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ABSTRACT. In [12], the authors determined, among other things, the main terms for the one-level

densities for low-lying zeros of symmetric power L-functions in the level aspect. In this paper, the lower

order terms of these one-level densities are found. The combinatorial difficulties, which should arise in

such context, are drastically reduced thanks to Chebyshev polynomials, which are the characters of the

irreducible representations of SU(2).
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1. INTRODUCTION AND STATEMENT OF THE RESULT

1.1. Description of the families of L-functions studied. The purpose of this paper is to compute
the lower order terms of some particular statistics associated to low-lying zeros of several families of
symmetric power L-functions in the level aspect: the one-level densities. First of all, we give a short
description of these families. To any primitive holomorphic cusp form f of prime level q and even
weight1 κÊ 2 (see [12, § 2.1] for the automorphic background) say f ∈ H∗

κ (q), one can associate its r -th
symmetric power L-function denoted by L(Symr f , s) for any integer r Ê 1. It is given by the following
absolutely convergent and non-vanishing Euler product of degree r +1 on ℜe s > 1

L(Symr f , s) := ∏
p∈P

Lp (Symr f , s)
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1In this paper, the weight κ is a fixed even integer and the level q goes to infinity among the prime numbers.
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where

Lp (Symr f , s) :=
r∏

i=0

(
1− α f (p)iβ f (p)r−i

p s

)−1

for any prime number p. From now on, α f (p), β f (p) are the Satake parameters of f at the prime
number p and

(
λ f (n)

)
nÊ1 is its sequence of Hecke eigenvalues, which is arithmetically normalised:

λ f (1) = 1 and |λ f (p)| É 2 for any prime p. We also define [1, (3.16) and (3.17)] a local factor at ∞ which
is given by a product of r +1 Gamma factors namely

L∞(Symr f , s) := ∏
0ÉaÉ(r−1)/2

ΓR (s + (2a +1)(κ−1)/2)ΓR (s +1+ (2a +1)(κ−1)/2)

if r is odd and

L∞(Symr f , s) := ΓR(s +µκ,r )
∏

1ÉaÉr /2
ΓR (s +a(κ−1))ΓR (s +1+a(κ−1))

if r is even where

µκ,r :=
{

1 if r (κ−1)/2 is odd,

0 otherwise.

The completed L-function is defined by

Λ(Symr f , s) := (
qr )s/2 L∞(Symr f , s)L(Symr f , s)

and qr is the arithmetic conductor. We will need some control on the analytic behaviour of this
function. Unfortunately, such information is not currently known in all generality. We sum up our
main assumption in the following statement.

Hypothesis Nice(r, f )� The functionΛ
(
Symr f , s

)
is a completed L-function in the sense that it satisfies

the following nice analytic properties:

• it can be extended to an holomorphic function of order 1 on C,
• it satisfies a functional equation of the shape

Λ(Symr f , s) = ε(
Symr f

)
Λ(Symr f ,1− s)

where the sign ε
(
Symr f

)=±1 of the functional equation is given by

ε
(
Symr f

)
:=

{
+1 if r is even,

ε f (q)×ε(κ,r ) otherwise

with

ε(κ,r ) := i
(

r+1
2

)2
(κ−1)+ r+1

2 =


iκ if r ≡ 1 (mod 8),

−1 if r ≡ 3 (mod 8),

−iκ if r ≡ 5 (mod 8),

+1 if r ≡ 7 (mod 8)

and ε f (q) =−pqλ f (q) =±1.

Remark 1� Hypothesis Nice(r, f ) is known for r = 1 (E. Hecke [3, 4, 5]), r = 2 thanks to the work of
S. Gelbart and H. Jacquet [2] and r = 3,4 from the works of H. Kim and F. Shahidi [9, 8, 7].

We aim at studying the lower order terms of the one-level density for the family of L-functions given
by ⋃

q prime

{
L(Symr f , s), f ∈ H∗

κ (q)
}

for any integer r Ê 1.
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1.2. One-level densities of these families. The purpose of this work is to determine the lower order
terms of the one-level densities associated to these families of L-functions. Let us give the statement of
our result, in whichν is a positive real number,Φ is an even Schwartz function, whose Fourier transform
Φ̂ is compactly supported in [−ν,+ν] (denoted byΦ ∈Sν(R)) and f is a primitive holomorphic cusp
form of prime level q and even weightκÊ 2 for which hypothesis Nice(r, f ) holds2. We refer to [12, § 2.2]
for the probabilistic background. Note that, thanks to Fourier inversion formula, such a functionΦ
can be extended to an entire even function which satisfies

∀s ∈C, Φ(s) ¿n
exp(ν|ℑm s|)

(1+|s|)n

for any integer n Ê 0. The one-level density (relatively toΦ) of Symr f is defined by

D1,q [Φ;r ]( f ) := ∑
ρ,Λ(Symr f ,ρ)=0

Φ

(
log

(
qr

)
2iπ

(
ℜe ρ− 1

2
+ i ℑmρ

))
where the sum is over the non-trivial zeros ρ of L(Symr f , s) repeated with multiplicities. The asymp-
totic expectation of the one-level density is by definition

lim
q prime
q→+∞

∑
f ∈H∗

κ (q)
ωq ( f )D1,q [Φ;r ]( f )

where ωq ( f ) := Γ(κ−1)
(4π)κ−1〈 f , f 〉q

is the harmonic weight of f . Before stating our result, let us define the

following constants:

CPNT :=
(
1+

∫ +∞

1

θ(t )− t

t 2 dt

)
, (1.1)

C := ∑
p∈P

log p

p3/2 −p
, (1.2)

C∞ :=−(r +1)logπ+CΓ (1.3)

where θ is the first Chebyshev function:

θ(t ) := ∑
p prime

pÉt

log p,

CΓ := ∑
0ÉaÉ(r−1)/2

{(
Γ′

Γ

)(
1

4
+ (2a +1)(κ−1)

4

)
+

(
Γ′

Γ

)(
1

4
+ 1

2
+ (2a +1)(κ−1)

4

)}
if r is odd and

CΓ :=
(
Γ′

Γ

)(
1

4
+ µκ,r

2

)
+ ∑

1ÉaÉr /2

{(
Γ′

Γ

)(
1

4
+ a(κ−1)

2

)
+

(
Γ′

Γ

)(
1

4
+ 1

2
+ a(κ−1)

2

)}
if r is even.

Theorem A� Let r Ê 1 be any integer and ε=±1. We assume that hypothesis Nice(r, f ) holds for any
prime number q and any primitive holomorphic cusp form of level q and even weight κÊ 2. Let

ν1,max(r,κ,θ0) :=
(
1− 1

2(κ−2θ0)

)
2

r 2

with θ0 = 7/64. If ν< ν1,max(r,κ,θ0) then the asymptotic expectation of the one-level density is[
Φ̂(0)+ (−1)r+1

2
Φ(0)

]
+ [

C∞−2(−1)r CPNT −2δ2|r C
] Φ̂(0)

log qr +O

(
1

log3(qr )

)
.

2Note that we do not assume any Generalised Riemann Hypothesis for the symmetric power L-functions.
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Remark 2� The main terms of the asymptotic expectation of these one-level densities have already
been found in [12] (see Theorem B). The new information is the lower order terms namely terms of
size 1/log(qr ).

Remark 3� Note that θ0 = 7/64 is the best known approximation towards Ramanujan-Peterson-
Selberg’s conjecture (see [12, hypothesis H2(θ) page 16]) thanks to the works of H. Kim, F. Shahidi and
P. Sarnak ( [8, 7]). The value θ = 0 is expected.

Remark 4� It is clear from the proof of Theorem A that the same result holds for the signed families
with the same restriction on the support as in [12].

Remark 5� The particular case r = 1 has already been investigated by S.J. Miller [11].

Notation� We write P for the set of prime numbers and the main parameter in this paper is a prime
number q , whose name is the level, which goes to infinity among P . Thus, if f and g are some C-valued
functions of the real variable then the notations f (q) ¿A g (q) or f (q) = O A(g (q)) mean that | f (q)|
is smaller than a “constant” which only depends on A times g (q) at least for q a large enough prime
number.

2. CHEBYSHEV POLYNOMIALS AND HECKE EIGENVALUES

Recall that the general facts about holomorphic cusp forms can be found in [12, § 2.1]. Let p 6= q a
prime number and f ∈ H∗

κ (q). Denote by χSt the character of the standard representation St of SU(2).
By the work of Deligne, there exists θ f ,p ∈ [0,π] such that

λ f (p) =χSt

(
e iθ f ,p 0

0 e−iθ f ,p

)
.

Moreover the multiplicativity relation reads

λ f (pν) =χSymν

(
e iθ f ,p 0

0 e−iθ f ,p

)
= Xν

(
χSt

(
e iθ f ,p 0

0 e−iθ f ,p

))
= Xν

(
λ f (p)

)
(2.1)

where χSymν is the character of the irreducible representation SymνSt of SU(2) and the polynomials
Xν are defined by their generating series∑

νÊ0
Xν(x)tν = 1

1−xt + t 2 . (2.2)

They are equivalentely defined by

Xν(2cosθ) = sin((ν+1)θ)

sin(θ)
. (2.3)

These polynomials are known as Chebyshev polynomials of second kind. Each Xν has degree ν, is even
if ν is even and odd otherwise. The family (Xν)νÊ0 is a basis for the polynomial vector space Q[T ],
orthonormal with respect to the inner product

〈P,Q〉ST := 1

π

∫ 2

−2
P (x)Q(x)

√
1− x2

4
dx.

The following proposition lists Chebyshev polynomials’ needed properties for this work.

Proposition 2.1�
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• If $Ê 0 is any integer then

X$
r =

r$∑
j=0

x($,r, j )X j (2.4)

with

x($,r, j ) := 〈X$
r , X j 〉ST = 2

π

∫ π

0

sin$ ((r +1)θ)sin(( j +1)θ)

sin$−1 (θ)
dθ.

In particular,

x($,r, j ) =
0 if j ≡ r$+1 (mod 2),

( $
$/2)

1+$/2 if $ is even, r = 1 and j = 0.
(2.5)

• If α is a complex number of norm 1 and n Ê 0 is an integer then

αn +α−n =


2X0(α+α−1) if n = 0,

X1(α+α−1) if n = 1,

Xn(α+α−1)−Xn−2(α+α−1) otherwise.

(2.6)

• If α is a complex number of norm 1 and r,n Ê 1 are some integers then

S(α;n,r ) :=
r∑

j=0
αn(2 j−r ) = δ2|r +

∑
1É jÉr

j≡r (mod 2)

[
α j n +α− j n

]
(2.7)

= ∑
0É jÉr

j≡r (mod 2)

[
X j n(α+α−1)−X j n−2(α+α−1)

]
= Xr (αn +α−n)

where X−1 = X−2 = 0 by convention.
• If r Ê 1 and n Ê 1 are some integers then∑

0É jÉr
j≡r (mod 2)

[
X j n −X j n−2

]= r∑
j=0

(−1) j X j
n−2Xn(r− j ) (2.8)

where X−1 = X−2 = 0 by convention.
• If `Ê 0 is an integer then

X` =
∑

0ÉuÉ`
u≡` (mod 2)

(−1)(`−u)/2

(
(`+u)/2

u

)
T u . (2.9)

Proof of proposition 2.1. The first point follows from the fact that X$
r is an polynomial of degree r$,

which is even if r$ is even and odd otherwise. Thus, (2.4) is the expansion of this polynomial in the
orthonormal basis

(
X j

)
0É jÉr$. The second point follows from the equality

2cos(nθ)sin(θ) = sin((n +1)θ)− sin((n −1)θ).

If α= exp(iθ) then this equality combined with (2.3) lead to

2cos(nθ) = Xn(2cosθ)−Xn−2(2cosθ),

which is the desired result since 2cosθ =α+α−1 and 2cos(nθ) =αn +α−n . The third point is a direct
consequence of the second one, of the direct computation

S(α;n,r ) = αn(r+1) −α−n(r+1)

αn −α−n

and of

Xr (αn +α−n) = Xr (2cos(nθ)) = αn(r+1) −α−n(r+1)

αn −α−n
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if α= exp(iθ). The fourth point is easily deduced from the fact that

S(α;n,r ) =
r∑

j=0
(−1) j X j

n−2(α+α−1)Xn(r− j )(α+α−1)

for any complex number α of norm 1. Let us prove the previous equality. According to [13, Page 727,
first and second equations],∑

rÊ0
Xnr (α+α−1)t r = [

1+Xn−2(α+α−1)t
] ∑

rÊ0
Xr (αn +α−n)t r .

As a consequence,

Xnr (α+α−1) = Xr (αn +α−n)+Xn−2(α+α−1)Xr−1(αn +α−n),

which implies

Xr (αn +α−n) =
r∑

j=0
(−1) j X j

n−2(α+α−1)Xn(r− j )(α+α−1).

The last point is obtained by developping (2.2) as an entire series in x. �

3. RIEMANN’S EXPLICIT FORMULA FOR SYMMETRIC POWER L-FUNCTIONS

To study D1,q [Φ;r ]( f ) for anyΦ ∈Sν(R), we transform this sum over zeros into a sum over primes in
the next proposition. In other words, we establish an explicit formula for symmetric power L-functions.

Proposition 3.1� Let r Ê 1 and f ∈ H∗
κ (q) for which hypothesis Nice(r, f ) holds and letΦ ∈Sν(R). We

have

D1,q [Φ;r ]( f ) =
[
Φ̂(0)+ (−1)r+1

2
Φ(0)

]
+ Φ̂(0)

log(qr )

[
C∞+2(−1)r+1CPNT −2δ2|r C

]
+P 1

q [Φ;r ]( f )+
r−1∑
m=0

(−1)mP 2
q [Φ;r,m]( f )+P 3

q [Φ;r ]( f )+O

(
1

log3 (
qr

))

where CPNT is defined in (1.1), C in (1.2), C∞ in (1.3) whereas

P 1
q [Φ;r ]( f ) :=− 2

log
(
qr

) ∑
p∈P
p-q

λ f
(
pr ) log pp

p
Φ̂

(
log p

log
(
qr

))
,

P 2
q [Φ;r,m]( f ) :=− 2

log
(
qr

) ∑
p∈P
p-q

λ f
(
p2(r−m)) log p

p
Φ̂

(
2log p

log
(
qr

))

P 3
q [Φ;r ]( f ) :=− 2

log
(
qr

) ∑
p∈P
p-q

∑
nÊ3

 ∑
1É jÉr

j≡r (mod 2)

(
λ f (p j n)−λ f (p j n−2)

) log p

pn/2
Φ̂

(
n log p

log
(
qr

))

for any integer m ∈ {0, . . . ,r −1}.

Proof of proposition 3.1. Let

G(s) :=Φ
(

log
(
qr

)
2iπ

(
s − 1

2

))
.
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>From [6, eq. (4.11) and (4.14)] we get

D1,q [Φ;r ]( f ) = Φ̂(0)− (r +1)
logπ

log qr Φ̂(0)

− 2

log qr

∑
p∈P

+∞∑
m=1

[
r∑

j=0
α f (p) j mβ f (p)(r− j )m

]
Φ̂

(
m log p

log qr

)
log p

pm/2

+ Φ̂(0)

log qr

r∑
j=0

Γ′

Γ

(
1

4
+ µ j

2

)
+O

(
1

log3 q

)
. (3.1)

Let us focus on the third term in(3.1). Not that the contribution of the prime q is given by

−2

r

+∞∑
m=1

(
λ f (q)r

p
q

)m

Φ̂
(m

r

)
¿ 1

q (r+1)/2

and for p 6= q we use
r∑

j=0
α f (p) j mβ f (p)(r− j )m = S

(
α f (p);m,r

)
with the notation of (2.7). We obtain

S
(
α f (p);1,r

)= Xr
(
α f (p)+α f (p)−1)=λ f

(
pr )

according to (2.1) and

S
(
α f (p);2,r

)= ∑
0É jÉr

j≡r (mod 2)

X2 j
(
α f (p)+α f (p)−1)−X2 j−2

(
α f (p)+α f (p)−1)

=
r∑

j=0
(−1) j X2(r− j )

(
α f (p)+α f (p)−1) (cf. (2.8))

=
r−1∑
m=0

(−1)mλ f
(
p2(r−m))+ (−1)r .

As a consequence,

∑
p∈P
p 6=q

+∞∑
m=1

[
r∑

j=0
α f (p) j mβ f (p)(r− j )m

]
= ∑

p∈P
p-q

λ f (pr ) log p

p1/2
Φ̂

(
log p

log
(
qr

))

+ ∑
p∈P
p-q

(
r−1∑
m=0

(−1)mλ f
(
p2(r−m))) log p

p
Φ̂

(
log(p2)

log
(
qr

))

+ (−1)r
∑

p∈P
p-q

log p

p
Φ̂

(
log(p2)

log
(
qr

))

+ ∑
p∈P
p-q

∑
nÊ3

S
(
α f (p);n,r

) log p

pn/2
Φ̂

(
log(pn)

log
(
qr

) )
. (3.2)

We have isolated the three first terms in (3.2) since they may contribute as main terms and not only
lower order terms. Let us estimate the third term of (3.2). By partial summation, this term equals, up
to O(q−0.9),

(−1)r
∫ +∞

1

θ(t )

t 2

(
Φ̂

(
2log t

log
(
qr

))
− 2

log
(
qr

) Φ̂′
(

2log t

log
(
qr

)))
dt := S3.
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Then,

S3 = (−1)r
∫ +∞

1

(
Φ̂

(
2log t

log
(
qr

))
− 2

log
(
qr

) Φ̂′
(

2log t

log
(
qr

)))
dt

t

+ (−1)r
∫ +∞

1

θ(t )− t

t

(
Φ̂

(
2log t

log
(
qr

))
− 2

log
(
qr

) Φ̂′
(

2log t

log
(
qr

)))
dt

t
.

Since Φ̂(u) = Φ̂(0)+O(u2) and Φ̂′(u) ¿|u|, we get

S3 = (−1)r log
(
qr

)
2

∫ +∞

0
Φ̂(u)du − (−1)r

∫ +∞

0
Φ̂′(u)du + (−1)r Φ̂(0)

∫ +∞

1

θ(t )− t

t 2 dt

+O

(
1

log2 (
qr

))
and finally

S3 = (−1)r log
(
qr

)
4

Φ(0)+ (−1)r Φ̂(0)

(
1+

∫ +∞

1

θ(t )− t

t 2 dt

)
+O

(
1

log2 (
qr

))
.

We finally take care of the fourth term of (3.2). According to (2.1) and (2.7), we have

S
(
α f (p);n,r

)= δ2|r +
∑

1É jÉr
j≡r (mod 2)

[
λ f (p j n)−λ f (p j n−2)

]
.

One may remark that∑
p∈P
p-q

∑
nÊ3

log p

pn/2
Φ̂

(
n log p

log
(
qr

))
= ∑

p∈P

∑
nÊ3

log p

pn/2
Φ̂ (0)+O

(
1

log3 (qr )

)

since Φ̂(u) = Φ̂(0)+O(u2). Then, we easily get∑
p∈P

∑
nÊ3

log p

pn/2
= ∑

p∈P

log p

p3/2 −p
.

�

4. PROOF OF THEOREM A

The aim of this part is to determine an asymptotic expansion of∑
f ∈H∗

κ (q)
ωq ( f )D1,q [Φ;r ]( f ) := Eh

q

(
D1,q [Φ;r ]

)
.

According to proposition 3.1 and the proof of [12, eq. (4.6) and (4.7)], if

ν<
(
1− 1

2(κ−2θ)

)
2

r 2 (4.1)

then

Eh
q

(
D1,q [Φ;r ]

)= [
Φ̂(0)+ (−1)r+1

2
Φ(0)

]
+ Φ̂(0)

log(qr )

[
C∞+2(−1)r+1CPNT −2δ2|r C

]
+Eh

q

(
P 3

q [Φ;r ]( f )
)
+O

(
1

log3 (
qr

))
. (4.2)

The first term in (4.2) is the main term given in Theorem A. We now estimate the penultemate term of
(4.2) via the trace formula given in [12, Proposition 2.2]:

Eh
q

(
P 3

q [Φ;r ]
)
=P3

q,new[Φ;r ]+P3
q,old[Φ;r ]
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where

P3
q,new[Φ;r ] =− 2

log
(
qr

) ∑
p∈P
p-q

∑
nÊ3

 ∑
1É jÉr

j≡r (mod 2)

(
∆q (p j n ,1)−∆q (p j n−2,1)

) log p

pn/2
Φ̂

(
n log p

log
(
qr

))

and

P3
q,old[Φ;r ] = 2

q log
(
qr

) ∑
`|q∞

1

`

∑
p∈P
p-q

∑
nÊ3

 ∑
1É jÉr

j≡r (mod 2)

(
∆1(p j n`2,1)−∆1(p j n−2`2,1)

)
log p

pn/2
Φ̂

(
n log p

log
(
qr

))
.

For m 6= 1 we have

∆k (m,1) := 2πiκ
∑
cÊ1
k|c

S(m,1;c)

c
Jκ−1

(
4π

p
m

c

)
where S(m,1;c) is a Kloosterman sum. Let us estimate the new part which can be written as

P3
q,new[Φ;r ] =−2(2πiκ)

log
(
qr

) ∑
1É jÉr

j≡r (mod 2)

∑
nÊ3

(
P3

q,new[Φ;r, j n]−P3
q,new[Φ;r, j n −2]

)

where

P3
q,new[Φ;r,k] := ∑

p∈P
p 6=q

log p

pn/2
Φ̂

(
log p

log
(
qr /n

)) ∑
cÊ1
q |c

S(pk ,1;c)

c
Jκ−1

4π
√

pk

c

 . (4.3)

By [12, lemma 3.10], the c-sum in (4.3) is bounded by

τ(q)p
q


(p

pk

q

)1/2

if p > q2/k ,(p
pk

q

)κ−1

otherwise.

We deduce ∑
nÊ3

P3
q,new[Φ;r, j n] ¿ τ(q)

qκ−1/2

∑
nÊ3

∑
pÉqrν/n

1

pn/2
pr n(κ−1)/2 log p

¿ τ(q)

qκ−1/2

∑
3ÉnÉνr log q/log2

1

n
qνr [((κ−1)r−1)n/2+1]/n

¿ τ(q)

qκ−1/2
qνr [(κ−1)r−1]/2qνr /3 loglog(3q)

¿ 1

q1/2

as soon as ν< 2/r 2 (and in particular if (4.1) is satisfied). We make the same computations for j n −2
and find then that P3

q,new[Φ;r,k] is an admissible error term. The old part is

P3
q,old[Φ;r ] = 2(2πiκ)

q log
(
qr

) ∑
1É jÉr

j≡r (mod 2)

∑
nÊ3

(
P3

q,old[Φ;r, j n]−P3
q,old[Φ;r, j n −2]

)

where

P3
q,old[Φ;r,k] := ∑

p∈P
p 6=q

log p

pn/2
Φ̂

(
log p

log qr /n

) ∑
`|q∞

1

`
∆1(pk`2,1).
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>From [12, eq (3.2) and (3.3)] we have∑
`|q∞

1

`
∆1(pk`2,1) É 2(k +1)

so that ∑
nÊ3

P3
q,old[Φ;r, j n] ¿ 1

and similary for P3
q,old[Φ;r, j n −2]. Finally Eh

q

(
P 3

q [Φ;r ]
)

enters the O(1/log3 qr ) term.

APPENDIX A. SOME COMMENTS ON AN AESTHETIC IDENTITY

It is possible to prove on induction on k0 Ê 1 the following equality inQ[T ]:

X2k0 −X2k0−2 =
k0−1∑
j=0

∑
1Ék j<k j−1<···<k1<k0

(−1) j

[
j−1∏
i=0

(
2ki

ki −ki+1

)]{
T 2k j −

(
2k j

k j

)}
. (A.1)

As a consequence, if K Ê 1 then

X2K+1 −X2K−1 = (−1)K T

(
1+ ∑

1Ék0ÉK
(−1)k0 X2k0 −X2k0−2

)
. (A.2)

Now, use (2.4) with r = 1 (so that X1 = T ) to get from (A.1) the equality

X2k0 −X2k0−2 =
k0−1∑
j=0

∑
1Ék j<k j−1<···<k1<k0

(−1) j

[
j−1∏
i=0

(
2ki

ki −ki+1

)][
2k j∑
`=0

x(2k j ,1,`)X`−
(

2k j

k j

)
X0

]

and compare the coefficients of X0 to obtain, thanks to (2.5) the equality

k0−1∑
j=0

∑
1Ék j<k j−1<···<k1<k0

(−1) j

[
j−1∏
i=0

(
2ki

ki −ki+1

)](
2k j

k j

)
k j

1+k j
= 0.

We could have expressed formulas (A.1) and (A.2) in terms of Fourier coefficients of primitive forms
to determine the lower order terms. However, this is definitely not the best way to proceed since it
consists in decomposing the polynomial XK −XK−2 in the canonical basis of Q[T ] and decomposing
again each element of this canonical basis in the Chebyshev basis (X`)`∈N.

APPENDIX B. S.J. MILLER’S IDENTITY AND CHEBYCHEV POLYNOMIALS

S.J. Miller ( [10, Equation (3.12) Page 6]) recently proved that

α f (p)K +β f (p)K = ∑
0ÉkÉK

k≡K (mod 2)

cK ,kλ f (p)k (B.1)

where cK ,k = 0 if k ≡ K +1 (mod 2) and

c0,0 = 0,

c2K ,0 = 2(−1)K (K Ê 1),

c2K ,2L = 2(−1)K+LK (K +L−1)!

(2L)!(K −L)!
(1 É L É K ),

c2K+1,2L+1 = (−1)K+L(2K +1)(K +L)!

(2L+1)!(K −L)!
(0 É L É K ).

We would like to give a quick proof of this identity, the crucial tool being Chebychev polynomials.
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Proof of equation (B.1). We know that

α f (p)K +β f (p)K = XK (λ f (p))−XK−2(λ f (p))

for K Ê 2 according to (2.6). Thus, the proof consists in decomposing the polynomial XK −XK−2 in the
canonical basis ofQ[T ]. This can be done via (2.9). It entails that

α f (p)K +β f (p)K = ∑
0ÉuÉK−2

u≡K (mod 2)

(−1)(K−u)/2

[(
(K +u)/2

u

)
+

(
(K +u)/2−1

u

)]
λ f (p)u

+ ∑
K−1ÉuÉK

u≡K (mod 2)

(−1)(K−u)/2

(
(K +u)/2

u

)
λ f (p)u ,

which is an equivalent formulation of (B.1). �

Remark B.1� Equation (B.1) could be used to recover the lower order terms coming from P 3
q [Φ;r ]

but,once again, it is not the most clever way to proceed since it would imply decomposing the
polynomials XK −XK−2 in the canonical basis ofQ[T ] at the beginning of the process and decomposing
the polynomials T j in the basis (Xr )rÊ0 just before the end of the proof in order to be able to apply
some trace formula for the Fourier coefficients of cusp forms.
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