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THE AMPLIFICATION METHOD IN THE CONTEXT OF GL(N)
AUTOMORPHIC FORMS

GUILLAUME RICOTTA

Abstract: In [SV] and [BMb|, the authors proved the existence of a so-called higher rank
amplifier and in [HRRal, the authors described an explicit version of a GL(3) amplifier. This
article provides, for n > 4, a totally explicit GL(n) amplifier and gives all the results required to
use it effectively.
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1. Introduction and statement of the results

1.1. Motivation
The general philosophy of the amplification method

The amplification method was set up by W. Duke, J. Friedlander and H. Iwaniec
(see [FI92], [Iwa92| and [DFI94] for example).
When bounding say a complex number z, which satisfies for obvious reasons
depending on the context
lz2| < M (1.1)

for some positive real number M but, which is expected to satisfy
2] < M0 (1.2)

for some 0 < § < 1, it is sometimes profitable to include z in a finite family' of
complex numbers of the same nature, say

z=2zj, €{z,jeJ}t =2,
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1Note that choosing a family containing z may be highly non-trivial. In particular, it should
be large enough in order to be able to use the powerful tools of harmonic analysis but not too
large such that bounding a moment of small order, like the second one, has a chance to be
successful.
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where J is a finite set of cardinality < M, jo € J is the index of our favourite
complex number z and to estimate all the quantities occuring in this family on
average.

For instance, one can try to bound the second moment of this family given by

= |zl
jed
By (1.1), the second moment satisfies
M (25) < |J|M?,

which does not help us to prove (1.2) by positivity.
One can try to bound instead an amplified second moment given by

M ZJa Z ‘M |ZJ |2
jeJ
where M; (3) is a short Dirichlet polynomial given by
_) .
)= aayi)
icl

for j € J and where I is a small finite set. Here, @ = (@i);¢; is a finite sequence
of complex numbers, which will be specified later on, and (a;(i)),., are some
complex numbers naturally related to z; for j € J. In practice, the currently
known techniques enable us to prove

Mz (Z,,@) < M° (M2)[@ 5 + 1171, (1.3)
for some possibly large 5 > 0 and for all £ > 0, where as usual ||@||, and |||,

stand for the L' and L? norms of @, respectively.

The whole point of the amplification method is to choose a sequence ﬁ, which
amplifies the contribution of the complex number z in the amplified second moment
My (25, 3) More explicitely, one has to construct a sequence o satisfying?

2
Il < IS, 1M, (@) > |1

for some possibly small v > 0 and for all € > 0. In general, cooking such sequence
@ is based on the fact that some of the complex numbers aj, (i), i € I, cannot be
small simultaneously. For such sequence, (1.3) entails by positivity

(M
o = o < 1) (s + 117427 (1)

for all € > 0, which implies (1.2) by an optimal choice of |I].

20bviously one should also expect that }Mj (3)|2 is not too large when j # jo in J for
the amplification method to be successful. This generally follows in concrete cases, at least
conditionally, from a suitable version of the Riemann Hypothesis. Hopefully, one does not this
in practice.
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The very natural first step towards the proof of (1.3) is to open the square and
to switch the order of summation, which leads us to bounding

ST s Y a(i)a )|zl (1.5)

(i17i2)612 jeJ

The diagonal term, namely the contribution from é; = iy in (1.5), is generally
bounded by the first term in the right-hand side of (1.4), whereas the non-diagonal
term, namely the contribution from iy # is in (1.5), is generally bounded by the
second term in the right-hand side of (1.4).

Getting these bounds heavily relies in practice on linearising the products
a;j(i1)a;(iz) for 4; and iy in I, namely these products can be often written in
relevant cases as a linear combination of the a;(i)’s. Such linearisations in the
context of GL(n) automorphic forms are the core of this article.

In practice, the complex numbers a;(i) and a;(i), (¢,5) € I x J, are the
eigenfunctions of some specific endomorphisms. Thus, linearising the products
a;(i1)a;j(i2) boils down to linearising the composition of the relevant endomor-
phisms.

The amplification method in GL(n)

Let p and ¢ be two prime numbers.

In the context of GL(n) automorphic forms defined in Section 2, our favourite
complex number z is related to a GL(n) Hecke-Maaf cusp form f, say z = z(f).
For instance, z = f(g) for g in the generalised upper-half plane or z = L(f, ),
the value of the Godement-Jacquet L-function attached to f on the critical line
Re(s) =1/2.

Hence z can be included, with a slight abuse of notations, in a finite subset
of an orthonormal basis (f;);>1 of GL(n) Hecke-Maaf cusp forms, namely those
whose analytic conductors, the Laplace eigenvalue or the level or the imaginary
part of s for instance, is bounded by some parameter ) > 0, which is devoted to
tend to infinity, say

2(f) = 2(f0) € {2(f;),5 2 1,Q(f;) < Q}.

In [SV], the authors proved the existence of an abstract higher rank amplifier
and in [BMb], the authors proved that there exists, at least asymptotically (p
large), a non-trivial linear combination of GL(n) Hecke operators equal to the
identity operator (see [BMb, Lemma 4.2]). The whole point of this work is to give
a totally explicit and ready to use version of a GL(n) amplifier.

The choice of our amplifier o relies on the fundamental identity

a‘jo(pa 1)""1)0'_70(17"'71 7p) :ajo(pa 17"'71ap)+1a
N—— ~—— N——
n—2 terms n—2 terms n—3 terms
where a;(ma, ..., my_1) stands for the (mq, ..., m,_1)’th Fourier coefficient of f;

(see (2.1) and [Gol06, Theorem 9.3.11, p. 271]). This identity essentially says that
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ajo(p, 1,...,1)a;,(1,...,1,p) and a;,(p, 1,...,1,p) cannot be simultaneously
—— —— —
n—2 terms n—2 terms n—2 terms
small . At the level of Hecke operators, this identity reflects the fact that
pt—1
Tdiag(l,p, ...,p)° dlag(l .., 1p) = Tdiag(l,p, .oy Pp?) + 1 Ida (16)
Sy pur o
n—1 Yorms 1 Vorme n—2 Yorms

itself a consequence of the identity

Apdiag | 1,...,1,p | A, x Aydiag | 1, p7...
H/—/

n—1 terms n— 1 terms

‘23
=Aydiag [ 1, p,....p.p° | A» er
N—— p—=

n—2 terms n terms

Adlag Dy p | A
——

at the level of A,, double cosets, where A,, :== GL,(Z) (sece [AZ95, Lemma 2.18,
p. 114]).

The coefficients a;(7)’th will be some Hecke eigenvalues of f;. More precisely,
being inspired by [HRRa] and by (1.6), we set

() — — ; — p—(n=1)/2
a;(p) = a;(p, 1,...,1) = the eigenvalue of T, = p Taiag(1, ..., 1.p)"
n—1 terms n—1 terms

a; (p?) = the eigenvalue of p*(”*l)Tdiag(Lp, ..,pp?) ER

n—2 terms

when acting on f; and we recall that

aj(p) = the eigenvalue of T, = p_("_1)/2Tdiag(1’p7 D)

n—1 terms

still when acting on f; (see (2.4)). Thus, I is a subset of the prime numbers and
of the squares of the prime numbers.
A very natural candidate for a GL(n) amplifier is

@)=Y aiay(i)
icl
where
aj,(p) ifi=p< VL is a prime number,
;=14 —1 if i = p? < L is the square of a prime number

0 otherwise.

This amplifier satisfies, as in the GL(2) and GL(3) case, |Mj, (a)|*> >. L'~
since |I| >, L'~¢ for all € > 0.
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Glancing at (1.5) and applying the inequality®

2 2
2
|Mjo(a)| <2 Z apaj(p) +2 Z ap2aj(p2) )
p<VL p<VL
it becomes crucial to linearise the products
zjdiag(l,p7 ..., D) © Tdiag(l, RN 17q) and T’diag(l,p7 .oy Pip?) o T‘diag(l,q7 .0y q,q9%)
n—1 terms n—1 terms n—2 terms n—2 terms

where p and g are two prime numbers. The results are given in the next section and
reveal that the relevant Hecke operators when applying the amplification method
in GL(n) are

Taiag(1,p, . . ., p.pa)s Taiag1,pq, - . ., Pq,(p0)?) Taiag(1,p, . .., p.p)
—— —— ——
n—2 terms n—2 terms n—2 terms
and
T Ty ‘ Ty .
diag(l,p2, o ,p2,p3,p3)’ diag(1,1,p, ..., P,p3)> diag(1,1,p, ..., P,p%,p?)
n—3 terms n—4 terms

n—3 terms

1.2. Statement of the results

Theorem A. Letn >4, A, = GL,(Z) and p be a prime number.
1. The finite set R™ (p) of cardinality
n—1 _ 1 no_ 1
deg | diag | 1, p,...,p,p? =p(p )(pQ )
N—— (p - 1)

n—2 terms

defined in Proposition 3.1 is a complete system of representatives of the dis-
tinct A, right cosets of

A’ﬂdla’g ]‘7 p?"'7p’p2 An
—

n—2 terms

modulo A,,.
2. The following formulas for the degrees* hold:

n—1 n
. ptTt—1)(p" — 1)
deg | diag | p,p,...,p% p® :p( ) > , @

n—2 terms

3Such inequality, used for the first time in the amplification method in [BHM], enabled the
authors to avoid mixing squares of prime numbers and prime numbers in their diophantine
analysis.

4The degree of a matrix is defined in (1.16). See also Section 2 for more details.
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n—2 n—1 7
. pt Tt —=1) (" 1) (" — 1)
deg [ ding (107 207 | | = ot § ) ( - ) ’

n—3 terms

n—1 _ 1 no_ 1
deg [ diag [ 1,p% ...,p%p" | | =p** " (v ) ), (1.9)
N—— (pf 1)2

n—2 terms

. PP (T -1) (" - 1)
deg [ ding [ popop? .t | | = et ) ( - ) 7
—_—— (p—l) (p _1)

n—3 terms

(1.10)
and
deg [ diag | p,p,p*,....p% 0% p*
N——
n—4 terms
_ p4 (pn73 — 1) (pn72 — 1) (pn71 — 1) (pn - 1) (1 11)
= 2 . °
(p—1)2(p* - 1)
3. Finally,
Andiag | 1, p,...,p,p* | Apx Aydiag [ 1, p,....p.p° | A,
N—— N——
n—2 terms n—2 terms
2p" —p? —2p+1
_ p p P+ Andlag p’pQ’_”’p27p3 A,
p—1 —
n—2 terms
n—1 _ 1 no_ 1
+p(p )(Z; )Andiag p% .07 | A
(p—1) ——
+ Apdiag | 1,9%,...,0%, 0% | An (1.12)
N—

n—2 terms

+ (p+ DA,diag | 1,p%,...,p% 0% 0" | A,
—_———

n—3 terms

+ (p+ D)Aydiag | p,p.p?,....p% 0" | Ay
—_———

n—3 terms

+ (p+ 1)*A,diag | p.p.p%, ..., 0% 0%, 0% | As.
—_———

n—4 terms
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Corollary B. Letn > 4. If p and q are two prime numbers then

pt—1

Taiag(1,p, ..., p) © Tdiag(l7 N Taiag(1,p, ..., ppa) T 5p:qf1d (1.13)
and
Taiag1p, ..., pp?) © Tdiagr,q, . . ., q.0%) (1.14)
-2t -2t

2p™ —p2 —2p+1
= Tdiag(Lp% DG (pa)?) T Op=q 1 Tdiag(lyp, <y Dp?)
—_—— p ——

n—2 terms n—2 terms

(Pt =1)(p"—1)
(p—1)?

+ Op=qP Id + 6p—q(p + 1)T

diag(1p%, ..., P .p%p°)
n—3 terms
+ 0p=q (0 + V)T iag(1,1,p, .. ., pp®) + Op=a(P + 1)*Taiag(1,1,p, . .., p.p?.0%)-
——— ———

n—3 terms n—4 terms

When p # ¢, the previous corollary follows from (2.13) whereas when p = g,
it comes from Theorem A, [AZ95, Lemma 2.18, p. 114] and (2.9). This corollary
generalizes the case n = 2, well-known for a long time, and the case n = 3 done in
[HRRa].

1.3. On the possible applications of this higher rank amplifier
Subconvexity bounds for L-functions

Let f be a GL(n) Hecke Maaf cusp form. A very classical problem considered by
analytic number theorists is the size of the Godement-Jacquet L-function associ-
ated to f, say L(f,s) with s on the critical line Re (s) = 1/2 when the analytic
conductor C(f) of f tends to infinity. The bound

L(f,s) < C(f)"/**,

for any € > 0 is named the convexity or trivial bound, even if this is not a trivial
result in general. Improving this bound, namely proving a subconvexity bound,
was proved in the past to be useful to solve many arithmetical questions, such as
equidistribution results.

The GL(2) case was intensively investigated in the last decades, culminating
in the work of P. Michel and A. Venkatesh in [MV10], who used the amplification
method in GL(2). Tt seems that the best subconvexity bounds in the GL(2) case
intrinsic to the amplification method are the Weyl exponent 1/4(1—1/3) ([Wey21])
and the Burgess exponent 1/4(1 —1/4) ([Bur62]).
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Very few examples of subconvexity bounds for L-functions of GL(n) automor-
phic forms, which are not lifts of GL(2) ones, are known. One can quote [Lill],
[Blo12], [Munal, [BB] in the rank 2 case, and an extremely recent and elabo-
rate subconvexity bound for twisted L-functions of GL(3) automorphic forms by
R. Munshi in [Munb|. As far as we know, the Weyl and Burgess exponents have
never appeared in this higher rank case.

We hope that the completely explicit GL(n) amplifier built in this paper will
sheld some new lights on these questions in the close future.

Subconvexity bounds for sup-norms of automorphic forms

Let f be a L?>-normalized GL(n) Hecke-Maaf cusp form.
The spectral aspect. Let K be a fixed compact subset of SL,,(R)/SO,,(R). The
convexity bound for the sup-norm of f restricted to K is given by

1£lxcl] o < AFOT17

where A is the Laplace eigenvalue of f. More details can be found in [Sar]. It is
important to mention that F. Brumley and N. Templier discovered in [BT] that
this convexity bound does not hold when n > 6 if f is not restricted to a compact.

The convexity bound is not expected to be sharp, essentially because there
are some additional symmetries on SL,(R)/SO,(R): the Hecke correspondences.
More precisely, one should be able to prove a subconvexity bound, namely finding
an absolute positive constant d,, > 0 such that

n—1)/8—d,

[1£1x]loo < A (1.15)

The pioneering work done by H. Iwaniec and P. Sarnak in [IS95] is the bound
given in (1.15) when n = 2 for d2 = 1/24. This constant d2 seems to be intrinsic to
the amplification method in GL(2). The case n = 3 was completed in [HRRb|. The
general case was done in a series of impressive works by V. Blomer and P. Maga
in [BMb] and in [BMa]. One could also quote [Marb].

All these achievements were done thanks to the amplification method. Deter-
mining what should be the best subconvexity exponent intrinsic to the amplifica-
tion method is an interesting question, which should reveal new types of analytic
problems. Needless to say that the explicit GL(n) amplifier could be useful to
do so.

The level aspect. Let us say that f is of level ¢ and let us speak about the
growth of the sup-norm of f as g gets large.

For GL(2) and when the level ¢ is squarefree, the convexity bound is

Iflloe < ¢°

for all € > 0 but one expects that the correct order of magnitude is

1/l < a1/
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This rank 1 case in prime level was intensively studied during the last years after
the foundational work of V. Blomer and R. Holowinsky in [BH10], particularly in
[Tem10], [HT12] and [HR]. In [HT13], the authors proved the bound

1/l < g~ V/0F

which seems to be the best possible subconvexity exponent intrinsic to the am-
plification method. Note that the authors really used the shape of the explicit
GL(2) amplifier in order to get this bound. When the level ¢ is not squarefree, the
situation is more delicate since the Atkin-Lehner group has more than one orbit
when acting on the cusps. See [Sah| and [Mara] for more details.

For GL(n), as far as we know, these questions remain completely open. We
hope that the explicit GL(n) amplifier constructed in this work will make possible
an investigation of these questions in a higher rank setting.

1.4. Organization of the paper

The general background on GL(n) Maak cusp forms and on the GL(n) Hecke
algebra is given in Section 2. The proof of part (1) in Theorem A is done in
Section 3 (see Proposition 3.1). The proofs of parts (2) and (3) in Theorem A are
detailed in Section 4.

Notations. n > 2 is an integer and p, ¢ are prime numbers. A, stands for the
group G L, (Z) of nxn invertible matrices with integer entries, whose unity element
is the identity matrix I,,. For g a n xn matrix with rational coefficients, the degree
of g is defined by

deg(g) = card (A, \ AngAy) . (1.16)
If ay,...,a, are real numbers then diag(ai,...,a,) denotes the n x n diagonal
matrix with aq,...,a, as diagonal entries. The following double A, cosets will

occur throughout this article:

7r§") (p) = Aann)(p)An, Dg")(p) =diag [ 1,...,1,p,...,0 ],

iterms

™ (p) = A, D™ (p)A,, D™ (p)=diag |1, p,...,p,0* |,

n—2 terms

sz)(p) = Aan,T]L)(p)ATH sz)(p):dlag 15715p77p7p277p2
iterms j terms

for 0 < 4,7 < n with ¢ + j < n. The following polynomials in = will occur when
computing the degrees of some relevant A, double cosets for this work:

T

pr(@)=[[ (=" =1),  @ola)=1

k=1
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for r > 1. Let us define the n-tuple

dn(p) = ]"p7p2?"'7 pkil ,.'.7pn72’pn

k’th term

Finally, if P is a property then dp is the Kronecker symbol, namely 1 if P is
satisfied and 0 otherwise.
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2. Background on the GL(n) Hecke algebra

In this section, n > 2. The convenient references for this section are [AZ95],
[Gol06], [Kri90], [New72] and [Shi94].
Let f be a GL(n) Maak cusp form of level 1. Such f admits a Fourier expansion

flg) = > >, ag (. ’m’:l‘_lk)) 5 (2.1)

k(
€Ut (EINS L1 (Z) Moo 221 L1 chan 1Mkl
my,_1E€EL"

X WJa dlag (m1 . mn_2|mn_1|, ..., mime,my, 1) ('Y 1) g, I/f,qjjl, I
N——

) ) mp 1l

n—2 terms

for g € GL,(R) (see [Gol06, Equation (9.1.2)]. Here U,_1(Z) stands for the
Z-points of the group of (n — 1) x (n — 1) upper-triangular unipotent matrices.
vy € C"1is the type of f, whose components are complex numbers characterized
by the property that, for every invariant differential operator D in the center of
the universal enveloping algebra of GL,,(R), the cusp form f is an eigenfunction
of D with the same eigenvalue as the power function I,,, which is defined in
[Gol06, Equation (5.1.1)]. ¢ 14 is the character of the group of n x n

n—2 terms
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upper-triangular unipotent real matrices defined by

2’L'7T(u1,2+"'+un—2,n—1iunfl.n) .

U1, 1m(u) =e

n—2 terms

for u = [uijli¢;jcn- Woa | %v5,%1, . 1,41 | stands for the GL(n) Jacquet

n—2 terms

Whittaker function of type v; and character wl, S defined in [Gol06, Equa-
——

n—2 terms
tion 6.1.2]. The complex number af(mi,...,my—1) is the (mi,...,my_1)th
Fourier coefficient of f for mq, ..., m,_o some positive integers and m,,_1 a non-
vanishing integer.

For g € GL,(Q), one knows (see [AZ95, Lemma 1.2, p. 94 and Lemma 2.1,
p. 105]) that the A,, double coset A, gA,, is a finite union of A, right cosets such
that it makes sense to define the Hecke operator T, by

T,(f) ()= > f(oh)

SEANALGAL
for h € GL,(R) (see [AZ95, Chapter 3, Sections 1.1 and 1.5]. The degree of g or
T, is defined by
deg(g) = deg(Ty) = card (A, \ ApgAy,).
Obviously,
deg(rg) = deg(g)- (2.2)
for r € Q*. By [AZ95, Lemma 2.18 Equation (2.32), p. 114,
n i(n—i—j <Pn(p)
deg DZ( ) (p)) = p/(n—i=9) (2.3)
( N ) pn—i—j(P)#i(P)#;(p)

for 0 <4, <nwithi+j<n.
Remark 2.1. The equations (2.2) and (2.3) prove (1.7) and (1.11) in Theorem A.

The adjoint of Ty for the Peterson inner product is T;-1. The algebra of Hecke
operators T is the ring of endomorphisms generated by all the T,’s with g €
GL,(Q), a commutative algebra of normal endomorphisms (see [Gol06, Theorem
9.3.6]), which contains the m’th normalised Hecke operator

1
Tm = mn—1)/2 Z Ty
g=diag(y1,...,yn)

yilyz|-|yn
Y1y2...Yyn=m

for all positive integer m. A Hecke-Maaf8 cusp form f of level 1 is a Maafs cusp
form of level 1, which is an eigenfunction of T. In particular, it satisfies

Tn(f)=ar(m, 1,...,1)fand T, (f) = ar(1,...,1,m)f (2.4)
N—— S——
n—2 terms n—2 terms

according to [Gol06, Theorem 9.3.11].
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The algebra T is isomorphic to the absolute Hecke algebra, the free Z-module
generated by the double cosets A, gA,, where g ranges over A,, \ GL,(Q)/A, and
endowed with the following multiplication law. If g; and g5 belong to GL,(Q) and

deg(g1) deg(g2)
Apgi Ay, = U A, a; and ApgoA, = Ay B
i=1 j=1
then
AngiAn * Apgol, = > m(g1, ga; h)AnhA,, (2.5)
AphNy CArg1AngeAn

where h € GL,,(Q) ranges over a system of representatives of the A,-double cosets
contained in the set A,g1A,g2A, and

m(g1, g2; h)
= card ({(3,5) € {1,...,deg(g1)} x {1,...,deg(g2)}, i € A h}), (2.6)
1 o
= Jea(h) card ({(i,5) € {1,...,deg(g1)} x {1,...,deg(92)}, i3; € AphAyL}),
(2.7)
= deg(g2)card({i €{1,...,deg(g1)}, 2ig2 € AphA,L}) (2.8)
deg(h) ) ) b 1 n n

by [AZ95, Lemma 1.5, p. 96]. In particular,

A,rI Ay, x ApgA, = Aprgh, (2.9)

for g € GL,(Q) and r € Q* ([AZ95, Lemma 2.4, p. 107]).
For g € GL,(Q) with integer entries, the A,, right coset A, g contains a unique
upper-triangular column reduced matrix, namely

Ang = A, C (2.10)

where C = [¢; ;] is an upper-triangular matrix with integer entries satisfying

1<i, j<n
VjE{Z,...,n},WE{l,j—l}, 0< ¢, <c¢

by [AZ95, Lemma 2.7].

Let g be a n xn matrix with integer entries. Let 1 < k < n. Let I, ;, be the set
of all k-tuples {i1,...,4,} satisfying 1 < i1 < i < -+ < i < n. Obviously, I,
is of cardinal (}). If w and 7 are two elements of I,, j, then g(w,7) will denote the
k x k determinantal minor of g whose row indices are the elements of w and whose
column indices are the elements of 7. Obviously, there are (2)2 such minors. The

k’th determinantal divisor of g, say di(g), is the non-negative integer defined by

0 iwa,T 611’27, ,9(w, T :07
de(g) = ( ' ) € I gr g(w,T) (211)
gc‘i(w,r)elﬁykg(wa 7) otherwise
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and the determinantal vector of g is d,,(g) = (d1(g), . ..,dn(g)). The determinantal
divisors turn out to be useful since if A is another n x n matrix with integer entries
then

h e A,gA, if and only if d(h) =d(g) (2.12)

according to [NewT72|.
By [AZ95, Proposition 2.5, p. 107], if g, go belong to GL,(Q) with integer
entries then
AnglAn * AnQQAn = Anglg2An (2'13)

provided d1 (91) = d1 (gg) =1 and (dn(gl)a dn(gg)) =1.

Finally, we will use the following result on the local integral Hecke algebra at
the prime p, say H,), defined as the A,, double cosets A, gA,, where g ranges over
the matrices in GL,, (Z[1/p]) with integer entries. By [AZ95, Lemma 2.16, p. 112],
the Q-linear map ¥ : H — ﬂg_l defined by

v (Andiag (p‘sl,...7p5"')An)
B {Andiag(péz,...,p‘s")An if0=0 <0< ... < 0,

) (2.14)
0 otherwise

is a morphism of rings.

3. Decomposition of (™ (p) into A,, right cosets

In this section, n > 2. The main purpose of this section is to prove part (1) in
Therorem A, namely to find a convenient complete system of representatives for
the distinct A,, right cosets of 7(™)(p) modulo A,,. Let us denote by Ré")(p) the set
of n X n upper-triangular matrices C = [¢; ;] with integer entries satisfying

1<i,j<n
d,(C) = dn(p), (3.1)
Vie{l,...,n}, Cii =D (3.2)
and
Vie{2,...,n},Vie{l,...,5—1}, 0<¢,; <p. (3.3)

Let us also denote by Rgn)(p) the set of n x n upper-triangular matrices C' =

[¢i,j]1<i.j<n With integer entries satisfying

Vie{l,...,n}, c¢,;€ {l,p,pz}, (3.4)
Jie{l,....n}, c;=1 and Fie{l,....,n}, ci,;=0p° (3.5)
Vj6{2,...,7L},Vi€{].,...,j—].}, 0<ci,j<cj,j (36)

and
Vie{l,....n—=1}, pla;,=Vie{i+1,....,n}, plec,. (3.7)
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Proposition 3.1. Let n > 2. The set R™ (p) = R(()") (p) U Rgn)(p) is a complete
system of representatives of the distinct A, right cosets of 7™ (p) modulo A,,. In
other words,

=™ (p) = L] aGo|l]l | AaGa

CoeR{™ (p) C1eR™ (p)

In addition,

n — 1p™ — n—1 1
card (R(() )(p)) = (n—Dp" —np + )
p—1
2n npn+1 + Z(n _ 1)pn _ npn—l +1

card (R§”)(p)) =t 172

Remark 3.2. Proposition 3.1 proves part (1) in Theorem A.

Proof of Proposition 3.1. By (3.7), all the matrices Cy in Rgn) (p) can be de-
composed as

C1= diag (palv s 7pan) C{

for some non negative integers a, ..., a, and with Cf € A,,, hence
Cy € Adiag (p™,...,p™) A = 7" (p)

by (3.4) and (3.5).

All the matrices Cp in Ré") (p) belong to (™) (p) since their determinantal
vectors match the determinantal vector of D™ (p) by (3.1).

All the matrices in R (p) are upper-triangular column reduced matrices by
(3.3), (3.6) and belong to different A,, right cosets according to the unicity state-
ment given in (2.10).

Let C = [Civj]lgi,jgn
in 7(") (p) and let us prove that C belongs to R (p). First of all, the determinant
of C'is p™, hence

be any upper-triangular column reduced matrix that lies

Vie{l,...,n},ﬂaieN, Ci,i:pai.

Then, C = MD®™(p)y with A, )Xo in A,, which entails that C~! =

A;lD(") (p)*l)\l_l. As a consequence, p>?C~! has integer entries and
Vie{l,...,n}, a; € {0,1,2}.

If all the diagonal entries of C' are equal to p then C belongs to R((Jn) (p) since its

determinantal vector must be equal to the determinantal vector of D™ (p), namely

d,,(p). Assume that one of its diagonal coeflicient is not equal to p. The condition
dy(C) = p implies that there must be at most one diagonal coefficient of C' equal
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to 1. Let us prove that C' has a single diagonal coefficient equal to 1 and a single
coefficient equal to p?. Let o be the permutation of {1,...,n} satisfying

Ogaa(l) <. gaa(n) <2
The determinant condition is
Ao(1) T 0+ Qo(n) =N

If a1y = 0 then one easily gets ay2) =+ = Qpn—1) = 1 and ag(,) = 2. If
0y (1) 2 1 then all the diagonal entries of C' are equal to p, which is a contradiction.
Thus, (3.5) is satisfied. Let us prove (3.7). Assume on the contrary that there
exist 49 in {1,...,n—1} and jo in {ip +1,...,n} such that p | ¢;, 4, and p 1 ¢y j,-
The fact that p { ¢;, ;, implies that cj, j, # 1. Let ji # jo be the index of the
column of C, for which ¢;, ;, = 1. Let us prove that the columns C[j;] of C' of
index j; and Cljg| of C of index jo are linearly independent modulo p. If

0=XCljo] + MC[j1] (mod p)
then the ig’th component implies that
0 = XoCi,jo + A1Cig,jy = AoCig,jo  (mod p)

such that A\g = 0 (mod p) since ¢;, j, is invertible modulo p and A\; = 0 (mod p).
This is a contradiction since C' is of rank 1 modulo p. Thus, C belongs to Ri") (p).
Let us compute the cardinality of Rgn)(p). Obviously,

card (Rgn)(p)) =p"t Y p

1<a1;£oz2<n

Z p _ npnfl

o<agsn—1
p2n n+1 + 2( 1)pn _ npnfl + 1
(p—1)°

Let us compute the cardinality of R(()")(p). Obviously,

card (R(()n)(p)) = card ( (p)) card (R(n)( ))

= deg (D(" — card ( (p))
_, el P —mp" 4+ 2(n —1)p" —mp" Tt +1
©1(p)*n—2(p) (p—1)2
(pn—l _ 1) (pn _ 1) B p2n o npn+1 + 2(n o l)pn _ np"fl +1
(p—1) (p—1)?

by (2.3), which is the expected result. |
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We will need more details, stated in the following proposition, on the matrices
in Ry" (p).

Proposition 3.3. Let n > 4 and Co = [ci5],¢; ;< € R(()n) (p). On the one hand,
Cy # pl,,. On the other hand, for all positive integers i, j, k, £, one has

<i<k<j<l<n=c¢jcpe=ciocy; (modp)
<i<j<k<l<n= ¢ ce=0.

Remark 3.4. One can check that

o= U {5
0<c1,2<p

3) b ci2 (€13
Ry (p) = |_| p  C23

0<eci1,2,¢1,3,¢2,3<p p
c1,2¢2,3=0
(c1,2,¢1,3,¢2,3)#(0,0,0)

Proof of Proposition 3.3. The fact that Cy # pl,, is obvious since the first
determinantal divisor of Cy, whose value is 1, is nothing else than the greatest
common divisor of the entries of Cp, which are non-negative integers strictly less
than p.
Recall that d2(Cp) = p. As a consequence, p divides the determinantal minors
of Cy of size 2 given by
Ci,jCkt — Ci 4Ck 5 (38)
forall 1 <1< k <j << n. Italso divides the determinantal divisors of Cy of
size 2 given by
Ci,jCj 0 — CipCj 5 = C; jCjp — PCiyg (39)
for 1 <i < j < £ < n. The fact that the prime number p divides ¢; jc; (implies that
ci,jcje = 0 because the non-diagonal entries of Cjy are non-negative and strictly
less than p. Similarly, p divides the determinantal divisors of Cy of size 2 given by

Ci,jCh,0 — CifCh,j = Ci,jCh,t (3.10)

for 1 <4 < j <k << n,such that ¢; jcpr = 0 too. |

4. End of the proof of Theorem A

In this section, n > 4. The following lemma, whose proof can be skipped in a first
reading, will be used in Proposition 4.2.

Lemma 4.1. Letn >4 and 2 < k < n—2. Let C = [¢; 4]
triangular matriz with integer entries satisfying

1<ij<n be an upper-

Vie{l,...,n}, c;=p (4.1)
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and
I<i<j<k<i<n=cce=0 (4.2)

for all positive integer i, j,k,£. Let
2<i9<jo<n—1. (43)

Then, there exists wig jo, Tig.jo M Ink and €i, 5, = £1 such that

(CD(n) (p)) (wimjm Tio,jo) = Eioajop%_zcio,jo' (4'4)
Proof of Lemma 4.1. Let as < a3 < -+ < ai_1 be an ordered sequence of
indices in {2,...,n — 1} not containing iy and j, and let
wWo = {1, ag,...,0p_1,0a ‘= io},
T0O = {1a ag,y ..., ak717j0}~

Such a choice is possible by (4.3). Note that wy and 79 do not belong a priori to
I, i since they are not necessarily ordered (see (2.11)) but on the one hand, this
will only change the determinant occuring in the left-hand side of (4.4) by +1 and
on the other hand, this abuse of notations has the advantage of minimizing a lot
the notations involved.

By the Cauchy-Binet formula,

(eP" ) (@o.m0) = 3 Co(w,a) D (p) (e, 7) (4.5)
acl,
= Cy (w,7) D™ (p) (1, 7) (4.6)
= pkilC’o (w, T)
=p" Y e(0)caympan - CapisyariCasgo  (48)
OE0EK_1
where o1 stands for the group of permutations of {2,...,k}.

Obviously, the contribution to the previous sum of the permutation Id in oj_1
equals
P22 Ciosdo
by (4.1). This is exactly the right-hand side of (4.4), up to the abuse of notations
recalled above.
Let us show that all the other terms vanish. Let ¢ # Id in o;_;. One can
assume that aq ) < jo and
Ao (e) < Qg (4.9)

for ¢ € {2,...,k — 1} since otherwise, the contribution of ¢ trivially vanishes, C
being upper-triangular. Let us say that
2<ar < < Ayy—1 < Ak = 1 < Gy
< <y < Jo < Apog1 < o< ag—1 <n—1 (4.10)
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where 2 < ug — 1 < vy < k—1. (4.9) immediately implies that
ol)=1¢

for 2 </l <up—1.

The fact that o is different from the identity permutation Id entails that there
exists at least two integers ¢ > ug satisfying o(¢) # ¢. Let ug < ¢y < ¢1 be the two
consecutive smallest of them. One has

o) =1
ifug<l<ly—1orly+1<L< ¥l —1by (4.9), hence
o(ly) =k and a(ly) = £y
by (4.10). Consequently, the contribution of ¢ equals
pks(o)cim% Cagyae, X =0

by (4.2) since
1 <ip < ag, <ag, <ay,. |

Then, we need the following intermediate result.

Proposition 4.2. Letn > 4. Let Co = [¢i 5], ¢; i, in R(")( ). If

V@i, j) €{l,...,n}% 2<i<j<n—-1=¢,;=0 (4.11)
then
CoD™ (p) € Andiag | p,p%, ..., 0% 0% | A
Otherwise,

COD(n)(p) GAndmg pvpap2a"'ap27p37p3 An
——
n—4 terms

In addition,

card | { Co € R§™ (p), CoD™ (p) € Andiag | p,p%,....0%0° | Aw
—_——

n—2 terms
and

card | { Co € RS (p), CoD™ (p) € Andiag | p,p,p?, ..., 0% 0% 0° | An
\‘,_/

n—4 terms

p* ((n—3)p" —2)p" 3 +1)
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Remark 4.3. One can easily check that when n = 3
CoD®(p) € Asdiag (p,p?,p°) As
for all matrix Cy € Rég) (p) whereas when n = 2
CoD® (p) € Agdiag (p.p*) A

for all matrix Cy € R62) (p).

Proof of Proposition 4.2. Recall that

: 2 2 .3 3 2k—1 2n—5 , 2n—3 2
d, | diag | p,p”,...,p",p =|pp.... p e T
———
n—2 terms k’th term
: 2 2 .3 ,3 2 2k—2 2n—6 ,2n—3 2
d, | diag | p,p,p”,...,p",p",p =|pp... p s T
—_——
n—4 terms k’th term
/—1 —2
d’rL(CO):dn(p): lap7"'7 p 7"'apn 7pn
£th term

for2<k<n—-2and2<l<n—-1.

Obviously, d;(CoD™ (p)) = p and d,,(CoD™ (p)) = p*".

Let us show that d,,_1(CoD™ (p)) = p?>"~3. Of course, p?>"~? is a determinantal
minor of CoD™ (p) of size n — 1 such that it remains to show that the other
determinantal minors of Co D™ (p) of size n — 1 are all divisible by p*"~3. Let
w=A{L,...,n}\{io} and 7 = {1,...,n} \ {Jjo} two elements in I,, ,_1 (see (2.11)
for the notations used). By the Cauchy-Binet formula,

(D" @) wr)= > Cow.a) DW(p) (@ 7)

acly n-1
=Cp (w,T) D™ (p) (1, 7)

since D™ (p) is a diagonal matrix. If jo = 1 then Cy (w, ) is divisible by p"~2,

since d,,_1(Co) = p"~2, and D™ (p) (r,7) = p”. If 2 < jo < n — 1 then Cy (w, )
is divisible by p"~2 and D (p) (r,7) = p"~!. The only remaining case is when
jo = n. The minor obtained when erasing the ig’th row and the n’th column of
COD(”)(p) has its last row equal to 0 but when iy = n, in which case

(CoD ™)) (w,7) = p .

Let 2 < k < n — 2. Of course, p>*~1 is a determinantal minor of Cy D™ (p) of
size k. Then, by Lemma 4.1, all the integers

2k—2
p Cij
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for 2 <i < j < n—1 also belong to the list of determinantal minors of CoD() (p)
of size k. Let w = {i1,...,ix} with 1 <43 < - <ip <nand 7= {j1,...,Jk}
with 1 < j; < -+ < jr < n two elements in I, . Once again, by the Cauchy-Binet
formula,

(D™ ) w@.r) = 3 Co(w,a) D (p) (e 7)

a€ly, i,
= Co (w,T) D(")(p) ( 7)

f2< 1 < - <Jr_1 <jp=n,
fa<p< - <jp<n—1,

prt

= Cp (w,m) x {7 _ ’
P if1=71 <jor- <jr—1<Jjr=n,
P

k
k
F=loifl=j1<jo---<jr<n-—1

Co (w,7) being divisible by p*~!, since dj(Cy) = p*~', all these determinantal
minors are divisible by p?*~! except a priori when 1 = j; < jo--- < jp < n — L.
Let us investigate this last case. First of all,

CO (w7 T) = Z E(O-)cid(l),lci”@),]é M Cia(k)vjk
oEo)

= E 5(0)0%(1),16%(2)4’2 < Cig ey dk

oETK
to(1)=1

PZ o€ E(U)Cia@)’jz < Cig oy odn ifi; =1,
= o(1)=1
0 otherwise

where o stands for the permutation group on k letters and since the condition
ir(1y = 1 is equivalent to i; = o(1) = 1. We can focus on the case 4; = 1, in which
case

k—1
Co(w,7) = ZlerL Z e(o) H Cig(eysde
L=0 o€ 2<lLk

o()=1 ) o (0) e
VeE{2,....k} i () STt
card({£€{2 ..... k},i(,(l):jg}):L
is a polynomial in a subset of

Cijs 2<Z<]<1’L—1

divisible by p¥~1, since dj(Cy) = p*~!, whose constant term is divisible by p*. One
can now conclude as follows. If (4.11) holds then dj (CoD™(p)) is the greatest
common divisor of 0, p**~! and of a finite list of integers divisible by p?*~!, hence

dy; (COD(R) (P)) =p
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If (4.11) does not hold then dj (CoD™(p)) is the greatest common divisors of

p?k=1. of the integers p2k*2cm—, 2 <i<j<n-—1, and of a finite list of integers

divisible by p**~2, hence

dic (CoD™(p)) = p* 2.

Let us compute the first cardinality, say an) (p) , given in the previous propo-

sition. The set
{Co e R (p) VG, 5) € {1,...,n}%, 2<i<j<n—1=c,= 0}

can be decomposed into the disjoint union of the three following sets.
e The set of matrices Cy in R(()n)(p) satisfying (4.11) and ¢12 # 0, ¢p—1,n = 0,
which implies that

Con =" =Cp—2n=0.

There are (p — 1)p" 2 such matrices.
e The set of matrices Cy in R(()n) (p) satisfying (4.11) and ¢12 =0, ¢p—1., # 0,
which implies that
6173 — ... = Cl,n—l e O

There are (p — 1)p"~2 such matrices.

e The set of matrices Cj in R(()n) (p) satisfying (4.11) and ¢12 = ¢p—1.n = 0,
which can be identified to the set of matrices Cy in Ré”_l)(p) satisfying
(4.11), by erasing the diagonal of zeros above the main diagonal. There are

c(()n_l)(p) such matrices.
In total,
" (p) =2(p = )p" 2 + oV (p).
One can conclude by induction on n > 4. If the formula holds for n > 4 then

") =20 - )" 2 —p—1=2p" —p— 1.
Let us briefly check that 084) (p)=2p*—p—1. If Cp in Ré4) (p) satisfies (4.11) then
five cases can occur.

clp=c13=c14=cz4=0andc34#0. There are p — 1 such matrices.
cr2=c13=c14=0and cy4 # 0. There are p(p — 1) such matrices.
c1,2 =c1,3 =0 and c; 4 # 0. There are p?(p — 1) such matrices.

c1,2 =c24=c34=0and ¢; 3 # 0. There are p(p — 1) such matrices.
2.4 =c34=0and ¢; 2 # 0. There are p?(p — 1) such matrices.

The computation of the second cardinality is a consequence of Proposition 3.1,
which gives the cardinal of RS (p). [ ]
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Let us now complete the proof of Theorem A.

Proof of Theorem A. By (2.5),

7™ (p) « =M (p) = 3 1 (B ) A A
Anhh, Cr) (p)r (™ (p)

where h € GL,,(Q) ranges over a system of representatives of the A,, right cosets
contained in the set

7 (p)r™ (p)

and

. deg (D™ (p))
mn(h;p) = T(h)

ealhip) = card ({C € R (p),CD™(p) € 7 (p) } ) .

cn(hip),

Recall that

M) () — ©n(p) (=) (- 1)
deg (D (p)) P e L o1 (4.12)

by (2.3).
Let us determine the different matrices h occuring in this decomposition.
If C; in Rg") (p) then we have already seen that
Cy = diag (p°*,...,p°") C}
with Cf an upper-triangular matrix in A,, and 0 < 4y, ...,d, < 2 with

card({i € {1,...,n},6;, =0}) =card({i € {1,...,n},0; =2}) = 1.

As a consequence,

C1D™ (p) = diag | p%, p' 02, ... pt o1 p2Hon | DIV () =11 DM (p)

n—2 terms

146 146n-1 2400
27 * 17p ATL

€ Aydiag [ p°,p .p

n—2 terms

since D™ (p)~1C{ D™ (p) belongs to A,. Let 1 < a1 # as < n the integers
satisfying
0y, =0 and 0o, = 2.

Let us list the different cases that can occur.
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First case: a3 =1 and 2 < ag < n — 1. In this case, one has

C1D™ (p) € Andiag | 1,p%, ..., p% 0%, p° | An.
—

n—3 terms
The number of such matrices C is
n—2
-1
S prree o p"pil . (4.13)
2<as2<n—1 p—

Second case: a; =1 and ag = n. In this case, one has

C1D™(p) € Apdiag | 1,p%,...,p% p* | An.
——

n—2 terms

The number of such matrices Cy is
p?n2, (4.14)

Third case: 2 < a; <n—1and as = 1. In this case, one has

C1D™) (p) € Aydiag | p,p?, 050" | A
—

n—2 terms

The number of such matrices C; is

(4.15)

5

Fourth case:® 2 < aq # ag < n — 1. In this case, one has

C1D™ (p) € Apdiag | p,p.p%, ..., 0% p% p° | An.
N—

n—4 terms

The number of such matrices C is

Z pn71+oz27a1 _ Z pa o (n - 2)pn71

2<a1 Fazr<n—1 1<agn—2
PP = (= 2"+ 2(n = 3)p" P — (n— 2)p" 0+ 1)
- — . (4.16)
p—

5Note that this case does not occur if n < 4.
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Fifth case: 2 < a3 <n—1and as = n. In this case, one has

ClD(”)(p)GAndiag p,p,pQ,...,pQ,p4 A,
—

n—3 terms

The number of such matrices Cy is

n—2 _ 1
Z p2n—1—a1 — pnp (4_17>
p—1
2<a1<n—1
Sixth case: oy = n and as = 1. In this case, one has
C1D™ (p) € Apdiag | p2,.... 07 | Ap = App? LA,
————
n terms
The number of such matrices Cy is
1. (4.18)
Seventh case: a1 = n and 2 < as < n — 1. In this case, one has
ClD(n)(p) GAndlag p,p2,...,p2,p3 An
——
n—2 terms
The number of such matrices Cy is
n—2 _ 1
D A A (4.19)
p—1
2<a2<n—1
If Cy in R(()n) (p) then two cases can occur by Proposition 4.2.
Eighth case: ¥(i,j) € {1,...,n}?,2<i<j<n= ¢ ;=0. In this case,
COD(n)(p) € Andlag pap27"'ap2ap3 An
——
n—2 terms
and the number of such matrices is
2p" "t —p—1. (4.20)

Nineth case: 3(i,5) € {1,...,n}?,2<i<j<nand ¢, # 0. In this case,

CoD™ (p) € Andiag [ p,p,p?,....0% 0%, 0% | As

n—4 terms
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and the number of such matrices is
p2 ((n _ 3)pn—2 _ (’I’L _ 2)pn—3 + 1)

b1 . (4.21)
In particular, we have just proved that
7 (p) 7™ (p) = mn (15p) Anp® T Ay
+ ma(2;p)Andiag | p,p*,....p% 0% | Ay
—
n—2 terms
+mn(3;p)Andiag | 1,p%,...,p% 0% p° | Ay
——
n—3 terms
. (4.22)
+ mu (4 p)Andiag | 1,p7,...,p%p" | Ay

n—2 terms

+ my(5;p)Andiag | p,p,p*, ..., 0% 0" | Ay
———

n—3 terms

+ my, (6;p)Andiag [ p,p, p°, ..., 0% % p° | An.
——

n—4 terms

where
My (15p) = my, (p°Ln;p) ,
mn(2;p) = m,, | diag | p,p* ..., 0% 0" | ip |,
——
n—2 terms
mn(3;p) =m, | diag [ 1,p%...,p% % p% | ip
———
n—3 terms
and

mn(4;p) =m, | diag | 1,p* ...,p%p" | ip |,
—_———
n—2 terms

my(5;p) =m,, | diag | p,p,p*, ..., 0% 0" | ip |,
—_———

n—3 terms

mn(6;p) == m,, | diag | p,p,p*,...,p%, 0", 0" | ;p
—_——

n—4 terms
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One has,
deg (D™ (p)) (Pt =1)(p"—1)
mu(Lip) = ————=+~"¢n (D" In;p) =P
(1:p) deg(p?I,) ( ) (p—1)2
by (4.12) and (4.18) since deg(p?l,,) = 1.
Then,
deg (D™ (p) .
mn(2;p) = ( ) cn | diag | p,p?,....0% 0% | 5p
——

n—2 terms

deg | diag p,pQ, e ’p2’p3
N—

n—2 terms

=c, | diag | p,p*,....p% 0" | ;p
—_———

n—2 terms

pn—2_
= p—— + 2" —p—1
p—1
2pt—p—2p+1
= —

by (2.2), (4.15), (4.19), (4.20).
Let us compute simultaneously the values of m,(3;p) and m,(4;p). On the
one hand, applying the map ¥ (see (2.14)) to (4.22), one gets

T )+ 7S (0) = ma(3;p)Andiag | ... 0% 0% 0% | A,

)

n—3 terms

+ mp (4 p)Andiag | p*, ..., 0% p* | A
—_———

n—2 terms

On the other hand, by [AZ95, Lemma 2.18 Equation (2.30), p. 115], one gets

T ) * 7N () = AP LA 7 (p) + 7" ()

= Anp Lo+ (76570 0) + (p+ Dl V()

= A,diag p2, .. ,p2,p4 A,
—_——

n—2 terms

+ (p+ DA diag | p°,....p% p% 0% | Ay
—_——

n—3 terms
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by (2.9). Distinct A, double cosets being linearly independent by [AZ95,
Lemma 1.5, p. 96|, we get

mn(3ip) =p+1,  mu(4p) =1
Then,

deg | diag | 1,p%,...,p% p* p°
——
n—3 terms

_ deg (D™(p)

——>c, | diag | 1,p?,....p% 0", 0% | 5p
mn(3,p) ——

n—3 terms
S (e O N Al VAl
P - 12— 1)

by (4.12) and (4.13). This proves (1.8) in Theorem A. Similarly,

deg (D™
deg dlag 1ap2a"'7p27p4 = MCH dlag 1ap2a"'7p27p4 D
— mn(43p) N—
n—2 terms n—2 terms
— p2n—1 (pnil - 1) (pn - 1)
(p—1)?

by (4.12) and (4.14). This proves (1.9) in Theorem A.
Let us consider m,, (5;p). First, let us compute the value of

deg | diag | p,p,p?,...,p°,p* | | =deg | diag | 1,1, p,...,p,p’
— S——
n—3 terms n—3 terms

by (2.2). This is done by a semi-explicit computation of

ﬂfln_)z(p) * m()fll) (p) = Z m (Dnn_)g(p )’ Dér’ll) <p ); h) AnhAn
AnhAn 'y (p) ") (p)

where h € GL,,(Q) ranges over a system of representatives of the A, right cosets

contained in the set - -
ﬂ'nn—z (P)ﬂ'o?l (p)

and
m (D), DS ()5 1)

_ deg (D7) (0))

d{{CeR D (p) € AnhA,
deg(n) € Riap,...,p.CDY(p) €

n—2
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where Ry 1p, ... p is the complete system of representatives for the distinct A,

n—2
right cosets of 772”_)2 (p) modulo A,, given by the set of upper-triangular column

reduced matrices C satisfying

Vie{l,...,n}, c,;€{l,p} (4.23)
card({i € {1,...,n},¢;; =1}) =2 (4.24)

and
Vie{l,....n—=1},plcai=Vje{i+1,...,n}, ¢,;=0 (4.25)

according to [AZ95, Lemma 2.18, p. 115]. Let C be an element of Ri1p ..., p
——

n—2
and let 1 < a1 < as < n be the indices of the diagonal elements of C equal to 1
by (4.24). By (4.23) and (4.25), C can be decomposed into

C = diag (p°,...,p°") C’

for some upper-triangular matrix C’ in A,, and integers 0 < d1,...,6, < 1 such
that

" Apdiag | 1,1, p,....p,p> | A, fl1<ag <as<n—1
CD((M)(p)E n g NCAALY ] 1 2

n—3 terms

777(31—)2,1(p) if 1 g a1 < g = nN.

Thus,

7o) 7 () = m (D (p), DY (0): DY 1 (0)) it ()

)

+m D’Eln—)2(p)7D(()nl)(p)’dlag 1715 pa"'7p7p3
——

n—3 terms

x Apdiag | 1,1, p,...,p,p° | An.
——

n—3 terms

Applying the map ¥°2 (see (2.14)) to the previous equality, one gets

Andiag | p,...,p,p* | Ay
——

n—3 terms

=m | DY, (p), DI (p);diag | p,....p,p* | | Andiag | p,....p, 0% | An,
—— ——

n—3 terms n—3 terms
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hence

m | D{",(p), DY (p);diag | p,....p.0° | | =1
——

n—3 terms

by the linear independence of distinct A,, double cosets (|[AZ95, Lemma 1.5 Equa-
tion (2.32), p. 96]). As a consequence,

deg | diag | 1,1, p.....p.p° :deg@gﬁ)(p)) > prirere
——

n—3 terms 1S <azgn—1

:pn_I%p%_l Z (;>a1+a2

n—1 on(p) on—4 ¢on—1(1/p)
o110’ 2(1/p)en—s(1/p)
ne1___ Pu(p) 2 Pu-1(p)
en-1(p)e1(p)” P2(P)pn-3(p)
)

by (4.12), [AZ95, Equation (2.33), p. 115] and since
pr(L/z) = (=1)"a7" D2y, ()

for r > 1 and = # 0 a real number. This proves (1.10) in Theorem A. As a con-
sequence,

deg (D™ (p
my(5;p) = 8 (D) cn | diag [ p,p,p?, ..., 0% 0" | 5p
: 2 2 .4 n—3 terms
deg | diag | p,p,p°,...,p%,p
——
n—3 terms
_ ¢2(p)
<P1(p)2
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Finally, let us compute the value of my,(6;p). One has

mn(6;p) =

deg (D™ (p))

deg [ diag [ p,p,p*,....p% p3,p3
N——

n—4 terms

x ¢, | diag | p,p,p*, ..., 0% 0% 0 | ip
———

n—4 terms

deg (D™ (p) 5
(0 ) cn | diag | p,p,p?, ..., 0% 0% 0% | i

- m n—4 terms

_ + D(p-12 pP 7t —pt2—p i 4 1)
P (pr2—1)(p3 -1 (p—1)?

=(p+1)?

by (2.2), (2.3), (4.16) and (4.21).
Equation (4.22) and the explicit values of the constants m.,(i;p) (1 < i < 6)

prove (1.12) in Theorem A. [ |
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