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Some context
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2Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields

3A reduction from Hawk to the principal ideal problem in a quaternion algebra
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This talk

A framework containing both: L either totally real or CM fields, reduce module-LIP for
rank 2 modules over L to a problem on rank 1 modules (ideals) in a quadratic extension
A/ L, called nrdPIP. Also apply to [1]: remove the heuristic argument

For L totally real, efficient algorithm to solve nrdPIP. For CM fields, open question!

Plan of the talk:
# Background and module-LIP
# Reducing rank-2 module-LIP to nrdPIP
& Solving the totally real case
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2ik
n

Example: P(X) = ®,(X) cyclotomic, d = ¢(n) and o : X +ren , kAn=1

e L totally real if o(L) C R for all embeddings. Examples: Q, Q(+/2,/3)

L totally complex if o(L) ¢ R for all embeddings. Examples: Q((,), n > 2

e [ is a CM field if totally complex and quadratic extension of F’ totally real

We say L/F is CM extension. Examples: L/F = Q(v/—1)/Q, Q(¢,)/Q(¢, + ¢Y)
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e Notations: K for a CM field, F totally real field and L generic notation

Fact: K/F CM, always have K = F'(\/a) with a € F s.t. o(a) <0, Vo : F — R.

Example: K = Q((,,) with m = 2¢, then K = F(y/—1) with F = Q(¢,, + ¢, 1Y)
For simplicity, a = —1 and \/a =i in the rest of the talk

e K/F CM, = :x+iy— x — iy complex conjugation on K = F'(\/a)

nrd : K — F ; 2 =1 +ixve — 2T = 27 + 23 reduced norm on K

If x € F, £ =z and nrd(z) = 2.
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e Let L either totally real or CM, ¢ € Ny, and V' a L-vector space of dim /¢

UV =Q;(x,...,2) — Try g (Zle nrd(xi)> positive definite quadratic (or
hermitian) form on V/

e Rank-/ (free Or-)module in V is any
M = Opb; + -4+ Orb, C V equipped with \I/|M,

where B = (by|---|by) € GLy(L) called a basis of M

e Remark: Can consider more general objects using pseudo-bases.
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Background and module-LIP

e Let M C V ~ L! rank-f module

Fact: B,C € GL,(L) are both bases of M iff 3U € GL,(Op) s.t. C = BU

e If B basis of M, call G = B*B (where B* = transpose—conjugate of B) the Gram
matrix associated to B

Gram matrices are congruent if associated to bases of the same module

G~ G < 3U € GLy(Oy) : G’ = U*GU.

9/30



Module-LIP



Background and module-LIP

o L either totally real or CM and B basis for M C Lf, G the Gram matrix

11/30



Background and module-LIP

o L either totally real or CM and B basis for M C Lf, G the Gram matrix

modLIPZ,

11/30



Background and module-LIP

o L either totally real or CM and B basis for M C Lf, G the Gram matrix

modLIPZ.  Input: G' ~ G

11/30



Background and module-LIP

e [ either totally real or CM and B basis for M C L!, G the Gram matrix
modLIPZ.  Input: G' ~ G

Goal: Any U € GL/(Oy) s.t. G' = U*GU (call it a congruence matrix
between G and G’)

11/30



Background and module-LIP

e [ either totally real or CM and B basis for M C L!, G the Gram matrix
modLIPZ.  Input: G' ~ G

Goal: Any U € GL/(Oy) s.t. G' = U*GU (call it a congruence matrix
between G and G’)
<~

Goal: Any C € GLy(L) basis of M with C*C = G’

11/30



Background and module-LIP

e [ either totally real or CM and B basis for M C L!, G the Gram matrix
modLIPZ.  Input: G' ~ G

Goal: Any U € GL/(Oy) s.t. G' = U*GU (call it a congruence matrix
between G and G’)

<~
Goal: Any C € GLy(L) basis of M with C*C = G’

e Example: For M = 0% and B, = I, as in Hawk

11/30



Background and module-LIP

e [ either totally real or CM and B basis for M C L!, G the Gram matrix
modLIPZ.  Input: G' ~ G

Goal: Any U € GL/(Oy) s.t. G' = U*GU (call it a congruence matrix
between G and G’)

<~
Goal: Any C € GLy(L) basis of M with C*C = G’

e Example: For M = 0% and B, = I, as in Hawk
Hawk. Input: G' ~ [,

Goal: Any U € GLy(Oy) st. G = U*U
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Main observation: G’ = (fh qQ> input and C' = (Z ccl) solution to modLIP,

G2 q3
@1 G2\ _ [a l_)_ fa ¢\ _ ac‘H—bl_)_ dc—H_)c{
@ q3) \¢ d b d)  \ac+bd cc+dd
For L = F totally real: For L = F(i) CM:
q = a®>+b* = nrd(a + bi), q = a?+ a3 + b? + b3,

a+bi e K =L(i) CM field
=—> Norm equation in CM extension
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e [ either totally real or CM and ¢ = 2

Main observation: G’ = (fh qQ> input and C' = (Z ccl) solution to modLIP,

@ g3
G @\ _ (a l_)_ fa ¢\ _ ac‘H—bl_)_ dc—H_)c{
= q3) \c d b d) \ac+bd cc+dd
For L = F totally real: For L = F(i) CM:
q1 = a*> +b* = nrd(a + bi), q1 = a3 + a3 + b? + b3, reduced norm in
a+bi e K =L(i) CM field quaternion algebra L + L - j

=—> Norm equation in CM extension —> Norm equation in quaternion algebra
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o Let K/F a CM extension, K = F(i) with i* = —1
A=F4+F.-i+F-j+F-ij=K+K-j,

with j2 = —1 and ij = —ji. Non-commutative F-algebra of dim 4 (quaternion algebra)

e - x+uyi+zj+tij— x—yi— zj— tij complex conjugation on A
ntd: A— F; a=x+yi+2j+tij — aa = 2>+ y? + 22 + t? reduced norm on A

— Extensions of = and nrd on K
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e Ideal in A : rank-4 Op-module in A (not necessarily free). Order in A : ideal in A
with ring structure. Said maximal if not contained in a strictly bigger order

Example: F = Q, order O = 7Z + Zi + Zj + Zij (not maximal!)
e [ C Aanideal, O)I):={a € A| al C I} left order of I. Same way, define right
order O,(I) of I

An ideal I C Ais a left O-ideal if O/(I) = O. Same way, define right O-ideals

e Fact: If O is maximal and [ a left O-ideal, I is invertible : 3! .J ideal s.t. IJ = O

Also, J is efficiently computable from [
15/30
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Reducing rank-2 module-LIP

e Recall: Solve norm equations (in CM extensions or quaternion algebras) to
reconstruct solutions

Totally real case: [1] CM case:
Randomize input to ensure few solutions Too many solutions (even with
Can compute them efficiently randomization)!

Don’t know how to compute one...
= Heuristic poly time algorithm

— *Sad reactions in the audience*

e Strategy [2]: First, use info from non-diagonal coeff to add constraints on the
solutions = at most two solutions to norm equation needed

Build these solutions as generators of principal ideals

17/30
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Reducing rank-2 module-LIP

e Denote (L, A) either:
(L = F totally real, A= L(j) CM) or (L = K CM, A= K + K - j quaternion algebra)

Lemma [2]

Let C' = <01 C3) , G = (2 Q2) € GLy(L) and o = ¢; + ¢, B =c3+ c4j € A.
Cy C4 q2 g3

’ d(a)ZQI
G = C*C — { W =a .
{ aft = g3 (@ — det(C) - j)

Know everything on the r.h.s. (compute det(C') easily up to root of unity in L).
Getting o determines (3, so a whole solution!
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e Next step: Get a principal ideal O from a3717?
Remark: a,b € Z unknown, % known. Get aZ from %?
fanb=1, %ZOZ:aZ

If a Ab=d, write a = a’d and b = b'd, then dZ (

/
%ZHZ):aZ

= Need a "gcd ideal” of a and (57
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Reducing rank-2 module-LIP
e Embed M C L? into an ideal in A = L + L - j using

¢:1?— A
(x> — T+ Y]
y YJ
Fix O C A maximal order containing Oy, + Oy, - j. Put

Iy = left O-ideal generated by ®(M)

Fact: If B = (by|by) basis for M, then
IM = Q0o+ Oﬁ,

where a = ®(by), = P(be) € A — I, efficiently computable from any basis
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e modLIP instance

B = (by|by) basis of M C L* (known)
C = (c1|co) basis of M C L* (unknown)
G' Gram matrix with G' = C*C' (known)

e \What do we know now?

Lemma = know a3~ where a = ®(c;), 8 = ®(cy). Getting « is enough.
From B compute I, and O’ = [A}l[M
Proposition = know aQ’. Also know nrd(a) = ¢;

O-nrdPIP, definition

Parameter: O C A maximal order
Input: I C A principal right O-ideal and ¢ € F
Goal: A right generator « of I with nrd(a) = ¢ (if it exists)
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Reducing rank-2 module-LIP

Theorem (general reduction)

Let (L, A) = (F,K) or (K,K + K - j) and B basis of M C L?
3 a poly time reduction from modLIP? to O’-nrdPIP where O’ C A depends only on M

e Hawk: L = Q((,,) cyclotomic, M = O?, we have I}y = O and O’ = I,/' )y = O

Theorem (reduction, special case)

L = Q((n) cyclotomic and O maximal order in L + L - j containing Or + O, - j
3 a poly time Karp reduction from modLIPé2 to O-nrdPIP

Remark: When L = Q((,,) cyclotomic, Op + Oy, - j already maximal for most m.
Otherwise, 3 poly time algo to compute O
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Algorithm reduction for 0%

1: Compute O D O + Oy - 7 maximal order
From G, G’ compute a candidate ¢ for § = det(C)
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Let (L, A) = (F,K) or (K =Q((n), K + K -j)
Parameters: B basis of (9%, G =DB*B. Input: G' ~ G

Algorithm reduction for 0%

1: Compute O D O + Oy - 7 maximal order
From G, G’ compute a candidate ¢ for § = det(C)
¢=q5 (@—0-5) (=aBf™)
I=0nq0 (=a0)
Call an oracle solving O’-nrdPIP on (I, q), get «
From « get a solution C' € GLy(L)

D gk WD

e Can be adapted to compute all the solutions for modLIP on 0%, still with one call to
the oracle (act by Aut(O?), explicit group)
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e In general, our algorithm computes all the solutions to module-LIP with at most two
calls to the oracle.
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e In general, our algorithm computes all the solutions to module-LIP with at most two
calls to the oracle. Can bound the number of solutions and since

{C solutions to modLIP} — {solutions to nrdPIP}
(c1]c2) —> ®(c1)

is injective, get a bound on |{solutions to modLIP}| = |Aut(M)],
where Aut(M) ={0© € GLy(L) |©(M) =M and © - ©* = [}

Proposition [2]
Let M C L? a rank 2 module, then |[Aut(M)| < 64d*, where d = [L : Q]

e In comparison, the lattice Z" C R" has 2°(™ automorphisms (isometries)
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Solving the totally real case

e K/F CM extension and I = g - Ok principal ideal. Finding a generator is a
well-known problem (PIP): sub-exponential classical or polynomial quantum. However,
if the reduced norm of the generator is known:

LenstraSilverberg algorithm?

aTesting isomorphism of lattices over CM-orders

3 a poly time algorithm s.t. given I = g - Ok principal and ¢ = gg, the algorithm
computes a generator g of I with nrd(g) = ¢

It is a generalization of an algorithm by Gentry and Szydlo* for cyclotomic fields

4Cryptanalysis of the Revised NTRU Signature Scheme
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Solving the totally real case

» If P is big enough, get v exactly and deduce g©~!
» With some trick, reduce the exponent and deduce g™
» Compute a m-th root and get g, up to a root of unity

We did an implementation in SageMath for [1]. Adapting this algorithm for quaternion
algebras seems very hard !
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Sum-up

When L either totally real or CM, reduce rank-2 module-LIP over L to nrdPIP in a
quadratic extension of L (may be non commutative)

If L totally real, efficient algorithm for nrdPIP (poly time attack on modLIP)

If L is CM, state-of-the-art for nrdPIP: SVP in I C A, rank 2d lattice®

Thanks for your attention! Any question?
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