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1. Introduction.

An important question in the study of nonlinear equations is the understanding of
the asymptotic behavior of families of solutions, or approximate solutions. One of the
difficulty is known to be the nonlinear interaction of oscillations. This phenomenon has
been studied for special classes of solutions, such as oscillatory functions with phases and
amplitudes. This is the domain of geometric optics. In some cases, general families of
bounded solutions have also been considered. The present paper enters the later category,
but is highly inspired by the results of nonlinear geometric optics.

Geometric optics provides a precise description of the asymptotic structure of solutions
to both linear (e.g. [Wh]) and nonlinear ([J], [HK], [MR], [HMR], [JMR 1], [JMR 2], [S],
. . .) hyperbolic PDEs whose initial data uε(0, x) = u0(x) + εmu1(x, ~ϕ0(x)

ε ) have rapid
oscillations with prescribed phases ~ϕ0 and a single prescribed scale 1

ε . Such solutions
are important in both theory and applications ([L], [KK]). In the lowest approximation,
oscillations having different spatial scales interact only when m equals zero, since otherwise
the amplitudes of higher-frequency oscillations become negligible relative to those of lower
frequencies. Taking m = 0 requires L∞ estimates. Systems that are well-posed in L∞

occur mostly in one spatial dimension. For such systems, arbitrary uniformly bounded
sequences of initial data may be considered, but comparatively little is known about the
asymptotic structure of the resulting solutions. Since the oscillations in such solutions may
be extremely complex, a natural problem is to determine their non-oscillatory part, which
may be identified with the weak limit of the sequence of solutions. The highly oscillatory
nature of the solutions manifests itself in the absence of strong convergence in general.
Of course, some information about those oscillations will generally be needed in order to
determine the weak limit.

The asymptotic structure of uniformly bounded solutions depends strongly on the
nature of the nonlinearity: For entropy solutions of a genuinely nonlinear conservation
law ([T 1]) or of a pair of such equations in one spatial dimension ([DP]), oscillations
of amplitude O(1) do not persist for positive times, so a sequence of solutions converges
strongly to the solution whose initial data is the weak limit of the initial data. Although
oscillations do persist in linear systems, the weak limit of a sequence of solutions to such
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systems is just the solution of the same equations whose initial data is the weak limit
initially. In contrast to both these cases, the weak limit of solutions to semilinear equations
is not determined just by the weak limit of the initial data. For a pair of semilinear PDEs in
one space dimension ([T 2], [McLPT]) and for nonresonant systems of three such equations
([JMR 4]) the weak limit of the solution is determined by the weak limits of all continuous
functions of single components of the initial data, but even this is no longer true for
resonant systems ([JMR 4]). In this paper, we discover what additional information is
needed to determine the weak limit for resonant systems of three semilinear equations in
one spatial dimension, and obtain equations that characterize that limit. Larger systems
with quadratic interactions will also be treated; the precise assumptions are given in §5.

After a linear change of variables, a semilinear hyperbolic system in one spatial di-
mension takes the form

(1.1) Xkuk,n : = {∂t − ck(t, x) ∂x} uk,n = Fk(u1,n, . . . , up,n) , for k ∈ {1, . . . p} .

The speeds ck are assumed to be smooth functions, with ck(t, x) 6= cl(t, x) when k 6= l,
and the Fk are assumed to be smooth functions of their arguments. Since the initial-value
problem for such systems is well-posed in L∞ and has a finite propagation speed, initial
data that are uniformly bounded in L∞ on an interval ω = [a, b] ⊆ R yield solutions to
(1.1) that are uniformly bounded in L∞ on some region Ω ⊂ R2 contained in the domain
of determinacy of ω.

Young measures are a convenient tool for characterizing the weak limits of continuous
functions of a uniformly bounded sequence un(y) ([T 1]), where in the current context
y : = (t, x) ∈ Ω. After restricting to a subsequence, all such weak limits exist and are
given by f(un(y)) ⇀

∫
f(λ)µy(dλ), where the Young measure µy(dλ) is a nonnegative

measure of total mass one for each fixed y. Since the sequence un converges strongly (in
Lploc for p <∞) iff µy(dλ) is a Dirac mass for almost all y ([T 1]), the Young measure does
provide some information about the presence of oscillations. However, for any periodic U
with period p, any ϕ ∈ C1 whose gradient almost never vanishes, and any sequence νn
tending to infinity, f(U(νnϕ(y))) ⇀ 1

p

∫ p
0
f(U(z)) dz, so the Young measure of the sequence

U(νnϕ(y)) contains no information about the particular phase function ϕ or the scale of
oscillation νn.

The basic strategy for determining the weak limit of a sequence of solutions is to try
to derive an evolution equation for the Young measure of each component. For a single
semilinear equation this is easy: Multiplying Xun : = {∂t − c(t, x)∂x}un = F (un) by
Φ′(un) shows that XΦ(un) = Φ′(un)F (un). Describing the weak limit of this equation in
the weak sense via the Young measure of un, and then integrating by parts in λ in the
term on the right side of the result in order to obtain a common factor Φ(λ), yields the
evolution equation Xµy(dλ) = −∂λ [F (λ)µy(dλ)]. This linear PDE is well-posed even for
measures, and preserves the total mass of the measure for fixed y since it is in conservation
form with respect to the variable λ. However, a serious difficulty arises in applying this
strategy to systems: After multiplying the equation for uk,n in (1.1) by Φ′(un) to obtain

(1.2) XkΦ(uk,n) = Φ′(uk,n)F (u1,n, . . . , up,n),
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we see that although the weak limit of the left side of (1.2) can be written in terms of
the component Young measure µk,y(dλ) of the sequence uk,n, the weak limit of the right
side can in general only be expressed in terms of the joint Young measure µy(dλ1, . . . , dλp)
such that G(u1,n, . . . , up,n) ⇀

∫
G(λ1, . . . , λp)µy(dλ1, . . . , dλp). But no evolution equation

can be derived for this joint measure µ, because different components uk,n are transported
along different characteristics. One therefore tries to obtain a closed set of equations for
the component Young measures by determining the joint measure µy pointwise in y in
terms of the component Young measures µk,y. For the case of two equations this task
has been accomplished by the theory of compensated compactness and its generalizations
([T 1], [M], [T 3], [G]), but it is not possible in general for larger systems because of the
phenomenon of resonance, which already plays an important role in the theory of geometric
optics for such systems.

Compensated compactness is the study of conditions on f and uk,n weaker than strong
convergence which nevertheless ensure that if uk,n ⇀ uk then

(1.3) f(u1,n, . . . , up,n) ⇀ f(u1, . . . , up).

In particular, the div-curl lemma ([T 1]) shows that for a pair of semilinear equations with
distinct constant speeds ck,

(1.4) u1,nu2,n ⇀ u1u2;

the results of [T 3], [G] imply that (1.4) remains valid for variable coefficients. This particu-
lar result can also be demonstrated directly from the form uk,n(ψk(t, x), t) of the solutions,
where ψk = constant are the integral curves of Xk. The PDEs show that the derivative
of uk,n with respect to its second variable is uniformly bounded, which means that the
solutions can be approximated uniformly by step functions in the second variable, and this
implies that it suffices to prove the result when uk,n = uk,n(ψk(t, x)). Changing variables
from t and x to ψ1 and ψ2 in the integral

∫∫
a(t, x)u1(ψ1(t, x))u2(ψ2(t, x)) dx dt and approx-

imating the resulting test function by a sum of products Φ1(ψ1)Φ2(ψ2) then yields (1.4).
Since functions of uk,n satisfy similar equations, and sums of products Φ1(u1,n)Φ2(u2,n)
are dense in C0(R2), the joint measure µ(dλ1, dλ2) of two components whose PDEs have
different speeds ck is just the product of the individual Young measures:

(1.5) µy(dλ1, dλ2) = µ1,y(dλ1)µ2,y(dλ2).

Expressing the weak limit of X1Φ1(u1,n) = Φ′1(u1)F1(u1,n, u2,n) in terms of the joint
measure µ(λ1, λ2) and integrating over λ2 therefore yields the equation

(1.6) X1µ1 = −∂λ{µ1

∫
F1(λ, λ2)µ2,y(dλ2)};

a similar equation is obtained for µ2. These equations for the Young measures can also
be written as equations for “profiles” of those measures, and the latter equations are
identical to the equations for the profiles of nonresonant geometric optics with one phase
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per component: The profiles Uk(y, ·), defined as the right-continuous inverse on ]0, 1[ of
the distribution function Mk(Y, λ) : = µk,y(]−∞, λ[), satisfy

X1(y, ∂y)U1(y, θ) =
∫

]0,1[2
F1(U1(y, θ), U2(y, θ2)) dθ2

and a similar equation for U2 (cf. [JMR 4]).

The same argument would yield analogous equations for the Young measures of larger
systems whenever the generalization of (1.4) to products of more than two components is
valid. The task of determining the evolution of weak limits of solutions to (1.1) therefore
reduces to the problem of evaluating such weak limits:

Main question. Suppose that vk,n are uniformly bounded in L∞(Ω), converge
weakly to vk, and are such that Xkvk,n is uniformly bounded in L∞(Ω). Is it true that

(1.7)
p∏
k=1

vk,n ⇀

p∏
k=1

vk ?

If not, what further information is needed to compute the weak limits, and what informa-
tion about the initial data determine it?

Counter-examples to (1.7) with p at least three were presented already in [T 1]. In
fact, the necessary ([T 1]) and sufficient ([M]) conditions of compensated-compactness
theory for a polynomial f of degree p ≥ 3 to satisfy (1.3) when the uk are solutions of the
constant-coefficient linear system

∑
i,j Ai,j,k∂xjui = Fk for k = 1, . . . , p are never satisfied

by system (1.1) ([JMR 4]). Surprisingly, (1.7) is nevertheless valid for generic variable-
coefficient 3 × 3 systems (1.1) ([JMR 4]). Here we answer the above main question for
general 3× 3 systems (1.1) by treating the case in which (1.7) fails. For larger systems the
last part of the question remains open. Henceforth until §3 we consider only the case of
three equations.

What the answer to the main question depends on is whether system (1.1) admits
resonances between the oscillations of the components. Recall from [JMR 1] the following
definition:

Definition 1.1. A resonance on Ω ⊂ R2 for the vector fields Xk, k ∈ {1, 2, 3}, is a
triplet (ψ1, ψ2, ψ3) of functions in C∞(Ω) such that

(1.8) Xk ψk = 0 for k ∈ {1, 2, 3} , and

3∑
k=1

ψk = 0 .

The resonance is trivial, when all the dψk are identically zero.
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We refer to [JMR 1] for a detailed study of the existence of resonances. In particular,
when three vector fields are considered as above, the dimension of the space of resonances,
modulo constant functions, is zero or one, and the existence of a nontrivial resonance
depends upon the vanishing of a geometric invariant, called the curvature of the web
defined by the three families of integral curves of the Xk (see [BB], [P]). Thus, for generic
vector fields, there is no nontrivial resonance, and it is shown in [JMR 4] that (1.7) is then
valid. However, the existence of resonances is an important phenomenon. For example,
vector fields ∂t− ck∂x with constant coefficients are always resonant. The resonant phases
are ψk = αk(x + ckt) with

∑
αk = 0 and

∑
αkck = 0. Other examples of resonant

vector fields are given in [JMR 1]. However, when a nontrivial resonance exists for three
pairwise independent vector fields, there is a local change of variables such that in the
new variables the vector fields are parallel to constant-coefficient fields. Note too that the
triplet of phases is uniquely determined up to a constant, since the dimension of the space
of resonances is at most one.

When a nontrivial resonance does exist then (1.7) is not always satisfied: For any
scale νn tending to infinity and any smooth ak(y), the functions

(1.9) vk,n : = ak(y)eiνnψk(y)

satisfy the hypotheses of the main question with the weak limits vk equaling zero, yet their
product

∏
k ak is independent of n and can be chosen 6= zero.

This difficulty can only be overcome by refining the analysis using Young measures
to account for the resonant interaction of oscillations. We therefore introduce multiscale
Young measures, which combine the analysis via Young measures and the multiscale anal-
ysis of resonant oscillations. This extends to more general frameworks ideas introduced in
the study of homogenization problems and in nonlinear geometric optics (e.g. [A], [N], [E],
[ES], [JMR 3]). An important difficulty is that the number of scales which are relevant for
a given sequence can be infinite, and furthermore these scales are not known in advance.
It is part of the construction to determine them together with the underlying group struc-
ture which describes the resonances. The multiscale Young measures are shown to satisfy
transport equations, and thus are determined by their Cauchy data. It is noticeable that
these equations are again closely related to the equations of semi-linear geometric optics.
The main steps in this analysis are the following:

A) The first key observation is that oscillations of the form (1.9), with the phases
satisfying (1.8), are the only obstacle to the convergence (1.7):

Theorem 1.2. Suppose that {vk,n}, k ∈ {1, 2, 3}, are three bounded sequence in
L∞(Ω), such that the Xkvk,n are bounded in L∞(Ω). Suppose that one of them, vj,n,
satisfies the condition

(1.10) ∀ν ∈ S := RN , vj,n e
− i νn ψj ⇀ 0 ,

where ψj is the unique resonant phase from (1.8). Then, v1,nv2,nv3,n converges weakly to
0 as n→ +∞.
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Remark. Theorem 1.2 is the only point in our analysis that does not have an obvious
generalization to the case of more than three components.

Note that, for ν = 0, (1.10) implies that vj,n converges weakly to zero. The meaning
of (1.10), for unbounded sequences ν, is that vj,n has no oscillations with respect to the
phase ψj . We denote by Lpno,ψj the space of bounded sequences in Lp(Ω) which satisfy
(1.10).

B) The second step is to extract from a given sequence all the oscillations of the form
(1.9). This leads us to consider sums and series of such sequences, with an arbitrary phase
function ϕ. More precisely, when A is a subset of S := RN, introduce Pϕ(A) the space of
sequences of the form

wn(y) =
∑

aj(y) ei ν
(j)
n ϕ(y) ,

where the sum runs over a finite set of indices, aj ∈ C∞0 (Ω), and ν(j) ∈ A. Introduce next
Lpos,ϕ(A), the asymptotic closure of Pϕ(A) : Lpos,ϕ(A) is the space of bounded sequences
wn in Lp(Ω) such that for all δ > 0, there are a sequence w̃n in Pϕ(A) and n0 ∈ N, such
that

∀n ≥ n0 , ‖wn − w̃n ‖Lp(Ω) ≤ δ .

When A = S, we simply note Pϕ = Pϕ(S) and Los,ϕ = Los,ϕ(S).

Theorem 1.3. Suppose that vn is a bounded sequence in L2(Ω). Then, there is a
subsequence v`(n) which belongs to L2

os,ϕ + L2
no,ϕ.

The idea is to perform an asymptotic Fourier analysis of the sequence vn. For all
ν ∈ S, one would like to define a Fourier coefficient aν as the weak limit of vn e−i νn ϕ.
Next, one would introduce wn ∼

∑
ν aν e

i νn ϕ so that vn−wn ∈ L2
no,ϕ. The main difficulty

is that subsequences must be extracted to ensure the weak convergences, while S is not
countable. However, only an at most countable set A ⊂ S is expected to contribute and
one proves that vn has a subsequence in a space L2

os,ϕ(A) + L2
no,ϕ. The problem is that

A is not known in advance, but must be constructed while the subsequence is extracted.

C) Resonance in dispersive PDEs generally involves only a finite number of modes
(see e.g. [H]), so such interactions are described by equations for the amplitude of each
resonant mode. In contrast, infinitely many modes interact in nonlinear hyperbolic PDEs
because any mode can excite all its harmonics. To avoid having an infinity of equations,
the theory of geometric optics for such equations combines the modes into a Fourier series

(1.11) V(y, νnϕ(y)) : =
∑
k∈Z

ck(y)eikνnϕ(y),

and the entire profile V(y, θ) is described by a single equation involving an additional,
periodic, independent variable θ. Replacing the index set Z in (1.11) by an arbitrary
countable subset of R allows consideration of the the more general case of almost-periodic
oscillations.

Although both (1.11) and its almost-periodic generalization yield particular cases of
sequences in Los,ϕ, such sequences can be more complicated because infinitely many scales
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may be involved. To avoid having infinitely many equations for the different scales, the
modes from all those scales must be combined into one grand sum

(1.12)
∑
k,j

ck,j(y)eikν
j
nϕ(y).

Just as the sum in (1.11) is the Fourier series on the torus, the sum (1.12) should correspond
to the Fourier series on some compact Abelian group G, which has the form

(1.13) V(y, g) =
∑
α

aα(y) eα(g) ,

where the index α runs over the dual group Ĝ and eα is the corresponding character (see
e.g. [W] or [HR]). Identifying τ ∈ R with the character t → ei τ t on R, there exist dual
homomorphisms ρn ∈ Hom(R;G) and νn ∈ Hom(Ĝ;R), such that

eα(ρn(t)) = ei νn(α) t .

Profiles V(y, ρn(ϕ(y))) therefore formally have the form of a sum like (1.12), i.e.

V(y, ρn(ϕ(y))) =
∑
α

aα(y) ei νn(α)ϕ(y) .

This result is exact when the Fourier series (1.13) converges uniformly on Ω×G. In this
case, it defines a sequence vn in L∞os,ϕ(H), where

(1.14) H := { {νn(α)}n∈N ; α ∈ Ĝ } ⊂ S .

To avoid redundancy, one requires that

(1.15) ∀α ∈ Ĝ\{0} : | νn(α) | → +∞ as n → +∞ .

We say that (G, ρn) is admissible when this condition is satisfied.
The next two results show that the study of oscillations in Los,ϕ can indeed be com-

pletely understood in the framework sketched above.

Theorem 1.4. For any at most countable A ⊂ S, there are an increasing map ` : N→
N, a compact Abelian group G and a sequence of homomorphisms ρn ∈ Hom(R;G) which
satisfies condition (1.15), such that, for every sequence vn in Lpos,ϕ(A) the subsequence
v`(n) belongs to Lpos,ϕ(H), where H is defined in (1.14).

Theorem 1.5. Suppose that G is a compact Abelian group and ρn is a sequence
of homomorphisms in Hom(R;G) which satisfies condition (1.15). For p ∈]1,+∞[, the
mapping

V → vn(y) = V(y, ρn(ϕ(y))) ,

defined for V ∈ C0
0 (Ω × G), extends isomorphically from Lp(Ω × G) onto Lpos,ϕ(H)/Lp0,

where Lp0 denotes the space of sequences in Lp(Ω) which converge strongly to 0.
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The limit cases p = 1 and p = +∞ are more delicate (see §4). When (G, ρn) is
admissible, a sequence vn in Lpos,ϕ(H) defines a unique profile V ∈ Lp(Ω×G), and we note

vn(y) ∼ V(y, ρn(ϕ(y))) in Lp .

Conversely, for any V ∈ Lp(Ω×G), there are sequences vn in Lpos,ϕ(H) with profile V, and
the difference of two such sequences converges to zero strongly in Lp(Ω).

D) We now answer the main question. Consider bounded families vk,n in L2(Ω) such
that Xkvk,n is bounded in L2(Ω). Extracting a subsequence if necessary, Theorems 1.4
and 1.5 show that one can assume that there are G and ρn ∈ Hom(R;G), such that (1.15)
is satisfied and vk,n ∈ L2

os,ψk
(H) + L2

no,ψk
, where H defined in (1.14) and the ψk are the

unique resonant phases from (1.8). Let Vk ∈ L2(Ω × G) be the profile associated to the
corresponding oscillations in L2

os,ψk
(H).

One can show that Xk(y, ∂y)Vk(y, g) ∈ L2(Ω × G) and that there exist wk,n ∼
Vk(y, ρn(ψk(y))) in L2(Ω) such that Xk wk,n is bounded in L2(Ω). Using Theorem 1.2
and a direct Fourier analysis for the product of the three oscillations, one obtains :

Theorem 1.6.

(1.16) v1,n v2,n v3,n ⇀

∫
G×G

V1(y, g1) V2(y, g2) V3(y,−g1 − g2) dg1dg2 .

E) Suppose that uk,n are three bounded sequences in L∞(Ω). Applying Theorem 1.3
successively to the sequences (uk,n)m, and using the diagonal process, one finds an at most
countable A ⊂ S and ` : N→ N such that for all f ∈ C0(R), the subsequence f(uk,`(n)) ∈
L2
os,ψk

(A) +L2
no,ψk

. Using Theorem 1.4, one can extract yet another subsequence and find
a compact Abelian group G and ρn ∈ Hom(R;G) such that (1.15) is satisfied and for all
f ∈ C0(R), f(uk,`(n)) ∈ L2

os,ψk
(H) + L2

no,ψk
. We summarize this property by saying that

(G, ρn) is complete for the sequence uk,`(n) and the phase ψk.
Replacing the notion of weak limits by profiles, this allows us to define the multiscale

Young measures associated to the subsequences uk,`(n), G, ρn and the phase ψk.

Theorem 1.7. For k ∈ {1, 2, 3}, there is a unique family of probability measures
µk,y,g(dλ) on R, which depends measurably on (y, g) ∈ Ω×G, such that for all f ∈ C0(R)
and all A ∈ C0

0 (Ω×G)

(1.17)
∫

Ω

f(uk,`(n)(y)) A(y, ρn(ψk(y))) dy →
∫

Ω×G

∫
R
f(λ) A(y, g) µk,y,g(dλ) dy dg .

Moreover, if

(1.18) Fk(y, g) :=
∫
R
f(λ) µk,y,g(dλ)

and fk,n(y) ∼ Fk(y, ρn(ψk(y))) in L2(Ω), then f(uk,`(n))− fk,n belongs to L2
no,ψk

.
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The multiscale Young measure is the measure µk on Ω ×G × R, which is defined by
the limit integral in (1.17). The classical Young measure is a measure µ̃k on Ω× R which
is recovered from µk by integration in g ∈ G :∫

Ω×R
a(y)F (λ) µ̃y(dλ) dy =

∫
Ω×G×R

a(y)F (λ)µy,g(dλ) dg dy .

The second part of Theorem 1.7 shows that the multiscale Young measure contains all the
information needed to split f(uk,`(n)) into oscillations in L2

os,ψk
(H) and a remainder in

L2
no,ψk

. Moreover, (1.18) explicitly computes the profile of the oscillations.

F) Suppose in addition that the uk,n satisfy the equations (1.1). Then the multiscale
Young measures satisfy transport equations, which are derived similarly to (1.6) but using
a multiscale oscillatory test function instead of an ordinary one and using Theorems 1.6
and 1.7 in place of (1.4) and (1.5). Thus, multiplying (1.2) by A(y, ρn(ψk(y))), integrating
over Ω, and passing to the limit by using the definition of the measure µk on the left side
and Theorems 1.6 and 1.7 on the right side yields the following theorem:

Theorem 1.8. With notation as in part E), the multiscale Young measures µk
associated to the subsequences uk,`(n) satisfy

(1.19) Xkµk + ∂λ(Ak(y, g, λ)µk) = 0 ,

with

(1.20) A1(y, g, λ) :=
∫
G×R×R

f1(λ, λ2, λ3) µ2,y,g2(dλ2) µ3,y,−g−g2(dλ3) dg2 ,

and similar definitions for A2 and A3.

Equations (1.19) (1.20) uniquely determine the measures µk from their initial value.
The multiscale Young measures of the Cauchy data therefore determine the multiscale
Young measures of the solutions, and hence also their usual Young measures and their
weak limits.

Theorem 1.9. Suppose that (u1,n, u2,n, u3,n) is a bounded sequence of solutions
of (1.1) in L∞(Ω). Suppose that G is a compact Abelian group, and ρn ∈ Hom(R;G)
satisfy (1.15). Suppose that for k ∈ {1, 2, 3}, (G, ρn) is complete for the initial data
u0
k,n(x) := uk,n(0, x) and the initial phases ψ0

k(x) := ψk(0, x).
Then (G, ρn) is complete for uk,n and the phase ψk. The multiscale Young measures

µk of uk,n are the unique solutions of (1.19) (1.20) with initial data

µk|t=0 = µk,0 ,

where the µ0
k are the multiscale Young measures associated to the initial data u0

k,n.
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Analogously to the rewriting of (1.6) as the equations of nonresonant geometric optics,
equations (1.19) (1.20) for the multiscale Young measures can be expressed in a form similar
to the equations of semilinear resonant geometric optics (see [MR] [J] [HK] [JMR 1]),
extended to more general groups G. As in [JMR 4], introduce the functions Uk(y, g, θ),
on Ω × G×]0, 1[, such that Uk(y, g, . ) is the right continuous inverse of the distribution
function µk,y,g(]−∞, λ[). Then (1.19) (1.20) are equivalent to

(1.21)
X1(y, ∂y)U1(y, g, θ) =∫

G×]0,1[×]0,1[

f1

(
U1(y, g, θ), U2(y, g2, θ2), U3(y,−g − g2, θ3)

)
dg2 dθ2 dθ3 ,

and similar equations for U2 and U3. Note that while oscillations with the resonant phase
are described via the possibly infinite-dimensional group G, a single variable θ per compo-
nent suffices to describe how all nonresonant oscillations influence the weak limit.

2. Trilinear compensated compactness.

In this section we prove Theorem 1.2, which states that resonance is the only obstruc-
tion to trilinear compensated compactness. Let Ω ⊂ R2 be a bounded open set, and let
Xk for k ∈ {1, 2, 3} be three pairwise independent C∞ vector fields on Ω. We suppose that
there exists a nontrivial resonance, i.e., functions ψk ∈ C∞(Ω;R), for k ∈ {1, 2, 3}, such
that dψk 6= 0, and

Xk ψk = 0 for k ∈ {1, 2, 3} and ψ1 + ψ2 + ψ3 = 0 .

Although Theorem 1.2 is stated in terms of the L∞ norm, it suffices to consider the
L2 norm. We therefore introduce the spaces Wk(Ω) := {u ∈ L2(Ω) | Xku ∈ L2(Ω) } . It is
proved in [JMR 3] that the product (u1, u2, u3) → u1u2u3 is defined and continuous for
the strong topologies, from W1(Ω)×W2(Ω)×W3(Ω) into L1

loc(Ω). Because of the existence
of a nontrivial resonance, this product is not continuous for the weak topologies. Our goal
is to study in detail this lack of weak continuity.

A sequence whose terms are un will sometimes be denoted u∗. Recall from the intro-
duction that Lpno,ϕ denotes the space of sequences u∗ whose terms are bounded in Lp(Ω)
and satisfy un e− i νn ϕ ⇀ 0 for all real sequences ν∗.

Theorem 2.1. Suppose that for k ∈ {1, 2, 3}, uk∗ are bounded sequences in Wk(ω).
Then u1

nu
2
nu

3
n is bounded in L1

loc(Ω). Moreover, if in addition u1
∗ ∈ L2

no,ψ1
then u1

nu
2
nu

3
n

converges weakly to 0 in the sense of distributions on Ω.

We must prove that for all a ∈ C∞0 (Ω),

(2.1)
∫
a(y)u1

n(y)u2
n(y)u3

n(y) dy → 0 .

This is a local statement, and it is sufficient to prove that for all y ∈ Ω there is a neigh-
borhood ω ⊂ Ω of y such that the convergence (2.1) holds for all a ∈ C∞0 (ω). Introducing
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χ ∈ C∞0 (ω) such that χ = 1 on the support of a, and v1
n := a u1

n, v2
n := χu2

n, v3
n := χu3

n,
(2.1) reads ∫

vn1 (y) vn2 (y) vn3 (y) dy → 0 .

The vnk are bounded sequences in Wk(Ω), supported in ω, and v1
∗ is in L2

no,ψ1
.

Fix y ∈ Ω. The differentials dψk of the resonant phases ψk do not vanish and are
pairwise linearly independent (see [JMR 1]). Thus, one can choose local coordinates (t, x)
on a neighborhood ω of y such that the resonant phases are

ψ1(t, x) = −t− x , ψ2(t, x) = x , ψ3(t, x) = t .

The vector fields Xk are therefore parallel on ω to the fields

(2.2) X1 = ∂t − ∂x , X2 = ∂t , X3 = ∂x .

Hence, Theorem 2.1 follows from:

Proposition 2.2. Consider the fields Xk in (2.2). Suppose that for k ∈ {1, 2, 3}, vk∗
are bounded sequences in L2(R2) supported in a fixed ball, such that Xkv

k
∗ is bounded in

L2(R2). Then the product vn1 v
n
2 v

n
3 is bounded in L1(R2).

In addition, if v1
∗ ∈ L2

no,ψ1
, then

(2.3) In :=
∫
v1
n(y) v2

n(y) v3
n(y) dy → 0 .

Proof. a) Introduce wn := v2
n v

3
n. Its Fourier transform is

ŵn(τ, ξ) =
∫
v̂2(σ, ξ − η)v̂3(τ − σ, η) dσ dη.

Thus

(2.4) | ŵn(τ, ξ) | ≤
∫
R2
〈σ〉−1〈η〉−1 V 2

n (σ, ξ − η) V 3
n (τ − σ, η) dσ dη ,

where 〈·〉 := 1 + | · | and the V kn belong to L2(R2) and satisfy

(2.5) ‖V kn ‖L2(R2) ≤ C
(
‖ vkn ‖L2(R2) + ‖Xkv

k
n ‖L2(R2)

)
with C independent of n and k.

b) (2.4) implies that

| ŵn(τ, ξ) |2 ≤ C

∫
R2
|V 2
n (σ, ξ − η)|2 |V 3

n (τ − σ, η)|2dσ dη .

Trilinear compensated compactness. 11



Together with (2.5), this implies

(2.6) ‖wn ‖L2(R2) ≤ C ‖ v2
n ‖W2(R2) ‖ v3

n ‖W3(R2) .

In particular, this implies that v1
nv

2
nv

3
n = v1

n wn is bounded in L1(R2).
c) (2.4) also implies that

(2.7)
∫
R
| ŵn(τ, ξ + τ) | dτ ≤

∫
R2
〈σ〉−1〈η〉−1 Vn(ξ, σ, η) dσ dη ,

with
Vn(ξ, σ, η) :=

∫
R
|V 2
n (σ, ξ + τ − η) | |V 3

n (τ − σ, η) | dτ .

Therefore
|Vn(ξ, σ, η) |2 ≤

∫
R
|V 2
n (σ, τ) |2 dτ

∫
R
|V 3
n (τ, η) |2 dτ ,

and ∫
R2
|Vn(ξ, σ, η) |2 dσ dη ≤

∫
R2
|V 2
n (σ, τ) |2 dτ dσ

∫
R2
|V 3
n (τ, η) |2 dτ dη .

With (2.7) and (2.5), this implies that

(2.8)
∫
R
| ŵn(τ, ξ + τ) | dτ ≤ C ‖ v2

n ‖W2(R2) ‖ v3
n ‖W3(R2) ,

where C is independent of ξ and n.
d) The integral In in (2.3) is equal to

In = (2π)−2

∫
v̂1
n(τ, ξ) ŵn(−τ,−ξ)) dτ dξ = (2π)−2

∫
v̂1
n(τ, ξ+τ) ŵn(−τ,−ξ−τ)) dτ dξ .

For R > 0, use (2.6) when |ξ| ≥ R and (2.8) when |ξ| ≤ R to estimate this integral. This
proves that

| In | ≤ C
(
An(R) + RBn(R)

)
‖ v2

n ‖W2(R2) ‖ v3
n ‖W3(R2) ,

where

An(R) :=
(∫
|ξ|≥R

| v̂1
n(τ, ξ + τ) |2 dτ dξ

)1/2

,

Bn(R) := sup
|ξ|≤R

sup
τ∈R
| v̂1
n(τ, ξ + τ) | .

Now
An(R) ≤ C R−1 ‖ v1

n ‖W1(R2) ≤ C̃ R−1 ,

and so tends to zero as R → ∞, uniformly in n. Therefore, in order to prove that In
converges to 0, it is sufficient to show that for all fixed R, Bn(R) converges to 0 as n tends
to +∞. Upon making the change of variables (T,X) = (t+ x, x), this is a consequence of
the following result.
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Proposition 2.3. Suppose that v∗ is a bounded sequence in L2(R2) supported in
a fixed ball. Then, v∗ belongs to the space L2

no,ψ associated to the phase ψ = T , if and
only if, for all R > 0, the Fourier transforms v̂n(τ, ξ) converge to 0, uniformly on the slab
{(τ, ξ) ∈ R2 | |ξ| ≤ R}.

Proof. Suppose that wn is a bounded sequence in L2 of functions supported in a fixed
ball. Then, their Fourier transforms ŵn are C∞, bounded in L∞, and their derivatives are
also bounded in L∞. Hence, the weak convergence wn ⇀ 0 is equivalent to

v̂n(τ, ξ) → 0 ,

uniformly on compacts sets in R2

Consider a bounded sequence in L2 of functions un supported in a fixed ball. We
apply the argument above to wn = vn e

−i τn T . Therefore, v∗ belongs to the space L2
no,ψ

if and only if, for every sequence τ∗ ∈ S,

v̂n(τ + τn , ξ)→ 0

uniformly for (τ, ξ) in bounded domains.
This is equivalent to saying that the convergence v̂n(τ, ξ)→ 0 is uniform with respect

to τ ∈ R and ξ in bounded intervals.
Theorem 2.1 will be used in §5 in the calculation of the weak limit of the product

u1
nu

2
nu

3
n of general bounded sequences, after we have shown that such sequences can be

divided into resonant plus nonresonant oscillations and developed the group structure
needed to describe the limit of the resonant part.

3. The analysis of oscillations with respect to a given set of phases.

This section is devoted to the proof of Theorem 1.3, which says that arbitrary bounded
oscillations can be separated into resonant and nonresonant parts. However, we extend
our analysis to any space-time dimension and to a finite number of phases, as we will need
it in §5. Throughout this section, Ω is a bounded open subset of Rd and ϕ ∈ C1(Ω;Rm)
satisfies

(3.0.1) ∀ξ ∈ Rm\{0} , d(ξ · ϕ) 6= 0 a.e. on Ω .

In §3.1, we give definitions and preliminary results about spaces of sequences which
oscillate with respect to the phase ϕ. §3.2 contains the main result, i.e. the splitting of
suitable subsequences of a given sequence into oscillations with phase ϕ and a remainder
term which has no oscillations with respect to ϕ.

3.1. Spaces of oscillations.

Introduce first several notations. For p ∈ [1,+∞], Lp denotes the space of bounded
sequences in Lp(Ω) and Lp0 the subspace of sequences which converge strongly to 0 in
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Lp(Ω). Our goal is to perform an “asymptotic Fourier analysis” of the spaces Lp/Lp0. We
denote by {un} or u∗ the sequence whose terms are un. For u∗ ∈ Lp we let ũ∗ denote its
class in Lp/Lp0. For sequences u∗ and v∗ in Lp, we say that

(3.1.1) un ∼ vn in Lp

when u∗ − v∗ ∈ Lp0, that is when un − vn converges strongly to 0 in Lp(Ω).
Remark that Lp/Lp0 is a Banach space, when equipped with the norm

(3.1.2) ‖ ũ∗ ‖ := lim sup
n→+∞

‖un ‖Lp(Ω) .

S := (Rm)N denotes the set of sequences in Rm.

Definition 3.1.1 For A ⊂ S,

i) Pϕ(A) denotes the space of sequences of the form

(3.1.3) vn(y) :=
∑
j

aj(y) ei ξ
j
n·ϕ(y) ,

where the sum is taken over a finite set of indices j, the sequences ξj∗ are taken in A, and
aj ∈ C∞0 (Ω).

ii) Lpos,ϕ(A) is the asymptotic closure of P(A) in Lp, that is, v∗ ∈ Lpos,ϕ(A) if and
only if, for all δ > 0 there is a sequence w∗ ∈ Pϕ(A) such that

(3.1.4) lim sup
n→+∞

|| vn − wn ||Lp(Ω) ≤ δ .

iii) Lpno,ϕ is the set of sequences u∗ ∈ Lp such that for all ξ ∈ S, un e
−i ξn·ϕ converges

to zero in the weak topology, i.e. in the sense of distributions.

Lpos,ϕ := Lpos,ϕ(S) is the space of sequences which only have oscillations with respect
to ϕ, while Lpno,ϕ is the the space of sequences which converge weakly to 0 and have no
oscillation with respect to ϕ. The introduction of subspaces subspaces Lpos,ϕ(A) of Lpos,ϕ
is motivated by two remarks. The first, is that S is not countable and our analysis uses
countability at several places. The second, is that ei ξn ϕ and ei ηn ϕ are not asymptotically
independent for all ξ 6= η. In particular, expansions like (3.1.3) are not unique if A is too
large.

Proposition 3.1.2. i) If A ⊂ B, then Lp0 ⊂ Lpos,ϕ(A) ⊂ Lpos,ϕ(B).
ii) Suppose that A ⊂ S and ` is an increasing map from N to N. Let B the set of

all sequences n→ ξ`(n) when ξ runs in A. If u∗ ∈ Lpos,ϕ(A), then v∗ := u`(∗) ∈ Lpos,ϕ(B).
Similarly, if u∗ ∈ Lpno,ϕ, then v∗ := u`(∗) ∈ Lpno,ϕ

iii) Suppose that A ⊂ S and B ⊂ S satisfy

(3.1.5) ∀ξ ∈ A ,∃η ∈ B ,∃l ∈ Rm : ξn − ηn → l as n→ +∞ .

Then, Lpos,ϕ(A) ⊂ Lpos,ϕ(B).
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Proof. The first two points follow directly from the definitions. To prove the third
part, it is sufficient to show that Pϕ(A) ⊂ Lpos,ϕ(B). Thus, it is sufficient to prove that for
a ∈ C∞0 (Ω) and ξ ∈ A, the sequence un := a ei ξn·ϕ belongs to Lpos,ϕ(B). For such a and ξ,
let η ∈ B and l ∈ Rm such that ζn := ξn − ηn − l→ 0. Therefore

un = b ei ηn·ϕ + b ( ei ζn·ϕ − 1) ei ηn·ϕ ,

with b := a ei l·ϕ ∈ C1
0 (Ω). Since b (ei ζn·ϕ − 1) converges strongly to zero in Lp(Ω), it

remains to show that b ei ηn ϕ belongs to Lpos,ϕ(B), which is clear by smoothing b.

The third part in the proposition above gives an example of possible redundancy in
A. If ξ and η in A are such that ξn − ηn converges to a finite limit as n tends to infinity,
then Lpos,ϕ(A) = Lpos,ϕ(A\{ξ}). In the opposite direction, the following result is essential.

Lemma 3.1.3. Suppose that ξ ∈ S satisfies |ξn| → +∞ as n → +∞. Then ei ξn·ϕ

converges weakly to zero.

Proof. We show that for all a ∈ C1
0 (Ω).

(3.1.6)
∫
a(y) ei ξn·ϕ(y) dy → 0 , as n→ +∞ .

Taking a subsequence, we can assume that ωn := ξn/|ξn| converges to ω ∈ Rm, and |ω| = 1.
Since d(ω · ϕ) 6= 0 almost everywhere, it is sufficient to prove that for all δ > 0, (3.1.6) is
satisfied when a is supported in a compact set K where |d(ω · ϕ)| ≥ δ. Then, for n large
enough, |d(ωn · ϕ)| ≥ δ/2 on K and the result follows by integration by parts.

Theorem 3.1.4. Suppose that A := {ξj}j∈J ⊂ S satisfies the condition

(3.1.7) ∀(j, k) ∈ J × J , j 6= k : | ξjn − ξkn | → +∞ when n→ +∞ .

Then for all u∗ ∈ L2
os,ϕ(A) and for all j ∈ J , un e

−i ξjn·ϕ converges weakly in L2(Ω) to a
limit aj ∈ L2(Ω). Moreover

(3.1.8)
∑
j∈J
|| aj ||2L2(Ω) = lim

n
||un ||2L2(Ω) < +∞ .

This defines a mapping u∗ → {aj}j∈J from L2
os,ϕ(A) into `2(J ;L2(Ω)). This operator is

surjective, and its kernel is L2
0.
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Proof. Consider

(3.1.9) vn :=
∑
k∈K

bk e
i ξkn·ϕ ∈ Pϕ(A)

where K is a finite subset of A. Then, Lemma 3.1.3 and (3.1.7) imply that

(3.1.10) ∀j ∈ J , vn e
−i ξjn·ϕ ⇀

{
bj if j ∈ K
0 if j /∈ K as n→ +∞ ,

and

(3.1.11) || vn ||2L2(Ω) →
∑
j∈K
|| bj ||2L2(Ω) as n→∞ .

(3.1.10) and the definition of L2
os,ϕ(A) implies that for all u∗ ∈ L2

os,ϕ(A) and all a ∈ C∞0 (Ω),∫
a(y)un(y) e−i ξ

j
n·ϕ(y) dy is a Cauchy sequence in C, and thus converges. Hence, for all

u∗ ∈ L2
os,ϕ(A) and all j ∈ J , the weak limit

(3.1.12) Cj(u∗) := weak lim
n→+∞

un e
−i ξjn·ϕ

exists and belong to L2(Ω). Moreover,

(3.1.13) ||Cj(u∗) ||L2(Ω) ≤ lim sup
n→+∞

||un ||L2(Ω) .

Let π denotes the canonical mapping L2 → L2/L2
0. Introduce P̃ϕ(A) = πPϕ(A) and

L̃pos,ϕ(A) its closure in L2/L2
0. Then, Definition 3.1.1 implies that Lpos,ϕ(A) is equal to

π−1(L̃pos,ϕ(A)) and π
(
Lpos,ϕ(A)

)
= L̃pos,ϕ(A). (3.1.13) implies that Cj = C̃j ◦π where C̃j is

bounded from L̃pos,ϕ(A) into L2(Ω). Introduce the mapping

(3.1.14) ṽ∗ → C̃(ṽ∗) := {C̃j(ṽ∗)}j∈J .

Then, (3.1.10) shows that C̃ maps P̃ϕ(A) onto C, the space of families {bj}j∈J in
(
C∞0 (Ω)

)J
with finite support. In addition, (3.1.11) shows that C̃ is isometric from P̃ϕ(A) equipped
with the norm of L2/L2

0, onto C equipped with the norm of `2(J ;L2(Ω)). Since C is dense
in `2(J ;L2(Ω)), this implies that C̃ uniquely extends as an isometry from L̃pos,ϕ(A) onto
`2(J ;L2(Ω)).

Therefore C = C̃ ◦ π = {Cj}j∈J maps Lpos,ϕ(A) onto `2(J ;L2(Ω)), (3.1.8) is satisfied
and the kernel of C is L2

0.

This Theorem justifies the following definition.

Definition 3.1.5. Suppose that A = {ξj}j∈J ⊂ S satisfies (3.1.7). We note

(3.1.15) un ∼
∑
j

aj e
i ξjn·ϕ

when u∗ ∈ L2
os,ϕ(A) and aj is the weak limit of un e

−i ξjn·ϕ.
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Theorem 3.1.4 implies that if (3.1.15) holds then (3.1.8) is satisfied. Conversely, if the
series in (3.1.8) converges, then there exists u∗ ∈ L2

os,ϕ(A) which satisfies (3.1.15). Note,
however, that in general we cannot simply take u∗ to be

∑
j∈J aj e

i ξjn·ϕ since this sum may
not converge in L2 because its terms are only asymptotically orthogonal. Although we will
not make use of this fact, it is not hard to see that we could take u∗ to be

∑
j∈J(n) aj e

i ξjn·ϕ,
where J(n) is a finite subset of J chosen so that the L2 norm of un is uniformly bounded
while

∑
j∈J(n) ‖aj‖2L2 tends to

∑
j∈J ‖aj‖2L2 as n→∞.

Moreover, if u∗ and v∗ both satisfy (3.1.15), then un− vn belongs to the kernel of the
mapping introduced in Theorem 3.1.4 and so converges strongly to 0 in L2(Ω). In this
same vein, we note the following corollary of Theorem 3.1.4:

Proposition 3.1.6. L2
os,ϕ ∩ L2

no,ϕ = L2
0.

Proof. The definitions of Lpos,ϕ and Lpno,ϕ imply that both contain Lp0. If u∗ lies in
L2
os,ϕ ∩ L2

no,ϕ then for δ > 0, choose v∗ ∈ Pϕ such that

(3.1.16) lim sup
n
‖un − vn ‖L2(Ω) ≤ δ .

Since u∗ ∈ L2
no,ϕ and v∗ ∈ Pϕ,

(3.1.17)
∫

Ω

un(y) vn(y) dy → 0 as n→ +∞ .

Therefore, (3.1.16) implies that

(3.1.18) lim sup
n
‖un ‖2L2(Ω) + ‖ vn ‖2L2(Ω) ≤ δ2 .

Since this is true for all δ > 0, the proposition follows.

3.2. The main splitting theorem.

Theorem 1.3 is a consequence of the next result.

Theorem 3.2.1. Suppose that u∗ is a bounded sequence in L2(Ω). There exist a
subsequence u`(∗) and an at most countable set A = {ξj}j∈J ⊂ S satisfying (3.1.7), such
that

(3.2.1) u`(∗) ∈ L2
os,ϕ(A) + L2

no,ϕ .

The next lemma is used to prove that sequences ξj satisfy (3.1.7). We note S∞ the
set of sequences ξ ∈ S such that |ξn| → +∞ as n→ +∞.

Lemma 3.2.2. Suppose that ξ ∈ S and µ ∈ S are two sequences such that un e
−i ξn ϕ

converges weakly to 0 and un e
−i ηn ϕ converges weakly to a 6= 0. Then ξ − η ∈ S∞.
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Proof. If ξ − η /∈ S∞, there is a subsequence ξ`(n) − η`(n) which has a finite limit
l ∈ Rm as n → ∞. Thus ei (ξ`(n)−η`(n))·ϕ → ei l·ϕ uniformly on compacts. This implies
that u`(n) e

−i η`(n)·ϕ = u`(n) e
−i ξ`(n)·ϕ ei (ξn(k)−ηn(k))·ϕ converges weakly to 0 × ei l·ϕ = 0,

contradicting the assumption a 6= 0.

Next we introduce a notation. For any bounded sequence u∗ in L2(Ω), introduce
K(u∗) the set of functions a ∈ L2(Ω) such that there is a subsequence u`(n) and ξ ∈ S such
that u`(n) e

−i ξn·ϕ converges weakly in L2(Ω) to a. This set is bounded and non-empty.
Define

(3.2.2) δ(u∗) := sup
a∈K(u∗)

|| a||L2(Ω) .

Lemma 3.2.3. For all u∗ and v∗ in L2,

(3.2.3) δ(u∗) ≤ lim sup
n→∞

||un ||L2(Ω) .

(3.2.4) δ(u∗ + v∗) ≤ δ(u∗) + δ(v∗) .

Moreover, δ(u∗) = 0 if and only if u∗ ∈ L2
no,ϕ.

Proof. (3.2.3) is clear. If a subsequence of (un+vn)e−i ξn·ϕ converges weakly to a limit
a, one can extract further another subsequence such that both un e

−i ξn·ϕ and vn e
−i ξn·ϕ

converge weakly to b and c respectively. Thus a = b + c, showing that K(u∗ + v∗) ⊂
K(u∗) + K(v∗) and (3.2.4) follows.

δ(u∗) = 0 if and only if, for all ξ ∈ S all the limits of weakly convergent subsequences of
un e

−i ξn·ϕ are equal to 0. This means for all ξ ∈ S, the full sequence un e−i ξn·ϕ converges
weakly to 0. By definition, this is equivalent to u∗ ∈ L2

no,ϕ.

Proof of Theorem 3.2.1. a) Consider u∗ ∈ L2. If δ(u∗) = 0, u∗ ∈ L2
no,ϕ and (3.2.1)

is clear. If δ(u∗) > 0, choose a1 ∈ K(u∗) such that its L2 norm ‖a1‖ is at least δ(u∗)/2.
There are ξ1 ∈ S and a subsequence u`1(n) such that u`1(n) e

−i ξ1
n·ϕ ⇀ a1. Introduce

u2,n := u`1(n) − a1 e
i ξ1
n·ϕ.

If δ(u2,∗) = 0, the construction stops. If not, we repeat the construction for the
sequence u2,∗. Following this procedure, one obtains by induction on j ∈ N, increasing
mappings `j : N → N, sequences uj,∗ ∈ L2, sequences ξj ∈ S and functions aj ∈ L2(Ω),
such that

(3.2.5) ‖aj‖L2(Ω) ≥ δ(uj,∗) /2 > 0 ,

(3.2.6) uj,`j(n) e
−i ξjn·ϕ ⇀ aj ,
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and the j + 1-th sequence uj+1,∗ is defined by

(3.2.7) uj+1,n := uj,`j(n) − aj ei ξ
j
n·ϕ .

The construction stops at the j-th step if δ(uj+1,∗) = 0. Otherwise, it continues.

b) Introduce uj∗ the j-th extracted subsequence from the initial u∗. It is defined by
u1
n := u`1(n) and ujn := uj−1

`j(n). Similarly, define ξj,j := ξj and by induction on k ≥ j,

ξk,jn := ξk−1,j
`k(n)

. This is the (k− j)-th extracted subsequence from ξj . With these notations,
one has

(3.2.8) ukn = uk+1,n +
∑
j≤k

aj e
i ξk,jn ·ϕ .

If the constructions stops at the k-th step, then δ(uk+1,∗) = 0 and uk+1,∗ ∈ L2
no,ϕ. In

this case, (3.2.8) implies (3.2.1). We finish the proof assuming that the construction above
runs for all k ∈ N.

c) We prove by induction on k that

(3.2.9) for 1 ≤ j′ < j ≤ k , ξk,j − ξk,j′ ∈ S∞ ,

(3.2.10) ∀j ∈ {1, · · · , k} , uk+1,n e
−i ξk,jn ·ϕ ⇀ 0 as n→∞ .

When k = 1, (3.2.9) is void, and (3.2.10) follows directly from the definition of u2,n.
Suppose that (3.2.9) and (3.2.10) are proved up to k−1. For j < k, the sequences ξk,j

are subsequences of ξk−1,j . Therefore (3.2.9) is satisfied for j′ < j < k. Similarly, taking
the subsequence `k(∗) in the induction hypothesis (3.2.10) at the order k − 1 implies that

(3.2.11) for j < k , uk,`k(n) e
−i ξk,jn ·ϕ ⇀ 0 .

By definition of ξk,k = ξk and ak, one has

(3.2.12) uk,`k(n) e
−i ξk,kn ·ϕ ⇀ ak .

Since ak 6= 0, (3.2.11), (3.2.12) and Lemma 3.2.2 imply that

(3.2.13) for j < k , ξk,k − ξk,j ∈ S∞ .

This finishes the proof of (3.2.9) at the order k.
By definition of uk+1,n, one has

(3.2.14) uk+1,n e
−i ξk,jn ·ϕ = uk,`k(n) e

−i ξk,jn ·ϕ − ak e
i (ξk,kn −ξk,jn )·ϕ .
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Using (3.2.11) and (3.2.13) when j < k and (3.2.12) when j = k, one obtains that (3.2.10)
is satisfied at the order k.

d) (3.2.9) implies that for different indices j, the sequences aj ei ξ
k,j
n ·ϕ are asymp-

totically orthogonal. (3.2.10) implies that they are asymptotically orthogonal to uk+1,∗.
Therefore, (3.2.8) implies that

(3.2.15) lim sup
n
‖ukn ‖2L2(Ω) = lim sup

n
‖uk+1,n ‖2L2(Ω) +

∑
j≤k
‖ aj ‖2L2(Ω) .

Since uk∗ is a subsequence of u∗, the left hand side is bounded uniformly in k, and

(3.2.16)
∑
j

‖ aj ‖2L2(Ω) ≤ lim sup
n
‖un ‖2L2(Ω) < +∞ .

Together with (3.2.5), this implies that

(3.2.17) δ(uj,∗)→ 0 as j →∞ .

e) Consider the diagonal subsequence ũn := unn and for all j ∈ N, the sequence ξ̃j

defined by ξ̃jn := ξn,jn for n ≥ j and ξ̃jn := 0 for n < j. Let A be the set of sequences {ξ̃j}.
For all k, {ũn} is for n ≥ k a subsequence of {ukn}, and for k ≥ j, {ξ̃jn} is for n ≥ k a

subsequence of {ξk,jn }. Therefore, (3.2.9) implies that

(3.2.18) for 1 ≤ j′ < j , ξ̃j − ξ̃j′ ∈ S∞ .

This shows that A satisfies condition (3.1.7). Moreover,

(3.2.19) rk,n := ũn −
∑
j<k

aj e
i ξ̃jn·ϕ

is a subsequence of uk,n. Therefore,

(3.2.20) δ(rk,∗) ≤ δ(uk,∗) .

Thanks to (3.2.16) and (3.2.18), Theorem 3.1.4 implies that there exists v∗ ∈ L2
os,ϕ(A)

such that
vn ∼

∑
aj e

i ξ̃jn·ϕ .

Fix δ > 0. (3.2.17) and (2.1.16) imply that there is k ∈ N such that

(3.2.21) δ(rk,∗) ≤ δ and
∑
j≥k
|| aj ||2L2(Ω) ≤ δ2 .

Introduce the partial sum sk,n :=
∑
j<k aj e

i ξ̃jn·ϕ. Theorem 3.1.4 implies that

vn − sk,n ∼
∑
j≥k

aj e
i ξ̃jn ϕ ,

lim sup
n
||vn − sk,n||2L2(Ω) ≤

∑
j≥k
|| aj ||2L2(Ω) ≤ δ2 .

Thus, by Lemma 3.2.3, one has δ(v∗ − sk,∗) ≤ δ and, since ũ∗ − v∗ = rk,∗ − (v∗ − sk,∗),
δ(ũ∗ − v∗) ≤ δ(rk,∗) + δ(v∗ − sk,∗) ≤ 2δ .

Since this estimate holds for all δ > 0, one has δ(ũ∗ − v∗) = 0, hence u∗ − v∗ ∈ L2
no,ϕ.
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Theorem 3.2.1 can be extended to countable families of sequences.

Theorem 3.2.4. Suppose that {um∗ }m∈N is a countable family of sequences in L2.
Then there exist an increasing map ` : N → N, and an at most countable subset A of S,
such that for all m ∈ N
(3.2.22) um`(∗) ∈ L2

os,ϕ(A) + L2
no,ϕ .

Proof. Theorem 3.2.1 implies that there is an at most countable A1 ⊂ S and `1 such
that u1

`1(∗) ∈ L2
os,ϕ(A1) + L2

no,ϕ. Next, apply Theorem 3.2.1 to the subsequence u2
`1(∗).

By induction, there are mappings `k and at most countable Ak ⊂ S such that

(3.2.23) ukρk(∗) ∈ L2
os,ϕ(Ak) + L2

no,ϕ ,

where ρk := `1 ◦ · · · ◦ `k.
Consider the diagonal sequence σ(n) := ρn(n). Similarly, introduce for k > j, ρk,j =

`j+1 ◦ · · · ◦ `k. Let σj(n) := ρn,j(n) for n ≥ j and σj(n) := 0 for n < j. For all k > n,
σ(n) = ρk(σk(n)). Thus, for n ≥ j, ukσ(n) is a subsequence of ukρk(∗). Introduce Ãk the
set of extracted subsequences ξσk(∗) of sequences ξ∗ ∈ Ak. Then, (3.2.23) and the second
part of Proposition 3.1.2 imply that ukσ(∗) ∈ L2

os,ϕ(Ãk) + L2
no,ϕ ⊂ L2

os,ϕ(A) + L2
no,ϕ if

A :=
⋃
Ãk.

4. The group structure of frequencies.

In §4.1 we associate profiles with oscillations whose frequencies have an appropriate
group structure, and prove Theorem 1.5. Then in §4.2 we show that, at least for appropriate
subsequences, all the oscillations introduced in §3.1 have such a group structure, thereby
proving Theorem 1.4. In §4.3 we extend this result to account for the oscillations of all
continuous functions of a sequence un, and introduce the additional structure that will be
needed to account for resonances.
4.1. Oscillations and profiles.

Nonlinear geometric optics deal with particular oscillations of the form

(4.1.1) uε(y) = U(y, ϕ(y)/ε) ,

where U(y, θ) is periodic or almost periodic. In this section, we first generalize (4.1.1) to
the case where θ vary in a general compact Abelian group. For example, this allows the
superposition of oscillations with wavelength of many different scales. Moreover, in this
framework, the L2 analysis of Theorem 3.1.4 can be extended to Lp.

Our starting point is the following remark.

Lemma 4.1.1. Consider a compact abelian group G and a sequence ρ∗ of continuous
homomorphisms ρn ∈ Hom(Rm, G). For U ∈ C0

0 (Ω×G), the sequence

(4.1.2) un(y) := U(y, ρn(ϕ(y))) ,

is bounded in C0
0 (Ω) and belongs to L∞os,ϕ.
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Proof. un is clearly bounded in C0
0 (Ω). To prove that u∗ belongs to L∞os,ϕ, we perform

a Fourier analysis on G.
Consider a discrete Abelian group Ĝ, which is isomorphic to the dual group of G.

Thus every α ∈ Ĝ corresponds to a unique character eα on G. For all n and all α ∈ Ĝ,
the mapping t→ eα(ρn(t)) is a character on Rm. Thus there is a unique νn(α) ∈ Rm such
that

(4.1.3) ∀α ∈ Ĝ , ∀t ∈ Rm , eα(ρn(t)) = ei νn(α)·t .

νn ∈ Hom(Ĝ;Rm) is the dual of ρn ∈ Hom(Rm;G). In particular, every α ∈ Ĝ defines a
sequence ν∗(α) ∈ S. Introduce

(4.1.4) H := {ν∗(α) | α ∈ Ĝ } ⊂ S .

(4.1.3) implies that the mapping U → u∗ defined by (4.1.2), is a bijection between the
space of finite linear combinations

(4.1.5) U(y, g) =
∑
α

aα(y) eα(g) ,

with coefficients aα ∈ C∞0 (Ω), and the space Pϕ(H).
The finite linear combinations of eα are dense in C0(G) (see e.g. [W]). Thus finite

linear combinations like (4.1.5), which we call trigonometric polynomials, are dense in
C0

0 (Ω × G). Therefore, approximating U ∈ C0
0 (Ω × G) by trigonometric polynomials,

provides uniform approximations of u∗ by sequences in Pϕ(H). In particular,

(4.1.6) u∗ ∈ L∞os,ϕ(H) .

Our goal is to extend the link between functions on Ω × G and oscillations to other
spaces. To avoid redundancy and a lack of injectivity, introduce the following condition.

Definition 4.1.2. We say that (G, ρ∗) is admissible, when

(4.1.7) ∀α ∈ Ĝ\{0} : |νn(α)| → +∞ as n→ +∞ .

Lemma 4.1.3. Suppose that (G, ρ∗) is admissible. Then, for all U ∈ C0
0 (Ω×G)

(4.1.8)
∫

Ω

U(y, ρn(ϕ(y))) dy →
∫

Ω×G
U(y, g) dy dg ,

and for all p ∈ [1,+∞]

(4.1.9)
(∫

Ω

| U(y, ρn(ϕ(y))) |p dy
)1/p

→
(∫

Ω×G
| U(y, g) |p dy dg

)1/p

,

where dg is the normalized Haar measure on G.
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Proof. The characters eα form an orthonormal basis in L2(G) and
∫
eα(g) dg = 0

when α 6= 0 and
∫
e0(g) dg = 1 (see e.g. [W]). Therefore, Lemma 3.1.3 and (4.1.7) imply

(4.1.8) for trigonometric polynomials. By density, (4.1.8) extends to U ∈ C0
0 (Ω × G).

Applying (4.1.8) to the function |U|p yields (4.1.9) when p < +∞.
Thus, ‖U ‖Lp ≤ (meas(Ω))1/p lim inf ‖un ‖L∞ , where un(y) := U(y, ρn(ϕ(y))). On

the other hand, ‖un ‖L∞ ≤ ‖U ‖L∞ . Since ‖U ‖Lp → ‖U ‖L∞ as p → +∞, this implies
that (4.1.9) is also satisfied when p = +∞.

Theorem 4.1.4. Suppose that (G, ρ∗) is admissible. Let H be given by (4.1.4).
For all u∗ ∈ Lpos,ϕ(H), p ∈ [1,+∞], there is a unique U ∈ Lp(Ω × G) such that for all
A ∈ C0

0 (Ω×G)

(4.1.10)
∫

Ω

un(y) A(y, ρn(ϕ(y))) dy →
∫

Ω×G
U(y, g) A(y, g) dy dg .

It satisfies

(4.1.11) ‖U ‖Lp(Ω×G) = lim
n→+∞

‖un ‖Lp(Ω) .

This defines a mapping Σ : u∗ → U from Lpos,ϕ(H) into Lp(Ω × G). This mapping is
surjective when p < +∞, and it kernel is Lp0.

When U ∈ C0
0 (Ω×G) and un(y) = U(y, ρn(ϕ(y))), Σ(u∗) is equal to U .

Proof. When, u∗ ∈ Pϕ(H), there is a trigonometric polynomial U such that un(y) =
U(y, ρn(ϕ(y))) and Lemma 4.1.3 implies that (4.1.11) is satisfied. In particular, U is
uniquely determined. This defines Σ acting from Pϕ(H) onto the space of trigonometric
polynomials.

For u∗ ∈ Lpos,ϕ(H), there are uk∗ ∈ Pϕ(H) such that

(4.1.12) lim sup
n→+∞

‖un − ukn ‖Lp(Ω×G) ≤ 2−k .

Then (4.1.11) implies that Uk := Σ(uk∗) is a Cauchy sequence in Lp(Ω × G), and thus
converge in this space. (4.1.11) also implies that the limit does not depend on the choice
of uk∗ which satisfies (4.1.12). This defines Σ on Lpos,ϕ(H) and (4.1.11) extends to this
space.

The range of Σ contains the space of trigonometric polynomials, and is closed by
(4.1.11). Thus the range of Σ always contains C0

0 (Ω×G) and is equal to Lp(Ω×G) when
p < +∞.

The convergence (4.1.10) follows from Lemma 4.1.3 when u∗ ∈ Pϕ(H). It extends to
all u∗ ∈ Lpos,ϕ(H)

Definition 4.1.5. Suppose that U ∈ Lp(Ω×G), 1 ≤ p ≤ +∞, and {un} is a bounded
sequence in Lp(Ω). We say that

(4.1.13) un(y) ∼ U(y, νn(ϕ(y))) in Lp

when u∗ ∈ Lpos,ϕ(H) and Σ(u∗) = U .
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Theorem 4.1.4 implies that when p < +∞, for all U ∈ Lp(Ω × G) there exist u∗ ∈
Lpos,ϕ(H) which satisfy (4.1.13). For all p, if u∗ and v∗ satisfy (4.1.13), un − vn converges
strongly to 0 in Lp. In addition, when U ∈ C0

0 (Ω ×G), u∗ satisfies (4.1.13) if and only if
un − U(y, ρn(ϕ(y))) converges strongly to 0 in Lp.

Remark 4.1.6 . Since the characters eα form an orthonormal basis of L2(G), the
Fourier expansion

(4.1.14) U(y, g) =
∑
α∈Ĝ

Uα(y) eα(g) ,

extends to U ∈ L2(Ω×G). It is isometric from L2(Ω×G) to `2(Ĝ;L2(Ω)) :

(4.1.15) || U ||2L2(Ω×G) =
∑
α∈Ĝ

||Uα ||2L2(Ω) .

Therefore, when p = 2, Theorem 4.1.4 is a particular case of Theorem 3.1.4. Moreover,
un ∼ U(y, νn(y)) in the sense of Definition 4.1.5 if and only if un ∼

∑
Uα e

i νn(α)ϕ in the
sense of Definition 3.1.5.

Proposition 4.1.7. Suppose that G is a compact Abelian group. Consider ρn ∈
Hom(Rm;G) and ρ̃n ∈ Hom(Rm;G). Suppose that (G, ρ∗) is admissible and the dual

homomorphisms νn ∈ Hom(Ĝ;Rm) and ν̃n ∈ Hom(Ĝ;Rm) satisfy

(4.1.16) ∀α ∈ Ĝ : ν̃n(α) − νn(α) → l(α) ∈ Rm as n→ +∞ .

Introduce H := {ν∗(α) : α ∈ Ĝ} and H̃ := {ν̃∗(α) : α ∈ Ĝ}. Then (G, ρ̃∗) is admissible
and for all p ∈ [1,+∞], Lpos,ϕ(H) = Lpos,ϕ(H̃). Moreover, U(y, ρn(ϕ(y))) ∼ Ũ(y, ρ̃n(ϕ(y)))
in Lp, if and only if

(4.1.17) U(y, g) = Ũ(y, g + l̂(ϕ(y)) ,

where l̂ ∈ Hom(Rm;G) is the dual homomorphism of l.

Proof. a) Since ν∗ satisfies (4.1.7), (4.1.16) implies that ν̃∗ also satisfies (4.1.7), thus
(G, ρ̃) is admissible.

b) Proposition 3.1.2 implies that for all p ∈ [1,+∞], Lpos,ϕ(H) = Lpos,ϕ(H̃).

c) Suppose that u∗ ∈ Lpos,ϕ(H) = Lpos,ϕ(H̃). The Fourier coefficients of the asso-
ciated profiles U and Ũ , are given by (4.1.10). They are the weak limit of respectively
un e− i νn(α)·ϕ and un e− i ν̃n(α)·ϕ. Thus, (4.1.16) implies that Uα = e i l(α)·ϕ Ũα. If l̂ is
the dual homomorphism of l, one has ei l(α)·ϕ = eα(l̂(ϕ)) and therefore Uα(y) eα(g) =
Ũα(y) eα(g + l̂(ϕ(y))). (4.1.17) follows.
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4.2. Group structures for the frequencies.

The basic idea for providing an at most countable set of scales with a group structure
is to use the group of finite linear combinations of an independent set of scales and restrict
to a subsequence for which all other scales converge to linear combinations of those in
the independent set. The complication is that the independence of scales depends on the
choice of subsequence, so that both must be constructed simultaneously. Thus, our first
step is to show that, after extracting a subsequence, every at most countable subset of
S := RN is contained in the set of finite linear combinations of some at most countable
set of sequences that tend to infinity at independent rates. As long as the coefficients are
taken to lie in some field, the set of such linear combinations forms a vector space, which
simplifies the construction and also provides the group that will be used to describe the
oscillations. In order to explicitly exhibit the resulting set of oscillations as being at most
countable, the dual group should be countable, so we will use a countable subfield F of
R rather than R itself. Since we will later desire that F should contain the coefficients of
all the resonance relations among a given set of phase functions, the choice of F will be
postponed to §4.3.

Definition 4.2.1. Let F be a subfield of R. An independent family of scales over F
is a family of real sequences {νj∗}j∈J , such that for all finite K ⊂ J and all λ ∈ FK\{0}

(4.2.1)
∣∣ ∑
j∈K

λj ν
j
n

∣∣ → +∞ as n→ +∞ .

An independent family of scales can be used to define dual homomorphisms ρn. To do
this, let Φ(J) denote the space of sequences {αj}j∈J of elements of any set Φ with all the
αj equal to zero except for a finite number of indices. Given a family of scales {νj∗}j∈J , a
subset Φ of some Rm, and α ∈ Φ(J), introduce

(4.2.2) νn(α) :=
∑
j

νjn αj .

Clearly (4.2.1) is equivalent to

(4.2.3) ∀α ∈ F (J)\{0} : |νn(α)| → +∞ as n→ +∞ .

Proposition 4.2.2. Suppose that A is an at most countable subset of S := RN.
Then for any subfield F of R, there are `, strictly increasing from N into N, and {νj∗}j∈J ,
an at most countable independent family of scales over F , such that

(4.2.4) ∀ξ∗ ∈ A , ∃α ∈ F (J) , ∃l ∈ R : ξ`(n) − νn(α)→ l as n→ +∞ .
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Proof. a) Let A = {ξj∗}. By induction on k, we construct finite dimensional spaces
Zk over F , linear mappings νkn from Zk into R and strictly increasing mappings `k from N
into itself, such that

(4.2.5) ∀α ∈ Zk\{0} : |νkn(α)| → +∞ as n→ +∞ ,

(4.2.6) ∀j ≤ k , ∃α ∈ Zk , ∃l ∈ R : ξj
`k(n)

− νkn(α)→ l as n→ +∞ .

Adding this sequence to A if necessary, we can assume that ξ0
n = 0. Therefore we can

start from Z0 = {0}. Suppose that Zk, νk∗ and `k are constructed. Consider the sequence
ηn := ξk+1

`k(n)
. Either,

(4.2.7) ∀α ∈ Zk ∀τ ∈ F : |τηn − νkn(α)| → +∞ as n→ +∞ ,

or there is a subsequence ησ(n), τ ∈ F , and α ∈ Zk such that

(4.2.8) τησ(n) − νkσ(n)(α) → l ∈ Rm as n→ +∞ .

In the first case, define Zk+1 := Zk × F , νk+1
n (α, τ) := νkn(α) + τηn and `k+1 := `k. In

the second case, since F is a field and Zk is a vector space over F , it is possible to take
τ in (4.2.8) to be 1, so define Zk+1 := Zk, νk+1

n := νkσ(n) and `k+1 := `k ◦ σ. In either
case, properties (4.2.5) and (4.2.6) are satisfied for Zk+1, ν

k+1
∗ , `k+1. In the first case, we

identify Zk with the subspace Zk×{0} of Zk+1. With σk = id in the first case and σk = σ
in the second case, note that

(4.2.9) Zk ⊂ Zk+1 , νk+1
n |Zk = νkσk(n) and `k+1 = `k ◦ σk .

b) Consider Z := ∪Zk, which by (4.2.9) is a vector space. It is isomorphic to F (J)

where J is at most countable. Zk is a finite dimensional subspace of Z and there exists a
Z ′k such that Z = Zk ⊕ Z ′k. We define the linear mapping νn, from Z into Rm by

(4.2.10)
{
νn(α) := νnn(α) when α ∈ Zn
νn(α) = 0 when α ∈ Z ′n

For k < n introduce `k,n := σk ◦ · · · ◦ σn−1 and for k = n, `k,n := id. (4.2.9) implies that

(4.2.11) ∀α ∈ Zk : νn(α) = νk`k,n(n)(α) when n ≥ k .

Thus, for α ∈ Zk, {νn(α)} is, for n ≥ k, a extracted subsequence of {νkn(α)}. Therefore
(4.2.5) implies that

(4.2.12) ∀α ∈ Z\{0} : |νn(α)| → +∞ as n→ +∞ .
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Consider the diagonal sequence `(n) := `n(n). Since `n = `k ◦ `k,n, the convergence
in (4.2.6) applied to the subsequence n→ `k,n(n), implies that

(4.2.13) ∀j , ∃α ∈ Z , ∃l ∈ R : ξj`(n) − νn(α)→ l as n→ +∞ .

c) By construction, Z has an at most countable basis, {ej}j∈J . For j ∈ J , let
νjn := νn(ej).Then, (4.2.12) means that {νj∗}j∈J is an independent family of scales over
F . Then Z ≈ F (J) and νn(α) =

∑
αjν

j
n for α =

∑
αje

j . Thus, (4.2.12) is equivalent to
(4.2.3).

Theorem 4.2.3. Suppose that A is an at most countable subset of S := (Rm)N.
Then, there are an increasing ` : N → N, a compact Abelian group G and a sequence
ρn ∈ Hom(Rm;G), such that (G, ρ∗) is admissible, and for all u∗ ∈ Lpos,ϕ(A), the extracted
subsequence u`(∗) belongs to Lpos,ϕ(H), where H is given by (4.1.4).

Furthermore, for any subfield F of R, the dual group Ĝ may be taken to be isomorphic
to (Fm)(J), where J is the index set of an at most countable independent family of scales
{νj∗}j∈J , and the dual νn of ρn can be taken to be defined by (4.2.2), where now α ∈
(Fm)(J).

Proof. The components of the at most countable subset A of (Rm)N define an at most
countable subset A1 of RN. Given a subfield F of R, construct ` and {νj∗}j∈J for A1 by
Proposition 4.2.2. Let Z = (Fm)(J) and define νn ∈ Hom(Z,Rm) by (4.2.2). Then (4.2.3)
implies that

(4.2.14) ∀α ∈ Z\{0} : |νn(α)| → +∞ as n→ +∞ .

Consider the discrete topology on Z. Then its dual group G is compact and Z is isomorphic
to the dual group of G (see e.g.[W]). Denote by eα the character on G which corresponds
to α ∈ Z. By duality, νn defines ρn ∈ Hom(Rm;G), which is uniquely determined by
(4.1.3) :

(4.2.15) ∀α ∈ Z , ∀t ∈ Rm : eα(ρn(t)) = ei νn(α)·t .

Thus, the set of sequences H associated to (G, ρ∗) by (4.1.4) is

(4.2.16) H := { ν∗(α) ; α ∈ Z } .

With (4.2.14), this shows that (G, ρ∗) is admissible in the sense of Definition 4.1.2. Finally,
the construction of A1 together with (4.2.4) ensure that

(4.2.17) ∀ξ ∈ A , ∃α ∈ Z , ∃l ∈ Rm : ξ`(n) − νn(α)→ l as n→∞ .

Proposition 3.1.2 and (4.2.17) imply that for all u∗ ∈ Lpos,ϕ(A), the subsequence u`(∗)
belongs to Lpos,ϕ(H).
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Remark 4.2.4. For the purpose of proving the first part of Theorem 4.2.3, it was not
necessary to break A down into the set A1 of scalar sequences, since the procedure of the
proof of Proposition 4.2.2 could be applied directly to vector-valued sequences to yield a
set of vector-valued independent scales. However, in order to treat resonances it is useful
to require that the same scales be present in all components, because resonances among
various components yield oscillations in other components.

Remark 4.2.5. Suppose that {νj∗}j∈J is an independent family of scales. Let F be a
subfield of R, and Φ = Fm. Introduce Z = Φ(J). We consider it as a discrete group and
introduce the dual group G. Then G = Φ̂J , where Φ̂ is the dual group of Φ considered as
a discrete group. Recall that there is a natural embedding ι of the dual space Θ := Φ∗

into Φ̂. For θ ∈ Θ, ι(θ) is the character on Φ

(4.2.18) ι(θ)(ξ) := ei ξ·θ .

Recall that continuous functions on Φ̂ are almost periodic functions on Θ.
The dual of νn ∈ Hom(Z; Φ) is ρn ∈ Hom(Θ;G) where

(4.2.19) ρn(θ) = {ι(νjn θ)}j∈J .

In particular, if g = {gj}j∈J , and U ∈ C0(G) is a function which depends only on a finite
number of variables (g1, . . . , gk), one can consider U as an almost periodic function Ũ on
Θk and

(4.2.20)
un(y) := U(ρn(ϕ(y))) = U(ι(ν1

n ϕ(y)), . . . , ι(νkn ϕ(y)))

= Ũ(ν1
n ϕ(y), . . . , νkn ϕ(y)) .

Remark 4.2.6. In Theorem 4.2.3, the countable set A is arbitrary. One can always
add a given set A0 to it. In particular, one can force the group H to contain a subgroup
equivalent in the sense of Proposition 4.1.7 to a given subgroup H0. This will be used in
the study of the Cauchy problem to compare the group structures (G0, ρ0,∗) associated to
the initial data to the group structures (G, ρ∗) defined by the solutions. More precisely,
suppose that (G0, ρ0,∗) is admissible and A ⊂ S contains H0 := {ν0,∗(α) : α ∈ Ĝ0}. Let
Z, ν∗ and ` be given by Proposition 2.4.2. Let G := Ẑ be the dual group of Z and let
ρn ∈ Hom(Rm;G) the dual homomorphism of νn. We identify Z with Ĝ. Then (4.2.17)
implies that

(4.2.21) ∀α ∈ Ĝ0 , ∃β ∈ Ĝ , ∃l ∈ Rm : ν0,`(n)(α) − νn(β)→ l as n→∞ .

(4.2.14) implies that for all α ∈ Ĝ0 there is a unique β ∈ Ĝ and therefore a unique l ∈ Rm
such that (4.2.21) holds with β = σ(α) and l = l(α).

Since (G0, ρ0,∗) is admissible, σ is injective. Therefore its dual homomorphism π ∈
Hom(G;G0) is surjective. In particular, G0 is isomorphic to a quotient group of G. More-
over, if one considers

(4.2.22) ρ̃0,n := π ◦ ρn ∈ Hom(Rm;G0) ,
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(4.2.21) implies that ρ0,`(∗) and ρ̃0,n are equivalent in the sense described in Proposition
4.1.7, that is, ν0,`(∗) and ν̃0,n, the dual of ρ0,n satisfy

(4.2.23) ∀α ∈ Ĝ0 : ν0,`(n)(α) − ν̃0,n(α)→ l(α) as n→∞ .

4.3. Groups of frequencies adapted to resonances.

Theorems 4.2.3 and 3.2.1 ensure that the oscillations of a scalar sequence with respect
to a finite number of phases can be given a group structure. In this subsection we extend
this result in two ways, to include the oscillations of all continuous functions of single scalar
sequences and to take into account the resonances among the phases for a set of scalar
sequences. We begin by defining the additional conditions the group structure should
satisfy. Additional properties of resonances that are not needed for the group structure
will be described in the next section.

Definition 4.3.1. Consider a compact Abelian group G and a sequence ρn ∈
Hom(Rm;G). Let un be a bounded sequence in L∞(Ω). Then (G, ρ∗) is said to be complete
for the sequence u∗ and the phase ϕ when (G, ρ∗) is admissible and

(4.3.1) ∀f ∈ C0(C) : f(u∗) ∈ L2
os,ϕ(H) + L2

no,ϕ ,

where H is defined in (4.1.4).

In order to describe resonances we let the space Φ := Rm of frequencies be the product
of spaces Φk := Rmk , and let Θk denote the dual of Φk. Also, define Φ]k := {0} × . . . ×
{0} × Φk × {0} . . .× {0} ⊂ Φ, with Φk in the k-th position.

Definition 4.3.2 A group R of resonances is a subspace of the vector space Φ over
R such that

(4.3.2) ∀ k, R ∩ Φ]k = {0}.

Definition 4.3.3 A subfield F of R is consistent with a group R ⊂ Rm of resonances
if there exists a basis for R whose elements belong to Fm.

Lemma 4.3.4. For any group R of resonances there exists a countable subfield F of
R that is consistent with R.

Proof. Choose any basis {vi} for R, and let {aj}pj=1 be the set of all components of
the vi. The subfield F := Q(a1, . . . , ap) of R obtained by adjoining the ai to the rationals is
countable, as can be seen from the explicit representation of the field obtained by adjoining
an element to a subfield (e.g. [Her, p. 210]). By construction, each vi belongs to Fm.
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Definition 4.3.5. For k ∈ {1, . . . , N}, consider a compact Abelian group Gk and a

sequence ρk,n ∈ Hom(Θk, Gk). Let νk,n ∈ Hom(Ĝk,Φk) denote the dual homomorphism of

ρk,n. For α = (α1, . . . αN ) ∈ Ĝ1× . . .× ĜN , introduce νn(α) := (ν1,n(α1), . . . , νN,n(αN )) ∈
Φ, and ν̃n(α) its class in ΦR := Φ/R. We say that

(
(G1, ρ1,∗), . . . , (GN , ρN,∗)

)
is admissible

for R when

i) for all k ∈ {1, . . . , N}, (Gk, ρk,∗) is admissible in the sense of Definition 4.1.2,

ii) there exists a subgroup Z of Ĝ1 × . . .× ĜN such that

(4.3.3)
{
∀α ∈ Z , ∀n ∈ N : νn(α) ∈ R ,
∀α /∈ Z : |ν̃n(α)| → +∞ , as n→ +∞ .

An important effect of resonance is the creation of new oscillations. In order to account
for this in the group structure, the frequencies νk,n(αk) on the k-th mode must include all
frequencies that can be created by nonlinear interaction of the other modes. To make this
condition precise, define Φ̃k to be the image of Φ]k in the quotient space Φ/R.

Definition 4.3.6. For k ∈ {1, . . . , N}, consider a compact Abelian group Gk and a
sequence ρk,n ∈ Hom(Θk, Gk). Introduce νn and ν̃n as above. Then(

(G1, ρ1,∗), . . . , (GN , ρN,∗)
)

is said to be closed for resonances when it satisfies the following condition :

for all k ∈ {1, . . . , N}, if l̃n is a bounded sequence in Φ/R and α = (α1, . . . αN ) ∈
Ĝ1 × . . . × ĜN are such that for all n in a subsequence, ν̃n(α) − l̃n ∈ Φ̃k, then there

exists β ∈ Ĝ1 × . . .× ĜN such that βj = 0 for all j 6= k, and ν̃n(β) = ν̃n(α) for all n
in the subsequence.

The next theorem states the existence of groups and homomorphisms (Gk, ρk,∗) which
are admissible for R, closed for resonances and complete for subsquences uk,`(∗). Morover,
they can be chosen so that they extend a given structure (G0

k, ρ
0
k,∗). This will be used in

section 7.3, with (G0
k, ρ

0
k,∗) defined by the initial data.

Theorem 4.3.7. For k ∈ {1, . . . , N}, suppose that uk,n is a bounded sequence in
L∞(Ω). Assume that the mk-dimensional vector-valued phases ϕk satisfy (3.0.1), and
with Φ as above, let R be a group of resonances. Then:

i) There exist a subsequence ` : N → N, groups Gk, and sequences of homomor-
phisms ρk,n ∈ Hom(Θk;Gk), such that

(
(G1, ρ1,∗), . . . , (GN , ρN,∗)

)
is admissible for R,

closed for resonances and, for all k ∈ {1, . . . , N}, (Gk, ρk,∗) is complete for uk,`(∗) and the
phase ϕk, in the sense of Definition 4.3.1. Moreover, one can choose the Gk such that their
dual groups Ĝk are countable.
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ii) Suppose that
(
(G0

1, ρ
0
1,∗), . . . , (G

0
N , ρ

0
N,∗)

)
is admissible for R and the Ĝ0

k are
countable. Then, one can choose `, the groups, and the homomorphisms in i) such that

for all k there is a surjective k ∈ Hom(Gk, G0
k) and there is lk ∈ Hom(Ĝ0

k; Φk) such that

(4.3.4) ∀α ∈ Ĝ0
k , ρ̂k,n(̂k(α))− ρ̂0

k,`(n)(α)→ lk(α) as n→ +∞ .

Moreover, if Z0 denotes the subgroup of Ĝ0
1 × . . .× Ĝ0

N such the ν0
k,∗ satisfy (4.3.3), then

Z0 = {α ∈ Ĝ0
1 × . . .× Ĝ0

N ; ̂(α) ∈ Z}, where ̂ := (̂1, . . . , ̂N ).

Proof. a) For each k ∈ {1, . . . , N}, consider the sequences u(l,p)
n := (uk,n)l (un)p for

l, p in N. Since un is bounded in L∞ and Ω is bounded, the sequences u(l,p)
∗ are bounded

in L2(Ω). Thus, Theorem 3.2.4 implies that there exist at most countable set Ak ⊂ ΦNk
and ` such that

(4.3.5) f(uk,`(∗)) ∈ L2
os,ϕk

(Ak) + L2
no,ϕk

,

for all monomials f(λ) = λl λp. Taking linear combinations shows that (4.3.5) is satisfied
for all polynomial function f of λ and λ.

Suppose that f ∈ C0(C). Fix ρ > sup ||uk,n||L∞(Ω). If fj is a sequence of polynomials
which converge uniformly to f on the ball {|λ| ≤ ρ}, then fj(uk,n) → f(uk,n) in L∞(Ω)
as j → ∞, uniformly in n. Since (4.3.5) is satisfied for fj , and L2

os,ϕ(H) + L2
no,ϕ is

asymptotically closed, (4.3.5) is satisfied for all f ∈ C0(C). When the (G0
k, ρ

0
k,∗) are given,

one can choose Ak such that it also contains the sequences ρ̂0
k,∗(α), α ∈ Ĝ0

k. Via the
embedding Φ]k of Φk into Φ, we can consider Ak to lie in ΦN. Then define A to be the
union of the Ak. Let F be a subfield of R that is consistent with R, and use Theorem 4.2.3
to construct ` : N→ N, Ĝ = (Fm)(J), and an at most countable independent set of scales
{νj∗}j∈J for this A.

b) The group (Fm)(J) factors into the product of groups Hk := (Fmk)(J), and (4.2.2)
defines homomorphisms νk,n ∈ Hom(Hk,Φk). Since {νj∗}j∈J is an independent family of
scales, the dual groups Gk := Ĥk and dual homomorphisms ρk,n := ν̂k,n are admissible in
the sense of definition 4.1.2. Furthermore, the construction of A ensures that the (Gk, ρk,∗)
are complete for uk,`(∗). Since F is countable, so are the Hk.

c) Write αj ∈ Fm as αj = (αj1, . . . , α
j
N ), with αjk ∈ Fmk . Then

(4.3.6) νn(α) :=
∑
j∈J

νjn α
j =

(
ν1,n(α1), . . . , νN,n(αN )

)
∈ Φ

Introduce next Z := (R ∩ Fm)(J) ⊂
∏
Hk. Then Z is a subgroup of

∏
Hk. When α ∈ Z,

then α = (αj) and all the αj belong to R. Thus (4.3.6) and the fact that R is a vector
space imply that νn(α) ∈ R for all n.

Let ˜ denote the quotient map Φ→ Φ/R. Since R is closed under scalar multiplication,

(4.3.7) ∀r ∈ R ∀v ∈ Φ, r̃v = rṽ .
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Hence, by (4.3.6),

(4.3.8) ν̃n(α) =
∑
j∈J

νjn α̃
j ∈ Φ/R .

When α /∈ Z, at least one of the α̃j does not vanish. This means that one of its components
in a basis of Φ/R is not equal to zero. Since νj∗ is an independent family of scales, this
implies that the same component of ν̃n(α) tends to infinity. Therefore |ν̃n(α)| → ∞. This
proves that the dual groups Gk := Ĥk and the dual homomorphisms ρk,n = ν̂k,n are
admissible for R.

d) Suppose that for all n, ν̃n(α) − l̃n ∈ Φ̃k, where l̃n is a bounded sequence in
Φ̃ := Φ/R. Thus the image of ν̃n(α) in the quotient space Φ̃/Φ̃k is bounded. Take the
image of (4.3.8) in this quotient space. Since νj∗ is an independent family of scales, we
conclude that the images of all the α̃j are equal to zero, and thus α̃j ∈ Φ̃k for all j ∈ J .
Therefore, there are βj ∈ Φ]k and γj ∈ R such that αj = βj + γj . We want to show that
βj and γj lie in Fm. Now any δ ∈ Φ can be written as (δ1, . . . , δN ) ∈ Φ1× . . .×ΦN ; define
δnon-k = (δ1, . . . , δk−1, δk+1, . . . , δN ). Let {vi} be a basis for R with each vi ∈ Fm; then,
since βjnon-k = 0,

(4.3.9) αjnon-k = γjnon-k =
∑
i

rji v
i
non-k.

Now the vinon-k are linearly independent, since if
∑
i civ

i
non-k = 0 then

∑
i civ

i lies in Φ]k
and so, by (4.3.2), must equal zero; the independence of the vi then implies that all the
ci vanish. This implies that the matrix M having elements vinon-k · vlnon-k is nonsingular.
Taking the inner product of (4.3.9) with each vlnon-k therefore yields an invertible linear
system for the the rji . Since the coefficients of the matrix and inhomogeneous term all lie
in F , so do the rji . This implies that γj , and hence also βj , lie in Fm. Therefore the {γj}
and {βj} define γ ∈ Z and β = (β1, . . . , βN ) ∈ H1 × . . .×HN with βl = 0 for l 6= k, such
that α = β + γ. In particular, ν̃n(α) = ν̃n(β). This proves the property of closedness for
resonances.

e) Suppose that (G0
k, ρ

0
k,∗) were given. Then we chose the Ak in a) so that they contain

the sequences ν0
k,∗(α) := ρ̂0

k,∗(α), α ∈ Ĝ0
k. Thus

(4.3.10) ∀α ∈ Ĝ0
k , ∃β ∈ Hk , ∃l ∈ Φk : ν0

k,`′(n)(α)− νk,n(β)→ l as n→ +∞ .

Since νk,∗ is admissible , this defines a group mapping σk : α → β from Ĝ0
k to Hk = Ĝk.

Since ν0
k,∗ is admissible, this mapping is injective. Therefore, the dual homomorphism k :=

σ̂k ∈ Hom(Gk;G0
k) is onto. Moreover, (4.3.10) defines l = l(α) with l ∈ Hom(Hk; Φk) and

(4.3.4) follows. Therefore, with H0 := Ĝ0
1×. . .×Ĝ0

N , ̂ := (̂1, . . . , ̂N ) and l := (l1, . . . , lN ),
one has

(4.3.11) ∀α ∈ H0 , νn(̂(α))− ν0
`(n)(α)→ l(α) as n→ +∞ .
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Passing to the quotient in Φ/R, this implies that

(4.3.12) ∀α ∈ H0 , ν̃n(̂(α))− ν̃0
`(n)(α)→ l̃(α) as n→ +∞ .

When α ∈ Z0, ν̃0
`(n)(α) = 0 and ν̃n(̂(α)) has a finite limit when n → +∞. The admissi-

bility condition (4.3.3) requires that ̂(α) ∈ Z. Conversely, if ̂(α) ∈ Z, then ν̃n(̂(α)) = 0
and ν̃0

`(n)(α) has a finite limit. The admissibility condition (4.3.3) implies that α ∈ Z0.

Remark 4.3.8. If a uniformly bounded sequence u∗ lies in L2
os,ϕ(H) then so does

f(u∗) for any continuous f . However, if a uniformly bounded sequence u∗ lies in L2
os,ϕ(H)+

L2
no,ϕ then functions of u∗ do not necessarily lie in L2

os,ϕ(H) + L2
no,ϕ. The reason is that

L∞ ∩ L2
no,ϕ is not closed under multiplication. For example, if ϕ = x then einx+in2x2

and
e−in

2x2
both lie in L2

no,ϕ, but their product einx does oscillate with the phase ϕ. This is
why the construction of the set A in part a) of the proof needed to explicitly include the
oscillations of powers.

5. Resonant trilinear interaction.

In this section we first describe the group R of 3-resonances of a finite set of vector
fields, and then use Theorem 2.1 and the group structure developed in the previous section
to prove Theorem 1.6, which provides a formula for the weak limit of the product of three
bounded sequences.
5.1. The equations and resonances.

Consider the semilinear system

(5.1.1) Xkuk := (∂t − ck(t, x) ∂x)uk = Fk(t, x, u1, · · · , uN ) , for k ∈ {1, · · · , N} .

We assume that the speeds ck are C∞ and c1 < c2 < · · · < cN . The nonlinearities are of
the form

(5.1.2) Fj(y, u) =
∑
k,l

Fj,k,l(y, uj , uk, ul) ,

where the Fj,k,l are C∞ functions on R2×R3. For example, (5.1.2) is satisfied either when
N ≤ 3 or when the nonlinearities Fk are quadratic. There is no restriction in assuming
that the sum runs over indices (k, l) such that j 6= k 6= l 6= j.

Consider an open initial interval ω ⊂ R and a domain

(5.1.3) Ω := { (t, x) ∈ R2 ; 0 < t < T and γ1(t) < x < γN (t) } ,

where γ1 [resp. γN ] is the integral curve of X1 [resp. XN ] starting at the left [resp.
right] end of ω. T is small enough so that γ1(t) < γN (t) for 0 ≤ t ≤ T . In particular, Ω is
contained in the domain of determinacy of ω.
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For any triplet (Xj , Xk, Xl), the existence of non trivial resonances is characterized
locally, by the vanishing of a geometric invariant associated to the 3-web generated by
these fields, i.e. the set of the three foliations by integral curves. If there exists a non
trivial resonance on Ω′, then the curvature vanishes on Ω′. Conversely, if the curvature
vanishes on a neighborhood of a point, then there exists a nontrivial resonance on a possibly
smaller neighborhood ([P], [BB]). Since Ω is contractible and the dimension of the space
of resonances on any connected Ω′ is not greater than 1, the vanishing of the curvature on
Ω is equivalent to the existence of a nontrivial resonance on Ω. For a detailed discussion,
we refer the reader to [JMR 1] [JMR 3].

Assumption 5.1.1. For all triplets of distinct integers (j, k, l) ∈ {1, · · · , N}3, either
the curvature of the 3-web generated by (Xj , Xk, Xl) vanishes everywhere on Ω, or does
not vanish almost everywhere on Ω.

Let R denote the set of triplets (j, k, l) ∈ {1, · · · , N}3, j 6= k 6= l 6= j, such that the
curvature of the 3-web generated by (Xj , Xk, Xl) vanishes identically on Ω. For (j, k, l) ∈
R, choose resonant phases ψk,lj ∈ C∞(Ω;R) such that ψk,lj = ψl,kj and

(5.1.4) Xj ψ
k,l
j = 0 and ψk,lj + ψl,jk + ψj,kl = 0 , on Ω .

For j ∈ {1, . . . , N}, consider a finite dimensional space Σj ⊂ C∞(Ω;R) of solutions of
Xjψ = 0, which contains all the resonant phases ψk,lj , (j, k, l) ∈ R. Assume that for all
ψ ∈ Σj\{0}, dψ 6= 0 almost everywhere on Ω. We fix a basis (ϕj,1, . . . , ϕj,mj ) of Σj . This
defines a function ϕj ∈ C∞(Ω; Θj), Θj := Rmj , which satisfies

(5.1.5) Xj ϕj = 0 .

Denote by Φj the dual space of Θj . Then, the mapping ξ → ξ ·ϕj is an isomorphism from
Φj to Σj , and therefore :

(5.1.6) ∀ξ ∈ Φj\{0} : d(ξ · ϕj) 6= 0 a.e. on Ω ,

(5.1.7) ∀(j, k, l) ∈ R , ∃ ηk,lj ∈ Φj\{0} : ψk,lj = ηk,lj · ϕj .

Note that ηk,lj = ηl,kj .
Introduce Φ := Φ1 × . . .×ΦN . For (j, k, l) ∈ R, let Rj,k,l denote the one dimensional

subspace of Φ generated by ξ = (ξ1, . . . , ξN ) such that ξp = 0 when p /∈ {j, k, l} and
ξp = ηq,rp when p ∈ {j, k, l}, and {p, q, r} = {j, k, l}. The space generated by the sum of
the Rj,k,l, is denoted by R. This is the space of resonances generated by 3-resonances.
Note too that (5.1.4) and (5.1.7) imply that

(5.1.8) ∀ξ = (ξ1, . . . , ξN ) ∈ R : ξ · ϕ := ξ1 · ϕ1 + . . . + ξN · ϕN = 0 .
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Introduce Φ]j := {0} × . . .× {0} × Φj × {0} . . .× {0}, with Φj in the j-th position. Then
(5.1.6) and (5.1.8) imply that

(5.1.9) Φ]j ∩R = {0} .

Hence R satisfies Definition 4.3.2. Similarly, introduce Φ]j,k,l the space generated by Φ]j ,
Φ]k and Φ]l . Since the dimension of the space of resonances for three vector fields is at most
one, one has

(5.1.10) Φ]j,k,l ∩R =
{
Rj,k,l when (j, k, l) ∈ R ,
{0} when (j, k, l) /∈ R .

Examples 5.1.2. a) When there are no resonances, one can choose m1 = . . . =
mN = 0. This is the situation studied in [JMR 3]. One can also choose arbitrary spaces
Θj and ϕj ∈ C∞(Ω,Θj) satisfying (5.1.5) (5.1.6). This corresponds to the situation of
nonlinear geometric optics (see [JMR 1]).

b) Suppose that the vector fields Xk = ∂t − ck∂x have constant coefficients. Then,
for all (j, k, l) with j 6= k 6= l 6= j there is a resonance , with

(5.1.11) ψk,lj (t, x) :=
x+ cjt

(cj − ck)(cj − cl)
:= ηk,lj (x+ cjt) .

One can choose Θj := R and ϕj := x + cjt. Then dim Φ = N and dimR = N − 2. Φ/R
is isomorphic to the space of linear phases generated by the coordinate functions t and x.
Note too that in general the ηk,lj for fixed j are not all rational multiples of a fixed real
number, so that it is not possible to redefine the phase ϕj to make them all rational. This
shows that in general it is not possible to take the subfield F of R from §4.3 to be the
rationals.

Larger spaces Θj allow us to incorporate the analysis of the resonant nonlinear geo-
metric optics.

c) When the vector fields have variable coefficients, the analysis of resonances can
force us to consider spaces Φ of dimension greater than 1. For example, consider

(5.1.12) X1 := ∂t , X2 := ∂t − ∂x , X3 := ∂t + ∂x , X4 := ∂t −
b′(x+ t)
a′(x)

(∂t − ∂x) .

where a and b are smooth functions on R and a′ 6= 0. In this case, (1, 2, 3) ∈ R and
(1, 2, 4) ∈ R. Resonant phases are ψ2,3

1 = −2x, ψ3,1
2 = x+t, ψ1,2

3 = x−t and ψ2,4
1 = −a(x),

ψ4,1
2 = b(x + t), ψ1,2

4 = a(x) − b(x + t). Since Σ1 must contain ψ2,3
1 and ψ2,4

1 , one has
necessarily m1 ≥ 2 when a is not a linear function. In this case, (5.1.6) is equivalent to
saying that the level sets {a′(x) = λ} have Lebesgue measure equal to zero. This is a very
mild assumption, but it is not automatically satisfied.
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5.2. Resonant interaction of oscillations.

We now turn to proving a generalization of Theorem 1.6. Although we will need to
consider arbitrary triples {j, k, l} ∈ {1, . . . , N}3, for notational simplicity we first consider
the case when N = 3 and a resonance exists. In this subsection we will denote the resonant
phases by ψk = ηk · ϕk, so that R = R (η1, η2, η3). Introduce

(5.2.1) Ψ := R⊥ ⊂ Θ1 ×Θ2 ×Θ3 .

The resonance relation ψ1 + ψ2 + ψ3 = 0 implies that ϕ := (ϕ1, ϕ2, ϕ3) is valued in Ψ.
For k ∈ {1, 2, 3}, consider a compact abelian group Gk and a sequence ρk,n in

Hom(Θk;G), such that (Gk, ρk,∗) is admissible. Introduce the dual groups Ĝk and the dual
homomorphisms νk,n ∈ Hom(Ĝk; Φk). For α = (α1, α2, α3) ∈ Ĝ1 × Ĝ2 × Ĝ3, introduce
νn(α) := (ν1,n(α1), ν2,n(α2), ν3,n(α3)) ∈ Φ and ν̃n(α) the class of νn(α) in ΦR := Φ/R.

Suppose that there is a subgroup Z ⊂ Ĝ1 × Ĝ2 × Ĝ3 such that

(5.2.2) ∀α ∈ Z , ∀n ∈ N : νn(α) ∈ R

(5.2.3) ∀α /∈ Z : |ν̃n(α)| → +∞ in ΦR , as n→ +∞ .

Introduce G ⊂ G1×G2×G3 the group of characters on Ĝ1× Ĝ2× Ĝ3 which are trivial on
Z. Denote by πk ∈ Hom(G;Gk) the restriction to G of the projection on the k-th factor.

For k ∈ {1, 2, 3}, introduce Hk := {νk,∗(αk) : αk ∈ Ĝk} ⊂ (Φk)N, the set of
frequencies (2.3.4) associated to (Gk, ρk,∗). Consider bounded sequences uk,∗ in Wk(ω)
such that,

(5.2.4) uk,∗ ∈ L2
os,ϕk

(Hk) + L2
no,ϕk

.

Consider ũk,∗ ∈ L2
os,ϕk

(Hk) and rk,∗ ∈ L2
no,ϕk

, such that uk,n = ũk,n+rk,n. Theorem 4.1.4
implies that there are Uk ∈ L2(Ω×Gk) such that

(5.2.5) ũk,n(y) ∼ Uk(y, ρk,n(ϕk(y))) .

Proposition 3.1.6 implies that ũk,∗ and rk,∗ are uniquely determined, up to sequences which
converge strongly to zero in L2(Ω). Therefore, Uk is uniquely determined by the sequence
uk,∗. Our goal is to prove the following result :

Theorem 5.2.1. Under the assumptions above, one has :

i) the sequence u1,n u2,n u3,n(y) is bounded in L1
loc(Ω),

ii) U1(y, π1(g)) U2(y, π2(g)) U3(y, π3(g)) is locally integrable on Ω×G,

iii) for all a ∈ C∞0 (Ω),

(5.2.6)

∫
Ω

a(y) u1,n(y) u2,n(y) u3,n(y) dy →∫
Ω×G

a(y) U1(y, π1(g)) U2(y, π2(g)) U3(y, π3(g)) dy dg ,

as n→ +∞.
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Example 5.2.2. Consider the case where m1 = m2 = m3 = 1 and ϕk = ψk.
Then Φ = R3 and R is generated by (1, 1, 1). Consider a compact group G0 and ρ0,n ∈
Hom(R;G0). Suppose that (G0, ρ0,∗) is admissible. Consider three copies Gk of G0 and
define ρk,n := ρ0,n. Thus νk,n = ν0,n ∈ Hom(Ĝ0;R). Introduce Z the group of the
α := (α1, α2, α3) ∈ (Ĝ0)3 such that α1 = α2 = α3. Then (5.2.2) and (5.2.3) are satisfied.

In this case

(5.2.7) G = { (g1, g2, g3) ∈ (G0)3 : g1 + g2 + g3 = 0 } .

It can be parametrized by (g1, g2), and the limit in (5.2.6) is equal to

(5.2.8)
∫

Ω×G0×G0

a(y) U1(y, g1) U2(y, g2) U3(y,−g1 − g2) dy dg1 dg2 .

The first part of Theorem 5.2.1 is proved in Theorem 2.1. The first step in the proof
of the other two parts is to show that the profiles Uk inherit smoothness from the uk,∗.

Proposition 5.2.3. i) For k ∈ {1, 2, 3}, Xk(y, ∂y)Uk ∈ L2(Ω×Gk).
ii) U1(y, π1(g)) U2(y, π2(g)) U3(y, π3(g)) ∈ L1

loc(Ω×G).

Proof. a) Theorem 4.1.4 implies that for all A ∈ C0
0 (Ω×Gk)

(5.2.9)
∫

Ω

uk,n(y) A(y, ρn(ϕk(y))) dy →
∫

Ω×Gk
Uk(y, g) A(y, g) dy dg .

Consider trigonometric polynomials

(5.2.10) A(y, g) =
∑
α

aα(y) eα(g)

where the sum is carried over a finite subset of Ĝk and aα ∈ C∞0 (Ω). Then, denoting by
X∗k(y, ∂y) the adjoint operator of Xk(y, ∂y), one has

(5.2.11) X∗k(y, ∂y)A(y, g) =
∑
α

(
X∗k(y, ∂y) aα(y)

)
eα(g) .

Introduce

(5.2.12) ak,n(y) := A(y, ρn(ϕk(y))) =
∑
α

aα(y) ei νn(α)·ϕk(y) ,

where νn ∈ Hom(Ĝk;R) is the dual homomorphism of ρn. Since Xkϕk = 0, remark that

(5.2.13) X∗k(y, ∂y) ak,n(y) =
(
X∗k(y, ∂y)A

)
(y, ρn(ϕk(y))) .
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Thus, Theorem 4.1.4 implies that for all trigonometric polynomial A, one has

(5.2.14)
∫

Ω

(Xk uk,n)(y) ak,n(y) dy →
∫

Ω×Gk
Uk (X∗k A) dy dg .

By Theorem 4.1.4, the L2 norm of ak,n is asymptotically equal to the L2 norm of A.
Therefore, the density of trigonometric polynomials in L2(Ω×G), and the boundedness of
uk,∗ in Wk(Ω) imply that there is Fk ∈ L2(Ω×Gk) such that

(5.2.15)
∫

Ω×Gk
Uk (X∗k A) dy dg =

∫
Ω×Gk

Fk A dy dg .

This means that Xk(y, ∂y)Uk(y, g) = Fk(y, g) ∈ L2(Ω×Gk).
b) Expand Uk and Fk into Fourier series,

(5.2.16) Uk(y, g) ∼
∑
α

Uk,α(y) eα(g) , Fk(y, g) ∼
∑
α

Fk,α(y) eα(g) .

Then, (5.2.15) applied to monomials a(y)eα(g), implies that XkUk,α = Fk,α. This proves
that Uk,α ∈Wk(Ω). Moreover, Plancherel’s formula implies that

(5.2.17)
∑
α

‖Uk,α ‖2Wk(Ω) = ‖Uk ‖2L2(Ω×Gk) + ‖Fk ‖2L2(Ω×Gk) .

Introduce the spaceWk(Ω×Gk) of functions Uk ∈ L2(Ω×Gk) such thatXkUk ∈ L2(Ω×Gk),
equipped with the norm

(5.2.18) ‖Uk ‖Wk(Ω×Gk) := ‖Uk ‖L2(Ω×Gk) + ‖Xk Uk ‖L2(Ω×Gk) .

Then, (5.2.17) implies that the finite sums

(5.2.19) Vk(y, g) =
∑
α

Uk,α(y) eα(g) ,

with Uα ∈Wk(Ω), are dense in Wk(Ω×Gk).
c) For k ∈ {1, 2, 3} consider finite sums of the form (5.2.19). Introduce

(5.2.20) W(y, g) := V1(y, π1(g)) V2(y, π2(g)) V3(y, π3(g)) .

The first part of Theorem 2.1 implies that for all relatively compact subset ω contained in
Ω, there is a constant C such that

(5.2.21) ‖W( . , g) ‖L1(ω) ≤ C A1(π1(g)) A2(π2(g)) A3(π3(g)) ,

with

(5.2.22) Ak(gk) := ‖ Vk( . , gk) ‖Wk(Ω) .
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We now use the following result : if G and G′ are compact Abelian groups, each
equipped with its normalized Haar measure, and if π is a continuous homomorphism from
G onto G′, then for all integrable function f on G′, f ◦ π is integrable on G and

(5.2.23)
∫
G′
f(g′) dg′ =

∫
G

f(π(g)) dg .

Since ηk 6= 0 and (Gk, ρk,∗) is admissible, (Ĝ1 × Ĝ2 × {0}) ∩ Z = {0}. This implies
that (π1, π2) maps G onto G1 × G2. Thus, G1 × G2 is a quotient group of G and for all
functions F on G1 ×G2 :

(5.2.24)
∫
G

F (π1(g), π2(g)) dg =
∫
G1×G2

F (g1, g2) dg1 dg2 .

Similarly, π3 is surjective from G to G3 and

(5.2.25)
∫
G

F (π3(g)) dg =
∫
G3

F (g3) dg3 .

Therefore, (5.2.21) implies that

(5.2.26) ‖W ‖L1(ω×G) ≤ C ‖A1 ‖L2(G1) ‖A2 ‖L2(G2) ‖A3 ‖L2(G3) .

Thus

(5.2.27) ‖W ‖L1(ω×G) ≤ C ‖ V1 ‖W1(Ω×G1) ‖ V2 ‖W2(Ω×G2) ‖ V3 ‖W3(Ω×G3) .

This estimate implies that the mapping (V1,V2,V3) → W extends continuously from
W1(Ω×G1)×W2(Ω×G2)×W3(Ω×G3) to L1

loc(Ω×G).

Proposition 5.2.4. Suppose that Uk ∈ L2(Ω×Gk) is such that XkUk ∈ L2(Ω×Gk).
Then, there exists vk,∗ ∈ L2

os,ϕk
(H) such that

i) vk,n(y) ∼ Uk(y, ρn(ϕk(y))) in L2(Ω),
ii) vk,∗ is bounded in Wk(Ω).

Proof. Approximate Uk by partial sums of its Fourier series. Then (5.2.18) implies
that for all N , there is a finite sum VNk of the form (5.2.19), such that

(5.2.28) ‖Uk − VNk ‖Wk(Ω×Gk) ≤ 2−N .

Introduce

(5.2.29) vNk,n(y) := VNk (y, ρn(ψk(y))) .
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Then, (5.2.13) and Theorem 4.1.4 imply that

(5.2.30) lim
n→+∞

‖ vN+1
k,n − vNk,n ‖Wk(Ω) = ‖ VN+1

k − VNk ‖Wk(Ω×G) ≤ 2−N .

Thus, there is n(N) such that for n ≥ n(N)

(5.2.31) ‖ vN+1
k,n − vNk,n ‖Wk(Ω) ≤ 21−N .

One can assume that n(N) increases with N and tends to +∞ as N → +∞. Introduce

(5.2.32) vk,n := v0
k,n +

∑
{N ;n(N)≤n}

( vN+1
k,n − vNk,n ) = v

N(n)+1
k,n ,

where N(n) is the largest integer N such that n(N) ≤ n). Then (5.2.31) implies that vk,∗
is bounded in Wk(Ω). Moreover, for all N , (5.2.31) implies that for n ≥ n(N), one has

(5.2.33) ‖ vk,n − vNk,n ‖L2(Ω) ≤ ‖ vk,n − vNk,n ‖Wk(Ω) ≤ 22−N .

With (5.2.28) and (5.2.29), this implies that vk,n(y) ∼ Uk(y, ρn(ϕk(y))) in L2(Ω).

Lemma 5.2.5. For all ξ = (ξ1, ξ2, ξ3) ∈ Φ\R :

(5.2.34) ξ · dϕ = ξ1 · dϕ1 + ξ2 · dϕ2 + ξ3 · dϕ3 6= 0 a.e. on Ω .

Proof. The statement is local. Therefore, one can choose local coordinates such that
ψ1 = t, ψ2 = x and ψ3 = t+ x. Thus, ξ1 · ϕ1 = a(t), ξ2 · ϕ2 = b(x) and ξ3 · ϕ3 = c(t+ x).
Then, ξ · dϕ vanishes on the closed set K of points (t, x) such that

(5.2.34) a′(t) = b′(x) = − c′(t+ x) .

If all ξk are parallel to ηk, then a′, b′ and c′ are constant, and K = ∅ if ξ /∈ R. Suppose
that one of the ξk is not parallel to ηk, say ξ1. Then (5.1.6) implies that d(a(t) + γt) 6= 0
a.e. which implies that for all γ, the set of t such that a′(t) = γ is negligible. Therefore,
for all x, the set of t such that (t, x) ∈ K is negligible, and the Lebesgue measure of K
vanishes.

Corollary 5.2.6. For α = (α1, α2, α3) ∈ Ĝ1× Ĝ2 × Ĝ3, introduce the phase νn(α) ·
ϕ(y) := ν1,n(α1) · ϕ1(y) + ν2,n(α2) · ϕ2(y) + ν3,n(α3) · ϕ3(y). Then,

1) ei νn(α)·ϕ(y) = 1 when α ∈ Z,

2) ei νn(α)·ϕ(y) converges weakly to 0, when α /∈ Z.

Proof. Since ϕ(y) ∈ R⊥, one has νn(α) ·ϕ(y) = ν̃n(α)¯ϕ(y), where ν̃n(α) is the class
of νn(α) in ΦR := Φ/R and ¯ denotes the duality between ΦR and R⊥. Lemma 5.2.5
implies that for all ξ̃ ∈ ΦR\{0}, one has ξ̃ ¯ dϕ(y) 6= 0 almost everywhere. Then, (5.2.3)
and Lemma 3.1.3 imply that ei νn(α)·ϕ(y) converges weakly to 0, when α /∈ Z. Moreover,
(5.2.2) shows that ν̃n(α)¯ ϕ(y) = 0 when α ∈ Z.
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Proof of Theorem 5.2.1.
It remains to prove (5.2.6). Propositions 5.2.3 and 5.2.4 show that there exist bounded

sequences in Wk(Ω), vk,n, such that vk,n(y) ∼ Uk(y, ρn(ϕk(y))) in L2(Ω). Then, (5.2.4) and
Proposition 3.1.6 imply that rk,n := uk,n − vk,n belongs to L2

no,ϕk
⊂ L2

no,ψk
. Moreover,

rk,n is bounded in Wk(Ω), since uk,n and vk,n are bounded in this space. Therefore,
Theorem 2.1 reduces the proof of (5.2.6) to the case where uk,n = vk,n ∼ Uk(y, ρn(ϕk(y))).
Moreover, Propositions 5.2.3 and 5.2.4 imply that it is sufficient to prove (5.2.6) when
the Fourier series of Uk have only finitely many nonvanishing terms. By linearity, we can
reduce further the proof to the case where Uk(y, gk) is a monomial, Uk(y) eαk(gk), with
αk ∈ Ĝk.

In this case,

(5.2.35) u1,n(y)u2,n(y)u3,n(y) = U1(y)U2(y)U3(y) ei νn(α)·ϕ(y) .

Remark that U1U2U3 ∈ L1
loc(Ω) since Uk ∈Wk(Ω). Thus Corollary 5.2.6 implies that

(5.2.36) u1,n u2,n u3,n ⇀

{
0, when α /∈ Z ,
U1 U2 U3 when α ∈ Z .

On the other hand, denoting by eα the character on G1 × G2 × G3 associated to
α = (α1, α2, α3) ∈ Ĝ1 × Ĝ2 × Ĝ3, one has

(5.2.37) eα1(π1(g)) eα2(π2(g)) eα3(π3(g)) = eα(g) .

By definition of G, this vanishes when α ∈ Z and g ∈ G. On the other hand, when α /∈ Z
then eα is a non trivial character on G, and thus the integral of eα(g) over G vanishes.
Hence,

(5.2.38)
∫
G

eα1(π1(g)) eα2(π2(g)) eα3(π3(g)) dg =
{

0, when α /∈ Z ,
U1 U2 U3 when α ∈ Z .

With (5.2.36), this proves that (5.2.6) is satisfied when uk,n(y) = Uk(y, ρn(ϕk(y))) and
Uk(y, gk) is a monomial Uk(y) eαk(gk) with Uk ∈Wk(Ω).

5.3. Resonant interaction of triples.

We now return to the general case of N vector-valued phases. For k ∈ {1, . . . , N},
consider a bounded sequence uk,∗ in L∞(Ω;R) such that Xk uk,∗ is bounded in L∞(Ω;R).
Suppose that (G1, ρ1,∗), . . . , (GN , ρN,∗) are admissible for the resonances R in the sense of
Definition 4.3.5 and (Gk, ρk,∗) is complete for uk,∗ and ϕk in the sense of Definition 4.3.1.

To take into account the resonances, introduce the subgroup Z ⊂ Ĝ1× . . .× ĜN such
that (4.3.3) holds and

(5.3.1) G := {g ∈ G1 × . . .×GN ; ∀α ∈ Z , eα(g) = 0 } .
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For g = (g1, . . . , gN ) ∈ G1× . . .×GN and α = (α1, . . . , αN ) ∈ Ĝ1× . . .×ĜN we have noted
eα(g) := eα1(g1) . . . eαN (gN ). Note that the duality theorem implies that Z is exactly the
set of α ∈ Ĝ1 × . . .× ĜN such that eα(g) = 0 for all g ∈ G.

Consider a triplet (j, k, l), with j 6= k 6= l 6= j. As in §5.1, introduce Φ]j,k,l ⊂
Φ1 × . . .× ΦN , which is isomorphic to Φj × Φk × Φl. Similarly, consider Ĝj × Ĝk × Ĝl as
a subgroup of Ĝ1 × . . .× ĜN , identifying (αj , αk, αl) with α whose other components are
equal to zero. Introduce Z ′ ⊂ Ĝj × Ĝk × Ĝl as the intersection of Z with Ĝj × Ĝk × Ĝl.
Let G′ ⊂ Gj ×Gk ×Gl denote the set of characters on Ĝj × Ĝk × Ĝl, which are trivial on
Z ′.

Considering Ĝj×Ĝk×Ĝl as a subset of Ĝ1×. . .×ĜN as above, for all α′ ∈ Ĝj×Ĝk×Ĝl,
νn(α′) belongs to Φ]j,k,l ≈ Φj × Φk × Φl. This defines a sequence of homomorphisms ν′n,
from Ĝj × Ĝk × Ĝl into Φj × Φk × Φl.

Lemma 5.3.1 i) For j 6= k let πj,k denote the mapping g → (gj , gk) from G to
Gj ×Gk. Then πj,k is surjective.

ii) Let πj,k,l denote the mapping g → (gj , gk, gl) from G into Gj ×Gk ×Gl, and π′r
the mapping g′ → g′r from G′ to Gr. Then

(5.3.2) G′ = πj,k,l(G) and πr = π′r ◦ πj,k,l .

iii) If Rj,k,l 6= {0}, then Z ′ and ν′n satisfy the condition (4.2.7) (4.2.8).
iv) If Rj,k,l = {0}, then Z ′ = {0} and G′ = Gj ,×Gk ×Gl.

Proof. i) If πj,k(G) is strictly smaller than Gj × Gk, there is a nontrivial character
(αj , αk) ∈ Ĝj × Ĝk such that

(5.3.3) ∀g ∈ G , eαj (πj(g)) + eαk(πk(g)) = 0 .

Let α ∈ Ĝ1 × . . . × ĜN with j-th and k-th components equal to αj and αk respectively,
and others components equal to zero. Then (5.3.3) means that for all g ∈ G, eα(g) = 0.
Therefore, α ∈ Z. Thus νn(α) ∈ R for all n. On the other hand νn(α) ∈ Φ]j⊕Φ]k. Since the
vector-fields Xj and Xk are linearly independent, the space of resonances R∩ (Φ]j ⊕Φ]k) =
{0}. Therefore, for all n, νn(α) = 0 which means that νj,n(αj) = 0 and νk,n(αk) = 0.
Since αj 6= 0 or αk 6= 0, this contradicts the admissibility assumption.

ii) For α′ = (α′j , α
′
k, α
′
l) ∈ Ĝj × Ĝk × Ĝl introduce α ∈ Ĝ1 × . . . ĜN such that αr = 0

when r /∈ {j, k, l} and αr = α′r when r ∈ {j, k, l}. Then, for all g = (g1, . . . , gN ) ∈
G1 × . . .×GN ,

eα(g) = eα′(gj , gk, gl) .

By definition, α′ belongs to Z ′ if and only if α belongs to Z. This shows that πj,k,l maps G
into G′. If it is not onto, there is a character, α′ which is trivial on πj,k,l(G) and nontrivial
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on G′. Introduce α ∈ Ĝ1 × . . . ĜN as above. Then eα(g) = 0 for all g ∈ G and therefore,
α ∈ Z. Thus, α′ ∈ Z ′, and α′ is trivial on G′, which contradicts the assumption.

iii) Consider α′ ∈ Ĝj × Ĝk × Ĝl. If α′ ∈ Z ′ ⊂ Z, then νn(α′) ∈ R ∩ Φ]j,k,l. Thus
(5.1.10) implies that ν′(α′) belongs to the space R′ generated by the unique resonance in
Φ′ := Φj×Φk×Φl. If α /∈ Z ′, then α /∈ Z and the admissibility assumption (4.3.3) implies
that |νn(α′)| → ∞ in Φ/R. (5.1.10) implies that the image of Φ]j,k,l in Φ/R is isomorphic
to the quotient Φ′/R′. Therefore, |ν′n(α′)| → ∞ in Φ′/R′.

iv) If α′ ∈ Z ′, then α ∈ Z and the admissibility condition implies that νn(α) is
valued in Rj,k,l. When this space is trivial, this implies that νn(α) vanishes identically.
Since each (Gr, ρr,∗) is admissible, this is possible only when α = 0. Thus Z ′ = {0} and
G′ = Gj ×Gk ×Gl.

We can now extend Theorem 5.2.1 to the case of triples {j, k, l} of distinct sequences.
Note that this triple does not necessarily have a resonance and that the group G is now
given by (5.3.1) and so in particular is independent of the choice of the triple. We also
extend the theorem by using oscillatory rather than just fixed test functions. Let the uk,∗
satisfy the same assumptions as for Theorem 5.2.1; in particular, uk,n = ũk,n + rk,n with
ũk,n ∈ L2

os,ϕk
(Hk) and rk,n ∈ L2

no,ϕk
, and ũk,n(y) ∼ Uk(y, ρk,n(ϕk(y))).

Theorem 5.3.2. For all A ∈ C0(Ω×Gj) and all triples {j, k, l} of distinct numbers,
(5.3.4)∫

Ω

A(y, ρj,n(ϕj(y)))uj,n(y) uk,n(y) ul,n(y) dy →∫
Ω×G

A(y, πj(g)) Uj(y, πj(g)) Uk(y, πk(g)) Ul(y, πl(g)) dy dg ,

as n→ +∞, where dg denotes the normalized Haar measure on G.

Proof. a) It is sufficient to consider the case where

(5.3.5) A(y, gj) :=
∑
α

Aα(y) eα(gj)

is a trigonometric polynomial. The sum runs over a finite subset of Ĝj and Aα ∈ C∞0 (Ω∪
ω). Then clearly A(y, ρj,n(ϕj(y)))ũj,n(y) ∼ A(y, ρj,n(ϕj(y)))Uj(y, ρj,n(ϕj(y))) lies in
L2
os,ϕj (Hj), and A(y, ρj,n(ϕj(y)))rj,n lies in L2

no,ϕj . Note too that A(y, ρj,n(ϕj(y)))uj,n(y)
lies in Wj since Xjϕj = 0. Hence define

(5.3.6)
Vj(y, gj) = A(y, gj) Uj(y, gj) ,
Vr(y, gr) = Ur(y, gr) for r ∈ {k, l} .

b) We use the notations introduced for Lemma 5.3.1.

Resonant trilinear interaction. 43



Suppose first that Rj,k,l 6= {0}. Lemma 5.3.1 shows that the assumptions of Theorem
5.2.1 are satisfied and thus the left hand side of (5.3.4) converges to

(5.3.7)
∫

Ω×G′
V1(y, π′j(g

′)) V2(y, π′k(g′)) V3(y, π′l(g
′)) dy dg′ ,

WhenRj,k,l = {0}, Assumption 5.1.1 implies that the curvature of the 3-web generated
by (Xj , Xk, Xl) does not vanish almost everywhere on Ω. Then [JMR 3] implies that the left
hand side of (5.3.4) converges to the integral (5.3.7). Note that the two cases Rj,k,l 6= {0}
and Rj,k,l = {0} are deeply different, since the definition of G′ changes.

c) Finally, (5.3.2) implies the conditions leading to (5.2.23) are satisfied, so the integral
in (5.3.7) can be lifted to G. Since π′r ◦ πj,k,l = πr : G→ Gr, this integral is equal to

(5.3.8)
∫

Ω×G
V1(y, πj(g)) V2(y, πk(g)) V3(y, πl(g)) dy dg ,

which in view of (5.3.6) is the same as (5.3.4).

Remark 5.3.3. If the nonlinearities Fj,k,l from (5.1.2) were linear in each of the ur
separately, say Fj,k,l = cj(y)ujukul, then Theorem 5.3.2 could be used to obtain evolution
equations for the profiles Uj(y, gj) analogous to the profile equations of nonlinear geometric
optics: For simplicity, consider the case of three equations. The fact that Xjϕj = 0 implies
that X∗jA(y, ρj,n(ϕj(y))) = X∗jA(y, g)|g=ρj,n(ϕj(y)). Hence by Theorem 5.3.2 with uk,n ≡
1 ≡ ul,n, the limit of

∫
Ω
A(y, ρj,n(ϕj(y)))Xjuj,n is

∫
Ω×GA(y, πj(g))XjUj(y, πj(g)). Since

the oscillatory test function A is arbitrary, and the G can be parametrized by G1×G2, this
equation together with (5.3.4) show that X1U1(y, g) =

∫
G2
c1(y)U1(y, g)U2(y, g2)U2(y,−g−

g2), which is a special case of (1.21). However, if the Fj are nonlinear in some ur then we
must apply Theorem 5.3.2 to sequences that are powers of the ur. The profiles of these
powers are not determined by those for ur itself since, as already noted in Remark 4.3.8,
L2
no,ϕ ∩L∞ is not closed under multiplication. In order to determine the profiles of the ur

we therefore need to simultaneously determine the profiles of all of their powers. In order
to avoid having an infinity of equations, we therefore need to encode all these profiles into
a single object: the multiscale Young measure.

6. Multiscale Young measures

In this section, we first review the construction of multiscale Young measures, extend-
ing to general compact groups the constructions made for tori in [JMR 2], [E], [ES]. We
then prove Theorem 1.7, and use it to extend Theorem 5.3.2 by giving a formula for the
weak limit of arbitrary continuous functions of three bounded sequences.

Definition 6.1. Suppose that G is a compact Abelian group and ρn is a sequence in
Hom(Rm;G) such that (G, ρ∗) is admissible. A bounded family un in L∞(Ω) is said to be
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adapted to (G, ρ∗) and the given phase ϕ, when for all f ∈ C0(C) and all A ∈ C0
0 (Ω×G),

the following integrals

(6.1)
∫

Ω

f(un(y)) A(y, ρn(ϕ(y))) dy

have limits when n→ +∞.

Remark 6.2. When Ĝ is countable, any bounded sequence un in L∞(Ω) contains
subsequences u`(n) which adapted to (G, ρ`(∗)).

Theorem 6.3. Suppose that G is a compact Abelian group and ρn is a sequence
in Hom(Rm;G) such that (G, ρ∗) is admissible. Suppose that un is a bounded sequence
in L∞(Ω) which is adapted to (G, ρ∗) and the phase ϕ. Then there exists a measurable
family of probabilities on C, µy,g parametrized by Ω×G, such that for all f ∈ C0(C) and
all A ∈ C0

0 (Ω×G),

(6.2)
∫

Ω

f(un(y)) A(y, ρn(ϕ(y))) dy →
∫

Ω×G

∫
f(λ) A(y, g) µy,g(dλ) dy dg .

Proof. This is a repetition of the construction of Young measures (see e.g. [T 1], [Ev],
[E]), extended to a more general setting. The limits of integrals (6.1) define a functional
on C0(C)⊗ C0

0 (Ω×G). Moreover, for all F ∈ C0
0 (Ω×G× C), the integrals∫

Ω

F (y, ρn(y), un(y)) dy

are uniformly bounded by the supremum of |F | on Ω×G×{|λ| ≤ Λ|}, times the measure
of Ω. Thus, the limits of these integrals exist for all F ∈ C0

0 (Ω × G × C), and define a
Borel measure µ, on Ω×G× C:

(6.3)
∫

Ω

F (y, ρn(y), un(y)) dy →
∫

Ω×G×C
F (y, g, λ)µ(dy dg dλ).

When f ≡ 1, the weak limit of f(un) is just the constant function 1 and the limit of
(6.1) is ∫

Ω×G
A(y, g) dy dg .

This shows that the projection of µ on Ω×G is the measure dy dg.
Because µ is a finite measure, we can consider it to define a probability and apply

methods from probability theory: Since C is a Borel space, by [Br, Theorem 4.34 and
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Proposition 4.36] there exists a regular conditional probability µy,g(dλ) for λ given (y, g)
such that

(6.4) E(F (λ, y1, g1) | y1 = y, g1 = g) =
∫
F (λ, y, g)µy,g(dλ).

Furthermore, by [Br, (4.21)] and the fact that the projection of µ on Ω×G equals dy dg,
(6.5)∫

Ω×G×C
F (λ, y, g)µ(dy dg dλ) = E(F (λ, y, g)) = E(E(F (λ, y1, g1) | y1 = y, g1 = g))

=
∫

Ω×G
E(F (λ, y1, g1) | y1 = y, g1 = g) dy dg.

Combining (6.3), (6.4) and (6.5) for the function F (y, g, λ) = f(λ)A(y, g) yields (6.2).

We now apply this construction to groups which are large enough to describe all
the oscillations of suitably chosen subsequence. Recall Definition 4.3.1 of the notion of
completeness of a group and homomorphism for a sequence.

Theorem 6.4. Consider a compact Abelian group G, a sequence ρn ∈ Hom(Rm; g)
and a bounded sequence un in L∞(Ω). Assume that (G, ρ∗) is complete for the sequence
u∗ and the phase ϕ. Then u∗ is adapted to (G, ρ∗) and the phase ϕ, and the multiscale
Young measure of u∗ satisfies the following property:

for all f ∈ C0(C), the function

(6.6) F(y, g) :=
∫
f(λ) µy,g(dλ) ,

is defined a.e. on Ω × G and belongs to L∞(Ω × G). Moreover, if p < +∞ and if

f̃n(y) ∼ F(y, ρn(ϕ(y))) in Lp(Ω), then f̃∗ ∈ Lpos,ϕ(H) and

(6.7) f(u∗) − f̃∗ ∈ Lpno,ϕ .

Proof. Suppose that f ∈ C0(C). Then vn := f(un) is bounded in L∞(Ω) and

vn = fn + rn , with f∗ ∈ L2
os,ϕ(A) , r∗ ∈ L2

no,ϕ .

Theorem 2.3.4 implies that there is F ∈ L2(Ω×G) such that for all A ∈ C0
0 (Ω×G),

(6.8)
∫

Ω

fn(y) A(y, ρn(ϕ(y))) dy →
∫

Ω×G
F(y, g) A(y, g) dy dg .

On the other hand, by the definition of L2
no,ϕ, Theorem 2.3.4 implies that

(6.9)
∫

Ω

rn(y) A(y, ρn(ϕ(y))) dy → 0 ,
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when A is a trigonometric polynomial. (6.9) extends to all A ∈ C0
0 (Ω×G). Adding (6.8)

and (6.9) imply that u∗ is adapted. Moreover, comparing the limit with (6.2), implies that
the profile F in (6.8) satisfied

(6.10)
∫

Ω×G
F(y, g) A(y, g) dy dg =

∫
Ω×G

∫
f(λ)) A(y, g) µy,g(dλ) dy dg .

Therefore, F is given by (6.6) and thus F ∈ L∞(Ω×G).
Fix p ∈ [1,+∞[ and consider f̃n(y) ∼ F(y, ρn(ϕ(y))) in Lp. Theorem 2.3.4 implies

that such f̃n always exist. Introduce r̃n := vn − f̃n = fn − f̃n + rn. Remark that r̃n is
bounded in Lp(Ω), since vn is bounded in L∞(Ω) and f̃n is bounded in Lp(Ω). By definition
of F , fn(y) ∼ F(y, ρn(ϕ(y))) in L2. Therefore fn − f̃n(y) ∼ 0 in Lq, and fn − f̃n → 0
strongly in Lq, for q := min(2, p). This implies that fn − f̃n satisfies :

(6.11) ∀ξ ∈ S : (fn − f̃n) ei ξn·ϕ ⇀ 0

r∗ satisfies the same property, since it belongs to L2
no,ϕ. Therefore, r̃n, which is bounded

in Lp(Ω), also satisfies (6.11) and thus belongs to Lpno,ϕ.

Formula (6.6) for the profiles of functions of a bounded sequence, together with formula
(5.3.4) for the weak limit of the product of three sequences, enable us to obtain a formula
for the weak limit of arbitrary continuous functions of such sequences. Given a function
Fj,k,l ∈ C0(Ω× R3), define F on Ω× RN by

(6.12) F (y, λ1, . . . , λN ) := Fj,k,l(y, λj , λk, λl) .

Theorem 6.5. Suppose that (G1, ρ1,∗), . . . , (GN , ρN,∗) are admissible in the sense
of Definition 4.3.5 and each (Gk, ρk,∗) is complete for uk,∗ and ϕk in the sense of Definition
4.3.1. Assume further that each sequence uk,n lies in L∞∩Wk. Then for F a sum of terms
of the form (6.12) and all A ∈ C0(Ω×Gj),

(6.13)

∫
Ω

A(y, ρj,n(ϕj(y)))F (y, un(y)) dy →∫
Ω×G
A(y, πj(g))F (y, λ1, . . . , λN )µ1,y,π1(g)(dλ1) . . . µN,y,πN (g)(dλN ) dg dy

as n → +∞, where dg denotes the normalized Haar measure on the group G defined in
(5.3.2).

Proof. Fj,k,l can be approximated by polynomials uniformly on compact sets. Since
the sequences are uniformly bounded, it is sufficient to consider polynomial Fj,k,l, and one
can further reduce the proof to the case where

(6.14) F = Fj,k,l(y, λj , λk, λl) = λ
pj
j λj

qj
λpkk λk

qk
λpll λl

ql
.

Multiscale Young measures. 47



Introduce vr,n := (ur,n)pr ∈ L∞ ∩Wr. Theorem 6.4 implies that

(6.15) vr,n(y) ∼ Vr(y, ρr,n(ϕr(y))) + wr,n,

where wr,∗ ∈ L2
no,ϕr and the profiles Vr ∈ L∞(Ω×Gk) are

(6.16) Vr(y, gr) =
∫
R
λprr λr

qr
µr,y,gr (dλr) .

Here µk is the multiscale Young measure of uk,∗ relative to (Gk, ρk,∗) given by Theorem
6.3. Given (6.14) and (6.15), Theorem 5.3.2 implies that the left side of (6.13) converges
to ∫

Ω×G
A(y, πj(g)) Vj(y, πj(g)) Vk(y, πk(g)) Vl(y, πl(g)) dy dg ,

and in view of (6.16), this is equal to the right side of (6.13) for the case (6.14).

7. Propagation of Multiscale Young Measures

In this section we prove Theorems 1.8 and 1.9 that show how the multiscale Young
measures evolve in time, and discuss the connection with geometric optics.
7.1. Transport equations for the multiscale Young measures

For k ∈ {1, . . . , N}, consider a sequence of real valued solutions uk,∗ of (5.1.1),
bounded in L∞(Ω), with Cauchy data

(7.1.1) uk,n(0, x) := u0
k,n(x) .

Introduce

(7.1.2) ϕ0
k( . ) := ϕk(0, . ) ∈ C∞(ω; Θk) .

Since ϕk satisfies the equation Xkϕk = 0, (5.1.6) implies that

(7.1.3) ∀ξ ∈ Φk\{0} , d(ξ · ϕ0
k) 6= 0 a.e. on ω .

Suppose that (G1, ρ1,∗), . . . , (GN , ρN,∗) are admissible and (Gk, ρk,∗) is complete for uk,∗
and ϕk. Let µk denote the multiscale Young measure of uk,∗ relative to (Gk, ρk,∗). Thanks
to (7.1.3) one can also analyze the oscillations of the initial data relative to the initial
phases. Assume that (Gk, ρk,∗) is complete for u0

k,∗ and ϕ0
k and introduce µ0

k the corre-
sponding multiscale Young measure.

Introduce

(7.1.4) G′k = {g ∈ G ; πk(g) = 0} .

Lemma 5.3.1 implies that Gk is isomorphic to G/G′k. This identification allows the follow-
ing version of Fubini’s Theorem (see e.g. [W]) : for all f ∈ L1(G),

(7.1.5)
∫
G′
k

f(g + g′)dg′

Propagation of Multiscale Young measures. 48



is invariant by G′k and defines (almost everywhere) a function f̃ on Gk. We denote it

(7.1.6) f̃(gk) =
∫
π−1
k

(gk)

f(g) dg′k ;

This function is integrable and

(7.1.7)
∫
Gk

f̃(gk) dgk =
∫
G

f(g) dg .

Theorem 7.1.1. The measures µk satisfy on Ω×Gk × C

(7.1.8) Xk µk + ∂λ(Akµk) = 0 , µk|t=0 = µ0
k ,

with

(7.1.9) Ak(y, gk, λk) :=
∫
π−1
k

(gk)

Fk(y, g, λk) dg′k ,

(7.1.10) Fk(y, g, λk) :=
∫
RN−1

Fk(y, λ1, . . . , λN )µ′k,y,g(dλ
′
k) ,

where µ′k,y,g(dλ
′
k) denotes the product of the µj,y,πj(g)(dλj) for j ∈ {1, . . . , N}, j 6= k.

Proof. Consider h ∈ C∞(R) and vk,n := h(uk,n). Then

(7.1.11) Xkvk,n = fk,n := Fk(y, un)
∂h

∂λ
(uk,n) .

Consider a trigonometric polynomial on Ω×Gk

(7.1.12) A(y, gk) :=
∑
α

Aα(y) eα(gk) .

The sum runs over a finite subset of Ĝk and Aα ∈ C∞0 (Ω ∪ ({0} × ω)). Introduce

(7.1.13) an(y) := A(y, ρk,n(ϕk(y))) :=
∑
α

Aα(y) ei ρ̂k,n(α)ϕk .

Thus an ∈ C∞0 (Ω ∪ ({0} × ω)), and (4.1.11) implies that

(7.1.14)
∫

Ω

vk,n(y) tXkan(y) dy =
∫

Ω

fk,n an(y) dy −
∫
ω

vk,n(0, x) an(0, x) dx ,

where tXk := −∂t + ∂xck is the transposed operator of Xk. Since Xkϕk = 0, one has

(7.1.15) tXk an(y) = (tXk(y, ∂y)A) (y, ρk,n(ϕk(y))) .
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Thus, the first term in (7.1.14) tends to

(7.1.16)
∫

Ω×Gk×R
(tXkA)(y, gk)h(λk) µk,y,gk(dλk) dgk dy

as n tends to infinity. Similarly, the third term converges to

(7.1.17)
∫
ω×Gk×R

A(0, x, gk)h(λk) µ0
k,x,gk

(dλk) dgk dx .

The limit of the middle term is computed in Theorem 6.5. It is equal to∫
Ω×G×RN

A(y, πk(g)) ∂λkh(λk)F (y, λ)µ1,y,π1(g)(dλ1) . . . µN,y,πN (g)(dλN ) dg dy

Using the notations (7.1.9) and Fubini’s Theorem (7.1.7), these limits are equal to

(7.1.18)
∫

Ω×Gk×R
A(y, πk(g)) ∂λkh(λk)Ak(y, gk, λ)µ1,y,gk(dλk)dgk dy .

Adding up, we have proved that

(7.1.19)

∫
Ω×Gk×R

(tXkA)(y, gk)h(λk) µk,y,gk(dλk) dgk dy =∫
ω×Gk×R

A(0, x, gk)h(λk) µ0
k,x,gk

(dλk) dgk dx +∫
Ω×Gk×R

A(y, gk) ∂λkh(λk)Ak(y, gk, λ)µk,y,gk(dλk)dgk dy .

This means that µk satisfies (7.1.8) in the sense of distributions.

7.2. The link with nonlinear geometric optics

Suppose that the assumptions of §7.1 are satisfied. Then the probability measures
µk,y,g(dλ) can be seen as the distribution law of random variables Uk(y, g, . ). In this
section we show that the transport equations (7.1.8) for the µk are equivalent to the
equations of nonlinear geometric optics for the Uk. A similar argument is developed in
[JMR 3]. The only difference comes from the new variables g ∈ G which are parameters in
the equations. However, these new parameters increase the coupling between the equations,
and we check below that this new coupling does not affect the argument.

Introduce the normalized distributions functions, Mk(y, gk, .) of µk,y,gk defined by

(7.2.1) Mk(y, gk, λ) := µk,y,gk(]−∞, λ[) .

These functions are non decreasing and left continuous in λ. Moreover, there is Λ such
that |uk,n(y)| ≤ Λ for all n and almost all y. Thus µk,y,gk is supported in [−Λ,Λ] for
almost all (y, gk) ∈ Ω×Gk and

(7.2.2) Mk(y, gk, λ) = 0 for λ < −Λ and Mk(y, gk, λ) = 1 for λ > Λ .
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Furthermore, µk = ∂λMk in the sense of distributions.

Similarly, introduce the distribution functions M0
k on ω × Gk × R associated to the

probabilities µ0
k :

(7.2.3) M0
k (x, gk, λ) := µk,x,gk(]−∞, λ[) .

Theorem 7.2.1. Then the Mk satisfy

(7.2.4) XkMk + Ak ∂λMk = 0 , Mk|t=0 = M0
k .

with Ak defined in (7.1.9).

Proof. The idea is to integrate equation (7.1.8) with respect to λ. Suppose that
h ∈ C∞0 (R) with supph ⊂ [−Λ1,Λ1], where λ1 > Λ, h̃ ∈ C∞0 (R) and h̃ = 1 on [−Λ1,Λ1].
Introduce

(7.2.5) h1(λ) := h̃(λ)
∫ λ

−∞
h(s) ds

so that

(7.2.6) ∂λh1 = h + h̃1 , supp h̃1 ⊂ [Λ1,+∞[ .

Consider a trigonometric polynomial A on Ω×Gk, as in (7.1.12). Using (7.2.6), the identity
µk = ∂λMk and that h̃ = 1 on a neighborhood of the support of µk, one obtains

(7.2.7)

∫
Ω×Gk×R

(tXkA)(y, gk)h1(λk) µk,y,gk(dλk) dgk dy =

−
∫

Ω×Gk×R
(tXkA)(y, gk)h(λk) Mk(y, gk, λk) dλk dgk dy

−
∫

Ω×Gk×R
(tXkA)(y, gk) h̃1(λk) Mk(y, gk, λk) dλk dgk dy .

Because h̃1 is supported in [Λ1,+∞[ and Mk = 1 there, the third integral is equal to

(7.2.8) γ

∫
Ω×Gk

(tXkA)(y, gk) dgk dy = − γ

∫
ω×Gk

A(0, x, gk) dgk dx .

where

(7.2.9) γ :=
∫
R
h̃1(λk) dλk .
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Similarly,

(7.2.10)

∫
ω×Gk×R

A(0, x, gk)h1(λk) µ0
k,x,gk

(dλk) dgk dx =

−
∫
ω×Gk×R

A(0, x, gk)h(λk) M0
k (x, gk, λk) dλk dgk dx

+ γ

∫
ω×Gk×R

A(0, x, gk) dgk dx .

Because µk is supported in [−Λ,Λ], one has

(7.2.11)
∫

Ω×Gk×R
A(y, gk) h̃1(λk) µk,y,gk(dλk) dgk dy = 0 .

Applying (7.1.19) with h1 in place of h, and using (7.2.6), these identities imply that

(7.2.12)

∫
Ω×Gk×R

(tXkA)(y, gk)h(λk) Mk(y, gk, λk) dλk dgk dy =∫
ω×Gk×R

A(0, x, gk)h(λk) M0
k (y, gk, λk) dλk dgk dx +∫

Ω×Gk×R
A(y, πk(g))h(λk)Ak(y, gk, λ)µ1,y,gk(dλk)dgk dy .

Since µk = ∂λMk, this implies that Mk satisfies (7.2.4) in the sense of distributions.

An important point is uniqueness for the equations (7.1.8).

Theorem 7.2.2. The Cauchy Problem (7.1.8) has at most one solution µ =
(µ1, . . . , µN ) such that each λk,y,gk is a measurable family of probability measures on
R, supported in a compact interval [−Λ,Λ].

Proof. Suppose that µ(1) and µ(2) are two solutions. Introduce the distribution func-
tions M (1) and M (2) and N := M (1)−M (2). Then N satisfies in the sense of distributions

(7.2.13) XkNk + A
(2)
k ∂λNk = (A(1)

k −A
(2)
k )µ(1)

k , Nk|t=0 = 0 .

One has

(7.2.14) (A(1)
k −A

(2)
k )(y, gk, λk) :=

∫
π−1
k

(gk)

(
F (1)
k −F (2)

k

)
(y, g, λk) dg′k ,

where (
F (1)
k −F (2)

k

)
(y, g, λk) :=

∫
RN−1

Fk(y, λ1, . . . , λN ) (µ′(1)
k,y,g − µ

′(2)
k,y,g)(dλ

′
k) ,
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and µ
′(r)
k,y,g(dλ

′
k) denotes the product of the µ(r)

j,y,πj(g)(dλj) for j 6= k. Therefore, µ′(1)
k,y,g −

µ
′(2)
k,y,g is the sum of N − 1 terms, each of them being the product of N − 2 factors µ(r)

l,y,πl(g)

and one factor µ(1)
j,y,πj(g)−µ

(2)
j,y,πj(g). Since M (1)

j (y, πj(g), . )−M (2)
j (y, πj(g), . ) has compact

support by (7.2.2), one can integrate by parts to obtain∫
R
Fk(y, λ1, . . . , λN )(µ(1)

j,y,πj(g) − µ
(2)
j,y,πj(g))(dλj) =

−
∫
R
∂λjFk(y, λ1, . . . , λN )Nj(y, πj(g), λj) dλj .

Using Fubini’s theorem, we conclude that there is C such that for all y ∈ Ω, g ∈ G and
|λk| ≤ Λ

|(F (1)
k −F (2)

k )(y, g, λk)| ≤ C sup
j 6=k

∫
R
|Nj(y, πj(g), λj)| dλj .

Therefore

(7.2.15)

|(A(1)
k −A

(2)
k )(y, gk, λk)| ≤

C sup
j 6=k

∫
π−1
k

(gk)

∫
R
|Nj(y, πj(g), λj)| dλj dg′k

= C sup
j 6=k

∫
Gj

∫
R
|Nj(y, gj , λj)| dλj dgj ,

where the last equality follows from Lemma 5.3.1 i). This implies that the measurable
family of bounded Borel measures µ̃k,y,gk := (A(1)

k − A
(2)
k )µ(1)

k , which are supported in
[−Λ,Λ], satisfies

(7.2.16) ‖µ̃k,y,gk‖M ≤ C sup
j 6=k

∫
Gj

‖Nj(y, gj), . )‖L1(R) dgj .

with C independent of y and gk. The norm in the left hand side is the total variation
norm in the space of bounded Borel measures on R. Lemma 4.3.4 of [JMR 3], with gk as
parameters, implies that the solution Nk of (7.2.13) satisfies

(7.2.17)
∫
ωt×Gk

‖Nj(t, x, gk, . )‖L1(R) dx dgk ≤ C

∫
Ωt×Gk

‖µ̃k,y,gk‖M dy dgk

where ωt := {x ∈ R ; (t, x) ∈ Ω} and Ωt := {(s, x) ∈ Ω ; 0 < s < t}.
Using (7.2.16) and Gronwall’s lemma, this implies that

n(t) := sup
k

∫
ωt×Gk

‖Nk(t, x, gk, . )‖L1(R) dx dgk

vanishes identically, proving Theorem 7.2.2.
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Introduce next Uk(y, gk, . ) the right continuous inverse function of Mk(y, gk, . ). It is
defined on ]0, 1[ and characterized by the property

(7.2.18) Mk(y, gk, λ) > θ ⇐⇒ λ > Uk(y, gk, θ) .

In addition, (7.2.2) implies that for almost all y and gk,

(7.2.19) |Uk(y, gk, θ)| ≤ Λ .

The relation with µk is that for all f ∈ C0(R)

(7.2.20)
∫
R
f(λ) µk,y,gk(dλ) =

∫ 1

0

f(Uk(y, gk, θ) dθ .

(see e.g. §4.4 in [JRM 3]). The profiles U0
k (x, gk, θ) associated to the initial values M0

k are
defined analogously.

Theorem 7.2.3. The profiles Uk satisfy

(7.2.21)
Xk Uk(y, gk, θk) =∫
π−1
k

(gk)

∫
]0,1[N−1

Fk(y, U1(y, π1(g), θ1) . . . , UN (y, πN (g), θN )) dθ′k dg
′
k ,

(7.2.22) Uk|t=0 = U0
k .

In (7.2.21), dθ′k denotes the products of the Lebesgue measures dθj for j 6= k.

Proof. Consider the Cauchy problem (7.2.21) (7.2.22). Picard’s iterations provide
a solution Ũ = (Ũ1, . . . , ŨN ), defined for t ≤ T ′ where 0 < T ′ ≤ T , and such that
Ũk ∈ L∞(Ω′ ×Gk × R), Ω′ := Ω ∩ {t < T ′}.

Consider µ̃k the measure defined by (7.2.20) with Ũk in place of Uk. For almost all
(y, gk), µk,y,gk is a probability measure supported in [−Λ̃, Λ̃] where Λ̃ := max ‖Ũk‖L∞ .

For each k ∈ {1, . . . , N}. Let µ̃′(r)k,y,g(dλ
′
k) be the product of the measures µ̃(r)

j,y,πj(g)(dλj)
for j 6= k, and define

F̃k(y, g, λk) :=
∫
RN−1

Fk(y, λ1, . . . , λN ) µ̃′(1)
k,y,gdλ

′
k) .

Then (7.2.20) implies that the right hand side of (7.2.21) computed for Ũ is equal to
Ãk(y, gk, Ũk(y, gk, θk)) where

(7.2.23) Ãk(y, gk, λk) :=
∫
π−1
k

(gk)

F̃k(y, g, λk) dg′k .
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For all h ∈ C∞(R) one has Xkh(Ũk) = h′(Ũk) Ãk(y, gk, Ũk). Therefore, for all trigonomet-
ric polynomial A on Ω′ ×Gk, with compact support contained in

(
Ω′ ∪ ({0} × ω)

)
×Gk,

one has

(7.2.24)

∫
Ω×Gk×R

(tXkA)(y, gk)h(Ũk(y, gk, θk)) dθk dgk dy =∫
ω×Gk×R

A(0, x, gk)h(U0
k (x, gk, θk)) dθk dgk dx +∫

Ω×Gk×R
A(y, gk)h′(Ũk(y, gk, θk))Ãk(y, gk, Ũk(y, gk, θk)) dθk dgk dy .

With (7.2.20), this implies that µ̃k satisfies (7.1.19) and µ̃ satisfies (7.1.8). Thus, Theorem
7.2.2 implies that µ̃ = µ on Ω′.

Next we remark that (7.2.21) is an ordinary differential equation for Ũk, along the
integral curves of Xk : XkŨk = Ãk(y, gk, Ũk). Therefore since the Cauchy data are
nondecreasing function of θk, Ũk is nondecreasing in θk. One can normalize it to be
right continuous. Thus Ũk = Uk, the unique right continuous function on ]0, 1[ such that
(7.2.20) holds.

Therefore, U satisfies (7.2.21) on Ω′. Since U is defined an bounded for y ∈ Ω, a
continuation argument shows that U satisfies (7.2.21) on Ω.

7.3. The main result

Consider equations (5.1.1). Suppose that un := (u1,n, . . . , uN,n) is a bounded family
of solutions in L∞(Ω), with initial data u0

n ∈ L∞(ω), where Ω is given by (5.1.3). The
phases ϕj are chosen as indicated in §5.1.

Theorem 7.3.1. Suppose that (G1, ρ1,∗), . . . , (GN , ρN,∗) are admissible in the sense
of Definition 4.3.5 and closed for resonances. Suppose that (Gk, ρk,∗) is complete for u0

k,∗
and ϕ0

k in the sense of Definition 4.3.1. Then (Gk, ρk,∗) is complete for uk,∗ and ϕk and the
corresponding multiscale Young measures are uniquely determined by equations (7.1.8).

Note that Theorem 4.3.7 implies the existence of admissible and closed for resonance
(G1, ρ1,∗), . . . , (GN , ρN,∗) which are complete for subsequences of u0

k,∗. Similarly, that
theorem implies that there exist analogous structures that are complete for the solution,
which can furthermore be chosen to be extensions of those for the initial data. In order
to prove that the structures for the initial data actually suffice for the solution as well, we
will show that profiles for the solution are essentially independent of the extension. This
follows from the facts that the extension is not needed for the initial data and that the
evolution equations for the profiles preserve this independence.

Proof. Denote µ0
k the multiscale Young measures of the initial data.

a) Theorem 4.3.7 implies that there are strictly increasing mappings ` : N → N,(
(Ge1, ρ

e
1,∗), . . . , (G

e
N , ρ

e
N,∗)

)
admissible in the sense of Definition 4.3.5 such that (Gek, ρ

e
k,∗)
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is complete for uk,`(∗) and ϕk, surjective k ∈ Hom(Gek, Gk) and lk ∈ Hom(Ĝk; Φk) such
that

(7.3.1) ∀α ∈ Ĝk , νek,n(̂k(α))− νk,`(n)(α)→ lk(α) as n→ +∞ .

where νek,n and νk,n denote the dual homomorphisms of ρek,n and ρk,n respectively. In
addition, with notations similar to those in Theorem 4.3.7, ̂ := (̂1, . . . , ̂N ) maps Z into
Ze and Z = ̂−1(Ze).

b) Consider a profile V ∈ Lp(ω ×Gk), where 1 ≤ p < +∞. Introduce

(7.3.2) Ve(x, gek) := V(x, k(gek)− l̂k(ϕ0
k(x))) .

where l̂k ∈ Hom(Θk;Gk) is the dual homomorphism of lk. Ve is defined on ω × Gek
and Ve(x, ρek,n(ϕ0(x))) = V(x, k ◦ ρk,n(ϕ0(x)) − l̂k(ϕ0

k(x))) when V is continuous. Since
k is surjective, Ve ∈ Lp(ω × Gek) if and only if V ∈ Lp(ω × Gk). Therefore, wn ∼
Ve(x, ρek,n(ϕ0(x))) in Lp(ω) if and only if wn ∼ V(x, k ◦ρk,n(ϕ0(x))− l̂k(ϕ0

k(x))) in Lp(ω).
Since ρ̂ek,n ◦ ̂k is the dual map of k ◦ ρek,n, Proposition 4.1.7 and (7.3.1) imply that, if

vn ∼ V(x, ρk,n(ϕ0(x))) in Lp(ω), then v`(n) ∼ V(x, k ◦ ρk,n(ϕ0(x)) − l̂k(ϕ0
k(x))) and thus

v`(n) ∼ Ve(x, ρek,n(ϕ0(x))) in Lp(ω).

This implies that (Gek, ρ
e
k,∗) is complete for u0

k,`(∗) and ϕ0
k and that the corresponding

multiscale Young measure µ0,e
k is equal to

(7.3.3) µ0,e
k,x,ge

k
= µ0

k,x,k(ge
k
)−l̂k(ϕ0

k
(x))

.

For the profiles U0 of §7.2, this is equivalent to the identity

(7.3.4) U0,e
k (x, gek, θk) = U0

k (x, k(gek)− l̂k(ϕ0
k(x)), θk) .

In particular, µ0,e
k and U0,e

k are invariant by translations in Gek, parallel to ker k.
c) Consider  := (1, . . . , N ) from Ge1 × . . . × GeN to G1 × . . . × GN . It is surjective,

since each k is. Since α ∈ Z if and only if ̂(α) ∈ Ze,  maps Ge ⊂ Ge1 × . . . × GeN , the
annihilator of Ze, onto G ⊂ G1 × . . .×GN , the annihilator of Z. We show that

(7.3.5) πej (ker  ∩Ge) = ker j ⊂ Gej .

where πej denotes he projection on the j-th factor. First, note that ker  = ker 1 × . . . ×
ker N . Thus πej (ker ∩Ge) is contained in ker j . Therefore, to prove (7.3.5), it is sufficient
to show that if αej ∈ Ĝej annihilates πej (ker  ∩ Ge), then it annihilates ker j . Let αe ∈
Ĝe1 × . . . × ĜeN with all components equal to zero, except the j-th one. If αej annihilates
πej (ker ∩Ge), then αe annihilates ker ∩Ge. Therefore, there are α ∈ Ĝ1 × . . .× ĜN and
γe ∈ Ze, such that αe = ̂(α) + γe. (7.3.1) implies that

ν`(n)(α)− νen(αe) + νen(γ) → l(α) ∈ Φ as n→ +∞ .
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Passing to the quotient in Φ/R, this implies that

ν̃`(n)(α)− ν̃en(αe) → l̃(α) as n→ +∞ .

Our choice of αe implies that νen(αe) ∈ Φ]j . Since (G1, ρ1,∗), . . . , (GN , ρN,∗) is closed for
resonances, this implies that there is β = (β1, . . . , βN ) ∈ Ĝ1,× . . .× ĜN , with βl = 0 when
l 6= j, such that ν̃`(n)(α) = ν̃`(n)(β). The admissibility condition implies that γ := α − β
belongs to Z.

Therefore, αe−̂(β) = ̂(γ) +γe ∈ Ze. Since νen(αe−̂(β)) ∈ Φ]j , and νen(̂(γ)+γe) ∈ R,
(5.1.9) implies that νen(αe− ̂(β)) = 0, hence νej,n(αej− ̂j(βj)) = 0. Since νej,∗ is admissible,
this implies that αej = ̂j(βj). Thus, αej annihilates ker j , and (7.3.5) is proved.

d) Introduce the multiscale Young measures µek of the subsequences uk,`(∗), relative to
(Gek, ρ

e
k,∗). We prove that they are invariant by translations parallel to ker k. Introducing

the profiles Uek of §7.2, we show that

(7.3.6) ∀σk ∈ ker k , Uek(y, ge + σk, θk) = Uek(y, ge, θk) a.e. on Ω×Gek×]0, 1[ .

The Uek satisfy (7.2.21) with Cauchy data U0,e
k , which satisfy the analogue of (7.3.6) on

ω × Gek×]0, 1[. Constructing the solution of (7.2.21) by Picard’s iterations, it is sufficient
to show that the Picard’s iterates satisfy (7.3.6). Thus, it is sufficient to prove that if the
Uel satisfy (7.3.6), then the integral

(7.3.7) V ek (y, gek, θk) :=
∫

(πe
k
)−1(ge

k
)

∫
]0,1[N−1

F (y, ge, θ) dθ′k dg
e
k
′ ,

with

(7.3.8) F (y, ge, θ) := Fk(y, Ue1 (y, πe1(ge), θ1) . . . , UeN (y, πeN (ge), θN )) ,

satisfies (7.3.6). By definition,

(7.3.9) V ek (y, gek, θk) :=
∫

kerπe
k
∩Ge

∫
]0,1[N−1

F (y, ge + g′, θ) dθ′k dg
′ ,

for all ge ∈ Ge, such that πek(ge) = gek. Consider σk ∈ Gek such that k(σk) = 0. By (7.3.5),
there is σ ∈ Ge, such that (σ) = 0 and πek(σ) = σk. Therefore, πek(ge + σ) = gek + σk and
thus

V ek (y, gek + σk, θk) :=
∫

kerπe
k
∩Ge

∫
]0,1[N−1

F (y, ge + σ + g′, θ) dθ′k dg
′ .

The assumptions on Uek immediately imply that the function F defined by (7.3.8) satisfies
F (y, ge + σ, θ) = F (y, ge, θ) for all ge ∈ Ge and all σ ∈ Ge ∩ ker . Therefore, V ek (y, gek +
σk, θk) = V ek (y, gek, θk), and (7.3.6) is proved.

e) Next we show that (Gk, ρk,`(∗)) is complete for uk,`(∗) and ϕk. Since (Gek, ρ
e
k,∗) is

complete, for all f ∈ C0(R) one has

(7.3.10) f(uk,`(n)) = vn + wn ,
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with wn ∈ L2
no,ϕk

and vn ∼ Ve(y, ρek,n(ϕk(y))) in L2(Ω), where Ve ∈ L2(Ω ×Gek) is given
by

(7.3.11) Ve(y, gek) =
∫
R
f(λ)µek,y,ge

k
(dλ) =

∫ 1

0

f(Uek(y, gek, θ)) dθ .

From (7.3.6), we deduce that for all σk ∈ ker k, Vek(y, ge +σk) = Vek(y, ge) a.e. on Ω×Gek.
Since k is surjective, this implies that there is a unique V ∈ L2(Ω×Gk) such that

(7.3.12) Ve(y, gek) = V(y, k(gek)) .

Introduce V1(y, gk) := V(y, gk + l̂k(ϕk(y))). Thus

(7.3.13) Ve(y, gek) := V1(y, k(gek)− l̂k(ϕ0
k(y))) .

Arguing as in part a) above, one proves that

vn ∼ Ve(y, ρek,n(ϕk)) ∼ V1(y, ρk,`(n)(ϕk)) in L2(Ω) .

With (7.3.10), this proves that (Gk, ρk,`(∗)) is complete for uk,`(∗).
f) Since the (Gk, ρk,`(∗)) are complete for all the subsequences of u0

k,`(∗), we deduce
from the reasoning above from all the subsequences of un, one can extract a subsequence
u`(∗) such that (Gk, ρk,`(∗)) is complete for uk,`(∗). This implies that (Gk, ρk,∗) is complete
for the full sequence uk,∗. Then Theorem 7.1.1 implies that the multiscale Young measures
associated to the sequence and the groups satisfy equation (7.1.8).
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[P] H. Poincaré, Sur les surfaces de translation et les fonctions Abeliennes, Bull. Soc.
Math. France, 29 (1901), 61-86.

[S] S. Schochet, Resonant nonlinear geometric optics for weak solutions of conservation
laws, J. Diff. Eq., 113 (1994) 473-504.

[T 1] L. Tartar, Compensated compactness and applications to partial differential equations,
in Nonlinear analysis and Mechanics, Research Notes in Mathematics 39,
Herriot-Watt Sympos. vol 4, R. J. Knopps, ed., Pitmann Press, Boston, 1979, 136-211.

[T 2] L. Tartar, Solutions oscillantes des équations de Carleman, Séminaire Goulaouic-
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