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Abstract. The module-Lattice Isomorphism Problem (module-LIP) was
introduced by Ducas et al. in [2], and used within the signature scheme
and NIST candidate HAWK. In [6] it was pointed out that over certain
number fields F , the problem can be reduced to enumerating solutions
of x2 + y2 = q (where q ∈ OF is given and x, y ∈ OF are the unknowns).
Moreover one can always reduce to a similar equation which has only few
solutions. This key insight led to a heuristic polynomial-time algorithm
for solving module-LIP on those specific instances. Yet this result doesn’t
threaten HAWK for which the problem can be reduced to enumerating
solutions of x2+y2+z2+t2 = q (where q ∈ OF is given and x, y, z, t ∈ OF

are the unknowns). We show that, in all likelihood, solving this equation
requires the enumeration of a too large set to be feasible, thereby making
irrelevant a straightforward adaptation of the approach in [6].

In [6], the authors proposed a heuristic and polynomial-time algorithm for
solving certain instances of the module-Lattice Isomorphism Problem (module-
LIP). Nonetheless, this algorithm does not affect the signature scheme HAWK
[2], whose security is related to the hardness of module-LIP for a specific instance,
not covered by the aforementionned attack. In this short note, we highlight
one of the reasons why the techniques used in [6] do not apply to HAWK.
Specifically, the approach in [6] relies at some point on enumerating all ideals of
a given relative norm. In this context, a randomization argument ensures, with
high probability, that only a small number of such ideals exist. Moreover, the
Kummer-Dedekind theorem provides a way to compute bases for these ideals.

However, in the case of HAWK, we show that a naive adaptation of the
same argument would, in most cases, require enumerating an unfeasibly large
number of ideals, thereby making the attack impractical. In addition to this
obstacle, the lack of a formula —like the one provided by the Kummer-Dedekind
theorem in the previous setting— further complicates the situation. Ultimately,
the existence of an efficient algorithm for computing generators of ideals with
prescribed norm was a central result in [6], but this no longer holds for HAWK.
In what follows, we focus on the first point, namely the counting argument.

Despite these complications, we highlight that [1] overcomes two out of the
three issues. Indeed, they show that a single ideal is sufficient, and moreover, that
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it can be entirely recovered from the input of the problem, see [1, Theorem 3.15].
However, the problem of efficiently computing a generator for the ideal remains
unresolved, which prevents them from giving an efficient attack on HAWK.

1 HAWK and sums of squares

Definitions. Let K be a cyclotomic number field of conductor 2m, where m = 2e

for some e ∈ Z>0. That is, K = Q[X]/(Xm+1). The ring of integers of K is given
by OK := Z[X]/(Xm+1) ⊂ K. Each complex root ζ of Xm+1 defines a complex
embedding σ : K → C, a field homomorphism defined by σ(X) = ζ. The absolute
norm of an element x ∈ K is defined as the rational integer NK/Q(x) :=

∏
σ σ(x),

where the product runs over all m complex embeddings of K.
In addition, K admits an automorphism · : K → K called complex conjugation,

defined by sending X to to its inverse in K, which is equal to −Xm−1. For a
matrix B ∈ Mn(K), we define its complex-conjugate transpose as B∗ := B

T
.

Given these definitions, the underlying instance of the module-LIP problem in
HAWK can be stated as follows. More precisely, the problem below corresponds
to the problem of secret key recovery in HAWK.

Definition 1.1 (Key recovery in HAWK). Consider B ∈ GL2(OK) and set
G := B∗B. Given as input G, the problem asks to compute any C ∈ GL2(OK)
such that C∗C = G.

To understand the approach taken in [6], we need first to unpack the previous

definition. To that end, let us denote the input of HAWK by G =

(
q1 q2
q2 q3

)
,3 and

a solution by C =

(
x z
y t

)
∈ GL2(OK). By definition we have the identity:

(
q1 q2
q2 q3

)
= C∗C =

(
xx̄+ yȳ x̄z + ȳt
xz̄ + yt̄ zz̄ + tt̄

)
. (1)

The totally real case. We define the totally real subfield of K by F := {x ∈
K |x = x}, and its ring of integers is denoted by OF . In [6], Mureau et al.
focused on the case where the instance takes place in the subfield F , i.e., when
G = B∗B = BTB for some B ∈ GL2(OF ). Since complex conjugation acts
trivially on elements of F , in that case Equation 1 can be rewritten as:(

q1 q2
q2 q3

)
= CTC =

(
x2 + y2 xz + yt
xz + yt z2 + t2

)
. (2)

In particular one observes that the diagonal entries q1 and q3 of G are sums
of two squares in OF . Recovering these squares would allow the reconstruction
of C, and thereby yield a solution to the problem. The key observation is that
sums of two squares in F are relative norms of elements of K down to F . Indeed
3 Notice that G is Hermitian (i.e., G∗ = G), so its non diagonal entries are conjugates.
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we have K = F [X]/(X2 + 1) =: F (i),4 where i ∈ K satisfies i2 = −1, and the
relative norm of an element x+ iy ∈ K is given by

N(x+ iy) := (x+ iy)(x+ iy) = x2 + y2.

The problem therefore reduces to finding all solutions α ∈ OK to norm
equations of the form N(α) = q, where q ∈ OF . Indeed certain solutions x+ iy
to the norm equation will give the first column ( xy ) of a matrix C satisfying
C∗C = G, thus leading to a key recovery in HAWK. However, we stress that not
every solution can necessarily be completed to such a matrix C, which is why
an enumeration of all solutions is required.

Rather than searching directly for such elements in K, the method of Howgrave-
Graham and Szydlo [4] suggests first constructing the set of ideals I ⊆ OK

satisfying N(I) = q · OF , where the norm of an ideal is defined as N(I) :=
(I · I) ∩ OF , which is an ideal of OF .5 The solutions α ∈ OK to N(α) = q then
correspond to generators of the principal ideals I = α · OK within this set.

An important parameter when counting the number of solutions to N(I) =
q · OF is the number r of distinct prime ideals dividing q · OF .6 Recall that any
ideal of OF can be uniquely factored as a product of prime ideals. Precisely, if

q · OF =

r∏
i=1

peii ,

then [6, Theorem 2.16] shows that the number of ideals I ⊆ OK satisfying
N(I) = q · OF can be exponentially large in r. To ensure a small value of
r —ideally r = 1— [6, Section 4.2] introduces a randomization technique. In
summary, the overall approach can be outlined as follows.

1. Randomize the input matrix G until q1 and q3 generate prime ideals in OF .
2. Construct the sets of ideals

J1 = {I ⊆ OK | N(I) = q1 · OF } , J2 = {I ⊆ OK | N(I) = q3 · OF } .

3. For each I ∈ J1 (resp. I ∈ J2), check whether it admits a generator α = x+iy
(resp. β = z + it) such that N(α) = q1 (resp. N(β) = q3).

4. Among all computed pairs α = x+iy and β = z+it, identify those for which
C = ( x z

y t ) satisfies CTC = G.

Thanks to the randomization, the sets J1 and J2 contain at most two ideals
each, see [6, Equation 3]. We emphasize that the third step can be performed

4 The equality OK = OF [i] holds as well.
5 Recall that an ideal I ⊆ OK is a subset that is closed under addition and satisfies
OK ·I ⊆ I. An ideal is said to be principal if there exists α ∈ OK such that I = α·OK ,
consisting of all integral multiples of α.

6 A prime ideal p ⊆ OF satisfies the property that xy ∈ p implies x ∈ p or y ∈ p, for
all x, y ∈ OF .
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efficiently using the algorithm of Gentry and Szydlo [3], or its generalization by
Lenstra and Silverberg [5].

Let us now consider the case where the instance does not lie in the totally
real subfield F , but rather in the full field K, that is, G = B∗B for some secret
matrix B ∈ GL2(OK). As previously mentioned, we have the decomposition
K = F + i · F and OK = OF + i · OF , where i denotes a square root of
−1. Therefore, the first coefficient of B can be written as x = x1 + ix2, with
x1, x2 ∈ OF , and similarly for the other coefficients.

Following Equation 1, we now obtain:

q1 = xx+ yy = x2
1 + x2

2 + y21 + y22 , (3)

and similarly, q3 is expressed as a sum of four squares in OF . While this expression
bears resemblance to the earlier case involving two squares, we will see that
moving from sums of two squares to four significantly increases the complexity
and introduces new challenges.

As in the previous case, we aim to interpret Equation 3 as a norm equation.
A natural setting for this is the framework of a quaternion algebra over the base
field F . Specifically, we define:

A = F + i · F + j · F + ij · F,

where the multiplication rules are i2 = j2 = −1 and ij = −ji. This construction
endows A with the structure of a 4-dimensional F -algebra. Due to the anti-
commutativity of the generators, multiplication in A is non-commutative.

Observe that A contains the field K, and can in fact be expressed as A =
K + j · K. Moreover, A is equipped with an involutive automorphism, called
complex conjugation, defined on elements α = α1 + iα2 + jα3 + ijα4 ∈ A by:

α := α1 − iα2 − jα3 − ijα4.

The associated reduced norm of α is then given by:

nrd(α) := αα = α2
1 + α2

2 + α2
3 + α2

4 ∈ F.

In particular, the conjugation on A naturally extends the complex conjugation
on K, and the reduced norm generalizes the norm map N : K → F .

Since reduced norms in A correspond to sums of four squares in F , we have
once again reduced our problem to the task of enumerating solutions to a norm
equation. Specifically, we now aim to enumerate all solutions to the equations
nrd(α) = q1 and nrd(β) = q3, where the unknowns α and β belong to the order :7

O0 := OF + i · OF + j · OF + ij · OF ⊂ A.

As in the totally real case, we may still assume —after applying a randomization
process— that q1 · OF and q3 · OF are prime ideals of OF . Let us denote p :=

7 Indeed the quaternion α = x+j·y, obtained by embedding the first column ( x
y ) ∈ O2

K

of B in O0, is a solution to nrd(α) = q1.
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q1·OF . Following the earlier approach, the second step would then be to construct
the set of ideals in O0 whose reduced norm is equal to p.

However, several complications arise due to the non-commutative nature of
A. Firstly, the notion of ideals in O0 becomes more subtle, and we must consider
one-sided ideals instead. For consistency of notation, we focus on right ideals.
Secondly, the order O0 may not be maximal, a property that is desirable for
effectively working with ideals. Thus, we consider a maximal order O0 ⊆ O ⊂ A.8

Accordingly, the next step would consist of building the set

J := {rightO-ideals I ⊆ O | nrd(I) = p} .

While in the totally real case this set contained at most two ideals, we will see
that the cardinality of J is now exponential in the degree d = m/2 of F , making
its enumeration computationally infeasible.9 The next section is devoted to a
proof of this fact.

2 Counting ideals with prime norm

Let K = Q[X]/(Xm + 1) with m a power-of-two integer and F = {x ∈
K |x = x} whose degree is denoted by d. We fix the quaternion algebra A =
F + i · F + j · F + ij · F and a maximal order O ⊂ A containing O0 as before.
Finally, we fix a principal prime ideal p ⊂ OF together with a generator q ∈ OF .

The central theoritical result we will be using is a consequence of classical
results about Brandt matrices, which arise in the study of quaternion algebras
and modular forms, see [7, Section 41]. Given an ideal a ⊆ OF , the associated
Brandt matrix T (a) encodes the number of right O-ideals with norm a and
living in a prescribed coset for right multiplication of ideals by elements of A×.
Precisely, the entries T (a)ij count the number of ideals I ⊆ Ij in a fixed class [Ii]
and such that nrd(I) = anrd(Ij). An important property of Brandt matrices
is that the sum

∑
i T (a)ij is independent of the column index j and is, by

definition, equal to the total number of left O-ideals I ⊆ O satisfying nrd(I) = a.
Additionally, [7, Proposition 41.3.1, (a)] shows that this sum is also equal to∑

a⊆d NF/Q(d), where the latter is indexed over all ideals d ⊆ OF containing a.
In the special case where a = p is a prime ideal, this gives the following simple
expression for the number of left O-ideals with reduced norm p.

Theorem 2.1. The set J of left O-ideals contained in O and having reduced
norm p has cardinality:

|J | = 1 +NF/Q(q).

Proof. This follows from [7, Proposition 41.3.1, (a)] applied with a = p, plus the
fact that NF/Q(p) = NF/Q(q).
8 Unlike the totally real case, where OK is the unique maximal order of K, the

quaternion algebra A does not admit a unique maximal order containing O0.
9 In HAWK [2], the security parameter m is typically chosen to be 512, 1024, or 2048.
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Example 2.2. Let us consider K = Q(i), F = Q, and the quaternion algebra
A = Q + i · Q + j · Q + ij · Q, where i2 = j2 = −1 and ji = −ij. The prime
case of Jacobi’s theorem on sums of four squares states that there are exactly
8(p + 1) representations of an odd prime number p as a sum of four squares in
Z. Indeed, the maximal order O = Z + Zi + Zj + Z 1+i+j+ij

2 ⊂ A has exactly
p+1 left O-ideals of norm p, which is a consequence of the previous theorem.10
Moreover, these ideals are all principal, and multiplying each generator by the
elements of the unit group O1 = {±1,±i,±j,±ij}, we obtain a total of 8(p+1)
quaternions of norm p, as claimed.

Our impossibility result will follow from the previous theorem combined with
an estimate on the size of NF/Q(q) when q is sampled according to a “four squares
version” of the one considered in [6]: that is, when q is a sum of four squares of
independent discrete Gaussian in OF with the same standard deviation s > 0.
This distribution is, however, difficult to analyze (see [6, Appendix B] for the case
of sums of two squares), and we will rely on a heuristic. We begin by studying
a “continuous” version of this distribution. Let us define FR := F ⊗Q R,11 and
observe that every complex embedding σ : F → R extends uniquely to a map
FR → R. Therefore the algebraic norm naturally extends to q ∈ FR as

∏
σ σ(x).

When x1,x2,y1,y2 ∈ FR are sampled independently from a continuous
Gaussian distribution over FR, we establish in the next proposition an estimate
on the algebraic norm of q = x2

1+x2
2+y2

1+y2
2. This follows from the observation

that each σ(q) follows a scaled chi-squared distribution, so that its algebraic norm
becomes a product of d independent such random variables. Once this estimate is
obtained, we transfer the result to the discrete case, i.e., when x1, x2, y1, y2 ∈ OF ,
under the heuristic assumption that the algebraic norm of q follows a similar
distribution in both settings.

Proposition 2.3. Suppose that x1,x2,y1,y2 ∈ FR are sampled independently
and according to the same (continuous) Gaussian distribution with standard
deviation s > 0. Further, we define q = x2

1 + x2
1 + y2

1 + y2
2. Assuming s =

exp(Ω(d)) (as in [6, Algorithm 4.2]), then the absolute norm of q, defined by∏
σ σ(q) is, with overwhelming probability in d,12 greater than 2d.

Proof. For each complex embedding σ : F → R, the element σ(q) ∈ R behaves
like a scaled chi-squared distribution s2χ2

4. By assumption we also have that
σ(q) and τ(q) are independent for any complex embeddings σ ̸= τ of F . Let us
fix a complex embedding σ and Y ∼ χ2

4. We prove that σ(q) ≥ 2 happens with
overwhelming probability. Indeed, we have:

P(σ(q) ≤ 2) = P(Y ≤ 2/s2) =

∫ 1/s2

0

te−tdt = 1− (1 + 1/s2)e−1/s2 .

10 In fact, O is the unique maximal order of A containing Z+ i · Z+ j · Z+ ij · Z.
11 Notice that if F = Q[X]/P (X), then FR = R[X]/P (X)
12 An event is said to occur with overwhelming probability in d if its complement has

negligible probability in d, that is, if it is smaller than 1/P (d) for any polynomial P .
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Since s is chosen of size exp(Ω(d)), we conclude that σ(q) ≤ 2 happens only with
negligible probability in d. Consequently,

∏
σ σ(q) ≥ 2d holds with overwhelming

probability in d.

Heuristic 2.4. Let x1, x2, y1, y2 ∈ OF be independently sampled from the same
discrete Gaussian distribution with standard deviation s > 0. Then, the absolute
norm of x2

1+x2
2+y21+y22 is close to (a discretization of) the one for x2

1+x2
1+y2

1+y2
2,

where x1,x2,y1,y2 ∈ FR are sampled independently and from a continuous
Gaussian distribution with the same standard deviation s.

Putting together the previous results and heuristic, we obtain that if s =
exp(Ω(d)) and q is the sum of four squares of independent Gaussian element
in OF , then the set of left O-ideals contained in O has, with overwhelming
probability in d, cardinality ≥ 2d. This concludes our proof and this note.
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