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Abstract

We establish existence and stability of multidimensional shock fronts in the van-
ishing viscosity limit for a general class of conservation laws with “real”, or partially
parabolic, viscosity including the Navier—Stokes equations of compressible gas dynamics
with standard or van der Waals-type equation of state. More precisely, given a curved
Lax shock solution u" of the corresponding inviscid equations for which (i) each of the
associated planar shocks tangent to the shock front possesses a smooth viscous profile
and (ii) each of these viscous profiles satisfies a uniform spectral stability condition
expressed in terms of an Evans function, we construct nearby smooth viscous shock
solutions u¢ of the viscous equations converging to u® as viscosity € — 0, and establish
for these sharp linearized stability estimates generalizing those of Majda in the inviscid
case. Conditions (i)—(ii) hold always for shock waves of sufficiently small amplitude,
but in general may fail for large amplitudes.

We treat the viscous shock problem considered here as a representative of a larger
class of multidimensional boundary problems arising in the study of viscous fluids,
characterized by sharp spectral conditions rather than symmetry hypotheses, which
can be analyzed by Kreiss-type symmetrizers.

Compared to the strictly parabolic (artificial viscosity) case, the main new features
of the analysis appear in the high frequency estimates for the linearized problem. In
that regime we use frequency-dependent conjugators to decouple parabolic components
that are smoothed from hyperbolic components (like density in Navier-Stokes) that are
not. The construction of the conjugators and the subsequent estimates depend on a
careful spectral analysis of the linearized operator.
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1 Introduction

A number of equations in continuum mechanics may be written as viscous, or second-order
perturbations

d d
(1.1) Oufo() + 3 0 5(u) — & 37 9 (B (u)dhr) = 0
j=1 4. k=1

of first-order systems of hyperbolic conservation laws
d
(1.2) Orfou) + > 9;fi(u) =0,
j=1

where u, f/ € RY, B € RNXN " Here the second-order Bj, terms model transport
effects such as viscosity and heat, magnetic, or electric conduction, while the coefficient e
is a dimensionless parameter depending on the length and time scales under consideration.
The main examples that we have in mind are the Navier—Stokes and Euler equations of
compressible gas dynamics, which have forms (1.1) and (1.2), respectively. In general, we
will refer to Bjj, terms as (generalized) viscosity terms, and % as a (generalized) Reynolds
number. See Part 2 for a precise description of the Navier—-Stokes and Euler equations.



Systems (1.2) are well known to support shock wave, or travelling discontinuity front
solutions

Jug oz <w(ty)
(1.3) uo(y, x,t) = {ug" £ > b(ty).

Here (t,y,z) := (zo,21,...,24) and uoi, 1 are smooth functions satisfying the Rankine-
Hugoniot jump conditions

d—1
(1.4) > 05 [fi(w)] = [fa(u)]
j=0

on the shock front {x = 9¥(¢,y)}, and (1.2) on the respective sides of the front. A wide
class of such solutions has been constructed by A. Majda [M2, M3] under an appropriate
spectral stability condition (the “uniform Lopatinski condition”, Definition (7.1)) on the
family of all planar shock fronts tangent to ¢. A fundamental question in the theory
of hyperbolic conservation laws, known as the “viscous profile” or “vanishing viscosity”
problem, is whether there exist “viscous regularizations” of such inviscid shock solutions,
that is, solutions u. of the viscous equations (1.1) such that u. approaches ug in the vanishing
viscosity limit € — 0. That is, does the behavior of solutions of the model (1.2) accurately
predict the behavior of solutions of the more complicated model (1.1)7

In the case that (1.1) is strictly parabolic, a complete solution of the viscous profile prob-
lem was given in [GMWZ3], extending partial results of [GMWZ2], answering in the affir-
mative under the assumption of a viscous spectral stability condition (the “uniform Evans
condition”, Definition (2.20)) analogous to that of Majda in the inviscid case. However,
physical systems are typically not strictly parabolic, but rather of a composite, symmetric
hyperbolic—partially parabolic form identified by Kawashima [Ka, KaS1, KaS2]; in partic-
ular, the Navier—Stokes equations of compressible gas- or magnetohydrodynamics (MHD)
have this form. Thus, the problem remains open in the physical context from which it
originally derived.

In this paper, we continue the program begun in [GMWZ1, GMWZ2, GMWZ3], extend-
ing the results of [GMWZ3] to a general class of hyperbolic—parabolic systems containing
in particular the Navier—Stokes equations of compressible gas dynamics. Viscous regular-
izations are shown to exist assuming the uniform Evans condition; the condition is known
to hold for weak shocks [PZ]. With suitable modifications, our methods can be applied also
to the equations of MHD [GMWZ5]. The class of systems we consider is somewhat more
general than the one defined by Kawashima, and is defined by replacing his symmetrizabil-
ity hypotheses with sharper spectral hypotheses. The relation between the two classes is
analogous to that between the classes of hyperbolic and Friedrichs symmetric hyperbolic
systems.

In the inviscid case the standard approach [M2, M3, Met1] toward the analysis of solu-
tions (1.3) is to flatten the shock by the change of variables involving the unknown 1)

(1.5) T=x—y(ty),



transforming (1.2) into

T
L

(1.6) Aj(u)dju+ Ag(u, dip)dzu =0,

<.
I
]

where Aj(u) := fj(u) is the Jacobian matrix of f; and

d—1
(1.7) Ag(u, d) = Ag(u) =Y 05 A;(u)
§=0

is the boundary matrix. The equation (1.6) is then solved separately on { > 0} and
{Z < 0}, together with the transmission conditions

d—1
(1.8) > o[ fiw)] = [faw)]  on {&=0}
j=0

induced by (1.4).

In the viscous case, under appropriate “physical” hypotheses (see Section 2, or discus-
sion in [Z3], Section 1.3.1 and references therein), the discontinuity is smoothed by the
joint action of hyperbolic and parabolic terms, and so there is no well-defined front and
no transmission condition (1.4). Nonetheless, following [GW, GMWZ3] we introduce an
artificial unknown front ¢¢ and perform the transformation

(1.9) T=z—y(ty)

to convert the equations to a form

U
—

d
(1.10) Aj()dgu® + Ag(u®, dyf)ozu® — e . D; (Bj,k(ue)Dkue) ~0
j k=1

i
o

analogous to the inviscid one, where D; = 0; — (0;4°)0z when 1 < j < d and Dy = 0;.
Note that the function ¢ which defines the “viscous front” is distinct from the function
that defines the inviscid shock.

The introduction of the viscous front allows us to reformulate (1.10) as a transmission
problem. Let By q(uf, V1°) be the coefficient of 92 in (1.10). Since solutions are expected
to be smooth in the viscous case, we set uS. := u®|41;>0, replace the jump conditions (1.8)
with tangency conditions

(1.11) (] =0, [Baa(u®,V¢©)0:u] =0 on =0,

and observe that every smooth solution S, 1€ of the transmission problem (1.10), (1.11)
pieces together to give a smooth solution of (1.10), or equivalently (after changing back to
the original variables), the original viscous problem (1.1) on the whole space.

This puts the viscous and inviscid problems into the common framework of fixed-
boundary transmission problems and, in particular, allows us to apply Kreiss-type sym-
metrizers to the viscous problem. (Recall that in [K] Kreiss constructed symmetrizers for



strictly hyperbolic boundary problems.) Still to be determined are the separation of viscous
and inviscid effects in the enlarged system (1.10) and the relation of (1.11) to (1.8) in the
singular limit € — 0. Note that the “size” of the viscous boundary-transmission system, and
the number of transmission conditions both depend on the rank of Bgdd; thus, (1.11) repre-
sents an appropriate generalization to real viscosity systems of the corresponding condition
introduced in [GW, GMWZ3] in the strictly parabolic case.

By suitable extension of the methods of [GW, GMWZ3|, we find (see Section 5) that,
provided (i) the inviscid solution wug (1.3) satisfies the spectral stability condition imposed
by Majda on his constructed solutions and (ii) each tangent planar discontinuity has a
transversal planar viscous profile (as defined in Section 2.3), then we may construct a
hierarchy of approximate solutions

(1.12) ug" = > duty,x3/e), M=) Fity)
0<j<M 0<j=M

of (1.10)—(1.11) of order M > 0 satisfying the equations up to order e+, In this expansion
the first term " is the inviscid shock front (called ¢ in (1.3)) and

(1.13) Ut y, &, 2) = ug(t,y, & +°(t,y)) + VO(t,y,2) in £2 >0,

where VO(¢,y, 2) decays exponentially to zero as z — 400 and describes the viscous bound-
ary layers on each side of the inviscid shock. In addition, for

(1.14) p(t,y) = (ug (t,y,0°(,9)), ug (8, y,9°(t,y)), dv(t, y)),

Wo(z,p(t,y)) := U'(t,y,0, ) satisfies the viscous profile equation (2.22), (2.23) associated
to the inviscid shock.
The goal is then to convert the formal approximation error to a rigorous convergence

error: that is, to show that (ui™, &™) is order eM*! close to an exact solution (uf,
1?). The main issue therefore, as in [GMWZ2, GMWZ3], is to establish sufficiently strong
stability estimates about the highly singular approximate solutions uZ’M, oMt carry out

an appropriate nonlinear iteration for u®, 1°.

To this end, we impose a spectral stability condition on the viscous shock profiles asso-
ciated with the family of planar shocks tangent to the inviscid shock g, analogous to the
condition imposed by Majda on the planar shocks themselves. As described in [ZS, Z1], this
may be expressed in terms of an Evans function analogous to the Lopatinski determinant
of the inviscid case; moreover, it is a striking fact that the viscous spectral condition in the
low frequency regime is equivalent to the combination of the inviscid spectral condition and
transversality of the viscous profile. The latter two conditions are the main ones needed
for our construction of approximate solutions. A precise statement of the equivalence is
given by Theorem 7.2 in the Appendix. Thus, the viscous stability condition is a natural
generalization of the uniform Lopatinski condition of Majda, which we call the uniform
Evans condition. Like the Lopatinski condition, the uniform Evans condition is satisfied
for sufficiently small-amplitude shocks [PZ, FS], but may fail for large-amplitude shocks
[E, Z2]. Under this condition we establish uniform stability estimates for ¢ sufficiently
small, estimates that reduce in the vanishing viscosity limit € — 0 to those established by
Majda [M2, M3] in the inviscid case, and yield eventually the following main Theorem. The
hypotheses (H0)-(H10) are partitioned among Assumptions 2.1, 2.4, 2.6, 2.9, 2.21, and 4.1.



Theorem 1.1. Given models (1.1)~(1.2) and a piecewise smooth inviscid shock solution
ug, Yo of (1.6)—(1.8) defined on a time interval 0 < t < T, satisfying hypotheses (H0)-
(H9) and (H10)(a) (including the uniform Evans condition (H9)), there exist approzimate
solutions us™ , Y™ of (1.10)~(1.11) as described in (1.12) of all orders M > 0, and an
exact solution u®, ¥ of (1.10)—(1.11), such that, for all 2 < p < oo,

M M+1 M M+1
(1.15) Jug™ — UEHLP([O,T],y,i) = Cem e - wE’LP([O,T],y) s Cemm
Consequently,

(1.16) [u® = woll Logory.ym) < CEYPy 10F = ol ooy < C

and therefore
(1.17) e — @oll 1o o.17,4,2) < CE™Ps

where 1. and Gy denote the associated solutions of (1.1) and (1.2), and C > 0 is a constant
independent of €.

This theorem is an immediate corollary of the more precise result Theorem 6.18. To-
gether with our linearized stability estimates, Theorem 1.1 represents a natural extension of
the results of Majda [M2, M3] for inviscid equations (1.2) to the partially parabolic viscous
regularization (1.1), analogous to that carried out in [GMWZ3] in the strictly parabolic
case.

Our analysis in the low and medium frequency regimes follows that of [GMWZ3], with
appropriate modifications to accommodate partially parabolic viscosity. In particular, we
use the central ideas introduced in [GMWZ3] of working with the problem linearized with
respect to both u and 7, and of introducing an extra boundary condition supplementing
(1.11) in the form of a local front evolution rule. Having introduced the extra unknown ¢ in
(1.10), we should expect the problem to be underdetermined without some extra boundary
condition. The key to the low frequency stability analysis, here as in [GMWZ3], is to
choose the extra boundary condition in a way that removes the translational degeneracy of
the linearized problem in the low frequency regime.

The high-frequency stability analysis of [GMWZ3] in the strictly parabolic case was
based on a relatively straightforward rescaling argument. Here it is trickier due to the
partial parabolicity and is carried out in a different way. In this regime, after a careful
spectral analysis of the full operator, we are able to use paradifferential conjugators to
decouple parabolic components that are smoothed from hyperbolic components (like density
in Navier-Stokes) that are not. The estimate of the hyperbolic components depends on a
further spectral analysis of the corresponding block evaluated near the endstates of the
profile, and on a choice of norms exponentially weighted in a suitable way along the profile.
The estimate of the parabolic components proceeds just as in the case of artificial viscosity.

New arguments are also required in the construction of the approximate solutions, espe-
cially in the choice of boundary conditions for the “slow” parts of the higher order profiles.
In addition, the weaker high frequency estimate associated with real viscosity requires, for
its application to the small viscosity limit, a nonlinear iteration scheme quite different from
the one used in [GMWZ3].



The high frequency analysis and the associated identification of useful structural condi-
tions on the equations sufficient to carry out the analysis represent the main contributions
of the paper. In this paper and its successors we identify general classes of hyperbolic-
parabolic systems characterized by sharp spectral hypotheses rather than symmetry hy-
potheses, which can be analyzed using Kreiss-type symmetrizers. Such problems include
the viscous shock problem considered here, the Navier-Stokes noncharacteristic boundary
layers studied in [GMWZ4], and the viscous MHD shocks studied in [GMWZ5].

Plan of the paper. In Part 2 we present the various assumptions made in our analysis
and discuss the fully linearized problem. The assumptions are satisfied in particular for
sufficiently small-amplitude, Lax-type shock waves of the Euler/Navier-Stokes equations
of compressible flow, with standard or van der Waals-type equation of state. The main
ideas and difficulties of the paper are already present in the frozen coefficient analysis of
Part 3, which is completely free of paradifferential operators. Paradifferential operators are
used only in Part 4 in order to extend the estimates of Part 3 to the variable coeflicient
case. This is essential in order to handle curved shocks. Section 4.2 contains all the needed
paradifferential facts. In Part 5 we construct high order approximate solutions to the vis-
cous transmission problem (1.10), (1.11), and in Part 6 we find exact solutions nearby. In
the appendix we give a proof the Zumbrun-Serre [ZS, Z1, Z2] result, relating low frequency
behavior of the Evans function to the Majda inviscid stability determinant.

Remark 1.2. 1. We call attention to the convention on stating hypotheses described in
Remark 2.25.

2. We don’t distinguish between v¢ and ve, u® and ug, w* and wy, etc.. Especially when
other indices are present, it is sometimes more convenient to have an index up rather than
down or vice versa.

2 Equations and assumptions

2.1 The physical equations

Our assumptions are modeled on the fundamental example of the Navier-Stokes equations
of compressible gas dynamics with general, possibly van der Waals type equation of state.



The full Navier-Stokes equations are the 5 x 5 system
3 .
(@) pe+ Z(pv)i«j =0

3
Z (pv'o’ + pdij)a; Z{u (v + vl )—|—)\(Z 0ijta;, 1=1,2,3

J=1 k=1

(2.1) i
© fole+ }+ZW W) o), =

3
Z{,u Z vi(vij +vl.) + A Z v’;k + Kz, Ya, -
j=1 =1

k=1

Here we choose to work with the unknowns p, v = (v!,v? v3) and § which denote the

density, fluid velocity, and temperature, respectively. The pressure p and internal energy e
are given smooth functions of p > 0 and 6 > 0 satisfying

(2.2) Oge > 0.

We take the viscosity coefficients p, A and the heat conduction coefficient x to satisfy

(23) u:EE(p)Q)’ )\ZEA(/),@), RZEﬂ(pae)

where p, A and k are positive functions. € > 0 is a small parameter that we’ll sometimes
refer to as “the viscosity”. Note that the condition (2.2), together with the condition x > 0,
is necessary for the well posedness of the heat conduction equation in #. Note also that the
inviscid system of Euler’s equation (2.1) with e = 0 is hyperbolic only when

(2.4) Opp > 0,

which may hold on a strictly smaller domain of (p, #) than does (2.2), as seen in the example
of a van der Waals gas.

2.2 Structural assumptions

The Navier-Stokes system is a particular case of systems (1.1). We note that viscous terms
appear only in the last four equations and that these terms involve second derivatives of
v and @ only. We split vectors f € R into their first component f! and the remaining
ones f2 € R*. With u! = p and u? = (v,0) we see that the Navier-Stokes system has the
structure of (1.1) with

25) aofw = 1 = (3 ) B0 = (3 gie).

where M denote the sub-blocks of the matrix M corresponding to the splitting v =
(u',u?). In particular,

(2.6 Bj(0) = Ao(u) Bjelu) = (8 _— )).
J

8



Extending these properties we consider systems (1.1) which satisfy (2.5):

Assumption 2.1. (HO0) (Smooth fluxes and viscosity.) Let U* be an open subset of RY.
The fluzes f; are C* functions of u € U* with values in RN and the B are C° N x N
matrices on U*. Moreover, for all u € U*, the matriz fi(u) is invertible.

(H1) (Block form.) Possibly after a change of variables u and multiplication on the left
by an invertible constant coefficient matriz, there is s € {1,..., N} and there are coordinates
u=(ul,u?) € RVN=5 xR* and f = (f', f2) € RV=5 x R® such that the block form condition
(2.5) is satisfied.

Remark 2.2. This assumption can be put in a more geometric form, at least locally. First
observe that under a change of variables u = ®(a), the fluzes f; and matrices Bjy are
changed to

(2.7) fi=Ffjo® Bjx=(Bjxo®)?
so that Ej,k s changed to
(2.8) AG By = ()1 (Bjj 0 @)@
When (2.6) holds, the kernel and image of Bjj = AEIBM satisfy
ker Bji(u) DK =RV "5 x {0}* ImBjx(u) C I:= {0}V % xR*.

Moreover,
ImB;x(u) C J:= {0}V * xR®.

Conwversely, locally, Assumption 2.1 is the conjunction of five properties, which can be
checked in any coordinate system w:

1. there is a space K(u) of dimension N — s such that for all u € U*, ker Bj j,(u) D K(u);
there is a space J of dimension s such that for all u € U*, ImB; ;(u) C J;

for allu e U*, RY = K(u) © I(u), where I(u) = Ag(u)~1J;

e

the vector bundle K(u) is smooth and integrable;
5. the vector bundle I(u) is smooth and integrable.

Indeed, 3), 4) and 5) imply that, at least locally, there is a change of coordinates u = ® (),
with i = (u',u?) € RN=% x R* such that

K(u) = (@) (RY~* x {0}7),  L(u) = (@) ({0}~ x R%).

By 2), we can choose linear coordinates f = (f1, f?) such that J = {f* = 0} = {0}V ~* xR®.
This implies that Bjy = (Bjx o ®)® has the block diagonal form in (2.5). Moreover,
Ayt = (@) YAyt o @) maps J to I, thus Ag' and Ay have the triangular form in (2.5).
This shows that the conditions in (H1) are satisfied in the coordinates 1.



Example 2.3. We have already shown that (H1) is satisfied for Navier-Stokes equations.
More generally, suppose that there are splittings of coordinates u = (u',u?) € RV =% x R*,
f=(f" f?) € RN=% x R® such that

(2.9) fo(w) = fo(ur),  Bjx(u)dhu = (Bjkm)gk(wu))) ’

where ¥ € C*°(U*;R?®) and the Ej,k are s X s smooth matrices. Then, if the mapping
u— (ul,(u)) is a diffeomorphism, taking u! and 1 (u) as coordinates, we see that (H1) is
satisfied.

The assumption (H1) has an important consequence for the structure of equation (1.1)
written in nonconservative form: it reads

d d
(2.10) Z u—z—:z jku—szgjkuauﬁku)—()
7=0 7,k=1 J,k=1

with
9jk(u, v, w) = (v . VuBLk(u))w

bilinear in v and w. Moreover, (2.5) implies that the first N — s components of g vanish:

(2.11) 95kt v, w) = (gf,k( 0 ) '

U, v, W)

This is useful in the nonlinear stability analysis, since it allows us to consider terms like g
as lower order perturbations.

The triangular form of the equations also reveals the importance of the (1,1) block:
(2.12) L' (u,8) = ZA” or L'(u,0) = (A3 () LM (u,0),

which plays a special role in the analysis.

From now on we work with variables u = (u!,u?) € U* such that (2.5) and (2.6) hold.
We set

(2.13) Aj=f;, A= AgtA;, Bir = Ay'Bjk,

and systematically use the notation M? for the sub-blocks of a matrix M corresponding
to the splitting u = (u', u?).
Assumption 2.4. (H2) (Partial parabolicity.) There is ¢ > 0 such that for all u € U* and
‘ —22 —=2,2 .
€ € R, the eigenvalues of B~ (u, &) = ijzl i€k B 'k (u) satisfy Rep > cl¢|?.
(H3) (Hyperbolicity of (1,1) block.) The eigenvalues of le(u,f) = Z;-lzl §jf_1]1-1(u) are
real and semisimple with constant multiplicities for u € U* and & € RN\{0}.

10



Remark 2.5. 1. Assuming (H1), the condition (H2) is equivalent to the following coordinate-
independent condition:

(HZ) for all w € U* and & € RA\{0}, 0 is an eigenvalues of B(u,&) = > ;& B (u)
with constant multiplicity N — s and the remaining eigenvalues satisfy Rep > c|¢|%.

2. When s = N — 1, which is the case for the Navier-Stokes equations, then

d
(2.14) A (u,6) = 3 ¢4 (w)
j=1

with Z;l(u) € R. Therefore, the condition (H3) is automatically satisfied. (HS3) is also

clearly satisfied in cases where Zn(u,ﬁ) is a (real) scalar multiple of the identity In_s, as
occurs for MHD in the case of infinite magnetic permeability.

Next we assume that the inviscid equations are hyperbolic for u in some open subdomain
U CU*. Let

d d
(2.15) Au,&) = &A;(u) and B(u, ) = Y &&Bn(u).
j=1

J,k=1

Assumption 2.6. (H4) (Hyperbolicity near endstates.) For v € U and & € RN\{0} the
eigenvalues of A(u, &) are real and semisimple with constant multiplicity.

(H5) (Strict dissipativity near endstates.) There is ¢ > 0 such that for uw € U and
¢ € RY, the eigenvalues p of iA(u, &) + B(u,€) satisfy

clé]?
(2.16) B> &

Remark 2.7. 1. It is important for applications to allow that U can be strictly smaller than
U*. For instance, for Euler’s equation U 1is the sub-domain of states such that O,p > 0;
recall section 2.1. Note also that for such states u, Euler’s equation satisfies the constant
multiplicity assumption (H).

The hypothesis (H4), which plays a role only in our low frequency analysis, is violated
by the equations of viscous MHD, where characteristics of variable multiplicity appear in the
hyperbolic part. Symmetrizers for viscous MHD in the low frequency regime are constructed
in [GMWZ5]. MHD can be treated by combining the low frequency analysis of [GMWZ5]
with the medium and high frequency analysis given here.

2. Hypothesis (H2) is clearly satisfied by the Navier-Stokes equations when Ope > 0.
We refer to [KaS1, KaS2] or [Z3], Remark 1.25, for verification that the Navier-Stokes
equations satisfy (H5) whenever Oge > 0, 0,p > 0. More generally, for systems that are
symmetrizable in the sense that the matrices Aj, Bjj may be taken symmetric, (2.16) is
equivalent to the genuine coupling condition of Kawashima: no eigenvector of A(u,&) lies
in the kernel of B(u,&) for € € R\ {0}. This condition is checked for the Navier-Stokes
equations in [KaS2].

3. There is a slight redundancy in Assumption 2.6, since (H5) implies that the eigen-
values of A(u,§) are real.

11



2.3 Profiles and Evans functions

Next we consider planar shocks. Denoting by (y1,...,y4—1, ) the space variables, we con-
sider solutions of the inviscid equation (1.2) consisting of two constant states v~ and u™ in
U separated by a plane {x = hot + Zd ! hjy;}. The states u* and the front h must satisfy
the Rankine Hugoniot condition:

d—1
(2.17) hilfi(w)] = [fa(u)]
7=0
where [f] denotes f(u™) — f(u™). With v = v(h) := (—hg,—h1,...,—hg_1,1), let us

introduce the normal flux and the normal boundary matrices

ZVJfJ
7=0
d
(2.18) Ad(u,v) = A (u),  Ag(u,v) = Ao(u) ™ Ag(u,v),

d
de(u, V) Z I/ijBj’k(u).

Remark 2.8. Let us also define for j=1,...,d—1

d
(2.19) Bjq(u,v) = Z v Bjk(u), Baj(u,v) Z v By, j(u
k=1

Observe that the equation (1.10) can then be rewritten

U
—

(2.20) Aj(w)dju + Ag(u, v(dip))dgu — € Z 0;(Bj 1 (u, v(dip))dpu) = 0.
7,k=1

<.
Il
o

We’'ll sometimes abuse notation slightly and write, for ezample, /Nld(u, diy) in place of
Ad(uv V(CW))

In the viscous case, discontinuities are replaced by profiles, and shocks are replaced by
travelling waves

< T — w(tv y) =
(2.21) u®(t,y,z) = w(f) Y(t,y) == hot + Z hjy;-
j=1

Then u¢ is a solution of (1.1) if and only if w solves the profile equation
(2.22) 0., (fd(w(z), v)) — 0. (Bd,d(w(z), v)0,w) =0
The profile is associated to a shock p = (u™,u™, h) when

(2.23) lim w(z) =u~ and lim w(z)=u".

Z——00 zZ—400
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Recall that the Rankine-Hugoniot conditions (2.17) follow from (2.22) (2.23).
The next two assumptions mean that we are considering a family of profiles associated

to Lax shocks, with an additional assumption of “hyperbolicity in the v direction” for the
(1,1) block.

Assumption 2.9. (H6) (Lax shocks.) We are given a C> manifold C C U x U x R?, with
C compact, such that each p = (u=,u™,h) in C satisfies (2.17). Moreover, the boundary
matrices Ag(ut,v(h)) are invertible and the numbers N_ (resp. Ny ) of positive (resp.
negative) eigenvalues of Aq(u=,v) (resp. Ag(u*,v)) satisfy Ny + N_ = N + 1.

(H7) (Shock profiles.) We are given a C* function Wy(z,p) from R x C to U* such that
for allp € C, Wy(-,p) is a solution of (2.22) (2.23). We refer to such a function as a “shock

profile”.
(H8) (Hyperbolicity of (1,1) block with respect to v.) For each p = (u*,u™,h) € C,

one of :l:ﬁ(li (w,v(h)) has only strictly positive eigenvalues for all w in the closed orbit
{WO(Zap) HEAS R}Cl'

In addition to the parameters p = (u~,u™,h), we introduce new parameters (u’,h') €
RY x R to represent perturbations of profiles and fronts. We set

(2.24) q=(p,u,0), W(z,q) = Wolz,p) +u', W(Eoo,q) =u™ +u

and

Aj(z7q) = AJ(W(27Q))7 ZJ(Z7Q)
Ad(Z7Q) = Ad(W(zv Q)v V(h + h,))a

(W(Z,q)), ] S d—1

(2.25) )
(z,q) = Aa(W(z, q),v(h + ).

Aq

Proposition 2.10. Let W(z,q) be as in (2.24) and assume (H3) and (H8). There exists a
neighborhood O of (0,0) € RY xRY, such that for all z € RU{+o0}, p € C, and (u/,h') € O,
we have W (z,q) € U* and

(a) one of + Z}il(z,q) has only strictly positive eigenvalues;

2.26 . -
(2.26) (b) the eigenvalues of ALY (z,q)™' | Ajl (2, ¢)7 + Z A]u(z, q)n;

j=1

are real and semisimple with constant multiplicity for (t,n) € R\ 0. In addition there
exists Z > 0 such that for all ¢ as above,

(2.27) |z| > Z = W(z,q) €U.

Proof. 1. For £ € C%*! the homogeneous polynomial 7(¢) is said to be hyperbolic in the
real direction (3 if and only if 7(3) # 0 and for all real &’ ¢ RS the roots r € C of 7(r +¢’)
are real. For (z,¢q) as above, (H3) implies that

d
(2.28) (2,q,€) = det | Y A} (2,9)¢;

=0
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is hyperbolic in the direction dt = (1,0,...,0). (2.26)(a) holds if and only if one of +v(h+h')
lies in the same component as dt of the open set {£ : 7(z,¢,&) # 0} ([H], Lemma 8.7.3).
Hypothesis (H8), compactness of C, and compactness of the closed orbit associated to each
p € C allow us to choose O so this is the case. 7(z,q,§) is hyperbolic with respect to all
directions in that component, so (2.26)(a) implies that the roots r of

(2.29) m(z,qrv(h+ 1) +¢) =0, ¢ Ry

are real, which is equivalent to saying the eigenvalues in (2.26)(b) are real.
2. Changing the notation for frequencies, we set

Q

1

— 11 —11
Az q,m6) = ) A (z,0)n5 + Ag (2,0)6a,
j=1
(2.30) ~ .
Gz, q,mm) = Az )7 [ A (2 )T + D Az 0y
j=1

(H3) implies that for (7,7) real, all eigenvalues &; of G'!(z, ¢, T — i7,7n) have nonzero imagi-
nary part when v > 0. From (2.26)(a) it follows that these eigenvalues lie in the same fixed
half plane, one of £&&; > 0.

3. Suppose now that ¢ is an eigenvalue of G'(z,q,7,n) for (r,n) € R4\ 0. By (H3)
there exists a unique eigenvalue 3(z, ¢,n, &) of A, which is C* in all arguments, analytic
in &4, of constant multiplicity, and such that

(2.31) 7+ B(2,4,1,€,) = 0.

Note then that (7,7, éd) is nonglancing, which means that

(2.32) Oe,B # 0 at (z,¢,m,€),

for otherwise the equation

(2.33) T =iy + B(2,¢,1n,6) =0

has roots in &; with S&; of both signs when v > 0, contradicting the conclusion of part 2.
It follows that —¢§ J is a semisimple eigenvalue of G'1(z,q, T, 1) with multiplicity equal to
that of —7 as an eigenvalue of A (z,¢,7, §,) ([MZ3], Proposition 3.9). Thus, the assertion
of semisimplicity and constant multiplicity in (2.26)(b) follows from that in (H3).
4. The ability to choose Z as in (2.27) is immediate from compactness.
O

Remark 2.11. 1. Hypothesis (H6) is the starting point for constructing shock solutions of
the inviscid equation. The construction of profiles as in (H7) is the first step in the analysis
of the viscous perturbation. We refer to [Gi, MPe] for the construction of profiles for the
Navier-Stokes equations. For example, Gilbarg shows that for a convex pressure law, profiles
exist for shocks of any strength. See [Pe, MPe] for construction of small-amplitude profiles
of general systems.

14



2. Following [MaZ3, Z3] we may take advantage of the divergence form of (2.22),
integrating from —oo to z to express the profile equation as an algebraic relation

(234) fj(w,y)—f;(u_,y)zo,
combined with the reduced ODE
(2.35) 0.0 = (B3%) " (Fi(w,v) - fi(u_,v)).

Since flél = fc}, is invertible by the first part of (H8), we may solve for wi as a function of
wy in (2.34), reducing the algebro-differential system (2.34)—(2.35) to a standard ODE in
the variable ws.

3. Hypothesis (H8), especially through its consequence, Proposition 2.10, plays an im-
portant part in the high frequency estimate. (HS8) is satisfied in physical examples, and it
holds in particular for the Navier-Stokes equations. More generally, consider the case where
s =N —1, so that L' is a vector field

d
(2.36) L' = A (W) + ) AjH(w)o;
j=1
with A]l1 € R. In this case (H8) reduces to the condition that

d
(2.37) A (Wolz,p),v(h) =Y v A (Wo(z,p)) # 0
j=0

forallp e C and z € RU £+o0.
For the Navier-Stokes equations,

d
LH = Ot + Z’Ujaj
j=1

and the condition reads

d-1
(2.38) ho # vqg — Z hjv; along the profile,
j=1
where, with H = [(—=h1,...,—hg_1,1)],
d—1
ho/H and v, = (vg — Zhjvj)/H
j=1

are the speed of the shock and fluid speed normal to the shock respectively. One can show
that (2.38) is a consequence of the profile equations; see Appendiz A.1, [Z2]. For weak
shocks this condition is clear, since Lax shocks are associated to acoustic modes and their
speed is = vy, £ ¢, where ¢ is the sound speed.
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Definition 2.12. A solution w of the connection problem (2.34)-(2.35), (2.23) is called
transversal if the unstable manifold of (2.35) at uy and the stable manifold of (2.35) at ug
intersect transversally along ws.

Proposition 2.13 ([MaZ3, Z3]). Suppose that w is a shock profile associated to a planar
Laz shock p = (u~,u",h). Then w converges exponentially in all derivatives to its end
states ut and 0,wy(2) # 0 for all z € R. Moreover, if w is transversal, then it is unique up
to translation.

Proof. Evaluating Oy, w; in (2.34) using the Implicit Function Theorem, we find that the
linearization of the righthand side of (2.35) about the endstates wéﬁ is

(2.39) (BE) ™ (AT — A (AL T AP).
By Assumption (H2) and Assumption (H8) we have
(2.40) det ((Bg?d)—l (A2 — 42! (21}[1)—121;2)) — det Ag/(det B det AL') # 0,

so that wi are nondegenerate rest points of (2.35). With Assumption (H5) this implies

that (2.39) has no purely imaginary eigenvalues. Therefore, w; are hyperbolic rest points,
from which exponential decay follows by classical ODE theory [Co|. Likewise, 0,wa(z) # 0
follows from uniqueness of solutions of ODE. Uniqueness up to translation follows from the

relation
(2.41) sy +s-—s=Ny+N_—N ([Z2], Appendix A.2),

where s, denotes the number of eigenvalues with negative real part of (2.39) at wy and
s_ denotes the number of eigenvalues with positive real part of (2.39) at w, ; this quantity
equals one for Lax shocks. O

Remark 2.14. 1. Profiles for viscous shock solutions of the Navier-Stokes equations are
transversal if they exist [MaZ3]. Such shocks are in general extreme shocks.
2. We prove the relation (2.41) in Corollary 3.44.

From Proposition 2.13, we obtain as in the proof of Proposition 2.6, [GMWZ3] the
following local verification of (HT).

Proposition 2.15 ([GMWZ3]). i) Suppose that p is a planar Laz shock. Then there is a
neighborhood w of p in U x U x R such that the set of shocks in w form a smooth manifold
C of dimension N +d and each p € C is a Lax shock.

ii) Suppose in addition that w is a shock profile associated to p and that w is transversal.
Then, shrinking w if necessary, there is a C™ mapping Wy from R x C to U* C RY such
that Wy(z,p) = w(z) and for all p = (u=,ut,h) € C, Wy(-,p) is a shock profile associated
to p. This connection is unique, up to a translation in z by a smooth shift k(p).

In (2.24) and Proposition 2.10 we have already introduced a more general type of profile.
We formalize that notion in the next definition.
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Definition 2.16. Let p = (u™,u",h) € C be as in (H6) and let Wy(z,p) be a shock profile
as in (H7). For parameters (u',h') € RN x R? and q = (p,u/,h) we define the function
W(z,q) = Wo(z,p) + u’ to be a profile associated to the front h + h' if

(a) W(z,q) € U* for all z;

(b) there exists Z > 0 such that |z| > Z = W (z,q) € U,

(c) for |z| > Z, A4(z,q) is invertible;

(d) for all z one of :I:chll(z, q) has only strictly positive eigenvalues.

Remark 2.17. From Proposition 2.10 we see that for parameters (u',h’) contained in a
small enough neighborhood of 0, W(z,q) as defined above satisfies conditions (a)-(d) with a
Z that can be taken independent of q. Moreover, it follows as in [GMWZ3], Prop. 2.6 that
for some 8 > 0 we have estimates

(2.42) lﬁfag‘W(z,q)] < Crae % on £2>0.

Note that we distinguish between “shock profiles” as in (H7) and more general profiles as
in Definition 2.16.

2.3.1 The Uniform Evans condition

For a fixed ¢ = (p,u/,h’) we consider a profile W(z,q) as in Definition 2.16. We consider
the linearization of equations (2.20) around

(2.43) w(t,y, ) = W(x/e,q), ¢(t,y)=(h+h)-(ty).

For simplicity, we have changed the notation Z to x.
We first compute the “partially linearized” operator with respect to u alone (we compute
the fully linearized operator in Section 2.4, following). This has the form

- 1
(2.44) Lt = —£0y (Ba,astt) + 0y (A%) + EM%
where
~ d_l ~ ~ ~
Aﬁv = A — Z<Bj7d + BdJ)EajU — (Vqu,d . U)@ZVV,
j=1

d—1 d—1
Mo = Agedpw + Y Aledju — Y Bjre?d;op,

j=1 j=1,k
with
Ay = Ajv — (VuBja - 0)0:W + Vo Bjq - 0.W)v, j=1,..,d—1
(2.45) d
ZVkBjk y ijuy ZVkBk,j j:1,...,d—1,
k=1
where v(h) = (—hg, —h1, ..., —h4—1, 1) and matrix coefficients are evaluated at u = W (x /¢, q).

The coefficients are smooth functions of ¢ and z = z /e, and A* and M?* are differential op-
erators in €0; and €0,.
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Since the coefficients of L are independent of the tangential space-time variables (¢,y),
one can perform a Fourier-Laplace transform with respect to (¢,y). This leads to symbols
A(z,q,¢) and M(z,q,¢), depending on (z,q) and ¢ = (7,1,7) € R x R¥~! x R, obtained
by evaluating the coefficients at (z,q) and replacing 0; and 0; in the definitions above by
inj, j=1,...,d —1 and v + iT respectively. Denoting by @ (resp., f) the Fourier-Laplace
transform of @ (resp., L), one has:

x

(2.46) f, &) = <0, (B(E, q)0ui) + 0, (A (L,0,6) i) + %M (L.0.50)a

Denote by L the operator in the right hand side acting on 4. It is then natural to rescale
the variables. After setting

(247) (=eC, z=ufe, w(z0)=a(x{), [ =cf(z]),

and

(2.48) L(2,4,¢,0:)u" := =0 (B(2,q)0:u") + 0= (A(2,¢,{) u*) + M (2,¢,¢)
the equation (2.46) reads

(2.49) f*=L(z,q,¢0.)u*.

Dropping the stars, we now consider the well posedness of the equation

(2.50) L(z,q,¢,0:)u=f.

This is a degenerate second order differential equation, and the equation is equivalent to
the transmission problem where one looks for solutions u™ and u~ on {z > 0} and {z < 0}
separately, which satisfy the transmission conditions

(2.51) u(0) =ut(0), Ouy(0)=0d,us(0).
Note that these are equivalent to (1.11), by the block structure assumption (2.5).

Definition 2.18. Given a profile W(z,q) as in Definition 2.16, we denote by E*(q,()
(resp., E=(q,()) the set of initial data (u(0),0,u2(0)) such that the corresponding solution
of L(2,q,(,0;)u =0 on {z > 0} (resp., {z < 0}) is bounded as z tends to +oo (resp., —00).

In the sequel, we denote by @iﬂ the set of parameters ¢ = (7,7,7) € R X R xR
such that v > 0 and by @Tl\{O} the set of ¢ # 0 with v > 0. The proof of the next lemma

is given in Section 3.3.

Lemma 2.19. Assume (H0)-(H2) and (H5)-(HS8). Let W (z,q) be a profile as in Definition
2.16. Then for

(2.52) qg=(p,u,h)e Q:=CxO0,

with (u', ') in a small enough neighborhood O of 0, E™(q,¢) and E~(q,¢) are smooth vector
bundles of fived dimensions K, N + s — K in CNT* over Q x RETIN{0}. In fact, K = N

when the eigenvalues ofﬁzll (z,q) are all positive, and K = s when those eigenvalues are all
negative.
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There are nontrivial bounded solutions of Lu = 0 if and only if Ef NE~ # {0}. The
distance between these two spaces can be measured via the Evans’ function

(2.53) D(q,¢) = det (E¥(¢,¢),E™(¢,())

where the determinant is obtained by taking any orthonormal basis in the given spaces.
Note that, by Lemma 2.19, the function D is smooth on Q x Rfl\{()}.

There is an alternate way of computing the Evans function D. Considering the transmis-
sion problem as a boundary problem, the natural space of initial data of bounded solutions
is E- x E* ¢ CN+ x CN*#. Its dimension is N 4 s. The boundary condition can be written
['(U~,U7") = 0 where I is the mapping (U~,U") + Ut — U~ from CV*5 x CN*$ to CN*s.
Thus dimkerI' = N 4+ s and

(2.54) D(q,¢) = det (E_(q, ¢) x E*(q,(), ker F) .

The weak Evans condition requires that D does not vanish when ¢ # 0 and v > 0. The
uniform condition requires in addition an optimal control when ( is small or large. It turns
out that for large ¢ appropriate control follows already from the Assumptions (HO) to (HS),
and so no explicit assumption is necessary in this regime; see Remark 3.29. For small (, we
know from [ZS, Z2] that the determinant D is O(|(|). Following [Z1] the uniform stability
condition reads:

Definition 2.20 (Stability conditions).
i) The shock profile Wy(z,p) associated to a Lax shock q = (p,0) is spectrally stable

(satisfies the weak FEvans condition) if the Evans function D(p,0,() does not vanish for
—d+1

¢e Ry \{0}.
i1) It is uniformly stable (satisfies the uniform Evans condition) if in addition there is

a positive constant ¢ such that for all ¢ € @iﬂ\{O} with || <1,

(2.55) [D(p,0,¢)| = c[].
Assumption 2.21. (H9) For all p € C, the planar profile Wy(z, p) is uniformly stable.

Remark 2.22. In [PZ] it is shown that profiles associated to a large class of weak Lax
shocks, including weak shocks for the Euler equations, are uniformly stable. See also [FS]
for a similar result in the one-dimensional case.

The following Proposition extends a result of [ZS] in the case of artificial viscosity to
the real viscosity setting. The Proposition refers to Majda’s uniform stability condition for
inviscid shocks, which is recalled in the Appendix along with the proof of the proposition.

Proposition 2.23. Suppose that Assumptions (H0)-(H2) and (H4)-(HS8) are satisfied and
that Wy is a shock profile associated to a planar Lax shock p.

i) If Wy is uniformly stable, then Wy is transversal and the planar shock p is uniformly
stable in the sense of Majda [M2].

i1) Conversely, if Wy is transversal and the shock p is uniformly stable, then (2.55)

holds for ¢ € @iﬂ\{O} small enough.
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Corollary 2.24. Under the Assumptions of Proposition 2.23, a profile Wy associated to a
Lax shock p is uniformly stable if and only if:

i) it is spectrally stable,

i) Wy is transversal,

i11) p is uniformly stable in the sense of Majda.

Remark 2.25. We shall adopt the convention from now on that hypotheses (H0)-(H1) and
(H6)-(H7) are automatically assumed in every Theorem, Proposition, etc. of the paper.
Thus, in Proposition 3.8 for example, where the only explicitly stated assumption is (H2),
our intention is to highlight the fact that (H2) is the only extra assumption needed beyond
the automatically assumed ones.

2.4 The fully linearized equations

The vanishing of the Evans function associated to a Lax shock profile Wy at ( = 0 is the main
source of difficulty in the low frequency analysis. It reflects the translational degeneracy in
the partially linearized operator £ expressed by the fact

(2.56) L(z,q,0,0,)0,Wy =0 when g = (p,0).

This degeneracy leads to an L? estimate for the transmission problem (2.50), (2.51) that
is too weak for our purposes here. In addition, having introduced the extra unknown °
in (1.10), we should expect the transmission problem (1.10), (1.11) to be underdetermined
without some extra boundary (or transmission) condition. The key to the low frequency
stability analysis, here as in [GMWZ3], is to work with the fully linearized problem and to
choose the extra boundary condition in a way that removes the translational degeneracy
in the low frequency regime. This strategy then commits us to working with the fully
linearized equations in the medium and high frequency regimes as well, even though the
partially linearized problem is well behaved there.

Consider again a profile W(z, ¢) with ¢ = (p,u/, h’). The fully linearized equation from
(1.10) around w® = W(z/e,q), ¥(t,y) = (h+ 1) - (t,y) reads

(2.57) Li—Kiy=f,

where L is given by (2.44) and

-1
K¢ =030, fo(w®) + Y 910, f(w)

j=1
(2.58) o o
= > 0300 ((Bia+ Buy)oww®) & > 0,000 B0
j=1 k=1

The key idea introduced in [GMWZ3] is to consider the problem (2.57) with transmission
conditions

(2.59) [4] = 0, [Dpita] =0, Opth — eAytp + £ -9 = 0 on = 0,
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for £ = ¢(q) € R®. The special choice of the heat operator in the extra boundary condition
is not essential. It can be replaced by any parabolic operator of the same type, possibly
depending on p. There is also a large freedom in the choice of . We assume ¢(q) satisfies

(2.60) Uq) - 9-W»(0,q) > 0.

Such a choice is always possible for profiles close enough to shock profiles since 9,W5(0, q) #
0 when ¢ = (p,0) by Proposition 2.13.

The operators L and K are closely related. Denote by £(u, 1) the left hand side of (1.10)
and consider for a moment the full and partial linearizations of (1.10) about an arbitrary
choice of (u, 1)), together with the original transmission conditions:

(a) & (u, )+ E)(u, ) = f, [i] =0, [Opite] =0

(2.61) .
(b) S;(u’q/))u =/, [U} =0, [890“2] =0,

where &£/ and S{p are the linearizations of £ with respect to u and 1 respectively.

Lemma 2.26. We have

(2.62) E(u, )i+ E)y(u, )t = &) (u, ) (1 — POpu) + 1h0,E (u, ).

Proof. Denoting by F(u) the left hand side of the equation (1.1) in the original coordinates,
and by * the substitution v*(¢t,y,z) = u(t,y,z — ¥ (t,y)), one has

(2.63) Fu®) ={€(u,¢)}".
Through linearization, one has 6(u*) = (du — 09 d,u)*. Moreover, differentiating in u alone,
one checks that (&), (u,¥)v)* = F, (u*)(v)*. Linearizing (2.63) implies (2.62). O

Remark 2.27. The identity (2.62) was pointed out by S. Alinhac ([Al]) along with the role
of what he called “the good unknown” u — 1/}8111. Consider the example where u = Wo(Z, p)
and ) = h-(t,y) are an exact solution of the problem (1.10), (1.11). In this case, the error
term 0,E(u, ) is exactly equal to zero in the right hand side of (2.62) and the original
transmission conditions for @ and v = U — lbé?xu are equivalent. Hence, the transmission
problems (2.61) (a) for @ and (2.61)(b) for v are equivalent. This observation is useful in
the medium and high frequency regions, where the partially linearized problem (2.61)(b) is
well-behaved. There we may prove estimates for the good unknown v satisfying (2.61)(b),
and then use the extra boundary condition

(0 — Ay + ) (£ Dyug) = —L -0y on x =0,

to estimate 1/} after estimating the trace of vs.

This approach has to be modified in the small frequency region because of the translational
degeneracy at ¢ = 0. By making a more subtle choice of good unknown as explained in
section 3.3, one can again reduce to proving estimates for the partially linearized operator
E!.. The original transmission conditions are replaced by new (pseudodifferential) boundary
conditions arising from (2.59) on the good unknown, and these conditions have the effect of
removing the translational degeneracy.
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The coefficients of K (2.58) are independent of (t,y), so we again perform a Fourier-
Laplace transform with respect to (¢,y). Denote by g the additional term —K ¥ in (2.57)
and by w and ¢ the Fourier-Laplace transforms of ¥ and g respectively. Parallel to (2.46)
there holds

(264) 9(2,8) = = 9 OK(E, 4,0

where

K(z,4,¢) =0:fo(W)(y + i7) Zﬁf] )in

(2.65) d1 ) ] de1
— Z 0, <(Bj7d + dej)azW)inj + Z BjykazWﬁjT]k
=1 k=1

and the coefficients are now evaluated at u = W(z, ¢). The natural rescaling for § and @E,
which supplements (2.47), is:

(2.66) 9" (2,¢) =¢g(z,0Q), ¥*(¢)=
so that

9°(2,¢) = =¢"(OK(2,4,¢) -

Similarly, the Fourier-Laplace transform of the extra boundary condition reads

(5 + i + eli*)1h(C) + £ - figjpo({) =

Adding up, after Fourier-Laplace transform and rescaling as in (2.47) and (2.66), we see
that the linearized equations read:

(2.67) L(z,q,¢,0)u” —Y*K(z,q,¢) = f*
: a(Q)Y* + £ -u5(0)=0o0n z=0,
with a(¢) = 7 + i1 + [n|?.

Lemma 2.28. Given a profile W(z,q) with ¢ = (p,u',h’) as above, the following identity
18 satisfied:
]C(Z’, q, C) = £(z7 q, Cv az)azw + azP(W7 V(h + h/)) )

where P(W,v) := 0, (Bd,d(VV, V)82W> — 0, (fd(VV, u)) .

Proof. This is easily checked by direct computation; it can also be deduced from the identity
(2.62). O

Remark 2.29. In the case when Wy is a shock profile associated to the front h, we have
P(Wo,v(h)) =0.
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3 Frozen coefficient ? estimates

3.1 Transmission problems depending on frequency

Consider an approximate solution (u5™,5™) as in (1.12). It can be written

X
ugM(z) = Wo(Z,p(ty) + 'y, 2,€)

(3.1)
dye™M = dyP(t,y) + B (t,y, z,¢€),
where
(3.2) p(t,y) = (uS (t,y,0),u’ (t,y,0),d0°(t,y)) € C

is the given inviscid shock and v/, h’ are perturbations that can be read off from (1.12).
We also allow u’ and b’ to include additional corrections of the form &% (v, d¢,) like those
that will appear later in the iteration scheme for the exact solution. Let us now freeze

g = (p,u',h') and consider the rescaled, Fourier-Laplace tranformed, transmission problem
(2.67):

‘C(Z’q’ Cu aZ)u - Q/JIC(Z, q, C) = f

(33 [u] =0, [0.uz] =0, a(O)w + £(q) - uz(0) =0 on z = 0.

The problem (3.3) is a transmission problem in z depending on (g,() as parameters.
In this part we show how to obtain estimates for this problem, uniform with respect to
the parameters, in each of the three frequency regimes where || is small, medium, or large.
This ODE question already contains most of the main difficulties. The frequency-dependent
conjugators and symmetrizers constructed here will serve as symbols of the paradifferential
operators we’ll use in the next part to obtain estimates for the variable coefficient linearized
problem.

The following Propositions give the frozen coeflicient estimates in the three frequency
regimes.

Proposition 3.1 (High frequency). Consider solutions (u,v) of (3.3) where q = (p,u’,h’)
with p € C and (v, h') small. There exist constants R, 6 such that for || > R, 0 < v < §[(],
we have
(3.4)
1 1 5
(L 4+ Mllurll + Affusll + [[0:u2] + /1 +ur(0)] + A2 uz(0)| + A72[0,u2(0)| + Az |9
< C(Ifull + A7 D),

where || f|| = [ f|r2z) and A(Q) = (1 +~% + 72 + [n*) /4,
For v > 6[C|, |[¢] > R, we have the stronger estimate

(Clllull + Aflua ]| + 18| + /¢TI (0)] + A2 |ua(0)] + A~ 2|9uz(0)] + A2 |||

3.5
(3:5) < (A + A7 fal):
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Proposition 3.2 (Low frequency). Consider solutions (u, ) of (3.3) where q = (p,u’,h’)
with p € C and (u',h’) small. There exists a constant py such that for |(| < po we have:

(3.6) N Jull + A[dzuz| + Au(0)] + Alzuz(0)| + AlCIl] < ClLf1, foll,

where M(¢) = (v + |¢[*)1/2.

Proposition 3.3 (Medium frequency). Consider solutions (u,v) of (3.3) where ¢ =
(p,u',h') with p € C and (v, ') small and let py and R be as above. For py < |¢| < R we
have:

(3.7) lull + [10uz]| + [u(0)] + [D:u2(0)] + || < C|f1, foll-

Remark 3.4. As we show explicitly later, there is another route to the problem (3.3).
Linearizing (1.10) about the approximate solution (3.3), one obtains, in addition to terms
like those appearing in L (2.44) and K (2.58), a number of other terms that are small in the
sense that they turn out to be negligible in the proof of the L? estimate (4.11). Throwing the
small terms away leaves us with the principal part of the fully linearized operator. Freezing
q = (p,u',h) in the principal part, Fourier transforming, and rescaling yields (3.3).

3.2 High frequency estimate
Our goal in this section is to prove the estimates (3.4) and (3.5). We begin with the more
difficult case 0 <y < 4|(|.

3.2.1 Reduction to the partially linearized case

The estimate (3.4) will be deduced from an estimate for the partially linearized transmission
problem:

L(z,q,¢,0:)u=f

(3.8) [u] = 0,[0.us] =0 on z = 0.

Proposition 3.5. There exist constants R, 0 such that for 0 <~y < 4|C|, |¢| > R, solutions

u of (3.8) satisfy

(1 + ) Jut]| + Alluz]| + |0:us]| + /T +|u1(0)] + A2 [ug(0)] + A~7[D,u2(0)]
< C(IA+ A f).

To derive estimate (3.4) from Proposition 3.5, define the good unknown

(3.10) u = u —po,W

(3.9)

for (u,) satisfying (3.3), and observe using Lemma 2.28
a) Lu™ = [ +d.P
(b) (a(¢) +£-0.Wa)ip = —L-uf on z=0.

The coefficient of ¢ in (3.11)(b) is ~ A2, and 9,W is exponentially decaying as z — o0,
so the estimate (3.9) for u” implies the estimate (3.4) for (u,v). So now we concentrate on
the proof of Proposition 3.5.
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Remark 3.6. The same good unknown is used to reduce the proof of the estimate (3.5) to
showing the following estimate for (3.8):

1 1
[l ll + Aluzll + [[0zuzll + V[ ur (0)] + AZ|uz(0)] + A72 |0, u2(0)]

(3.12)
<O(Al+ A f2)-

3.2.2 Spectral properties of the symbol of £

We begin by writing out the explicit form of L(z,q,(,d,). We’ll use notation like that in
(2.24), where ¢ = (p,u’, h') and all matrix coefficients are evaluated at (z, q), with the (z, q)
dependence entering entirely through W (2, ¢) and v(h + h’). The matrices Ag, By (2.18)
and B] 4> By j (2.45) are as before, and when convenient we write

Aj=Ajforj=1,...,d—1,

(3.13) - .
Bjp=DBjforj<d-1,k<d-—1.

We have

E(Z, q,¢, az)u = —Bd,dé@u + | Ay — Z(ijd + Bdﬂ‘)inj’ O,u+

j=1
3.14
( ) d—1 d—1 ~
E+ Ao(iT +7) + ZAjinj + Z Bjknjne | u,
j=1 G k=1

where
(3 15) A]’U = A~j’U - (8ZW . dquJ‘)U - (U . duéjvd)BZW, j = 1, ce ,d,

Ev = (v-d,Ag)0,W — (v dyBaa)O?W — d2Bq.a(v,d.W)3,W.

We also set £ = Ao_lL’ and, for £ € R?, write its symbol

d d
. L(z,q,7 —i7,€) = (i + )T Z i&+ > B+ E,
(3.16) j=1 jk=1
= (it + V)1 +iA(2,4,€) + B(2,¢,€) + E(z,9),
where now
(3.17) Aj=AgtA; Aj = Ay'Aj, By = Ay'Bjx, E= Ay E.

As before set

d
(3.18) A(z,4,6) =Y Aj¢;.



Remark 3.7. 1. In the statement of hypotheses (H2)-(H5), the matrices Aj, By are
defined differently from (3.17) (for example, Aq in (3.17) is replaced by Ag in the original
definition (2.13) of Ag). However, it is easy to check that whenever (H2)-(H5) hold for
those matrices with their original definitions, the same hypotheses hold when the matrices
are defined as in (3.17).

2. We shall prove the estimate (3.9) by separate arguments for the regions 0 < v < ||
and vy > d|C|. In the first region we may not treat Ev as a negligible lower order term.

3. Observe that A and A are functions of (z,q,&), while A; and A; are functions of

(2,9).

We will label each Proposition, Corollary, etc., in this section with either a (P) or an
(E) to indicate, respectively, either that it holds all along the profile (i.e., for all z) or just
near the endstates (i.e., just for |z| sufficiently large).

The first Proposition will allow us to reformulate the strict dissipativity condition (H5)
and verify it for £ when [¢] is large enough. Throughout this section we let O be a bounded
open neighborhood of 0 as in Proposition 2.10, and for ¢ = (p, v, ') with

(3.19) pel, (u,h) €0,
we take W (z, q) to be a profile in the sense of Definition 2.16.

Proposition 3.8 (P). (a) Assume (H2) (ellipticity of the block EQQ(z,q,f)) and (3.19).
For |£]| large enough there are C*° matrices V(z,q,&), symbols of degree 0 in &, such that

. A0
(3.20) VY iA+B+E)V = < 0 BQQ> ,
with

ANz, q,6) = iA (2,0, + BB AT + B + 0(g Y,

B22 » = §22 » 4, @ ’
(3.21) (2,4, (2,4 £)O+ (1€ I
o 1

1
) +0(lg[7%).

(b) The same result holds when E is set equal to zero and A is replaced by A.

Proof. A direct computation and simple perturbation argument shows that (3.20) holds for
a V of the given form. O

Corollary 3.9 (P). Assume (H2) and (3.19). There exist R > 0 and ¢ > 0 such that for
|€] > R, the eigenvalues \ of iA(z,q,€) + B(z,q,£) satisfy R\ > ¢ if and only if

(3.22) spec{id' (z,q,&) + A (B 1A} € {RA > ¢}

Proof. Given (H2), this follows from part (b) of the above Proposition. O
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Corollary 3.10 (E). Assume (H2), (H5), and (3.19). There exist R > 0 and Zy, > Z such
that for |§| > R and |z| > Z1, the following equivalent properties hold:

(a) spec{id' (z,q,6) + A (B™)"TA"} € {RA > ¢},
(8:23) () speclih (2.4, + A (B) A +E (2.0} € {RA > o},
(¢) spec{if(z,q,€) + B(z,¢,€) + E(z,9)} C {RA > ¢}
for some constant ¢ > 0 which may vary from line to line.
Proof. Hypothesis (H5) and Corollary 3.9 imply that (3.23)(a) holds for |{| large and |z| >
Z: .11 —11
Since A" (z,¢,§) = A" (2,¢,¢) and
(3.24) AZB* AT -4 12 +|E"| < ce A
for some 6 > 0, (3.23)(a) is equivalent to (3.23)(b) for |z| > Z; large enough. The equiva-
lence of (3.23)(b) and (3.23)(c) then follows from part (a) of Proposition 3.8.

12(§22)_

O
Example 3.11. Assume s = N — 1 or, more generally, that
d
(3.25) L= (ir+7+ > a(z,q)i&; + )l
j=1

with aj, e scalar. Then (3.23) holds for |z| and || large if and only if

(3.26) spec (ZH(EQQ)*ZH) C {RX > c}.

By (H3) the eigenvalues of le(z, q,&) are real and semisimple with constant multiplici-
ties, and we can push further the diagonalization process. Denote by Ax(z, ¢, &) the distinct

eigenvalues of Zn(z,q,ﬁ) = Kll(z,q,é) with multiplicities rx. Then, locally in &, there
exists a smooth, homogeneous symbol Vj(z, q, &) of degree zero in £ such that

(3.27) (Vi) M A"' W = diag(\Ly,),

where I, denotes the r x r identity matrix (see Remark 3.13). By perturbation there is, for
|€| large, a matrix Wy = V4 + O(|€]7!) such that for A! as in (3.21) we have

(3.28) (W) "LAN W, = diag(AfY), AR =iz, + CH,

where the rg x 1), blocks C}(z, ¢, €) are symbols of order zero in &. This yields the following
additional corollary of Proposition 3.8:

Corollary 3.12 (E). Assume (H2), (H5), and (3.19). There exist positive constants R,
¢, and Zy such that for |£| > R and |z| > Z1, the following property, equivalent to those in
(3.23), holds:

(3.29) spec Ot C {RA > ¢} for all k,
with C' as in (3.28).

Remark 3.13. The results of subsection 3.2.2 still hold for W (z,q) satisfying only condi-
tions (a) and (b) of Definition 2.16. This observation is used later in estimating solutions
supported away from the front, where we must allow u' to be large.
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3.2.3 Reduction to a first-order system

Separating the equation

(3.30) L(z,q,¢,0:)u=f
into its first and second components and using
1k _ Flk 7. _
(3.31) AR =A%k =1,2,
we obtain
(a) ASo.ut + AP0 u’+
d—
EYul + B4 + A Gir + y)u Z Hinjut + A}QinjUQ) =f!

) d—1

(3.32) (b) — BP02u® + AZ'0.u' + [ AT =D (B + BF)in, | 0.u+

j=1
B! + B2 + AZl(iT + ’y)ul + AP (T + y)u+

ZAQlZTUu + ZAQ%TU + Z 32 %157k) u? = f2.

7,k=1
Let
ul (A}ll)—lfl
(3.33) U= «* | and Jf = i 0 i
0:us ~(BE) (U - AR AT

We can now rewrite the second-order N x N transmission problem (3.8) as an equivalent
first-order (N 4 s) x (N + s) transmission problem:

.U —-G(z,¢.QU=Jf

3.34
(3:34) [U] =0on z=0,
where
Gll G12 G13
(3.35) G=(o0o o 1],
G31 G32 G33
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with

d—1
G (2,4,0) = —(A]) (z,0) | B (2,q) + Ag'(im +7) + > _ Ajlin;
j=1
d—1
G12 (A(lil)71 E12 4 ZA;ZZT]]
j=1
Gld — (Ag.ll)flA12
(336) 31 H22\—1 21 21/ = 21 - 21 ~11
G* = (Bia) E* + Ap (ZT+7)+ZAJ' mn; + Ay G
j=1
~ d—1 d—1 ~
G = (BF) ™" | B + AP (ir + ) + ) AP + Y Biimgme + A7 G
= )
G¥® = (BR) ' | AP =) (B + B)in; + A} GY
=1

We note that:
G is first order in (,
G2 is first order in 7,
G'3 is independent of ¢,
G3! is first order in (,
G2 is first order in i7 + ~ and second order in 7,

G33 is first order in 7.

3.2.4 Decoupling.

In the proof of the estimate (3.9), a key step is to obtain a decoupling of G into hyperbolic
and parabolic blocks. We’ll see in section 3.2.7 that this can be done without any further
change of dependent variable for frequencies in any region of the form v > C|¢|. In this
section we concentrate on the region 0 < v < 4|¢|, where ¢ is some small enough constant
to be chosen.

For later error control in the variable coefficient estimates, it is desirable to accomplish
the decoupling with a conjugator whose entries are homogeneous symbols (like |C|). After
decoupling, the estimate for the hyperbolic block will be carried out using homogeneous
symbols, but for the parabolic block we introduce a rescaling based on the parabolic symbol
A((¢) to obtain an optimal estimate.
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The decoupling is easier when G is rescaled as follows. If U = (u!,u?,u3) in (3.34) is

replaced by U = (u!,|¢|u?, u?), then G must be replaced by

GGt G " b
(3.37) G=1| 0 0 ICILs | = <G21 M22) )
G31 G32|<’71 GSS M M

11

0 > Note that M?22 and

a zero-order perturbation of the first-order matrix < M2 22

0 I
(338) Mz'2112 = <G32 G33>

have the same eigenvalues.

Lemma 3.14 (P). Assume (H2), (H3), (HS), and (3.19). There exist positive constants
¢, 8, and R such that for |¢| > R, 0 <~ < 4|¢| and all z, the distance between the spectrum
of GY(2,q,¢) and the spectrum of M?%(z,q,() is larger than c|C|.

Proof. The dependence on (z,q) enters only through W(z,q) and v(h + '), so we may
reduce by compactness to considering a single choice of (z,q). Since we are concerned only
with large ||, it suffices to consider just the principal terms (homogeneous of degree one in
() in these matrices, and to show that the principal parts Gzl,l and Mgz have no common
eigenvalue when |(| = 1 and -y is small enough.

Suppose v = 0. Then by Proposition 2.10 the eigenvalues of G}l,1 are purely imaginary.
If n # 0, (H2) implies that eigenvalues ug of MgQ satisfy Rus # 0. Moreover, when 1 = 0,
we have Mg2 =0 and

(3.39) Gyl = —(A) ' Agtir

has nonzero eigenvalues. Thus, for v = 0 and |[(| = 1, the matrices G}Dl and Mgz have no
common eigenvalue. This remains true for v small. O

Definition 3.15. Let ¢ = (7,7,7n) and for a multi-index o = (o7, o), set || = ar + |y
and ||a|| = 20 + |y
Denote by I'™ the space of homogeneous symbols of order m

™ = {h(2,4,¢) € C* : 102,02, ] < Cpal¢I™ 1, [¢] 2 1, any a, 5}
Denote by PI'™ the space of parabolic symbols of order m
PI™ = {h(2,q,¢) € C% :102,07,h| < Caal A1, [¢] > 1, any o, 5},

We use the same notation for spaces of homogeneous or parabolic matriz symbols of any
fixed dimension.

The following corollary of Lemma 3.14 gives a partial decoupling of G.
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Corollary 3.16 (P). Under the assumptions of Lemma 3.14, there is a homogeneous
symbol

In_s O
(340) W(Z’q’ C) = <W]\;21 IQS> € FO
such that
L G 4 MRt M2 .
(3.41) WIGW = (_W21M12W21 M2 w2 ] T Goel',

where the off-diagonal blocks belong to T'°.

Proof. A short computation using the explicit forms of W, G, and Gy shows that we just
need to choose W?! satisfying

(3.42) wHGH — MEw? = M2

Now W2 is a 2s x (N — s) matrix, so we can identify it with an element of CP, where
p=2s(N —s). Let

(3.43) h:CP — CP

be the linear map defined by the left side of (3.42) using this identification. The eigenvalues

of h are differences i1 — o, where p1 (resp., uz) is an eigenvalue of G'* (resp., M?2). The
map h is given by a p x p matrix whose entries belong to I'" and whose determinant satisfies

(3.44) |det h| > C|(P
by Lemma 3.14. Thus, h~! € I'"! and
(3.45) w2 = p (M%) e 10

From Corollary 3.16 we deduce readily the following partial decoupling of G itself.
Corollary 3.17 (P). Under the assumptions of Lemma 3.14 and for W2 as in (3.40), let

W21 W?l‘qfl
21 _ a 21 _ a
(3.46) W = (Wbm) and W* = ( W ) ,
where the a and b entries are each of size s x (N — s). Then
1

(3.47) W= <W21 ?) e’
satisfies

Gl 4 prlzpp2t G2 G13
(348)  wWlGw= Gt —W2NCITIG? I, — W2 (TGP | = G,

G%l G32 _ Wb21G12 G33 _ Wb21G13

where
.19 GBl = —WA (2GR + | GBI e T

G = —WR (TG + R e T
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Proof. For each (i,j) the equation expressing equality of the (1,7) entries in GW = WG|
is a multiple of the corresponding equation for GW = W GY. 0

Remark 3.18. We'll use the partial decoupling given by Corollary 5.17 in the high frequency
estimate. The complete decoupling of G given in the next Proposition is useful for the
spectral analysis of the block

(3.50) G+ MPW = Gl

Proposition 3.19 (P). Under the assumptions of Lemma 3.1}, there is a matriz W(z,q, () €
I such that

~ ~11 R
(3.51) WoIGW = (GO ]\;22> e}

where

Gl = Gl MW = Git e T,

3.52 -
(3.52) M*#2 =M*?+geT!, geT®
Proof. Set
In_s b
3.53 W =
( ) <W21 _[28>

where b € ', and solve for b and g by equating corresponding entries in
(3.54) GW = WG.

Define ¢ in terms of b using equality of the (2, 2) entries, substitute into the equality for the
(1,2) entries, and solve the resulting nonlinear equation for b using invertibility of

(3.55) h(b) = G'b — bM?2,

as follows from Lemma 3.14.

3.2.5 Spectral properties of GH

Let pr(z, ¢, ¢) of multiplicity sg, k = 1,..., ko, denote the distinct eigenvalues of G},l(z, q,¢),
the principal part of G!'. By Proposition 2.10 the py, are purely imaginary and semisimple
with constant multiplicity for v = 0. In addition we have:

Proposition 3.20 (P). Assume (H3), (H8), and (3.19). There exists a 6 > 0 such that
for 0 <~ < 0|C|, the p are C* in (z,q,n), analytic in T —i7y and semisimple with constant
multiplicity. Moreover, for v > 0, Rux # 0 and has the same sign for all k, namely —sgn(3),
where (3 is any eigenvalue of Zél(z, q).
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Proof. The puy(z,q,-) are real analytic in (7,17) € R%\ 0 and homogeneous of degree one,
so can be extended analytically in 7 — iy near v = 0 as smooth functions of (z,q,n).
The eigenvectors associated to ui extend analytically as well. Semisimplicity and constant
multiplicity of the extended puj follow from analyticity.

Hyperbolicity of Zn(z,q,g) (H3) implies Ruy # 0 for v > 0. Setting (7,7) = 0 in Gll)l
and using (H8) shows that the signs are as described. O

Using Proposition 3.20 and arguing as in (3.28), we obtain, for |(| large and 0 < v < §]|(],
matrices V(z,q,¢) € T such that

(3.56) VIGUY = diag(urls, + Re),
where Ry, € I'V is an s;, x s;, block, k =1,..., k.

Remark 3.21. At first sight the matrices V(z,q,() and Ry can be chosen smoothly only
locally in (2,4, (). A classical result of Kato ([Kat], p. 99-102) implies that for (¢, ) with |C]|
large and lying in a conic neighborhood of an arbitrary basepoint (g, () such that 0 <4 <4,

such conjugators can be chosen smoothly in (z,q,C) for all z. Here (= C/I¢|. We use this
observation later in the variable coefficient analysis.

The main result of this subsection, needed for the estimate of the hyperbolic block, is
that for all k, the real part of spec Ry is bounded away from zero and has the same fixed

sign, namely —sgn(f) = sgn(Rux), where § is any eigenvalue of Z}ll(z,q) (recall (H8)).
Recalling that (z,¢q) dependence enters only through W(z, q), we let

(3.57) R;:*(¢.¢) = lim Ry(2,q.¢).

Proposition 3.22. Assume (H2), (H3), (H5), (H8), and (3.19). Let ui(z,q,¢) denote the

distinct eigenvalues of G}DI, the principal part of G, and let 3 be any eigenvalue of Zil .
Let vy denote the eigenvalues of Ry. There exist positive constants R, Z1, ¢, and 6 such
that:

(i)(P) (—sgnB)Rup > cy for 0 <~ <4§[C], all (z,q), and all k.

(i)(E) For |(| > R, |z| > Z1, and 0 < v < §|(|, we have

sgn(Rvy) = sgn(Rux) = —sgn(B) for all k,1

3.58
(3.58) |Rvki| > ¢ for all k1.

The proof is given below.

In view of (3.58), after modifying V if necessary, we may assume for ¢ as in (3.58)
(3.59) —sgn(B)RRy > ¢ > 0 for |z| > Z; and all k.
Together with part (i) of the Proposition, this gives

Corollary 3.23 (P). With assumptions as in Proposition 3.22, we have for all k, |(| > R,
0 <7y <6[¢], and all (2,q),

(3.60) (P)  —sgn(B)R (2,4, O) I, + RE¥(q,0)) > ey +1).
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Remark 3.24. The proof of Proposition 3.22 depends on the next Lemma. In preparation
note first that for |C| large and § small, the functions GY and Ry, in (3.56) are analytic in
T — iy for 0 <~ < §|C|. Writing M\e(2,q,&) = M\e(2,q,m,&q) for A\ as in (3.28) and letting
&4 denote a complex variable now, we see by arguing as in Proposition 3.20 that the A, can
be extended analytically in &g to 0 < [S&y| < 01|n, &q| for 01 small enough, as semisimple
eigenvalues of Zn(z,q,n,fd) with constant multiplicities. Moreover, for large |n,&q4| the
functions AM and Cllin (3.28) extend analytically in &g to 0 < |I&y| < 61]n, &al-

Lemma 3.25 (P). Assume (H2), (H3), (H8), and (3.19). Fiz C1 > 0 and assume |iT +
iy] < Ci|n,&42. There exist positive constants R and & such that for |n,&4) > R, 0 < v <
0|¢|, and |S¢q| < d|n, &q| we have

(3.61) det(i&g — Gll(z, q,¢)) = c(z,q,¢, &) det(iT + v + fl“(z, q,m,€4)),
where
(3.62) o(2,,¢, &) = (det Ay )™+ O(¢, &l 7.

Proof. 1. With £ as in (3.16) we have

det(i&g — G(z,¢,¢)) = det(ig — G) = ¢1(z, ¢) det £, with

3.63 - -
(3.63) c1(z,q) = (=1)* det(AYH ! det(Bg?d)_l det Ay,

as follows by performing obvious row and column operations on det(i{; — G). Propositions
3.8 and 3.19 thus give
(3.64)  det(itg — GM)det(i&q — M*2) = ¢1(z, q) det(it + v 4+ AY) det (it + v + B?).

2. We'd like to cancel the final factors on each side of (3.64). First, with M?? as in
(3.38) we have

(3.65)
det(i&g — M??) = det(i&g — M?2) + O(|¢, &[> 1) = det(i€q — MZ2) + O(I¢, &a)*71)

= co(z,q) det(it + 7 + B (2,4,6)) + O(|C, €4/ 1)
= co(z,q)det(iT + v + E22(z, 7,9) + O([c, £d|28_1),

where ca(z,q) = (—1)° det(Bg?d)_l det A%2, as follows by performing row operations on
det(i&q — Mz2n2)
3. By (H2), for £ = (n,&4) real and p an eigenvalue of §22(z,q,§) we have

(3.66) Ry > (€.

For ¢ small (3.66) continues to hold for 0 < |S&y| < d|n, &y|. Thus, for 0 < |]E,| < |n, &4,
and |iT + 7| < C1|n,&4)?, there holds

. 22 s
(3.67) |det(it + v+ B (2,¢,€))| =~ |n, &|*.
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We may now cancel in (3.64) and obtain (3.61) with

Cl(zv Q)

CQ(Za Q)

(3.68) c(2,4,¢,&q) = +O(I¢,€al™h) = (det Ag) ™"+ O(1¢, €al 7).

O]

Before proving Proposition 3.22, we first illustrate it in an important special case that
includes the Navier-Stokes equations.

Example 3.26. Assume s = N — 1, so that
11 4 11
(3.69) L' =ir+7+ Y A (29i,+E
j=1
with XH, E" scalar. Writing

AN(z,q,6) =iA" (2,,6) + B (2,9) + R(2,4,€)

(3.70) .
GH(2,q¢,0) = G (z,¢,0) + Ri(2,¢,¢)

we have Ru; = —(chll)_lv now and, by Corollary 3.12,

(3.71) R(z,q,&) > ¢ > 0 for |£| and |z| large.

The equation (3.61) is
d—1

(3.72) ilg — (GY + Ry) = c(2,q,(,&q) | it + v+ szl-linj + chllifd +E'+R
j=1

Using (3.62) and setting

d—1

> —11, _ . —11 =

fo=—(Ay )t —iv+> A —iE
j=1

11

)

we find

Ri(z,¢.Q) = —(A3 ) 'R(z,q.1,€4)l¢, ¢, + O(CI7Y).

With (3.71) this implies the conclusions of Proposition 3.22 for this example. In particular,
sgn "Ry = —sgn B = —sgn Zill and |[RRq1| > ¢ > 0.

Proof of Proposition 8.22. 1. 1If i&; € spec G}Dl(z, q,¢), then

U

~1
(3.73) —(iT + 7y) € spec izn(z, q,1,&q) = spec Z;linj + chlliﬁd ,
j=1
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SO
(3.74) it + | < C[n, &al and [n, &a| = [C]

for some C' > 0. Thus, (3.74) holds also for i€, € spec G’H(z,q, () for || large, so we may
assume (3.74) in the proof of Proposition 3.22. In particular, Lemma 3.25 applies.
2. Introducing polar coordinates ( = p¢ = p(7,%,n) and setting

(3.75) e=1/p, &a=a/p,

we may use the block decompositions of A (3.28) and G'' (3.56) to rewrite the equation
(3.61) as

H det <(Zéd - Mk(zv q, 72 - Z’Ay’ ﬁ))Isk - ERk(Z, q, 72 - /Lﬁ/? ﬁa 6)) —

(3.76) k ) . )
c H det ((7’72 + ’3/ + i)‘j(zv q, 777 gd))ITj + GC] (Zv q, ’f/a éd’ 6)) .
J
Here
(3 77) Rk(zv q, T Z’A% ﬁv 6) = Rk(za q, C) = RkO(Za q, 6) + O(E)

lel(zaqa ﬁaédae) = C;I(Z,q,nafd) = C;&(z’qaﬁaéd) + O(E)a

where Ry (resp. C%) is homogeneous of degree zero in ¢ (resp. (1,&q))-
3. We work near a basepoint (7,0,7) # 0, € = 0. Consider an eigenvalue (necessarily

purely imaginary) fi, = ng of Glljl(z, q,7,0,7m). By (H3) there exists a unique eigenvalue \;
of le(z, q, &) such that

(3.78) 4 Mz q,9,€,) = 0.
Moreover, by (2.32) (£, 1, gd) is nonglancing:

(3.79) e, Nj(2,4,0,€ ) == a € R\ 0.
From (3.76) we obtain

( ) A] i=det <(Z7A'+'§/+Z)\](qu”f/7€d))l7“] +€C]11(Z;Q7ﬁvéda€)) =
3.80

C/Ak = C/ det ((Zéd - /'Lk(za q, T - ZfAY? ﬁ))ISk - GRk(Z, q, 7T — Zﬁ}v /'77 6)) )

with ¢ (z,q,C, €4, €) # 0 near the basepoint.
4. Taylor expanding (3.80) about the basepoint with §; =& — ¢, and 7/ =7 — iy — 7
both complex gives

(3.81)
Nj(z,q, T —i9,1,8q,€) = det (i(T' + aé&)[rj + EQ}I) +O(|7, &, €|Tj+1) =
 Ni(z,q,7 — 19,1, &a, €) = ¢ det (i(&) — 7'0yRuw(2, ¢, 7,0)) L5, — €Ry) + O(|7', & e 1),
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where underlining indicates evaluation at the basepoint. Taking ¢ = 0 and 7/ = —i¥ in
(3.81) and equating leading terms gives

(3.52) 75 (=4 + agl)"s = i (€ + 30, Ryap) ™,
from which we conclude

1
(3.83) r; = s and Oy Rup(z,q,7,7) = - e R\ O,

giving, in particular, part (i) of Proposition 3.22. (We knew r; = s, already from part 3 of
the proof of Prop. 2.10.)
5. Now take 7/ = 0 and equate leading terms in (3.81) to get

(3.84) det(io€yl,, + €C') = ¢ det(i€)l,, — eRy,).

Thus, the eigenvalues of R, are the same as the eigenvalues of —éQ}l. By Corollary 3.12
this implies that for |z| large, if v4; is an eigenvalue of Ry (z,q,7,7), then

(3.85) Rk # 0 and sgn(Rvgy) = sgn(—é) = sgn(0,Nuy) = —sgn(f).

The last equality is a consequence of Proposition 3.20. By continuity and compactness,
(3.85) implies part (ii) of Proposition 3.22.
O

3.2.6 Spectral properties of the parabolic block an2

Introduce “parabolic polar coordinates at infinity”

(3.86) $=(#7,9) = (T € ?7) ;

and write

G32(2,q,¢) = A2G32, G3 = A%

(3.87) 0 I . 0 I
M7?? = <G32 G33> , M2 = (ng Gsza) -

In the next Proposition we allow ¢ to vary in a set Q" which may be larger than Q@ = CxO
as in (3.19).

Proposition 3.27 (P). Assume (H2) and that for all (z,q) € R x Q*, W(z,q) € U*.
There exist positive constants R and C such that for |(| > R and all (z,q), the 2s x 2s
matriz M2% (resp. M?22) has s eigenvalues, counted with their multiplicities, in R > 0 and
s eigenvalues in Rp < 0. They satisfy |Ru| > CAo(C) (resp. |Ru| > C).
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Proof. The proof is identical to that of Lemma 2.5 (i) in [MZ1]. Hypothesis (H2) and
compactness imply the result for anQ. The result for anQ follows since

(3.88) spec (M??) = spec (AgM?22).
0

The following immediate Corollary of Proposition 3.27 will be used in the construction
of symmetrizers for the parabolic block. Let A = 1/A¢ and for any z let IL,(z,q,(, )
(resp. II,(z,q, ¢, A) denote the spectral projectors onto the s-dimensional invariant spaces
F°(z,q,(,A) C €25 (resp. ]F;O(z,q,(v,)\)) of M?2? associated to eigenvalues with negative
(resp. positive) real part. Proposition 3.27 implies the projectors are defined and smooth
for A € [0, o] for some small A\g. Define

I:C* - C%, T(vy,v ):=vy —v_

(389) 0O e 00 e 00 e 4s
F (Z7Q7Ca)‘):]Fn (zaQ7<7)‘)XFp (Z7q>Ca)\)CC .

Corollary 3.28 (P). Under the assumptions of Proposition 3.27, there exists Ao > 0 such
that the following two equivalent statements hold for X € [0, \o] and all (z,q):

C* =F(2,¢,(N) @ Fp(2,4,CA)

(3.90) )
F*(z,q,(,\) NkerI' = {0}.

Remark 3.29. We use (3.90) only for z = 0 in the construction of symmetrizers. In that
case the statement implies that an appropriately rescaled Evans function (as in [GMWZ3],
Prop. 2.12) is bounded away from zero for |C| large. The construction can be done without
introducing such an Evans function, so we don’t define it here.

3.2.7 Estimates

In this subsection we complete the proof of Proposition 3.5, using the reduction to a first-
order system (3.34). Let f = (f1, f2) be as in the estimate (3.9).

Proof of Proposition 3.5. 1. Reductions; the case 0 < v < 4|¢|. For U = (u1,u2,us)
satisfying the transmission problem (3.34):

g1
0. U—-G(2,¢,Q)U=Jf:=10

(3.91) o

[U]=0o0nz=0

to prove the estimate (3.9) it suffices to show

1 1
(1 + D]l + Aluz]l + fJusll + /1 4+ w1 (0)] + A2 |uz(0)] + A2 |uz(0)]

(3.92) -1
< C(llgull + A" lgsl),

since [|g1 ] + A7 lgsll < C(I1All+ A7)

38



We first treat the more difficult case where the frequency (¢ satisfies 0 < v < d]|(|.
For the conjugator W as in (3.48), set U = WV to derive the equivalent problem for
V= (vla V2, U3):

g1 g1 0
V.—GoV=W[0]|-WW)v=| 0" | + 0 ")
(3.93) 9 O(1)g1 + g3 O(1)v;
[V]=0o0nz=0,
where
e O(|nl) O(1)
(3.94) Go= | O([¢]™) O(1) I+0(|¢I™h

0o(1) G®+0(n)) G*+0(1)
Estimating the components of U in terms of those of V| we reduce to proving the estimate

1 _1
(L + vl + Allvall + [[osll + /1 +~[v1(0)] + Az |v2(0)] + A™>[v3(0))]

(3.95) .
< C(llgrll + A lgsll)

for (3.93).
Next use (3.94) to rearrange (3.93)

G' 0 o0
V., — 0 0 I | V=
0 G32 G33

40 g1+ O(|n|)v2 + O(1)vs hy
O(I¢I™Hg1 + O(I¢I™Hvr + Oz + O(I¢| Hws | = | ha
O(1)g1 + g3+ O(L)v1 + O(In|)v2 + O(1)vs hs

The estimate (3.95) follows directly from the estimates

(@) T+ y)[orl + V1 +7[01(0)] < Cla]

(3.97) ; \
(b) Alvz]l + ozl + AZ[v2(0)] + A2 [v3(0)] < C(||hal| + A7 A3]])

for (3.96), after absorbing a few terms from the right by taking |(| large. It remains just to
prove (3.97).
2. The hyperbolic block. Consider the (N — s) x (/N — s) transmission problem

(3.98) o017 = Gy + hy, [vi]=0o0n z=0.
With notation as in (3.56) let

(3.99) A = diag(uils, + Ri), v1 =V(z,q,Qw,
and rewrite (3.98)

w=Aw+V'th —V YV

(3.100) [w]=0o0n z=0.
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On +z > 0 we have Ry, — RF™ = O(e %) and V="'V, = O(e7%I) for § > 0 as in
Definition 2.16. Let

(3.101) w = (Wi, ..., W) and V" hy = (hy,... hg,).

Then the equation given by the kth block in (3.100) is, say when k = 1,

(3.102) d.wy = (m + R + O(e_9|z‘)> wi+hy+ Y O(e ™ hwy,
k>1

Since we want an estimate valid for 0 < v < §|¢|, we can’t simply absorb the O(e~?%])
terms in (3.102) by taking 7 large. Instead, we take advantage of the exponentially decaying
factors by introducing exponential weights e?(*) as follows.

Consider the case —sgn(3) = 1. By Corollary 3.23 we have then

(3.103) R(ux + Ri>®) > c(y + 1) for all k.
For a uniformly bounded weight function ¢(z) to be chosen, set
(3.104) w=(Wi,...,wk) =e’w=—e’(W,..., W)

Letting w® = w|4,>0 we first estimate w*. From (3.102) we have for z > 0:

(3.105) Do = (m + R 4 0(e7%) + qb') wf e+ 0(e)w
k>1

Denote the inner product in C** by (, ). Pairing (3.105) with wi” and integrating fooo yields
HOP+2R [ (o + Bt o) + 20 [ ((06) + o)t o) =

_2%/ ¢h17w1 _2§R/ Zwkv _62 1)

k>1

(3.106)

Using (3.103) we find

T OF + 260+ Dl 17+ 2 [ ((0%) + ¢ ) <
(3.107) 2

by
c(y + Dllwi I* + Cy 71 +allw* + Calle™wi |,

+1

where C, depends just on o and V.

The O(e~%) term on the left in (3.106) depends on R; as well as V. Anticipating similar
estimates for the other w,': and noting that o and C, can be fixed independently of k ahead
of time, we now choose ¢ uniformly bounded on [0, c0) such that

(3.108) 2R (0(e7%) + ¢/) = Coe™* for all k,
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and cancel terms in (3.107) to obtain
Lo
(3.109) jwi ()] + c(y + Dlw{ I* < Cy i ol

Adding (3.109) to similar estimates for the other components w,j, we find, provided «
was taken small enough,

(3.110) VIt (0)] + (v + Dlw™|| < ClIAT .

The boundedness of ¢ implies

(3.111) VI+ywt(0)[+ (v + Dfw | < CllRT .

A similar argument on (—oo, 0] yields

(3.112) (Dl < C (Il + VT+7 [ (0)]) -

Combining the estimates (3.111) and (3.112) using w™(0) = w™(0), and recalling v; = Vw
gives (3.97)(a) in the case —sgn(f3) = 1. The case —sgn() = —1 is essentially the same.

3. The parabolic block. To prove (3.97)(b) we set @& = (v2,v3) € C?* and consider
the transmission problem

(3.113) d.0 = MP0 + <ZQ> , @) =0on z=0.
3

With G = M?? as in (3.87) and u = (u2,u3) := (Ag(¢)v2,v3), we have the equivalent
problem

(3.114) d.u = AoGu + <A}E’Lh2> , [ul=0o0n z=0.
3

We can use the spectral projectors II,,, II,, defined just below (3.88) to construct a smooth
conjugator V(z,q, ¢, A) for A € [0, Ag] such that

(3.115) VoIgY = (’g IS)

where the spectrum of P, (resp. P,) lies in a compact subset of ®u > 0 (resp. Rp < 0).
Modifying V' if necessary, we arrange to have

(3.116) RP, > CI,, RP, < —C1,,

for some C > 0.

Remark 3.30. We claim that the conjugator V(z q, C A) can be chosen smoothly for q in a
small ball about an arbitrary basepoint q, C € S = {C 5 >0}, and X\ € [0, \o]. Choosing a
smooth conjugator is equivalent to choosing a smoothly varying basis for the fibre space of a

bundle, so this follows from the fact that contractible base spaces admit only trivial bundles
([St], Corollary 11.6).
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Using + to denote functions defined on or restricted to £z > 0, we next construct
self-adjoint symmetrizers ST (z, ¢, ¢, \) with the properties

(a) R(SEGE) > Iy on £2 >0
(3.117) - ) ,
(b) (STa,a) — (S7b,b) > |a,b]* — C|T(a,b)|* on z =0
for some C' > 0, where I : C* — C?* is defined by
(3.118) I(a,b)=a—-0

and (-, -) is the inner product on C?*. For large enough positive constants ki kE, property
(3.117)(a) is clearly satisfied by

+
(3.119) SE = (Vih* (kPOIS _k(ils) vt

To arrange (3.117)(b) observe first that for some positive constants ¢, C', we have on
z =0

(3.120) (Sta,a) — (S7b,b) >
c (k) [Mpal® + ky, [T1,b%) — C (k} [M,al® + &, [T1,0]%)
For F>(z,q,(, \) as in (3.89) we have at z =0
(pa, Ipb) € F(0,q,¢, N),
so the transversality condition (3.90) implies

(3.121) M. T,b| < CID(I,a, TL,b)| < C(IT(a,b)] + |ya, TL,b))

for some C' > 0. Using (3.120) and (3.121) we obtain the property (3.117)(b) by taking the
ratios k7 /k;; and k, /k_ large enough.
Adding the identities

/ T (@R(STAGH) + 0.5 )u ut) dz + (ST(O0)ut (0), u(0)) =

+
— 2§R/ <A0h ) ,ut)dz,

/ (2R(S~ MG ™) + 0.5 Yu~,u”) dz — (S~ (0)u~(0),u™ (0)) =

— 2R Aoy )z
[ ()

and using the properties (3.117), we obtain for || large the following estimate equivalent

0 (3.97)(b):

(3.122)

1
(3.123) l|lul| + lu(0)] < CA—OHAOhQ,th.

AP
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4. The case v > C|(|. Let C > 0 and consider again the transmission problem (3.91)
for U = (u1,ug,us):

g1
0, U —-G(z,¢,Q)U=| 0

(3.124) o

[U] =0on z=0.
For frequencies ¢ such that

(e Z:={C:y =0, | = R},

we’ll prove a stronger estimate than (3.92), namely

[CHluall + Allugll + [lus]] + V/IClua (0) + Az |uz(0)] + A7 [uz(0)]

(3.125) 2
< C(llgull + A lgsl)-

The argument now does not require any subtle conjugations or exponential weights like ¢(z)
in (3.104). With the larger weight on |lui|| we can easily absorb larger errors.

Let Gllj1 be the principal part, homogeneous of degree one in ¢, of G!'. First rewrite
(3.124) as

G;l 0 0 g1 +O(1)u1 +O(|77|)u2+0(1)u;>, h1
(3.126) 0, U — 0 0 1 U= 0 =10
0 G2 G g3 + O(|C])ur hs

The estimate (3.125) will follow directly by adding the estimates

(Ml + V1€l (0)] < Ol

(3.127) s . »
Alfugl + llusll + A2 [uz(0)] + A72[uz(0)] < CA™|[As]|

after absorbing a few error terms from the right by taking |(| > R large enough. In particular
to absorb the A~O(|¢])|lu1 ]| term we use A(¢) > /||

It remains to prove (3.127). The (ug,u3) estimate is done exactly as before.

Before estimating u;, we note that for v > C|¢| we do not know that the eigenvalues
of Gél are semisimple with constant multiplicities. Hyperbolicity of At implies Rug # 0
whenever v > 0, so by homogeneity we have

(3.128) [Rpw (2, ¢, Q)| = c|¢] for v = C¢].

This is the simplest “elliptic” case for the construction of Kreiss symmetrizers.

From Proposition 3.20 we deduce that for € Z, Ruy has the same fixed sign for all k,
namely —sgn(3), where [ is any eigenvalue of Z}ll(z,q). We take —sgn(f) = 1, the other
case being similar.

The argument is closely parallel to the earlier treatment of the parabolic block, but
simpler. Let { = |C\é and write G}f = |¢|G!!. There is a smooth conjugator V(z, q, f) such
that

(3.129) VIGgHY = G, where RGM > CIy_,
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for some C' > 0. The positive and negative invariant spaces of G!! are respectively,
(3.130) Fp(z,q, é) =CN~*% and F.(z,q, f) =0,

and, defining

(3.131) I:C*N=) - CN=% I'(a,b) =a—b,

we have the exact analogue of Corollary 3.28.
We construct symmetrizers

(3.132) §%(2,4,0) = (VE) (ky In—a) Vi,
where k:; > 0 is large enough and k, = 1, satisfying

RSEGIH) > Iy_son +£2>0

3.133
( ) (S*a,a) — (S7b,b) > |a,b* — C|T(a,b)|* on z = 0.

Repetition of the proof for the parabolic block gives the estimate

(3.134) [l ]| + V1€ (0)] < Ol

in place of (3.123).
O

Remark 3.31. As we explain later in the proof of Proposition 6.6, the fully linearized
operator that we actually use in the nonlinear iteration scheme has a principal part in the
high frequency regime that differs slightly (after freezing coefficients, Fourier transforming,
and rescaling) from the operator appearing in (3.3):

(3135) £(27q7C7aZ)u_wK:(Z7Q7C) = f

The correct high frequency operator is defined by replacing L in (3.135) by L, where L is
defined just like L except that the (2,1) entry of the matriz coefficient Ay(z,q) (3.15) is
replaced by

(3.136) A2V = A2z q) + 7,

where r is a (frozen) s x (N — s) matriz of small norm.
The identity in Lemma 2.28 now becomes:

; 0
(3.137) LOW =K —0,P + <T8§W1) .

With this change the reduction carried out in subsection 3.2.1 goes through just as before,
except that the partially linearized problem is now

Lu=f

(3.138) [u] =0, [O,us] =0 on z=0
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instead of (3.8), and (3.11)(a) should be replaced by

(3.139) Lu? = f+ 0. P — (mgvm) ,

where the profile W = (W, Wa).

Moreover, for arbitrary sufficiently small r all the constructions and estimates of sub-
sections 3.2.2 to 3.2.7 go through exactly as before for the new problem (3.138). This is
because the change in A%' has no effect on the validity of hypotheses (H2), (H3), and (HS).
Also, Corollary 4.1 implies that with such a change, hypothesis (H5) still holds for || large.
The hyperbolicity hypothesis (H4) may no longer hold, but (H4) was not used in Section
3.2.

It is convenient then to redefine the parameter ¢ = (p,u’,h') (2.24) to include r. So
henceforth

(3.140) q = (p,u',h',7)

and we drop the tildes on L and Azl. When working in the low and medium frequency
regimes, we always take r = 0. This reflects the fact, demonstrated in section 4.4, that the
perturbation produced by r in the low and medium frequency variable coefficient estimates
1 a negligible one.

3.3 Low and medium frequency estimates

In this section we discuss the estimates of Propositions 3.2 and 3.3 for the fully linearized
transmission problem (3.3):

‘C(Z’(L ¢ az)u - QpIC(Z, q, C) =f

(3.141) [u] =0, [Q.us] =0, a(C)¥ + £(q) - u2(0) = 0 on z = 0.

The low and medium frequency analysis for the systems of Navier-Stokes type that
we study in this paper has much in common with the analysis of [GMWZ3] for the fully
parabolic case; so we’ll give proofs when different arguments are needed, but otherwise shall
refer to previous work. We first describe the reduction to the partially linearized problem
for this range of frequencies. All the results depend on the conjugations to limiting and
block forms explained later.

3.3.1 Reduction to the partially linearized case

In the medium frequency regime the same choice of good unknown that worked for high
frequencies,

(3.142) ut = u — o, W,

allows us to prove estimate (3.7) for solutions (u, ) of the fully linearized problem (3.3) by
showing that solutions of the partially linearized problem,

L(z,q,¢,0:)u=f

(3.143) [u] =0, [O.uz] =0 on z =0,
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satisfy
(3.144) [ull + 10wzl + [u(0)] +10:u2(0)] < Cllf1, fal-

The proof of (3.144) does not differ essentially from that of [MZ1]|, Lemma 2.12. This
works because the Evans assumption (H10) implies that the Lopatinski determinant for the
transmission problem (3.143) is nonvanishing for medium frequencies. In fact, for ¢ # 0 the
latter determinant, which is given by (2.54)

(3.145) det(E™(g,¢) x E™(g,¢), ker I'),
is equal to the Evans determinant D(g, (). Here I' : CN*% x CN** is given by
(3.146) U, =U0"-U".

The argument that accomplishes the reduction to (3.144) is just as in the high frequency
case; recall (3.11).

Note that the problem (3.143) is singular at ¢ = 0. Indeed, when ¢ = (p,0,0) for p € C,
the derivative of the shock profile, 9,Wy(z, p), is a nontrivial solution for f = 0 that decays
exponentially fast as z — +oo. Thus, a more subtle choice of good unknown is needed in
order to reduce to a nonsingular partially linearized problem for low frequencies. We define
the new unknown using the next lemma.

Recall that in the low and medium frequency regions we define ¢ = (p,u’, h’), where
peCand (v,h) € RN x R? as in (2.24).

Lemma 3.32 ([GMWZ3], Lemma 3.14). Let p € C and set ¢ = (p,0,0) and take
¢ = 0. There is a neighborhood Q of (¢q,0) and C* functions R*(z,q,¢) = (Rli,RQi) on
{£z > 0} x Q, respectively, such that

‘C(zv(.IvCaaz)Ri = CK:E(Z,Q, C) on £2>0

(3.147) (q) - RE(0,q,¢) = —a(¢), R*(z,q,0)=0.

Moreover, R* and all their derivatives are exponentially decaying as z — Fo0.
For (u,1) as in (3.141) define the good unknown

(3.148) pE =ut —¢YR*E

Then (u,)) satisfies (3.141) if and only if u satisfies the transmission problem:

Lp=f
(1] = —Y[R], [0.p2] = —¥[0,Ra], £(q) - i3 =0 on z = 0.
Observe that by (3.147), £(q) - u3 (0) = 0 < £(q) - p5 (0) = 0.

The next step is to eliminate the front and obtain nonsingular boundary conditions for
w alone. Since R*(z,¢,0) = 0 we can use polar coordinates to write

(3.150) R*(z,4,¢) = pR*(2,4,C, p).

(3.149)

46



Setting ¢ := p1) we can rewrite the transmission conditions in (3.149) as

(3.151) 1] = —[R)], [0:12] = —[0-Ra), £(q) - 1 =0 on z =0.
Define the CN*t5-valued function

The following Proposition is a consequence of uniform stability of the shock profile Wy(z, p).

Proposition 3.33 ([GMWZ3], Proposition 3.15). There is a neighborhood w of ¢ =
(p,0,0) and po > 0 such that [R] does not vanish on w x gi x [0, po]. Here §i ={C:|(|=
1,7 > 0}.

Thus, we may define a smooth orthogonal projector ﬂ(q,é ,p) : CN*s — CN*$ onto
[R(0,q,(, p)]*. Applying 7 to the jump condition in (3.151) we obtain a transmission
problem for p with new transmission conditions:

E(Zv q,G, az):u =f

(3.153) (¢, ¢, p) ([8822]) =0, ¢(q)-pu3 =0on z=0.

We claim that the Lopatinski determinant for this problem, D (q, f ,P), is bounded away
from 0 uniformly for p small. To define D let U = (Uy, U, Uz) € CN*¢ with Uy € CVN—3,
Us € C* and define T'x(q, ¢, p) : CVT¢ x CN+5 — CN*+5 x C by

(3.154) T(U,U") = (n(q,,p) (U = U), Lq) - UY)).
Then for 0 < p < po the Lopatinski determinant for the transmission problem (3.153) is
(3.155) Dx(q,¢, p) = det(E~(q,{, p) x E™(q,C, p). ker Tz (g, €, p)).

Lemma 2.19 implies that the dimensions of E sum to N + s and dimkerI'y = N + s, so
the determinant makes sense. R
In fact the argument of [MZ2], Theorem 3.3 shows that E*(q, (, p), which are C* vector

bundles on w x gi x (0,00) by Lemma 2.19, extend continuously to w x gi x [0, 00). Thus,
D, extends continuously to w x gi x [0, po]. The uniform stability of the shock profile
Wo(z,p) implies, by the argument of [GMWZ3], Propositions 3.15 and 3.16:

Proposition 3.34. There is a neighborhood w of ¢ = (p,0,0) and positive constants pg, c
such that

(3.156) 1D (q,¢,p)| > ¢ on w x ?i x [0, po]-

This should be contrasted with the first-order vanishing of the Evans function D(q, ()
at ¢ = 0. Thus, the choice of the unknown g and the extra boundary condition in (3.141)
has allowed us to remove the translational degeneracy. Once the conjugations described
in the next subsection are performed, one can proceed to construct symmetrizers for the
transmission problem (3.153) and derive the estimate

(3.157) N2\ ]| + MOz iz + M p(0)] + MNDzp2(0)] < C|l f1, fll,
where A(¢) = (v + [¢[*)V/2.
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Remark 3.35. To prove (3.156) it suffices, by continuity, to prove
(3.158) Dr(g,¢,0) #0 for ¢ € S9.

The first-order vanishing of the Evans function D(g,é,p) at p = 0 as assumed in (H9)
implies
(E_(Qa 5,0) X E+(g, CA,O)) Nker =

(3.159)
span { (9.W(0, q), 02W5(0,9)) , (0:W(0,q), 92W2(0,)) } -

We have £(q)-0;W2(0, q) # 0, so no nontrivial element (U~,U") of E~ (g, ¢,0) x E*(q, ¢,0)
satisfying £(q) - Uy =0 can belong to ker . To prove (3.158) one must show that (U~,UT)

does not belong to the larger space ker (ﬂ(g,é,O)F) ; this follows from uniform stability of
the inviscid shock.

The transmission condition (3.151) and nonvanishing of [R] imply

(3.160) pll < C(1p(0)] + 102 2(0)))-

Using (3.160) and the exponential decay of RT as z — 4oo respectively, we immediately
derive the low frequency estimate of Proposition 3.2 for the fully linearized transmission
problem (3.141) from the estimate (3.157).

3.3.2 Conjugation to a limiting constant coefficient problem

We’ve seen that the partially linearized transmission problem (3.143) can be written in first
order form as

(3.161) .U —G(z,¢,O)0U=7Jf, TU=[U]=0

for G as in (3.35) and J as in (3.33). Recalling that for ¢ = (p,u',h’) and W(z,q) =
Wo(z,p) + u' we have

(3.162) lim W(z,q) =u™ +/,

z—to00

so we can define the limiting matrices
(3.163) Gi(q,¢) = lim G(z.4,0).

A key step in the construction of symmetrizers for bounded frequencies is the local conju-
gation of (3.163) to a problem defined by G4 provided by the following Lemma.

Lemma 3.36 ([MZ1], Lemma 2.6). Let Q = C x O as in (2.52). For each ¢ € Q and

[§S @iﬂ there is a neighborhood Q of (¢, () in Q x @iﬂ and there are matrices Wy defined
and C* on {+z > 0} x Q satisfying:
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a) We and (Wx)~! are uniformly bounded and there is a 8o > 0 such that for (q,() € Q
and all o,

107 4.cWx(z,¢,¢) —1d)| £ e %kl on +2>0.
(b) On £z > 0 we have, respectively

(3164) azwi(zv q, C) = G(Z7 q, C)sz(za q, C) - Wﬂz(za q, C)Gi(Qa C)
An immediate corollary is that U satisfies (3.161) if and only if Vi := (W) ~!U satisfies

0, Vy =G Vi + (Wi)_ljf on z>0

(3.165)
IV =Wy Vi —W_V_=0onz=0.

3.3.3 Spectral properties of G (g, ()

The entries of G+ (g, () are given by the same formulas as the GY(z,q,¢) (3.36), except that
now F =0, A; = A;, and matrix coefficients are evaluated at (z,q) = (f00, q), respectively.

Notation 3.37. We'll sometimes write (A;)+(q) = Aj(£00,q) and use similar notation
for the A;, Ej,k; ete..

In place of L£(z,q, T —iv,&) = Ay 'L as in (3.16) we have now in the limit as z — oo,
(3.166) Li(g,m—iv,€) = (it +9)I +iA4(q,€) + B+(q. ),

where € = (1, &4).

Lemma 3.38 (The case ¢ # 0). Assume (H2), (H5), (H8). Let H be the number of

positive eigenvalues on}il(z, q). Forqe Q and ¢ € Riﬂ \ 0 the matrices G4 (q,() have no
eigenvalues on the imaginary azis. G4 (q,() has s+ H eigenvalues counted with multiplicity
in Ru <0, and G_(q,¢) has N — H eigenvalues counted with multiplicity in Rou > 0.

Proof. 1. To see that G4 (g, () has no eigenvalue on the imaginary axis, note that u is an
eigenvalue of G (g, () if and only if —(i7 + ) is an eigenvalue of iA (q, &) + B (q, &) with
&= (n,—ipn). Now v > 0, so if p is purely imaginary, strict dissipativity (H5) implies vy = 0
and ¢ = 0, and thus ¢ must be 0.

2. From above we conclude that the number of eigenvalues of G4 in Ry < 0 is
independent of ¢ € @‘fl \ 0. To count them it is easiest to consider { = (0,,0) with ~
large [Z1]. Again writing U = (Uy, Us, Us), the eigenvalue problem (ul — G4(q,¢))U =0
can for such ¢ be rewritten using £, as

pA AT pAz Ui 0
(3.167) —21 —22 95522 U,) = \o)-
pAg +yl pAy —pByg+oI) \Y2
We look first for p = fi(y)7y where fi(vy) ~ 1. A perturbation argument yields N — s such
= ply Y
solutions close to solutions s of the problem

WAy +1 Ay U\ _ (0
(3.168) A ) (M) =(9).
0 —p:Baa) | \V2
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that is, close to ju, such that —p_ ! € spec(Z}il). This gives H eigenvalues of G4 in Ru < 0.
Next, looking for solutions p = ,&('y)fyl/ 2 with fi(y) ~ 1, we similarly obtain 2s solutions
close to solutions p, of the problem

I 0 U, 0
3.169 . -
(3.169) <z —usz?du) (vz) (0)7

that is, close to ju, such that u;2 € spec??fd. This gives s additional eigenvalues of G in
Ry < 0, for a total of s + H.
The same argument for G_ yields (N —s— H)+ s = N — H eigenvalues in Ry > 0. [

An application of the previous two Lemmas is:

Proof of Lemma 2.19. For ¢ € R \ 0 let F*¥(q,¢) denote, respectively, the generalized
eigenspace of GF(q, () associated to eigenvalues in {£Ry < 0}. By Lemma 3.38 we have

(3.170) dimF*(¢,¢) = s+ H, dimF (¢,{) = N — H.
Using the properties of W4 (0, ¢,¢) in Lemma 3.36 and in particular (3.165), we see

(3.171) E*(g,¢) = Wx(0,, OF (g, (),
so Lemma 2.19 follows with K = s + H. O

Lemma 3.39 (The case ¢ = 0). Assume (H2), (H5), and (H8). For q € Q each of
G+(q,0) has 0 as a semisimple eigenvalue of multiplicity N and s eigenvalues, counted with
multiplicities, in Ru #£ 0.

Proof. Inspection of the formulas for the G* (3.36) shows that

0 0 =«
(3.172) Gilg,0)=10 0 I | ,
0 0 P N
where
(3.173) B (q) = (B3)™? (2132 - 2131(1451)’15152> L

POJr is nonsingular because B’?lzd, fld, and flclll are, so we observe from (3.172) that 0 is a

semisimple eigenvalue of G+(q; 0) of multiplicity N.

On the other hand, if p is a purely imaginary eigenvalue of G, (¢,0), then 0 is an
eigenvalue of 1A, (q,€) + By(q,&) with € = (0,—ip). By strict dissipativity (H5) this
requires that £ = 0, and thus g = 0. So the nonvanishing eigenvalues of G4 (g, 0), which are
the eigenvalues of PJ (¢), do not lie on the imaginary axis.

The argument for G_(q,0) is the same. O
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3.3.4 Conjugation to block form

Another essential step in the construction of symmetrizers is the conjugation of G4 to
appropriate block forms. We’ll derive such conjugations in the medium and low frequency
regions as consequences of Lemmas 3.38 and 3.39. This is quite easy for medium frequencies.

Proposition 3.40 (Medium frequency). For g € Q and { € @iﬂ \ 0 there is a neigh-

borhood 2 of (q,() and a C*° invertible matriz Vi (q,() on § such that

_ Gr 0
(3.174) VilGLvy = ( 5 G,jf) on 9,
where
(3.175) RG>0, RG} < 0.

The same result holds with + replaced by —.

Proof. The spectral separation demonstrated in Lemma 3.38 implies the existence of a
smooth V such that (3.174) holds with matrices G}, G, whose eigenvalues p all satisfy,
respectively, R > 0, Ry < 0. Modifying V if necessary (e.g., as in [CP], Chapter 6, Lemma
5.5) we obtain (3.175).

O

Remark 3.41 (Medium frequency estimate). Given (3.174), the construction of sym-
metrizers for the constant coefficient problem (3.165) in the medium frequency region pro-
ceeds just as in the treatment of the parabolic block in section 3.2. Note that the properties of
the conjugators Wy imply that the Lopatinski determinant for (3.165) is nonvanishing since
the determinant (3.145) is. The properties of Wy allow the estimate (3.144) for the prob-
lem (3.143) to be deduced immediately from the same estimate for the conjugated problem
(3.165).

In preparation for the next Proposition we rewrite L(q, 7 — 7, &) in (3.166) as

(3.176) Lg, 7 —i7,€) = (Baa(@)sq + Alg, i€+ M(a,0)) ..,
where £ = (1,&;) and

d—1
Ar(q,¢) = | 44— _in;(Bja+ Bay)
j=1 +
(3.177)
d—1 o d—1 -
Mg, Q) = | Gr+NI+ > iy A; + > nymBijn
j=1 k=1

The system L(q, ¢, D,)u = f reads, with U = (u, 0, us):

o - () - (7 750) e (21,
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where

- O(N—s)xs
3.179 Bi(lqg) = | = , J = (04 —s) JIsxs) -
( ) d( ) (B?l,zd(Q)> ( X (N —s) X )

Observe that invertibility of G4 follows from that of Z;l and EZ?d. Thus, the system
(3.178) can be rewritten

(3.180) 0.U — G;'MU = G'F.

It is perhaps not immediately obvious that the matrices (G;lM )+ coincide with G4 (g, ()
as in (3.163), but a short computation confirms this:

(3.181) (G;'M)+(q,¢) = G+(q,0).

Proposition 3.42 (Low frequency). Let g € Q. There is a C* invertible matriz V (g, ()
defined on a neighborhood Q of (q,0) such that

H, 0

(3.182) VilGLv,y = < 0 P,

> =GR+ on,
with Hy(q,C) of dimension N x N and Py(q,() of dimension s X s. In fact we have:

(a) P(q,¢) = Py (q) + O([¢]) for Py as in (3.173); in particular, the eigenvalues of Py
satisfy |Ru| > ¢ >0 on Q.

(b) H(q.€) = Hy (q,¢) + O(¢[?), where

d—1
(3.183) Hy (g,¢) = —(A)3" | (ir + NI+ in;A;(q)
j=1 N
(c) At { =0 V4 has the triangular form
(3.184) Vi(q,0) = Inxn Vi)
O ISXS

The same result holds with 4+ replaced by —.

Proof. 1. The spectral separation described in Lemma 3.39 and the fact that 0 is a
semisimple eigenvalue of multiplicity N imply that there is a smooth matrix V. defined on
a neighborhood of (g,0) such that (3.182) holds with H,(q,0) = 0 and P+ (g,0) invertible
with no eigenvalue on the imaginary axis.

The span of the first N columns of V,, span(Vy ), is an invariant subspace for G, and
at ¢ = 0 this space is

(3.185) ker G4 (q,0) = CV x {0}°.

Thus, performing a smooth change of basis in span(V; 1), we can arrange so that the first
N columns of V; have the form

(3.150) Viala. = (o).
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with W of size s x N and vanishing at { = 0.
The span of the last s columns of V,, span(V4 r), is also an invariant subspace for G ..
At ¢ = 0 we must have

(3.187) thwﬂ)=<&>

where the columns of the s x s matrix V, span C%. Thus, performing a smooth change of
basis in span(Vy rr), we can arrange to have

(3.188) mﬂ@m=<vﬁ-

ISXS

This proves (3.184).

2. Writing G4V =V, Gp + at ( = 0 using (3.172) and (3.184), we find that the lower
right block of Gg 4 at ¢ =0 is Py (¢) as in (3.173).

3. Here we use the notation (3.177)-(3.179) and suppress + subscripts. By (3.182)
GVr =VrH, hence MV; = G4VrH and equating components gives

(3.189) M =—-AH + B4JWH.
Taking the first order term in (3.189) at ¢ = 0 gives (3.183).
4. The argument for G_ is the same. O

Remark 3.43. One can just as easily read off an explicit second order term for H from
(3.189), but we shall not need that here.

Corollary 3.44. Let si be the number of eigenvalues p of Poi(q) (3.173) with FRu > 0,
respectively. For Ny as in (H6) we have
(3.190) sy +s-—s=Ny+N_—N.
Proof. Using (3.182), (3.183) and taking ¢ = (0,7,0) with v > 0 small, we see that the
number of eigenvalues of G4 in ®u < 0 is sy + (N — N4). By Lemma 3.38
(3.191) sy +(N—-N;y)=s+H.
Similarly, s_ + (N — N_) = N — H. These equations imply (3.190).
O

Remark 3.45. The above proof and properties of Wy, Vi imply that for F*(q,¢) (3.170)
and E*(q,¢) (3.171), we have

(3.192) dimE*(g,¢) = dimF*(q,¢) = s+ + (N — Ny).

3.3.5 Generalized block structure, low frequency symmetrizers, estimates

From this point on arguments from earlier papers go through with no essential changes to
prove the frozen coefficient, low frequency estimate (3.157).

One first performs another conjugation of Gp + as in (3.182) to generalized block struc-
ture using the argument of [MZ1], Appendix A.1. The hypothesis (H4) of hyperbolicity
with constant multiplicity is used here. Next, the construction of [MZ1], Appendix A.3,
yields symmetrizers for the modified low frequency problem (3.153). Finally, the argument
of [GMWZ3|, Appendix A.1 shows how those symmetrizers imply the estimate (3.157).
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4 Variable coefficient L? estimates

4.1 Regularity assumptions and results

In this section we prove estimates for the variable coefficient transmission problem corre-
sponding to (3.3):

E(Z7 q, Cv aZ)u - QNC(Za q, C) = f

b [u] =0, [O,u2] =0, a({)¥ + £(q) - ug (0) =0 on 2z =0,

where £ has been modified in accordance with Remark 3.31. Our effort in the first few
subsections will concern the case where u and f are supported near the front.
Setting D = %8 we consider

1  x 1 x
EC(;, ¢, €Dy, ev,eDy, €0y )u — ?K(Z’ ¢, €Dy, ey, eDy)p = f

(4.2)

[u] =0, [Opuz] =0, (O + 7)Y — eyt +£(q°) - u; =0onzxz =0,
where
(43) ¢ty ) = (p(t,y), ullt,y, z, €), hl(t,y),re(t,y, x)) with

p(t,y) = (uS (t,y,0),u° (t,y,0),dp°(t,y)) €C,

u’, h! represent perturbations of uJ. and di)° respectively, and r, is a perturbation of Afll
which we turns out to non-negligible only in the high frequency estimate. When (p,u., h.)
is constant and r. = 0, the transmission problem (4.2) is the same as (2.57), (2.59). The
principal part of the linearized operator that we use in the nonlinear iteration scheme turns
out to have precisely the form of the operator in (4.2).

For the purposes of the L? estimate we make the following regularity assumptions, all

of which are satisfied in the later application to the nonlinear iteration scheme. Set
(4.4) Whe(RY) = {u(t,y) : Opyv € L™ for |a| < k}

and define W > (R4 similarly.

Assumption 4.1 (H10).

(a) p(t,y) € C; the functions ul.(t,y,z) are C? up to the boundary, take values in a
compact subset of U, and belong to WQ’OO(RiH); Y0 € W3 (RY).

There ezists an €g > 0 such that for € € (0, €g]:

(b) The families {u/F}, {V;y ot} {e0?uF, V1 (ViywF)} are bounded in L= (RE).

(c) The traces u'=|,—¢ are O(¢) in WH(R?) and satisfy u'"|z—0 = u/"|s=0.

(d) The family {%} is bounded in W2 (R?).

(e) The families {<, Vw(%),vg’y(%)} are bounded in L>°(RE),

(f) For all (t,y,x) € R™ and ¢¢ as in (4.3), we have W(%,q¢°) € U*. There exists
Z >0 such that for |2| > Z, W(%,¢°) € U.
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The main step in the proof of Theorem 1.1 is a weighted L? estimate. Define weights

(4.5) Ac(¢) = A(eQ) = (1+ (1) + (e9)® + len|)1,

B (7+6‘C‘2)%, when |e¢] < 1,
(4.6) Ae(C) = {\1[ when €|¢| > 1 ;
and

(4.7) 1) = {|C|/\s, when [e¢] < 1

(4)2, when |e¢] > 1
Observe that the expressions defining A, in the two frequency regimes are of the same
order when |e(| ~ 1, and similarly for p.. Moreover, on any set of frequencies such that
0 <le¢| < R, we have 1 < A, < Cp.

Given a weight function ¢(¢) we use the notation

(18) ule = ([ o0l ) Paran

When u® also depends on z, we set

o It = ([ etz

lulle = llu™llo + llullo-
When ¢ =1 we write |u| or ||ul|.
Theorem 4.2 (L? estimate). Assume (H0)-(H10) and fiz ko > 0. Suppose (u™,1)) is a

solution of the transmission problem (4.2), where u*, f* are C°° with compact support on

@iﬂ N{|z| < 2ko} and ¥ € CC(RY). For ko small enough, there exist positive constants
C, v0, and €y independent of (u, 1)), such that for v and € satisfying

(4.10) Y =70, €€ (0, €]
there holds

(4.11)
luallxe + lluzlea, + Veldsuzlia, + us(O)x, +lu2(0)] 4 +eldouz(0), g + [Wluca. <

€lle elle

CALl+ N f2lln-0)-

The proof of Theorem 4.2 will occupy most of section 4. First we make an easy reduction
by introducing a cutoff supported near the front. For any g > 0 choose x € C§°((—ko, ko))
and equal to one for |z| < %2. Since all the coefficients of IC involve at least one derivative
in z of W, they are exponentially decaying in Z. Thus, we have

1 T kS
—(1-— —.q%. eD D = (1) with

RS I+ N1KS a1 < Cre| V|
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for any L > 0. Here

(413) V'Y¢ = ((615 + ’Y)W 81¢7 R 8d*lw)

and we have used the fact that only kS involves two derivatives of ¢. (4.12) implies that
the estimate of Theorem 4.2 follows immediately from the same estimate for the modified
transmission problem:

1,z 1 T
Eﬁ(;’ QE, 6Dt7 €7, G-Dya eax)u - ?K(QJ)K(;v qea 6Dt7 €7, EDy)T/J = f

[u] =0, [Opua] =0, (O + )1 — eAyth +£(¢°) -ug =0 on z =0,
Theorem 4.3 (Estimate near the front). Assume (H0)-(H10) and fix kg > 0. Assume
u®, f* are C with compact support on @iﬂ N {|z| < 2o}, ¥ € CLRY), and (u,)

satisfies (4.14). Then for kg small enough, there exist vy, €y such that the estimate (4.11)
holds for v > vy, 0 < € < €.

(4.14)

Theorem 4.3 is a direct corollary of the next Theorem. For positive constants pg < R
to be chosen, let x1(¢), xam(¢), xz(¢) be low, medium, and high frequency cutoffs in
C>®(R4*1) such that

XL—l-XM—i-XH:lon]R‘Hl

(4.15)
supp xz C {[¢] < po}, supp xu C {|¢| > R},

and define the semiclassical multiplier

(4.16) T u= /eitTHynXL(EC)ﬂ(T, 1, x)drdn

(usually we’ll suppress the superscripts €, on Ty, ). For § > 0 as in Lemma 3.14, let
Bi(¢) € T i = 1,2 be chosen so that

30 o)
supp 31 C {0 <y < ZIC\,ICI > 1}, supp 2 C {§|C| <7,[¢| > 1}

@I g —von {0y < 3lcl K22}, A=1on (21 <1 > 2},

B+ f2=1on || >2.

Thus, in particular we have

(4.18) Bixu + Baxn = xu for all C.

Theorem 4.4 (Estimates near the front by frequency size). Assume (H0)-(H10).
Suppose (u™,1)) is a solution of the transmission problem (4.14), where u®, f* are C®
with compact support on Riﬂ N{|z| < 2ko}, and ¥ € C(RY). If kg is small enough, then
provided po (resp. R) in (4.15) is small (resp. large) enough, there exist positive constants
C and €y independent of (u,v) such that for v > 1 and € € (0, €] there holds:

HTXL“HAE + \/EHaxTXLUQ“)\e + ’TXLU(O)‘)\E + 6’8$TXLU’2(O)’>\5 + ’TXLw‘K'Ae <

(4.19)
C(f1ll + I f2ll + a.t.),
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1 1
\%|TXMU(O)| + \ﬁ|8$TXMu2(O)| + egﬁ’TXMW <

C(f1ll + [I f2ll + a.t.),

1
(4.20) gl + 1102 T w2l +

(4.21)

1 1
(g + 7)HT51XHu1H + EHTBIXH,U’QHAG + H&ETMXH“?H"’_
1 1 1 1
(Z +7)?2 |Tﬁ1XHu1(0)| + E|TB1XHUQ(O)|A€% + \/aafTﬂlXHuQ(O”AE—% + 63?|T51XH¢|A§/2 <
CUL+ 1 f2llar + Nunll + [Juzll + €l Ozuzl| + []j¢ + a-t.),

(4.22)
1
HT52XHU1H|C| + E”TﬁQXHU‘Q”As + HaﬁvTﬁ2XHu2H+

1 1
Tax w1 (0)] 172 + %|Tﬁ2XHU2(0)|A§ + \/E\GxT52XHu2(O)\A;% + 63W|TBZXH11}|AZ’/2 <
CULAN+ [ f2llp-1 + a-t.).

Here a.t. stands for a finite sum of “absorbable terms”, terms that can be absorbed by the
sum of the left sides of (4.19)-(4.22) by taking ~ large and € small. Four such terms are
written out in (4.21).

The low frequency estimate does not use (H3); the medium frequency estimate does not
use (H3),(H4); and the high frequency estimate does not use (H4),(H9).

Proof of Theorem 4.3 assuming Theorem 4.4. 1. Add the low (LF), medium (MF), and
high frequency (HF) estimates and absorb a.t. terms by taking -y large enough and €
small enough to show that the sum of the left sides of (4.19)-(4.22) is <

(4.23) CALAl+ 1 f2lly71)-
2. Use (4.15), (4.18), and the fact that

~
~

on MF, HF,

N
(4.24) VG
Ac~ 1 on LF, MF

to see that the left side of (4.11) is < C([|f1]| + || f2l[5-1)-

Remark 4.5. We have stated the estimates (4.19)-(4.22) for the transmission problem
(4.14) with homogeneous transmission conditions, but the proofs automatically handle the
nonhomogeneous case as well. Suppose that in (4.14) we take

(4.25) [u] = <zl> , [Owug] = k3, (0 +7)u —eANyu+£(¢°) -u=ky on x=0.
2

Then in the estimates (4.19)-(4.22) we just need to include boundary norms of the k; on the
right. In each estimate the weight on k1 is the same as the one that appears on the left side
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on |uy(0)], the weight on ko is the one on |uz(0)|, the weight on ks is the one on |0yuz2(0)],
and the weight on ky is the one on |u2(0)|. The same comment applies to the composite
estimate (4.11). For example, the version of (4.11) with ky # 0 has the term

(4.26) ’k4’>\EAi/2

on the right.

4.1.1 First order system

Set U = (uy,ug, €0yuz) = (u1,uz,us). With J as in (3.33) and G(z,q,() as in (3.34), we
may rewrite (4.14) as a first order system:

1 1
0, U — EG(%,qe, €Dy, ev,eD,)U = J(%, “)f+ ?ﬁ(x)/C(g, q°, €Dy, €y, eDy))

(4.27)
U] =0, (Or+7)Y —elytp +€(¢°) ~ug =0 on z = 0.
Here
1 1,
e—zmlCzp =-m (t,y,z, €Dy, ey,eDy)V 1), where
(4.28) -1
mevv@b = ma(tv Y, $)(8t + V)l/’ + Z m;(tu Yy,T, 6Dt7 €7, GDy)ajwa and
j=1
(4.29)
X ~
mp(t,y, ) := wiio(—, 4°), Mo(2,q) = 0:fo(W(z,q)),
d—1
¢ T ~ 5 '
m;(ty, 2, ¢) = wimy(—,¢°), 1my(2,q) = (@fj - 0. ((Bj,d + Bd,j)azW> - ZBj,kaszk>
k=1

(recall Bj 4= Bja(W(z,q),v(h+1')). Observe that

9

-1

(430) IC(Z’(LC) = Tho(Z,Q)(iT+’Y) + mj(zv%g)inj‘
1

<.
Il

Similarly, we set

J(ty.2) = T (=)
(4:31) g (ty.2.0) = G(Z,qQ)
g (ty.2.0) = GY(Z,4",),

where the G% are the entries of G (3.36).
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Thus (4.27) becomes

1 1
0:U — —g°U = j(f + —m V1)
U] =0, (0 + )¢ — eAytp +£(q°) - ug =0 on z = 0.

(4.32)

Remark 4.6. Depending on the context, we use expressions like g¢ or m® sometimes to
denote a symbol, and sometimes to denote the associated semiclassical operator.

Using the definition of J (3.33), we define h; and n§, i = 1,2, by

hl ni
(4.33) if=10],jm =10
h2 n§
and rewrite the system (4.32) as
1 h1 1 niv,y’(/J
0, U——-gU=1[0]+- 0
(4.34) € ho € NGV

U] =0, (O +7)Y —elytp +4(¢°) -ug =0 on x = 0.

Remark 4.7. 1. To prove Theorem 4.4 it clearly suffices to prove the estimates (4.19)-
(4.22) for the system (4.34), with (hi,ha) in place of (fi, f2). Note that the coefficients of
ng are exponentially decreasing in 7. Also, ny is of order zero, while n§ is of order one with
Oy, derivatives only.

2. A partition of unity allows us to assume that the support of (U,v) is as close as we
like to any prescribed basepoint (t,y,0). It is easy to check that smooth cutoffs ¢(t,y,x)
introduce only absorbable errors (a.z terms in the sense of Theorem 4.4).

4.2 Semiclassical paradifferential calculi

We collect here the facts about the paradifferential calculi that we’ll use in the variable
coefficient estimates. We refer to Appendix B of [MZ1] for detailed proofs. We shall use
both homogeneous and parabolic calculi. With each calculus there is associated a scale of
Sobolev spaces on which the operators naturally act.

First, we introduce homogeneous and parabolic weights. With ¢ = (7,v,n) as before
and a = (ar, a,) € N x N1 a multi-index, set ]R‘fl ={(:v >0} and

(€)= (14 I¢)
(4.35) AQ) = (1472 447 + ol )1

ol = ar +ay], [laf = 2ar + foy|.

Definition 4.8 (Symbols).
1. Let p € R. The space of homogeneous symbols I'fy is the set of locally L functions
a(t,y,z,¢) on RIT! x R‘fl which are C* in ¢ and satisfy:

(4.36) 07 ,a] < Co (Y1 for all (t,y,2,¢) and .
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2. For k=0,1,2,..., T} denotes the space of symbols a € Ty such that df',a € T'j for
lo| < k.

3. The spaces of parabolic symbols PF’S and PFZL are defined in the same way, using
A(C) in place of (¢) and ||« in place of |a|.

We keep the same notation for the spaces of symbols defined just for 2 > 0. Observe
that symbols in Fg which are independent of z constitute a subspace of Fg , and similarly
for the spaces PTY.

The spaces F‘,: are equipped with the natural seminorms

(4.37) |l = sup sup sup ()10 Oa(t,y, z, ).
o <NV |8I<k (£:.2.C)

The seminorms on the spaces PF‘k‘ are defined in the same way by the substitutions described
earlier.

We consider a semiclassical quantization of symbols. When a € T'fj is independent of
(t,y) the associated homogeneous paradifferential operator acts in (¢,y) and is defined by
the Fourier multiplier a(x, €():

(4.38) TS u(t, y, ) =

1 o
i [ €7 e, i, i
s

For a € PI'}j the associated parabolic operator Py is defined by the same formula. When
the symbols depend on (t,y), the corresponding operators are defined by formulas similar
to (4.38), except that the symbols are first smoothed in (¢,y) using an idea of Bony [B].
The smoothing process in the homogeneous case differs from that in the parabolic case (see
[MZ1], Proposition B.7). When a(t,y, z,() and u are continuous up to z = 0, we have
(4.39) (Tgﬁu)|x:0 =T u\x:()

a|ac:0

and similarly for parabolic operators. We use superscripts + on a and u to indicate limits
at x = 0 taken in +2 > 0. We shall often drop the superscripts €, and write the operator
defined by (4.38) simply as Tj,.

4.2.1 Sobolev spaces

For s € R let H® denote the space of functions u(¢,y) such that

1/2
(4.40) e = ( [ (Pl Paran) - <.

and let H® be the space of functions u(t,y, x) such that

1/2
(4.41) [ulls,ey = </ u(-, ) 576,’de> < 0.
Similarly define spaces PH?® and PH® by substituting the weight A(eC) for (e() in (4.40)

and (4.41), respectively. We’ll use the same notation ||u||s e~ for norms in H* and PH?®. It
should be clear from the context which weights are being used.
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4.2.2 Action on Sobolev spaces, symbolic calculus

Proposition 4.9 (Action). For any a € T} and s € R there is a C such that for € € (0,1],
v>1andu e H?:

(4.42) 175 ulls—pey < Cllulls,ey-

The constant C' is bounded when a remains in a bounded subset of T'.
Fora € PI‘g the operators Py have the same mapping property on the spaces PH?.

Proposition 4.10 (Compositions). Consider a € T¥ and b € T. Then ab € T* and
there is a C such that for e € (0,1], v > 1 and u € H*:

(4.43) I(T57 o Ty = T Yulls—p—vt1.ey < Celltt]ls,ey-

The constant C' is bounded when a and b remain in bounded subsets of ' and T respectively.

Moreover, if b is independent of (t,y) then Tg" o Ty =T57.

The same inequality holds for compositions of operators Py and Py acting on u €
PH?®.

Proposition 4.11 (Adjoints). Let a* denote the adjoint of the matriz symbol a € T} and
let (Ta'")* be the adjoint operator of Tg". There is a C such that for e € (0,1], v > 1 and
u € H:

(4.44) I(T57)" = To ulls—pt1ieny < Cellt]lseqy-
The same inequality is true for adjoints of operators Py” acting on u € PH?.

Proposition 4.12 (Commutators). For a € I'Y and u € H® we have
(4.45) 0, T u =Ty "u,
for & =0 or 8y,. A similar result holds in the parabolic calculus.

Proposition 4.13 (Garding inequalities). Consider symbols a € T and w € TY. Sup-
pose that there is x € I'{ and ¢ > 0 such that x > 0, yw = w and

(4.46) Xt y,z, ORalt,y, x,¢) > ex®(ty, 2, O for all (t,y,x,).
Then there is C such that for all € € (0,1], v > 1 and v € H"/?:
(4.47) %IITJ;MII2 < R(TE T u, T w) 12 + Ce*|ul|%

%7637 %717677'

The same inequality holds for operators PS” acting on u € PHM?2.
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4.2.3 Paraproducts

Paraproducts are paradifferential operators associated to symbols independent of (. The
following two Propositions are used to estimate the errors introduced in the passage from
differential operators to their paradifferential counterparts. They can also be used to esti-
mate errors caused by passage from one calculus to the other.

Definition 4.14. For k € N, let W* denote the space of functions a(t,y,x) on R such

that 8&@ € L>®(RY) for |B| < k. We use the same notation for functions defined just on
+x > 0.

Observe that
(4.48) Wk c 19 n PTY.

Proposition 4.15 (Homogeneous paraproducts). For any a € W! there is a constant
C such that for all e € (0,1], v > 1 and u € H!:

llaw — T 7w

1»677 S C\16||,U“ 0»6777

(4.49) )
Oey T+ la0u — T3 70ullo.ey < Cllullo,ey, for O = 0 or 0.

Yl = T

Proposition 4.16 (Parabolic paraproducts). For any a € W' there is a constant C
such that for all e € (0,1], v > 1 and u € PH*:

(4.50)
llauw — Py ul|1,ey < Cellullo,e,

lady;u = Py 9y ullo.ey < Cllulloes

Yllaw = Psullo.cq + lladeu — Py Brulloey + Y eladyu — Pe 8 ulloey < Clullyes.
|a|=2

Remark 4.17. The difference between the above two Propositions is due to the fact that the
symbol iT + v is of order two in the parabolic calculus, but of order one in the homogeneous
calculus.

4.3 High frequency estimate
4.3.1 Paralinearization

The first step is to replace the problem (4.34) by its counterpart in terms of homogeneous
paradifferential operators. We’ll continue to write g% for the entries of GG, suppressing the
e-dependence. The regularity hypothesis, Assumption 4.1, and Remark 4.7 imply

Lemma 4.18. The families of symbols g*', g'2, g3, ¢33, and n§ are bounded in T3. The
families g'3 and n§ are bounded in TY, while g3 is bounded in T'3.

Thus, Proposition 4.15 gives (suppressing superscripts €, v on T')

1 .
o ;H(Q” — Tyii )uj|| < Cllug||, except for the case g*%,

1. .
|05 = T ) Vi < Clofig, for j = 1,2.
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To handle ¢%? we write
d—1
(452) 932<tvy71'70 = ga t yﬂx C + Z a’Z] t y7 77z77j7
J:k=1

where g5? is bounded in I'{ and the a;; are bounded in W? (4.14). For the g3 we have an
estimate like (4.51). To estimate the second term on the right in (4.52), we use the next
Lemma.

Lemma 4.19. Let a(t,y,x) € W?. Then for u € H? we have
(4.53) ell(a = Ta)dy,; 0y, ull -1 < Cllull-

Proof. Let A¢(D) denote operator given by the Fourier multiplier A¢(¢). From Proposition
4.12 we have

ell(a — Ta)ayjaykuHAgl <

(4.54) 4 1
c[lAc(D)0j(a = To)Opull + el A~ (D)(9ja — To;a) Opull-

The second term is < Ce||u|| by Proposition 4.15. Since |en;|A71(¢) < 1, Proposition 4.15
implies the first term is < C|u||. O

Remark 4.20. The lemma implies
1
(4.55) ;||(932 = Tys2)ugl|p-1 < Clluz].
In addition (€ := £(q%(t,y,0)) is bounded in W', so by Proposition 4.16
(4.56) |0 - ug — Ppeus|p, < Ce|ug|.

From (4.55), (4.56), and (4.51) we conclude that if (U,) satisfies the problem (4.34), then
it satisfies

1 hll 1 Tniv’ﬂ/}
0,U — *TgEU = 0| +- 0
U] =0, (O + )¢ — eAytp + Ppeug = e on x =0,
where
(4.58) 1P41] + [1Rol[g-1 < C([[all + 12l yo1 + [ (ur, g, us) || + [¥]i¢)),

le|a, < Celugl.

In particular it suffices to prove the high frequency estimates (4.21), (4.22) for (U,v) satis-
fying (4.57) with (hY, hY) in place of (f1, f2)-

63



For cutoffs = (1 or B2 and xg as in (4.21),(4.22), to find the problem satisfied by
(Tayy U, Ty ) we apply Tgy,, to (4.57) and use Proposition 4.10 to estimate commutator
errors. We find

1 hll 1 Tni V'YT5XH¢
4 59 axTﬁXHU - ETgeTﬂXHU == 0 + E 0
(4.59) hy TnsVy Ty ¥

Ty, Ul =0, (0r +v — €Ay) Pyt + Ppe Py yug = e on x =0,
for a new (h, hy) and e satisfying the estimates (4.58); note Tgy,, = Ppgy,, since the symbol
depends on ¢ alone. The commutator involving Tys2 again requires special treatment; it is
handled by an argument similar to the proof of Lemma 4.19.

4.3.2 Reduction to the partially linearized case

We begin by rewriting the identity (3.137) in first-order form:

W, \ _ 0
o o () - (=074 (o)
for J(z,q) as in (3.33). Setting
Nl (Zv q, C) T 1
(4.61) 0 =JIK, Nf = k(x)Ni(=,¢%,¢), and 0 := —Ts, 1),
NQ(zv q, C:) ‘ ‘

we may rewrite the front term in (4.59)

1 T”i V’YTﬁXH P 1 TNf 0
(4.62) - 0 == 0
€ €
TrsVaTpy gt Tt
Introduce symbols
61(27 q, C) 0
0 =J(—0.,P + )
T@?Wl
62(27 q, C)

_ T
¢ = @) q)

(4.63)
€ € € €z €
s€ = (s7,85) = ﬁ(m)@zW(?q ).
Lemma 4.21. (a) The families €, €5, s¢, and €085 are bounded in T'9; Nt is bounded in
I'l and N5 is bounded in T'3.
(b) The families
1 1 1

& 1= 0psi — —g''s{ — —g'%s5 — g"%0,55 — N

(4.64) 61 61 61
&5 := €d?sh — gg?’lsi - 293255 — 330,55 — ENQG

are bounded in F(l) and F%, respectively. Moreover, s is C* in x across x = 0.
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Proof. The statement for s¢ and €0, s is clear from the definition of ¢¢ (4.3) and the regu-
larity assumption (H10); for N recall Remark 4.7. To see the boundedness of the e, recall
that W(z,q) = Wy(z,p) + v, so when v/ = 0 and b’ = 0, W is an exact solution of the
profile equation P(z,q) = 0. Thus

(4.65) jaz'P(Z, Q) = U/Wa(zv Q) + h/Wb(zv Q)v

where W, W), are smooth with exponential decay in z. The h.W) contribution to e is
bounded by part (d) of (H10). We have

(466) ué(tvyax) = ué‘ﬂ?:O —|—g;v€(t,y,1')

so boundedness of the u.W, contribution follows from parts (b) and (c) of (H10) and the
boundedness of ZW,(Z, ¢°). The r.02W; term is bounded by part (e) of (H10).
The identity (4.60) implies

(4.67) €] = e + (00 W1 + fiafquﬁmqe + ¢'30, k0. Wy + glgﬁaqu28zq€).

where the sum in parentheses is bounded in I'{ by the regularity assumption (H10) and the
fact that g'? is of order zero. The term &S is treated similarly, but recall that g3 is of order
one.
The regularity of s¢ in x follows from 0,W(z,q) = 9. Wy(z,p).
O

Next we make a change of unknown corresponding to u# = u — ¥d.W (3.10) in the
frozen coefficient argument. Again with 8 = 31 or #5 and 6§ = %Tﬁx 4 set

(%] €
(4.68) V=\v| =Ts,U—-Tsb, S = < N E) )
€055
U3
and introduce the bounded family in PT'?
(4.69) c(ty,¢) =it + 7 + [n° + £ 9.W2(0,4°(t, y,0)).
Proposition 4.22. V and 0 satisfy
L
(@) 0,V — T4V =1| 0], [V]=0,
(4.70) € ny

(b) P.0 + Pgevg(O) = 6/,
where (in place of (4.58))

P71+ 105l a-r < CUall + P2l p-r + (1 (ur, uz, )l + [ Taxs i),

(4.71) ,
|€'|a. < Celuz(0)] + [Ty, ¢l-
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Proof. Using (4.59) we compute

1 M\ (Tt 1
&;V - ngeV == 0 + - 0 - (890 - *TgE)TSEQ =
€ Y € Tt €
(4.72) , 2 2 .,
K, T E b
o]+ o ]o+[ofoe=[0],
hlz ng Ey hg

where by Lemma 4.21

|75 0] < Cl0] < ClTpyy]/e < ClTpyy ¥l

(4.73)
[Te50l[ 51 < Cll Tl < ClOlecy < ClTpxu?lics

and ||E10| + [ E20]|,-1 < C|0|. E1 and Ey are sums of composition errors like
1 1
(474) E(TgllTsi — Tgllsi) and E(Tg32Ts§ — Tg3285)

respectively. The second term in (4.74) is again handled by an argument like the proof of
Lemma 4.19.
The smoothness of s€ in z and [Ty, U] = 0 implies [V] = 0.
Finally, since Pgy, = Ty, , we may write
P.c0 + Ppevy =

(475) / U
(‘PZ'T+"/+\77|20 + PZEPIBXHUQ) + (Pgesg — PZEPSS)G + PKE(PSE — T5§)9 =e+ FE +FE7,

for e as in (4.59) and

|E'|x, < Celf] (by Proposition 4.10),

(4.76) , .
|E"|a, < Celf| (by Propositions 4.15 and 4.16).
U

The next Proposition, an estimate for the partially linearized problem (4.70)(a), is the
main step in the proof of the high frequency estimate of Theorem 4.4. The proof is given
in the next section.

Proposition 4.23. Under the assumptions of Theorem 4.4, consider V. = (v1,v2,v3) as
defined in (4.68) and satisfying (4.70)(a). There exists €y such that fory > 1 and 0 < € < ¢
the following estimates hold. When 8 = 31,

) 1 2 Ae 3 ) 1 O \/» 2 0 ?1 \/» 3 0 7@1 —

A
CMN + 1hgll 1 + a-t.),
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When = [z,

1 1 1 1 0 1 0 1 0 <
loalleeey + Zllvzllac + Zllvs] + \flvl( Nieeyrre + \flvz( N+ ﬁlvs( Nt =

CUPYI+ 175y + act.).

(4.78)

Here, as in Theorem 4.4, “a.t.” stands for a finite sum of terms that can be absorbed by the
sum of the left sides of (4.19)-(4.22) by taking ~y large and € small.

Next we show how to use the extra boundary condition (4.70)(b) to estimate 6 in terms
of the trace of vs.

Proposition 4.24. Under the assumptions of Proposition 4.23, for 8 = (1 or P2 and €
small enough there holds

(4.79) Sl Totlere = 10l < Clsl0a(O)] e + 0.
Proof. The choice of £(q) (2.60) and (H10) imply that for e small

(%) - 9:W2(0,¢%) 2 1,
and hence

Lt |7+ + 0 < lef].

Thus, ¢ is elliptic and 1/c¢€ € PFI_2. Applying P /. to (4.70)(b) and using the parabolic
calculus we obtain

|P1/CePceO — 0|A§/2 < 6|0|A§/2

~

(4.80) ,

101572 S 1Pryece’| g5z + [Prjee Prev2(0)] 572 + €]0] /2.
Thus,
) Lo ] L 1.,
(4.81) a2l S SplveO)lye + 55 T ¥lyee + Slel e

from which the result follows by (4.71).
O

We conclude this section by showing how Propositions 4.23 and 4.24 imply the high
frequency estimates of Theorem 4.4.

Proof of estimates (4.21) and (4.22) assuming Proposition 4.23.
The case § = (5. Adding the estimates (4.78) and (4.79) and recalling (4.71), we
deduce

1 1 1 1 1 1

= = - —|v1 (0 — |vs(0 — |v3(0

s ol + Zllvallac + —llosll + ﬁ‘”l( Nieeyr/2 + ﬁ\vz( )’Aé + \/E|U3( )\A;%Jr
‘ 1

3/2 ’TﬁXHw‘AS/Q < C(HfIH + HfQH/\;l +a.t.).
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Note first that
A () A2
€

€ €

(4.83)

z
€

Write T, ,U = V + Ts<f) and use the exponential decay of 5S¢ in ¥ to see that for each

x

1 1
(4.84) E|T559(x)’(64> < -

e*<5|x|/6|9‘<€C>
Taking the L? norm in z gives
1 < 1 < 1 < 1
(4.85) sy S ﬁ‘ﬂ(e@ S m’Tﬁx;ﬂ/f\@o S w’T,@XHw‘Ag'
For the trace at x = 0 we have
1 < 1 1 < 1
(486) ﬁ‘Tséahten ~ $|0‘<6C>1/2 = GBW’T[;XHQZJ’(tem ~ ESW‘TBXHIMAE.

Together with (4.83) and (4.82), the last two estimates imply estimate (4.22) of Theorem
4.4.
The case 8 = 3;. We have %(eQ Z v+ %, so the above estimates imply (4.21) as well.
[
4.3.3 Estimate for the partially linearized problem

In this section we complete the proof of the high frequency estimates by proving Proposition
4.23. We'll do this by quantizing the arguments of section 3.2.7; in particular, we must show
that the errors introduced by use of the paradifferential calculus are always absorbable. We
begin with the more difficult case.

1. The case [ = [1: decoupling. We use the conjugator W(z,q, () (3.47), which is
initially defined only for |(| > R, 0 < v < 4|(| and ¢ = (p, o/, h/,r) with |u/,h/,r| small.
Extend W2' and W2! to all (g, ¢) as elements of I'’ which vanish for [¢| < 1 (here R >> 1).
Then

(4.87) Wt ,,0) = W, a%.0) € TY.

We'll often drop the superscript € in this section and, for example, write simply W2!|¢|~!
and W2 for the (2,1) and (3,1) components of W¢. We have then

(4.88) w2t ey, Wt ey,
The special structure of W immediately implies the following convenient identities:
(4.89) Twly-1 = Ty-1Tw = I;

there is no composition error in this case.
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Remark 4.25. The regularity assumption (H10) implies that |h.,r| is small for € small,
while |ul| is small for ¢ and |z| small. Recall that in Theorem 4.4 we assume u* and f*
are supported near x = 0.

It will be useful to have a notation for error operators.

Notation 4.26. An operator r;” on the homogeneous scale of Sobolev spaces H* is said to
be of order p if for any s € R there is a C' such that for v > 1 and € € (0, 1] the following
estimate holds for u € H?:

(4.90) 7 ulls— ey < Cllulls,eq-

The same notation is used for operators of order y on functions u(t,y) € H®.

We’ll usually drop the superscripts €, v, and the identity of operators denoted r, may
change from term to term, line to line, etc.. We’'ll use the same notation (when the context
is clear) for analogously defined operators of order u on the parabolic spaces PH?®.

For V as in (4.70) we define V = (v, va, v3) by V = T)V and with (4.89) obtain, parallel
to (3.93),

h//
1 1
(491) an - EwangTWV — wal 0 - walTQIWV.
%
Setting g = Go(%, ¢, () for Gy as in (3.48), we have
(4.92)
1 1
gTw—ngTw — ETg0+

0 00 1 0 0
1 1
- TW521*W§1|C|_1911 0 0]+ r_1 r—1 r—o| = ETgO + Fq + Es.
T931+932W31|C‘—1+933W1721,Wb21911 00 To o T-1

Remark 4.27. 1. Note that errors of size @ are too large to be “a.t.” terms because
of the contribution from the low frequency regime. We avoid such errors below by setting
Xmh = XM + XH and observing

Y Y
(4.93) T — = T8y Txon — -

€ Xmh €

With Yy =T, %, we have W*ﬁ”’ll s an a.t. term.
2. Tracing back the definition of vi, we can now write

Ymn
(4.94) Vi =01 = TB1XHU1 - TSiﬂlXH%'
By (3.42) and Remark 4.25, the symbols defining the entries of the first error matrix F;
vanish for € + |z| small and ¢ € supp(S1xm). The homogeneous calculus therefore gives for
€ small

wmh mh
(4.95) BNy =r_qup + T Ef'vi = rou; + ro——

69



where the error operators in the terms involving ¥ have compact support in the parameter
x by (4.63). The second error matrix Fy contains all the composition errors. For example,

(4960 B3 = —Twaiic 1 Tyn — Tz Tyre Twaniep1 — Twaie 1 Ty Ty —
4.96 a a a a
Tewarimrgn—wari g w2 = - w2t g g o) = €T

We have Tyy,-1Ty,)v = Tyy-19,)y with again no composition error, so a short computation
shows the right side of (4.91) is

B v
(4.97) 7"_1h/1’ +—-\|r-iva
Tohlll + h/2/ € ToV1

Putting all this together we may rewrite (4.91) parallel to (3.93) as:

h//
1 1
0,V — *TQOV =OV+EV+Tya| 0| —TywaTywV =
€
h/l
(4.98) ?
0 r—1V1 hll/ 1 0
r_quy + 7“71@ + | roivi+roqvo+r_ovy | + r_1hf + ~ |-
roul + To@ ToV1 + Tov2 +7-1V3 roh! + hY rov1

Next, for G'! as in (3.52) and M?2 as in (3.38), we set
R A1, % x
(499) gll = G11(27 q€7 C) and gp = Mznz(;, qgv C)

and consider the block diagonal symbol

(4.100) g = <§g1 0> .

9p

Denoting the right side of (4.98) by F and recalling the form of Gy (3.48), we can rewrite
(4.98) as a problem in terms of T}, parallel to (3.96):

1 1 Tgl2V2 + roVv3 H,
(4.101) 0.V — *TgbV =F + - r_1V1 + rove + r—_1vs =H=|Hy|, [V] =0.
€ ToV1 + T_szlgleQ + roVv3 H3

As in the frozen coefficient case, it is now easy to check that the desired estimate (4.77) of
Proposition 4.23 is implied by the following estimates for V = (vy, va, v3) satisfying (4.101):

1 1 1
(= +Nlvill + (Z + 1)z M 0)] S [Hal] + at.
(4.102)

1
lvallac + Zlivsll + | 1 O -3 S I1He|| + | Hsll -1 + at.,

1 1
0
\/E‘VQ( )A? + \/E‘V3 -
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where “a.t.” has the same meaning as in Proposition 4.23. In reducing to (4.102) we have
used the special structure of g'2, which yields (since [n|A=1(¢) < 1)

1 1 1
—||Tgrava|l S = llvall + [[9yvall < =Ilvalla.
€ € €
1

€

(4.103) .
1T wzrgovalla-r S el

Thus, we have reduced the proof of Proposition 4.23 in the case 8 = [; to proving the
following Proposition.

Proposition 4.28 (The case [ = (31). Under the assumptions of Theorem 4.4, consider
V =Tw-1V = (v, va, v3) satisfying (4.101). If R is large enough, there exists ey such that
fory>1 and 0 < € < g the estimates (4.102) hold.

2. The hyperbolic block. Consider the problem given by the (1,1) block of (4.101):

1
(4104) 8mv1 - ETguvl = Hl, [Vl] = 0.

We'll perform another conjugation using the matrix V(z, ¢, () as in (3.56):
(4.105) VIGNY = A = diag(urls, + Re) k=1, ko»

where V is chosen so that (3.59) also holds.
The functions V and Ry, are, initially, smoothly defined and satisfy (4.105) for z € R
and for
0<~v<6[], €| >R, and ¢ = (p,u',h,r) with |[u/,h/,r| small and (p, )

(4.106) :
in a conic neighborhood of (p, (),

where é € gi N{0 <4 <4} and p is a fixed but arbitrary point of C (recall Remark 3.21).
So first we extend these symbols to all (z, ¢, ¢) as elements of I'?, T'!, and I'V respectively
so that V=1 € TY; the equality (4.105) still holds just for (z,q,() satisfying (4.106). Set
Ve=V(%,¢5() €TV and define the symbols pf € '} and Rf, € I'{ similarly.
Define w = T),-1v; and observe that the homogeneous calculus gives

(4107) vi =Tyw + er_qvy.

A short computation using (4.107), the equation (4.104), and the homogeneous calculus
shows w satisfies the following problem:

1
Opw = *TV—1TQ11va +Ty-1Hy + Tamv—lTV’U) + roVv1
€

1
= gvalgllv w + T((%;V*l)v w+ Ty,-1Hy + row + rovy.

(4.108)

Let us use ey to denote a symbol in I'{, whose precise identity may change from term
to term, such that for 6 > 0 as in (2.42):

|z
(4.109) eo = eo(=, t,y,x,¢) with [0 e S e @< ()71 for 6] < 1.

€
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Then we have
(4.110) Tioiyy = %Teo 0.
By (4.105), (4.106), and Remark 4.25,
(4.111) Vg1 Y = A for € + |z| small, ¢ € supp(Bixu), and p(t,y) near p.

Remark 4.29 (Another reduction). As noted in Remark 4.7, we can suppose U and
Y are supported in a small neighborhood of a basepoint (t,y,0) such that p(t,y) = p. Let
é(t,y,x) be a smooth cutoff supported near (t,y,0) such that

(4.112) oU = U and ¢(ky) = k)

for k(x) as in (4.14). Use of the calculus and the paraproduct estimate of Proposition 4.15
shows the estimates (4.102) follow from the same estimates when V is replaced by TyV; only
absorbable errors are introduced by commuting Ty through (4.101). Indeed, we have

Tovi
[T, Ty, |V = 0 ;
%[T(b, Tg32] Vo + ToVv3

1
(4.113) (T, 0:V = oV, ~

where, because g3% has the structure (4.52),

1
(4.114) E\|[T¢,Tg32]v2||A;1 < |vel-
Thus, the components of H in (4.101) are modified only by absorbable terms.

Recalling the definition of V and using ¢U = U, we also have
(4.115) 1TV = Vs STV = Vi) S ellUN + |9omal

for () as in (4.40), so estimates for TyV imply estimates for V. Similarly, a partition of
unity in ¢ allows us to replace TyV by Ty V, where X is supported in a conic neighborhood of
a basepoint é as in (4.106). In the remainder of the proof of Proposition 4.28 we therefore
suppose that V is replaced by Ty V in (4.101) and (4.102), and we write the components of
the latter again as v;. That is,

(4.116) (V17 Vo, V3) = Tq&)ZTW*lV = Td))ZTw—l (T51XHU — TSEﬂlXH ¢":h> .

In view of (4.111) and this Remark, an application of the calculus gives in place of
(4.108):

1
(4.117) Oaw = —(Ta + Teg)w + Ty1 Hy + rous + 1y ’:h.

With R,foo = (lim,— 400 Ri(2,4,())|q=¢c We have Rj_ — R,foo = eq,k+- Thus, setting

(4.118) w = (Wl, e ,Wko) and Tv—lHl = (hl, .. .,hko)
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we can write the problem satisfied by wy as

ko
1 1
(4.119) OgW1 = E(TM + TRlioo + TeO,li )W1 +hy + g E TeOiWk + rou; + T0¢7:h,
k=2

parallel to (3.102). Now e 1+ depends on both R; and (V,V.), while the ep4 on the right
depend just on (V,V,).
Consider the case —sgn((3) = 1, where 3 is any eigenvalue of chll. Letting w® = w|+z>0

we first estimate w'. As in the frozen coefficient analysis (3.104), we need to introduce
exponential weights. For a uniformly bounded weight function ¢(z) to be chosen, set
0

(4.120) W= (Wi,...,wp) = e Dwt = ef(wy, ... Wi ).
From (4.119) we have

ko
1
(Tltl + TRI“’O + Teo,l + ¢/)w1 + €¢h1 =+ g § Teowk + Trour + 7o djr:h’
k=2

1
(4.121)  Qpwy = -
€

where ¢' = ¢.(%).

Denote the inner product in LQ(ng) by (, ). Pairing (4.121) with w; and integrating
Iy yields

2 © 2 o0
|w1(0)’2 + 6%/(; <(Tm + TRiroo)wl,W1) + 6%/0 ((TGO,I + ¢/)w1,w1) =

(4.122) 00 9 oo ko S ¥
_ 2§R/ (e®hy,wi) — 6%/ Z(Teowk,wl) - 28%/ (rour + ro%h,wl).
0 0 'y 0

Now the rule for adjoints gives for each z
1 1 o 2 Ca 2 2
(4.123) E(Teowk,wl) = E(wk,Tegwl) + (wg, r—wr) < ;]wk| + T|Tegw1] + Clwl|”.

The right side of (4.122) is thus easily estimated by RHS <

(4.124)
1 C 200 C
B0+ ol =Ll + ol + e fef?) + 2 ol + S Tl +
€

From Proposition 3.22 and (3.59) we have for € small, 0 < v < §[¢[, [(| > R, and
(t,y,2,¢) in a conic neighborhood of (¢,y,0,¢) (¢ as in (4.106))

Rus (t,y,2,¢) = v for fiy € T such that ji; > ¢ >0,

(4.125)
RRT > ¢ > 0.

Let b(t,y,z,¢) € TY be a cutoff supported in the region where (4.125) holds with

(4.126) b(t,y,z,¢) =1 on supp(¢) x supp(XS1xXH)-
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for ¢, X as in (4.116). Let (( , )) denote the inner product on LQ(@:{H). Then, since

Tyh, = ey1y, and wy = Tywy + Th—pwi, the calculus gives
(4.127)

hl— )
ol < Tl + € (elfnl-a e+ et

1 [mn|2
YR((T Towr, Town)) < —R(Tymwr, wi)) +7 (51”&)1“2 + Cs, <€2|!U1||2—1,e,v + €2m672m ;

1 1 1 [¥man] 2
Em((TRTOOwal’wal)) < E%((TRfowl,wl)) + p <5l”wl|2 + Cs, (52”u1||2_1’61,y + €2m6721767'7 .

Garding’s inequality and the first inequality of (4.127) imply the lower bounds

ey
YR((Ti, Tywr, Thwr)) > 5”W1H2 —C(Elurly ey + [Ymnl 1)

(128 ¢ 2
E%((Tijwalawal)) > il!w1H2 = C | ellur]?y o+ %M

Next we must deal with the %HTegwl |? term on the right in (4.124). The calculus gives

Ca

C
(4.129) = Tepeon | < ZER(Tegegeon, 1)) + Callon |

Note that epefy decays like =202/, Anticipating the analogues of (4.122) and (4.129) for
the other wy and noting that « (small) and C,, can be fixed independently of k ahead of
time, we now choose ¢(z) uniformly bounded on [0, c0) such that

(4.130) R (2(eo,x + @) — Caeoegy) = e~ %%/ for all k.

Now Tywi = ¢'w; so an application of Garding’s inequality gives

1 1 o0
(4181)  R(((2A(Tegs + ') — CaTogegJr, 1)) / e/ [P — Cellon .

>
— 2e 0
Combining the estimates (4.124), (4.127), (4.128), and (4.131) we obtain from (4.122)
by taking d; small:
(4.132)
1
(v + Dllwn]* + e (0)* <

Cs
Tll(|’h1”2 + lurl? + [¢mn/el?) + (

€
where C* depends on ¢ in (4.128). Adding (4.132) to similar estimates for the other com-
ponents wy of w and using the boundedness of ¢, we obtain for € small and provided o was
fixed small enough:

C*o

€

1
+ Ca)llwl] + Oy + E)(€2Hul||2—1,e,'y + [ Pmnl21en),

1 1 .
(4.133) G+t + G+t O < 0 (1] + fuf + 2220).

74



A similar argument on z < 0 yields

1 1 1 m
(4.134) C+lwl<C (||H1|| +(C+72 0 (O] + [lwa ]l + we h|) .

Combining the estimates (4.133) and (4.134) using w™(0) = w™(0) and recalling v; =
Tyw + er_yvy, we finally obtain the first estimate of (4.102) in the case —sgn(3) = 1. The
other case is done the same way.

3. The parabolic block. We now complete the proof of Proposition 4.28 by prov-

ing the second of the estimates (4.102) for v/ := (va,v3) as modified in Remark 4.29 and
satisfying:

1 Ho
(4.135) OV = ;Tgpv’ + ( H3> , [V]=0.

To get optimal estimates we need to switch now to the parabolic calculus. Since
1 32 1 33 <
(4.136) (T2 = g )vall s+ —ll(Tyss = g7 )vallp 2 S livell + s
by Lemma 4.19 and Proposition 4.15, and

1
(4.137) -
€

1
|(Pye = g7)vall g1+ Z[[(Pyss = g%)vsll o S vallac + llvsll

by Proposition 4.16, we see that v/ satisfies (4.135) if and only if it satisfies

1 Hy 0 H]
/- ! — 2 n —
(4.138) OV Engv <H3> + <h3> : <H§) , V] =0.
with
(4.139) [hally-1 < lIvallac + llvs]l-

Next set v/ = Py-1v/ and commute Py-1 through (4.138) using the parabolic calculus
to see that

1 H/ 0 H/I
no__* " _ _ 2 = 2
(4.140) Oz EPQPV Pp- <H§> * <r0v’2 + Tlvé) ' <H§/) 7

where ry and r_; have orders 0 and —1 on the PH?® spaces now.

Let p = p(t,y) be a basepoint such that for z € R, [(| large, and ¢ near ¢ = (p,0,0,0)
we have a conjugator V as in (3.115) and symmetrizers S* as in (3.117). As before we can
suppose that U and 1 are supported near (t,y,0) and we let ¢ be a cutoff as in (4.112).
Choose smooth cutoffs ¢'(t,y,z) and x'(¢) supported, respectively, near (¢,y,0) and in
|| > R, such that -

(4.141) ¢’ =9, X'xu = xu.
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"

If we set v/ = Pg,sVv", then we can apply the high frequency estimate of [MZ1], Propo-
sition 4.6, to conclude for large enough R that

1 1 1 1
(4.142) —Ivallaz + —Iv5lla, + $|V/2"(0)’A% + %IVE"(O)\A% S
|

173 A + IHE ]+ [Ivalla. + V3] + va(0)]a, + V5 (0)]-

We remark that the Proposition cited here is a quantized version of the frozen coeflicient
estimate given for the parabolic block in section 3.2.
Using (4.140) and the definition of v/ (4.116), we see that the right side of (4.142) is <

(4.143) [Hall + [[Hally -1 + [lua, uz, us|| + [u1(0), u2(0), us(0)] + [nn /el-

Finally, we need to estimate the error v/ —v”. Some care is needed because operators
from both the homogeneous and parabolic calculi enter into the definition of v'. We have

(4.144) IV =V llazje = [P1—grV"Iazse S II1PA-1ProgreV[[az/e + [ler—av'[|az/e <
| PA-1(Pr_gry — T1—¢>’x’)V’HA3/e + ”PA*1T1—¢’X’V/“A§/6 + |Vl =A+ B+ V]
The paraproduct estimates of Propositions 4.15 and 4.16 give A < ||V/||. Recalling (4.116),
(4.141) and using the homogeneous calculus, we get

(4.145) B S Ti-geV lacse S NT1-g0V ey e S MU+ o /el

where (e() is the homogeneous weight as in (4.40).
Combining this and similar estimates of v/ — v” in terms of the other norms appearing
on the left in (4.142) with (4.143), we find

Loy Loy Loy Loy
—lIvallaz + —livalla. + ﬁIVQ(U)IAEg + %IV:))(O)IAE%

L)+ o1+ at

<
(4.146)

This is equivalent to the desired estimate for v/ = Pyv".
This concludes the proof of Proposition 4.28 and thus also the proof of Proposition 4.23
in the case 0 = ;.

4. The case 3 = 5. Finally, we prove Proposition 4.23 in the case § = (32, where 35 is
supported in vy > % (recall (4.17)). Let g}! be the principal part, homogeneous of degree
one, of g''. Then we can rewrite the problem (4.70)(a) equivalently as

1 1
OpV1 — ngilvl = hlll + E (?”01)1 + T912U2 + Tg13'U3) = Hy, [’Ul] =0

(4.147) T .

We have the estimates

1 1

= (Irova || + 1 Tgrzval| + | Tyrss]]) < = (loall + llvalla, + [[vs]])
(4.148) € ) ) €
Ty = I Tieqrovilly o S Zllonllegyrre

76



since Ac > /(eC). Thus, estimate (4.78) of Proposition 4.23 is implied directly by the
following estimates for (4.147):

1 1
lloalleey + \flvl(o)keguz S 1 Hill 4 at.

1

(4.149) X . .
lloallac + sl + %!W(U)l,\gm + \%\03(0)IA;1/2 S [Hsl[p-1 + at..

Let ¢(t,y,x) be a smooth cutoff supported near (t,y,0) with p(t,y) = p, a fixed but
arbitrary point of C. Choose also a smooth cutoff x(¢) supported in |(| > R with xxg = x-
As long as

(4.150) oU = U and ¢r(z)) = Kk(x)1),

we can again make the reduction of Remark 4.29 and replace V' by Ty, V.

The second estimate in (4.149) is proved exactly like the earlier estimate for the parabolic
block (4.135).

For the estimate of v; we use symmetrizers associated to symbols constructed from
5%(2,q,¢) as in (3.132). The symbols S* are defined for ¢ near ¢ = (p, 0,0, 0), so we choose

cutoffs ¢1(t,y, ) and x1(¢) supported, respectively, near (¢,y,0) and in |¢| > R/2 such that

(4.151) P10 = ¢, X1X = X;

and define self-adjoint symbols o< (t,y,z,() € 'l by
€ T ez
(4152) o = ¢1(t7 y,:L‘)Xl(CNC)Si(;,q 7€)

We have for Ut € CV~* and (t,y,z,¢) € supp(¢) x supp(x):

R(oLoy' UF,UF) = (Q)*|U

I 0 Ut - U U 4 IR U 2 COIUE on =0

Taking as Kreiss symmetrizers the self-adjoint operators
1 *
(4.154) §* = RTps = 5 (Tog + (Tor)") .

we can now repeat the proof of Proposition 4.6 of [MZ1], which uses properties (4.153) and
Garding’s inequality, to obtain the first estimate of (4.149). This argument is a quantized
version of the frozen coefficient argument given in section 3.2.

This concludes the proof of Proposition 4.23 and therefore also the proof of the variable
coefficient, high frequency estimates of Theorem 4.4.

4.4 Low and medium frequency estimates

In section 3.3 we have discussed the low and medium frequency estimates (3.6), (3.7) for
the frozen coefficient linearized problem, assuming that the r component of ¢ = (p, v, h',r)
is zero (recall Remark 3.31). The corresponding variable coefficient estimates near the
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front, (4.19) and (4.20), can be proved by quantizing the arguments in the frozen case with
semiclassical paradifferential operators, provided we show that the perturbation r.d,v!' is
negligible in the proof of those estimates. For this we need to work with the paradifferential
form of the problem (4.57):

. AN
U~ ~TpU=|0|+={ 0
(4.155) ¢ ) € \Tv.6

[U] =0, (0 +7)% — eAy¢p +€(¢°) -va = e on x =0,
where U = (u1, ug, €0,us). We define 7 € I'} and g§ and by

0 0 0
(4.156) Ty =Ty + | 0 0 0 | =Ty +T,
de"’egn de"'egm de"'5913

where by := (Bdmd)_l(%,qe). For low and medium frequency cutoffs xr,(¢), xa(¢) as in
(4.15), set Xim = XL + XM, apply Ty, to (4.155) and then shift

(4.157) %TleT,: U
to the right as a new forcing term. Since %lefe is bounded in T'Y, the term (4.157) can be
absorbed by the left side of the composite estimate (4.11); thus, it is an “a.t.” term.

It remains to prove the estimates (4.19), (4.20) for the problem (4.155) with g§ in place
of g¢. This part of the analysis is essentially identical to arguments in [GMWZ3]. We refer
to [GMWZ3], Appendix A.2 for the low frequency estimate and to [GMWZ3], section 5.4

or [MZ1], section 4.4 for the medium frequency estimate.

Remark 4.30. 1. If the perturbation r.0,v' were not negligible in the low and medium
frequency regimes, we would have to incorporate it into the main operator; but then it would,
for example, destroy hyperbolicity (H/), which is needed for the low frequency analysis.

2. Note that r.0,v' is not negligible in the proof of the high frequency estimate. The
weight AZt on [ f2llp-1 in (4.21) can be used to absorb the contributions from Ty, 12 and
Tyyregis in (4.156), but it only “absorbs half” of the t derivative in the contribution from
Ty g1 - Fortunately, (H4) is not used in the high frequency estimate.

4.5 Estimates away from the front

Theorem 4.31 (Estimate away from the front). Assume (H0)-(H7) and (H10), and let

ko > 0 be as in Theorem 4.3. Assume u™, f* are C™ with compact support on Ei“ﬂﬂaﬂ >
Ko}, ¥ € CP(RY), and (u,v) satisfies (4.2). Then ¢ = 0 and there exist o, €o such that
for v > v, 0 < e < ey we have:

(4.158) V][l + /7€l 0z yuzll < C|f].
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Remark 4.32. 1. The extra boundary condition in the transmission problem (4.2) and the
fact that u vanishes near x = 0 imply v = 0. Thus, we just need to consider u with support
as above and satisfying

1
(4.159) E/L(%, ¢ €Dy, ey,€Dy, €0p)u = f.

2. Observe that away from the front, the u. component of ¢¢ as in (4.3) is no longer
necessarily small. On the other hand we do assume W(%Z,q%) € U* and W(%,¢°) € U for

€] large ((H10), part (f)).

The proof of Theorem 4.31 has much in common with the proof of Theorem 4.3, but
is much simpler since there are no boundary conditions, no glancing modes, and formerly
singular terms like %E (%, ¢°)u are now negligible. The Evans hypothesis (H9) is now irrel-
evant, there is no need to write the problem as a first order system, and the only part of
section 3.2 that is needed is subsection 3.2.2.

The proof of the estimate away from the boundary in [MZ1], section 5.3 for the fully
parabolic case can be used here almost verbatim, but there are a couple of new points in
the symmetrizer construction for the partially parabolic case that we now discuss.

The symmetrizers are given by matrix symbols s¢(t,y,x,n,&q). Set £ = (1,&4). The low,
medium, and large frequency regimes are defined by

(4.160) €€ < po, po < |€§| < R, R < [€]

respectively.

In the low and medium frequency regimes, our strict dissipativity condition (H5) is
equivalent to the condition in the strictly parabolic case where the right side of (2.16) is
replaced by c|¢|2. Thus, the symmetrizer construction of [MZ1], Proposition 5.6 applies
without change for bounded frequencies, provided we check that the perturbation r.d,v?,
which is present now but not in [MZ1], is negligible for bounded frequencies. Indeed, €&y is
bounded so ||r.0,u!|| can be absorbed by the left side of (4.158).

The main new point is in the high frequency regime where one should first conjugate to
block form as in (3.20). The symmetrizer for the B?2 block may now be constructed just
as in the high frequency argument of [MZ1], Proposition 5.6. After another conjugation of
the A! block as in (3.28), with blocks C{! satisfying (3.29), a symmetrizer s'* = diag(s}!)
for the (11) block is easily constructed satisfying

11 11\ 11
sp = (s)5 sp =>1p,

4.161
(4.161) RGLC) > 1,

With these symmetrizers the estimate (4.158) follows in the usual way.

Remark 4.33. The argument we have given in the high frequency regime uses the obser-
vation made in Remark 3.13 that the conjugations of subsection 3.2.2 are valid for profiles
W (z,q) satisfying only conditions (a),(b) of Definition 2.16. The parameter q is also allowed
to have a nonzero r component in subsection 3.2.2.
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5 Approximate solutions

In this section we adapt the construction of high order approximate solutions in [GW,
GMWZ3] for the case of positive viscosity to the partially parabolic case considered in
this paper. A precise statement of the properties of the approximate solutions is given in
Proposition 5.7.

We seek an approximate solution (u,¥?) to the N x N system (1.1)

d d
(5.1) > 0 fi(u) =€ > 05(Bjk(u)dpu) = 0,
Jj=0

Jk=1

given a shock solution (u”, 1) to the associated hyperbolic system.
As before we introduce the unknown front = = (¢, y), change variables & = x —1¢(t,y),
drop tildes and epsilons, and rewrite (5.1) in our usual notation (2.20)

d
(5.2) Aj(w)dju+ Ag(u, d)dgu — e > 0;(Bjx(u, dip)dgu) = 0.

jk=1

9
—

<
Il
o

We are also given a leading profile (¢, y, z, z), which in the new coordinates is given
in £z > 0 by

X e
(5:3)  Uty,w, 7)) = Wo(S,p(ty) +ul(ty, 2+ 90 (6 y) - u'(ty, ¥ ().
In particular we have
(5.4) U0 (t,y,0,2) = Wo(z,p(t,y)), U= U U>?).

Recall that we view (5.2) as representing two problems for (u, 1)), one on > 0 and one
on z < (0 with transmission boundary conditions

(5.5) [u] =0, [Ozuz] =0 on z=0.
We add the extra boundary condition on {z = 0}:
(5:6) O — €Dyt + L(t,y) - unla—o = O — €Dyt + L(t,y) - U (t,y,0,0)

where ¢(t,y) has been chosen so that

(5.7) U(t,y) - 0.U(t,y,0,0) > 0.

We seek an approximate solution (u¢,1?) of the form (dropping epsilons)
(5:8) V=90t y) + el (ty) + -+ MMt y),
(5.9) u® = (Uo(t,y,x, 2) +ed (t,y, @, 2) 4+ -+ eMZ/{M(t,y,:c, Z)) |Z:%,
where

U(t,y,z,2) = Uty x) + VI(t,y, 2),

UL(t,y,x) = uOt,y, = + ¥°(t,y))|+2>0, and the Vi(t, y,z) are boundary layer profiles ex-
ponentially decreasing to 0 as z — Foc0.
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5.0.1 Interior profile equations

We substitute (5.9) into (5.2) and write the result as

M

(5.10) Y EFty,m,2) |z + M ROM (1 y, @),
~1

where

(5.11) Fi(z,2z) = Fi(z) + GI(2, 2),

and the G’ decrease exponentially to 0 as z — 4-o0.
In writing out the F7, G7 we use the following notation.

Notation 5.1.

1. fa(u,de) = fa(u) = 357" fi(u)d;0.

2. H{U®, dy®)d = 471 A;(U)0; + Ag(U°, dp®)dy.

3. dyAgUO, dy®) (v, w) = Z{V 004, Ag(UO, dp)w = 9, Ag(U°, dip°)(w, v), by symmetry
of hessians.

4. Blu)do = = 357" A;(u)d;e.

B(u)dg = = Y357 f;(u);.
6. [h(u)] = h(uy) — h(u—) on x = 0, where uy. denote the limits from the right/left at
Td = 0.

Next we recall our notation for viscosity matrices:

Notation 5.2.
1. Letv = (I/(), Viy.oony l/d) = (—80’(/}, ey —8d,1¢, 1), I/O = (—80’(/}0, ey —ad,ﬂﬂo, 1), and

(=00¢', ..., —0a—19",1).

Bi]’k( ) Bng(’U,), ij < d, k < d. )

Bja(u,v) = Y4_y Bijn(wvy if j < d; Bap(u) = Y0_, Bjr(uy; if k < d.

By.a(u,v) = 521 Big(w)vjv.

B?,k is defined just like Bj,k, except that (UY,1°) is substituted for (u,v).

0BG y(v,0) = 35 000, B0

.a.bw\.coz\s”

The interior profile equations are obtained by setting the F7, G’ equal to zero. In
the following expressions for G’(t,y, z), the functions U’(t,y,x) and their derivatives are
evaluated at (t,y,0). We have

-1 F~Y(t,y,2) =0

(5:12) G (1, 2) = —0.(BY,0.U°) + 0. fad®, dis®),
FO(t,y,z) = H(U®, dy")oU",
(t y,2) = _8z(Bg,dan1)+

(5.13)

o, (Ad(uo, dO) (U + VY — dBY (Ut + V1, 0.V0) + B(Uo)d¢1> +
QU VO, dy°, dyt),
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where Q¥ = Q°(t,y, 2) (for short) is exponentially decaying in z. In fact

d—1
= AU, v0+

s9

-1
(A;U°) — A;(U)U° + (Ag(U°, dp®) — Ag(U°, dy°))0aU "~

—_

—~
F -7

d—1
0;(BY40.V°) + > 0.(BY ,od")+
k=1

(5.14)
j=1
d d
> R0uBY L0V, 0,U°) + Y 120, BY(0,U°, 0.V )+
k=1 k=1
d d
Z Bjk(y vi +Vkl/ Ho?v0 4 Z l/ vi —|—1/k1/ Ho, Bok(azvo,azvo)}.
Ji:k=1 7. k=
For j > 1
(5.15)

Fi(t,y,x) = HU, dy*)oU? — PI~(z)
GI(t,y,z) = —0.(BY40.VITH)+
0 (Ad(m’%o)(mﬂ +VITY) —dBY (U + VIt 9, 10) +B(u0)d¢j+1) n
Q' (ty,2),
where P7, Q7 depend only on (U*, dy*), (U, dy¥, dip*+1) respectively, and their derivatives,
for k < 5.

Remark 5.3. 1. Recall that a term like (A;(U°) — A;(U°))9;U° in (5.14) is evaluated at
(t,y,x,z) = (t,y,0,2). This introduces a fast decaying error which can be incorporated into
Gl(t,y,z) in view of the fact that x = €. This kind of observation is applied to all such
errors.

2. Define Q°(t,y,z) for z >0 by fjoo Q°(t,y,s)ds and for z <0 by ffoo Q°(t,y, s)ds.
As we’ll see shortly, it is essential that the terms involving 1" do not contribute to the jump
of Q¥ at z = 0. These terms come from the last line in (5.14), which can be expressed as

d
Z V Vi + ka kf) Vo) = h(t,y, 2).
7,k=1

Since this derivative is smooth at z = 0 and fj;o h(t,y,z)dz = 0, the desired conclusion
follows. The same remark applies to the terms involving ¥/ in the jump of Q7 at z = 0.

5.0.2 Boundary profile equations

In the boundary profile equations (¢,y, x, z) is evaluated at (¢,y,0,0). These equations are
obtained by substituting the expansions into (5.5) and (5.6) and setting coefficients of the
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different powers of epsilon equal to 0. Here U{ or V. denote limits as x (resp. 2) approaches
0+,

From (5.5) and (5.6) we obtain the conditions:
(a)e: U01+V01 =yt 4yt
(b)GO . U02 V02 — U02 V02
()t .V =5,V
(

(5.16)
d)e® atwo Ut y) - U = o — 0(t,y) - U2,
(a)e' : U_}_’l + Vi’l =yt v
517 (b)e': U v =ul? 4 v2i?
‘ () : aUY? + 0, V]1? = 0,U%? + 0,V
(d)e' = Ot — A + - U = -0
and for j > 2,
(a)é : UJ’ V_f_"l =UP V7!
(5.18) by : UP + Vi =02 VI
. (C)E‘] 1 . Uj*1,2 + azv-i,Q — ainfl,z +8ZVZ'72,
(d)e :+ o? — Dy~ + £ U2 =0,

5.0.3 Solution of the profile equations

Notation 5.4. 1. Set B, := B?l’d = ded(uo,yo), an N x N matriz, and B, := B??, an
s X s matriz (the reduced normal viscosity matriz).

2. Set A, := Ag(U°,v°), an N x N matriz, and A = —(AL)"1A2 an (N —s) x s
matric.

We’ll postpone a careful discussion of regularity of solutions until Proposition 5.7. Here
we note simply that we need to assume

(5.19) U° € H*([-Tp, To] x RL), 4° € HoV([~Ty, To] x RY)

for some large enough sy depending on M.
1. Note that F? = 0 already by our assumption that (U, d?) is a shock.

2. V; and the reduced profile equation. Recall that G~! = 0 represents equations
on £z > 0. Define

| Gty s)ds for z >
G (t,y,2) = f-i;ooGi'( ,y,s)ds for z >0
f—oo G ](t,y, S)dS for z <0

83



The equations G~ = 0 are now

0= fi U dp°) — f3(U°, dy")

(5.20) B,a.U"? = FU°, du®) — F3(U°,dy°).

We are given the lead profile and inviscid shock, so we may simply take VO(t,y,z) =
U°(t,y,0,2) — Ut y,0).

To establish notation used later, we solve for /%! in terms of U%2, U%! = w(U"?), and
obtain the reduced profile equation for U%?

(5.21) Bo:U™ = fi(wU®?),u"?, dy’) — fi(w(U®?), U2, dy?),
where B, is the reduced normal viscosity matrix defined above. Observe
(5.22) UM = AU Dypow = A.

3. Compatibility condition for V. With Q as in Remark 5.3, the equations G° = 0
can be written

()0 = AU + VI + 2O + V) + BU)dy")!
— (Aq(U°, dy”)U" + B(U)dy')" + Q™.
(b)BPo. V' = A2 UM + VI + AZUY? + V) —dBP (U + V!, 0.V0?)
~ 2
+ B — (AaU°, "YU + BU)dy') +Q°? = D(t,y, ).

(5.23)

U clearly satisfies the boundary condition (5.16). Suppose for a moment that [U/}2] =
[UY2 + V12 = 0. Then (5.23) shows that [U/>!] = 0 if and only if

(5.24) [Aa(U°, dy®)U" +B(U)dy']" = Q).

We seek a condition on [Ag(U°, dyp®)U' +B(U°)dip']? that will imply (5.17)(c) assuming
that (5.23) and (5.17)(a)(b) hold. Using (5.23)(b) and

(5.25) U] =0,[0.V] =0,[U" + V'] =0,
we compute
(5.26) [B,0,V1?] = D] = —[A4(U°, dy°)U + B(U°)dy']? + [Q°)2.
Thus, (5.17)(c) holds if and only if [B,0,V1?] = —[B,.0,U%?], that is, if and only if
(5.27) [Ag(U°, dy®)U" + B(U)dy']? = [Q" + [B.onU"?).
The equations (5.24) and (5.27) give us the boundary conditions for the problem satisfied
by (U, dipt).
For later reference note that we can use (5.23)(a) to express

(5.28) Uttt 4+ Vb = AU+ VB + H(t,y, 2), where
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H(t,y,2) = —(AN) ' K(t,y, 2), with K(t,y,z) =

(5.29) (BU)dy!) — (Ag(U°, dy®)UL + BU)dy)! + QL.

4. Solve for (U',dy!). These are determined by solving

HUNoU' = PO(z),
(5.30) BU)dyt + An (U, dy® U = [Q™],
BU)dy' + An (U, dy)U' = [Q") + [BJH(A) QY] + [B.onU?)).

The right sides in the boundary and interior equations of (5.30) are initially defined for
t € [-Tp, Tp]. We can modify them to be zero in t < —Ty + ¢, say. We thereby obtain a
problem for (U, dy!) that is forward well-posed in the sense of Majda [M2], since (U, dy°)
is uniformly stable and ¢! does not appear on the right side of the boundary equation (Re-
mark 5.3). Thus, we obtain a solution to (5.30) on [—Z2, Ty].

5. Stable and unstable manifolds Let W;(t,y) C R" and W' (t,y) C R" denote
the stable and unstable manifolds of the reduced profile equation (5.21) for the rest points
Ui’Z(t, y,0). Our assumptions (Lax shock, Evans condition) imply they intersect transver-
sally in a smooth curve containing 4%2(,y,0,0). With obvious notation let’s rewrite (5.21)
as

(5.31) B0 U = [ U2, dy°) — fAU?, dy”).

The tangent spaces to W (¢,y) and W (¢, y) at U%2(t, y,0,0), denoted W5 (¢, y) and W¥(t, y),
are the stable and unstable subspaces for the equations

(5.32) B0, V1?2 = A (U2, dyp®)V1? — dyo2 B (VE2, 0.U%?),
where
(5.33) AU, a0 = o fr = (AT = ATH(A) A (wU®?), U2, dy)

and we use U%! = w(U?) to regard B, as a function of (U%?, d)°) now.

6. Solve for V! We first obtain V2 exponentially decaying to 0 as z — +o0o and then
use (5.28) to solve for V11, Tt is clear from (5.28) that 9,V must decay exponentially to
0, and a closer examination of (5.28) shows the same is true for V1! itself. In fact, (5.29)
implies
(5.34) H(t,y,+00) = U (t,,0) — (Al.=100) U,

The equation for V12 is (5.23)(b). Because of the compatibility conditions that have
been arranged by the choice of (U', 1), in order to obtain V! satisfying (5.23) and the
boundary conditions (5.17)(a),(b),(c), it suffices now to find an exponentially decaying so-
lution to (5.23)(b) such that (5.17)(b) holds: [U}2 + V2] = 0.

The solution is based on the observation, which can be verified by direct calculation,
that (5.23)(b) has the form

(5.35) B0, VY2 = A (U2, dy°) V12 — dyo2 B (VY2 0.U%2) + F(t,y, 2),
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where F is known (expressible in terms of already determined profiles) and exponentially
decreasing to 0 as z — +0o. Now we can solve (5.35) with the correct initial conditions by
an argument based on transversality.

Let W (t,y) and W{*(¢,y) be the linear submanifolds of R® consisting of initial data at
z = 0 of solutions to (5.35) that decay as z — £oo. Standard ODE facts [Co] imply that
W(t,y) and Wi'(t,y) are translates of W{(¢,y) and W§ (¢, y). The sum of the dimensions
of W(t,y) and W{(t,y) is s + 1 and they intersect transversally, so their intersection is a
line in R* with direction 9,U%2(t,y,0,0).

Thus, we should choose initial data

(V2 (t,,0), VE2(t,,0)) € (Wit y) x Wit y)) N

(5.36)
{(v1,09) € R¥ : vy — vy = UM2(t,y,0) — UL(t,,0)}.

The above paragraph implies this is a transversal intersection of linear submanifolds of R?*
of dimensions s+ 1 and s respectively. Call this intersection (which is necessarily nonempty)

(5.37) L(t,y), the line of connection initial data for Vil’Q(t,y, z).

For a given (¢,y), any point on this line gives a choice of initial data for (5.35) corresponding
to a decaying solution that satisfies (5.17)(b). In view of the above discussion we now have
V1 satisfying (5.23) and (5.17)(a),(b),(c).

To arrange (5.17)(d) as well, note that £!(¢,y) has direction

U%2(t,y,0) = (9:U(t,y,0,0),0.U"*(t,y,0,0)).
So
(5.38) LYt y) = {K(t,y) + sU(t,9,0),s € R},
for some initial point K(¢,y). The boundary condition (5.17)(d) holds provided
(5.39) OO () + 0t ) - (U3 (1, 0) + Vi (1,9,0)) = 0.

Since £(t,y) - 0,U*%(t,y,0,0) # 0, there is a unique smooth choice of s(¢,y) that gives Vi’z
satisfying (5.39). We now have exponentially decaying V. satisfying (5.23) and (5.17).
7. (Continue) The solution of the remaining profile equations follows the same pattern:

(5.40) (UL = VI — (U2, 4?) - V2.

The boundary condition for the problem satisfied by (U7,7) is always the compatibility
condition for V7. In view of Remark 5.3 the boundary problems for the (U’,47) are all
Majda well-posed, linearized shock problems. The line LI (t,y) of connection initial data
for Vi always has direction U%2(¢,y,0).

Provided the index of regularity so in (5.19) is large enough, this process yields arbitrarily
high order approximate solutions with the properties summarized below.
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5.0.4 Summary

Let £(u,1) be the operator in the left side of (5.2). Our approximate solution (u®,®) as
in (5.8), (5.9) satisfies

T _
E(u, ") = RN (. 2) on [~ Tp) x RS

(5.41) [u?] = 0; [Opu3] = €M7“M(ta y)onx =0
O —e Ny + L(t,y) - uf
= 0p)® — eDyU + U(ty) - U (t,y,0,0) on z =0,

with remainders e RM and ¢MrM as described in the next step. We can make [0,u3] = 0
without changing the other conditions in (5.41) by adding —zp(z)eMrM (¢, 1) to uj 4, where

p is a smooth cutoff equal to one near x = 0.

Remark 5.5. 1. The construction does not require the full strength of the uniform stability
assumption on the profile Wo(z,p(t,y)). We need only the properties that follow from this
assumption by the Zumbrun-Serre theorem, Theorem 7.2, in the low frequency limit; namely,
transversality of the connection and uniform stability of the inviscid shock (U?,1°).

2. Observe that with the extra boundary condition, the higher profiles are uniquely
determined by this construction once the leading profile U°(t,y,0,2) and inviscid shock

(Ut y,2),4°(t,y)) are fized.
In the next Proposition we use the following spaces:

Definition 5.6. 1. Let H* be the set of functions U(t,y,z) on [T, To] x R? such that the
restrictions Uy belong to H*([—Ty, Tp] x ﬁi).

2. Let H® be the set of functions V(t,y,z) on [Ty, To] x R*1 x R such that the
restrictions Vi belong to C*®° (R, H%(t,y)) and satisfy

(5.42) 0%V (t,y, 2 Es(ty) < C;mse*‘s‘zl for all k
for some 6 > 0.

Proposition 5.7 (Approximate solutions). For given integers m >0 and M > 1 let

7 d+1
(5.43) So>m+§+2M+%.

Suppose the given inviscid shock (U° %) is uniformly stable in the sense of Majda and
satisfies UV € H*, UL (t,y,0) € H(t,y), and Y°(t,y) € H°FL(t,y). Suppose also that the
connection given by Wo(z,p(t,y)) is transversal. Then one can construct (u®,¥*) as above,

(544) ¢a = wo(ta y) + Edjl(ta y) +oeee eMd}M(t? y)a

(5.45) u = Uty m,2) + U (ty,m,2) + -+ UMy, 3, 2)) [,
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where now Ufm(t, y,x) is replaced by Uyz(t, y,x)—xp(x)r™(t,y) for r™ as in (5.41). The
approximate solution (u®,y*) satisfies
a a M pM T —=d
g(u 7w ) = R (taya$) on [_?7T0] X Ri
(5.46) [u] = 0; [Dyus] =0 onz =0
O —eDyp® + (L, y) - u3
= o — eAy¢0 + 0(t,y) - U2 (t,y,0,0) on z = 0.
We have
U (t,y,x) € HO72, ¢ (t,y) € H*O 2 (t,y)
(5.47) Vit y,z) € HO™Y
rM(ty) € HOM 3 (1),
and RM(t,y, x) satisfies

N d+1
(@) |(0r, 0y, €0x)* R | 121y 2y < Ca for o] < m+ 5

(b) |(8t,8y,€a$)aRM|Loo(t’y’x) < Cq for |a) < m.

(5.48)

Definition 5.8. We'll refer to (u®,y*) as in Proposition 5.7 as an approximate solution
of order M.

Proof of Proposition 5.7. Tt just remains to check (5.47) and (5.48). (U°,4") has the given
regularity by assumption and V? by construction since U0|m:0 belongs to H®.

In the linearized shock problem (5.30) satisfied by (U!,1!), the interior forcing term
PY(t,y,z) involves terms in which U is differentiated twice, and so belongs to H*~2
Similarly, the boundary data lies in H*0~2(¢,y). Thus, Majda’s estimates for (5.30) imply
Ul e H=2, U',_g € H*~2, and ¢! € H,

V12(t,y, 2) satisfies an ODE in z, (5.23)(b), in which the coefficients and boundary data
at z = 0 depend on (U, 4!); so V! € H®0~2, Following this pattern establishes the stated
regularity of (U7,47) and V7 for any j.

From the boundary profile equation (5.18) we obtain

(5.49) rM(t,y) = 8, U — 9, UM,

Since UM (t,y,x) € H* 2™ we have rM ¢ HsO*QMfg(t, y). This finishes (5.47).

Finally, since zp(x)r™(t,y) € H*2M=3 and the least regular terms in RM involve two
derivatives of xp(z)rM(t,y), we obtain (5.48). Observe that we do not deduce (5.48)(b)
from (5.48)(a). (5.48)(b) is verified separately using (5.47) and the Sobolev embedding

theorem.
O
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Remark 5.9. 1. Let m and M be given nonnegative integers, and set
uy = UL(t,y, )
ut = (UL(ty, @) — UL(t,y,0))+
x T
EUi(t,y,x, ;) +-o EMuiu(t7yax7 ;)
B = edipt + -+ Mdy™,

(5.50)

where the terms on the right in (5.50) are as in Proposition 5.7. It is now easy to check,
using (5.47) and the Sobolev embedding theorem, that uoi, Yo, u’ei, and h’. have the regularity
stated in Assumption 4.1 when m in (5.43) is taken to be 0. These functions are defined by
our construction just on the time interval [Ty, Tp], but they can easily be extended to all
time with the extensions satisfying Assumption 4.1.

6 Nonlinear stability

6.1 Error problem, iteration scheme, and L? estimate

We seek an exact solution of the transmission problem

d—1 d
(a) E(u, ) == Aj(u)dju+ Ag(u, d)0qu — € Y Dj(Bjx(u)Dyu) =0
(6.1) =0 Jk=1
(b) [u] =0, [Ozuz] =0 on x =0,

Onp — eyt + L(t,y) - Uz|o—o = Ot)® — e + £(t,y) - U2 (t,,0,0) on @ =0

that is close to an approximate solution (u?, %) of order M as constructed earlier and
satisfying (5.46). Here as in (1.10)

(6.2) Dj = 8; — (8;9)8, for 1 < j <d, Dyg=0,.

We noted in Remark 2.8 that (6.1)(a) is the same as (2.20).
Looking for an exact solution of the form

(6.3) u=u~+elv, P =2+ Lo,
we obtain by subtracting (5.46) from (6.1) the following error problem for (v, ¢):

(a) e X (E(u + elv, v + - ) — E(u,¢*)) = —ERM

(6.4)
(b) [v] =0, [0xv2] =0, Opp — €Ay + L(t,y) - V2|z—0 = on = = 0.

The interior equation (6.4)(a) can be solved, at least formally, by the following iteration
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scheme, which we shall call scheme I:

)

(6.

at

U
=

Aj(u® + ELUn)ajUnH + Ag(u® + v, (¥ + €4 ¢3)) qvni1+

T
= o

1
(Un+1 '/0 duAj(u® + sePvy,)ds)0ju’+

[e=]

<.

1
(Vna1 / dyAg(u® + selu, d(y® + eLan))ds)@du“
0

d
—e ) (05— 05" + €"6n)a) (Bj(u® + € 0,) (O — k(¥ + €"0n)Da)vn11)

d 1
—€ Z (05 — 0;9“0q) <(vn+1 . /0 dyBjr(u® + seXv,)ds) (0 — O (V™ + 6L¢n)3d)ua)>

=1
d—1 d
= Ojbns1 Aj(u)0qu + € Z 0;bn+104 (Bjr(u® + €Xv,) (O — O (™ + €X ) 0g)u®)
j=0 Jk=1
d
+e Y (95 — 09 0a) (Bjk(u) O 4104u”) = —e™ P RM.
k=1

On the boundary we require
(6.6) [Unt1] =0, [&wiﬂ] =0, Otpny1 — €DNydni1 + L(t,y) 'Ui+1\x=0 = onx =0.

Remark 6.1. 1. If all the subscripts n and n + 1 are removed in (6.5), we have exactly
(6.4)(a).

2. If (vp, dn) is set equal to zero in (6.5), the resulting linear operator appearing on the
left in (6.5) and acting on (Vp41, Pnt1) is identical to the linearized operator used in the
nonlinear stability argument of [GMWZS3].

3. Note that many other schemes are possible; for example, one could switch a certain
n with n + 1 in some of the terms of (6.5). It turns out that scheme I leads to a difficulty
with higher derivative estimates (see Remark 6.3), so we replace it in the next section by a
new scheme.

We can rewrite (6.5)
(6-7) Eu(ua + ELvna d)a + €L¢n)vn+1 + ['1/1('“& + EL'Unv W + €L¢n)¢n+1 = 7€M—LRM7
thereby defining £, and L£,. The nonlinear error problem (6.4) can now be written

Lo(u® + v, + el p)v + Ly (u® + elv, v + ep)p = —eMERM on [0, Ty) x R?

(68) [v] =0, [Opv2] =0, O — ey + L(t,y) - va]g=0 = on z = 0.
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The problem (6.8) needs some initial conditions in order to be well-posed. Choose a C§°
cutoff function 6(¢) such that

1 for t > =
6.9 0(t) = -4
(69) ©) {Ofortg_;fo

and for an arbitrarily large fixed K > 0, let xg(x) be a C§° cutoff such that yx = 1 on
|z| < K. We will solve the following forward error problem:

(a) Lu(u® + "0, 9% + €"Q)v + Xk Lo (u® + €0, 9% + "¢ =
— eM=Lot)RM on [Ty, Tp] x R?
(6.10) (b) [v] = 0, [Opva] = 0, Dyd — €Ay + L(t,y) - valg—o = on a =0

—Ti
(c)v:0,¢:Oint<T0.

A solution (v, ¢) to (6.10) is then a solution to (6.8) on [0, Tp] x Rg_l x {|z| < K}.

Remark 6.2. The cutoff xx is introduced in order to allow us to treat front terms ¢, on
an equal footing with interior terms in the Moser estimates below. With these cutoffs we
can always assume that ¢, or ¢n+1 has been replaced by x(x)pn or x(x)Pn+1, where x(x)
is any smooth cutoff such that xxx = XK. We'll usually suppress the x attached to fronts
i writing the estimates.

6.1.1 New iteration scheme: scheme II

Consider again scheme I (6.5), where now a cutoff xj is always inserted as in 6.10(a). We'll
describe scheme II by prescribing a simple rule for obtaining it from scheme I.

Corresponding to the splitting (v!,v?), there is a “first equation” and a “second equa-
tion”. Changes are made only in the second equation of (6.5). Let 05 denote one of the
spatial derivatives 0;, 0y. Consider the following products, which always occur with matrix
coefficients and powers of e/ attached:

1 2 1 1
050,05V 41, 0500541, OsvpUn41

(6.11)
O2Pn0sv2 11, 02hn0sdni1, O2nvni1.

The rule is: whenever such a product occurs in (6.5), switch the n and n + 1; keep the
boundary scheme (6.6) as before. This rule defines a new iteration scheme which converges,
formally at least, to the problem (6.10)(a)-(b).

Remark 6.3. 1. When we refer to “products” 850711850721“, for example, we mean, of
course, vectors whose entries are products of scalar components of the given factors. Such
products appear in the fourth line of (6.5) after the differentiation 9y ((Bjx(u® + €lvy)) is
performed.

2. The products in (6.11) do not present any difficulty in the proof of the L? estimate
for the linearized problem corresponding to scheme I. This is because the size of the terms
with subscript n is controlled by Assumption 4.1. The difficulty occurs only in the higher
derivative estimates.
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Let 0 = (04,0y). To estimate (9’“1)711“, for example, we would apply the L? estimate
to the problem obtained by differentiating scheme I k times. A product like st}ﬁsviﬂ n
scheme I gives rise, after 0% is applied, to a commutator term involving the product

(6.12) (0" 0503) (Dsvpe i)

Since k+ 1 derivatives fall on v} and we are trying to estimate 8’“1}711“, such a commutator
is an unacceptable forcing term in the induction argument. The L? estimate gives better
control over v2 than v, so the switch resolves this problem. In the case of positive viscosity
the control over both components is equally good, so switches are not needed and scheme I
1 adequate.

We can write the new scheme more explicitly as follows. With £, and Ly as in (6.10)
define

Zuanrl = £u(ua + eLvna ¢a + €L¢n)vn+1 + 6L8165’U72H_1 + ELBQUn+1 + GL-AlasvylH_l
Lydnir = Ly + € vn, " + €°9,)bny1 + € BsDsnyr + €" A0 Py

Here the matrices B; are of varying sizes, have vanishing first row, and depend smoothly
on their arguments

6.14 B; = B;(u®, dp®, edyu®, d,u®, v, Osbn, Osvt, 02 n, €
J J Yy ny s

(6.13)

for € € [0,1]. The matrices A; also have vanishing first row and depend smoothly on their
arguments:

(6.15) Aj = Aj(u®, dip®, €0pu®, Dyu®, vy, Osbn, Osv2, €)

Remark 6.4. Fach switch prescibed by the above rule corresponds to making two changes
in the original scheme. A bad term of one of the types listed in (6.11) is subtracted, and a
corresponding switched term is added. The B; terms in (6.13) are the subtracted bad terms,
and the A; terms are the added switched terms.

We’ll obtain the solution to (6.10) as a limit of solutions (v,,+1, ¢n+1) to problems:
+ +
(a) Lovni1 + XxLypdnir = L0 RM on [Ty, Ty] x R

(6.16) (0) [vn41] =0, [8zvr2L+1] =0, Oppnt1 — €Dydny1 + L(t,y) - U121+1 =0onz=0

=T
(C) Un+1 = 0, d)n—l—l =0int< TO,

where the coefficients depend on (vy, ¢,,) and other known arguments as described in (6.13)-
(6.15). We take the first iterate (vo, ¢o) = 0.

6.1.2 [? estimate for scheme II

It is not yet clear that scheme II (or even the simpler scheme I for that matter) satisfies the
L? estimate (4.11) of Theorem 4.2:

(6.17)
utllxe + lluzllxza, + Velldzuallx, + |u1(0)]x, + !uz(o)\A gt 6\3;1:7~t2(0)|A it U]pen. <

elle elle

CALll + N f2lly-0)-
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To see that it does, we need to relate the interior operator in (6.16) to the operator in the
problem (4.2) for which we have proved (6.17).

For L., Ew as in (6.16)(a) with coefficients depending on (u®, %%, vy, ¢p, €), define

L(u, V) = Lyu+ xx Lyt

(618 [ = et

and consider the following transmission problem on R4+

L7 (u, ) = f
(6.19) [u] =0, [0,u”] =0, (D + 7)Y — eAyth + £(t,y) - u” = kg on z =0
(¢c)u=0, ¢:Oint<_TTO,

where we suppose now that (v, ¢,) has been extended to R¥*1 Observe that when
(6.20) (u,¥) = € " (Vng1, dns1), [i=e V(=" O(t)RM),
then (6.19) is equivalent to (6.16) on [—Tp, Tp] x R

Notation 6.5. 1. Let D = (04, 0y, 0;), Os = (0y,0z), 0 = (0, 0y). Sometimes, we use D,
0s, or O to denote just one component of the corresponding vector operator.

2. Let OF denote the collection of operators 0. ... 8?5:11 such that ag + -+ -+ ag—1 = k.
Sometimes OF is used to denote a particular member of this collection of operators. We
treat D and 0F similarly.

Proposition 6.6. Fix M > L > 1 and let sg be the index measuring Sobolev reqularity of
the inviscid shock (as in Proposition 5.7). Suppose f € L?,

7 d+1
(6.21) s0> 5 +2M + %

and that there exists eg > 0 such that for e € (0, €] :

(6.22)
|Uns D l|™ := |V, Dvn, D*v2, 00,0}, €00}, 020,02 6283,0,2”¢n,8¢n,82¢n,83¢n|1;oo <1

z“nr Yy ny Yx

There exist positive constants vy and €y such that for v > vy and 0 < € < €y, the a priori
estimates of Theorems 4.2 and 4.31 for smooth data supported, respectively, near and away
from the front, hold for the transmission problem (6.19). In the estimate near the front
(6.17), an extra term C\k4\)\€Ai/2 should be included on the right.

Remark 6.7. 1. With notation as in Proposition 5.7, observe that if we now take
ug = Ui(t,y,a:)
ues = (ULt y,x) — UL (t,,0))+
T x
d/{i(ta Y, x, Z) +o 6Mui\/[(t7 Y, x, Z) + ELUT%
h. = edp' + -+ MaypM + L dp,,

(6.23)
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then Proposition 5.7 and (6.21) imply that (ug,u.., h.) satisfies the requirements of Assump-

€)' %€

tion 4.1. For r. to be determined (6.47), let us now set

q“(t,y,x) = (p(t,y), uc(t, y, , €), he(t,y), re(t, y, x)) with
plty) = (uG(t,y,0),ul (t,y,0), &y (t,y)) € C,

for (u,ul, ) as in (6.23).

€7
2. We need to allow kg4 # 0 in order to carry out the higher derivative estimates below.

(6.24)

Proof of Proposition 6.6.
First we concentrate on the estimate near the front.

1. Principal parts. We shall write /j'y(u, ¥) as the sum of a principal part and a
negligible part

(6.25) L7 (u,p) = L] (u 1) + L) (u, ),

where £} (u,v) = (hi, hs) is negligible in the sense that ||hy|| + [h2][5-1 can be absorbed
by the left side of the estimate (6. 17) by taking v large and € small. It then suffices to
prove the estimate for the operator E in place of £7. We will specify EV by showing how
it relates to the operator £, := e‘”t[, »€7t, where L, gives the principal part of scheme I
(6.5). Writing

L) (u, pUT o
(6.26) p( ) XK ’,f’pw
‘Cz (u,9) = ﬁu,pu + XK‘CIL,,pQ/}a

we'll derive explicit expressions for the four operators on the right in (6.26) after providing
some notation.

Notation 6.8. Given (d + 1)-tuples v®, v° defined in terms of fronts ¢, ° by v* =
v(dy®) = (=0, =, ..., —0q—19% 1), we set:

1. Bj,k(u v, ) = Big(u), if j < d, k <d.

2. Bja(u,v®,vb) = Zi:l Bir(w)l ifj <d; Bag(u,v*,vb) = Z?:l Bjp(u)vi if k <d.
3. Baalu,v*,v") = 325y Biu(w)f.

4.Bk(u ) ]k(u v vh).

5. Let (u®, %) be the approzimate solution and set

u’ = u® + lu,

(6.27) WP =9+ e
u® = u? + selv, for s € [0,1].

We first rewrite the total operator for scheme I,
(6.28) L7 (v,¢) = Llv+ XKE%Z)
in a form that makes it easier to compare with the operator in (4.2). Here

1
6.29 Llv = A9 Abojv — %+ ~E
(6.29) v (t+7”+]21 v 63;1 ku V)]kv+e v,
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where, with superscript “¢t” for total and zzlj (u,v) == Aj(u) for j < d,

(6.30)
At = Ao(ub),
Alojv = Aj(ub, vP)0v—

d d 1
GZ(Ok(Bkj(ub, v9))ojv — GZ <8jv : /0 dqu7k(us,1/a,1/b)d8> ou®, j=1,....,d,
k=1

d 1 d 1
E'v = ez <v : / dyAj(u’, yb)ds> dju® — € Z <v . / duBj i (u®, v?, Vb)d8> szkua
j=0 0 k=1 0
d 1 _
— ¢ Z (v . aj/ dyBj i (u®, V%, Vb)d5> Opu®.
k=1 0

The front term in (6.28) is

m3n
s o(ua’)(at +7)¢—

d d
Oufj (™) =Y~ €0n(Bjn(u’, V") 0ku®) = eOp( By (u®, V“)@xu“)) 90+
k=1

J:]_ k=1

d—

Z M0 u® 03y .
To derive the principal parts, we note that
(6.32) u®(t,y,x) = W(2,4(t,y,2))| .=z for Ge(t,y,x) = (p(t,y), L, e, 0)
with @, h. given by (5.50). For . to be determined and u/, h’ as in (6.23), set
(6.33) e = (P(t,y), ug, he,e)
and, recalling W (z, q) := Wy(z,p) + «/, observe
“ 1 - 1 -
(6.34) Oyu® = Eazw + OgW - 0rqe |z:%q:qe = EazW + OgW - OrGe \Z:%’q:qe.
Thus, in the expressions below, it makes no difference whether derivatives of W are evaluated

at (%, qe) or (%,qe); we choose the latter option.
We also use the fact that differences like

1
(6.35) (D50 - duBja(ub, O W — (950 / 4B, a(u®, v, ) ds)O W, j < d
0

are negligible. To see this for terms involving d;v!, use the weight A_! on the right in
(6.17).
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We have for the principal part of £
d d 1
(6.36) Ly ,v= Ao (u) (0 + 7)v + ZA]'C?]-U —€ Z B; . (u’, I/b)f)]zkv + —Ew,
j=1 jik=1 ‘
where for 1 < j < d,

(6.37)

A0 = Aj(ul, v*)d — (9, - duéd’j(ub, V) djv — (9 - dqu’d(ub, v*))o. W,

Ev = (v-d,Ag(ul,v°))0.W — (v - dyBaa(u®, v°)O2W — d2 By a(u®, v°) (v, 0,W)0, W,
and

(6.38)
Agdgv = Ag(u?, Vb)(?dv — (0, W - ﬁqu’d(ub, Vb))adv — (Oqv - dqu’d(ub, Vb))azW + eCoqut,

where

1
eCo' = —e <8dv1 . / Oyt Bga(u®, v?, ub)ds> 0gW0,q
0

d—1 .q
(6.39) —€ <8d1)1 . Z/ 8u1l§d7k(us, ve, Vb)ds> Opu®
k=170
~ 1 ~
+ (del . (8U1Bd7d(ub,ub) —/ Oyt Bg a(u’, l/a,I/b>d3>) o, W.
0

Similarly, the principal part of El is

d—1
£ = =20 0o(W)@0+7)0 = 7 3 0:15(W)0s0
(6.40) =

U
—_

d—1
0. ((BiaW, ") + Bag(Wv)) 0.W ) 06+ > Bia(W)9. W%,
jk=1

1
_|_7
€

I
—_

J
where W (z,q) is evaluated at z = £, ¢ = ¢°.
Since

(6.41) u’ = W(E, q0), v° =v(dy® +hnl),
€

by inspection of (6.36) and (6.40) we may conclude

6.42) Lz,pv + XKACqub =

6.42 1 T 1 T
€£0(27 qea GDt, €7, GDy, 6813)’0 - ?XK’CO(;a qev 6Dt7 €7, 5Dy)¢ + Ecaxﬂl,

where Ly and Ky coincide with the operators appearing in (4.2) when the entry 7. of ¢¢ is

set equal to zero, and

(6.43) c— (C(;l)
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is given by (6.39).

Returning to (6.13) we see that all the terms involving matrices A; or B; there are
negligible (in the sense defined below (6.25)) except for e“A;0,v},,. This implies for
scheme II:

Ez,pv + XK[';Z’;D¢ =

2‘60(;7 q, 6Dt7 €7, EDy, 6&%)1} - ?XKK:O(;7 q, EDta €, 6Dy)¢ + EAaxU )
where
(6.45) eAD ! = eCO' + eF A1t = € ( Aom) dpvt,
and A?! is a smooth function of its arguments
(6.46) A2 = AQl(ua, dp®, e0pu”, Oyu®, vy, OsPp, stz, Oy, €).
2. Definition of 7.. For A?! as in (6.46) set
(6.47) re(t,y,x) = €A (u”, dyp®, €0pu”, Oyu®, vy, Osby, Osv2, OpiiL., €)

and note that r. satisfies the requirements of Assumption 4.1. With this definition of re,
the transmission problem defined by the operator on the right side of (6.44) together with
transmission conditions (6.19) has exactly the form of the problem (4.2) for which the L2
estimate of Theorem 4.2 holds. We may allow a nonhomogeneous transmission condition in
view of Remark 4.5.

3. Estimate away from the front. A similar but much simpler argument shows
that away from the front, the principal part of the operator £ in (6.19) is precisely the
operator

x

1
(6.48) EE( ¢, €Dy, €y, €Dy, €0y )u

’
€

in (4.159) for which the estimate of Theorem 4.31 was shown to hold.

6.2 Induction step and higher derivative estimates
6.2.1 Preliminaries.

The fractional weights in the estimate (6.17) are not convenient for the nonlinear stability
argument, because they lead to difficulties with Moser estimates. So we extract a weaker
estimate involving only integral weights on interior norms that is still good enough for the
nonlinear stability argument.

Consider again a linear transmission problem like (6.16) on Q := [Tp, Tp] x R?
(a) Lou+ XKLyt = f on Q
(6.49) (b) [u] =0, [0,u?] =0, ) — eNyp +L(t,y) - w=ksonz=0
T

(c)u=0, ¢n+1:01nt<—_3 ,

97



where now we allow a nonhomogeneous transmission condition.
We continue to use Notation 6.5.

Proposition 6.9. We make the same hypotheses as in Proposition 6.6, but take all norms
on Q now. There exist vy, €y such that for v > vy and € < €y with ey < 1, the problem
(6.49) has a unique solution (u,v) satisfying:

e ull + VAl (Veds yun)l| + vAle " u(0)] + Ale (6, 96)|

1
< C(lle™™ fII + |€_7t(7€k4,7k4,8k4)|)-

Ve

Proof. 1. Estimate. The weights in (6.50) are derived directly from those in the estimates
(6.17) and (4.158) of Proposition 6.6 after recalling the definitions of A¢ (4.5), Ac (4.6), and
e (4.7). For example, the weight ucA. on v in (6.17) satisfies:

(6‘51) ,ueAe Z \/’ﬂd

This is immediate for |e¢| < 1. For |e(| > 1, we have

(6.50)

AP P P

6-52 EA€ ~ e ~ — + _|_
(6.52) z a2 et aa T an

+ e/,

The inequality a® + % > a2/5p3/5 implies peAe 2 /|77, while a? + b2 > ab/5p4/5 implies
pele 2 \/7In|. Similarly,
(6.53) ol v S == I S —= 4 [
° Ae Ae/ ~ € ~ \/g Y
for v < %

2. Existence, uniqueness, causality. A standard density argument ([MZ1], section
5.1) using the a priori estimate (6.50) gives uniqueness. For existence, observe that for a
fized € the (nonstandard) linear transmission problem (6.19) can be solved by the following
scheme:

El,punﬂ =f- XKZLpiﬁn
(654) [un+1] = 07 [8$u31+1] == 0 on xr = 0
T,

un+1:Oint<T,

Othni1 — €eDytbyi1 = —L-u +kyonz =0
_TO

wn+120int<7

with (ug,10) = 0. We then apply the uniform estimates (6.50) to the solutions of (6.19) so
obtained.

A classical argument ([MZ1], Lemma 5.2) using the estimate (6.50) shows that causality
holds: if the data f and k4 vanish in ¢ < Tp in (6.19), then so does (u, ). This allows us
to restrict the norms in (6.50) to .

(6.55)

O]
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Definition 6.10. 1. Let = 1. On Q set

P

=) e V) q)

7=0

(6.56)
[u(0)|puy = Z/‘p_j‘e_wtaj“(oﬂﬂ(t:y)’

J=0

where we always suppose 0 < e <1 <.
2. Set Julx = [ulpe(q)

(6.57)  ||vn, dnll*™* := |vn, Dvn, D*v2,00,0) eaﬁu,ﬁ,aja 02, 020,02, b, O, 0> Py O,
and define ||vn, dn||™* by the right side of (6.57) with €d?v} removed.

Observe that

€
U
Y

(6.58) |U’p Luy S M‘U’puv < -

The following version of the standard Sobolev estimate is easily proved using the Fourier
transform after taking extensions from Qi to R and observing that e ~ C(v) on
(=T, To]-

Proposition 6.11 (Sobolev estimate). Let 0 <0 < p — %. Then on Q we have:

(6.59) lul < p°C) (V) ([ulp,uy + 10zl p )

Definition 6.12 (Norms for iteration). For nonnegative integers k define

Hva ¢ k,p,y =
(6.60) [0, VeVay? ks + 060 k-t iy + 1020 k=2 p1ry + 105307 k=27 + [020% k3,07
+ ‘U(O)’ ¢7 d¢|k,,u,,'y

where a norm |ul; .~ is defined to be zero if j < 0.

6.2.2 Induction step
The following Proposition, proved below, is the main higher derivative estimate.

Proposition 6.13. Consider the linear transmission problem defining scheme II (6.16).
Assume L > 2, k>0, M — L — k > 0, and suppose that sg, the index measuring Sobolev
reqularity of the inviscid shock as in Proposition 5.7, satisfies

7 d+1
(6.61) So.> kot o+ oM+
Suppose also that
(6.62) |Un, & | < 1.
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For v fized large enough there exists €y(7y) such that for 0 < € < €y(7), the unique solution
(Un+41, Pn1) of (6.16) satisfies

1 k% —_ —_
(6.63)  [lomss, b lknn < C(R) (ﬁ+||vn+1,¢n+l|| )nvn,%nw,waweM Dok

Assuming the above Proposition for the moment, we now prove

Proposition 6.14 (Induction step). Assume L > 2,
d

(6.64) §+4<I<:<M—L,

and sg satisfies (6.61). For C(v) as in (6.63) assume

(@)[|vn, ¢n ™" < 1,

(6.65) o
() [[vns Sl gy < 2C (7)™~ F7H,

for v large enough and €() sufficiently small. There exists vy such that for fized v > o
and 0 < € < €y(7y) small enough, the same estimates hold for (vni1,¢ny1). The choices of
Yo and €y(7y) are independent of n.

Proof. Recall p = % and note that by the Sobolev estimate

(6.66) llo, 811 < Cr(m) ™[0, Dl -

where 0 < 6 <k —4— 4.
Let ar, = ||vn, @nllkpuy < 2C(7)eM~E7F. The estimates (6.63) and (6.66) imply

(6.67) ant+1 < C(k) (\% + Cl(v)u_aanH) 20 (y)eM L=k 4 ML=k ().

Choose vy and eg(y) such that for v > v9 and 0 < € < ey(7y) we have

1 1
20(k)— < -
(6.68) VT3 1
20(k)C1 (N~ Cy)e = F < o
Then
(6.69) ans1 < 20(y)eM—Ek,

Shrinking €y () if necessary and using (6.66), (6.69) we have ||vy41, dni1|** < 1. Solving
for ed?v} ;| using the first component of equation (6.16)(a) and shrinking €o(7y) once more,

we obtain ||vp41, @ny1 || < 1.
O

100



Proof of Proposition 6.13.

1. Preliminaries. Observe that the case k = 0 follows immediately from Proposition
6.9.

The main extra tool we need for the higher derivative estimates is the following weighted
version of the standard Moser estimate ([G], Lemma 2.1.2).

Lemma 6.15 (Moser estimates). For k € N={0,1,2,...} let oy +---+a, < j <k,
a; € N. Then

(6.70) pF3)(0% wy) -+ (0w oy < C Y lwilk | [T wil«
i=1 j#i

2. Tangential higher derivative estimates. The first step in proving (6.63) is to
show

/
kopy <

(6.71) 1 . C
c <ﬂ T ([Omsr, s ) Gl + =, e

lVnt1, Pny1

Koy T C(V)EM_L_k»

where

(6.72) 10, 011y = 10, VEV g0 [y + [0(0), B, O puy-

To estimate ||vp41, ¢n+1\|§“” we apply the L? estimate (6.9) to the problem satisfied
by #9307 (vpi1, dni1). Commuting p*~797 through (6.16)(a), we obtain forcing that is a
sum of

(6.73) —eM=L k=93 (0(t)RM)

and commutator terms. In addition there is a nonzero commutator coming from the third
transmission condition in (6.16)(b); this is why we allow k4 # 0 in (6.49).
Thus, the L? estimate gives

,Uk_j |8jUn+1a \/va,yajng_l ’0,#,7 + Mk_j |aj,U(0)7 3j<l57 ajad)h),,u,'y

C ([ k—j| MLy M k=g it
< — (e (O()R™)|o,u~ + p° 7 |interior commutators|o,,,
(6.74) Vv ( a ’”>
C o ki | Lini g2 W) 102
+ — T —=[0", l]v; . 1(0), 7], £)v;,1(0), 0[07, £]v;: 1 (0 .
e (M ﬁ[ 10741(0), 79[, £]v7,1.4(0), 8[87, vy, 14 ( )O’M

We treat the interior commutators below. The RM term on the right in (6.74) is <
C(y)eM=E=F and the last term is < %W(O)’k,u,«/; both estimates are compatible with

(6.71). -

Notation 6.16. 1. Let w, = (v, ﬁ@x,yv%,gbn,dqﬁn).
2. Let U = (u®, dy®, Oy(u®, dyp?®), e0,u®, \/€) and let A denote a smooth function

(6.75) A= AU, ¥ ,,).
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Denote by B, a smooth function
(6.76) B = B(U*¢, ed*u®, d,u®, e¥ 1wy,

where the second and third arguments only occur linearly in terms where they appear. A
and B may change from term to term.

3. For s € {1,2,3,...} and a function u with components u;, denote by <> u the set
of products of the form (0°'wu;,)...(0% u;,) where s1+---+ s, =5, 8 > 1. If s =0, set
0>y = 1.

For the purpose of tangential higher derivative estimates we can write (6.16)(a) in the
much simpler form

(6.77) ADwy 1 + Bw,ypy = —eMLo(t)RM.

This is because the L? estimate gives the same interior control over all components of w, 1
(recall Remark 6.2).
Consider the commutator term

(6.78) PN AD, & Jwp 1] 0,40
This leads to a sum of terms of the form
(6.79) pF=I A" (U%)D) (L 10,) 8 Davyy1) o,y < ¥ IC10) (XL, )0 Dy 1)]0 i

where r +s+t=jand t < j.
If s # 0 we estimate

(6.80) 10V wn) 0 Duwpia 0,40
with (s — 1)+t < j — 1. By Moser this is <

C(10(e"  wn) k=17 | DWn 1 ]s + [ DWnit k1,507 O(€" wp) )

< C(|[(vn, ¢n)”k,u,7|(vn+17 1| + [[vnt1, ¢n+1||k,u,7)'

If s = 0 we obtain immediately (6.79)<

(6.81)

(6.82) C|Dwnii k=1, < Cllvnt1, dns1

k,py

After dividing by /¥ as allowed by (6.74) we see that the commutator (6.78) gives terms
on the right compatible with the intermediate estimate (6.71).

Next consider
(6.83) #F| B, 8 Jwnt1]0,40y
which yields terms

(6.84) 1710 (e02u®, B,u) 0 (¢ Ly, ) 0w 41

0,175
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where r +s+t<j,t<j—1.
If s #0, (6.84) is <

(6.55) (=110 (€02u?, 9,u®) 0Vl ) DM w1 ]o,un <
C|(€202u”, €0pu®)]x (10("*wn) k=1, |Wnt1 s + 10" wn) |« [wn1 |k—1,47) -

If s=0,(6.84) is <

Nkijc‘mw(eazuaa aﬂcua)atwnﬁ-l’(),uﬁ < C’a<r>(5a§ua7aﬂcua)‘*’wn—i-l‘k*lyuﬂ <

6.86
(6.86) §|3<T>(628§u“, €Dptu®) w4 1] -

In both cases the estimate is compatible with the intermediate estimate (6.71).
3. Normal derivative estimates. For the normal derivative estimates it is more
convenient to write (6.16)(a) in the form

8xv7ll+1 + A]j?wnH + Bwpy1 = eM_LAR{V[

(6.87)

6831)721_’_1 + AD*wn+1 + Bwn+1 — GM—LARé\J
where
(6.88) Duwni1 = (9vp41, Dvpi1, Do)

D*wpi1 = (Dvny1, €0yOuyvi 1, Dopi1, 02 dpi1).
One first shows directly from (6.87)(a) that

(6.89) 1020 1 lk—1y < C (Ivns1s Sntilli oy + (RHS of (6.71))) :=R.
Note that we already have

(6.0 002ty < 10052 e < Ll b
Next show using (6.87)(b) that

(6.91) |8§U72L+1|k—2,u,7 <C(R+ |6$U711+1|/€—1,M»7)'

For example, let’s check the term
1 . 1 %
(6.92) ;|AD wn+1|k3—2,u,’y < ;|AD wn+1|k—1,u,w
This leads to terms like
1 1 - *
(6.93) ?ﬂ“ 109 (" )0 D*wa o,y
with s+t <j<k—1. If s=0 (6.93) is <

1 *
(6.94) §|D wn+1|k_17u77.
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If s # 0 (6.93) is

Iuk—l—j|a(8—1)3(6L_1wn)atD*wn+1|0,lt,'Y S

1
(6.95) 1
S (10(" M wp) k-2, D Wit s + 10" wn) || D w1 [k—2,07) -

In both cases the estimate is compatible with (6.91).
Next we differentiate (6.87)(a) to show

(6.96) |agvrlz+1|k—2,u,v <C(R+ |amvrlz+1|k—1,u,v + |82U721+1|k—2,u,7)7
For example consider the term

(6.97) |AD, 0V} 1 k2,40

This leads to terms like

(6.98) Mk_Q_j’a<s>(fL_lwn)atamaU}Hl’O,#m

with s+t <j<k—2 If s=0(6.98)is <

(6.99) Cl0:0v} 1 k-2, 41

If s # 0 (6.98) equals

pF29100 7D (e vy, )M 05 00 4 o,y <

(6.100) _ _
(|8(6L 1wn)|k—37uq|axav7ll+1|* + |8(6L 1wn)‘*|axav7lz+1|k’—3,uﬁ) :

In both cases the estimate is compatible with (6.91).
Finally, we differentiate (6.87)(b) to show

(6.101)  [03vi 11 lk—3uy < C(R+102vp 1 k=100 + 10205 11 k2,07 + 10505 41 [k—2,7)-

This estimate seems to require a little more care.
Consider for example

1
(6.102) E‘A8§”i+1|k73,#,'y
which yields terms
1 ity I
(6.103) —FICI0 ()0 O v o

where s+t < j <k —3.
If s =0, (6.103) is <

C

C
(6'104) ;|8323U711+1’k_3»,“»'7 < ;|82U711+1’k—2,#’7‘
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If s #0 (6.103) equals

371010 2w,) 00020k L oy <

n

(6.105) ’ i
C (|8(6L 2wn)|*|agvvlz+1’k—4,u,’y + |8(6L 2wn)|k—47u,’y|aa2cvrlz+1|*) .

Now taking the derivative of (6.87)(a) we get
\8§v}1+1|* <
L = - 1 1 M-L-1
(6‘106) c E|Dwn+1‘* + ‘a:r:Dwn—&-lLk + ?|wn+1|* + g‘aan—q—ﬂ* + € <
1 i
O s, | + M=),
Since

3
— € _
(6.107) 10(e" 2w 1,y < $|€L 2y,

kopyys

we obtain also from (6.105) an estimate compatible with (6.101).
The other terms in the expression for d2v2, | are similar but easier to handle, so this
concludes the proof of Proposition 6.13.
O
6.2.3 Contraction

Notation 6.17. 1. Recall wy, = (Un, /€0y 402, dn,ddy) and set (i1 = Wni1 — Wy
2. As before let UM = (u®, dyp®, Oy(u®, dyp®), e0,u,\/€) and let A, denote a smooth
function

(6.108) Ap = A (U, X 1wy,).
Denote by B,, a smooth function
(6.109) B, = B, (U, ed?u®, dyu®, " Lw,),

where the second and third arguments only occur linearly in terms where they appear.
3. Let D, and E,, be smooth functions

D, = D, (U, £ Y (wp, wn_1))

6.110
( ) E, =E,(U*", e@?ua,axu“, eL_l(wn, Wn-1)),

where the second and third arguments of E,, only occur linearly in terms where they appear.
4. Let

(6.111) Lt y)wnt1 = ([vns1], [Oavn 1], Oebnsr — eDydnan +L(E,Y) - Vnta)-
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The transmission problem satisfied by wy+1, (6.16), can be written

Ppwpa1 := Ay Dwypy1 + Brwpir = feM_LG(t)RM,
(6.112) lMup4r =0onax=0
Wp41 = Oint < —T0/3.

Thus, the problem satisfied by (,+1 = wnp41 — wy, is
]P)nCn-l—l = _(Pn - ]Pn—l)wn

(6.113) I'¢hy1=0onax=0
Cn—f—l =0int< —T0/3.

The interior equation is

IP)n<n+1 = _(An - Anfl)Dwn - (Bn - anl)wn =

(6.114)
eL_ICnID)ann + eL_ICnEnwn =TF,,.

The iterates satisfy the uniform estimates (6.65) for a k such that ¢ +4 <k < M — L.
Let

(6.115) HISnlll = [nlour + [0 (0) = vn—1(0)]0,4u5-

The L? estimate gives

c ;_
|Fr, |Ou’y = 76[1 2|Cn|0 —¢t 2|HCTL|||7

<

Y =
v v
where L > 2. For + fixed large enough and 0 < € < ¢y(7) small enough, the iterates converge
in the |||w||| norm to some (v, /€0y ,v?, ¢,dd). In view of the estimates (6.65), a standard

argument using weak convergence and interpolation shows that (v, ¢) solves the nonlinear
error problem (6.10) and also satisfies the estimates (6.65).

(6.116)

We summarize the results of this section and the paper in the following theorem:

Theorem 6.18.

1. Assume (H0)-(H9) and (H10)(a). Let (U°,4°) be an inviscid shock and (u®,%®) an
approximate solution of order M as described in Proposition 5.7. Suppose L > 2 and that
the constants k, M satisfy

d
(6.117) §+4<k<M—L.

Suppose sg, the index measuring Sobolev reqularity of the shock, satisfies

7 d+1
(6.118) So.> kot o+ oM+
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Fiz K > 0 arbitrarily large. For v fized large enough and €y(y) small enough, the nonlinear
forward error problem (6.10) has a unique solution (v,®) for 0 < € < eg(7y) satisfying the
estimates

(@)]lv, o™ <1,

(6.119) L
O)[0; Bl pry < 20 ()M HF,

with norms as in Definition 6.10.
2. If we take

(6.120) w=nu"+elv, =19+ elo,

then (u,v) is an exact solution of the nonlinear transmission problem (6.1) on [0,Tp] X
R x {|z] < K}

Remark 6.19. 1. Recalling the form of (u®,¢®) (5.44)-(5.45) and using the estimates
(6.119), we derive Theorem 1.1 of the Introduction as an immediate corollary.

2. It may appear that because of the use of the cutoff 6(t) in the forward error problem
(6.10), we have only proved convergence of parabolic solutions to the inviscid shock on a
time interval that is strictly shorter than the given time of existence of the inviscid shock.
However, a uniformly stable shock on a given time interval [—Ty, Ty can always be extended
to a strictly larger time interval by [M2, M3]. If the given inviscid shock is so extended, then
our result gives convergence of parabolic solutions to the shock on the original time interval
[—T0o,To]. Our result does not give convergence near the boundary points of the maximal
time interval of existence of the inviscid shock.

7 Appendix

7.1 Low frequency expansion of the Evans function

In this section we derive a low frequency expansion of the Evans function D(q,() (2.53),
which implies Proposition 2.23 as an immediate corollary. Earlier versions and proofs of
the result were given in [ZS, Z1, Z2].

We give an expansion that is uniformly valid for ¢ € gi and ¢ = (p,u/,h') in a neigh-
borhood w of ¢ = (p,0,0), where p = (u™,u~,h) € C. To describe the expansion we need
some preparatfon. a a

7.1.1 The Majda uniform stability determinant

The partially linearized, transformed, inviscid shock problem associated to ¢ considered by
Majda [M2] takes the form

0.v — HO(Q» C)U =49
7.1 d-1 R
(1) o (Ml il | - [ae] = hon = =0,

J=1
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where A\ = (i7 + ), HF is given by (3.183), [f;] := fi(ut) — fj(u™), and Ay is evaluated
at (£00,q). The transmission condition in (7.1) is the (full) linearization of the Rankine-
Hugonioticondition.

Forq € wand ¢ € §4 = {f = (7,9,7) : \f| =1, > 0} let FHSE(q7 é) denote, respectively,
the generalized eigenspace of H(;—L(q,gt) associated to eigenvalues p with FRy > 0. By
hyperbolicity (H4) these spaces have dimensions independent of ¢ with 4 > 0, and are C™°
on w x S¢. By an argument of [K] (or [CP], Chapter 7, Theorem 3.5) combined with the

block structure result of [Met2], they extend continuously to w X gi. Set
d—1

(7.2) m(q,¢) = Mfol + ) _ i
7=1

By the proof of Corollary (3.44), Hi (g, C ) have dimensions N — Ny respectively, for
a total dimension of N — 1. We write A F HE (g, ¢ ) for the images of the spaces under
fld(:lzoo,g).

Definition 7.1. [M2, M3] The Majda determinant associated to q is the N x N determinant

(7.3) Mg €) = det (A7 Py (0, Q). A7 Fy (0,0 m(a,0))

~

The shock p is uniformly stable in the sense of Majda if (g, ¢) # 0 for f € §i.

Majda showed, for example, that when the planar shock p is uniformly stable, there
exist nearby, piecewise C', curved inviscid shocks for a finite time.
7.1.2 Main result

The following theorem immediately implies Proposition 2.23. Recall

(7.4) D(g,¢) = det(E*(q,¢),E(¢,¢))

and set D(q,¢, p) := D(q, p) for [¢] > 0.

Theorem 7.2. Assume (H0)-(H2) and (H4)-(HS). There exists a neighborhood w of g,

po > 0, and functions c(q, CA,p), Dy.(q, f,p) both continuous on w X gi x [0, po] and C* in
p > 0 such that

(7.5) D(q,¢, p) = pc(q,¢, p)Dm(q, ¢, p)-

~

Here ¢(q,C, p) is nonvanishing on w X gi x [0, po] and

~

(7.6) Din(g,¢,0) = B(q) (g, <),

where A is the Majda determinant, and 3(q) is C* on w and nonvanishing at q if and only
if the connection W (z, q) is transversal in the sense of Definition 2.12.
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7.1.3 Slow modes and fast modes

To compute D(q, () for || small, we make a special choice of basis. For ¢ € R

(7.7) F*(q,{) = Fu.(q.¢) ® Fp, (¢,¢),

\ 0 let

where Fp, are the generalized eigenspaces of Hi (3.182) associated to eigenvalues p with
FRu > 0, and Fp, are defined similarly. The properties of the conjugators Wi(z,q, ()
(3.171), V+(q,¢) (3.182) imply

(7.8) E*(q,¢) = Wi (0,4, 0) Vs (q, Q) F* (g, €).

The spaces Fp, (¢,¢) are C* for ¢ € w and |(| < pp small. By the analysis of [MZ2] the

spaces F_ (q, ¢, p) = Fu,(q, pé) are C* for p € (0, pp] and extend continuously to [0, po].
Since

~ ~

(7.9) Ha(q,C,p) = pHy (¢,€) + O(p%),

we have in particular

~

(7.10) Fi1, (4,6,0) = Fy+(q,0).

7777

Remark 7.3. Here as in ﬁemark 3.30, after taking w to be a small ball, for example, we
obtain global bases {s’.(q,C,p)}j=1,. N—N, with the stated regularity by applying the fact
that contractible base spaces admit only trivial bundles ([St], Corollary 11.6). Indeed,

—d
(7.11) w x S, x [0, po]
is contractible.

Next, in £z > 0 we define N — N4 slow modes

ezHi (‘Lévp) Si (q, é) p)

(712) Ui(zaqvgap) = Wi(zv% C)Vi(% C) ( 0

>,j:1,...,N—Ni

and s+ fast modes

0 .
(713) Uji(zvqa C_:) = Wi(zaQ7g)Vi(Q7 C) <62Pi(q’oﬂ':t(q C)Cji> y J = 17 R E=)

where 74 (g, () are projections onto the F generalized eigenspaces of Py (g, (). In addition
we may choose ¢ so that

s 9, W (z, .
(7.14) U (2,4,0) = <62W2((ZZ q))> in 4z >0,
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where W (z, q) is the shock profile associated to p.
Since Wy — I as z — £o00 and V4 (g, 0) has the structure (3.184), we obtain immediately
from (7.12), (7.13):

) J s
: J A _ S:I:(q7C7O) . _
le}rjilooUi(z,q,C,O)—( 0 ,j=1,...,N— Ny

(7.15) .
; J — -
zgrinooUi(Z’q70)_ (0>7 J=1... st

Proof of Theorem 7.2. R
1. We may write D(q,(, p) =

c(q,¢, p) det <{Uf}13jgN—N_, {0 h<jcs AU h<jen—n, {Ui}1§j3s+> |==0

(7.16) ) .
:=¢(q,¢,p)D1(q, ¢, p),

for a function c¢(q, é ,p) as described in the theorem.

2. For L(z,q,(,0,) as in (3.14) we first rewrite the linearized problem Lu =0 on +z > 0
in a form that will allow us to use the conservative structure to simplify the determinant.
For ¢ = (p,0,0) and with A;, B;} as in (3.14), (3.15) set

(7.17) Ai(W(z,q),v(h))u = Aj(z,q)u — (u-dyBj )W, j=1,....d.

Then £L(z,q,(,0,)u = 0 can be rewritten:

d—1
0= _(Bd,duz)z + Aou + Z iT]j.AjU + (.Adu)z
7.18 =
( ’ ) d—1 d—1 d—1
= i Bjau: — > ine(Bagu): + > Bjanmiu.
j=1 k=1 Jk=1

3. Taking ¢ = 0 in (7.18) and integrating [} in £z >0, we find
(7.19) —B(Lduz + Agu is constant on £ z > 0.

By (7.15) this constant is 0 for fast modes and Ag(£oo, q)si (q, ¢, 0) for slow modes. Taking
components and rearranging slightly in (7.19), we find that the jth fast or slow mode
satisfies, on +z > 0:

(fast) Altug + Aftus =0

7.20 - - -
(7.20) - Bg?duQZ + Ayug =0, where A, = A% — A2L(ALHTLAL
and

(slow) fl}llul + A}llUQ = (fld(ioo,q)sft(q, CA, 0))
(7.21) !

- Bg?dulz + ATUQ = (Ad(iooa Q)Szt(% é, O)>2 .
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4. The matrix coefficients on the left in (7.20), (7.21) are continuous across z = 0, so
we can use these row operations to simplify the first and third rows of the determinant in
(7.16). Let the slow (resp. fast) columns of the new determinant so obtained be denoted by
Vi (resp. V7.), where V7, = (Upq, Uy, uﬂ) (7.20) implies that p can be smoothly factored
out of the entries of the fast NV x (s + 1) submatrix,

j j
u’ u
(7.22) (uj 1) <ujl>
3/ 1<j<s- N3/ 1<<sy

Since every term in the expanded full determinant contains at least one factor given by such
an entry from (7.22), this implies (7.5) with D,, continuous up to p = 0.

5. To see how the jump column in D,,(q, é ,0) arises, we examine the variation in U%*
with respect to p near p = 0. Suppose u = u™ in (7.18) gives the first two components of
the fast mode Ui*, and on z > 0 set

(723) p+(27g7 é) = 8,0u+(z7Q7<70)'

In (7.18) write (\,7) = p(A,7) and apply Oplp=0 to get

d—1
0= —(Bgapi): + (Aap™): + Aou™ + Z i Aju’
j=1
(7.24) o I
= i Biquf = ifk(Bagu®)..
= k=1

Now recall (7.14) and the definition of A; (7.17) to see that the right side of (7.24) is a
perfect derivative. Integrate [T on z >0 to find

0= —Bd dpj + Adp+ + A (fO( (2, Q)) - fO(qu)) +

7.25 d—1 .
( ) Z 77 (fJ (Z q) f]( ) ],dWZ> - iﬁde,sz-

= k=1

With u~ being the first two components of U’", we can obtain a similar equation for

p~ = dp|p=ou~. Setting p := p™ — p and subtracting the equation for p~ from (7.25) at
z = 0 we obtain

d—1
(7.26) —Baap: + Aap = Alfol + D _ il f 4 ¢);
7j=1

or in components

Anpl + Aclglpz = ( )
Bd aP2z + ATPQ = mZ(q )

(7.27)
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6. We proceed finally to compute the determinant D1 (g, ¢,0 for Dy asin (7.16). Subtract
the U*~ column from the Ui* column, recall (7.14), and apply the row operations using
(7.20), (7.21), and (7.27), to obtain

(7.28)
Dl(ga é?p) = det(‘zlclil)_l det( )

(Ags-(g,C,0)1 +0(p) o) (A$8+(g, ¢.0)1+o0(p) O(p) p(ma(g, Q) +O(p))
det | U2 u_2 U2 ure  p(p2(g; ) + O(p))
(A75-(¢,¢,0)2+0(p) O(p) (A7s1(¢,¢,0))2+0(p) O(p) p(ma(g, <)+ O(p))

Here, for example, the five submatrices in the second row of the large matrix each contain
s rows and, respectively, N — N_, s_, N — N4, sy — 1, and 1 column(s). Factoring p out
of the last column, we obtain (7.5) at (g, é,p) with ¢(gq, f,p) the same as before. Recalling
(7.10) and computing D,,(q, ¢, 0) using (7.28), we get (7.6) after a few switches of rows and
columns, where B

(7.29) B(q) = det(ALH) ™1 det(—Bg?d)_l det(u_2 ug 2)

up to a sign. The linearized equation (7.18) coincides with the linearized profile equation
at p = 0. Thus, recalling (7.14) we see that the last factor on the right in (7.29), an s x s
determinant of fast modes, is nonvanishing at ¢ exactly when the connection W (z,q) is
transversal. B B

O
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