

Special Genera of Hermitian Lattices and Applications to HAWK

December 5th, TCC 2025, Aarhus

Guilhem Mureau

Inria de Bordeaux, IMB, France

The Lattice Isomorphism Problem (LIP)

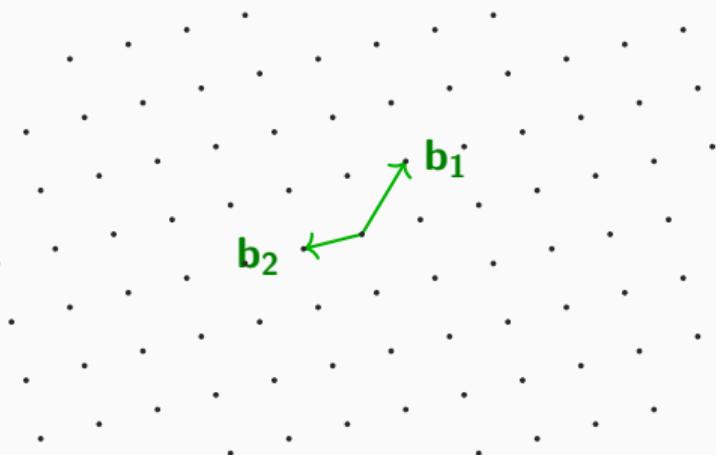
Let $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{R}^n$ which are \mathbb{R} -linearly independant.

$\mathcal{L} := \{\sum_i x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}\}$ is a **lattice** in \mathbb{R}^n and $\mathbf{B} = (\mathbf{b}_1 \mid \dots \mid \mathbf{b}_n)$ is a **basis** of \mathcal{L} .

The Lattice Isomorphism Problem (LIP)

Let $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{R}^n$ which are \mathbb{R} -linearly independant.

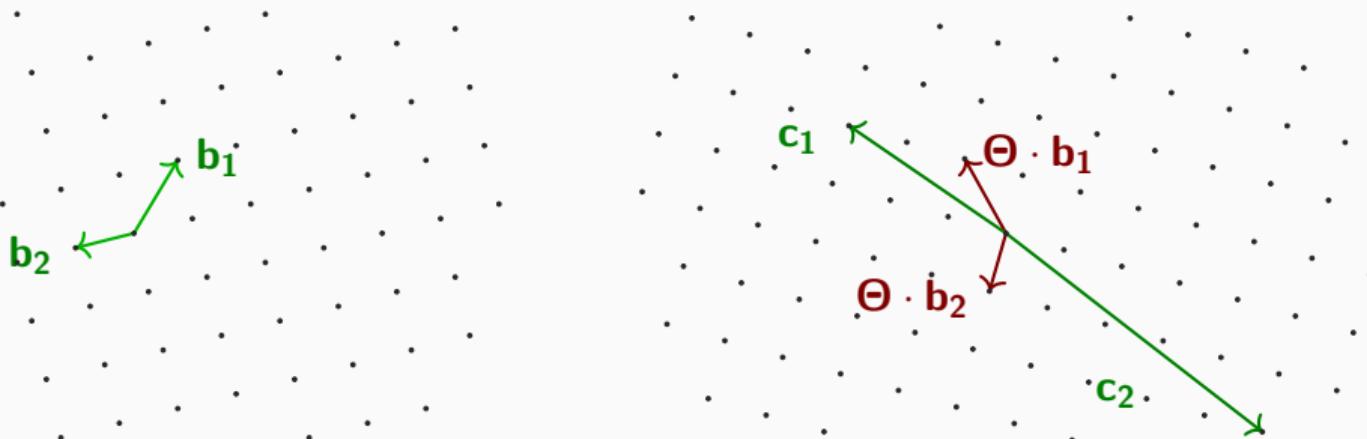
$\mathcal{L} := \{\sum_i x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}\}$ is a **lattice** in \mathbb{R}^n and $\mathbf{B} = (\mathbf{b}_1 \mid \dots \mid \mathbf{b}_n)$ is a **basis** of \mathcal{L} .



The Lattice Isomorphism Problem (LIP)

Let $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{R}^n$ which are \mathbb{R} -linearly independant.

$\mathcal{L} := \{\sum_i x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}\}$ is a **lattice** in \mathbb{R}^n and $\mathbf{B} = (\mathbf{b}_1 \mid \dots \mid \mathbf{b}_n)$ is a **basis** of \mathcal{L} .



Lattices \mathcal{L}_1 and \mathcal{L}_2 are **isomorphic** if $\mathcal{L}_2 = \Theta(\mathcal{L}_1)$ for some $\Theta \in \mathcal{O}_n(\mathbb{R})$ orthogonal.

The Lattice Isomorphism Problem (LIP)

Given bases \mathbf{B} and \mathbf{C} of \mathcal{L}_1 and \mathcal{L}_2 resp., define:

search LIP: Assume \mathcal{L}_1 and \mathcal{L}_2 are isomorphic. Compute such $\Theta \in \mathcal{O}_n(\mathbb{R})$.

The Lattice Isomorphism Problem (LIP)

Given bases \mathbf{B} and \mathbf{C} of \mathcal{L}_1 and \mathcal{L}_2 resp., define:

search LIP: Assume \mathcal{L}_1 and \mathcal{L}_2 are isomorphic. Compute such $\Theta \in \mathcal{O}_n(\mathbb{R})$.

decision LIP: Decide whether \mathcal{L}_1 and \mathcal{L}_2 are isomorphic or not.

The Lattice Isomorphism Problem (LIP)

Given bases \mathbf{B} and \mathbf{C} of \mathcal{L}_1 and \mathcal{L}_2 resp., define:

search LIP: Assume \mathcal{L}_1 and \mathcal{L}_2 are isomorphic. Compute such $\Theta \in \mathcal{O}_n(\mathbb{R})$.

decision LIP: Decide whether \mathcal{L}_1 and \mathcal{L}_2 are isomorphic or not.

Very old questions (Gauss, classification of binary integral quadratic forms).

The Lattice Isomorphism Problem (LIP)

Given bases \mathbf{B} and \mathbf{C} of \mathcal{L}_1 and \mathcal{L}_2 resp., define:

search LIP: Assume \mathcal{L}_1 and \mathcal{L}_2 are isomorphic. Compute such $\Theta \in \mathcal{O}_n(\mathbb{R})$.

decision LIP: Decide whether \mathcal{L}_1 and \mathcal{L}_2 are isomorphic or not.

Very old questions (Gauss, classification of binary integral quadratic forms).

Hard algorithmic problems in high dimension: Plesken & Souvignier (1997), Haviv & Regev (2013). Best algorithms require to compute short vectors.

The Lattice Isomorphism Problem (LIP)

Given bases **B** and **C** of \mathcal{L}_1 and \mathcal{L}_2 resp., define:

search LIP: Assume \mathcal{L}_1 and \mathcal{L}_2 are isomorphic. Compute such $\Theta \in \mathcal{O}_n(\mathbb{R})$.

decision LIP: Decide whether \mathcal{L}_1 and \mathcal{L}_2 are isomorphic or not.

Very old questions (Gauss, classification of binary integral quadratic forms).

Hard algorithmic problems in high dimension: Plesken & Souvignier (1997), Haviv & Regev (2013). Best algorithms require to compute short vectors.

Use in cryptography :

1. Ducas & van Woerden (2021): primitives based on decision LIP.
2. Ducas *et. al.* (2022): signature scheme **HAWK**, based on search **module-LIP**.

The module-Lattice Isomorphism Problem (module-LIP)

Module lattices (or Hermitian lattices) are lattices with additional algebraic structure (symmetries). They admit a compact representation: good candidates for crypto!

The module-Lattice Isomorphism Problem (module-LIP)

Module lattices (or Hermitian lattices) are lattices with additional algebraic structure (symmetries). They admit a compact representation: good candidates for crypto!

module-LIP is LIP restricted to module lattices (and where the isomorphism must preserve the structure). Several attempts to break **search** module-LIP.

The module-Lattice Isomorphism Problem (module-LIP)

Module lattices (or Hermitian lattices) are lattices with additional algebraic structure (symmetries). They admit a compact representation: good candidates for crypto!

module-LIP is LIP restricted to module lattices (and where the isomorphism must preserve the structure). Several attempts to break **search** module-LIP.

van Gent & van Woerden (2025): reduce search module-LIP to **decision** module-LIP.
~~~ HAWK reduces to several instances of decision module-LIP.

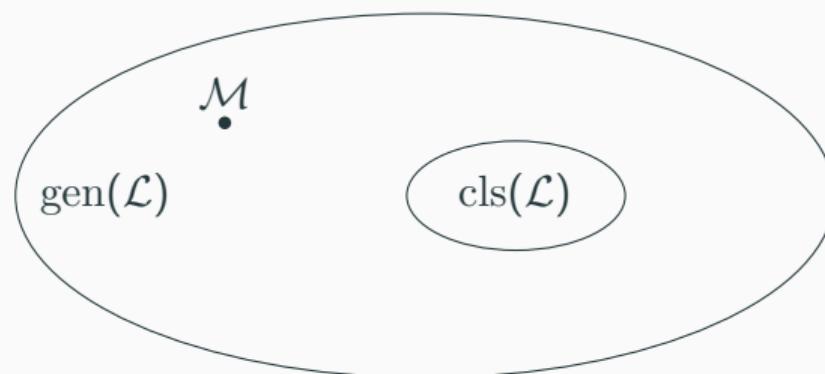
## State-of-the-art and contribution

We target decision module-LIP for specific module lattices: are  $\mathcal{L}$  and  $\mathcal{M}$  isomorphic?

## State-of-the-art and contribution

We target decision module-LIP for specific module lattices: are  $\mathcal{L}$  and  $\mathcal{M}$  isomorphic?

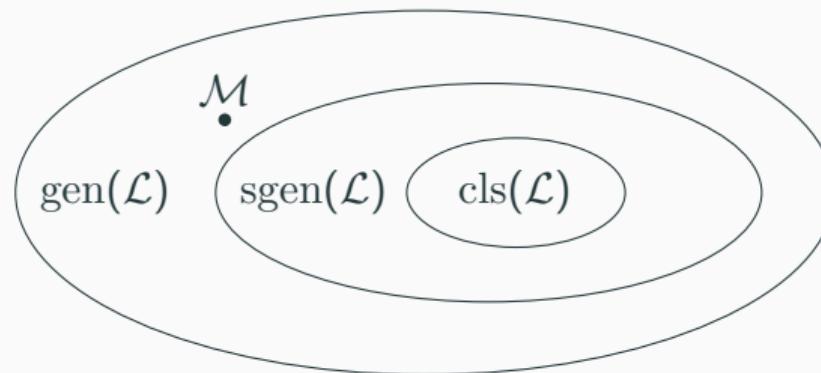
**So far:** test efficiently if  $\mathcal{L}$ ,  $\mathcal{M}$  are in the same **genus** (necessary but not sufficient!).



## State-of-the-art and contribution

We target decision module-LIP for specific module lattices: are  $\mathcal{L}$  and  $\mathcal{M}$  isomorphic?

So far: test efficiently if  $\mathcal{L}$ ,  $\mathcal{M}$  are in the same **genus** (necessary but not sufficient!).



**Contribution:** The **special genus** gives an intermediate classification.

Moreover  $\mathcal{M} \in \text{sgen}(\mathcal{L})$  can be **tested efficiently**, for a large family of module lattices.

## Background on number theory (1)

Let  $n = 2^\ell$  and  $K = \mathbb{Q}[X]/(X^n + 1)$  is a (power-of-two) **cyclotomic number field**.  
Its **ring of integers** is  $\mathbb{Z}_K = \mathbb{Z}[X]/(X^n + 1)$ .  $\exists$  a **complex conjugation**  $a \mapsto \bar{a}$  on  $K$ .

## Background on number theory (1)

Let  $n = 2^\ell$  and  $K = \mathbb{Q}[X]/(X^n + 1)$  is a (power-of-two) **cyclotomic number field**.

Its **ring of integers** is  $\mathbb{Z}_K = \mathbb{Z}[X]/(X^n + 1)$ .  $\exists$  a **complex conjugation**  $a \mapsto \bar{a}$  on  $K$ .

An **ideal** of  $\mathbb{Z}_K$  is a subgroup  $\mathfrak{a} \subseteq \mathbb{Z}_K$  s.t.  $\mathbb{Z}_K \cdot \mathfrak{a} \subseteq \mathfrak{a}$ .

## Background on number theory (1)

Let  $n = 2^\ell$  and  $K = \mathbb{Q}[X]/(X^n + 1)$  is a (power-of-two) **cyclotomic number field**.

Its **ring of integers** is  $\mathbb{Z}_K = \mathbb{Z}[X]/(X^n + 1)$ .  $\exists$  a **complex conjugation**  $a \mapsto \bar{a}$  on  $K$ .

An **ideal** of  $\mathbb{Z}_K$  is a subgroup  $\mathfrak{a} \subseteq \mathbb{Z}_K$  s.t.  $\mathbb{Z}_K \cdot \mathfrak{a} \subseteq \mathfrak{a}$ . If for all  $x, y \in \mathbb{Z}_K$ ,

$$xy \in \mathfrak{a} \Rightarrow x \in \mathfrak{a} \text{ or } y \in \mathfrak{a},$$

it is a **prime ideal** (denote  $\mathfrak{p} = \mathfrak{a}$ ).

## Background on number theory (1)

Let  $n = 2^\ell$  and  $K = \mathbb{Q}[X]/(X^n + 1)$  is a (power-of-two) **cyclotomic number field**.

Its **ring of integers** is  $\mathbb{Z}_K = \mathbb{Z}[X]/(X^n + 1)$ .  $\exists$  a **complex conjugation**  $a \mapsto \bar{a}$  on  $K$ .

An **ideal** of  $\mathbb{Z}_K$  is a subgroup  $\mathfrak{a} \subseteq \mathbb{Z}_K$  s.t.  $\mathbb{Z}_K \cdot \mathfrak{a} \subseteq \mathfrak{a}$ . If for all  $x, y \in \mathbb{Z}_K$ ,

$$xy \in \mathfrak{a} \Rightarrow x \in \mathfrak{a} \text{ or } y \in \mathfrak{a},$$

it is a **prime ideal** (denote  $\mathfrak{p} = \mathfrak{a}$ ). Example:  $\ell = 2, K = \mathbb{Q}, \mathbb{Z}_K = \mathbb{Z}$  and  $\mathfrak{p} = 2\mathbb{Z}$ .

## Background on number theory (1)

Let  $n = 2^\ell$  and  $K = \mathbb{Q}[X]/(X^n + 1)$  is a (power-of-two) **cyclotomic number field**.

Its **ring of integers** is  $\mathbb{Z}_K = \mathbb{Z}[X]/(X^n + 1)$ .  $\exists$  a **complex conjugation**  $a \mapsto \bar{a}$  on  $K$ .

An **ideal** of  $\mathbb{Z}_K$  is a subgroup  $\mathfrak{a} \subseteq \mathbb{Z}_K$  s.t.  $\mathbb{Z}_K \cdot \mathfrak{a} \subseteq \mathfrak{a}$ . If for all  $x, y \in \mathbb{Z}_K$ ,

$$xy \in \mathfrak{a} \Rightarrow x \in \mathfrak{a} \text{ or } y \in \mathfrak{a},$$

it is a **prime ideal** (denote  $\mathfrak{p} = \mathfrak{a}$ ). Example:  $\ell = 2$ ,  $K = \mathbb{Q}$ ,  $\mathbb{Z}_K = \mathbb{Z}$  and  $\mathfrak{p} = 2\mathbb{Z}$ .

$K$  **embeds** into larger fields. Two types of embeddings:

1. **Complex**:  $K \hookrightarrow \mathbb{C}$ , by sending  $X$  to a root of  $X^n + 1$  in  $\mathbb{C}$ .
2. **Local**:  $K \hookrightarrow K_{\mathfrak{p}}$ , for any prime ideal  $\mathfrak{p}$ .

## Background on number theory (2)

Let  $\mathbf{b}_1, \dots, \mathbf{b}_\ell \in K^\ell$  which are  $K$ -linearly independant.  $\mathcal{L} := \{\sum_i x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}_K\}$  is a **module lattice** in  $K^\ell$ .

## Background on number theory (2)

Let  $\mathbf{b}_1, \dots, \mathbf{b}_\ell \in K^\ell$  which are  $K$ -linearly independant.  $\mathcal{L} := \{\sum_i x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}_K\}$  is a **module lattice** in  $K^\ell$ . It can be seen as a lattice in  $\mathbb{R}^{n\ell}$ , through complex embeddings.

## Background on number theory (2)

Let  $\mathbf{b}_1, \dots, \mathbf{b}_\ell \in K^\ell$  which are  $K$ -linearly independant.  $\mathcal{L} := \{\sum_i x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}_K\}$  is a **module lattice** in  $K^\ell$ . It can be seen as a lattice in  $\mathbb{R}^{n\ell}$ , through complex embeddings.

Example:  $\ell = 2$ ,  $\mathbf{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and  $\mathbf{b}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ , then  $\mathcal{L} = \mathbb{Z}_K^2$  as in **HAWK**.

## Background on number theory (2)

Let  $\mathbf{b}_1, \dots, \mathbf{b}_\ell \in K^\ell$  which are  $K$ -linearly independant.  $\mathcal{L} := \{\sum_i x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}_K\}$  is a **module lattice** in  $K^\ell$ . It can be seen as a lattice in  $\mathbb{R}^{n\ell}$ , through complex embeddings.

Example:  $\ell = 2$ ,  $\mathbf{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and  $\mathbf{b}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ , then  $\mathcal{L} = \mathbb{Z}_K^2$  as in **HAWK**.

For  $\mathcal{L}, \mathcal{M} \subset K^\ell$ , the **module index**  $[\mathcal{L} : \mathcal{M}]$  is an ideal of  $\mathbb{Z}_K$ .

## Background on number theory (2)

Let  $\mathbf{b}_1, \dots, \mathbf{b}_\ell \in K^\ell$  which are  $K$ -linearly independant.  $\mathcal{L} := \{\sum_i x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}_K\}$  is a **module lattice** in  $K^\ell$ . It can be seen as a lattice in  $\mathbb{R}^{n\ell}$ , through complex embeddings.

Example:  $\ell = 2$ ,  $\mathbf{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and  $\mathbf{b}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ , then  $\mathcal{L} = \mathbb{Z}_K^2$  as in **HAWK**.

For  $\mathcal{L}, \mathcal{M} \subset K^\ell$ , the **module index**  $[\mathcal{L} : \mathcal{M}]$  is an ideal of  $\mathbb{Z}_K$ . It is the “covolume of  $\mathcal{M}$  in  $\mathcal{L}$ ”: if  $K = \mathbb{Q}(i)$  and  $\mathcal{L} = \mathbb{Z}[i] + \mathbb{Z}[i]$ ,  $\mathcal{M} = \mathbb{Z}[i] + 2\mathbb{Z}[i]$ , then  $[\mathcal{L} : \mathcal{M}] = 2\mathbb{Z}[i]$ .

## Background on number theory (2)

Let  $\mathbf{b}_1, \dots, \mathbf{b}_\ell \in K^\ell$  which are  $K$ -linearly independant.  $\mathcal{L} := \{\sum_i x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}_K\}$  is a **module lattice** in  $K^\ell$ . It can be seen as a lattice in  $\mathbb{R}^{n\ell}$ , through complex embeddings.

Example:  $\ell = 2$ ,  $\mathbf{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and  $\mathbf{b}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ , then  $\mathcal{L} = \mathbb{Z}_K^2$  as in **HAWK**.

For  $\mathcal{L}, \mathcal{M} \subset K^\ell$ , the **module index**  $[\mathcal{L} : \mathcal{M}]$  is an ideal of  $\mathbb{Z}_K$ . It is the “covolume of  $\mathcal{M}$  in  $\mathcal{L}$ ”: if  $K = \mathbb{Q}(i)$  and  $\mathcal{L} = \mathbb{Z}[i] + \mathbb{Z}[i]$ ,  $\mathcal{M} = \mathbb{Z}[i] + 2\mathbb{Z}[i]$ , then  $[\mathcal{L} : \mathcal{M}] = 2\mathbb{Z}[i]$ .

For any prime ideal  $\mathfrak{p}$ , a module lattice  $\mathcal{L} \subset K^\ell$  extends to  $\mathcal{L}_\mathfrak{p} \subset K_\mathfrak{p}^\ell$  via  $K \hookrightarrow K_\mathfrak{p}$ .

## Background on number theory (2)

Let  $\mathbf{b}_1, \dots, \mathbf{b}_\ell \in K^\ell$  which are  $K$ -linearly independant.  $\mathcal{L} := \{\sum_i x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}_K\}$  is a **module lattice** in  $K^\ell$ . It can be seen as a lattice in  $\mathbb{R}^{n\ell}$ , through complex embeddings.

Example:  $\ell = 2$ ,  $\mathbf{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and  $\mathbf{b}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ , then  $\mathcal{L} = \mathbb{Z}_K^2$  as in **HAWK**.

For  $\mathcal{L}, \mathcal{M} \subset K^\ell$ , the **module index**  $[\mathcal{L} : \mathcal{M}]$  is an ideal of  $\mathbb{Z}_K$ . It is the “covolume of  $\mathcal{M}$  in  $\mathcal{L}$ ”: if  $K = \mathbb{Q}(i)$  and  $\mathcal{L} = \mathbb{Z}[i] + \mathbb{Z}[i]$ ,  $\mathcal{M} = \mathbb{Z}[i] + 2\mathbb{Z}[i]$ , then  $[\mathcal{L} : \mathcal{M}] = 2\mathbb{Z}[i]$ .

For any prime ideal  $\mathfrak{p}$ , a module lattice  $\mathcal{L} \subset K^\ell$  extends to  $\mathcal{L}_\mathfrak{p} \subset K_\mathfrak{p}^\ell$  via  $K \hookrightarrow K_\mathfrak{p}$ . It is **easy** to check if  $\mathcal{L}_\mathfrak{p}$  and  $\mathcal{M}_\mathfrak{p}$  are **locally** isomorphic at  $\mathfrak{p}$ , i.e., if there exists

$\Theta_\mathfrak{p} \in \mathcal{U}_\ell(K_\mathfrak{p})$  s.t.  $\mathcal{M}_\mathfrak{p} = \Theta_\mathfrak{p}(\mathcal{L}_\mathfrak{p})$ , where  $\mathcal{U}_\ell$  means unitary :  $\overline{\Theta}_\mathfrak{p}^T \cdot \Theta_\mathfrak{p} = \text{Id}$ .

## Genus and special genus

$\mathcal{L}$  and  $\mathcal{M}$  belongs to the same **genus** if they are locally isomorphic at any  $\mathfrak{p}$ ,

## Genus and special genus

$\mathcal{L}$  and  $\mathcal{M}$  belongs to the same **genus** if they are locally isomorphic at any  $\mathfrak{p}$ , *i.e.*, if

$$\forall \mathfrak{p}, \exists \Theta_{\mathfrak{p}} \in \mathcal{U}_{\ell}(K_{\mathfrak{p}}) \text{ s.t. } \mathcal{M}_{\mathfrak{p}} = \Theta_{\mathfrak{p}}(\mathcal{L}_{\mathfrak{p}}).$$

## Genus and special genus

$\mathcal{L}$  and  $\mathcal{M}$  belongs to the same **genus** if they are locally isomorphic at any  $\mathfrak{p}$ , *i.e.*, if

$$\forall \mathfrak{p}, \exists \Theta_{\mathfrak{p}} \in \mathcal{U}_{\ell}(K_{\mathfrak{p}}) \text{ s.t. } \mathcal{M}_{\mathfrak{p}} = \Theta_{\mathfrak{p}}(\mathcal{L}_{\mathfrak{p}}).$$

$\mathcal{L}$  and  $\mathcal{M}$  belongs to the same **special genus** if

$$(\exists \Sigma \in \mathcal{U}_{\ell}(K), \forall \mathfrak{p}, \exists \Theta_{\mathfrak{p}} \in \mathcal{U}_{\ell}(K_{\mathfrak{p}}) \text{ with } \det \Theta_{\mathfrak{p}} = 1) \text{ s.t. } \mathcal{M}_{\mathfrak{p}} = \Sigma \circ \Theta_{\mathfrak{p}}(\mathcal{L}_{\mathfrak{p}}).$$

## Genus and special genus

$\mathcal{L}$  and  $\mathcal{M}$  belongs to the same **genus** if they are locally isomorphic at any  $\mathfrak{p}$ , i.e., if

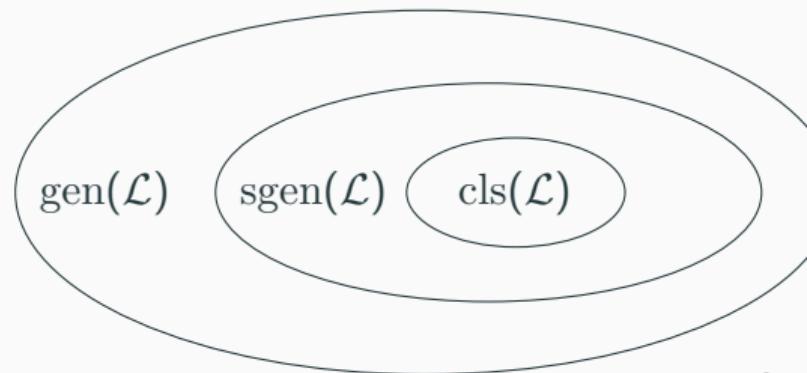
$$\forall \mathfrak{p}, \exists \Theta_{\mathfrak{p}} \in \mathcal{U}_{\ell}(K_{\mathfrak{p}}) \text{ s.t. } \mathcal{M}_{\mathfrak{p}} = \Theta_{\mathfrak{p}}(\mathcal{L}_{\mathfrak{p}}).$$

$\mathcal{L}$  and  $\mathcal{M}$  belongs to the same **special genus** if

$$(\exists \Sigma \in \mathcal{U}_{\ell}(K), \forall \mathfrak{p}, \exists \Theta_{\mathfrak{p}} \in \mathcal{U}_{\ell}(K_{\mathfrak{p}}) \text{ with } \det \Theta_{\mathfrak{p}} = 1) \text{ s.t. } \mathcal{M}_{\mathfrak{p}} = \Sigma \circ \Theta_{\mathfrak{p}}(\mathcal{L}_{\mathfrak{p}}).$$

The genus of  $\mathcal{L}$  contains the special genus of  $\mathcal{L}$ ,  
itself containing the isomorphism class of  $\mathcal{L}$ .

There are **finitely many** classes in a genus.



## How to distinguish special genera: Shimura's theorem

**Theorem** (consequence of Shimura, 1964): Fix  $\mathcal{L}_0 = \mathbb{Z}_K^2$  and  $\mathcal{M} \in \text{gen}(\mathcal{L}_0)$ .

## How to distinguish special genera: Shimura's theorem

**Theorem** (consequence of Shimura, 1964): Fix  $\mathcal{L}_0 = \mathbb{Z}_K^2$  and  $\mathcal{M} \in \text{gen}(\mathcal{L}_0)$ . Then,

$\mathcal{M} \in \text{sgen}(\mathcal{L}_0)$  iff  $[\mathcal{L}_0 : \mathcal{M}]$  has the form  $g\mathbb{Z}_K$  with  $g\bar{g} = 1$ .

## How to distinguish special genera: Shimura's theorem

**Theorem** (consequence of Shimura, 1964): Fix  $\mathcal{L}_0 = \mathbb{Z}_K^2$  and  $\mathcal{M} \in \text{gen}(\mathcal{L}_0)$ . Then,

$\mathcal{M} \in \text{sgen}(\mathcal{L}_0)$  iff  $[\mathcal{L}_0 : \mathcal{M}]$  has the form  $g\mathbb{Z}_K$  with  $g\bar{g} = 1$ .

This condition can be checked using an algorithm by Lenstra & Silverberg (2019).

## How to distinguish special genera: Shimura's theorem

**Theorem** (consequence of Shimura, 1964): Fix  $\mathcal{L}_0 = \mathbb{Z}_K^2$  and  $\mathcal{M} \in \text{gen}(\mathcal{L}_0)$ . Then,

$\mathcal{M} \in \text{sgen}(\mathcal{L}_0)$  iff  $[\mathcal{L}_0 : \mathcal{M}]$  has the form  $g\mathbb{Z}_K$  with  $g\bar{g} = 1$ .

This condition can be checked using an algorithm by Lenstra & Silverberg (2019).

We obtain a **polynomial-time** algorithm for testing if  $\mathcal{M} \in \text{sgen}(\mathcal{L}_0)$ .

## How to distinguish special genera: Shimura's theorem

**Theorem** (consequence of Shimura, 1964): Fix  $\mathcal{L}_0 = \mathbb{Z}_K^2$  and  $\mathcal{M} \in \text{gen}(\mathcal{L}_0)$ . Then,

$\mathcal{M} \in \text{sgen}(\mathcal{L}_0)$  iff  $[\mathcal{L}_0 : \mathcal{M}]$  has the form  $g\mathbb{Z}_K$  with  $g\bar{g} = 1$ .

This condition can be checked using an algorithm by Lenstra & Silverberg (2019).

We obtain a **polynomial-time** algorithm for testing if  $\mathcal{M} \in \text{sgen}(\mathcal{L}_0)$ .

More generally it works for any  $\mathcal{L}$  and  $\mathcal{M} \in \text{gen}(\mathcal{L})$  but it is harder to analyze.

## Consequences and conclusion

Can we estimate the gain and the impact on HAWK?

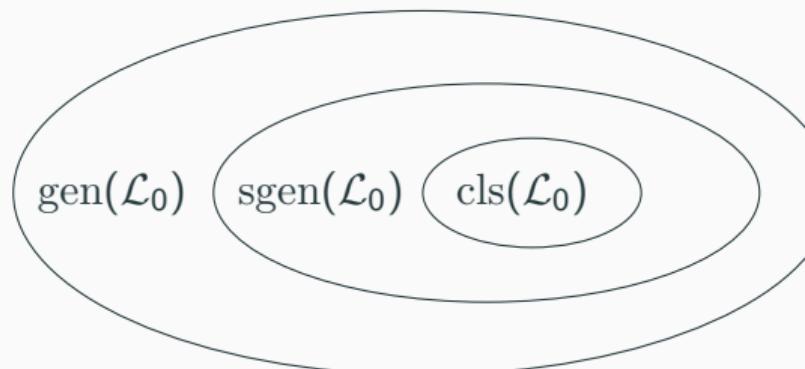
## Consequences and conclusion

Can we estimate the gain and the impact on HAWK? Set  $\mathcal{L}_0 = \mathbb{Z}_K^2$  and  $m = 512$ .

$\#\{\text{isomorphism classes in } \text{gen}(\mathcal{L}_0)\} \approx 2^{1000}$ .

$\#\{\text{special genera in } \text{gen}(\mathcal{L}_0)\} \approx 2^{200}$ .

$\rightsquigarrow$  Still about  $\approx 2^{800}$  classes in  $\text{s}\text{gen}(\mathcal{L}_0)$ !



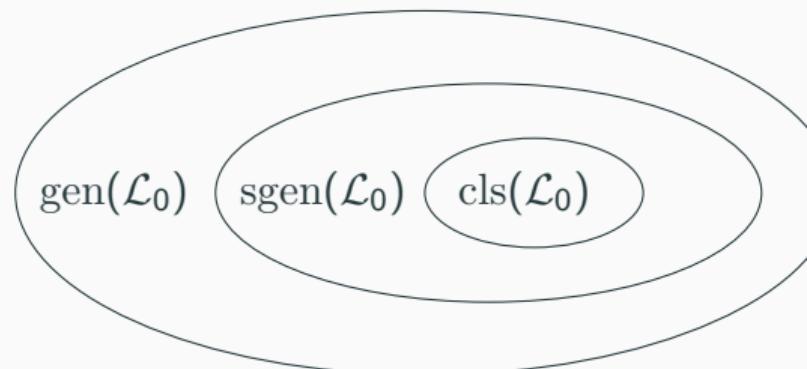
## Consequences and conclusion

Can we estimate the gain and the impact on HAWK? Set  $\mathcal{L}_0 = \mathbb{Z}_K^2$  and  $m = 512$ .

$\#\{\text{isomorphism classes in } \text{gen}(\mathcal{L}_0)\} \approx 2^{1000}$ .

$\#\{\text{special genera in } \text{gen}(\mathcal{L}_0)\} \approx 2^{200}$ .

~ Still about  $\approx 2^{800}$  classes in  $\text{s}(\text{gen}(\mathcal{L}_0))$ !



### Takeaway:

- The special genus is a finer invariant. To make decision module-LIP difficult, module lattices have to be chosen in the same special genus.

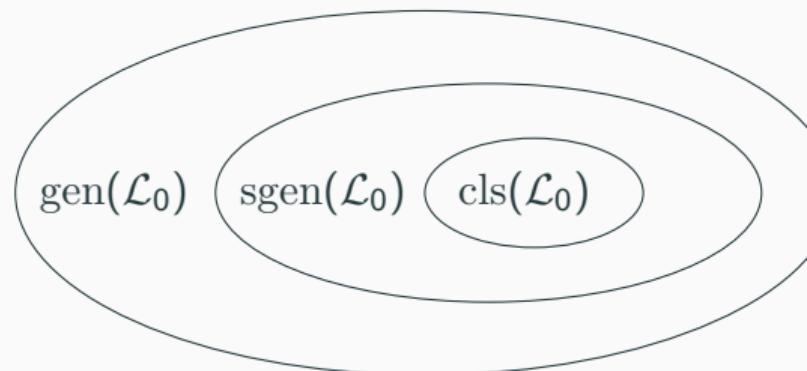
## Consequences and conclusion

Can we estimate the gain and the impact on HAWK? Set  $\mathcal{L}_0 = \mathbb{Z}_K^2$  and  $m = 512$ .

$\#\{\text{isomorphism classes in } \text{gen}(\mathcal{L}_0)\} \approx 2^{1000}$ .

$\#\{\text{special genera in } \text{gen}(\mathcal{L}_0)\} \approx 2^{200}$ .

~ Still about  $\approx 2^{800}$  classes in  $\text{s}(\text{gen}(\mathcal{L}_0))$ !



### Takeaway:

- The special genus is a finer invariant. To make decision module-LIP difficult, module lattices have to be chosen in the same special genus.
- It is computable for several module lattices but has no practical impact on HAWK.

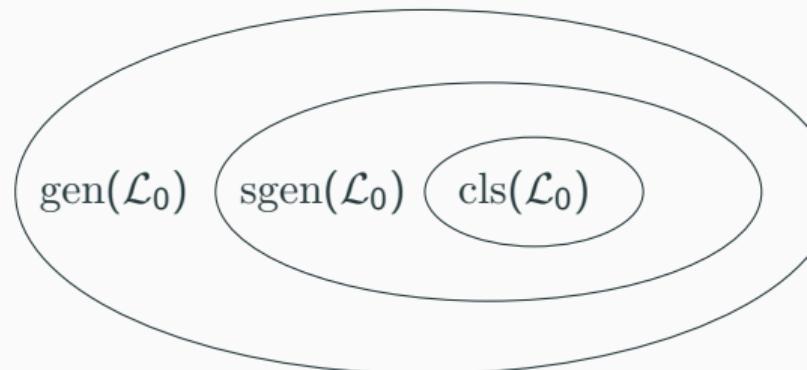
## Consequences and conclusion

Can we estimate the gain and the impact on HAWK? Set  $\mathcal{L}_0 = \mathbb{Z}_K^2$  and  $m = 512$ .

$\#\{\text{isomorphism classes in } \text{gen}(\mathcal{L}_0)\} \approx 2^{1000}$ .

$\#\{\text{special genera in } \text{gen}(\mathcal{L}_0)\} \approx 2^{200}$ .

$\rightsquigarrow$  Still about  $\approx 2^{800}$  classes in  $\text{s}(\text{gen}(\mathcal{L}_0))$ !



### Takeaway:

- The special genus is a finer invariant. To make decision module-LIP difficult, module lattices have to be chosen in the same special genus.
- It is computable for several module lattices but has no practical impact on HAWK.
- Open question: are there finer computable invariants?

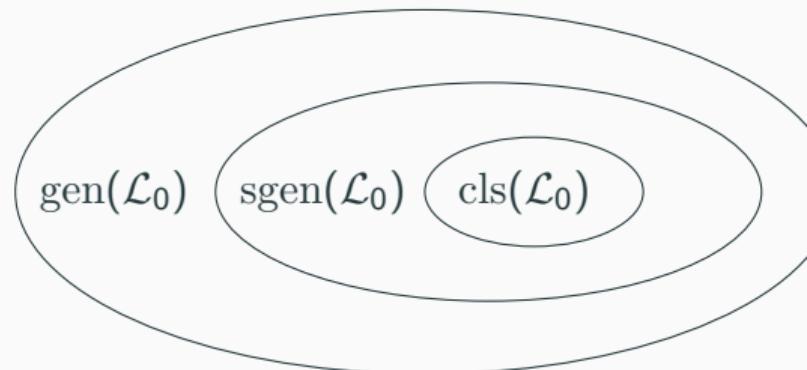
## Consequences and conclusion

Can we estimate the gain and the impact on HAWK? Set  $\mathcal{L}_0 = \mathbb{Z}_K^2$  and  $m = 512$ .

$\#\{\text{isomorphism classes in } \text{gen}(\mathcal{L}_0)\} \approx 2^{1000}$ .

$\#\{\text{special genera in } \text{gen}(\mathcal{L}_0)\} \approx 2^{200}$ .

~ Still about  $\approx 2^{800}$  classes in  $\text{s}(\text{gen}(\mathcal{L}_0))$ !



### Takeaway:

- The special genus is a finer invariant. To make decision module-LIP difficult, module lattices have to be chosen in the same special genus.
- It is computable for several module lattices but has no practical impact on HAWK.
- Open question: are there finer computable invariants?

## References

Léo Ducas, Eamonn W Postlethwaite, Ludo N Pulles, and Wessel van Woerden. Hawk: Module lip makes lattice signatures fast, compact and simple. 2022.

Léo Ducas and Wessel van Woerden. On the lattice isomorphism problem, quadratic forms, remarkable lattices, and cryptography. 2022

Hendrik W Lenstra Jr and Alice Silverberg. Testing isomorphism of lattices over cmorders. 2019

Goro Shimura. Arithmetic of unitary groups. 1964.