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The Lattice Isomorphism Problem (LIP)

Given bases B and C of £1 and £ resp., define:

search LIP: Assume £; and £, are isomorphic. Compute such ® € O,(R).
decision LIP: Decide whether £; and L5 are isomorphic or not.

Very old questions (Gauss, classification of binary integral quadratic forms).

Hard algorithmic problems in high dimension: Plesken & Souvignier (1997), Haviv &
Regev (2013). Best algorithms require to compute short vectors.

Use in cryptography :

1. Ducas & van Woerden (2021): primitives based on decision LIP.
2. Ducas et. al. (2022): signature scheme HAWK, based on search module-LIP.
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The module-Lattice Isomorphism Problem (module-LIP)

Module lattices (or Hermitian lattices) are lattices with additional algebraic structure
(symmetries). They admit a compact representation: good candidates for crypto!

module-LIP is LIP restricted to module lattices (and where the isomorphism must

preserve the structure). Several attempts to break search module-LIP.

van Gent & van Woerden (2025): reduce search module-LIP to decision module-LIP.
~~ HAWK reduces to several instances of decision module-LIP.
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State-of-the-art and contribution

We target decision module-LIP for specific module lattices: are £ and M isomorphic?

So far: test efficiently if £, M are in the same genus (necessary but not sufficient!).

Contribution: The special genus gives an intermediate classification.
Moreover M € sgen(L) can be tested efficiently, for a large family of module lattices.
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Let n = 2% and K = Q[X]/(X" + 1) is a (power-of-two) cyclotomic number field.
Its ring of integers is Zx = Z[X]/(X" + 1). 3 a complex conjugation a — 3 on K.

An ideal of Zy is a subgroup a C Zk s.t. Zk -a Ca. If for all x,y € Zk,
Xyca=xecaoryeca,
it is a prime ideal (denote p = a). Example: £ =2, K =Q,Zx = Z and p = 2Z.

K embeds into larger fields. Two types of embeddings:

1. Complex: K — C, by sending X to a root of X" 4+ 1 in C.
2. Local: K — K,, for any prime ideal p.
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Let by, ..., by € K* which are K-linearly independant. £ := {>"; x;b;i| x; € Zk} is a
module lattice in K*. It can be seen as a lattice in R™, through complex embeddings.

Example: £ =2, by = (}) and by = (?), then £ = Z% as in HAWK.

For £, M C K’ the module index [£ : M] is an ideal of Zk. It is the “covolume of
Min £ if K =Q(i) and £ = Z[i] + Z[i], M = Z[i] + 2Z[i], then [L : M] = 2Z]i].

For any prime ideal p, a module lattice £ C K* extends to Ly, C Kf via K — K.
It is easy to check if £, and M, are locally isomorphic at p, i.e., if there exists

O, € Uy(Kp) s.t. My = Op(L,), where Uy means unitary : épT -0, = Id.
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Genus and special genus

L and M belongs to the same genus if they are locally isomorphic at any p, i.e., if
L and M belongs to the same special genus if

(3X € Uy(K),Vp, 3O, € Uy(K,) with det®, = 1) s.t. M, = X 0 @p(L,).

The genus of L contains the special genus of L,
itself containing the isomorphism class of L.

There are finitely many classes in a genus.
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Theorem (consequence of Shimura, 1964): Fix Lo = Z2 and M € gen(Lp). Then,
M € sgen(Ly) iff [Lo: M] has the form gZy with gg = 1.

This condition can be checked using an algorithm by Lenstra & Silverberg (2019).
We obtain a polynomial-time algorithm for testing if M & sgen(Ly).

More generally it works for any £ and M € gen(£) but it is harder to analyze.
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Consequences and conclusion

Can we estimate the gain and the impact on HAWK? Set Ly = Z% and m = 512.

#{isomorphism classes in gen(Lg)} ~ 21900,
#{special genera in gen(Lo)} ~ 2290,

gen(Ly) ( sgen(Lo)

e The special genus is a finer invariant. To make decision module-LIP difficult, module
lattices have to be chosen in the same special genus.

e It is computable for several module lattices but has no practical impact on HAWK.

e Open question: are there finer computable invariants?

~~ Still about =2 2809 classes in sgen(Lo)!

Takeaway:

Thank you for your attention! e



References

Léo Ducas, Eamonn W Postlethwaite, Ludo N Pulles, and Wessel van Woerden. Hawk:
Module lip makes lattice signatures fast, compact and simple. 2022.

Léo Ducas and Wessel van Woerden. On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. 2022

Hendrik W Lenstra Jr and Alice Silverberg. Testing isomorphism of lattices over
cmorders. 2019

Goro Shimura. Arithmetic of unitary groups. 1964.

11



