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The Lattice Isomorphism Problem (LIP)

Let b1, . . . ,bn ∈ Rn which are R-linearly independant.

L := {
∑

i xibi | xi ∈ Z} is a lattice in Rn and B = (b1| · · · |bn) is a basis of L.

b1

b2

Lattices L1 and L2 are isomorphic if L2 = Θ(L1) for some Θ ∈ On(R) orthogonal.
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The Lattice Isomorphism Problem (LIP)

Given bases B and C of L1 and L2 resp., define:

search LIP: Assume L1 and L2 are isomorphic. Compute such Θ ∈ On(R).

decision LIP: Decide whether L1 and L2 are isomorphic or not.

Very old questions (Gauss, classification of binary integral quadratic forms).

Hard algorithmic problems in high dimension: Plesken & Souvignier (1997), Haviv &

Regev (2013). Best algorithms require to compute short vectors.

Use in cryptography :

1. Ducas & van Woerden (2021): primitives based on decision LIP.

2. Ducas et. al. (2022): signature scheme HAWK, based on search module-LIP.
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The module-Lattice Isomorphism Problem (module-LIP)

Module lattices (or Hermitian lattices) are lattices with additional algebraic structure

(symmetries). They admit a compact representation: good candidates for crypto!

module-LIP is LIP restricted to module lattices (and where the isomorphism must

preserve the structure). Several attempts to break search module-LIP.

van Gent & van Woerden (2025): reduce search module-LIP to decision module-LIP.

⇝ HAWK reduces to several instances of decision module-LIP.
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State-of-the-art and contribution

We target decision module-LIP for specific module lattices: are L and M isomorphic?

So far: test efficiently if L, M are in the same genus (necessary but not sufficient!).

Contribution: The special genus gives an intermediate classification.

Moreover M ∈ sgen(L) can be tested efficiently, for a large family of module lattices.

5



State-of-the-art and contribution

We target decision module-LIP for specific module lattices: are L and M isomorphic?

So far: test efficiently if L, M are in the same genus (necessary but not sufficient!).

M

gen(L) cls(L)

Contribution: The special genus gives an intermediate classification.

Moreover M ∈ sgen(L) can be tested efficiently, for a large family of module lattices.

5



State-of-the-art and contribution

We target decision module-LIP for specific module lattices: are L and M isomorphic?

So far: test efficiently if L, M are in the same genus (necessary but not sufficient!).

M

gen(L) cls(L)sgen(L)

Contribution: The special genus gives an intermediate classification.

Moreover M ∈ sgen(L) can be tested efficiently, for a large family of module lattices.

5



Background on number theory (1)

Let n = 2ℓ and K = Q[X ]/(X n + 1) is a (power-of-two) cyclotomic number field.

Its ring of integers is ZK = Z[X ]/(X n + 1). ∃ a complex conjugation a 7→ a on K .

An ideal of ZK is a subgroup a ⊆ ZK s.t. ZK · a ⊆ a. If for all x , y ∈ ZK ,

xy ∈ a ⇒ x ∈ a or y ∈ a,

it is a prime ideal (denote p = a). Example: ℓ = 2,K = Q,ZK = Z and p = 2Z.

K embeds into larger fields. Two types of embeddings:

1. Complex: K ↪→ C, by sending X to a root of X n + 1 in C.

2. Local: K ↪→ Kp, for any prime ideal p.
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Background on number theory (2)

Let b1, . . . ,bℓ ∈ K ℓ which are K -linearly independant. L := {
∑

i xibi | xi ∈ ZK} is a

module lattice in K ℓ.

It can be seen as a lattice in Rnℓ, through complex embeddings.

Example: ℓ = 2, b1 = ( 10 ) and b2 = ( 01 ), then L = Z2
K as in HAWK.

For L, M ⊂ K ℓ, the module index [L : M] is an ideal of ZK . It is the “covolume of

M in L”: if K = Q(i) and L = Z[i ] + Z[i ], M = Z[i ] + 2Z[i ], then [L : M] = 2Z[i ].

For any prime ideal p, a module lattice L ⊂ K ℓ extends to Lp ⊂ K ℓ
p via K ↪→ Kp.

It is easy to check if Lp and Mp are locally isomorphic at p, i.e., if there exists

Θp ∈ Uℓ(Kp) s.t. Mp = Θp(Lp), where Uℓ means unitary : Θ
T
p ·Θp = Id.
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Genus and special genus

L and M belongs to the same genus if they are locally isomorphic at any p,

i.e., if

∀ p, ∃Θp ∈ Uℓ(Kp) s.t. Mp = Θp(Lp).

L and M belongs to the same special genus if

(∃Σ ∈ Uℓ(K ),∀ p,∃Θp ∈ Uℓ(Kp) with detΘp = 1) s.t. Mp = Σ ◦Θp(Lp).

The genus of L contains the special genus of L,
itself containing the isomorphism class of L.

There are finitely many classes in a genus.
gen(L) sgen(L) cls(L)
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How to distinguish special genera: Shimura’s theorem

Theorem (consequence of Shimura, 1964): Fix L0 = Z2
K and M ∈ gen(L0).

Then,

M ∈ sgen(L0) iff [L0 : M] has the form gZK with gg = 1.

This condition can be checked using an algorithm by Lenstra & Silverberg (2019).

We obtain a polynomial-time algorithm for testing if M ∈ sgen(L0).

More generally it works for any L and M ∈ gen(L) but it is harder to analyze.
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Consequences and conclusion

Can we estimate the gain and the impact on HAWK?

Set L0 = Z2
K and m = 512.

#{isomorphism classes in gen(L0)} ≈ 21000.

#{special genera in gen(L0)} ≈ 2200.

⇝ Still about ≈ 2800 classes in sgen(L0)!
gen(L0) sgen(L0) cls(L0)

Takeaway:

• The special genus is a finer invariant. To make decision module-LIP difficult, module

lattices have to be chosen in the same special genus.

• It is computable for several module lattices but has no practical impact on HAWK.

• Open question: are there finer computable invariants?

Thank you for your attention!
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gen(L0) sgen(L0) cls(L0)

Takeaway:

• The special genus is a finer invariant. To make decision module-LIP difficult, module

lattices have to be chosen in the same special genus.

• It is computable for several module lattices but has no practical impact on HAWK.

• Open question: are there finer computable invariants?

Thank you for your attention! 10
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