1 +

∑
k

(Skak)(t, x)
)

=: C ′g(t, x) .

44



This estimate holds for (t, x) /∈ Ck, and therefore almost everywhere. Integrating
and using (5.1.10) (5.1.12), shows that

(5.1.18) || E(u,U∗) ||1+1/p

L1+1/p ≤ C ′
(
||u ||p+1

Lp+1 +
∑
k

|| Uk ||p+1

Lp+1
k

)
.

d) Similarly, consider (t, y) ∈ G such that (t, x) := k(t, y) /∈ Ck. Consider Ω
a regular neighborhood of (t, x) and introduce Fk by (5.1.7). Using (5.1.15), one
obtains

(5.1.19)

∫
| Fk(t, y, θ) |1+1/p dθ ≤ 2C

∫
| I(u,U∗) (k(t, y), θ∗) |p+1 dθ∗

≤ C ′′g(k(t, y)) .

Since H is bounded in L1+1/p(T), the definition (5.1.8) of Ek(u,U∗) shows that

(5.1.20)
bk(t, y) := |∆k(t, y) |1−1/p

∫
| Ek(u,U∗)(t, y, θ) |1+1/p dθ

≤ C ′′ ∆k(t, y)2g(k(t, y)) .

This is true for all (t, y) /∈ −1
k (Ck) hence almost everywhere on G. Integrating

over G and using (5.1.12), this proves that

(5.1.21) || Ek(u,U∗) ||1+1/p

L1+1/p
k

≤ C ′
(
||u ||p+1

Lp+1 +
∑
k

|| Uk ||p+1

Lp+1
k

)
.

e) Similarly, using the estimate on the derivatives of f , one shows that

(5.1.22)

|| E(u,U∗) − E(v,V∗) ||Lp+1 +
∑
k

|| Ek(u,U∗) − Ek(v,V∗) ||L1+1/p
k

≤ C K
(
||u − v ||Lp+1 +

∑
k

|| Uk − Vk ||Lp+1
k

)
where

(5.1.23) K := ||u ||p−1
Lp+1 + || v ||p−1

Lp+1 +
∑
k

|| Uk ||p−1

Lp+1
k

+ || Vk ||p−1

Lp+1
k

f) To prove iii) we show that if Uk vanishes on G′ ⊂ G, then Ek(u, E∗) = 0 a.e.
on G′. Using Proposition 2.2.4, it is sufficient to show that for all regular open
set Ω, Ek(u, E∗) = 0 a.e. on G′k,j := G′ ∩ −1

k (Ω). This latter set is contained in
one component Gk,j . Since Uk = 0 on G′, I(u,U∗) and f(t, x, I(t, x, θ∗) do not
depend on the variable θk,j for (t, x) ∈ k(G′k,j). Formulas (5.1.7) (5.1.8) imply
that Ek(u,U∗) vanishes on G′k,j . The proof of Proposition 5.1.1 is complete.

45



5.2. Profiles of nonlinear functions of oscillations

Definition 5.2.1 A bounded family hε in L1+1/p([0,+∞[×Rd) has no prop-
agated oscillations for L if, for all bounded families wε in C0([0,+∞;L2(Rd)) ∩
Lp+1([0,+∞[×Rd) such that Lwε is bounded in L1+1/p([0,+∞[×Rd),

(5.2.1)
∫
hε · wε dtdx → 0 , as ε → 0 .

The property above is stronger than the fact that L−1(hε) converges to zero in
the sense of distributions. Note that if hε ∼ gε in L1+1/p and hε has no propa-
gated oscillations, then neither does gε. Thus the definition extends to asymptotic
families, that is to elements of AL1+1/p (with notations of §4.2).

Proposition 5.2.2. Suppose that u ∈ Lp+1([0,+∞[×Rd), Uk ∈ Lp+1
k and

(5.2.2) uε ∼ u +
∑
k

J̃εk(Uk) in Lp+1([0,+∞[×Rd) .

Then f(uε) is a bounded family in L1+1/p([0,+∞[×Rd) which is pure in the sense
of Definition 4.3.1. Its weak limit is E(u,U∗) and its Λk-profiles are Ek(u,U∗)).

Moreover,

(5.2.3) gε ∼ f(uε) − E(u,U∗) −
∑
k

J̃εk(Ek(u,U∗)) in L1+1/p([0,+∞[×Rd)

has no propagated oscillations for L.

Proof. a) Assumption 2.1.2 implies that f(uε) is bounded in L1+1/p. It also
implies that

|| f(u)− f(v) ||L1+1/p ≤ C ( ||u ||L1+p + || v ||L1+p )p−1 ||u− v ||L1+p .

Therefore, changing uε by a small term in L1+p induces a small change of f(uε)
in L1+1/p. By Propositions 5.1.1 and 4.2.2, (5.2.3) defines gε as an equivalence
class of bounded families in L1+1/p. Thus it is sufficient to consider the case where
u ∈ C∞0 ([0,+∞[×Rd) and Uk ∈ Pk and

(5.2.4) uε = u+
∑
k

Jεk(Uk) , gε = f(uε)− E(u,U∗)−
∑
k

Jεk(Ek(u,U∗)) .

Note that Proposition 5.1.1 implies that Ek(u,U∗) belongs to C1 and vanishes on
a neighborhood of Sk. Therefore the right hand side of (5.2.4) is well defined for
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each ε. One can further assume that the Uk are supported in −1
k (Ω) where Ω is a

regular open set Ω. In this case

(5.2.5) uε(t, x) = u(t, x) +
∑
Z

Uk,j(t, x, ϕk,j/ε)) ,

where the Uk,j ∈ C∞0 (Ω × T) are defined in (2.4.7) and ϕk,j are the local phases
on Ω, introduced in (2.2.9). Then

(5.2.6) f(uε) = F(t, x, ϕ∗/ε) ,

where

(5.2.7) F(t, x, θ∗) := f
(
u(t, x) +

∑
Z

Uk,j(t, x, θk,j)
)
∈ C∞0 (Ω× TZ) ,

Consider the rapidly convergent Fourier expansion

(5.2.8) F(t, x, θ∗) =
∑

α∗∈(Z)Z

cα∗(t, x) ei α∗·θ∗

Then, the definition of E and Ek is made so that

(5.2.9) gε =
∑
α∗∈R

cα∗(t, x) ei α∗·θ∗ ,

with R the set of those α∗ ∈ ZZ such that at least two components αk,j do not
vanish.

b) To compute the profiles, it suffices to show that, for all α∗ ∈ R and c ∈
C∞0 (Ω), the sequence

(5.2.10) `ε(t, x) := c(t, x) ei α∗ ϕ∗(t,x)/ε

converges weakly to 0, and that all its profiles vanish.
Assumption 2.2.5 implies that the phase ϕ := α∗ϕ∗ satisfies dϕ 6= 0 almost

everywhere. Therefore `ε converges weakly to 0.
Consider A ∈ Pk. On Ω, Jεk(A) is of the form

(5.2.11) Jεk(A)(t, x) =
∑
j

Aj(t, x, ϕk,j(t, x)/ε) =
∑
j,n

aj,n(t, x) ei n ϕk,j(t,x)/ε ,

where n runs over a finite subset of Z. The phase α∗ϕ∗ + nϕk,j is either of the
form γϕk′,j′ with γ 6= 0, or of the form α′∗ϕ∗ with α′∗ ∈ R. In the first case, the
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differential of the phase does not vanish by Assumption 2.2.1. In the second case,
it does not vanish almost everywhere by Assumption 2.2.5. This implies that

(5.2.12)
∫
`ε(t, x) Jεk(A)(t, x) dtdx → 0 ,

showing that `ε is k-pure with Λk-profile equal to 0.
c) It remains to show that `ε defined in (5.2.10) has no propagated oscillations

for L. Assumption 2.2.5 implies that detL(dϕ) 6= 0 almost everywhere on Ω. Thus
the Lebesgue measure of the set of points (t, x) where |detL(dϕ(t, x))| ≤ δ} tends
to 0 as δ tends to 0, implying that the L1+1/p norm of `ε on this set converges
to 0 as δ → 0, uniformly with respect to ε. Therefore, it is sufficient to prove the
convergence (5.2.1) for `ε = c eiϕ/ε, when c is compactly supported in the open
set where detL(dϕ) 6= 0.

In this case,

(5.2.13) b := L(i dϕ)−1c ∈ C∞0 (Ω)

and

(5.2.14) c eiϕ/ε = ε L(b ei ϕ/ε) − ε (Lb) eiϕ/ε .

Suppose that wε is a bounded family in L1+p such that Lwε is bounded in L1+1/p.
Then using (5.2.13) and (5.2.14), integration by parts show that

(5.2.15)
∫
c eiϕ/ε · wε dtdx = O(ε) .

This finishes the proof for `ε.

Recall that the spectral projector Pk is defined in Proposition 2.5.2.

Proposition 5.2.3. If A ∈ L1+1/p
k and PkA = 0, then J̃εk(A) has no propa-

gated oscillations for L.

Proof. Using the remark following Definition 5.2.1 and Proposition 4.2.2, it suffices
to prove the result when A ∈ Pk and is a monomial : A(t, y, θ) = a(t, y) ei n θ.
Then Jεk(A) is a sum of terms of the form

(5.2.16) ck,j(t, x) ei nϕk,j/ε ,

where ck,j(t, x) := ∆−1
k (t, ρk,j(t, x)) a((t, ρk,j(t, x)). Let Pk,j(t, x) := Pk(ρk,j(t, x))

denote the orthogonal projector on the kernel of L(dϕk,j). It remains to show
that (5.2.1) is satisfied when hε = c ei ϕ/ε with ϕ := ϕk,j and c ∈ C∞0 (Ω) satisfies
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Pk,jc = 0. In such case, there exists b ∈ C∞0 (Ω) such that L(idϕ)b = c. Then,
(5.2.14) holds, implying (5.2.15), and the proof of Proposition 5.2.3 is complete.

Corollary 5.2.4. For all Fk ∈ L1+1/p
k , J̃εk((I − Pk)Fk) has no propagated

oscillations for L.

6. Proof of asymptotics

In this section we prove Theorems 2.5.1 and 2.5.4 and show that the profile equa-
tions (2.5.16) are satisfied. The strategy is the following. We extract from both
families uε and fε := f(uε) pure subsequences, in the sense of §4. Equations are
derived for the weak limits u and f and the profiles Uk and Fk. Next, we intro-
duce an appropriate vε ∼ u+

∑
J̃εk(Uk), such that Lvε ∼ f +

∑
J̃εk(PkFk). Using

the dissipativity of the equation, we prove that the subsequence uε− vε converges
strongly to 0. This property is used to identify the weak limits f and the profiles
Fk as functions of u and Uk and to deduce that u and Uk satisfy the profile equa-
tions. Finally, we show that the solution of the profile equation is unique, implying
that no extraction of subsequences was necessary and that uε ∼ u+

∑
J̃εk(Uk) as

claimed .

6.1. Weak convergence

We consider the family of solutions uε of (2.1.1) with Cauchy data (2.5.1). Then,
uε is bounded in C0([0,+∞[ ;L2(Rd)) and in Lp+1([0,+∞[×Rd). This implies
that fε := f(t, x, uε) is bounded in L1+1/p([0,+∞[×Rd) By Proposition 4.3.2 we
can extract pure subsequences which, for simplicity, we still note uε and fε.

Recall that Pk(y) denotes the orthogonal projetor on the kernel of λk(ξ)Id −∑
ξjAj for ξ = dψ(y) and S+

k (p + 1) is the set of supercritical points introduced
in Definition 2.3.4.

Proposition 6.1.1. The Λk-profiles Uk of {uε}, Fk of {fε} satisfy Uk ∈ Lp+1
k

, Fk ∈ L1+1/p
k and the polarization condition

(6.1.1) Pk Uk = Uk .

Moreover, they satisfy on (G\S+
k (p+ 1))× T

(6.1.2) ∂tUk + Pk Fk = 0 , Uk|t=0 = Pk U0 .

The weak limits satisfy u ∈ Lp+1([0,+∞[×Rd), f ∈ L1+1/p([0,+∞[×Rd) and

(6.1.3) Lu + f = 0 on [0,+∞[×Rd , u|t=0 = u0 .
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Proof. a) Let A be a trigonometric polynomial. For ε fixed, Iεk(A) is rapidly
decreasing as |x| → ∞ (see the parts b) and c) in the proof of Theorem 3.5.5)
and is compactly supported in t. Let aε0 := A(0, y, ψ(y)/ε). Then, since L is skew
adjoint, one has

(6.1.4) (Luε, Iεk(A)) = − (uε, LIεk(A)) − (uε0, a
ε
0) ,

where ( , ) denotes scalar product in L2.
b) One has (see e.g. [Hö 2], Theorem 7.7.7)

(6.1.5) L(Iεk(A)) ∼ 1
ε
Iεk(B−1) + Iεk(B0) + O(ε) in L2 ∩ L∞([0,+∞[×Rd) ,

with

(6.1.6) B−1 := i
(
λk(dψ) Id − A(dψ)

)
A , B0 := DkA ,

(6.1.7) Dk :=
∂

∂t
+
∑
j

( ∂λk
∂ξj

(dψ) Id−Aj
) ∂

∂yj
+ γ .

(6.1.8) γ :=
1
2

∑
l

∑
j

∂2λk
∂ξj ∂ξl

(dψ)
∂2ψ

∂yj ∂yl

Differentiating twice the identity (λk(ξ)Id − A(ξ))Πk(ξ) = 0, where Πk(ξ) is the
spectral projector of A(ξ), and multiplying the result on the left by Πk(ξ), one
proves the fundamental identity

(6.1.9) Pk Dk (PkA) := ∂t PkA .

c) Suppose that B ∈ Pk satisfies PkB = 0. Then there is a unique A ∈ Pk such
that

(6.1.10) B := i
(
λk(dψ) Id − A(dψ)

)
A , PkA = 0 .

Therefore, (6.1.5) implies that εLIεk(A)) ∼ Iεk(B) in L2. Since A vanishes near Sk,
Iεk(A) is bounded in Lq for all q. Thus (6.1.4) implies that for all such B,

(6.1.11)
∫
Uk · B dtdydθ = 0 ,

which proves (6.1.1).
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d) For A ∈ Pk(p + 1) (see Definition 4.1.1) such that PkA = A, (6.1.5) and
(6.1.9) imply that LIεk(A) ∼ Iε(∂tA) in L2. Since uε is pure in L2, this implies
that

(6.1.12) (uε, LIεk(A)) →
∫
Uk · ∂tA dtdydθ .

Since the subsequence fε is pure in L1+1/p, Proposition 4.3.4 implies that

(6.1.13) (fε, Iεk(A)) →
∫
Fk · A dtdydθ .

Finally, the Cauchy data (2.5.1) uε0 is pure in L2 and we can pass to the limit in
(6.1.4) to find

(6.1.14)
∫
Fk · A dtdydθ =

∫
Uk · ∂tA dtdydθ +

∫
U0 · A|t=0 dydθ .

For B ∈ Pk(p+ 1), one can apply (6.1.14) to A = PkB. Using (6.1.1), we see that

(6.1.15)
∫
Pk Fk · B dtdydθ =

∫
Uk · ∂tB dtdydθ +

∫
Pk U0 · B|t=0 dydθ .

This proves (6.1.2).
e) The equation (6.1.3) for the weak limits is immediate.

6.2. Construction of approximate solutions

The next result is fundamental in the understanding of equations (6.1.2).

Proposition 6.2.1. Suppose that U ∈ Lp+1
k , F ∈ L1+1/p

k satisfy ∂tU = F
on (G\S+

k (p + 1)) × T and U|t=0 ∈ L2(ω × T). Then there exist trigonometric
polynomials Un ∈ Pk(p+ 1) and Fn ∈ Pk such that

i) ∂tUn = Fn on G× T
ii) Un → U strongly in Lp+1

k ,

iii) Fn → F strongly in L1+1/p
k ,

iv) Un|t=0 → U|t=0 strongly in L2(ω × (R/2πZ)).
When U satisfies PkU = U , one can choose the approximations Un such that

PkUn = Un.

Proof. a) Multiplying U by a function χ(y) does not affect the assumptions nor
the result. Since ω\ω0 has measure zero thanks to Assumption 2.3.3, a cutoff of
this type yields an approximation with support in [0,+∞[×ω0. In addition the
proof of Proposition 6.2.1 is trivial when U is supported in a tube [T1, T2] × ω′
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which does not intersect Sk. Therefore one can assume that U(t, y) and F(t, y)
are supported in a tube ]a, b[×ω′ where ω′ ⊂ ω0 is a small open ball such that
g′k(y) has a unique positive eigenvalue, 1/r(y), of constant multiplicity µ, such
that a < a′ ≤ r(y) ≤ b′ < b for all y ∈ ω′. Then

(6.2.1) ∆k(t, y) ≈ |t− r(y)|µ/2 .

There are two cases. First Sk intersects ]a, b[×ω′ at supercritical points, which
corresponds to α := (p − 1)µ/2 ≥ 1, and the equation ∂tU = F holds oustide
Sk. Second the intersection is subcritical, that is α < 1 and the equation holds
throughout ]a, b[×ω′.

Changing coordinates s := t − r(y), and setting z := (y, θ) we are reduced
to the situation where u(s, z) and f(s, z) are compactly supported functions on
V :=]− 1,+1[×V ′, such that

(6.2.2)
∫
V

|s|−α |u|p+1 dsdz < +∞ ,

∫
V

|s|α/p |f |1+1/p dsdz < +∞ ,

and

(6.2.3) ∂su = f on V , if α < 1 ,

(6.2.4) ∂su = f on V ∩ {s 6= 0} , if α ≥ 1 .

Mollifyings in z, we can approximate u and f by trigonometric polynomials
with coefficients infinitely smooth in y. It remains to smooth the functions with
respect to the variable s.

b) When α < 1, f is integrable since Hölder’s inequality yields

(6.2.5)
∫
V

|f | ≤
(∫

V

|s|α/p|f |1+1/p
)p/(p+1) (∫

V

|s|−α
)1/(p+1)

< +∞ .

Thus, u is continuous. Mollifying in s yields approximations which converge uni-
formly and therefore in the weighted spaces since |s|−α is integrable.

c) Suppose α ≥ 1. Let χ(s) be equal to 1 for |s| ≥ 1 and equal to 0 for |s| ≤ 1/2.
For δ > 0, let χδ(s) := χ(s/δ), uδ := χδu and fδ := χδf . Then

(6.2.6) ∂suδ = fδ + gδ , with gδ :=
1
δ
χ′(

s

δ
)u .

Thus, with β := α/p,
(6.2.7)∫

V

|s|β |gδ|1+1/p ≤ C δβ−1−1/p

∫
Vδ

|u|1+1/p ≤ C δβ−1+1−2/p
(∫

Vδ

|u|p+1
)1/p
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≤ C δ2(α−1)/p
(∫

Vδ

|s|−α|u|p+1
)1/p

,

where Vδ is the set of (s, z) in V such that δ/2 ≤ |s| δ. Since α ≥ 1, the right hand
side of (6.2.7) tends to zero as δ tends to zero. This constructs approximations
which vanish on a neighborhood of s = 0. Smoothing such functions away from
s = 0 is easy.

d) If U satisfies the polarization condition PkU = U , approximate U by Un as
above, and then replace Un by PkUn.

Corollary 6.2.2. Suppose that U and F satisfy the assumptions of Propo-
sition 6.2.1. Then U ∈ C0([0,+∞[;L2(ω × T)) and

(6.2.8) || U(T ) ||2L2(ω×T) = || U(0) ||2L2(ω×T) + 2 Re
(∫

[0,T ]×ω×T
F U dt dydθ

)
.

Moreover, the sequence Un given by Proposition 6.1.1 converges strongly to U in
C0([0,+∞[;L2(ω × T)).

Proof. The estimate (6.2.8) is clear for smooth U and F . Applying it for Un−Un′ ,
implies that Un is a Cauchy sequence in C0([0,+∞[;L2(ω × T)). Therefore, U
belongs to this space and the convergence holds in C0([0,+∞[;L2(ω×T)). Passing
to the limit this implies that U also satisfies (6.2.8).

Proposition 6.2.3. Suppose that

u ∈ Lp+1([0,+∞[×Rd) , Lu ∈ L1+1/p([0,+∞[×Rd) , u|t=0 ∈ L2(Rd) .

Then u ∈ C0([0,+∞[;L2(Rd)) and there are C∞ functions with compact support
un such that

i) un → u strongly in Lp+1([0,+∞[×Rd) and in C0([0,+∞[;L2(Rd)),
ii) Lun → Lu strongly in L1+1/p([0,+∞[×Rd).
iii) un|t=0 → u|t=0 strongly in L2(Rd).

Moreover

(6.2.9) 2 Re
∫

[0,T ]×Rd
Lu · u dt dx = ||u(T )||2L2 − ||u(0)||2L2 .

Proof. The approximations are constructed by standard mollification. The usual
energy identity (6.2.9) is satisfied for smooth un. Taking limits, it implies that
u ∈ C0([0, T ];L2(Rd)), and satisfies (6.2.9).
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Our goal is to prove that uε ∼ u+
∑
J̃εk(Uk). Our strategy is to introduce

(6.2.10) vε ∼ u +
∑

J̃εk(Uk) in Lp+1([0, T ]× Rd) ,

and to prove that ‖uε − vε‖Lp+1 → 0. To do so, we use the energy estimates and
the monotonicity of the equation. In particular we need use Lvε ∈ L1+1/p. A
difficulty is that (6.2.10) defines vε up to a sequence which converges strongly to
zero in Lp+1, and Lvε may not belong to L1+1/p. The next proposition shows
that, knowing (6.1.2) (6.1.3), one can choose a representative vε such that Lvε is
bounded in L1+1/p.

Proposition 6.2.4. Suppose that u, f , Uk and Fk are as in Proposition

6.1.1. Then, for all T > 0, there exist a bounded family vε in C0([0, T ];L2(Rd))∩
Lp+1([0, T ] × Rd), such that Lvε is bounded in L1+1/p([0, T ] × Rd) and satisfies
(6.2.10) and

(6.2.11) Lvε ∼ f +
∑

J̃εk(PkFk) in L1+1/p([0, T ]× Rd) ,

(6.2.12) vε|t=0 ∼ u0 + U0(y, ψ(y)/ε) in L2(Rd) .

Proof. a) Choose

wεk ∼ J̃εk(Uk) in Lp+1([0, T ]× Rd) ,
hεk ∼ J̃εk(PkFk) in L1+1/p([0, T ]× Rd) ,
wε0 ∼ J̃ε0 (U0) in L2(Rd) ,

We look for vε, as

(6.2.13) vε := u +
∑

vεk .

Since u ∈ Lp+1, f ∈ L1+1/p and Lu = f , Proposition 6.2.3 shows that u ∈
C0([0,+∞[;L2(Rd)). The same proposition shows that it is sufficient to construct
vεk such that

(6.2.14) vεk ∼ J̃εk(Uk) in Lp+1([0, T ]× Rd) ,

(6.2.15) Lvε ∼ J̃εk(PkFk) in L1+1/p([0, T ]× Rd) ,
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and

(6.2.16) vεk|t=0 ∼ PkU0(y, ψ(y)/ε) in L2(Rd) .

b) Fix δ > 0 and T > 0. Propositions 6.1.1 and 6.2.1 imply that there are
Vk ∈ Pk(p+ 1) and Gk ∈ Pk, such that

(6.2.17) || Vk − Uk ||L1+p
w,k

(G×T) ≤ δ , || Vk|t=0 − PkU0 ||L2(ω×T) ≤ δ ,

(6.2.18) || Gk − PkFk ||L1+1/p
k

(G×T)
≤ δ ,

and

(6.2.19) PkVk = Vk , ∂tVk = Gk .

The identities (6.1.5) (6.1.6) and (6.1.9) imply that

(6.2.20) LIεk(Vk) − Iεk(Gk) = O(ε) in L2 ∩ L∞([0, T ]× Rd) .

Introduce

(6.2.21) vε,δk := Iεk(Vk) .

Since Vk ∈ Pk(p + 1), part ii) of Proposition 4.1.3 implies that Iεk(Vk) ∼ Jεk(Vk)
in L1+p. Moreover, (6.2.17) and Proposition 4.2.2 imply that Jεk(Vk) − J̃εk(Uk) is
O(δ) in ALp+1. Therefore, there is ε(δ) > 0, such that for all ε < ε(δ),

(6.2.22) || vε,δk − wεk ||L1+p ≤ C δ .

Similarly, since Gk ∈ Pk, Gk vanishes near Sk and Iεk(Gk) ∼ Jεk(Gk) in Lq for all
q ∈ [1,+∞]. With (6.2.20), (6.2.18) and Propostition 4.2.2, this implies that one
can choose ε(δ, T ) > 0, such that for all ε < ε(δ, T ),

(6.2.23) ||Lvε,δk − hεk ||L1+1/p ≤ δ .

Finally, (6.2.17) together with the initial condition for Uk in (6.1.2) show that, for
ε < ε(δ, T )

(6.2.24) || vε,δk |t=0 − Pk wε0) ||L2(Rd) ≤ δ .

One can assume that ε(δ, T ) decreases as δ decreases.
c) There is a positive function δ(ε) such that ε < ε(δ(ε)) and δ(ε) → 0 as

ε → 0. Therefore, (6.2.22) (6.2.23) (6.2.24) imply that vεk := v
ε,δ(ε)
k satisfies

(6.2.14) (6.2.15) and (6.2.16), and Proposition 6.2.4 is proved.
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6.3. Strong convergence.

Proposition 6.3.1. If uε, u, Uk, f , Fk, T and vε are as in Proposition 6.2.4,

then uε − vε converges strongly to zero in C0([0, T ];L2(Rd)) and in L1+p([0, T ]×
Rd). In particular,

(6.3.1) uε ∼ u +
∑

J̃εk(Uk) in Lp+1([0, T ]× Rd) ,

Proof. a) uε and vε are bounded in Lp+1 and Luε and Lvε are bounded in L1+1/p.
Therefore, Proposition 6.2.3 implies that

(6.3.2)
||uε(t)− vε(t) ||2L2 − 2 Re

∫
[0,t]×Rd

L(uε − vε) · (vε − uε) =

||uε(0)− vε(0) ||2L2 .

Introduce

(6.3.3) hε := L(vε − uε) + f(vε)− f(uε) = Lvε + f(vε) .

Substituting L(uε− vε) = − (f(uε)− f(vε)) + hε in (6.3.2) and using Assumption
2.1.2, we obtain that

(6.3.4)
||uε(t)− vε(t) ||2L2 + c ||uε − vε ||1+p

L1+p([0,t]×Rd)
≤

||uε(0)− vε(0) ||2L2 + 2 Re
∫

[0,t]×Rd
hε · (vε − uε) .

b) Set

(6.3.5) w := f + E(u,U∗) , Wk := Pk
(
Fk + Ek(u,U∗)

)
,

(6.3.6) gε := hε − w −
∑
k

Jεk(Wk) .

Then, Propositions 5.2.2, Corollary 5.2.4 and Proposition 6.2.4 imply that gε is a
bounded family in L1+1/p which has no propagated oscillations for L.

Proposition 4.3.3 implies that the weak limit of vε is u, vε is pure and the
profiles are Uk. In particular, uε − vε is bounded in L1+p, converges weakly to 0,
is pure, and all its profiles vanish. Thus, since w ∈ L1+1/p,

(6.3.7)
∫

[0,t]×Rd
w · (vε − uε) → 0 .
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Next, since Wk ∈ L1+1/p
k and the profiles of uε − vε vanish,

(6.3.8)
∫

[0,t]×Rd
Jεk(Wk) · (vε − uε) → 0 .

Finally, since uε and vε are bounded families in L1+p such that Luε and Lvε are
bounded in L1+1/p, and since gε has no propagated oscillations for L, one has

(6.3.9)
∫

[0,t]×Rd
gε · (vε − uε) → 0 .

Therefore,

(6.3.11)
∫

[0,t]×Rd
hε · (vε − uε) → 0 .

c) The Cauchy data for uε and vε satisfy (2.5.1) and (6.2.12) respectively.
Therefore,

(6.3.12) ||uε(0)− vε(0) ||2L2 → 0 as ε→ 0 .

This shows that the right hand side of (6.3.4) tends to 0 as ε tends to 0, implying
the Proposition.

Corollary 6.3.2. The weak limit u and the profiles Uk satisfy the equations

(6.3.13) Lu + E(u,U∗) = 0 , on [0,+∞[×Rd ,

(6.3.14) PkUk = Uk and ∂tUk + Pk Ek(u,U∗) = 0 , on (G\S+
k (p+1))×T .

(6.3.15) u|t=0 = u0 on Rd , Uk|t=0 = PkU0 on ω .

Proof. Propositions 6.3.1 and 5.2.2 imply that

(6.3.16) fε ∼ f(uε) = E(u,U∗) +
∑
k

J̃εk(Ek(u,U∗)) + gε

where gε is bounded in L1+1/p, converges weakly to 0 and is pure with null profiles.
Therefore Proposition 4.3.3 implies that the weak limit f of fε is E(u;U∗) and the
profiles Fk are equal to Ek(u,U∗). Thus equations (6.3.13) (6.3.14) follow from
Propositions 6.1.1.

57



6.4. Uniqueness for the profile equations.

Theorem 6.4.1. Equations (6.3.13) (6.3.14) (6.3.15) have a unique solution
(u,U∗) in Lp+1([0,+∞[×Rd)× Lp+1

∗ .

The existence of a solution follows from Corollary 6.3.2. Our goal is to prove
uniqueness. It is a consequence of the dissipativity of system (6.3.13) (6.3.12),
which is inherited from the dissipativity of the original equation. Remark that
this dissipativity could be used to prove directly the existence of weak solutions,
using the methods of [LS] [S] [Ha] for monotone operators.

Lemma 6.4.2. Suppose that Ω is a regular domain. Suppose that u and v
belong to C∞0 (Ω), that Uk and Vk are trigonometric polynomials supported in
−1
k (Ω) and that PkVk = Vk. Then

(6.4.1)

∫
E(u,U∗) · v dt dx +

∑
k

∫
Pk Ek(u,U∗) · Vk dt dy dθ =∫

Ω×(T)Z
f
(
t, x, I(u,U∗)

)
· I(v,V∗) dt dx dθ∗ ,

where I is defined in (5.1.3).

Proof. Introduce

(6.4.2) Ak(t, y) :=
∫
T
Pk Ek(u,U∗) · Vk dθ .

For simplicity of notation, the (t, y) variables are omitted in the right hand side.
With notation as in (5.1.8), we see that

(6.4.3) Ak(t, y) := ∆k

∫
T
Fk(θ) · (HmkVk) (θ) dθ ,

where we have used that Pk is an orthogonal projector, PkVk = Vk and that H
is unitary in L2(T). According to (5.1.7), Fk is equal to F (1)

k plus something
independent of θ. Since the mean value of Vk is zero, this implies that

(6.4.4) Ak(t, y) := ∆k(t, y)
∫
T
F (1)
k (t, y, θ) · (HmkVk) (t, y, θ) dθ .

Introduce next the components Gk,j of −1
k (Ω) and

(6.4.5) ak(t, x) :=
∑
j

∆k(σk,j(t, x))−2 A(σk,j(t, x)) ,
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where σk,j , an inverse of k, maps Ω to Gk,j . Then, with (5.1.6), we see that
(6.4.6)

ak(t, x) :=
∑
j

∆k(σk,j(t, x))−1 ×∫
(T)Z

f
(
t, x, I(u,U∗) (t, x, θ∗)

)
· (Hmk,jVk) (σk,j(t, x), θk,j) dθ∗ ,

Introduce

(6.4.7) a0(t, x) := E(u,U) (t, x) · v(t, x) .

Then, (6.4.6) and the definition (5.1.3) of I(v,V∗) imply that

(6.4.8) a0(t, x) +
∑
k

ak(t, x) =
∫

(T)Z
f
(
t, x, I(u,U∗)

)
· I(v,V∗) dθ∗ .

On the other hand, since ∆2
k is the Jacobian of qk, one has

(6.4.9)
∫

Ω

ak(t, x) dt dx =
∑
j

∫
Gk,j

Ak(t, y) dt dy =
∫
Gk

Ak(t, y) dt dy .

With (6.4.8), this implies Lemma 6.4.2.

Proposition 6.4.3 There is a constant c > 0 such that for all (u,U∗) and
(v,V∗) in Lp+1([0,+∞[×Rd)×Lp+1

∗ which satisfy PkUk = Uk and PkVk = Vk, one
has

(6.4.10)

Re
∫ (
E(u,U∗)− E(v,V∗)

)
· (u− v) dt dx +

Re
∑
k

∫ (
Pk Ek(u,U∗)− PkEk(v,V∗)

)
· (Uk − Vk) dt dy dθ ≥

c
(
||u− v ||p+1

Lp+1 +
∑
k

|| Uk − Vk ||p+1

Lp+1
k

)
.

Proof. By density, one can assume that u and v belong to C∞0 ([0,+∞[×Rd) and
are supported in a regular Ω. One can also suppose that the Uk and Vk are
trigonometric polynomials in Pk, supported in Gk := −1

k (Ω). In this case, Lemma
6.4.2 implies that the left hand side of (6.4.10) is equal to the integral over Ω×(T)Z

of

(6.4.11) Re
(
f(t, x, I(u,U∗)) − f(t, x, I(v,V∗))

)
·
(

I(u,U∗) − I(v,V∗)
)
.
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Assumption 2.1.2 implies that this is larger or equal to cM where

(6.4.12) M :=
∫

Ω×(T)Z
| I(u,U∗) − I(v,V∗) |1+p dtdxdθ∗ .

By definition,

(6.4.13) I(u,U∗) (t, x, θ∗) = u(t, x) +
∑

(k,j)∈Z
Uk,j(t, x, θk,j)

where

(6.4.14) Uk,j(t, x, θ) :=
1

∆k(σk,j(t, x))
(
Hmk,j Uk

)
(σk,j(t, x), θ)

Similar expressions hold for I(v,V). Since

(6.4.15) u(t, x)− v(t, x) =
∫

(T)Z

(
I(u,U∗) − I(v,V∗)

)
dθ∗

one has

(6.4.16)
∫

Ω

|u(t, x)− v(t, x) |1+p dt dx ≤ M .

Similarly, since Uk,j(t, x, θk,j) is the average of I(u,U∗)(t, x, θ∗) with respect to all
the variables θk′,j′ except θk,j , one has

(6.4.17)
∫

Ω×T
|Uk,j − Vk,j |1+p dt dx dθ ≤ M .

Lifting the integration to Gk,j , using the boundedness of H in L1+p and summing
on j, this implies that

(6.4.18)
∫
Gk×T

∆k(t, y)1−p | Uk − Vk |1+p dt dy dθ ≤ C M .

This proves (6.4.10) for smooth functions supported over Ω, and thus implies
Proposition 6.4.3.

Proof of Theorem 6.4.1. Suppose that (u,U∗) and (v,V∗) are two solutions of
(6.3.13) (6.3.14). Corollary 6.2.2 implies that
(6.4.19)

‖Uk(t)− Vk(t) ‖2L2 = ‖Uk(0)− Vk(0) ‖2L2 −

2 Re
∫

[0,t]×ω×T

(
Pk Ek(u,U∗)− PkEk(v,V∗)

)
· (Uk − Vk) dt dy dθ .
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Proposition 6.2.3 implies that

(6.4.20)
‖u(t)− v(t) ‖2L2 = ‖u(0)− v(0) ‖2L2 −

2 Re
∫

[0,t]×ω

(
E(u,U∗)− E(v,V∗)

)
· (u− v) dt dy .

Adding up, and using Proposition 6.4.3 applied to functions cut off after the time
t, yields

(6.4.21)

‖u(t)− v(t) ‖2L2 +
∑
k

‖Uk(t)− Vk(t) ‖2L2 +

c
(
||u− v ||p+1

Lp+1 +
∑
k

|| Uk − Vk ||p+1

Lp+1
k

)
≤ ‖u(0)− v(0) ‖2L2 +

∑
k

‖Uk(0)− Vk(0) ‖2L2 .

This implies uniqueness and Theorem 6.4.1 is proved.

6.5. The main result.

Theorem 2.5.1 is included in the more precise statement. We consider an equation
(2.1.1) which satisfies the hyperbolicity Assumption 2.1.1 and the dissipativity
Assumption 2.1.2. We consider an initial phase ψ which satisfies Assumption 2.2.1
on ω ⊂ Rd. We also suppose that the regularity Assumption 2.3.3, the finiteness
Assumption 2.2.2 and the nonresonance Assumption 2.2.5 are satisfied.

Theorem 6.5.1. Suppose that u0 ∈ L2(Rd), U0 ∈ L2(ω × T) and {uε0} is a
bounded family in L2(Rd)) such that

(6.5.1) uε0 ∼ u0 + J̃ε0 (U0) in L2(Rd) .

Denote by (u,Uk) the unique solution of the profile equations (6.3.13-14-15) with

(6.5.2)
u ∈ C0([0,+∞[;L2(Rd)) ∩ L1+p([0,+∞[×Rd)
Uk ∈ C0([0,+∞[;L2(ω × T) ∩ L1+p

k ([0,+∞[×ω × T) ,

and uε ∈ C0([0,+∞[;L2(Rd)) ∩ L1+p([0,+∞[×Rd) the unique solution of (2.1.1)
with initial data uε0.

Then, the family uε is bounded in ∈ C0([0,+∞[;L2(Rd)) ∩ L1+p([0,+∞[×Rd)
and for all T > 0,

(6.5.3) uε ∼ u +
∑
k

J̃εk(Uk) in L1+p([0,+T [×Rd) .
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Proof. Existence, uniqueness and boundedness of uε is a classical result for dissi-
pative equations (2.1.1) (see [S], [LS ], [Ha]). Existence and uniqueness of (u,U∗),
solutions to the profile equations, are given by Theorem 6.4.1. Consider

(6.5.4) vε ∼ u +
∑
k

J̃εk(Uk) in L1+p([0,+∞[×Rd) .

For example, one can choose the family constructed in Proposition 6.2.4. Then,
Proposition 6.3.1 implies that any pure subsequence uεn satisfies

(6.5.5) uεn ∼ vεn in L1+p([0,+T [×Rd) .

Since any boundeed sequence in L1+p has at least one pure subsequence by Propo-
sition 4.3.1, this implies that the complete family uε satisfies

(6.5.6) uε ∼ vε in L1+p([0,+T [×Rd) ,

proving Theorem 6.5.1.

6.6. Absorption at supercritical points

In this paragraph, we prove Theorem 2.5.4, which show that oscillations are ab-
sorbed at supercritical points. Recall the Definition 2.5.3 of T absk (y), the first time
where the k-ray from y hits a supercritical point.

Theorem 6.6.1. If (u,U∗) is the solution of the profile equations given by
Theorem 6.4.1, then Uk = 0 a.e. for t > T absk (y).

Lemma 6.6.2. There exists c > 0 such that for all (v,V∗) ∈ L1+p × L1+p
w

satisfying PkVk = Vk, one has for all k and almost all (t, y) :

(6.6.1) Re
∫
T
Pk Ek(v,V∗) · Vk dθ ≥ c ∆1−p

k

∫
T
| Vk |1+p dθ .

Proof. By density, one can assume that v ∈ C∞0 ([0,+∞[×Rd) and that the profiles
Vk ∈ Pk. We can also assume that (t, x) := k(t, y) belongs to a regular open set
Ω. Introduce

(6.6.2) Ak(t, y) := Re
∫
T
Pk Ek(v,V∗) · Vk dθ .

For simplicity, the (t, y) dependence is omitted in the right hand side. Estimate
(6.6.1) is a consequence of the strict monotonicity in Assumption 2.1.2. We now

62



find a suitable form for Ak, in order to apply inequality (2.1.3). With notations
as in (5.1.7) (5.1.8), using that PkVk = Vk and that H is unitary, we see that

(6.6.3) Ak(t, y) = ∆k

∫
(T)2

Re
(
F (1)
k (θ)−F (1)

k (θ1)
)
· W (θ) dθ dθ1 ,

with W := HmkVk. Thus

(6.6.4) Ak(t, y) =
∆k

2

∫
T2

Re
(
F (1)
k (θ)−F (1)

k (θ1)
)
·
(
W(θ)−W(θ1)

)
dθ dθ1 .

By (5.1.6), the function F (1)
k is of the form

(6.6.5) F (1)
k (t, y, θ) :=

∫
TZ′

f
(
t, x,∆−1

k (t, y)W(t, y, θ) + W(t, x, θ′)
)
dθ′ ,

where, in the right hand side of (6.6.5), (t, x) = k(t, y) and W is a periodic
function of θ′ ∈ TZ′ . Plugging this expression in (6.6.4) transforms the right hand
side into an integral over T2 × TZ′ . Assumption 2.1.2 implies that the integrated
term is larger than or equal to

(6.6.6) c ∆2
k |∆−1

k W(θ) − ∆−1
k W(θ1) |1+p = c ∆1−p

k |W(θ) − W(θ1) |1+p .

Thus

(6.6.7) Ak(t, y) ≥ c ∆1−p
k

∫
T2
|W(θ) − W(θ1) |1+p dθdθ1 .

Since the average of W is zero, W(θ) =
∫

(W(θ)−W(θ1)) dθ1. Thus recalling dθ1

is normalized,

(6.6.8)
∫
T
|W(θ) |p+1 dθ ≤

∫
T2
|W(θ)−W(θ1) |p+1 dθ dθ1 .

Since H is bounded in Lp+1(T) , (6.6.7) and (6.6.8) imply (6.6.1) and the lemma
is proved.

Proposition 6.6.3. Consider the solution (u,U∗) of the profile equations
given by Theorem 6.4.1. Introduce

(6.6.9) σk(t, y) :=
∫
T
| Uk(t, y, θ) |2 dθ

Then, σk ∈ C0([0,+∞[;L1(Rd)), ∂tσk and ∆(t, y)1−p σ(t, y)(1+p)/2 belong to
L1([0,+∞[×Rd) and there is a constant c > 0 such that

(6.6.10) ∂tσk(t, y) + c ∆k(t, y)1−p σk(t, y)(1+p)/2 ≤ 0 .
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Note that inequality (6.6.10) holds everywhere, including neighborhoods of su-
percritical points. This is in contrast to the profile equation (6.3.14) which holds
only on the complement of the supercritical points.

Proof. We know that Uk ∈ L1+p
k , PkUk = Uk, Fk := PkEk(u,U∗) ∈ L1+1/p

k and
that ∂tUk +Fk = 0 on Gk. From Corollary 6.2.2, Uk is continuous in t with values
in L2, implying that

(6.6.11) σk ∈ C0([0,+∞[ ;L1(Rd)) .

Next we show that

(6.6.12) ∂tσk + 2 Re
∫
T
Fk · Uk dθ = 0 ,

in the sense of distributions on G. To prove this, we approximate Uk and Fk
by trigonometric polynomials Unk and Fnk according to Proposition 6.2.1. The
identity (6.6.12) for the approximations are trivial consequences of the equation
∂tUnk +Fnk = 0. To pass to the limit, we use Corollary 6.2.2 which implies that σnk
converges to σk in C0([0,+∞[;L1(ω)), and Proposition 6.2.1 which implies that
Fnk · Unk converges to Fk · Uk in L1(G). In particular, this proves that ∂tσk ∈ L1.

Lemma 6.6.2 asserts that

(6.6.13) Re
∫
T
Fk · Uk dθ ≥ c ∆(t, y)1−p

∫
T
| Uk(t, y, θ) |p+1 dθ .

Finally, we note that

(6.6.14) σ
(1+p)/2
k (t, y) ≤

∫
T
|Uk(t, y, θ)|1+p dθ .

Since Uk belongs to L1+p
k this implies that ∆1+p

k σ
(1+p)/2
k ∈ L1. Thus, (6.6.10) and

the proposition follow from (6.6.11), (6.6.13), (6.6.14).

Proof of Theorem 6.6.1. We have to show that Uk = 0 for almost all (t, y) such
that t > T absk . Thus it is sufficient to consider y in a small neighborhood ω′ of
y, contained in ω0. In this case, r(y) := T absk (y) is a smooth function of y and
Assumption 2.3.3 implies that

(6.6.15) ∆k(t, y) ≈ |t− r(y)|µ/2

for y ∈ ω′ and t ∈ I a neighborhood of t = r(y). In addition, (t, y) is supercritical,
which means that

(6.6.16) α := µ (p− 1)/2 ≥ 1 .
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Proposition 6.6.3 implies that on I × ω′, σk satisfies

(6.6.17)

σk ∈ C0(I;L1(ω′)) , σk ≥ 0 ,

∂tσk ∈ L1(I × ω′) , |t− r(y)|−α σ(1+p)/2
k ∈ L1(I × ω′) ,

∂tσk + c |t− r(y)|−α σ(1+p)/2
k ≤ 0 .

To complete the proof of Theorem 6.6.1, it remains to show that (6.6.17) implies
that σk = 0 for t > r(y).

To prove this, one can change the time variable t into t− r(y), and thus reduce
the problem to the case where r ≡ 0. Introduce

(6.6.18) g(t) :=
∫
ω′

σk(t, y) dy.

Then

(6.6.19) g(t)(1+p)/2 ≤ (meas ω′)(p−1)/2

∫
ω′

σk(t, y)(1+p)/2 dy.

Thus (6.6.17) implies that there exist c > 0 such that on I := [−a,+a], g satisfies

(6.6.20)
g ∈ C0(I) , g ≥ 0 , g′ ∈ L1(I) , |t|−α g(1+p)/2 ∈ L1(I)

g′ + c |t|−α g(1+p)/2 ≤ 0 .

This implies that g′ ≤ 0, hence that g is nonincreasing in particular g(t) ≥ g(0)
for t < 0. Since |s|−α g(s)(1+p)/2 is integrable over [−a, 0[ and α ≥ 1, this implies
that g(0) = 0. Therefore g(t) = 0 for t > 0, so σk(t, y) = 0 a.e. for t > 0 and
Theorem 6.6.1 is proved.

Proposition 6.6.3 has another corollary. It shows that no oscillations can be
created in the k-mode by nonlinear interaction, if there are no oscillations in this
mode at time t = 0.

Theorem 6.6.4. Let (u,U∗) be the solution of the profile equations given by
Theorem 6.4.1. Suppose that Pk(y)U0(y, θ), the initial condition for Uk, vanishes
on ω′ × T. Then Uk = 0 a.e. on [0,+∞[×ω′ × T.

Proof. Proposition 6.6.3 implies that the function

(6.6.21) g(t) :=
∫
ω′

σk(t, y) dy

is continuous and that its derivative is integrable and nonpositive. Thus g is
nonincreasing and g(t) vanishes identically if g(0) = 0.
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6.7. Angular smoothness for profiles

One of the difficulties in our analysis is that, for profiles Uk which are not smooth,
the expression Uk(t, y, ψ(y)/ε) does not make sense for fixed ε. However, if U
is smooth in θ, the substitution is meaningful. One can prove regularity in θ
by using the contractivity estimate (6.4.21) together with the fact that that the
profile equations are invariant under translations in θ. The angular smoothness is
described using the spaces Ls,qk introduced in Definition 2.4.1.

Theorem 6.7.1. In addition to the assumptions of Theorem 6.5.1, suppose
that ∂θU0 ∈ L2(ω×T). Then the profiles Uk belong to Ls,p+1

k for all s < 2/(p+ 1)
and ∂θUk belong to L∞([0,+∞[: L2(ω×T)). In particular, the solutions uε satisfy

(6.7.1) uε ∼ u +
∑
k

Jεk(Uk) in Lp+1([0, T ]× Rd) .

Proof. The profile equations are invariant by translations in the θ variable. Thus
(v,Uh) := (u,U(t, y, θ + h) ) is another solution. Therefore inequality (6.4.21)
implies that

(6.7.2)

sup
0≤t≤T

∑
k

‖Uk(t)− Uhk (t) ‖2L2 + c
∑
k

|| Uk − Uhk ||p+1

Lp+1
k

≤
∑
k

‖Uk(0)− Uhk (0) ‖2L2 .

Since ∂θU0 ∈ L2(ω×T), the right hand side of (6.7.2) is O(h2) and one concludes
that ∂θUk ∈ L∞([0,+∞[ ;L2(ω × T)) and

(6.7.3) sup
0≤t≤T

∥∥∥∂Uk(t)
∂θ

∥∥∥
L2(ω×T)

≤
∥∥∥∂Uk(0)

∂θ

∥∥∥
L2(ω×T)

.

(6.7.2) also implies that

sup
0<h≤1

∫
[0,T ]×ω×T

∆k(t, y)1−p
∣∣∣ Uk(t, y, θ + h) − Uk(t, y, θ)

h2/(p+1)

∣∣∣p+1

dt dy dθ

≤ C
∥∥∥∂Uk(0)

∂θ

∥∥∥
L2(ω×T)

.

Thus, for all s < 2/(p+ 1),
(6.7.4)∫ 1

0

∫
[0,T ]×ω×T

∆k(t, y)1−p
∣∣∣ Uk(t, y, θ + h) − Uk(t, y, θ)

hs

∣∣∣p+1

dt dy dθ
dh

h

≤ C
∥∥∥∂Uk(0)

∂θ

∥∥∥
L2(ω×T)

.

which implies that Uk ∈ Ls,p+1
k . Proposition 4.2.1 then implies that Jεk(Uk) is de-

fined for each ε and that and is a representative of J̃εk(Uk) and (6.7.1) is equivalent
to (6.5.3).
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7. Additional results and remarks

7.1. The wave equation

With minor changes which we now explain, our results apply to the semilinear
wave equation

(7.1.1) v + g(t, x, ∂tv) = 0 .

Assumption 7.1.1. g ∈ C1([0,+∞[×Rd × C ; C), g(t, x, 0) = 0 and there are
constants p ∈ [1,+∞[ and 0 < c < C < +∞ such that for all (t, x) ∈ R1+d and all
v and v′ in C,

| g(t, x, v) | ≤ C | v |p , | ∂v,vg(t, x, v) | ≤ C | v |p−1 ,

Re
(
g(t, x, v)− g(t, x, v′)

)
(v − v′) ≥ c | v − v′ |p+1 ,

Consider oscillatory Cauchy data

(7.1.2) vε|t=0 = h0(x) + εH0(x, ψ(x)/ε) , ∂tv
ε
|t=0 = h1(x) + H1(x, ψ(x)/ε) ,

where ψ is a smooth function with nonvanishing differential on ω ⊂ Rd, H0(x, θ)
and H1(x, θ) are smooth, 2π-periodic in θ with mean 0 and compactly supported
in ω × T, and h0, h1 ∈ C∞0 (Rd).

Introduce u := (∂tv, ∂xv) := (u0, u1, . . . , ud). Then (7.1.1) (7.1.2) take the form

(7.1.3) Lu := ∂tu − A(∂x)u + f(t, x, u) = 0 ,

(7.1.4) uε|t=0 = u0(x) + U0(x, ψ(x)/ε) + O(ε) ,

with

(7.1.5) A(ξ) :=
(

0 tξ
ξ 0

)
, f(t, x, u) :=

(
g(t, x, u0, )

0

)
.

(7.1.6) u0 := (h1, ∂xh0) , U0 := (H1, ∂xψ ∂θH0)

Equation (7.1.3) is of the form (2.1.1). The Assumption 2.1.1 of hyperbolicity
and constant multiplicity is satisifed, but the dissipativity Assumption 2.1.2 is
not satisfied. However, f depends only on u0 and the energy methods for (7.1.1)
involve scalar products f(t, x, u) · u = g(t, x, u0) · u0, suggesting that Assumption
7.1.1 is sufficient. More generally, our methods apply to systems (2.1.1) when the
nonlinearity f satisfies
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Assumption 7.1.2. There is a subspace E ⊂ CN , and a projector pE from
CN to E, and a mapping g(t, x, v) from [0,+∞[×Rd × E to E, which satisfies
Assumption 2.1.2 on [0,+∞[×Rd × E, and such that

(7.1.7) f(t, x, u) := g(t, x, pEu) .

In the reduction of the wave equation above, E is the space of u = (u0, u′) ∈
C × Cd such that u′ = 0. This assumption guarantees the global existence
and uniqueness of solutions to (2.1.1), u ∈ C0([0,+∞[ ;L2(Rd)), with pEu ∈
Lp+1([0,+∞[×Rd).

Next, note that the reduction of to a first order system introduces the artificial
eigenvalue τ = 0 and thus the possibility of artificial resonances. To circumvent
this difficulty, we note, as in [JMR 3], that the system (7.1.3) satisfies

Assumption 7.1.3. L satisfies Assumption 2.1.1 and there is a subset K ⊂
{1, . . . , k0} so that the subvariety

Γ :=
⋃
k∈K

{τ = λk(ξ)} ⊂ charL

satisfies the following condition. There are linear mappings R(τ, ξ) from E to CN ,
which depend smoothly on (τ, ξ) ∈ R1+d\(Γ ∪ {0}), such that

(7.1.8) ∀(τ, ξ) /∈ Γ ∪ {0} , ∀u ∈ E , L(τ, ξ)R(τ, ξ)u = u .

For the system (7.1.3) this assumption is satisfied with Γ := {τ2 = |ξ|2} and

(7.1.9) R(τ, ξ) :
(
b
0

)
→ b

τ2 − |ξ|2
(
τ
ξ

)
.

Assumption 7.1.3 implies that if ϕ ∈ C∞(Ω) and b ∈ C∞0 (Ω) satisfy

(7.1.10) dϕ(t, x) /∈ Γ and b(t, x) ∈ E a.e.

then b ei ϕ/ε has no propagated oscillations for L. To prove this modification
of Propositions 5.2.2 and 5.2.3, it is sufficient to replace L−1(dϕ) by R(dϕ) in
(5.2.13). This shows that only the resonances with dϕ ∈ Γ need be considered. In
this spirit, introduce k, Sk, Jεk etc, only for k ∈ K. In particular the nonresonance
Assumption 2.2.5 is weakened to
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Assumption 7.1.4 For all regular open Ω, the set of phases ϕk,j , (k, j) ∈ Z ⊂
K × N, given by (2.2.14), satisfy for all α ∈ ZZ with at least two nonvanishing
components,

(7.1.11)
∑

αk,jdϕk,j /∈ Γ ∪ {0} a.e. on Ω .

Theorem 7.1.5. Consider Cauchy data of the form (2.5.1), with

(7.1.12) ∀k /∈ K , PkU0 = 0 .

Then, there are unique u ∈ C0([0,+∞[ ; L2(Rd)) ∩ Lp+1([0,+∞[×Rd) and Uk ∈
Lp+1
k ∩ C0([0,+∞[ ; L2(ω × T)), k ∈ K, such that

(7.1.13) uε ∼ u +
∑
k∈K

J̃εk(Uk) in Lp+1([0, T [×Rd) .

The u and Uk are solutions of equations, analogous to (6.3.13-14-15), where the
operators E and Ek only involve the Lagrangians Λl for l ∈ K.

For the system (7.1.3), Γ is the union of τ = |ξ| and τ = −|ξ| and K has
cardinality two. The phases ϕk,j , all satisfy the eikonal equation for

(7.1.14) (∂tϕ)2 = |∂xϕ|2 .

Assumption 7.1.11, means that over regular open sets Ω, one has

(7.1.15)
(∑

αk,j∂tϕk,j
)2 − ∣∣∑αk,j∂xϕk,j

∣∣2 6= 0 a.e. on Ω .

Finally, note that the condition (7.1.12) is satisfied for Cauchy data (7.1.4). For
the solutions vε of (7.1.1) (7.1.2), one has

(7.1.16)
{
∂tv

ε ∼ ∂tv + J̃ε+(B+) + Jε−(B−)
∂xjv

ε ∼ ∂xjv + Jε+(B+,j) + Jε−(B−,j)
in Lp+1([0, T [×Rd) ,

with

(7.1.17) B±,j = ± ∂yjψ

|dψ| B± .

The profile equations are

(7.1.18)


v + E(∂tu,B+,B−) = 0 ,

2 ∂tB+ + E+(∂tu,B+,B−) = 0 ,
2 ∂tB− + E−(∂tu,B+,B−) = 0 .
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where the operators E and E± are those associated to the nonlinearity g(t, x, ∂tv).
Note that the profiles of uε := (∂tvε, ∂xvε) are B± (1,±dψ/|dψ|) and the orthogo-
nal projector on the line generated by ` := (1,±dψ/|dψ|) is `⊗ `/2. This explains
the factor 2 in front of ∂tB± in (7.1.18).

The initial conditions are

(7.1.19)

{
v|t=0(x) = h0(x) , ∂tv|t=0(x) = h1(x)

B±|t=0(x, θ) = 1
2

(
H1(x, θ) ± |dψ(x)| ∂θH0(x, θ)

)
.

7.2. Lipshitzean nonlinearities and nonstrictly monotone nonlinearities

The analysis and results extend immediately to nonlinear terms

f(t, x, u) + h(t, x, u)

where f is as in §2 and the perturbation h vanishes at u = 0 and is globally
lipshitzean in u. In this way the results include both those of [JMR 2] and [JMR 3].
More generally, one can treat nonlinear terms satisfying

(7.2.1) c1 |u|p+1 − c2 |u|2 ≤ Re f(t, x, u)u , |f(t, x, u)| ≤ C1|u|p + C2|u|2 ,

and

(7.2.2) Re
(
f(t, x, u)− f(t, x, v) , u− v

)
≥ c |u− v|p+1 − c′ |u− v|2

with positive constants c1 and c. In this case the solutions may grow exponentially
in time, but the analysis on bounded time intervals is unchanged.

The inequalities (2.1.3) or more generally (7.2.2) with c > 0 serve to prove that
the asymptotics (6.5.3) is valid in Lp+1. If the monotonicity is relaxed to c ≥ 0, the
analysis still goes through but yields (6.5.3) in the weaker sense of L2([0, T ]×Rd).

7.3. Nonlinear interaction and transfer of singularities above the caustic

In this section we give an example of a beam Γ+ which focuses and is absorbed
at a fold. Next, we study the nonlinear interaction between Γ+ and another beam
Γ−. Let (t, x) be a point in the caustic of Γ+. The focusing of Γ+ implies that
the time derivative of the profile of Γ− which has a finite limit as t↗ t, tends to
infinity as t↘ t.

In space dimension d = 2, consider the semilinear wave equation

(7.3.1) v + (∂tv)3 = 0

with oscillatory Cauchy data

(7.3.2) vε|t=0 = εH0(y, ψ(y)/ε) , ∂tv
ε
|t=0 = H1(y, ψ(y)/ε) ,
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where

(7.3.3) ψ(y) := y2 + y2
1/2 ,

H0(y, θ) and H1(y, θ) are smooth and compactly supported and are 2π-periodic
with mean 0 with respect to θ.

The eigenvalues are λ±(ξ) := ±|ξ|. The mappings (2.2.4) ± are

(7.3.4) ±(t, y) = (t, x) with x1 = y1 ∓ ty1/
√

1 + y2
1 , x2 = y2 ∓ t/

√
1 + y2

1 .

Only + leads to a caustic for positive times. The singular set (2.2.5) is

(7.3.5) S+ := {(t, y) ∈ [0,+∞[×R2 ; t = s(y1) } .

where s(y1) := (1 + y2
1)3/2. The caustic set C+ is parametrized by y ∈ R2 as

(7.3.6) t = (1 + y2
1)3/2 , x1 = −y3

1 , x2 = y2 − (1 + y2
1) .

and

(7.3.7) C+ := {(t, x) ∈ [0,+∞[×R2 ; x2
1 = (t2/3 − 1)3 } .

Introduce next T+ so that −1
+ (C+) = S+∪T+. T+ is a smooth surface parametrized

by (a, b) ∈ R2 as

T+ := {(t, y) ∈ [0,+∞[×R2; t = (1+a2)3/2, y1 = −a3−a−a(1+a2+a4)1/2, y2 = b}

and there exists a smooth even convex function τ : R→ R such that τ(y1) < s(y1)
for y1 6= 0, τ(0) = s(0) and

(7.3.8) T+ := {(t, y) ∈ [0,+∞[×R2 ; t = τ(y1)} .

G\{S+ ∪ T+} has four connected components

(7.3.9)

G1 := {(t, y) ∈ [0,+∞[×R2 , t < τ(y1) } ,
G+

2 := {(t, y) ∈ [0,+∞[×R2 , τ(y1) < t < s(y1) , y1 > 0} ,
G−2 := {(t, y) ∈ [0,+∞[×R2 , τ(y1) < t < s(y1) , y1 < 0} ,
G3 := {(t, y) ∈ [0,+∞[×R2 , t > s(y1) } ,

Define

(7.3.10) G2 := G+
2 ∪G−2 .

Lemma 7.3.1. i) If (t, y) ∈ G1, then (t, y) is the unique preimage of +(t, y).
ii) If (t, y) ∈ G2, then −1

+ (+(t, y)) has three elements, (t, y), (t, y′) ∈ G2 and
(t, y′′) ∈ G3. This defines a mapping ρ : (t, y) → (t, y′) from G2 into itself. Then
ρ ◦ ρ = Id, ρ is C∞ on G2, ρ(G+

2 ) = G−2 and ρ(G−2 ) = G+
2 . Moreover, ρ extends

continuously to G2 so that ρ(T+) = S+, ρ(S+) = T+.

71



Suppose (t, y) ∈ G−2 . We have (t, y′) = ρ(t, y) if y′ is the unique solution of

(7.3.11) y′(1− t(1 + y′2)−1/2) = y(1− t(1 + y2)−1/2)

such that (t, y′) ∈ G+
2 .

With the notations and results of §7.1, the asymptotics of ∂tvε are described
in (7.1.16) and (7.1.18). Since the nonlinearity ∂tu3 is an odd function of ∂tu, it
follows that, if H0 is odd in θ and H1 is even in θ, then the average v vanishes.
One has

(7.3.12) ∂tv
ε ∼ Jε+(B+) + Jε−(B−)

and the profiles are determined by the transport equations

(7.3.13)
{

2 ∂tB+ + E+(B+,B−) = 0 ,
2 ∂tB− + E−(B+,B−) = 0 ,

with initial conditions

(7.3.14)

B+|t=0(y, θ) = 1
2

(
H1(y, θ) + |dψ(y)| ∂θH0(y, θ)

)
,

B−|t=0(y, θ) = 1
2

(
H1(y, θ) − |dψ(y)| ∂θH0(y, θ)

)
.

If, in addition, H1 = |dψ| ∂θH0, then Theorem 6.6.4 implies that B− vanishes
identically. Thus

(7.3.15) ∂tv
ε ∼ Jε+(B+) , with 2 ∂tB+ + E+(B+) = 0 .

As mentionned in section 2.6, the exponent p = 3 is always supercritical, and
therefore Theorem 6.6.1 implies that B+ = 0 on G3.

We now describe the interaction term E+(B+). On G1 × T, Lemma 7.3.1 i)
implies that

(7.3.16) E+(B+) (t, y, θ) =
1
2

1
∆+(t, y)2

B+(t, y, θ)3 ,

where ∆+(t, y)2 :=
∣∣ 1− t/s(y1)

∣∣.
When (t, y) ∈ G2, the general description of E+, as given in (5.1.8), involves the

three preimages of +(t, y). Since B+ = 0 on G3, only the preimages in G2 have to
be considered, that is (t, y) and (t, y′) = ρ(t, y). To (t, y′), the construction (5.1.3)
assigns a variable θ′ ∈ T, and (5.1.8) shows that

(7.3.17) E+(B+) (t, y, θ) =
1
2

∆(t, y)
∫
T

(B+(t, y, θ)
∆+(t, y)

+
B+(ρ(t, y), θ′)
∆+(ρ(t, y))

)3

dθ′ .
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We have used that the index m(t, y) is equal to 0 on G2, so that no Hilbert
transform is needed. Since B+ is even in θ, one obtains

(7.3.18)
E+(B+) (t, y, θ) =

1
2
B+(t, y, θ)3

∆+(t, y)2
+

1
2
a(t, y)B+(t, y, θ)

a(t, y) :=
1

∆+(ρ(t, y))2

∫
T
B+(ρ(t, y), θ′)2 dθ′

Example 7.3.2 Suppose that the initial oscillations are supported in 0 < α ≤
y1 ≤ β < +∞. Then, Theorem 6.6.4 implies that B+ is supported in the strip
D := { (t, y) ∈ [0,∞[×R2 : α ≤ y1 ≤ β }. If (t, y) ∈ D ∩ G2 ⊂ G+

2 , then
ρ(t, y) ∈ G−2 and B+(ρ(t, y), . ) vanishes identically on T. Therefore, a(t, y) = 0.
Combining (7.3.16) and (7.3.18) and the absorption result on G3, we conclude that
B+ is supported in K×T, K := { (t, y) ∈ [0,∞[×R2 : α ≤ y1 ≤ β , 0 ≤ t ≤ s(y1)}
and B satisfies in the interior of K × T

(7.3.19) 2 ∂t B+(t, y, θ) +
B+(t, y, θ)3

∆+(t, y)2
= 0 .

Thus, for t < s(y1),

(7.3.20) B+(t, y, θ) =
B+(0, y, θ)(

1 + `(t, y)B+(0, y, θ)2
)1/2 ,

with

(7.3.21) `(t, y) :=
∫ t

0

s(y1)
s(y1) − s

ds .

B+ is smooth if the data are smooth and tends to 0 when t→ s(y1), in accordance
with the absorption theorem. Formula (7.3.20) provides a precise rate of decay
which is further analysed in (7.3.38).

Note that + is a bijection from K onto +(K). In the (t, x) space, one has

(7.3.22) ∂tv
ε(t, x) ∼ B(t, x, ϕ(t, x)/ε)

with B supported in +(K)× T, given by

(7.3.23) B(t, x, θ) :=
1

∆+(t, y)
B+(t, y, θ) , ϕ(t, x) = ψ(y)

where y is the unique solution in K of (t, y) = (t, x). In contrast to the behavor of
the Lagrangian profile B, the amplitude of B tends to infinity as (t, y) approaches
S+. However, the rate of blow up is strictly smaller then in the linear case.
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Example 7.3.3. Suppose that the data are supported in {−∞ < c ≤ y1 ≤
d < 0} ∪ {0 < a ≤ y1 ≤ b < +∞}. Then, Theorem 6.6.4 implies that B+ is
supported in the union of the strips D+ := { (t, y) ∈ [0,∞[×R2 ; a ≤ y1 ≤ b } and
D− := { (t, y) ∈ [0,∞[×R2 ; c ≤ y1 ≤ d }.

Introduce K+ := { (t, y) ∈ [0,∞[×R2 ; a ≤ y1 ≤ b , 0 ≤ t ≤ s(y1)} and
K− := { (t, y) ∈ [0,∞[×R2 ; c ≤ y1 ≤ d , 0 ≤ t ≤ s(y1)}. Then + is a bijection
from K± onto +(K±). One has

(7.3.24) ∂tv
ε(t, x) ∼ B+(t, x, ϕ+(t, x)/ε) + B−(t, x, ϕ−(t, x)/ε)

with B± supported in +(K±)× T , given by

(7.3.25) B±(t, x, θ) :=
1

∆+(t, y)
B+(t, y, θ) , ϕ±(t, x) = ψ(y)

where y is the unique solution in K± of +(t, y) = (t, x). In this case, ∂tvε is the
superposition of two wave trains, which interact on +(K+)∩ +(K−). Each wave
train focuses, B+ at +(S+ ∩K+) and B− at +(S+ ∩K−).

When one follows a ray starting at (0, y) ∈ K−, for t < τ(y1), the point (t, y)
remains in G1, and (t, y) /∈ (K+). There is no interaction, and E+(B+) is given
by (7.3.16).

t

y

G

G

G

2

3

2

-

+

-
+K K

T

S +

+

Exemple 7.3.3 in Lagrangian coordinates

G 1

c d a b

Figure 7.1

When the ray reaches T+, that is when (t, y) ∈ G−2 , the interaction can start
since (t, y) = (ρ(t, y)). See Figure 7.1, where, for simplicity, it is assumed that
+ maps (D+ ∩ G2) onto (D− ∩ G2) so that, on the base, the intersection of the
two beams is exactly the interaction area we want to discuss, wide enough to
contain all the focal points of the beam corresponding to D+ but no more. Note
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that ρ(t, y) ∈ S+ when (t, y) ∈ T+, and therefore a singularity is expected in the
coefficient a. Equation (7.3.18) suggests that this singularity may jump to the
solution B+. In other words, when one follows a ray for B−, the interaction with
B+ starts when one reaches the caustic of B+, and the singulatity of B+ at the
caustic may induce a singularity in B−. We now analyse this possibility in detail.

Proposition 7.3.4. i) There is a constant C such that for all (t, y) ∈ K+∪K−
and (t, y′) := ρ(t, y), one has

(7.3.26)
1
C
|t− τ(y1)|1/2 ≤ |t− s(y′1)| ≤ C |t− τ(y1)|1/2 .

ii) With a defined in (7.3.18), there is a constant C such that for all (t, y) ∈
(K+ ∪K−) ∩G2 one has

(7.3.27) |a(t, y)| ≤ C
∣∣t− τ(y1)

∣∣−1/2
.

Proof. For (t, y) ∈ G2∩K± the function t−τ(y1) vanishes only when ρ(t, y) ∈ S+,
that is when (t, y) ∈ T+. Since K± are compact it is sufficient to prove (7.3.26)
near such points. At these points, + is a local diffeomorphism near T+ and has a
fold along S+. Since +(T+) = +(S+), the estimate follows.

Proposition 6.6.3 implies that

(7.3.28) ∂t

∫
T
|B+(t, y, θ)|2 dθ ≤ 0 .

Since the data are assumed to be smooth, this implies that the integral is uniformly
bounded on [0,+∞[×R2.

Since ∆(ρ(t, y)) = |t− s(y′1)|1/2, (7.3.26) and the definition (7.3.18) of a, imply
(7.3.27).

We now solve the profile equations. The solution is supported in K × T, with
K := K+ ∪K−. On (K ∩G1)× T, the equation is

(7.3.29) 2 ∂tB+ +
1

∆+(t, y)2
B+(t, y, θ)3 = 0 .

where ∆+(t, y)2 :=
∣∣ 1 − t/s(y1)

∣∣. The explicit solution is given by (7.3.20). We
note that B+ is smooth on K ∩G1, up to the boundary K ∩ T+. Let

(7.3.30) V0(y, θ) := B+(τ(y1), y, θ)

denote the trace of B+ on T+
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On (K ∩G2)× T, the equation is

(7.3.31) 2 ∂tB+(t, y, θ) +
B+(t, y, θ)3

∆+(t, y)2
+ a(t, y)B+(t, y, θ) = 0 ,

where a is defined by (7.3.18). Introduce

(7.3.32) A(t, y) :=
1
2

∫ t

τ(y1)

a(s, y) ds .

By Proposition 7.3.4, A is bounded on G2 ∩K and vanishes on T+. Then

(7.3.33) V(t, y, θ) := eA(t,y) B+(t, y, θ)

satisfies

(7.3.34) 2 ∂tV(t, y, θ) +
e−2A(t,y)

∆(t, y)2
V(t, y, θ)3 = 0 , V(τ(y1), y, θ) = V0(y, θ).

Since B+ is continuous across T+, one has

(7.3.35) V(t, y, θ) =
V0(y, θ)(

1 + h(t, y)V0(y, θ)2
)1/2 ,

with

(7.3.36) h(t, y) :=
∫ t

τ(y1)

e−2A(s,y)

∆(s, y)2
ds .

Since A is bounded on K ∩G2 and ∆(t, y)2 = 1− t/s(y1), we see that

(7.3.37) h(t, y) ≈ − ln(s(y1)− t) as (t, y)→ S+ ∩K .

This implies that if V0(y, θ) 6= 0 a.e. on T , then

(7.3.38) V(t, y, θ) ≈
∣∣∣ ln(s(y1)− t)

∣∣∣−1/2

as t→ s(y1), (t, y) ∈ K+.

In particular V → 0. But (7.3.38) is more precise. It implies that

(7.3.39)
∫
T
|V(t, y, θ)|2 dθ ≈

∣∣∣ ln(s(y1)− t)
∣∣∣−1

as t→ s(y1), (t, y) ∈ K+

if V0(y, . ) 6= 0 a.e. on T. Using again that A is bounded, we see that

(7.3.40)
∫
T
|B+(t, y, θ)|2 dθ ≈

∣∣∣ ln(s(y1)− t)
∣∣∣−1

as t→ s(y1), (t, y) ∈ K+.
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Proposition 7.3.4 then implies that

(7.3.41) a(t, y) ≈
∣∣∣τ(y1)−t

∣∣∣−1/2∣∣∣ ln(τ(y1)−t)
∣∣∣−1

as t→ τ(y1), (t, y) ∈ K−,

for y ∈ D− such that B+(0, y′, ·) 6= 0 ∈ L2(T) where y′ ∈ D+ is defined by
ρ(τ(y1), y) = (s(y′1), y′). Plugging this estimate in (7.3.31) yields the following
result.

Theorem 7.3.5. i)

(7.3.42) lim
t↗τ(y1)

∂t B+(t, y, θ) = − 1
2
B+(τ(y1), y, θ)3

∆+(τ(y1), y)2
.

ii) If B0(y, θ) 6= 0,

(7.3.43) lim
t↘τ(y1)

∂t B+(t, y, θ) = − sgn(B+(0, y, θ)) ∞ .

Moreover, the quotient of | ∂t B+(t, y, θ) | by∣∣τ(y1)− t
∣∣−1/2∣∣ ln(τ(y1)− t)

∣∣−1

is bounded from above and from below by positive numbers, as t↘ τ(y1).

For globally Lipschitzean nonlinearities, we observed jumps for ∂tB+ on T+. In
particular, B+ was Lipschitzean in t. The singularity (7.3.43) is much stronger,
since B+ belongs to no Cα, with α > 1/2. Note that ∂t |B+(t, y, θ) |2 → −∞ as
t→ τ(y1) from avove, which means that the rate of dissipation increases drastically
when one crosses T+.
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