
Special Genera of Hermitian Lattices and
Applications to HAWK

Lattice Coding & Crypto Meeting, London King’s College

Guilhem Mureau

Inria de Bordeaux, IMB, France

December 15th 1 / 29

The Lattice Isomorphism Problem (LIP)

Let b1, . . . ,bn ∈ Rn which are R-linearly independant.
L := {

∑
i xibi | xi ∈ Z} is a lattice in Rn and B = (b1| · · · |bn) is a basis of L.

b1

b2

Lattices L1 and L2 are isomorphic if L2 = Θ(L1) for some Θ ∈ On(R) orthogonal.

2 / 29

The Lattice Isomorphism Problem (LIP)

Let b1, . . . ,bn ∈ Rn which are R-linearly independant.
L := {

∑
i xibi | xi ∈ Z} is a lattice in Rn and B = (b1| · · · |bn) is a basis of L.

b1

b2

Θ · b1

Θ · b2

c1

c2

Lattices L1 and L2 are isomorphic if L2 = Θ(L1) for some Θ ∈ On(R) orthogonal.

2 / 29

The Lattice Isomorphism Problem (LIP)

Let b1, . . . ,bn ∈ Rn which are R-linearly independant.
L := {

∑
i xibi | xi ∈ Z} is a lattice in Rn and B = (b1| · · · |bn) is a basis of L.

b1

b2

Θ · b1

Θ · b2

c1

c2

Lattices L1 and L2 are isomorphic if L2 = Θ(L1) for some Θ ∈ On(R) orthogonal.
2 / 29

The Lattice Isomorphism Problem (LIP)

Given bases B and C of L1 and L2 resp., define:

search LIP: Assume L1 and L2 are isomorphic. Compute Θ ∈ On(R).

decision LIP: Decide whether L1 and L2 are isomorphic or not.

Remark: Can state LIP with quadratic forms instead.

L1≃iso L2 ⇐⇒ ∃Θ ∈ On(R) and U ∈ GLn(Z) s.t. C = ΘBU.

Then the Gram matrices G := BTB and H := CTC are congruent:

H = UTGU.

Two point of views, truly equivalent (Cholesky factorization over R).
In practice we prefer quadratic forms. In this talk: keep lattice bases.

3 / 29

The Lattice Isomorphism Problem (LIP)

Given bases B and C of L1 and L2 resp., define:

search LIP: Assume L1 and L2 are isomorphic. Compute Θ ∈ On(R).
decision LIP: Decide whether L1 and L2 are isomorphic or not.

Remark: Can state LIP with quadratic forms instead.

L1≃iso L2 ⇐⇒ ∃Θ ∈ On(R) and U ∈ GLn(Z) s.t. C = ΘBU.

Then the Gram matrices G := BTB and H := CTC are congruent:

H = UTGU.

Two point of views, truly equivalent (Cholesky factorization over R).
In practice we prefer quadratic forms. In this talk: keep lattice bases.

3 / 29

The Lattice Isomorphism Problem (LIP)

Given bases B and C of L1 and L2 resp., define:

search LIP: Assume L1 and L2 are isomorphic. Compute Θ ∈ On(R).
decision LIP: Decide whether L1 and L2 are isomorphic or not.

Remark: Can state LIP with quadratic forms instead.

L1≃iso L2 ⇐⇒ ∃Θ ∈ On(R) and U ∈ GLn(Z) s.t. C = ΘBU.

Then the Gram matrices G := BTB and H := CTC are congruent:

H = UTGU.

Two point of views, truly equivalent (Cholesky factorization over R).
In practice we prefer quadratic forms. In this talk: keep lattice bases.

3 / 29

The Lattice Isomorphism Problem (LIP)

Given bases B and C of L1 and L2 resp., define:

search LIP: Assume L1 and L2 are isomorphic. Compute Θ ∈ On(R).
decision LIP: Decide whether L1 and L2 are isomorphic or not.

Remark: Can state LIP with quadratic forms instead.

L1≃iso L2 ⇐⇒ ∃Θ ∈ On(R) and U ∈ GLn(Z) s.t. C = ΘBU.

Then the Gram matrices G := BTB and H := CTC are congruent:

H = UTGU.

Two point of views, truly equivalent (Cholesky factorization over R).
In practice we prefer quadratic forms. In this talk: keep lattice bases.

3 / 29

The Lattice Isomorphism Problem (LIP)

Given bases B and C of L1 and L2 resp., define:

search LIP: Assume L1 and L2 are isomorphic. Compute Θ ∈ On(R).
decision LIP: Decide whether L1 and L2 are isomorphic or not.

Remark: Can state LIP with quadratic forms instead.

L1≃iso L2 ⇐⇒ ∃Θ ∈ On(R) and U ∈ GLn(Z) s.t. C = ΘBU.

Then the Gram matrices G := BTB and H := CTC are congruent:

H = UTGU.

Two point of views, truly equivalent (Cholesky factorization over R).
In practice we prefer quadratic forms. In this talk: keep lattice bases.

3 / 29

The Lattice Isomorphism Problem (LIP)

Very old questions (Gauss, classification of binary integral quadratic forms).

Hard algorithmic problems in high dimension: Plesken & Souvignier (1997), Haviv &
Regev (2013). Best algorithms require to compute short vectors.

In cryptography :

1 Ducas & van Woerden (2021): primitives based on decision LIP.

2 Ducas et. al. (2022): signature scheme HAWK, related to search module-LIP.

4 / 29

The Lattice Isomorphism Problem (LIP)

Very old questions (Gauss, classification of binary integral quadratic forms).

Hard algorithmic problems in high dimension: Plesken & Souvignier (1997), Haviv &
Regev (2013). Best algorithms require to compute short vectors.

In cryptography :

1 Ducas & van Woerden (2021): primitives based on decision LIP.

2 Ducas et. al. (2022): signature scheme HAWK, related to search module-LIP.

4 / 29

The Lattice Isomorphism Problem (LIP)

Very old questions (Gauss, classification of binary integral quadratic forms).

Hard algorithmic problems in high dimension: Plesken & Souvignier (1997), Haviv &
Regev (2013). Best algorithms require to compute short vectors.

In cryptography :

1 Ducas & van Woerden (2021): primitives based on decision LIP.

2 Ducas et. al. (2022): signature scheme HAWK, related to search module-LIP.

4 / 29

The module-Lattice Isomorphism Problem (module-LIP)

Module lattices (or Hermitian lattices) are lattices with additional algebraic structure
(symmetries). They admit a compact representation: good candidates for crypto!

module-LIP is LIP restricted to module lattices (and where the isomorphism must
preserve the structure). As before, search module-LIP and decision module-LIP.

So far: several attempts to break search module-LIP. HAWK is still safe.

van Gent & van Woerden (2025): reduce search module-LIP to decision module-LIP.
⇝ HAWK reduces to several instances of decision module-LIP.

5 / 29

The module-Lattice Isomorphism Problem (module-LIP)

Module lattices (or Hermitian lattices) are lattices with additional algebraic structure
(symmetries). They admit a compact representation: good candidates for crypto!

module-LIP is LIP restricted to module lattices (and where the isomorphism must
preserve the structure). As before, search module-LIP and decision module-LIP.

So far: several attempts to break search module-LIP. HAWK is still safe.

van Gent & van Woerden (2025): reduce search module-LIP to decision module-LIP.
⇝ HAWK reduces to several instances of decision module-LIP.

5 / 29

The module-Lattice Isomorphism Problem (module-LIP)

Module lattices (or Hermitian lattices) are lattices with additional algebraic structure
(symmetries). They admit a compact representation: good candidates for crypto!

module-LIP is LIP restricted to module lattices (and where the isomorphism must
preserve the structure). As before, search module-LIP and decision module-LIP.

So far: several attempts to break search module-LIP. HAWK is still safe.

van Gent & van Woerden (2025): reduce search module-LIP to decision module-LIP.
⇝ HAWK reduces to several instances of decision module-LIP.

5 / 29

The important slide (don’t blink)

We target decision module-LIP: are L and M isomorphic as module lattices?

So far: test efficiently if L, M are in the same genus (necessary but not sufficient!).

Our goal: Find an equivalence relation ∼ on gen(L) s.t. the equivalence class of L is
between gen(L) and cls(L). Also we want M ∼ L to be efficiently testable.

6 / 29

The important slide (don’t blink)

We target decision module-LIP: are L and M isomorphic as module lattices?
So far: test efficiently if L, M are in the same genus (necessary but not sufficient!).

M

gen(L) cls(L)

Our goal: Find an equivalence relation ∼ on gen(L) s.t. the equivalence class of L is
between gen(L) and cls(L). Also we want M ∼ L to be efficiently testable.

6 / 29

The important slide (don’t blink)

We target decision module-LIP: are L and M isomorphic as module lattices?
So far: test efficiently if L, M are in the same genus (necessary but not sufficient!).

M

gen(L) cls(L)???

Our goal: Find an equivalence relation ∼ on gen(L) s.t. the equivalence class of L is
between gen(L) and cls(L). Also we want M ∼ L to be efficiently testable.

6 / 29

This one is actually important too

Ling, Liu and Mendelsohn (Asiacrypt 24’) considered the spinor genus. It is defined
for a lattice in a quadratic space over Q (e.g, (Qℓ,Φ), where Φ(v,w) =

∑
i viwi).

This applies to (binary) quadratic module lattices over a number field K . Under
assumptions on ZK , ∃ a poly-time (quantum) algorithm to distinguish spinor genera.

Issue: HAWK considers (binary) Hermitian module lattices (with Φ(v,w) =
∑

i viwi).
Moreover ZK doesn’t satisfy the assumption → no impact on HAWK.

This talk: Shimura (1964) introduced the special genus. An avatar of the spinor
genus for Hermitian lattices. It is efficiently computable for several module lattices.
We discuss the impact on HAWK.

7 / 29

This one is actually important too

Ling, Liu and Mendelsohn (Asiacrypt 24’) considered the spinor genus. It is defined
for a lattice in a quadratic space over Q (e.g, (Qℓ,Φ), where Φ(v,w) =

∑
i viwi).

This applies to (binary) quadratic module lattices over a number field K . Under
assumptions on ZK , ∃ a poly-time (quantum) algorithm to distinguish spinor genera.

Issue: HAWK considers (binary) Hermitian module lattices (with Φ(v,w) =
∑

i viwi).
Moreover ZK doesn’t satisfy the assumption → no impact on HAWK.

This talk: Shimura (1964) introduced the special genus. An avatar of the spinor
genus for Hermitian lattices. It is efficiently computable for several module lattices.
We discuss the impact on HAWK.

7 / 29

This one is actually important too

Ling, Liu and Mendelsohn (Asiacrypt 24’) considered the spinor genus. It is defined
for a lattice in a quadratic space over Q (e.g, (Qℓ,Φ), where Φ(v,w) =

∑
i viwi).

This applies to (binary) quadratic module lattices over a number field K . Under
assumptions on ZK , ∃ a poly-time (quantum) algorithm to distinguish spinor genera.

Issue: HAWK considers (binary) Hermitian module lattices (with Φ(v,w) =
∑

i viwi).
Moreover ZK doesn’t satisfy the assumption

→ no impact on HAWK.

This talk: Shimura (1964) introduced the special genus. An avatar of the spinor
genus for Hermitian lattices. It is efficiently computable for several module lattices.
We discuss the impact on HAWK.

7 / 29

This one is actually important too

Ling, Liu and Mendelsohn (Asiacrypt 24’) considered the spinor genus. It is defined
for a lattice in a quadratic space over Q (e.g, (Qℓ,Φ), where Φ(v,w) =

∑
i viwi).

This applies to (binary) quadratic module lattices over a number field K . Under
assumptions on ZK , ∃ a poly-time (quantum) algorithm to distinguish spinor genera.

Issue: HAWK considers (binary) Hermitian module lattices (with Φ(v,w) =
∑

i viwi).
Moreover ZK doesn’t satisfy the assumption → no impact on HAWK.

This talk: Shimura (1964) introduced the special genus. An avatar of the spinor
genus for Hermitian lattices. It is efficiently computable for several module lattices.
We discuss the impact on HAWK.

7 / 29

This one is actually important too

Ling, Liu and Mendelsohn (Asiacrypt 24’) considered the spinor genus. It is defined
for a lattice in a quadratic space over Q (e.g, (Qℓ,Φ), where Φ(v,w) =

∑
i viwi).

This applies to (binary) quadratic module lattices over a number field K . Under
assumptions on ZK , ∃ a poly-time (quantum) algorithm to distinguish spinor genera.

Issue: HAWK considers (binary) Hermitian module lattices (with Φ(v,w) =
∑

i viwi).
Moreover ZK doesn’t satisfy the assumption → no impact on HAWK.

This talk: Shimura (1964) introduced the special genus. An avatar of the spinor
genus for Hermitian lattices. It is efficiently computable for several module lattices.
We discuss the impact on HAWK.

7 / 29

Background on Hermitian lattices

8 / 29

Background on number theory (1)

Let n = 2r and K = Q[X]/(X n + 1) is a (power-of-two) cyclotomic number field.
Its ring of integers is ZK = Z[X]/(X n + 1). ∃ a complex conjugation a 7→ a on K .

More generally: We can consider any CM number field K .

An ideal of ZK is a subgroup a ⊆ ZK s.t. ZK · a ⊆ a. If for all x , y ∈ ZK ,

xy ∈ a ⇒ x ∈ a or y ∈ a,

it is a prime ideal (denote p = a). Example: K = Q, ZK = Z and p = 2Z.

K embeds into larger fields. Two types of embeddings:

1 Complex: K ↪→ C, by sending X to a root of X n + 1 in C.
2 Local: K ↪→ Kp, for any prime ideal p.

9 / 29

Background on number theory (1)

Let n = 2r and K = Q[X]/(X n + 1) is a (power-of-two) cyclotomic number field.
Its ring of integers is ZK = Z[X]/(X n + 1). ∃ a complex conjugation a 7→ a on K .

More generally: We can consider any CM number field K .

An ideal of ZK is a subgroup a ⊆ ZK s.t. ZK · a ⊆ a. If for all x , y ∈ ZK ,

xy ∈ a ⇒ x ∈ a or y ∈ a,

it is a prime ideal (denote p = a). Example: K = Q, ZK = Z and p = 2Z.

K embeds into larger fields. Two types of embeddings:

1 Complex: K ↪→ C, by sending X to a root of X n + 1 in C.
2 Local: K ↪→ Kp, for any prime ideal p.

9 / 29

Background on number theory (1)

Let n = 2r and K = Q[X]/(X n + 1) is a (power-of-two) cyclotomic number field.
Its ring of integers is ZK = Z[X]/(X n + 1). ∃ a complex conjugation a 7→ a on K .

More generally: We can consider any CM number field K .

An ideal of ZK is a subgroup a ⊆ ZK s.t. ZK · a ⊆ a.

If for all x , y ∈ ZK ,

xy ∈ a ⇒ x ∈ a or y ∈ a,

it is a prime ideal (denote p = a). Example: K = Q, ZK = Z and p = 2Z.

K embeds into larger fields. Two types of embeddings:

1 Complex: K ↪→ C, by sending X to a root of X n + 1 in C.
2 Local: K ↪→ Kp, for any prime ideal p.

9 / 29

Background on number theory (1)

Let n = 2r and K = Q[X]/(X n + 1) is a (power-of-two) cyclotomic number field.
Its ring of integers is ZK = Z[X]/(X n + 1). ∃ a complex conjugation a 7→ a on K .

More generally: We can consider any CM number field K .

An ideal of ZK is a subgroup a ⊆ ZK s.t. ZK · a ⊆ a. If for all x , y ∈ ZK ,

xy ∈ a ⇒ x ∈ a or y ∈ a,

it is a prime ideal (denote p = a).

Example: K = Q, ZK = Z and p = 2Z.

K embeds into larger fields. Two types of embeddings:

1 Complex: K ↪→ C, by sending X to a root of X n + 1 in C.
2 Local: K ↪→ Kp, for any prime ideal p.

9 / 29

Background on number theory (1)

Let n = 2r and K = Q[X]/(X n + 1) is a (power-of-two) cyclotomic number field.
Its ring of integers is ZK = Z[X]/(X n + 1). ∃ a complex conjugation a 7→ a on K .

More generally: We can consider any CM number field K .

An ideal of ZK is a subgroup a ⊆ ZK s.t. ZK · a ⊆ a. If for all x , y ∈ ZK ,

xy ∈ a ⇒ x ∈ a or y ∈ a,

it is a prime ideal (denote p = a). Example: K = Q, ZK = Z and p = 2Z.

K embeds into larger fields. Two types of embeddings:

1 Complex: K ↪→ C, by sending X to a root of X n + 1 in C.
2 Local: K ↪→ Kp, for any prime ideal p.

9 / 29

Background on number theory (1)

Let n = 2r and K = Q[X]/(X n + 1) is a (power-of-two) cyclotomic number field.
Its ring of integers is ZK = Z[X]/(X n + 1). ∃ a complex conjugation a 7→ a on K .

More generally: We can consider any CM number field K .

An ideal of ZK is a subgroup a ⊆ ZK s.t. ZK · a ⊆ a. If for all x , y ∈ ZK ,

xy ∈ a ⇒ x ∈ a or y ∈ a,

it is a prime ideal (denote p = a). Example: K = Q, ZK = Z and p = 2Z.

K embeds into larger fields. Two types of embeddings:

1 Complex: K ↪→ C, by sending X to a root of X n + 1 in C.
2 Local: K ↪→ Kp, for any prime ideal p.

9 / 29

Background on number theory (2)

Let ℓ ∈ Z>0. Hermitian space V = (K ℓ,Φ) with the standard form Φ(v,w) =
∑

i viwi .

A (full rank) Hermitian lattice in V is of the form:

L = a1b1 + · · ·+ aℓbℓ,

where B = (b1| · · · |bℓ) ∈ GLℓ(K), and a1, . . . , aℓ ⊆ ZK are ideals.
We say B = (B, {ai}1≤i≤ℓ) is a pseudo-basis of L. C = (C , {bi}1≤i≤ℓ) is another

pseudo-basis of L iff ∃U = (ui ,j) ∈ GLℓ(K) s.t.

1 C = BU

2 ui ,j ∈ aib
−1
j

3 a1 · · · aℓ = (detU)b1 · · · bℓ.

Example: L = ZK (10) + ZK (01) as in HAWK, {(pseudo-)bases of L} ⊇ GL2(ZK).

10 / 29

Background on number theory (2)

Let ℓ ∈ Z>0. Hermitian space V = (K ℓ,Φ) with the standard form Φ(v,w) =
∑

i viwi .
A (full rank) Hermitian lattice in V is of the form:

L = a1b1 + · · ·+ aℓbℓ,

where B = (b1| · · · |bℓ) ∈ GLℓ(K), and a1, . . . , aℓ ⊆ ZK are ideals.

We say B = (B, {ai}1≤i≤ℓ) is a pseudo-basis of L. C = (C , {bi}1≤i≤ℓ) is another

pseudo-basis of L iff ∃U = (ui ,j) ∈ GLℓ(K) s.t.

1 C = BU

2 ui ,j ∈ aib
−1
j

3 a1 · · · aℓ = (detU)b1 · · · bℓ.

Example: L = ZK (10) + ZK (01) as in HAWK, {(pseudo-)bases of L} ⊇ GL2(ZK).

10 / 29

Background on number theory (2)

Let ℓ ∈ Z>0. Hermitian space V = (K ℓ,Φ) with the standard form Φ(v,w) =
∑

i viwi .
A (full rank) Hermitian lattice in V is of the form:

L = a1b1 + · · ·+ aℓbℓ,

where B = (b1| · · · |bℓ) ∈ GLℓ(K), and a1, . . . , aℓ ⊆ ZK are ideals.
We say B = (B, {ai}1≤i≤ℓ) is a pseudo-basis of L.

C = (C , {bi}1≤i≤ℓ) is another

pseudo-basis of L iff ∃U = (ui ,j) ∈ GLℓ(K) s.t.

1 C = BU

2 ui ,j ∈ aib
−1
j

3 a1 · · · aℓ = (detU)b1 · · · bℓ.

Example: L = ZK (10) + ZK (01) as in HAWK, {(pseudo-)bases of L} ⊇ GL2(ZK).

10 / 29

Background on number theory (2)

Let ℓ ∈ Z>0. Hermitian space V = (K ℓ,Φ) with the standard form Φ(v,w) =
∑

i viwi .
A (full rank) Hermitian lattice in V is of the form:

L = a1b1 + · · ·+ aℓbℓ,

where B = (b1| · · · |bℓ) ∈ GLℓ(K), and a1, . . . , aℓ ⊆ ZK are ideals.
We say B = (B, {ai}1≤i≤ℓ) is a pseudo-basis of L. C = (C , {bi}1≤i≤ℓ) is another

pseudo-basis of L iff ∃U = (ui ,j) ∈ GLℓ(K) s.t.

1 C = BU

2 ui ,j ∈ aib
−1
j

3 a1 · · · aℓ = (detU)b1 · · · bℓ.

Example: L = ZK (10) + ZK (01) as in HAWK, {(pseudo-)bases of L} ⊇ GL2(ZK).

10 / 29

Background on number theory (2)

Let ℓ ∈ Z>0. Hermitian space V = (K ℓ,Φ) with the standard form Φ(v,w) =
∑

i viwi .
A (full rank) Hermitian lattice in V is of the form:

L = a1b1 + · · ·+ aℓbℓ,

where B = (b1| · · · |bℓ) ∈ GLℓ(K), and a1, . . . , aℓ ⊆ ZK are ideals.
We say B = (B, {ai}1≤i≤ℓ) is a pseudo-basis of L. C = (C , {bi}1≤i≤ℓ) is another

pseudo-basis of L iff ∃U = (ui ,j) ∈ GLℓ(K) s.t.

1 C = BU

2 ui ,j ∈ aib
−1
j

3 a1 · · · aℓ = (detU)b1 · · · bℓ.

Example: L = ZK (10) + ZK (01) as in HAWK, {(pseudo-)bases of L} ⊇ GL2(ZK).

10 / 29

Background on number theory (3)

Let L, M ⊂ V with pseudo-bases (B, {ai}1≤i≤ℓ) and (C , {bi}1≤i≤ℓ) resp.

The module index of M in L is:

[L : M] := det(B−1C) · a1b−1
1 · · · aℓb−1

ℓ .

Doesn’t depend on the choice of pseudo-bases. Behaves as the “covolume of M in L”.

Example: if K = Q(i) and L = Z[i] + Z[i], M = Z[i] + 2Z[i], then [L : M] = 2Z[i].

Remark: [L : M] well defined even if there is no inclusion.

11 / 29

Background on number theory (3)

Let L, M ⊂ V with pseudo-bases (B, {ai}1≤i≤ℓ) and (C , {bi}1≤i≤ℓ) resp.

The module index of M in L is:

[L : M] := det(B−1C) · a1b−1
1 · · · aℓb−1

ℓ .

Doesn’t depend on the choice of pseudo-bases. Behaves as the “covolume of M in L”.

Example: if K = Q(i) and L = Z[i] + Z[i], M = Z[i] + 2Z[i], then [L : M] = 2Z[i].

Remark: [L : M] well defined even if there is no inclusion.

11 / 29

Background on number theory (3)

Let L, M ⊂ V with pseudo-bases (B, {ai}1≤i≤ℓ) and (C , {bi}1≤i≤ℓ) resp.

The module index of M in L is:

[L : M] := det(B−1C) · a1b−1
1 · · · aℓb−1

ℓ .

Doesn’t depend on the choice of pseudo-bases. Behaves as the “covolume of M in L”.

Example: if K = Q(i) and L = Z[i] + Z[i], M = Z[i] + 2Z[i], then [L : M] = 2Z[i].

Remark: [L : M] well defined even if there is no inclusion.

11 / 29

Background on number theory (3)

Let L, M ⊂ V with pseudo-bases (B, {ai}1≤i≤ℓ) and (C , {bi}1≤i≤ℓ) resp.

The module index of M in L is:

[L : M] := det(B−1C) · a1b−1
1 · · · aℓb−1

ℓ .

Doesn’t depend on the choice of pseudo-bases. Behaves as the “covolume of M in L”.

Example: if K = Q(i) and L = Z[i] + Z[i], M = Z[i] + 2Z[i], then [L : M] = 2Z[i].

Remark: [L : M] well defined even if there is no inclusion.

11 / 29

Genus and special genus

12 / 29

(Locally) isometric Hermitian lattices

The group of unitary transformations of V is U(V) := {Θ ∈ GLℓ(K) |Θ∗Θ = Id}.1

Hermitian lattices L, M ⊂ V are isomorphic (we write M ∈ cls(L)) if:

∃Θ ∈ U(V) s.t. M = Θ(L).

Fix p ⊂ ZK ; the map K ↪→ Kp extends to V ↪→ Vp.
Images of L, M are denoted by Lp, Mp. They are “local” Hermitian lattices.

It is computationally easy to test if L, M are locally isomorphic at p, i.e., if

∃Θp ∈ U(Vp) s.t. Mp = Θp(Lp).

1Where Θ∗ := ΘT .
13 / 29

(Locally) isometric Hermitian lattices

The group of unitary transformations of V is U(V) := {Θ ∈ GLℓ(K) |Θ∗Θ = Id}.1
Hermitian lattices L, M ⊂ V are isomorphic (we write M ∈ cls(L)) if:

∃Θ ∈ U(V) s.t. M = Θ(L).

Fix p ⊂ ZK ; the map K ↪→ Kp extends to V ↪→ Vp.
Images of L, M are denoted by Lp, Mp. They are “local” Hermitian lattices.

It is computationally easy to test if L, M are locally isomorphic at p, i.e., if

∃Θp ∈ U(Vp) s.t. Mp = Θp(Lp).

1Where Θ∗ := ΘT .
13 / 29

(Locally) isometric Hermitian lattices

The group of unitary transformations of V is U(V) := {Θ ∈ GLℓ(K) |Θ∗Θ = Id}.1
Hermitian lattices L, M ⊂ V are isomorphic (we write M ∈ cls(L)) if:

∃Θ ∈ U(V) s.t. M = Θ(L).

Fix p ⊂ ZK ; the map K ↪→ Kp extends to V ↪→ Vp.
Images of L, M are denoted by Lp, Mp. They are “local” Hermitian lattices.

It is computationally easy to test if L, M are locally isomorphic at p, i.e., if

∃Θp ∈ U(Vp) s.t. Mp = Θp(Lp).

1Where Θ∗ := ΘT .
13 / 29

(Locally) isometric Hermitian lattices

The group of unitary transformations of V is U(V) := {Θ ∈ GLℓ(K) |Θ∗Θ = Id}.1
Hermitian lattices L, M ⊂ V are isomorphic (we write M ∈ cls(L)) if:

∃Θ ∈ U(V) s.t. M = Θ(L).

Fix p ⊂ ZK ; the map K ↪→ Kp extends to V ↪→ Vp.
Images of L, M are denoted by Lp, Mp. They are “local” Hermitian lattices.

It is computationally easy to test if L, M are locally isomorphic at p, i.e., if

∃Θp ∈ U(Vp) s.t. Mp = Θp(Lp).

1Where Θ∗ := ΘT .
13 / 29

Genus of a Hermitian lattice

L, M ⊂ V belong to the same genus if they are locally isomorphic at any p,

i.e., if

∀ p,∃Θp ∈ U(Vp) s.t. Mp = Θp(Lp).

Fact: L and M are trivially locally isomorphic at p, for all but finitely many p.

→ poly-time algo to test if L, M are in the same genus (we write M ∈ gen(L)).

The genus of L contains its
isomorphism class, cls(L).

Fact: gen(L) is the disjoint union of
finitely many isomorphism classes.

gen(L) cls(L)

14 / 29

Genus of a Hermitian lattice

L, M ⊂ V belong to the same genus if they are locally isomorphic at any p, i.e., if

∀ p, ∃Θp ∈ U(Vp) s.t. Mp = Θp(Lp).

Fact: L and M are trivially locally isomorphic at p, for all but finitely many p.

→ poly-time algo to test if L, M are in the same genus (we write M ∈ gen(L)).

The genus of L contains its
isomorphism class, cls(L).

Fact: gen(L) is the disjoint union of
finitely many isomorphism classes.

gen(L) cls(L)

14 / 29

Genus of a Hermitian lattice

L, M ⊂ V belong to the same genus if they are locally isomorphic at any p, i.e., if

∀ p, ∃Θp ∈ U(Vp) s.t. Mp = Θp(Lp).

Fact: L and M are trivially locally isomorphic at p, for all but finitely many p.

→ poly-time algo to test if L, M are in the same genus (we write M ∈ gen(L)).

The genus of L contains its
isomorphism class, cls(L).

Fact: gen(L) is the disjoint union of
finitely many isomorphism classes.

gen(L) cls(L)

14 / 29

Genus of a Hermitian lattice

L, M ⊂ V belong to the same genus if they are locally isomorphic at any p, i.e., if

∀ p, ∃Θp ∈ U(Vp) s.t. Mp = Θp(Lp).

Fact: L and M are trivially locally isomorphic at p, for all but finitely many p.

→ poly-time algo to test if L, M are in the same genus (we write M ∈ gen(L)).

The genus of L contains its
isomorphism class, cls(L).

Fact: gen(L) is the disjoint union of
finitely many isomorphism classes.

gen(L) cls(L)

14 / 29

Special genus of a Hermitian lattice

L, M ⊂ V belong to the same special genus if:

(∃Σ ∈ U(V),∀ p, ∃Θp ∈ U(Vp) with detΘp = 1) s.t. Mp = Σ ◦Θp(Lp).

Equivalence relation ∼ on gen(L).
Denote the class of L by sgen(L).

Gives an intermediate classification
between gen(L) and cls(L).

gen(L) sgen(L) cls(L)

15 / 29

Special genus of a Hermitian lattice

L, M ⊂ V belong to the same special genus if:

(∃Σ ∈ U(V),∀ p, ∃Θp ∈ U(Vp) with detΘp = 1) s.t. Mp = Σ ◦Θp(Lp).

Equivalence relation ∼ on gen(L).
Denote the class of L by sgen(L).

Gives an intermediate classification
between gen(L) and cls(L).

gen(L) sgen(L) cls(L)

15 / 29

How to distinguish special genera?

16 / 29

Main theoretic result: Shimura’s theorem

Shimura studied how gen(L) splits into special genera.

For simplicity, L0 = Z2
K .

J = {(fractional) ideals a of K | a · a = ZK},
J0 = {g · ZK | g ∈ K× and gg = 1}.

J0 is a subgroup of J (principal ideals). Then, the map

gen(L) −→ J

M 7−→ [L0 : M]

is well-defined and induces a bijection between gen(L)/ ∼ and J/J0.

Corollary.

Let M ∈ gen(L0). M ∈ sgen(L0) iff [L0 : M] has the form g · ZK with gg = 1.

17 / 29

Main theoretic result: Shimura’s theorem

Shimura studied how gen(L) splits into special genera. For simplicity, L0 = Z2
K .

J = {(fractional) ideals a of K | a · a = ZK},
J0 = {g · ZK | g ∈ K× and gg = 1}.

J0 is a subgroup of J (principal ideals). Then, the map

gen(L) −→ J

M 7−→ [L0 : M]

is well-defined and induces a bijection between gen(L)/ ∼ and J/J0.

Corollary.

Let M ∈ gen(L0). M ∈ sgen(L0) iff [L0 : M] has the form g · ZK with gg = 1.

17 / 29

Main theoretic result: Shimura’s theorem

Shimura studied how gen(L) splits into special genera. For simplicity, L0 = Z2
K .

J = {(fractional) ideals a of K | a · a = ZK},
J0 = {g · ZK | g ∈ K× and gg = 1}.

J0 is a subgroup of J (principal ideals).

Then, the map

gen(L) −→ J

M 7−→ [L0 : M]

is well-defined and induces a bijection between gen(L)/ ∼ and J/J0.

Corollary.

Let M ∈ gen(L0). M ∈ sgen(L0) iff [L0 : M] has the form g · ZK with gg = 1.

17 / 29

Main theoretic result: Shimura’s theorem

Shimura studied how gen(L) splits into special genera. For simplicity, L0 = Z2
K .

J = {(fractional) ideals a of K | a · a = ZK},
J0 = {g · ZK | g ∈ K× and gg = 1}.

J0 is a subgroup of J (principal ideals). Then, the map

gen(L) −→ J

M 7−→ [L0 : M]

is well-defined and induces a bijection between gen(L)/ ∼ and J/J0.

Corollary.

Let M ∈ gen(L0). M ∈ sgen(L0) iff [L0 : M] has the form g · ZK with gg = 1.

17 / 29

Main theoretic result: Shimura’s theorem

Shimura studied how gen(L) splits into special genera. For simplicity, L0 = Z2
K .

J = {(fractional) ideals a of K | a · a = ZK},
J0 = {g · ZK | g ∈ K× and gg = 1}.

J0 is a subgroup of J (principal ideals). Then, the map

gen(L) −→ J

M 7−→ [L0 : M]

is well-defined and induces a bijection between gen(L)/ ∼ and J/J0.

Corollary.

Let M ∈ gen(L0). M ∈ sgen(L0) iff [L0 : M] has the form g · ZK with gg = 1.

17 / 29

Main algorithmic tool: Lenstra-Silverberg’s algorithm

Testing if an ideal a is principal is a hard problem for (classical) computers. Moreover
if a is principal, two generators g , h have gg ̸= hh in general.

Luckily we have:

Lenstra-Silverberg’s algorithm

There is a (classical) poly-time algorithm that given a (fractional) ideal a ⊂ K and
q ∈ K s.t. a · a = q · ZK , computes g ∈ K s.t. a = g · ZK and gg = q (if one exists).

1 Originally due to Gentry and Szydlo.

2 Fundamental tool for the cryptanalysis of (rank-2) module-LIP.

3 An generalization to quaternionic ideals would break HAWK.

=⇒ We obtain a (classical) poly-time algo to test if M ∈ sgen(L0).

18 / 29

Main algorithmic tool: Lenstra-Silverberg’s algorithm

Testing if an ideal a is principal is a hard problem for (classical) computers. Moreover
if a is principal, two generators g , h have gg ̸= hh in general. Luckily we have:

Lenstra-Silverberg’s algorithm

There is a (classical) poly-time algorithm that given a (fractional) ideal a ⊂ K and
q ∈ K s.t. a · a = q · ZK , computes g ∈ K s.t. a = g · ZK and gg = q (if one exists).

1 Originally due to Gentry and Szydlo.

2 Fundamental tool for the cryptanalysis of (rank-2) module-LIP.

3 An generalization to quaternionic ideals would break HAWK.

=⇒ We obtain a (classical) poly-time algo to test if M ∈ sgen(L0).

18 / 29

Main algorithmic tool: Lenstra-Silverberg’s algorithm

Testing if an ideal a is principal is a hard problem for (classical) computers. Moreover
if a is principal, two generators g , h have gg ̸= hh in general. Luckily we have:

Lenstra-Silverberg’s algorithm

There is a (classical) poly-time algorithm that given a (fractional) ideal a ⊂ K and
q ∈ K s.t. a · a = q · ZK , computes g ∈ K s.t. a = g · ZK and gg = q (if one exists).

1 Originally due to Gentry and Szydlo.

2 Fundamental tool for the cryptanalysis of (rank-2) module-LIP.

3 An generalization to quaternionic ideals would break HAWK.

=⇒ We obtain a (classical) poly-time algo to test if M ∈ sgen(L0).

18 / 29

Main algorithmic tool: Lenstra-Silverberg’s algorithm

Testing if an ideal a is principal is a hard problem for (classical) computers. Moreover
if a is principal, two generators g , h have gg ̸= hh in general. Luckily we have:

Lenstra-Silverberg’s algorithm

There is a (classical) poly-time algorithm that given a (fractional) ideal a ⊂ K and
q ∈ K s.t. a · a = q · ZK , computes g ∈ K s.t. a = g · ZK and gg = q (if one exists).

1 Originally due to Gentry and Szydlo.

2 Fundamental tool for the cryptanalysis of (rank-2) module-LIP.

3 An generalization to quaternionic ideals would break HAWK.

=⇒ We obtain a (classical) poly-time algo to test if M ∈ sgen(L0).

18 / 29

Main algorithmic tool: Lenstra-Silverberg’s algorithm

Testing if an ideal a is principal is a hard problem for (classical) computers. Moreover
if a is principal, two generators g , h have gg ̸= hh in general. Luckily we have:

Lenstra-Silverberg’s algorithm

There is a (classical) poly-time algorithm that given a (fractional) ideal a ⊂ K and
q ∈ K s.t. a · a = q · ZK , computes g ∈ K s.t. a = g · ZK and gg = q (if one exists).

1 Originally due to Gentry and Szydlo.

2 Fundamental tool for the cryptanalysis of (rank-2) module-LIP.

3 An generalization to quaternionic ideals would break HAWK.

=⇒ We obtain a (classical) poly-time algo to test if M ∈ sgen(L0).

18 / 29

Main algorithmic tool: Lenstra-Silverberg’s algorithm

Testing if an ideal a is principal is a hard problem for (classical) computers. Moreover
if a is principal, two generators g , h have gg ̸= hh in general. Luckily we have:

Lenstra-Silverberg’s algorithm

There is a (classical) poly-time algorithm that given a (fractional) ideal a ⊂ K and
q ∈ K s.t. a · a = q · ZK , computes g ∈ K s.t. a = g · ZK and gg = q (if one exists).

1 Originally due to Gentry and Szydlo.

2 Fundamental tool for the cryptanalysis of (rank-2) module-LIP.

3 An generalization to quaternionic ideals would break HAWK.

=⇒ We obtain a (classical) poly-time algo to test if M ∈ sgen(L0).

18 / 29

Pseudo-code for L0 = Z2
K

Algorithm: Test if M ∈ sgen(L0)

Input: A pseudo-basis C = (C , b1, b2) of M ∈ gen(L0)
Output: 1 if M ∈ sgen(L0) and 0 otherwise

Compute a = [L0 : M] using C;

Run LenstraSilverberg on input a and 1;
if it outputs g with gg = 1 then

Return 1

else
Return 0

Remark: In HAWK we have G = (G , b1, b2) instead of C, where G = C ∗C .
Can’t compute a Cholesky factorization over K ⇝ don’t have a basis for a = [L0 : M].
But we can still check if a has a generator with gg = 1.

19 / 29

Pseudo-code for L0 = Z2
K

Algorithm: Test if M ∈ sgen(L0)

Input: A pseudo-basis C = (C , b1, b2) of M ∈ gen(L0)
Output: 1 if M ∈ sgen(L0) and 0 otherwise

Compute a = [L0 : M] using C;

Run LenstraSilverberg on input a and 1;
if it outputs g with gg = 1 then

Return 1

else
Return 0

Remark: In HAWK we have G = (G , b1, b2) instead of C, where G = C ∗C .

Can’t compute a Cholesky factorization over K ⇝ don’t have a basis for a = [L0 : M].
But we can still check if a has a generator with gg = 1.

19 / 29

Pseudo-code for L0 = Z2
K

Algorithm: Test if M ∈ sgen(L0)

Input: A pseudo-basis C = (C , b1, b2) of M ∈ gen(L0)
Output: 1 if M ∈ sgen(L0) and 0 otherwise

Compute a = [L0 : M] using C;

Run LenstraSilverberg on input a and 1;
if it outputs g with gg = 1 then

Return 1

else
Return 0

Remark: In HAWK we have G = (G , b1, b2) instead of C, where G = C ∗C .
Can’t compute a Cholesky factorization over K ⇝ don’t have a basis for a = [L0 : M].

But we can still check if a has a generator with gg = 1.

19 / 29

Pseudo-code for L0 = Z2
K

Algorithm: Test if M ∈ sgen(L0)

Input: A pseudo-basis C = (C , b1, b2) of M ∈ gen(L0)
Output: 1 if M ∈ sgen(L0) and 0 otherwise

Compute a = [L0 : M] using C;

Run LenstraSilverberg on input a and 1;
if it outputs g with gg = 1 then

Return 1

else
Return 0

Remark: In HAWK we have G = (G , b1, b2) instead of C, where G = C ∗C .
Can’t compute a Cholesky factorization over K ⇝ don’t have a basis for a = [L0 : M].
But we can still check if a has a generator with gg = 1.

19 / 29

Remarks on the general algorithm

Previous algorithm is extended to any L ⊂ K ℓ and M ∈ gen(L).

In general:

1 Check if [L : M] = g · ZK with gg = 1.

2 Check local conditions for a small set of primes p (depends on L).
→ Need to compute det(Θp) with good enough precision.

Second item is hard to analyze. I don’t have a complexity result for general case :(

Remark: For several Hermitian lattices (including HAWK), there are no local
conditions to check! :)

20 / 29

Remarks on the general algorithm

Previous algorithm is extended to any L ⊂ K ℓ and M ∈ gen(L). In general:

1 Check if [L : M] = g · ZK with gg = 1.

2 Check local conditions for a small set of primes p (depends on L).
→ Need to compute det(Θp) with good enough precision.

Second item is hard to analyze. I don’t have a complexity result for general case :(

Remark: For several Hermitian lattices (including HAWK), there are no local
conditions to check! :)

20 / 29

Remarks on the general algorithm

Previous algorithm is extended to any L ⊂ K ℓ and M ∈ gen(L). In general:

1 Check if [L : M] = g · ZK with gg = 1.

2 Check local conditions for a small set of primes p (depends on L).
→ Need to compute det(Θp) with good enough precision.

Second item is hard to analyze. I don’t have a complexity result for general case :(

Remark: For several Hermitian lattices (including HAWK), there are no local
conditions to check! :)

20 / 29

Remarks on the general algorithm

Previous algorithm is extended to any L ⊂ K ℓ and M ∈ gen(L). In general:

1 Check if [L : M] = g · ZK with gg = 1.

2 Check local conditions for a small set of primes p (depends on L).
→ Need to compute det(Θp) with good enough precision.

Second item is hard to analyze. I don’t have a complexity result for general case :(

Remark: For several Hermitian lattices (including HAWK), there are no local
conditions to check! :)

20 / 29

Remarks on the general algorithm

Previous algorithm is extended to any L ⊂ K ℓ and M ∈ gen(L). In general:

1 Check if [L : M] = g · ZK with gg = 1.

2 Check local conditions for a small set of primes p (depends on L).
→ Need to compute det(Θp) with good enough precision.

Second item is hard to analyze. I don’t have a complexity result for general case :(

Remark: For several Hermitian lattices (including HAWK), there are no local
conditions to check! :)

20 / 29

Impact on HAWK

21 / 29

Impact on HAWK (1)

Recall: L0 = Z2
K , and fix m = 512. We are able to distinguish sgen(L0) ⊆ gen(L0).

Question: Can we quantify the gain? What is the impact on HAWK?

⇝ How many classes in gen(L0)? in sgen(L0)?
We will approximate:

#{iso. classes in sgen(L0)}

≈ #{iso. classes in gen(L0)}
#{special genera in gen(L0)}

gen(L0) sgen(L0) cls(L0)

22 / 29

Impact on HAWK (1)

Recall: L0 = Z2
K , and fix m = 512. We are able to distinguish sgen(L0) ⊆ gen(L0).

Question: Can we quantify the gain? What is the impact on HAWK?

⇝ How many classes in gen(L0)? in sgen(L0)?
We will approximate:

#{iso. classes in sgen(L0)}

≈ #{iso. classes in gen(L0)}
#{special genera in gen(L0)}

gen(L0) sgen(L0) cls(L0)

22 / 29

Impact on HAWK (1)

Recall: L0 = Z2
K , and fix m = 512. We are able to distinguish sgen(L0) ⊆ gen(L0).

Question: Can we quantify the gain? What is the impact on HAWK?

⇝ How many classes in gen(L0)? in sgen(L0)?

We will approximate:

#{iso. classes in sgen(L0)}

≈ #{iso. classes in gen(L0)}
#{special genera in gen(L0)}

gen(L0) sgen(L0) cls(L0)

22 / 29

Impact on HAWK (1)

Recall: L0 = Z2
K , and fix m = 512. We are able to distinguish sgen(L0) ⊆ gen(L0).

Question: Can we quantify the gain? What is the impact on HAWK?

⇝ How many classes in gen(L0)? in sgen(L0)?
We will approximate:

#{iso. classes in sgen(L0)}

≈ #{iso. classes in gen(L0)}
#{special genera in gen(L0)}

gen(L0) sgen(L0) cls(L0)

22 / 29

Impact on HAWK (2)

First we compute the class number h(L0) := #{iso. classes in gen(L0)}.

The mass of L0 is Mass(L0) :=
∑
L′

1

#Aut(L′)
, where L′ ∈ set of representatives.

Siegel’s mass formula gives a way to compute the mass (van Gent):

Mass(L0) =
1

2
m
2
−1

·
∏
p

λ(L0p) ·
∣∣∣∣ζKζF (0)

∣∣∣∣ · |ζF (−1)|

We have upper and lower bounds on Aut(L′). Overall for m = 512,

h(L0) ≈ 21000.

23 / 29

Impact on HAWK (2)

First we compute the class number h(L0) := #{iso. classes in gen(L0)}.

The mass of L0 is Mass(L0) :=
∑
L′

1

#Aut(L′)
, where L′ ∈ set of representatives.

Siegel’s mass formula gives a way to compute the mass (van Gent):

Mass(L0) =
1

2
m
2
−1

·
∏
p

λ(L0p) ·
∣∣∣∣ζKζF (0)

∣∣∣∣ · |ζF (−1)|

We have upper and lower bounds on Aut(L′). Overall for m = 512,

h(L0) ≈ 21000.

23 / 29

Impact on HAWK (2)

First we compute the class number h(L0) := #{iso. classes in gen(L0)}.

The mass of L0 is Mass(L0) :=
∑
L′

1

#Aut(L′)
, where L′ ∈ set of representatives.

Siegel’s mass formula gives a way to compute the mass (van Gent):

Mass(L0) =
1

2
m
2
−1

·
∏
p

λ(L0p) ·
∣∣∣∣ζKζF (0)

∣∣∣∣ · |ζF (−1)|

We have upper and lower bounds on Aut(L′). Overall for m = 512,

h(L0) ≈ 21000.

23 / 29

Impact on HAWK (2)

First we compute the class number h(L0) := #{iso. classes in gen(L0)}.

The mass of L0 is Mass(L0) :=
∑
L′

1

#Aut(L′)
, where L′ ∈ set of representatives.

Siegel’s mass formula gives a way to compute the mass (van Gent):

Mass(L0) =
1

2
m
2
−1

·
∏
p

λ(L0p) ·
∣∣∣∣ζKζF (0)

∣∣∣∣ · |ζF (−1)|

We have upper and lower bounds on Aut(L′). Overall for m = 512,

h(L0) ≈ 21000.

23 / 29

Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0. In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1. Overall:

sh(L0) = hK ≈ 2200.

24 / 29

Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0.

In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1. Overall:

sh(L0) = hK ≈ 2200.

24 / 29

Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0. In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1. Overall:

sh(L0) = hK ≈ 2200.

24 / 29

Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0. In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1. Overall:

sh(L0) = hK ≈ 2200.

24 / 29

Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0. In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1.

Overall:

sh(L0) = hK ≈ 2200.

24 / 29

Impact on HAWK (3)

Next we compute the special class number sh(L0) := #{special genera in gen(L0)}.

J = {(fractional) ideals a of K | a · a = ZK}
J0 = {g · ZK | g ∈ K× and gg = 1},

and recall {special genera in gen(L0)} ≃ J/J0. In particular, sh(L0) = |J/J0|.

J/J0 is closely related to the class group of K : we have |J/J0| = hK/hF .

Moreover for m = 512, and under GRH, hF = 1. Overall:

sh(L0) = hK ≈ 2200.

24 / 29

Impact on HAWK (4)

For L0 and m = 512 as in HAWK,

#{iso. classes in sgen(L0)} ≈ 2800

sgen(L0)
cls(L0)

Recall: Have a reduction from HAWK to (several instances) of decision module-LIP.
(Unfortunately) lattices involved are all in sgen(L0) ⇝ No impact on HAWK!

25 / 29

Impact on HAWK (4)

For L0 and m = 512 as in HAWK,

#{iso. classes in sgen(L0)} ≈ 2800

sgen(L0)
cls(L0)

Recall: Have a reduction from HAWK to (several instances) of decision module-LIP.
(Unfortunately) lattices involved are all in sgen(L0) ⇝ No impact on HAWK!

25 / 29

Takeaway and perspectives

The special genus is a finer invariant than the genus. To make a hard instance of
decision module-LIP, lattices must be chosen inside the same special genus.

Have a (classical) algo to test M ∈ sgen(L0). Run in poly-time for L0 = Z2
K .

Despite exponential gain, still exponential number of classes in sgen(L0).

No concrete impact on the security of HAWK.

Open: L0 can be seen as a quadratic lattices (of rank 4!). Spinor genus? How
does it compare with the special genus?

More generally: Other computable invariants for L0?

Thank you for your attention!

26 / 29

Takeaway and perspectives

The special genus is a finer invariant than the genus. To make a hard instance of
decision module-LIP, lattices must be chosen inside the same special genus.

Have a (classical) algo to test M ∈ sgen(L0). Run in poly-time for L0 = Z2
K .

Despite exponential gain, still exponential number of classes in sgen(L0).

No concrete impact on the security of HAWK.

Open: L0 can be seen as a quadratic lattices (of rank 4!). Spinor genus? How
does it compare with the special genus?

More generally: Other computable invariants for L0?

Thank you for your attention!

26 / 29

Takeaway and perspectives

The special genus is a finer invariant than the genus. To make a hard instance of
decision module-LIP, lattices must be chosen inside the same special genus.

Have a (classical) algo to test M ∈ sgen(L0). Run in poly-time for L0 = Z2
K .

Despite exponential gain, still exponential number of classes in sgen(L0).

No concrete impact on the security of HAWK.

Open: L0 can be seen as a quadratic lattices (of rank 4!). Spinor genus? How
does it compare with the special genus?

More generally: Other computable invariants for L0?

Thank you for your attention!

26 / 29

Takeaway and perspectives

The special genus is a finer invariant than the genus. To make a hard instance of
decision module-LIP, lattices must be chosen inside the same special genus.

Have a (classical) algo to test M ∈ sgen(L0). Run in poly-time for L0 = Z2
K .

Despite exponential gain, still exponential number of classes in sgen(L0).

No concrete impact on the security of HAWK.

Open: L0 can be seen as a quadratic lattices (of rank 4!). Spinor genus? How
does it compare with the special genus?

More generally: Other computable invariants for L0?

Thank you for your attention!

26 / 29

Takeaway and perspectives

The special genus is a finer invariant than the genus. To make a hard instance of
decision module-LIP, lattices must be chosen inside the same special genus.

Have a (classical) algo to test M ∈ sgen(L0). Run in poly-time for L0 = Z2
K .

Despite exponential gain, still exponential number of classes in sgen(L0).

No concrete impact on the security of HAWK.

Open: L0 can be seen as a quadratic lattices (of rank 4!). Spinor genus? How
does it compare with the special genus?

More generally: Other computable invariants for L0?

Thank you for your attention!

26 / 29

Takeaway and perspectives

The special genus is a finer invariant than the genus. To make a hard instance of
decision module-LIP, lattices must be chosen inside the same special genus.

Have a (classical) algo to test M ∈ sgen(L0). Run in poly-time for L0 = Z2
K .

Despite exponential gain, still exponential number of classes in sgen(L0).

No concrete impact on the security of HAWK.

Open: L0 can be seen as a quadratic lattices (of rank 4!). Spinor genus? How
does it compare with the special genus?

More generally: Other computable invariants for L0?

Thank you for your attention!

26 / 29

Takeaway and perspectives

The special genus is a finer invariant than the genus. To make a hard instance of
decision module-LIP, lattices must be chosen inside the same special genus.

Have a (classical) algo to test M ∈ sgen(L0). Run in poly-time for L0 = Z2
K .

Despite exponential gain, still exponential number of classes in sgen(L0).

No concrete impact on the security of HAWK.

Open: L0 can be seen as a quadratic lattices (of rank 4!). Spinor genus? How
does it compare with the special genus?

More generally: Other computable invariants for L0?

Thank you for your attention!

26 / 29

Bonus: Gentry-Szydlo’s algorithm (1)

Let K = Q[X]/(Xm + 1) with m = 2r . Fix g ∈ ZK

GentrySzydlo

Input: A basis of g · ZK and gg
Output: g (up to a root of unity of K)

1 Find a prime number p = 1 (mod m), so that ZK/(p) ≃ (Fp)
m/2

2 Compute a LLL-reduced basis of (g · ZK)
p−1 = gp−1 · ZK

At each step, divide the basis by gg to avoid coefficient blow-up

3 The first basis vector is gp−1 · v with v short. Reduce it modulo p

27 / 29

Bonus: Gentry-Szydlo’s algorithm (1)

Let K = Q[X]/(Xm + 1) with m = 2r . Fix g ∈ ZK

GentrySzydlo

Input: A basis of g · ZK and gg
Output: g (up to a root of unity of K)

1 Find a prime number p = 1 (mod m), so that ZK/(p) ≃ (Fp)
m/2

2 Compute a LLL-reduced basis of (g · ZK)
p−1 = gp−1 · ZK

At each step, divide the basis by gg to avoid coefficient blow-up

3 The first basis vector is gp−1 · v with v short. Reduce it modulo p

27 / 29

Bonus: Gentry-Szydlo’s algorithm (1)

Let K = Q[X]/(Xm + 1) with m = 2r . Fix g ∈ ZK

GentrySzydlo

Input: A basis of g · ZK and gg
Output: g (up to a root of unity of K)

1 Find a prime number p = 1 (mod m), so that ZK/(p) ≃ (Fp)
m/2

2 Compute a LLL-reduced basis of (g · ZK)
p−1 = gp−1 · ZK

At each step, divide the basis by gg to avoid coefficient blow-up

3 The first basis vector is gp−1 · v with v short. Reduce it modulo p

27 / 29

Bonus: Gentry-Szydlo’s algorithm (1)

Let K = Q[X]/(Xm + 1) with m = 2r . Fix g ∈ ZK

GentrySzydlo

Input: A basis of g · ZK and gg
Output: g (up to a root of unity of K)

1 Find a prime number p = 1 (mod m), so that ZK/(p) ≃ (Fp)
m/2

2 Compute a LLL-reduced basis of (g · ZK)
p−1 = gp−1 · ZK

At each step, divide the basis by gg to avoid coefficient blow-up

3 The first basis vector is gp−1 · v with v short. Reduce it modulo p

27 / 29

Bonus: Gentry-Szydlo’s algorithm (2)

4 By Fermat’s theorem, gp−1 = 1 (mod p), so we have v (mod p)

5 If p is big enough, obtain v exactly and deduce gp−1

6 With some trick, reduce the exponent and obtain gm

7 Compute a m-th root and get g , up to a root of unity

→ We have an implementation in SageMath!

28 / 29

Bonus: Gentry-Szydlo’s algorithm (2)

4 By Fermat’s theorem, gp−1 = 1 (mod p), so we have v (mod p)

5 If p is big enough, obtain v exactly and deduce gp−1

6 With some trick, reduce the exponent and obtain gm

7 Compute a m-th root and get g , up to a root of unity

→ We have an implementation in SageMath!

28 / 29

Bonus: Gentry-Szydlo’s algorithm (2)

4 By Fermat’s theorem, gp−1 = 1 (mod p), so we have v (mod p)

5 If p is big enough, obtain v exactly and deduce gp−1

6 With some trick, reduce the exponent and obtain gm

7 Compute a m-th root and get g , up to a root of unity

→ We have an implementation in SageMath!

28 / 29

Bonus: Gentry-Szydlo’s algorithm (2)

4 By Fermat’s theorem, gp−1 = 1 (mod p), so we have v (mod p)

5 If p is big enough, obtain v exactly and deduce gp−1

6 With some trick, reduce the exponent and obtain gm

7 Compute a m-th root and get g , up to a root of unity

→ We have an implementation in SageMath!

28 / 29

Bonus: Gentry-Szydlo’s algorithm (2)

4 By Fermat’s theorem, gp−1 = 1 (mod p), so we have v (mod p)

5 If p is big enough, obtain v exactly and deduce gp−1

6 With some trick, reduce the exponent and obtain gm

7 Compute a m-th root and get g , up to a root of unity

→ We have an implementation in SageMath!

28 / 29

References

Léo Ducas, Eamonn W Postlethwaite, Ludo N Pulles, and Wessel van Woerden. Hawk:
Module lip makes lattice signatures fast, compact and simple. 2022.

Léo Ducas and Wessel van Woerden. On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. 2022.

Hendrik W Lenstra Jr and Alice Silverberg. Testing isomorphism of lattices over
cmorders. 2019.

Cong Ling, Jingbo Liu, and Andrew Mendelsohn. On the Spinor Genus and the
Distinguishing Lattice Isomorphism Problem. 2024.

Goro Shimura. Arithmetic of unitary groups. 1964.

Daniel M. H. van Gent. A note on the genus of the HAWK lattice. 2025.
29 / 29

