Cryptanalysis of Rank 2 Module-LIP for certain number fields

C. Chevignard, T. Espitau, P-A. Fouque, **G. Mureau**, A. Pellet-Mary, H. Pliatsok, A. Wallet

> Joint Seminar ENSL/CWI/KCL/IRISA April 28th, 2025

Some context

2022: Ducas et al. introduced module-LIP and Hawk¹
 Signature scheme, NIST submission
 Based on module-LIP for O²_K with K cyclotomic number field

¹Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple (L. Ducas, E. W. Postlethwaite, L. N. Pulles, W. van Woerden)

²Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields

³A reduction from Hawk to the principal ideal problem in a quaternion algebra

Some context

- 2022: Ducas et al. introduced module-LIP and Hawk¹
 Signature scheme, NIST submission
 Based on module-LIP for O²_K with K cyclotomic number field
- 2023: [1], with A. Pellet-Mary, H. Pliatsok and A. Wallet² Heuristic poly time algorithm solving rank-2 module-LIP over totally real number fields (does not break Hawk!)

³A reduction from Hawk to the principal ideal problem in a quaternion algebra

¹Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple (L. Ducas, E. W. Postlethwaite, L. N. Pulles, W. van Woerden)

²Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields

Some context

- 2022: Ducas et al. introduced module-LIP and $Hawk^1$ Signature scheme, NIST submission Based on module-LIP for \mathcal{O}_K^2 with K cyclotomic number field
- 2023: [1], with A. Pellet-Mary, H. Pliatsok and A. Wallet² Heuristic poly time algorithm solving rank-2 module-LIP over totally real number fields (does not break Hawk!)
- 2024: [2], with C. Chevignard, P-A. Fouque, A. Pellet–Mary, A. Wallet³
 Poly time reduction for rank-2 module-LIP over CM number fields to a variant of PIP in quaternion algebra called nrdPIP (does not break Hawk!)

¹Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple (L. Ducas, E. W. Postlethwaite, L. N. Pulles, W. van Woerden)

- ²Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields
- ³A reduction from Hawk to the principal ideal problem in a quaternion algebra

A framework containing both: L either totally real or CM fields, reduce module-LIP for rank 2 modules over L to a problem on rank 1 modules (ideals) in a quadratic extension \mathcal{A}/L , called nrdPIP.

A framework containing both: L either totally real or CM fields, reduce module-LIP for rank 2 modules over L to a problem on rank 1 modules (ideals) in a quadratic extension \mathcal{A}/L , called nrdPIP. Also apply to [1]: remove the heuristic argument

A framework containing both: L either totally real or CM fields, reduce module-LIP for rank 2 modules over L to a problem on rank 1 modules (ideals) in a quadratic extension \mathcal{A}/L , called nrdPIP. Also apply to [1]: remove the heuristic argument

For L totally real, efficient algorithm to solve nrdPIP. For CM fields, open question!

A framework containing both: L either totally real or CM fields, reduce module-LIP for rank 2 modules over L to a problem on rank 1 modules (ideals) in a quadratic extension \mathcal{A}/L , called nrdPIP. Also apply to [1]: remove the heuristic argument

For L totally real, efficient algorithm to solve nrdPIP. For CM fields, open question!

Plan of the talk:

- Background and module-LIP
- Reducing rank-2 module-LIP to nrdPIP
- Solving the totally real case

Totally real and CM number fields

• $L \simeq \mathbb{Q}[X]/P(X)$ of degree d has d (complex) embeddings $\sigma : L \to \mathbb{C}$

• $L \simeq \mathbb{Q}[X]/P(X)$ of degree d has d (complex) embeddings $\sigma : L \to \mathbb{C}$

Example: $P(X) = \Phi_n(X)$ cyclotomic, $d = \varphi(n)$ and $\sigma : X \mapsto e^{\frac{2ik\pi}{n}}$, $k \wedge n = 1$

• $L \simeq \mathbb{Q}[X]/P(X)$ of degree d has d (complex) embeddings $\sigma : L \to \mathbb{C}$

Example: $P(X) = \Phi_n(X)$ cyclotomic, $d = \varphi(n)$ and $\sigma : X \mapsto e^{\frac{2ik\pi}{n}}$, $k \wedge n = 1$

• L totally real if $\sigma(L) \subset \mathbb{R}$ for all embeddings. Examples: \mathbb{Q} , $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ L totally complex if $\sigma(L) \not\subset \mathbb{R}$ for all embeddings. Examples: $\mathbb{Q}(\zeta_n)$, n > 2

• $L \simeq \mathbb{Q}[X]/P(X)$ of degree d has d (complex) embeddings $\sigma : L \to \mathbb{C}$

Example: $P(X) = \Phi_n(X)$ cyclotomic, $d = \varphi(n)$ and $\sigma : X \mapsto e^{\frac{2ik\pi}{n}}$, $k \wedge n = 1$

• L totally real if $\sigma(L) \subset \mathbb{R}$ for all embeddings. Examples: $\mathbb{Q}, \ \mathbb{Q}(\sqrt{2}, \sqrt{3})$

L totally complex if $\sigma(L) \not\subset \mathbb{R}$ for all embeddings. Examples: $\mathbb{Q}(\zeta_n), n > 2$

• L is a CM field if totally complex and quadratic extension of F totally real

We say L/F is **CM** extension. Examples: $L/F = \mathbb{Q}(\sqrt{-1})/\mathbb{Q}, \ \mathbb{Q}(\zeta_n)/\mathbb{Q}(\zeta_n + \zeta_n^{-1})$

• Notations: K for a CM field, F totally real field and L generic notation

• Notations: K for a CM field, F totally real field and L generic notation

Fact: K/F CM, always have $K = F(\sqrt{a})$ with $a \in F$ s.t. $\sigma(a) < 0$, $\forall \sigma : F \to \mathbb{R}$.

Example: $K = \mathbb{Q}(\zeta_m)$ with $m = 2^e$, then $K = F(\sqrt{-1})$ with $F = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$

• Notations: K for a CM field, F totally real field and L generic notation

Fact: K/F CM, always have $K = F(\sqrt{a})$ with $a \in F$ s.t. $\sigma(a) < 0$, $\forall \sigma : F \to \mathbb{R}$.

Example: $K = \mathbb{Q}(\zeta_m)$ with $m = 2^e$, then $K = F(\sqrt{-1})$ with $F = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$

For simplicity, a = -1 and $\sqrt{a} = i$ in the rest of the talk

• Notations: K for a CM field, F totally real field and L generic notation

Fact: K/F CM, always have $K = F(\sqrt{a})$ with $a \in F$ s.t. $\sigma(a) < 0$, $\forall \sigma : F \to \mathbb{R}$.

Example: $K = \mathbb{Q}(\zeta_m)$ with $m = 2^e$, then $K = F(\sqrt{-1})$ with $F = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$

For simplicity, a = -1 and $\sqrt{a} = i$ in the rest of the talk

• K/F CM, $\overline{\cdot}: x + iy \mapsto x - iy$ complex conjugation on $K = F(\sqrt{a})$

nrd : $K \to F$; $x = x_1 + ix_2 \mapsto x\overline{x} = x_1^2 + x_2^2$ reduced norm on K

If $x \in \overline{F}$, $\overline{x} = x$ and $\operatorname{nrd}(x) = x^2$.

Module lattices

• Let L either totally real or CM, $\ell \in \mathbb{N}_{>0}$ and V a L-vector space of dim ℓ

• Let L either totally real or CM, $\ell \in \mathbb{N}_{>0}$ and V a L-vector space of dim ℓ

 $\Psi: V \to \mathbb{Q}$; $(x_1, \ldots, x_\ell) \mapsto \operatorname{Tr}_{L/\mathbb{Q}} \left(\sum_{i=1}^\ell \operatorname{nrd}(x_i) \right)$ positive definite quadratic (or hermitian) form on V

• Let L either totally real or CM, $\ell \in \mathbb{N}_{>0}$ and V a L-vector space of dim ℓ

 $\Psi: V \to \mathbb{Q}$; $(x_1, \ldots, x_\ell) \mapsto \operatorname{Tr}_{L/\mathbb{Q}} \left(\sum_{i=1}^\ell \operatorname{nrd}(x_i) \right)$ positive definite quadratic (or hermitian) form on V

• Rank- ℓ (free \mathcal{O}_L -)module in V is any

 $M = \mathcal{O}_L \mathbf{b}_1 + \cdots + \mathcal{O}_L \mathbf{b}_\ell \subset V$ equipped with $\Psi_{|M}$,

where $B = (b_1 | \cdots | b_\ell) \in GL_\ell(L)$ called a basis of M

• Let L either totally real or CM, $\ell \in \mathbb{N}_{>0}$ and V a L-vector space of dim ℓ

 $\Psi: V \to \mathbb{Q}$; $(x_1, \ldots, x_\ell) \mapsto \operatorname{Tr}_{L/\mathbb{Q}} \left(\sum_{i=1}^\ell \operatorname{nrd}(x_i) \right)$ positive definite quadratic (or hermitian) form on V

• Rank- ℓ (free \mathcal{O}_L -)module in V is any

 $M = \mathcal{O}_L \mathbf{b}_1 + \cdots + \mathcal{O}_L \mathbf{b}_\ell \subset V$ equipped with $\Psi_{|M}$,

where $B = (b_1 | \cdots | b_\ell) \in GL_\ell(L)$ called a basis of M

• Remark: Can consider more general objects using pseudo-bases.

• Let $M \subset V \simeq L^{\ell}$ rank- ℓ module

- Let $M \subset V \simeq L^{\ell}$ rank- ℓ module
- Fact: $B, C \in \operatorname{GL}_{\ell}(L)$ are both bases of M iff

• Let $M \subset V \simeq L^{\ell}$ rank- ℓ module

Fact: $B, C \in \operatorname{GL}_{\ell}(L)$ are both bases of M iff $\exists U \in \operatorname{GL}_{\ell}(\mathcal{O}_L)$ s.t. C = BU

• Let $M \subset V \simeq L^{\ell}$ rank- ℓ module

Fact: $B, C \in GL_{\ell}(L)$ are both bases of M iff $\exists U \in GL_{\ell}(\mathcal{O}_L)$ s.t. C = BU

• If B basis of M, call $G = B^*B$ (where $B^* = \text{transpose-conjugate of } B$) the **Gram** matrix associated to B

• Let $M \subset V \simeq L^{\ell}$ rank- ℓ module

Fact: $B, C \in \operatorname{GL}_{\ell}(L)$ are both bases of M iff $\exists U \in \operatorname{GL}_{\ell}(\mathcal{O}_L)$ s.t. C = BU

• If B basis of M, call $G = B^*B$ (where $B^* = \text{transpose-conjugate of } B$) the Gram matrix associated to B

Gram matrices are **congruent** if associated to bases of the same module

$$G \sim G' \iff \exists U \in \operatorname{GL}_{\ell}(\mathcal{O}_L) : G' = U^* G U.$$

Module-LIP

• L either totally real or CM and B basis for $M \subset L^{\ell}$, G the Gram matrix

• L either totally real or CM and B basis for $M \subset L^{\ell}$, G the Gram matrix

 modLIP_L^B .

• L either totally real or CM and B basis for $M \subset L^{\ell}$, G the Gram matrix

modLIP^B_L. Input: $G' \sim G$

• L either totally real or CM and B basis for $M \subset L^{\ell}$, G the Gram matrix

modLIP^B_L. Input: $G' \sim G$

Goal: Any $U \in GL_{\ell}(\mathcal{O}_L)$ s.t. $G' = U^*GU$ (call it a congruence matrix between G and G')

• L either totally real or CM and B basis for $M \subset L^{\ell}$, G the Gram matrix

modLIP^B_L. Input: $G' \sim G$

Goal: Any $U \in GL_{\ell}(\mathcal{O}_L)$ s.t. $G' = U^*GU$ (call it a congruence matrix between G and G')

 \Leftrightarrow

Goal: Any $C \in \operatorname{GL}_2(L)$ basis of M with $C^*C = G'$

• L either totally real or CM and B basis for $M \subset L^{\ell}$, G the Gram matrix

modLIP^B_L. Input: $G' \sim G$

Goal: Any $U \in GL_{\ell}(\mathcal{O}_L)$ s.t. $G' = U^*GU$ (call it a congruence matrix between G and G')

 \Leftrightarrow

Goal: Any $C \in \operatorname{GL}_2(L)$ basis of M with $C^*C = G'$

• Example: For $M = \mathcal{O}_L^2$ and $B_0 = I_2$ as in Hawk

• L either totally real or CM and B basis for $M \subset L^{\ell}$, G the Gram matrix

modLIP^B_L. Input: $G' \sim G$

Goal: Any $U \in GL_{\ell}(\mathcal{O}_L)$ s.t. $G' = U^*GU$ (call it a congruence matrix between G and G')

 \Leftrightarrow

Goal: Any $C \in \operatorname{GL}_2(L)$ basis of M with $C^*C = G'$

• **Example:** For $M = \mathcal{O}_L^2$ and $B_0 = I_2$ as in **Hawk**

<u>Hawk.</u> Input: $G' \sim I_2$

Goal: Any $U \in \operatorname{GL}_2(\mathcal{O}_L)$ s.t. $G' = U^*U$

• L either totally real or CM and $\ell = \mathbf{2}$

Main observation:
$$G' = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$$
 input and $C = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ solution to modLIP,

• L either totally real or CM and $\ell = \mathbf{2}$

Main observation: $G' = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$ input and $C = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ solution to modLIP, $\begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \cdot \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a\overline{a} + b\overline{b} & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & c\overline{c} + d\overline{d} \end{pmatrix}$

• L either totally real or CM and $\ell = \mathbf{2}$

Main observation:
$$G' = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$$
 input and $C = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ solution to modLIP,
 $\begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \cdot \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a\overline{a} + b\overline{b} & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & c\overline{c} + d\overline{d} \end{pmatrix}$

For L = F totally real: $q_1 = a^2 + b^2 = \operatorname{nrd}(a + bi)$,

ullet L either totally real or CM and $\ell=\mathbf{2}$

Main observation:
$$G' = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$$
 input and $C = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ solution to modLIP,
 $\begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \cdot \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a\overline{a} + b\overline{b} & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & c\overline{c} + d\overline{d} \end{pmatrix}$

For L = F totally real: $q_1 = a^2 + b^2 = \operatorname{nrd}(a + bi)$, $a + bi \in K = L(i)$ CM field

• L either totally real or CM and $\ell = \mathbf{2}$

Main observation:
$$G' = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$$
 input and $C = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ solution to modLIP,
 $\begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \cdot \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a\overline{a} + b\overline{b} & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & c\overline{c} + d\overline{d} \end{pmatrix}$

For L = F totally real: $q_1 = a^2 + b^2 = \operatorname{nrd}(a + bi)$, $a + bi \in K = L(i)$ CM field

 \implies Norm equation in CM extension

• L either totally real or CM and $\ell = \mathbf{2}$

Main observation:
$$G' = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$$
 input and $C = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ solution to modLIP,
 $\begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \cdot \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a\overline{a} + b\overline{b} & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & c\overline{c} + d\overline{d} \end{pmatrix}$

For L = F totally real: $q_1 = a^2 + b^2 = \operatorname{nrd}(a + bi)$, $a + bi \in K = L(i)$ CM field For L = F(i) **CM**: $q_1 = a_1^2 + a_2^2 + b_1^2 + b_2^2$,

 \implies Norm equation in CM extension

• L either totally real or CM and $\ell = \mathbf{2}$

Main observation:
$$G' = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$$
 input and $C = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ solution to modLIP,
 $\begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \cdot \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a\overline{a} + b\overline{b} & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & c\overline{c} + d\overline{d} \end{pmatrix}$

For L = F totally real: $q_1 = a^2 + b^2 = \operatorname{nrd}(a + bi)$, $a + bi \in K = L(i)$ CM field

 \implies Norm equation in CM extension

For L = F(i) **CM**: $q_1 = a_1^2 + a_2^2 + b_1^2 + b_2^2$, reduced norm in quaternion algebra $L + L \cdot j$

• L either totally real or CM and $\ell = \mathbf{2}$

Main observation:
$$G' = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$$
 input and $C = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ solution to modLIP,
 $\begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix} \cdot \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a\overline{a} + b\overline{b} & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & c\overline{c} + d\overline{d} \end{pmatrix}$

For L = F totally real: $q_1 = a^2 + b^2 = \operatorname{nrd}(a + bi)$, $a + bi \in K = L(i)$ CM field

 \implies Norm equation in CM extension

For L = F(i) **CM**: $q_1 = a_1^2 + a_2^2 + b_1^2 + b_2^2$, reduced norm in quaternion algebra $L + L \cdot j$

 \implies Norm equation in quaternion algebra

Quaternion algebras

• Let K/F a CM extension, K = F(i) with $i^2 = -1$

• Let K/F a CM extension, K = F(i) with $i^2 = -1$

$$\mathcal{A} = F + F \cdot i + F \cdot j + F \cdot ij = K + K \cdot j,$$

with $j^2 = -1$ and ij = -ji.

• Let K/F a CM extension, K = F(i) with $i^2 = -1$

$$\mathcal{A} = F + F \cdot i + F \cdot j + F \cdot ij = K + K \cdot j,$$

with $j^2 = -1$ and ij = -ji. Non-commutative F-algebra of dim 4 (quaternion algebra)

• Let K/F a CM extension, K = F(i) with $i^2 = -1$

$$\mathcal{A} = F + F \cdot i + F \cdot j + F \cdot ij = K + K \cdot j,$$

with $j^2 = -1$ and ij = -ji. Non-commutative F-algebra of dim 4 (quaternion algebra)

•
$$\overline{\cdot} : x + yi + zj + tij \mapsto x - yi - zj - tij$$
 complex conjugation on \mathcal{A}

nrd : $\mathcal{A} \to F$; $\alpha = x + yi + zj + tij \mapsto \alpha \bar{\alpha} = x^2 + y^2 + z^2 + t^2$ reduced norm on \mathcal{A}

• Let K/F a CM extension, K = F(i) with $i^2 = -1$

$$\mathcal{A} = F + F \cdot i + F \cdot j + F \cdot ij = K + K \cdot j,$$

with $j^2 = -1$ and ij = -ji. Non-commutative F-algebra of dim 4 (quaternion algebra)

• $\overline{\cdot}: x + yi + zj + tij \mapsto x - yi - zj - tij$ complex conjugation on \mathcal{A}

nrd : $\mathcal{A} \to F$; $\alpha = x + yi + zj + tij \mapsto \alpha \bar{\alpha} = x^2 + y^2 + z^2 + t^2$ reduced norm on \mathcal{A}

 \implies Extensions of $\overline{\ \cdot\ }$ and nrd on K

• Ideal in \mathcal{A} : rank-4 \mathcal{O}_F -module in \mathcal{A} (not necessarily free).

• Ideal in \mathcal{A} : rank-4 \mathcal{O}_F -module in \mathcal{A} (not necessarily free). Order in \mathcal{A} : ideal in \mathcal{A} with ring structure. Said maximal if not contained in a strictly bigger order

• Ideal in \mathcal{A} : rank-4 \mathcal{O}_F -module in \mathcal{A} (not necessarily free). Order in \mathcal{A} : ideal in \mathcal{A} with ring structure. Said maximal if not contained in a strictly bigger order

Example: $F = \mathbb{Q}$, order $\mathcal{O} = \mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}ij$ (not maximal!)

• Ideal in \mathcal{A} : rank-4 \mathcal{O}_F -module in \mathcal{A} (not necessarily free). Order in \mathcal{A} : ideal in \mathcal{A} with ring structure. Said maximal if not contained in a strictly bigger order

Example: $F = \mathbb{Q}$, order $\mathcal{O} = \mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}ij$ (not maximal!)

• $I \subset A$ an ideal, $\mathcal{O}_{\ell}(I) := \{ \alpha \in A \mid \alpha I \subseteq I \}$ left order of I. Same way, define right order $\mathcal{O}_r(I)$ of I

• Ideal in \mathcal{A} : rank-4 \mathcal{O}_F -module in \mathcal{A} (not necessarily free). Order in \mathcal{A} : ideal in \mathcal{A} with ring structure. Said maximal if not contained in a strictly bigger order

Example: $F = \mathbb{Q}$, order $\mathcal{O} = \mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}ij$ (not maximal!)

• $I \subset \mathcal{A}$ an ideal, $\mathcal{O}_{\ell}(I) := \{ \alpha \in \mathcal{A} \mid \alpha I \subseteq I \}$ left order of I. Same way, define right order $\mathcal{O}_r(I)$ of I

An ideal $I \subset \mathcal{A}$ is a left \mathcal{O} -ideal if $\mathcal{O}_{\ell}(I) = \mathcal{O}$. Same way, define right \mathcal{O} -ideals

• Ideal in \mathcal{A} : rank-4 \mathcal{O}_F -module in \mathcal{A} (not necessarily free). Order in \mathcal{A} : ideal in \mathcal{A} with ring structure. Said maximal if not contained in a strictly bigger order

Example: $F = \mathbb{Q}$, order $\mathcal{O} = \mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}ij$ (not maximal!)

• $I \subset \mathcal{A}$ an ideal, $\mathcal{O}_{\ell}(I) := \{ \alpha \in \mathcal{A} \mid \alpha I \subseteq I \}$ left order of I. Same way, define right order $\mathcal{O}_r(I)$ of I

An ideal $I \subset \mathcal{A}$ is a left \mathcal{O} -ideal if $\mathcal{O}_{\ell}(I) = \mathcal{O}$. Same way, define right \mathcal{O} -ideals

• Fact: If \mathcal{O} is maximal and I a left \mathcal{O} -ideal, I is **invertible** : $\exists ! J$ ideal s.t. $IJ = \mathcal{O}$

Also, J is efficiently computable from I

• **Recall:** Solve norm equations (in CM extensions or quaternion algebras) to reconstruct solutions

• **Recall:** Solve norm equations (in CM extensions or quaternion algebras) to reconstruct solutions

Totally real case: [1] Randomize input to ensure few solutions

• **Recall:** Solve norm equations (in CM extensions or quaternion algebras) to reconstruct solutions

Totally real case: [1] Randomize input to ensure few solutions Can compute them efficiently

• **Recall:** Solve norm equations (in CM extensions or quaternion algebras) to reconstruct solutions

Totally real case: [1] Randomize input to ensure few solutions Can compute them efficiently

 \implies Heuristic poly time algorithm

• **Recall:** Solve norm equations (in CM extensions or quaternion algebras) to reconstruct solutions

Totally real case: [1] Randomize input to ensure few solutions Can compute them efficiently

 \implies Heuristic poly time algorithm

CM case: Too many solutions (even with randomization)!

• **Recall:** Solve norm equations (in CM extensions or quaternion algebras) to reconstruct solutions

Totally real case: [1] Randomize input to ensure few solutions Can compute them efficiently

 \implies Heuristic poly time algorithm

CM case: Too many solutions (even with randomization)! Don't know how to compute one...

• **Recall:** Solve norm equations (in CM extensions or quaternion algebras) to reconstruct solutions

Totally real case: [1] Randomize input to ensure few solutions Can compute them efficiently

 \implies Heuristic poly time algorithm

CM case: Too many solutions (even with randomization)! Don't know how to compute one

 \implies *Sad reactions in the audience*

• **Recall:** Solve norm equations (in CM extensions or quaternion algebras) to reconstruct solutions

Totally real case: [1] Randomize input to ensure few solutions Can compute them efficiently

 \implies Heuristic poly time algorithm

CM case: Too many solutions (even with randomization)! Don't know how to compute one...

 \implies *Sad reactions in the audience*

• Strategy [2]: First, use info from non-diagonal coeff to add constraints on the solutions \Rightarrow at most **two** solutions to norm equation needed

• **Recall:** Solve norm equations (in CM extensions or quaternion algebras) to reconstruct solutions

Totally real case: [1] Randomize input to ensure few solutions Can compute them efficiently

 \Longrightarrow Heuristic poly time algorithm

CM case: Too many solutions (even with randomization)! Don't know how to compute one...

 \implies *Sad reactions in the audience*

• Strategy [2]: First, use info from non-diagonal coeff to add constraints on the solutions \Rightarrow at most **two** solutions to norm equation needed

Build these solutions as generators of principal ideals

• Denote (L, \mathcal{A}) either:

 $(L = F \text{ totally real}, \mathcal{A} = L(j) \text{ CM})$ or $(L = K \text{ CM}, \mathcal{A} = K + K \cdot j \text{ quaternion algebra})$

• Denote (L, \mathcal{A}) either:

 $(L = F \text{ totally real}, \mathcal{A} = L(j) \text{ CM})$ or $(L = K \text{ CM}, \mathcal{A} = K + K \cdot j \text{ quaternion algebra})$

Lemma [2] Let $C = \begin{pmatrix} c_1 & c_3 \\ c_2 & c_4 \end{pmatrix}$, $G' = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix} \in \operatorname{GL}_2(L)$ and $\alpha = c_1 + c_2 j$, $\beta = c_3 + c_4 j \in \mathcal{A}$.

• Denote (L, \mathcal{A}) either:

 $(L = F \text{ totally real}, \mathcal{A} = L(j) \text{ CM})$ or $(L = K \text{ CM}, \mathcal{A} = K + K \cdot j \text{ quaternion algebra})$

Lemma [2] Let $C = \begin{pmatrix} c_1 & c_3 \\ c_2 & c_4 \end{pmatrix}$, $G' = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix} \in \operatorname{GL}_2(L)$ and $\alpha = c_1 + c_2 j$, $\beta = c_3 + c_4 j \in \mathcal{A}$. $G' = C^*C \iff \begin{cases} \operatorname{nrd}(\alpha) = q_1 \\ \alpha \beta^{-1} = q_3^{-1}(\overline{q_2} - \det(C) \cdot j) \end{cases}$

• Denote (L, \mathcal{A}) either:

 $(L = F \text{ totally real}, \mathcal{A} = L(j) \text{ CM})$ or $(L = K \text{ CM}, \mathcal{A} = K + K \cdot j \text{ quaternion algebra})$

Lemma [2] Let $C = \begin{pmatrix} c_1 & c_3 \\ c_2 & c_4 \end{pmatrix}$, $G' = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix} \in \operatorname{GL}_2(L)$ and $\alpha = c_1 + c_2 j$, $\beta = c_3 + c_4 j \in \mathcal{A}$. $G' = C^*C \iff \begin{cases} \operatorname{nrd}(\alpha) = q_1 \\ \alpha\beta^{-1} = q_3^{-1}(\overline{q_2} - \det(C) \cdot j) \end{cases}$

Know everything on the r.h.s. (compute det(C) easily up to root of unity in L). Getting α determines β , so a whole solution!

• Next step: Get a principal ideal αO from $\alpha \beta^{-1}$?

• Next step: Get a principal ideal αO from $\alpha \beta^{-1}$?

Remark:
$$a, b \in \mathbb{Z}$$
 unknown, $\frac{a}{b}$ known. Get $a\mathbb{Z}$ from $\frac{a}{b}$?

• Next step: Get a principal ideal αO from $\alpha \beta^{-1}$?

Remark:
$$a, b \in \mathbb{Z}$$
 unknown, $\frac{a}{b}$ known. Get $a\mathbb{Z}$ from $\frac{a}{b}$?
If $a \wedge b = 1$, $\frac{a}{b}\mathbb{Z} \cap \mathbb{Z} = a\mathbb{Z}$

• Next step: Get a principal ideal αO from $\alpha \beta^{-1}$?

Remark:
$$a, b \in \mathbb{Z}$$
 unknown, $\frac{a}{b}$ known. Get $a\mathbb{Z}$ from $\frac{a}{b}$?
If $a \wedge b = 1$, $\frac{a}{b}\mathbb{Z} \cap \mathbb{Z} = a\mathbb{Z}$
If $a \wedge b = d$, write $a = a'd$ and $b = b'd$, then $d\mathbb{Z}\left(\frac{a'}{b'}\mathbb{Z} \cap \mathbb{Z}\right) = a\mathbb{Z}$

• Next step: Get a principal ideal αO from $\alpha \beta^{-1}$?

Remark:
$$a, b \in \mathbb{Z}$$
 unknown, $\frac{a}{b}$ known. Get $a\mathbb{Z}$ from $\frac{a}{b}$?
If $a \wedge b = 1$, $\frac{a}{b}\mathbb{Z} \cap \mathbb{Z} = a\mathbb{Z}$
If $a \wedge b = d$, write $a = a'd$ and $b = b'd$, then $d\mathbb{Z}\left(\frac{a'}{b'}\mathbb{Z} \cap \mathbb{Z}\right) = a\mathbb{Z}$

 \Rightarrow Need a "gcd ideal" of α and β ?

• Embed $M \subset L^2$ into an ideal in $\mathcal{A} = L + L \cdot j$ using

$$\begin{split} \Phi : L^2 &\longrightarrow \mathcal{A} \\ \begin{pmatrix} x \\ y \end{pmatrix} &\longmapsto x + y \end{split}$$

• Embed $M \subset L^2$ into an ideal in $\mathcal{A} = L + L \cdot j$ using

$$\begin{split} \Phi : L^2 &\longrightarrow \mathcal{A} \\ \begin{pmatrix} x \\ y \end{pmatrix} &\longmapsto x + y \end{split}$$

Fix $\mathcal{O} \subset \mathcal{A}$ maximal order containing $\mathcal{O}_L + \mathcal{O}_L \cdot j$.

• Embed $M \subset L^2$ into an ideal in $\mathcal{A} = L + L \cdot j$ using

$$\begin{split} \Phi : L^2 &\longrightarrow \mathcal{A} \\ \begin{pmatrix} x \\ y \end{pmatrix} &\longmapsto x + y \end{split}$$

Fix $\mathcal{O} \subset \mathcal{A}$ maximal order containing $\mathcal{O}_L + \mathcal{O}_L \cdot j$. Put

 $I_M =$ left \mathcal{O} -ideal generated by $\Phi(M)$

• Embed $M \subset L^2$ into an ideal in $\mathcal{A} = L + L \cdot j$ using

$$\begin{split} \Phi : L^2 &\longrightarrow \mathcal{A} \\ \begin{pmatrix} x \\ y \end{pmatrix} &\longmapsto x + y \end{split}$$

Fix $\mathcal{O} \subset \mathcal{A}$ maximal order containing $\mathcal{O}_L + \mathcal{O}_L \cdot j$. Put

 $I_M =$ left \mathcal{O} -ideal generated by $\Phi(M)$

Fact: If $B = (b_1|b_2)$ basis for M, then

$$I_M = \mathcal{O}\alpha + \mathcal{O}\beta,$$

where $lpha=\Phi(b_1)$, $eta=\Phi(b_2)\in\mathcal{A}$

• Embed $M \subset L^2$ into an ideal in $\mathcal{A} = L + L \cdot j$ using

$$\begin{split} \Phi : L^2 &\longrightarrow \mathcal{A} \\ \begin{pmatrix} x \\ y \end{pmatrix} &\longmapsto x + y \end{split}$$

Fix $\mathcal{O} \subset \mathcal{A}$ maximal order containing $\mathcal{O}_L + \mathcal{O}_L \cdot j$. Put

 $I_M =$ left \mathcal{O} -ideal generated by $\Phi(M)$

Fact: If $B = (b_1|b_2)$ basis for M, then

$$I_M = \mathcal{O}\alpha + \mathcal{O}\beta,$$

where $\alpha = \Phi(b_1)$, $\beta = \Phi(b_2) \in \mathcal{A} \implies I_M$ efficiently computable from any basis

Proposition [2]

Let $C = (c_1|c_2)$ basis for a module $M \subset L^2$ and $\alpha = \Phi(c_1), \beta = \Phi(c_2)$. Let \mathcal{O} maximal order in \mathcal{A} containing $\mathcal{O}_L + \mathcal{O}_L \cdot j$. Put $\mathcal{O}' = I_M^{-1}I_M$ maximal order,

Proposition [2]

Let $C = (c_1|c_2)$ basis for a module $M \subset L^2$ and $\alpha = \Phi(c_1), \beta = \Phi(c_2)$. Let \mathcal{O} maximal order in \mathcal{A} containing $\mathcal{O}_L + \mathcal{O}_L \cdot j$. Put $\mathcal{O}' = I_M^{-1} I_M$ maximal order, then

 $\alpha \mathcal{O}' = I_M \cap \alpha \beta^{-1} I_M$

Proposition [2]

Let $C = (c_1|c_2)$ basis for a module $M \subset L^2$ and $\alpha = \Phi(c_1), \beta = \Phi(c_2)$. Let \mathcal{O} maximal order in \mathcal{A} containing $\mathcal{O}_L + \mathcal{O}_L \cdot j$. Put $\mathcal{O}' = I_M^{-1} I_M$ maximal order, then

$$\alpha \mathcal{O}' = I_M \cap \alpha \beta^{-1} I_M$$

Proof.

$$I_M = \mathcal{O}\alpha + \mathcal{O}\beta \Longrightarrow I_M^{-1} = \alpha^{-1}\mathcal{O} \cap \beta^{-1}\mathcal{O}$$
$$\Longrightarrow \alpha I_M^{-1} = \mathcal{O} \cap \alpha \beta^{-1}\mathcal{O}$$
$$\Longrightarrow \alpha \mathcal{O}' = I_M \cap \alpha \beta^{-1}I_M$$

• modLIP instance

$$B = (b_1|b_2)$$
 basis of $M \subset L^2$ (known)
 $C = (c_1|c_2)$ basis of $M \subset L^2$ (unknown)
 G' Gram matrix with $G' = C^*C$ (known)

• modLIP instance

$$B = (b_1|b_2)$$
 basis of $M \subset L^2$ (known)
 $C = (c_1|c_2)$ basis of $M \subset L^2$ (unknown)
 G' Gram matrix with $G' = C^*C$ (known)

• What do we know now?

• modLIP instance

$$B = (b_1|b_2)$$
 basis of $M \subset L^2$ (known)
 $C = (c_1|c_2)$ basis of $M \subset L^2$ (unknown)
 G' Gram matrix with $G' = C^*C$ (known)

• What do we know now?

Lemma \Rightarrow know $\alpha\beta^{-1}$ where $\alpha = \Phi(c_1), \beta = \Phi(c_2)$. Getting α is enough.

modLIP instance

$$B = (b_1|b_2)$$
 basis of $M \subset L^2$ (known)
 $C = (c_1|c_2)$ basis of $M \subset L^2$ (unknown)
 G' Gram matrix with $G' = C^*C$ (known)

• What do we know now?

Lemma \Rightarrow know $\alpha\beta^{-1}$ where $\alpha = \Phi(c_1), \beta = \Phi(c_2)$. Getting α is enough. From *B* compute I_M and $\mathcal{O}' = I_M^{-1}I_M$ Proposition \Rightarrow know $\alpha\mathcal{O}'$. Also know $\operatorname{nrd}(\alpha) = q_1$

modLIP instance

$$B = (b_1|b_2)$$
 basis of $M \subset L^2$ (known)
 $C = (c_1|c_2)$ basis of $M \subset L^2$ (unknown)
 G' Gram matrix with $G' = C^*C$ (known)

• What do we know now?

Lemma \Rightarrow know $\alpha\beta^{-1}$ where $\alpha = \Phi(c_1), \beta = \Phi(c_2)$. Getting α is enough. From B compute I_M and $\mathcal{O}' = I_M^{-1}I_M$ Proposition \Rightarrow know $\alpha\mathcal{O}'$. Also know $\operatorname{nrd}(\alpha) = q_1$

 \mathcal{O} -nrdPIP, definition Parameter: $\mathcal{O} \subset \mathcal{A}$ maximal order

modLIP instance

$$B = (b_1|b_2)$$
 basis of $M \subset L^2$ (known)
 $C = (c_1|c_2)$ basis of $M \subset L^2$ (unknown)
 G' Gram matrix with $G' = C^*C$ (known)

• What do we know now?

Lemma \Rightarrow know $\alpha\beta^{-1}$ where $\alpha = \Phi(c_1), \beta = \Phi(c_2)$. Getting α is enough. From B compute I_M and $\mathcal{O}' = I_M^{-1}I_M$ Proposition \Rightarrow know $\alpha\mathcal{O}'$. Also know $\operatorname{nrd}(\alpha) = q_1$

\mathcal{O} -nrdPIP, definition

Parameter: $\mathcal{O} \subset \mathcal{A}$ maximal order Input: $I \subset \mathcal{A}$ principal right \mathcal{O} -ideal and $q \in F$

modLIP instance

$$B = (b_1|b_2)$$
 basis of $M \subset L^2$ (known)
 $C = (c_1|c_2)$ basis of $M \subset L^2$ (unknown)
 G' Gram matrix with $G' = C^*C$ (known)

• What do we know now?

Lemma \Rightarrow know $\alpha\beta^{-1}$ where $\alpha = \Phi(c_1), \beta = \Phi(c_2)$. Getting α is enough. From B compute I_M and $\mathcal{O}' = I_M^{-1}I_M$ Proposition \Rightarrow know $\alpha\mathcal{O}'$. Also know $\operatorname{nrd}(\alpha) = q_1$

\mathcal{O} -nrdPIP, definition

Parameter: $\mathcal{O} \subset \mathcal{A}$ maximal order Input: $I \subset \mathcal{A}$ principal right \mathcal{O} -ideal and $q \in F$ Goal: A right generator α of I with $nrd(\alpha) = q$ (if it exists)

Theorem (general reduction)

Let $(L, \mathcal{A}) = (F, K)$ or $(K, K + K \cdot j)$ and B basis of $M \subset L^2$

Theorem (general reduction)

Let $(L, \mathcal{A}) = (F, K)$ or $(K, K + K \cdot j)$ and B basis of $M \subset L^2$ \exists a poly time reduction from modLIP^B_L to \mathcal{O}' -nrdPIP where $\mathcal{O}' \subset \mathcal{A}$ depends only on M

Theorem (general reduction)

Let $(L, \mathcal{A}) = (F, K)$ or $(K, K + K \cdot j)$ and B basis of $M \subset L^2$ \exists a poly time reduction from modLIP^B_L to \mathcal{O}' -nrdPIP where $\mathcal{O}' \subset \mathcal{A}$ depends only on M

• Hawk: $L = \mathbb{Q}(\zeta_m)$ cyclotomic, $M = \mathcal{O}_L^2$, we have $I_M = \mathcal{O}$ and $\mathcal{O}' = I_M^{-1}I_M = \mathcal{O}$

Theorem (general reduction)

Let $(L, \mathcal{A}) = (F, K)$ or $(K, K + K \cdot j)$ and B basis of $M \subset L^2$ \exists a poly time reduction from modLIP^B_L to \mathcal{O}' -nrdPIP where $\mathcal{O}' \subset \mathcal{A}$ depends only on M

• Hawk: $L = \mathbb{Q}(\zeta_m)$ cyclotomic, $M = \mathcal{O}_L^2$, we have $I_M = \mathcal{O}$ and $\mathcal{O}' = I_M^{-1}I_M = \mathcal{O}$

Theorem (reduction, special case)

 $L = \mathbb{Q}(\zeta_m)$ cyclotomic and \mathcal{O} maximal order in $L + L \cdot j$ containing $\mathcal{O}_L + \mathcal{O}_L \cdot j$ \exists a poly time **Karp** reduction from modLIP_L^{I₂} to \mathcal{O} -nrdPIP

Theorem (general reduction)

Let $(L, \mathcal{A}) = (F, K)$ or $(K, K + K \cdot j)$ and B basis of $M \subset L^2$ \exists a poly time reduction from modLIP^B_L to \mathcal{O}' -nrdPIP where $\mathcal{O}' \subset \mathcal{A}$ depends only on M

• Hawk: $L = \mathbb{Q}(\zeta_m)$ cyclotomic, $M = \mathcal{O}_L^2$, we have $I_M = \mathcal{O}$ and $\mathcal{O}' = I_M^{-1}I_M = \mathcal{O}$

Theorem (reduction, special case)

 $L = \mathbb{Q}(\zeta_m)$ cyclotomic and \mathcal{O} maximal order in $L + L \cdot j$ containing $\mathcal{O}_L + \mathcal{O}_L \cdot j$ \exists a poly time **Karp** reduction from modLIP_L^{I₂} to \mathcal{O} -nrdPIP

Remark: When $L = \mathbb{Q}(\zeta_m)$ cyclotomic, $\mathcal{O}_L + \mathcal{O}_L \cdot j$ already maximal for most m. Otherwise, \exists poly time algo to compute \mathcal{O}

Let $(L, \mathcal{A}) = (F, K)$ or $(K = \mathbb{Q}(\zeta_m), K + K \cdot j)$

Let $(L, \mathcal{A}) = (F, K)$ or $(K = \mathbb{Q}(\zeta_m), K + K \cdot j)$ Parameters: *B* basis of \mathcal{O}_L^2 , $G = B^*B$. Input: $G' \sim G$

Let $(L, \mathcal{A}) = (F, K)$ or $(K = \mathbb{Q}(\zeta_m), K + K \cdot j)$ Parameters: B basis of \mathcal{O}_L^2 , $G = B^*B$. Input: $G' \sim G$

Algorithm reduction for \mathcal{O}_L^2

- 1: Compute $\mathcal{O} \supset \mathcal{O}_L + \mathcal{O}_L \cdot j$ maximal order
- 2: From \mathbf{G}, \mathbf{G}' compute a candidate δ for $\delta = \det(C)$

3:
$$q = q_3^{-1}(\overline{q_2} - \delta \cdot j) \quad (= \alpha \beta^{-1})$$

4:
$$I = \mathcal{O} \cap q\mathcal{O} \quad (= \alpha \mathcal{O}')$$

- 5: Call an oracle solving \mathcal{O}' -nrdPIP on (I,q), get α
- 6: From α get a solution $C \in GL_2(L)$

Let $(L, \mathcal{A}) = (F, K)$ or $(K = \mathbb{Q}(\zeta_m), K + K \cdot j)$ Parameters: B basis of \mathcal{O}_L^2 , $G = B^*B$. Input: $G' \sim G$

Algorithm reduction for \mathcal{O}_L^2

- 1: Compute $\mathcal{O} \supset \mathcal{O}_L + \mathcal{O}_L \cdot j$ maximal order
- 2: From \mathbf{G}, \mathbf{G}' compute a candidate δ for $\delta = \det(C)$

3:
$$q = q_3^{-1}(\overline{q_2} - \delta \cdot j) \quad (= \alpha \beta^{-1})$$

4:
$$I = \mathcal{O} \cap q\mathcal{O} \quad (= \alpha \mathcal{O}')$$

- 5: Call an oracle solving \mathcal{O}' -nrdPIP on (I,q), get α
- 6: From α get a solution $C \in GL_2(L)$

• Can be adapted to compute **all** the solutions for modLIP on \mathcal{O}_L^2 , still with **one** call to the oracle (act by Aut(\mathcal{O}_L^2), explicit group)

• In general, our algorithm computes **all** the solutions to module-LIP with at most **two** calls to the oracle.

• In general, our algorithm computes **all** the solutions to module-LIP with at most **two** calls to the oracle. Can bound the number of solutions and since

 $\{C \text{ solutions to modLIP}\} \longrightarrow \{\text{solutions to nrdPIP}\}$ $(c_1|c_2) \longmapsto \Phi(c_1)$

is **injective**, get a bound on |{solutions to modLIP}|

• In general, our algorithm computes **all** the solutions to module-LIP with at most **two** calls to the oracle. Can bound the number of solutions and since

 $\{C \text{ solutions to modLIP}\} \longrightarrow \{\text{solutions to nrdPIP}\}$ $(c_1|c_2) \longmapsto \Phi(c_1)$

is **injective**, get a bound on $|\{\text{solutions to modLIP}\}| = |\operatorname{Aut}(M)|$, where $\operatorname{Aut}(M) = \{\Theta \in \operatorname{GL}_2(L) | \Theta(M) = M \text{ and } \Theta \cdot \Theta^* = I_2\}$

• In general, our algorithm computes **all** the solutions to module-LIP with at most **two** calls to the oracle. Can bound the number of solutions and since

 $\{C \text{ solutions to modLIP}\} \longrightarrow \{\text{solutions to nrdPIP}\}$ $(c_1|c_2) \longmapsto \Phi(c_1)$

is **injective**, get a bound on $|\{\text{solutions to modLIP}\}| = |\operatorname{Aut}(M)|$, where $\operatorname{Aut}(M) = \{\Theta \in \operatorname{GL}_2(L) | \Theta(M) = M \text{ and } \Theta \cdot \Theta^* = I_2\}$

Proposition [2]

Let $M \subset L^2$ a rank 2 module, then $|\operatorname{Aut}(M)| \leq 64d^4$, where $d = [L : \mathbb{Q}]$

• In general, our algorithm computes **all** the solutions to module-LIP with at most **two** calls to the oracle. Can bound the number of solutions and since

 $\{C \text{ solutions to modLIP}\} \longrightarrow \{\text{solutions to nrdPIP}\}$ $(c_1|c_2) \longmapsto \Phi(c_1)$

is **injective**, get a bound on $|\{\text{solutions to modLIP}\}| = |\operatorname{Aut}(M)|$, where $\operatorname{Aut}(M) = \{\Theta \in \operatorname{GL}_2(L) | \Theta(M) = M \text{ and } \Theta \cdot \Theta^* = I_2\}$

Proposition [2]

Let $M \subset L^2$ a rank 2 module, then $|\operatorname{Aut}(M)| \leq 64d^4$, where $d = [L : \mathbb{Q}]$

• In comparison, the lattice $\mathbb{Z}^n \subset \mathbb{R}^n$ has $2^{O(n)}$ automorphisms (isometries)

• K/F CM extension and $I = g \cdot \mathcal{O}_K$ principal ideal. Finding a generator is a well-known problem (PIP): sub-exponential classical or polynomial quantum.

⁴Cryptanalysis of the Revised NTRU Signature Scheme

• K/F CM extension and $I = g \cdot \mathcal{O}_K$ principal ideal. Finding a generator is a well-known problem (PIP): sub-exponential classical or polynomial quantum. However, if the reduced norm of the generator is known:

⁴Cryptanalysis of the Revised NTRU Signature Scheme

• K/F CM extension and $I = g \cdot \mathcal{O}_K$ principal ideal. Finding a generator is a well-known problem (PIP): sub-exponential classical or polynomial quantum. However, if the reduced norm of the generator is known:

LenstraSilverberg algorithm^a

^aTesting isomorphism of lattices over CM-orders

 \exists a poly time algorithm s.t. given $I = g \cdot \mathcal{O}_K$ principal and $q = g\bar{g}$, the algorithm computes a generator g of I with nrd(g) = q

⁴Cryptanalysis of the Revised NTRU Signature Scheme

• K/F CM extension and $I = g \cdot \mathcal{O}_K$ principal ideal. Finding a generator is a well-known problem (PIP): sub-exponential classical or polynomial quantum. However, if the reduced norm of the generator is known:

LenstraSilverberg algorithm^a

^aTesting isomorphism of lattices over CM-orders

 \exists a poly time algorithm s.t. given $I = g \cdot \mathcal{O}_K$ principal and $q = g\bar{g}$, the algorithm computes a generator g of I with nrd(g) = q

It is a generalization of an algorithm by Gentry and Szydlo⁴ for cyclotomic fields

⁴Cryptanalysis of the Revised NTRU Signature Scheme

• Let $K = \mathbb{Q}(\zeta_m)$ and $F = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$ with $m = 2^e$. Fix $g \in \mathcal{O}_K$

GentrySzydlo

• Let $K = \mathbb{Q}(\zeta_m)$ and $F = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$ with $m = 2^e$. Fix $g \in \mathcal{O}_K$

GentrySzydlo

- Find a "good" prime $P \in \mathbb{N}$
- Compute a basis of $(g \cdot \mathcal{O}_K)^{P-1} = g^{P-1} \cdot \mathcal{O}_L$ using LLL

• Let $K = \mathbb{Q}(\zeta_m)$ and $F = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$ with $m = 2^e$. Fix $g \in \mathcal{O}_K$

GentrySzydlo

- Find a "good" prime $P \in \mathbb{N}$
- Compute a basis of $(g \cdot \mathcal{O}_K)^{P-1} = g^{P-1} \cdot \mathcal{O}_L$ using LLL At each step, divide the basis by $g\overline{g}$ to avoid coefficient blow-up

• Let $K = \mathbb{Q}(\zeta_m)$ and $F = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$ with $m = 2^e$. Fix $g \in \mathcal{O}_K$

GentrySzydlo

- Find a "good" prime $P \in \mathbb{N}$
- Compute a basis of $(g \cdot \mathcal{O}_K)^{P-1} = g^{P-1} \cdot \mathcal{O}_L$ using LLL At each step, divide the basis by $g\overline{g}$ to avoid coefficient blow-up
- The first basis vector is $g^{P-1} \cdot v$ with v short. Reduce modulo P
- By Fermat's theorem, $g^{P-1} = 1 \pmod{P}$, so we get $v \pmod{P}$

• Let $K = \mathbb{Q}(\zeta_m)$ and $F = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$ with $m = 2^e$. Fix $g \in \mathcal{O}_K$

GentrySzydlo

- Find a "good" prime $P \in \mathbb{N}$
- Compute a basis of $(g \cdot \mathcal{O}_K)^{P-1} = g^{P-1} \cdot \mathcal{O}_L$ using LLL At each step, divide the basis by $g\overline{g}$ to avoid coefficient blow-up
- The first basis vector is $g^{P-1} \cdot v$ with v short. Reduce modulo P
- By Fermat's theorem, $g^{P-1} = 1 \pmod{P}$, so we get $v \pmod{P}$

• If P is **big enough**, get v exactly and deduce g^{P-1}

- If P is **big enough**, get v exactly and deduce g^{P-1}
- With some trick, reduce the exponent and deduce g^m

- If P is **big enough**, get v exactly and deduce g^{P-1}
- With some trick, reduce the exponent and deduce g^m
- Compute a m-th root and get g, up to a root of unity

- If P is **big enough**, get v exactly and deduce g^{P-1}
- With some trick, reduce the exponent and deduce g^m
- Compute a m-th root and get g, up to a root of unity

We did an implementation in SageMath for [1]. Adapting this algorithm for quaternion algebras seems very hard !

When L either totally real or CM, reduce rank-2 module-LIP over L to nrdPIP in a quadratic extension of L (may be non commutative)

⁵Algorithmic enumeration of ideal classes for quaternion orders, M. Kirschmer, J. Voight

When L either totally real or CM, reduce rank-2 module-LIP over L to nrdPIP in a quadratic extension of L (may be non commutative)

If L totally real, efficient algorithm for nrdPIP (poly time attack on modLIP)

⁵Algorithmic enumeration of ideal classes for quaternion orders, M. Kirschmer, J. Voight

When L either totally real or CM, reduce rank-2 module-LIP over L to nrdPIP in a quadratic extension of L (may be non commutative)

If L totally real, efficient algorithm for nrdPIP (poly time attack on modLIP)

If L is CM, state-of-the-art for nrdPIP: SVP in $I \subset A$, rank 2d lattice⁵

⁵Algorithmic enumeration of ideal classes for quaternion orders, M. Kirschmer, J. Voight

When L either totally real or CM, reduce rank-2 module-LIP over L to nrdPIP in a quadratic extension of L (may be non commutative)

If L totally real, efficient algorithm for nrdPIP (poly time attack on modLIP)

If L is CM, state-of-the-art for nrdPIP: SVP in $I \subset A$, rank 2d lattice⁵

Thanks for your attention! Any question?

⁵Algorithmic enumeration of ideal classes for quaternion orders, M. Kirschmer, J. Voight