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Some context

• 2022: Ducas et al. introduced module-LIP and Hawk1

Signature scheme, NIST submission
Based on module-LIP for O2

K with K cyclotomic number field

• 2023: [1], with A. Pellet-Mary, H. Pliatsok and A. Wallet2

Heuristic poly time algorithm solving rank-2 module-LIP over totally real
number fields (does not break Hawk!)

• 2024: [2], with C. Chevignard, P-A. Fouque, A. Pellet–Mary, A. Wallet3

Poly time reduction for rank-2 module-LIP over CM number fields to a variant
of PIP in quaternion algebra called nrdPIP (does not break Hawk!)

1Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple (L. Ducas, E. W.
Postlethwaite, L. N. Pulles, W. van Woerden)

2Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields
3A reduction from Hawk to the principal ideal problem in a quaternion algebra
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This talk

A framework containing both: L either totally real or CM fields, reduce module-LIP for
rank 2 modules over L to a problem on rank 1 modules (ideals) in a quadratic extension
A/L, called nrdPIP.

Also apply to [1]: remove the heuristic argument

For L totally real, efficient algorithm to solve nrdPIP. For CM fields, open question!

Plan of the talk:

1 Background and module-LIP

2 Reducing rank-2 module-LIP to nrdPIP

3 Solving the totally real case
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Totally real and CM
number fields
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Background and module-LIP

• L ≃ Q[X]/P (X) of degree d has d (complex) embeddings σ : L → C

Example: P (X) = Φn(X) cyclotomic, d = φ(n) and σ : X 7→ e
2ikπ
n , k ∧ n = 1

• L totally real if σ(L) ⊂ R for all embeddings. Examples: Q, Q(
√
2,
√
3)

L totally complex if σ(L) ̸⊂ R for all embeddings. Examples: Q(ζn), n > 2

• L is a CM field if totally complex and quadratic extension of F totally real

We say L/F is CM extension. Examples: L/F = Q(
√
−1)/Q, Q(ζn)/Q(ζn + ζ−1

n )
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Background and module-LIP

• Notations: K for a CM field, F totally real field and L generic notation

Fact: K/F CM, always have K = F (
√
a) with a ∈ F s.t. σ(a) < 0, ∀σ : F → R.

Example: K = Q(ζm) with m = 2e, then K = F (
√
−1) with F = Q(ζn + ζ−1

n )

For simplicity, a = −1 and
√
a = i in the rest of the talk

• K/F CM, · : x+ iy 7→ x− iy complex conjugation on K = F (
√
a)

nrd : K → F ; x = x1 + ix2 7→ xx̄ = x2
1 + x2

2 reduced norm on K

If x ∈ F , x̄ = x and nrd(x) = x2.
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Module lattices
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Background and module-LIP

• Let L either totally real or CM, ℓ ∈ N>0 and V a L-vector space of dim ℓ

Ψ : V → Q ; (x1, . . . , xℓ) 7→ TrL/Q

(∑ℓ
i=1 nrd(xi)

)
positive definite quadratic (or

hermitian) form on V

• Rank-ℓ (free OL-)module in V is any

M = OLb1 + · · ·+OLbℓ ⊂ V equipped with Ψ|M ,

where B = (b1| · · · |bℓ) ∈ GLℓ(L) called a basis of M

• Remark: Can consider more general objects using pseudo-bases.
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Background and module-LIP

• Let M ⊂ V ≃ Lℓ rank-ℓ module

Fact: B,C ∈ GLℓ(L) are both bases of M iff ∃U ∈ GLℓ(OL) s.t. C = BU

• If B basis of M , call G = B∗B (where B∗ = transpose–conjugate of B) the Gram
matrix associated to B

Gram matrices are congruent if associated to bases of the same module

G ∼ G′ ⇐⇒ ∃U ∈ GLℓ(OL) : G
′ = U∗GU .
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Module-LIP
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Background and module-LIP
• L either totally real or CM and B basis for M ⊂ Lℓ, G the Gram matrix

modLIPB
L . Input: G′ ∼ G

Goal: Any U ∈ GLℓ(OL) s.t. G
′ = U∗GU (call it a congruence matrix

between G and G′)

⇐⇒

Goal: Any C ∈ GL2(L) basis of M with C∗C = G′

• Example: For M = O2
L and B0 = I2 as in Hawk

Hawk. Input: G′ ∼ I2

Goal: Any U ∈ GL2(OL) s.t. G
′ = U∗U
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Background and module-LIP

• L either totally real or CM and ℓ = 2

Main observation: G′ =

(
q1 q2
q2 q3

)
input and C =

(
a c
b d

)
solution to modLIP,

(
q1 q2
q2 q3

)
=

(
ā b̄
c̄ d̄

)
·
(
a c
b d

)
=

(
aā+ bb̄ āc+ b̄d
ac̄+ bd̄ cc̄+ dd̄

)

For L = F totally real:
q1 = a2 + b2 = nrd(a+ bi),
a+ bi ∈ K = L(i) CM field

=⇒ Norm equation in CM extension

For L = F (i) CM:
q1 = a21 + a22 + b21 + b22, reduced norm in
quaternion algebra L+ L · j

=⇒ Norm equation in quaternion algebra

12 / 30
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ā b̄
c̄ d̄

)
·
(
a c
b d

)
=

(
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• L either totally real or CM and ℓ = 2

Main observation: G′ =

(
q1 q2
q2 q3

)
input and C =

(
a c
b d

)
solution to modLIP,

(
q1 q2
q2 q3

)
=

(
ā b̄
c̄ d̄

)
·
(
a c
b d

)
=

(
aā+ bb̄ āc+ b̄d
ac̄+ bd̄ cc̄+ dd̄

)
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a+ bi ∈ K = L(i) CM field
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Quaternion algebras
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Background and module-LIP

• Let K/F a CM extension, K = F (i) with i2 = −1

A = F + F · i+ F · j + F · ij = K +K · j,

with j2 = −1 and ij = −ji. Non-commutative F -algebra of dim 4 (quaternion algebra)

• · : x+ yi+ zj + tij 7→ x− yi− zj − tij complex conjugation on A

nrd : A → F ; α = x+ yi+ zj + tij 7→ αᾱ = x2 + y2 + z2 + t2 reduced norm on A

=⇒ Extensions of · and nrd on K
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Background and module-LIP
• Ideal in A : rank-4 OF -module in A (not necessarily free).

Order in A : ideal in A
with ring structure. Said maximal if not contained in a strictly bigger order

Example: F = Q, order O = Z+ Zi+ Zj + Zij (not maximal!)

• I ⊂ A an ideal, Oℓ(I) := {α ∈ A | αI ⊆ I} left order of I. Same way, define right
order Or(I) of I

An ideal I ⊂ A is a left O-ideal if Oℓ(I) = O. Same way, define right O-ideals

• Fact: If O is maximal and I a left O-ideal, I is invertible : ∃! J ideal s.t. IJ = O

Also, J is efficiently computable from I
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Reducing rank-2 module-LIP
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Reducing rank-2 module-LIP

• Recall: Solve norm equations (in CM extensions or quaternion algebras) to
reconstruct solutions

Totally real case: [1]
Randomize input to ensure few solutions
Can compute them efficiently

=⇒ Heuristic poly time algorithm

CM case:
Too many solutions (even with
randomization)!
Don’t know how to compute one...

=⇒ *Sad reactions in the audience*

• Strategy [2]: First, use info from non-diagonal coeff to add constraints on the
solutions ⇒ at most two solutions to norm equation needed

Build these solutions as generators of principal ideals
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Reducing rank-2 module-LIP

• Denote (L,A) either:

(L = F totally real, A = L(j) CM) or (L = K CM, A = K +K · j quaternion algebra)

Lemma [2]

Let C =

(
c1 c3
c2 c4

)
, G′ =

(
q1 q2
q2 q3

)
∈ GL2(L) and α = c1 + c2j, β = c3 + c4j ∈ A.

G′ = C∗C ⇐⇒
{

nrd(α) = q1
αβ−1 = q−1

3 (q2 − det(C) · j)

Know everything on the r.h.s. (compute det(C) easily up to root of unity in L).
Getting α determines β, so a whole solution!
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Reducing rank-2 module-LIP

• Next step: Get a principal ideal αO from αβ−1?

Remark: a, b ∈ Z unknown,
a

b
known. Get aZ from

a

b
?

If a ∧ b = 1,
a

b
Z ∩ Z = aZ

If a ∧ b = d, write a = a′d and b = b′d, then dZ
(
a′

b′
Z ∩ Z

)
= aZ

⇒ Need a ”gcd ideal” of α and β?
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Reducing rank-2 module-LIP
• Embed M ⊂ L2 into an ideal in A = L+ L · j using

Φ : L2 −→ A(
x
y

)
7−→ x+ yj

Fix O ⊂ A maximal order containing OL +OL · j. Put

IM = left O-ideal generated by Φ(M)

Fact: If B = (b1|b2) basis for M , then

IM = Oα +Oβ,

where α = Φ(b1), β = Φ(b2) ∈ A =⇒ IM efficiently computable from any basis
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Reducing rank-2 module-LIP

Proposition [2]

Let C = (c1|c2) basis for a module M ⊂ L2 and α = Φ(c1), β = Φ(c2). Let O maximal
order in A containing OL +OL · j. Put O′ = I−1

M IM maximal order,

then

αO′ = IM ∩ αβ−1IM

Proof.

IM = Oα +Oβ =⇒ I−1
M = α−1O ∩ β−1O

=⇒ αI−1
M = O ∩ αβ−1O

=⇒ αO′ = IM ∩ αβ−1IM
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Reducing rank-2 module-LIP
• modLIP instance

B = (b1|b2) basis of M ⊂ L2 (known)

C = (c1|c2) basis of M ⊂ L2 (unknown)

G′ Gram matrix with G′ = C∗C (known)

• What do we know now?

Lemma ⇒ know αβ−1 where α = Φ(c1), β = Φ(c2). Getting α is enough.
From B compute IM and O′ = I−1

M IM
Proposition ⇒ know αO′. Also know nrd(α) = q1

O-nrdPIP, definition

Parameter: O ⊂ A maximal order
Input: I ⊂ A principal right O-ideal and q ∈ F
Goal: A right generator α of I with nrd(α) = q (if it exists)
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Reducing rank-2 module-LIP

Theorem (general reduction)

Let (L,A) = (F,K) or (K,K +K · j) and B basis of M ⊂ L2

∃ a poly time reduction from modLIPB
L to O′-nrdPIP where O′ ⊂ A depends only on M

• Hawk: L = Q(ζm) cyclotomic, M = O2
L, we have IM = O and O′ = I−1

M IM = O

Theorem (reduction, special case)

L = Q(ζm) cyclotomic and O maximal order in L+ L · j containing OL +OL · j
∃ a poly time Karp reduction from modLIPI2

L to O-nrdPIP

Remark: When L = Q(ζm) cyclotomic, OL +OL · j already maximal for most m.
Otherwise, ∃ poly time algo to compute O
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Reducing rank-2 module-LIP

Let (L,A) = (F,K) or (K = Q(ζm), K +K · j)

Parameters: B basis of O2
L, G = B∗B. Input: G′ ∼ G

Algorithm reduction for O2
L

1: Compute O ⊃ OL +OL · j maximal order
2: From G,G′ compute a candidate δ for δ = det(C)
3: q = q−1

3 (q2 − δ · j) (= αβ−1)
4: I = O ∩ qO (= αO′)
5: Call an oracle solving O′-nrdPIP on (I, q), get α
6: From α get a solution C ∈ GL2(L)

• Can be adapted to compute all the solutions for modLIP on O2
L, still with one call to

the oracle (act by Aut(O2
L), explicit group)
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Reducing rank-2 module-LIP

• In general, our algorithm computes all the solutions to module-LIP with at most two
calls to the oracle.

Can bound the number of solutions and since

{C solutions to modLIP} −→ {solutions to nrdPIP}
(c1|c2) 7−→ Φ(c1)

is injective, get a bound on |{solutions to modLIP}| = |Aut(M)|,
where Aut(M) = {Θ ∈ GL2(L) |Θ(M) = M and Θ ·Θ∗ = I2}

Proposition [2]

Let M ⊂ L2 a rank 2 module, then |Aut(M)| ≤ 64d4, where d = [L : Q]

• In comparison, the lattice Zn ⊂ Rn has 2O(n) automorphisms (isometries)
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Solving the totally real case
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Solving the totally real case

• K/F CM extension and I = g · OK principal ideal. Finding a generator is a
well-known problem (PIP): sub-exponential classical or polynomial quantum.

However,
if the reduced norm of the generator is known:

LenstraSilverberg algorithma

aTesting isomorphism of lattices over CM-orders

∃ a poly time algorithm s.t. given I = g · OK principal and q = gḡ, the algorithm
computes a generator g of I with nrd(g) = q

It is a generalization of an algorithm by Gentry and Szydlo4 for cyclotomic fields

4Cryptanalysis of the Revised NTRU Signature Scheme
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Solving the totally real case
• Let K = Q(ζm) and F = Q(ζm + ζ−1

m ) with m = 2e. Fix g ∈ OK

GentrySzydlo

Input : A basis of g · OL and gg ∈ OF

Output : g, up to a root of unity of K

Find a ”good” prime P ∈ N

Compute a basis of (g · OK)
P−1 = gP−1 · OL using LLL

At each step, divide the basis by gg to avoid coefficient blow-up

The first basis vector is gP−1 · v with v short. Reduce modulo P

By Fermat’s theorem, gP−1 = 1 (mod P ), so we get v (mod P )
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Solving the totally real case

If P is big enough, get v exactly and deduce gP−1

With some trick, reduce the exponent and deduce gm

Compute a m-th root and get g, up to a root of unity

We did an implementation in SageMath for [1]. Adapting this algorithm for quaternion
algebras seems very hard !
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Sum-up

When L either totally real or CM, reduce rank-2 module-LIP over L to nrdPIP in a
quadratic extension of L (may be non commutative)

If L totally real, efficient algorithm for nrdPIP (poly time attack on modLIP)

If L is CM, state-of-the-art for nrdPIP: SVP in I ⊂ A, rank 2d lattice5

Thanks for your attention! Any question?

5Algorithmic enumeration of ideal classes for quaternion orders, M. Kirschmer, J. Voight
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