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The Lattice Isomorphism Problem (LIP)

Let b1, . . . ,bn ∈ Rn which are R-linearly independant.
L := {

∑
i xibi | xi ∈ Z} is a lattice in Rn and B = (b1| · · · |bn) is a basis of L.

b1

b2

Lattices L1 and L2 are isomorphic if L2 = Θ(L1) for some Θ ∈ On(R) orthogonal.
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The Lattice Isomorphism Problem (LIP)

Given bases B and C of L1 and L2 resp., define:

search LIP: Assume L1 and L2 are isomorphic. Compute Θ ∈ On(R).

decision LIP: Decide whether L1 and L2 are isomorphic or not.

Remark: Can state LIP with quadratic forms instead.

L1≃iso L2 ⇐⇒ ∃Θ ∈ On(R) and U ∈ GLn(Z) s.t. C = ΘBU.

Then the Gram matrices G := BTB and H := CTC are congruent:

H = UTGU.

Two point of views, truly equivalent (Cholesky factorization over R).
In practice we prefer quadratic forms. In this talk: keep lattice bases.
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The Lattice Isomorphism Problem (LIP)

Very old questions (Gauss, classification of binary integral quadratic forms).

Hard algorithmic problems in high dimension: Plesken & Souvignier (1997), Haviv &
Regev (2013). Best algorithms require to compute short vectors.

In cryptography :

1 Ducas & van Woerden (2021): primitives based on decision LIP.

2 Ducas et. al. (2022): signature scheme HAWK, related to search module-LIP.
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The module-Lattice Isomorphism Problem (module-LIP)

Module lattices (or Hermitian lattices) are lattices with additional algebraic structure
(symmetries). They admit a compact representation: good candidates for crypto!

module-LIP is LIP restricted to module lattices (and where the isomorphism must
preserve the structure). As before, search module-LIP and decision module-LIP.

So far: several attempts to break search module-LIP. HAWK is still safe.

van Gent & van Woerden (2025): reduce search module-LIP to decision module-LIP.
⇝ HAWK reduces to several instances of decision module-LIP.
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The important slide (don’t blink)

We target decision module-LIP: are L and M isomorphic as module lattices?

So far: test efficiently if L, M are in the same genus (necessary but not sufficient!).

Our goal: Find an equivalence relation ∼ on gen(L) s.t. the equivalence class of L is
between gen(L) and cls(L). Also we want M ∼ L to be efficiently testable.
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This one is actually important too

Ling, Liu and Mendelsohn (Asiacrypt 24’) considered the spinor genus. It is defined
for a lattice in a quadratic space over Q (e.g, (Qℓ,Φ), where Φ(v,w) =

∑
i viwi ).

This applies to (binary) quadratic module lattices over a number field K . Under
assumptions on ZK , ∃ a poly-time (quantum) algorithm to distinguish spinor genera.

Issue: HAWK considers (binary) Hermitian module lattices (with Φ(v,w) =
∑

i viwi ).
Moreover ZK doesn’t satisfy the assumption → no impact on HAWK.

This talk: Shimura (1964) introduced the special genus. An avatar of the spinor
genus for Hermitian lattices. It is efficiently computable for several module lattices.
We discuss the impact on HAWK.
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Background on Hermitian lattices
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Background on number theory (1)

Let n = 2r and K = Q[X ]/(X n + 1) is a (power-of-two) cyclotomic number field.
Its ring of integers is ZK = Z[X ]/(X n + 1). ∃ a complex conjugation a 7→ a on K .

More generally: We can consider any CM number field K .

An ideal of ZK is a subgroup a ⊆ ZK s.t. ZK · a ⊆ a. If for all x , y ∈ ZK ,

xy ∈ a ⇒ x ∈ a or y ∈ a,

it is a prime ideal (denote p = a). Example: K = Q, ZK = Z and p = 2Z.

K embeds into larger fields. Two types of embeddings:

1 Complex: K ↪→ C, by sending X to a root of X n + 1 in C.
2 Local: K ↪→ Kp, for any prime ideal p.
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Background on number theory (2)

Let ℓ ∈ Z>0. Hermitian space V = (K ℓ,Φ) with the standard form Φ(v,w) =
∑

i viwi .

A (full rank) Hermitian lattice in V is of the form:

L = a1b1 + · · ·+ aℓbℓ,

where B = (b1| · · · |bℓ) ∈ GLℓ(K ), and a1, . . . , aℓ ⊆ ZK are ideals.
We say B = (B, {ai}1≤i≤ℓ) is a pseudo-basis of L. C = (C , {bi}1≤i≤ℓ) is another

pseudo-basis of L iff ∃U = (ui ,j) ∈ GLℓ(K ) s.t.

1 C = BU

2 ui ,j ∈ aib
−1
j

3 a1 · · · aℓ = (detU)b1 · · · bℓ.

Example: L = ZK ( 10 ) + ZK ( 01 ) as in HAWK, {(pseudo-)bases of L} ⊇ GL2(ZK ).
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Background on number theory (3)

Let L, M ⊂ V with pseudo-bases (B, {ai}1≤i≤ℓ) and (C , {bi}1≤i≤ℓ) resp.

The module index of M in L is:

[L : M] := det(B−1C ) · a1b−1
1 · · · aℓb−1

ℓ .

Doesn’t depend on the choice of pseudo-bases. Behaves as the “covolume of M in L”.

Example: if K = Q(i) and L = Z[i ] + Z[i ], M = Z[i ] + 2Z[i ], then [L : M] = 2Z[i ].

Remark: [L : M] well defined even if there is no inclusion.
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Genus and special genus
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(Locally) isometric Hermitian lattices

The group of unitary transformations of V is U(V ) := {Θ ∈ GLℓ(K ) |Θ∗Θ = Id}.1

Hermitian lattices L, M ⊂ V are isomorphic (we write M ∈ cls(L)) if:

∃Θ ∈ U(V ) s.t. M = Θ(L).

Fix p ⊂ ZK ; the map K ↪→ Kp extends to V ↪→ Vp.
Images of L, M are denoted by Lp, Mp. They are “local” Hermitian lattices.

It is computationally easy to test if L, M are locally isomorphic at p, i.e., if

∃Θp ∈ U(Vp) s.t. Mp = Θp(Lp).

1Where Θ∗ := ΘT .
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Genus of a Hermitian lattice

L, M ⊂ V belong to the same genus if they are locally isomorphic at any p,

i.e., if

∀ p,∃Θp ∈ U(Vp) s.t. Mp = Θp(Lp).

Fact: L and M are trivially locally isomorphic at p, for all but finitely many p.

→ poly-time algo to test if L, M are in the same genus (we write M ∈ gen(L)).

The genus of L contains its
isomorphism class, cls(L).

Fact: gen(L) is the disjoint union of
finitely many isomorphism classes.

gen(L) cls(L)
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Special genus of a Hermitian lattice

L, M ⊂ V belong to the same special genus if:

(∃Σ ∈ U(V ),∀ p, ∃Θp ∈ U(Vp) with detΘp = 1) s.t. Mp = Σ ◦Θp(Lp).

Equivalence relation ∼ on gen(L).
Denote the class of L by sgen(L).

Gives an intermediate classification
between gen(L) and cls(L).

gen(L) sgen(L) cls(L)
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How to distinguish special genera?

16 / 29



Main theoretic result: Shimura’s theorem

Shimura studied how gen(L) splits into special genera.

For simplicity, L0 = Z2
K .

J = {(fractional) ideals a of K | a · a = ZK},
J0 = {g · ZK | g ∈ K× and gg = 1}.

J0 is a subgroup of J (principal ideals). Then, the map

gen(L) −→ J

M 7−→ [L0 : M]

is well-defined and induces a bijection between gen(L)/ ∼ and J/J0.

Corollary.

Let M ∈ gen(L0). M ∈ sgen(L0) iff [L0 : M] has the form g · ZK with gg = 1.
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Main algorithmic tool: Lenstra-Silverberg’s algorithm

Testing if an ideal a is principal is a hard problem for (classical) computers. Moreover
if a is principal, two generators g , h have gg ̸= hh in general.

Luckily we have:

Lenstra-Silverberg’s algorithm

There is a (classical) poly-time algorithm that given a (fractional) ideal a ⊂ K and
q ∈ K s.t. a · a = q · ZK , computes g ∈ K s.t. a = g · ZK and gg = q (if one exists).

1 Originally due to Gentry and Szydlo.

2 Fundamental tool for the cryptanalysis of (rank-2) module-LIP.

3 An generalization to quaternionic ideals would break HAWK.

=⇒ We obtain a (classical) poly-time algo to test if M ∈ sgen(L0).
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Pseudo-code for L0 = Z2
K

Algorithm: Test if M ∈ sgen(L0)

Input: A pseudo-basis C = (C , b1, b2) of M ∈ gen(L0)
Output: 1 if M ∈ sgen(L0) and 0 otherwise

Compute a = [L0 : M] using C;

Run LenstraSilverberg on input a and 1;
if it outputs g with gg = 1 then

Return 1

else
Return 0

Remark: In HAWK we have G = (G , b1, b2) instead of C, where G = C ∗C .
Can’t compute a Cholesky factorization over K ⇝ don’t have a basis for a = [L0 : M].
But we can still check if a has a generator with gg = 1.
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Remarks on the general algorithm

Previous algorithm is extended to any L ⊂ K ℓ and M ∈ gen(L).

In general:

1 Check if [L : M] = g · ZK with gg = 1.

2 Check local conditions for a small set of primes p (depends on L).
→ Need to compute det(Θp) with good enough precision.

Second item is hard to analyze. I don’t have a complexity result for general case :(

Remark: For several Hermitian lattices (including HAWK), there are no local
conditions to check! :)
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Impact on HAWK
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Impact on HAWK (1)

Recall: L0 = Z2
K , and fix m = 512. We are able to distinguish sgen(L0) ⊆ gen(L0).

Question: Can we quantify the gain? What is the impact on HAWK?

⇝ How many classes in gen(L0)? in sgen(L0)?
We will approximate:

#{iso. classes in sgen(L0)}

≈ #{iso. classes in gen(L0)}
#{special genera in gen(L0)}

gen(L0) sgen(L0) cls(L0)
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Impact on HAWK (2)

First we compute the class number h(L0) := #{iso. classes in gen(L0)}.

The mass of L0 is Mass(L0) :=
∑
L′

1

#Aut(L′)
, where L′ ∈ set of representatives.

Siegel’s mass formula gives a way to compute the mass (van Gent):

Mass(L0) =
1

2
m
2
−1

·
∏
p

λ(L0p) ·
∣∣∣∣ζKζF (0)

∣∣∣∣ · |ζF (−1)|

We have upper and lower bounds on Aut(L′). Overall for m = 512,

h(L0) ≈ 21000.
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Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0. In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1. Overall:

sh(L0) = hK ≈ 2200.

24 / 29



Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0.

In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1. Overall:

sh(L0) = hK ≈ 2200.

24 / 29



Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0. In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1. Overall:

sh(L0) = hK ≈ 2200.

24 / 29



Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0. In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1. Overall:

sh(L0) = hK ≈ 2200.

24 / 29



Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0. In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1.

Overall:

sh(L0) = hK ≈ 2200.

24 / 29



Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0. In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1. Overall:

sh(L0) = hK ≈ 2200.

24 / 29



Impact on HAWK (4)

For L0 and m = 512 as in HAWK,

#{iso. classes in sgen(L0)} ≈ 2800

sgen(L0)
cls(L0)

Recall: Have a reduction from HAWK to (several instances) of decision module-LIP.
(Unfortunately) lattices involved are all in sgen(L0) ⇝ No impact on HAWK!
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Takeaway and perspectives

The special genus is a finer invariant than the genus. To make a hard instance of
decision module-LIP, lattices must be chosen inside the same special genus.

Have a (classical) algo to test M ∈ sgen(L0). Run in poly-time for L0 = Z2
K .

Despite exponential gain, still exponential number of classes in sgen(L0).

No concrete impact on the security of HAWK.

Open: L0 can be seen as a quadratic lattices (of rank 4!). Spinor genus? How
does it compare with the special genus?

More generally: Other computable invariants for L0?

Thank you for your attention!
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Bonus: Gentry-Szydlo’s algorithm (1)

Let K = Q[X ]/(Xm + 1) with m = 2r . Fix g ∈ ZK

GentrySzydlo

Input: A basis of g · ZK and gg
Output: g (up to a root of unity of K )

1 Find a prime number p = 1 (mod m), so that ZK/(p) ≃ (Fp)
m/2

2 Compute a LLL-reduced basis of (g · ZK )
p−1 = gp−1 · ZK

At each step, divide the basis by gg to avoid coefficient blow-up

3 The first basis vector is gp−1 · v with v short. Reduce it modulo p
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Bonus: Gentry-Szydlo’s algorithm (2)

4 By Fermat’s theorem, gp−1 = 1 (mod p), so we have v (mod p)

5 If p is big enough, obtain v exactly and deduce gp−1

6 With some trick, reduce the exponent and obtain gm

7 Compute a m-th root and get g , up to a root of unity

→ We have an implementation in SageMath!
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