STATISTICS FOR LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS IN THE
LEVEL ASPECT

GUILLAUME RICOTTA AND EMMANUEL ROYER

ABSTRACT. We study one-level and two-level densities for low lying zeros of symmetric
power L-functions in the level aspect. It allows us to completely determine the symmetry
types of some families of symmetric power L-functions with prescribed sign of functional
equation. We also compute the moments of one-level density and exhibit mock-Gaussian
behavior discovered by Hughes & Rudnick.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

1.1. Description of the families of L-functions studied. The purpose of this paper is to
compute various statistics associated to low-lying zeros of several families of symmetric
power L-functions in the level aspect. First of all, we give a short description of these
families. To any primitive holomorphic cusp form f of prime level g and even weight'
K =2 (see § 2.1 for the automorphic background) say f € H; (q), one can associate its r-th
symmetric power L-function denoted by L(Sym” f, s) for any integer r = 1. It is given by
an explicit absolutely convergent Euler product of degree r + 1 on Res > 1 (see § 2.1.4).
The completed L-function is defined by

ASym’ £,9) = (") Loo(Sym” f,s)L(Sym’ f, s)

where Lo (Sym’ f, s) is a product of 7 + 1 explicit I'r-factors (see § 2.1.4) and g is the arith-
metic conductor. We will need some control on the analytic behaviour of this function.
Unfortunately, such information is not currently known in all generality. We sum up our
main assumption in the following statement.

Hypothesis Nice(r, f)— The function A (Symr f s) is a completed L-function in the sense
that it satisfies the following nice analytic properties:

e it can be extended to an holomorphic function of order 1 on C,
o it satisfies a functional equation of the shape

A(Sym” f,s) =¢(Sym” f) A(Sym” f,1-)

n this paper, the weight « is a fixed even integer and the level g goes to infinity among the prime
numbers.
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where the sign ¢ (Sym” f) = +1 of the functional equation is given by

+1 if r is even,
e(Sym” f):= (1.1
er(q) x €k, )  otherwise
with
i ifr=1 (mod 8),
(%1)2(,(_1“%1 3 -1 ifr=3 (mod3),
—i* ifr=5 (mod 8),
+1 ifr =7 (mod8)
and ey(q) = +1 is defined in (2.11) and only depends on f and q.

ex,r)=1

Remark 1-Hypothesis Nice(r, f) is known for r = 1 (E. Hecke [10, 11,12]), r = 2 thanks
to the work of S. Gelbart and H. Jacquet [8] and r = 3,4 from the works of H. Kim and
E Shahidi [22,21, 20].
We aim at studying the low-lying zeros for the family of L-functions given by
Fr= |J {LSym'f,s),fe Hi(q)}
¢ prime
for any integer r = 1. Note that when r is even, the sign of the functional equation of any
L(Sym" f,s) is constant of value +1 but when r is odd, this is definitely not the case. As a
consequence, it is very natural to understand the low-lying zeros for the subfamilies given
by
Fi= U {LSym'f,9), e B @e(Sym' f) = e}

g prime
for any odd integer r = 1 and for € = +1.

1.2. Symmetry type of these families. One of the purpose of this work is to determine
the symmetry type of the families &, and #f for € = +1 and for any integer r = 1 (see § 4.1
for the background on symmetry types). The following theorem is a quick summary of
the symmetry types obtained.

Theorem A—Letr =1 be any integer and € = +1. We assume that hypothesis Nice(r, f)
holds for any prime number q and any primitive holomorphic cusp form of level q and
even weightx = 2. The symmetry group G(%,) of &, is given by

Sp ifriseven,

O  otherwise.

G(gr) = {

Ifr is odd then the symmetry group G(ZF£) of £ is given by

e SO(even) ife=+1,
G&F,) =
SO(odd) otherwise.

Remark 2-1t follows in particular from the value of € (Sym” f) given in (1.1) that, if r is
even, then Sym” f has not the same symmetry type than f and, if r is odd, then f and
Sym’ f have the same symmetry type if and only if

r=1 (mod8) and x=0 (mod 4)
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or
r=5 (mod8) and k=2 (mod 4)
or

r=7 (mod 8).

Remark 3—Note that we do not assume any Generalised Riemann Hypothesis for the
symmetric power L-functions.

In order to prove theorem A, we compute either the (signed) asymptotic expectation
of the one-level density or the (signed) asymptotic expectation of the two-level density.
The results are given in the next two sections in which € = +1, v will always be a positive
real number, ®,®; and ®, will always stand for even Schwartz functions whose Fourier
transforms ®,®; and ®, are compactly supported in [-v,+v] and f will always be a
primitive holomorphic cusp form of prime level g and even weight x = 2 for which
hypothesis Nice(r, f) holds. We refer to § 2.2 for the probabilistic background.

1.2.1. (Signed) asymptotic expectation of the one-level density. The one-level density (rela-
tively to @) of Sym’ f is defined by

1 r 1
Dy ¢ ®@;r1(f) = > <1>( og(q )(%ep——+i£‘smp))
o, AGSym’ f,0)=0 2im 2

where the sum is over the non-trivial zeros p of L(Sym’ f,s) with multiplicities. The
asymptotic expectation of the one-level density is by definition

im ) wq(f)D1,4l®;r1(f)
T T

where w4(f) is the harmonic weight defined in (2.5) and similarly the signed asymptotic
expectation of the one-level density is by definition

qgrrir}nez fE;(ﬁ)q(f)Dl,q[q); r1(f)
q—+o0o i (@)
(Sym’ f)=¢

when r is odd.
Theorem B— Let r = 1 be any integer and € = +1. We assume that hypothesis Nice(r, f)

holds for any prime number q and any primitive holomorphic cusp form of level q and
even weight x = 2 and also that 0 is admissible (see hypothesis H,(0) page 16). Let

v ( KB)'—(I L )2
l,max r) ’ L 2(1(—28) rz.

Ifv <v1max(1, %, 0) then the asymptotic expectation of the one-level density is

(_1)r+1

@(0) + @(0).

Let

£
Vl,max

. 3
(r,x,0) = 1nf(v1,max(r,1<,9), m) .
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Ifrisodd andv <v{ .. (r,x,0) then the signed asymptotic expectation of the one-level
density is

_1\r+l
d(0) + =)

D(0).

Remark 4—The first part of Theorem B reveals that the symmetry type of &, is

Sp if r is even,
G(&F)=10 ifr=1,
SO(even) or O or SO(odd) if r =3 is odd.

We cannot decide between the three orthogonal groups when r = 3 is odd since in this case
v1max(7,K,0) < 1 but the computation of the two-level densities will enable us to decide.
Note also that we go beyond the support [-1,1] when r =1 as Iwaniec, Luo & Sarnak [18]
(Theorem 1.1) but without doing any subtle arithmetic analysis of Kloosterman sums.
Also, A. Giiloglu in [9, Theorem 1.2] established some density result for the same family
of L-functions but when the weight k« goes to infinity and the level g is fixed. It turns out
that we recover the same constraint on v when r is even but we get a better result when r
is odd. This can be explained by the fact that the analytic conductor of any L(Sym” f, s)
with f in H (q) which is of size

r+1

otherwise

. x" if r is even
q
K

is slightly larger in his case than in ours when r is odd.

Remark 5—The second part of Theorem B reveals that if r is odd and € = +1 then the
symmetry type of &{ is

G(ZF£) = SO(even) or O or SO(odd).

Here v is always strictly smaller than one and we are not able to recover the result of [18,
Theorem 1.1] without doing some arithmetic on Kloosterman sums.

1.2.2. Sketch of the proof. We give here a sketch of the proof of the first part of Theorem
B namely we briefly explain how to determine the asymptotic expectation of the one-
level density assuming that hypothesis Nice(r, f) holds for any prime number g and any
primitive holomorphic cusp form of level g and even weight x = 2 and also that 0 is
admissible. The first step consists in transforming the sum over the zeros of A(Sym’ f, s)
which occurs in Dy 4[®; r]( f) into a sum over primes. This is done via some Riemann’s
explicit formula for symmetric power L-functions stated in Proposition 3.8 which leads to

(_1)r+1 r—1

Dy,q[®; 71(f) = D(0) + D0) + P[®;r1(f) + Y (=) PZ[®;r, ml(f) +o(1)
m=0
where ) | |
~( logp
PLdi () =———— Y Ap(p" ngcp(o—). (1.2)
9 log(q") pezga ) VP \log(q")
ptq

The terms Pf, [D; r, m](f) are also sums over primes which look like Pcli[q); r]1(f) but can
be forgotten in first approximation since they can be thought as sums over squares of
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primes which are easier to deal with. The second step consists in averaging over all the f
in H (q). While doing this, the asymptotic expectation of the one-level density

_1\r+l
d(0) + )

D(0)

naturally appears and we need to show that

ry|logp ~( logp
wqe(HAr(p )—cp(—)
o8(@) 2 e PV ) 5 gl
piq

2

is a remainder term provided that the support v of ® is small enough. We apply some
suitable trace formula given in Proposition 2.2 in order to express the previous average
of Hecke eigenvalues. We cannot directly apply Peterson’s trace formula since there may
be some old forms of level g especially when the weight « is large. Nevertheless, these
old forms are automatically of level 1 since g is prime and their contribution remains
negligible. So, we have to bound

4mi* 3 ZS(I,pr;c)]K_l(Mt\/?) logp&)( logp )

log(qr) pePc=1 c ¢ \/ﬁ IOg(qr)
plq 9\
where S(1, p’; ¢) is a Kloosterman sum and which can be written as
S, m;c)
Z Y. am———g(m;c)
log c>1 m=1
qle
where
; () logm 1 if m=p" for some prime p # g,
A = 124, (M) —=—— x
e g rml/@n) 0 otherwise
and

amy/m ) & ( logm )

c rlog(q"))
We apply the large sieve inequality for Kloosterman sums given in proposition 3.4. It
entails that if v < 2/r? then such quantity is bounded by

g(m;c) = ]K—l(

(K—I—G)(r v=2)+¢ 0)riv— (K—%—29)+E

Lg g +6](

This is an admissible error term if v < v max (7, x,8). We focus on the fact that we did any
arithmetic analysis of Kloosterman sums to get this result. Of course, the power of spectral
theory of automorphic forms is hidden in the large sieve inequalities for Kloosterman
sums.

1.2.3. (Signed) asymptotic expectation of the two-level density. The two-level density of
Sym’ f (relatively to @, and ®,) is defined by

~(Jj1) ~(j2)
Dy gl®@1,@r1(Ni= Y 1 (p) s (p ).
(Jj1,j2)€8(f,r)?
NEESE
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For more precision on the numbering of the zeros, we refer to § 3.2. The asymptotic
expectation of the two-level density is by definition
lim Wg(f)D2,4q[®1,D2;r1(f)
qprimefe;(q)q 1Dz !
gq—+oo ¥
and similarly the signed asymptotic expectation of the two-level density is by definition
Hm 2 ) wg(f)D2,ql®1, 25 7](f)

P feHi@
e(Sym” f)=e

when risodd and e = +1.

Theorem C—Letr =1 be any integer and € = +1. We assume that hypothesis Nice(r, f)
holds for any prime number q and any primitive holomorphic cusp form of level q and
even weightx = 2. Ifv < 1/r? then the asymptotic expectation of the two-level density is

(_1)r+1 (_1)r+1

®;(0) + D, (0) +

@, (0)

<D1(0)]

Ton+1 (1)

+2f || D) (1) D (1) due — 2D, D (0) + ((—1)r + D1 (0) D, (0).
R

Ifr isodd and v < 1/2r(r +2)) then the signed asymptotic expectation of the two-level
density is

o~ 1
<D1(0)+5<1>1(0)]

o 1
@, (0) + ECDZ (0)]

+2L|u|@(u)@(u)du—2@(0)—<I>1(0)<1>2(0)
+ 111 (€) @1 (0) D2 (0).

Remark 6—We have just seen that the computation of the one-level density already reveals
that the symmetry type of &, is Sp when r is even. The asymptotic expectation of the two-
level density also coincides with the one of Sp (see [19, Theorem A.D.2.2] or [26, Theorem
3.3]). When r = 3 is odd, the first part of Theorem C together with a result of Katz & Sarnak
(see [19, Theorem A.D.2.2] or [26, Theorem 3.2]) imply that the symmetry type of &; is O.

Remark 7—The second part of Theorem C and a result of Katz & Sarnak (see [19, Theorem
A.D.2.2] or [26, Theorem 3.2]) imply that the symmetry type of & is as in Theorem A for
any odd integer r = 1and € = +1.

In order to prove Theorem C, we need to determine the asymptotic variance of the
one-level density which is defined by
2

im Y wg(N)|Digl®rI(f)— D wg(8) D ql®;rl(g)

i’,ﬂriﬂf feH; (@) geHz (q)

and the signed asymptotic variance of the one-level density which is similarly defined by
2

im 2 Y w,(N)|Digl®r1(f)=2 Y wg(g)D14l®;71(g)
e TeHI@ geH; (q)
e(Sym’ f)=¢ €(Sym" g)=¢
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when r is odd and € = £1.

Theorem D—Letr =1 be any integer and € = +1. We assume that hypothesis Nice(r, f)
holds for any prime number q and any primitive holomorphic cusp form of level q and
even weightx = 2. Ifv < 1/r? then the asymptotic variance of the one-level density is

2[ Iu@z(u)du.
R

Ifrisodd andv < 1/(2r(r +2)) then the signed asymptotic variance of the one-level density
is

2[ Iultfz(u)du.
R

1.3. Asymptotic moments of the one-level density. Last but not least, we compute the
asymptotic m-th moment of the one-level density which is defined by

m
im ) wg(N)|Digl®rI(f)= D wg(8) D gl®;r(g)
oo fEHs (@) geH (@)

for any integer m = 1.

Theorem E—Let r =1 be any integer and € = +1. We assume that hypothesis Nice(r, f)
holds for any prime number q and any primitive holomorphic cusp form of level q and
even weightx = 2. If mv < 4/(r(r + 2)) then the asymptotic m-th moment of the one-level
density is
0 if mis odd,
!

&2 _m .
2[R|u|q> (w)du x 2m/2(m)! otherwise.
2
Remark 8-This result is another evidence for mock-Gaussian behaviour (see [13, 14, 15]
for instance).

Remark 9—We compute the first asymptotic moments of the one-level density. These
computations allow to compute the asymptotic expectation of the first level-densities [13,
§1.2]. We will use the specific case of the asymptotic expectation of the two-level density
and the asymptotic variance in § 5.1.

Let us sketch the proof of Theorem E by explaining the origin of the main term. We

have to evaluate
o<lé<sm )\«

O<as<

where P}, [@; r] has been defined in (1.2),

2 r _; N logp . ( 2logp

D" Y A p¥ <1>( )

log(q’)]; pezy d (p ) p \log(g")
pta

R(@) €5 (Py(@; 1™ P2(@; 7)) (1.3)

P2[®;7](f) = -

and R(q) satisfies

R(q):O(logq)'
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The main term comes from the contribution ¢ = 0 in the sum (1.3). Using a combinatorial
lemma, we rewrite this main contribution as

2"y oy ey ()
p.
0g™ (4" S geboms imie st I\
distinct

where P(m, s) is the set of surjective functions
o:{l,...,a} = 11,...,8}

such that for any j € {1,..., s}, either o(j) = 1 or there exists k < j such that o (j) = o (k) +1
and for any j € {1,..., s}

‘DS'U) =#o"L({j]).

(Pi);s, stands for the increasing sequence of prime numbers different from ¢. Linearising
lD(U)

each A ( iilru) " in terms of A f ( ﬁ{:) with j, runs over integers in [0, r@'?] and using a
trace formula to prove that the only o € P(m, s) leading to a principal contribution satisfy
(DS.U) =2forany j€{l,..., s}, we have to estimate

(=2 = s log? (Pi,) ~,  logpi,

WZ > > I = ‘1)2(1 - ) (1.4)

& W )s=1  ogepimy) i1yenis U=1 pi, og(q")
Vje{1,...,s},,p§.”>:2 distinct

This sum vanishes if m is odd since

S
Y 0 =m
e
j=1
and it remains to prove the formula for m even. In this case, and since we already
computed the moment for m = 2, we deduce from (1.4) that the main contribution is

ED (P [®;112) x #{a e Pim,m/2): @ =2 (Vj)}

and we conclude by computing
!

. ~0) _ B

Proving that the other terms lead to error terms is done by implementing similar ideas,
but requires — especially for the double products (namely terms implying both P}, and Pé)
—much more combinatorial technicalities.

1.4. Organisation of the paper. Section 2 contains the automorphic and probabilistic
background which is needed to be able to read this paper. In particular, we give here
the accurate definition of symmetric power L-functions and the properties of Chebyshev
polynomials useful in section 6. In section 3, we describe the main technical ingredients
of this work namely large sieve inequalities for Kloosterman sums and Riemann’s explicit
formula for symmetric power L-functions. In section 4, some standard facts about sym-
metry groups are given and the computation of the (signed) asymptotic expectation of
the one-level density is done. The computations of the (signed) asymptotic expectation,
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covariance and variance of the two-level density are done in section 5 whereas the compu-
tation of the asymptotic moments of the one-level density is provided in section 6. Some
well-known facts about Kloosterman sums are recalled in appendix A.

Notation— We write & for the set of prime numbers and the main parameter in this paper
is a prime number q, whose name is the level, which goes to infinity among &. Thus, if f
and g are some C-valued functions of the real variable then the notations f(q) <4 g(q) or
f(q) =04(g(q)) mean that|f(q)| is smaller than a "constant" which only depends on A
times g(q) at least for q a large enough prime number and similarly, f(q) = o(1) means
that f(q) — 0 as q goes to infinity among the prime numbers. We will denote by € an
absolute positive constant whose definition may vary from one line to the next one. The
characteristic function of a set S will be denoted 1s.

2. AUTOMORPHIC AND PROBABILISTIC BACKGROUND
2.1. Automorphic background.

2.1.1. Overview of holomorphic cusp forms. In this section, we recall general facts about
holomorphic cusp forms. A reference is [16].

Generalities— We write I'¢(q) for the congruence subgroup of level g which acts on the
upper-half plane /. A holomorphic function f: # — C which satisfies

az+b
cz+d

v(z Z)ero(q),vZle, f( ):(cz+d)’<f(z)

and vanishes at the cusps of I'y(q) is a holomorphic cusp form of level g, even weight
x = 2. We denote by Sk (g) this space of holomorphic cusp forms which is equipped with
the Peterson inner product

(f1, f2) g = f
To()
The Fourier expansion at the cusp oo of any such holomorphic cusp form f is given by

Vze A, f(z)= Z uff(n)n("_l)/ze(nz)

n=1

dxdy
v

ny“ﬁ (2) f2(2)

where e(z) := exp (2inz) for any complex number z. The Hecke operators act on S (gq) by

1 az+b
(a,q)=1

forany ze #. If f is an eigenvector of T, we write A 7(¢) the corresponding eigenvalue.
We can prove that Ty is hermitian if £ = 1 is any integer coprime with g and that

TpoTo,= Y. Ty e 2.1)
dl(6,,02)
(d,q)=1

for any integers ¢1, ¢, = 1. By Atkin & Lehner theory [1], we get a splitting of S, (g) into
S9(q) @94 S (g) where

Se(g) :=Vectc {f(gz), f € Sc(D)} U Sk (1),
Sg(q) — (Sg(q))J_(<'»)q
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where "0" stands for "old" and "n" for "new". Note that S (q) = {0} if x < 12 or x = 14.
These two spaces are Ty-invariant for any integer ¢ = 1 coprime with q. A primitive cusp
form f € SZ(g) is an eigenfunction of any operator T, for any integer £ = 1 coprime with
q which is new and arithmetically normalised namely 1 ¢(1) = 1. Such an element f is
automatically an eigenfunction of the other Hecke operators and satisfies y f(é) =1 f(ﬁ)
for any integer £ > 1. Moreover, if p is a prime number, define a ¢ (p), B (p) as the complex
roots of the quadratic equation

X2 =As(p)X +e4(p) =0 2.2)

where ¢4 denotes the trivial Dirichlet character of modulus g. Then it follows from the
work of Eichler, Shimura, Igusa and Deligne that

lar(p)L1Br(pl<1

for any prime number p and so
V=1, |Ap0)<T(0). (2.3)

The set of primitive cusp forms is denoted by H;; (q). It is an orthogonal basis of SZ(g). Let
f be a holomorphic cusp form with Hecke eigenvalues (1 f(ﬁ)) Cp=1"
property (2.1) entails that for any integer ¢; = 1 and for any integer ¢, = 1 coprime with g
the following multiplicative relations hold:

YDAl = Y, yr(01l2/d?), (2.4)
d|(01,02)
(d,q)=1

vl = Y pdyrlild)Ap(lald)
d|(l1,02)
(d,q)=1

The composition

and these relations hold for any integers ¢;,¢, = 1 if f is primitive. The adjointness
relation is

ApO)=Ar(€), well)=vyr(f)

for any integer ¢ = 1 coprime with g and this remains true for any integer ¢ = 1 if f is
primitive.
Trace formulas — We need two definitions. The harmonic weight associated to any f in
Sk (q) is defined by

I'(x-1)
@O, frg

For any natural integer m and n, the A;-symbol is given by

Z S(m;n; c) Jes (47t\/cmn)

cz1
qlc

wq(f) = (2.5)

Ag(m,n) =8 pmn+2mi"

where S(m, n; ) is a Kloosterman sum defined in appendix A.3 and Jx_; is a Bessel func-
tion of first kind defined in appendix A.2.The following proposition is Peterson’s trace
formula.
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Proposition 2.1- If H,(q) is any orthogonal basis of Sx(q) then
Y wg(NYrmyr(n) =Ag(m,n) (2.6)
feH(q)

for any integers m and n.

H. Iwaniec, W. Luo & P. Sarnak proved in [18] a useful variation of Peterson’s trace
formula which is an average over only primitive cusp forms. This is more convenient
when there are some old forms which is the case for instance when the weight « is large.
Let v be the arithmetic function defined by

vim):=n[](1+1/p)
pin

for any integer n = 1.

Proposition 2.2 (H. lwaniec, W. Luo & P. Sarnak (2001))-If(n,q*)| g and q{ m then

1 1
wa(NHAr(m)Ar(n) =Ays(m,n) — ——— -\ m[z,n . 2.7
feHZ;(q) q f f q av((n, @) i%m 7 ( )
Remark 2.3—-The first term in (2.7) is exactly the term which appears in (2.6) whereas the
second term in (2.7) will be usually very small as an old form comes from a form of level
1! Thus, everything works in practice as if there were no old forms in Sk (g).

2.1.2. Chebyshev polynomials and Hecke eigenvalues. Let p # q a prime number and
f € H; (g). The multiplicativity relation (2.4) leads to

;)Af(p’)rr = T;)th.
It follows that
Ar(p") =X (Ar(p)) 2.8)
where the polynomials X, are defined by their generating series
,;)Xr(x)tr T l—xt+ 2
They are also defined by
X;(2cos0) = %@;)6)

These polynomials are known as the Chebyshev polynomials of second kind. Each X,
has degree r, is even if r is even and odd otherwise. The family {X;},> is a basis for Q[X],
orthonormal with respect to the inner product

1 2 x2
(B Q)sT = —f P(x)Q(x){/1—- —dx.
) 4

In particular, for any integer @ = 0 we have

ro
X2 =Y x(@,r1,)X; (2.9)
j=0
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with
0.

2 (T gin® ((r +1)0)sin (7 + 1)
x(@,r, )= <X?,Xj>ST=;L sin® ((r Sm)(DLSI(I;)((] 0) 4

The following relations are useful in this paper
1 if j=0and @ iseven,
x(@,r,j)=10 ifjisoddand riseven, (2.10)
0 ifj=0,@d=1andr=1.

2.1.3. Overview of L-functions associated to primitive cusp forms. Let f in Hy (q). We
define

L(f,9)=)

n=1

Ag(n) a7 Brp)!
e G ey
n peP p p
which is an absolutely convergent and non-vanishing Dirichlet series and Euler product
on Res > 1 and also
Loo(f,s) =Tr(s+(k—1)/2)Tr(s+ (x+1)/2)
where T'g(s) := 7752 T (s/2) as usual. The function
A(f,8) = 4" Loo(f, $)L(S, )
is a completed L-function in the sense that it satisfies the following nice analytic properties:
« the function A(f, s) can be extended to an holomorphic function of order 1 on C,
« the function A(f, s) satisfies a functional equation of the shape
A(f,s) =i"ef(@)A(f,1-5)
where

eF(@) = —VGAs(q) = +1. 2.11)

2.1.4. Overview of symmetric power L-functions. Let f in H; (q). For any natural integer
r = 1, the symmetric r -th power associated to f is given by the following Euler product of
degree r + 1
L(Sym" f,8):= [] Lp(Sym" f,s)
pep
where
Ly(Sym’ f,9) =] -
i=0 p
for any prime number p. Let us remark that the local factors of this Euler product may be
written as

r (1 ~ (Xf(P)i,Bf(p)r_i )_1

r a ( )Zi—r -
Lysym’ f,5 =] (1 - %)

i=0
for any prime number p # g and

Ar@  Ap@h)

T
asar(p)+Pr(p) =Ar(p) and af(p)Br(p) = £4(p) for any prime number p according to
(2.2). On Re s > 1, this Euler product is absolutely convergent and non-vanishing. We also
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defines [4, (3.16) and (3.17)] a local factor at co which is given by a product of r + 1 Gamma
factors namely
Loo(Sym” f, ) := H TR(s+Ra+1)(x—-1)/2)Tr(s+1+2a+1)(x—1)/2)
0o<a<(r-1)/2
if r is odd and

Loo(Sym’ f,8) :=Tg(s+px,r) [] Tr(s+ax-1))Tr(s+1+ak-1)

1<a<r/2
if r is even where

1 ifr(x—-1)/21is odd,
Hx,r = .
0 otherwise.

All the local data appearing in these local factors are encapsulated in the following com-
pleted L-function

A(Sym’ f,s) = (qr)S/z Loo(Sym” f, ) L(Sym” [, s).

Here, q" is called the arithmetic conductor of A(Sym’ f,s) and somehow measures the
size of this function. We will need some control on the analytic behaviour of this function.
Unfortunately, such information is not currently known in all generality. Our main as-
sumption is given in hypothesis Nice(r, f) page 2. Indeed, much more is expected to hold
as it is discussed in details in [4] namely the following assumption is strongly believed to
be true and lies in the spirit of Langlands program.

Hypothesis Sym’ (f)— There exists an automorphic cuspidal self-dual representation, de-
noted bySym' wy =& o, Sym"ny,,, 0f GLr41 (Ag) whose local factors L(Sym” 7, , s)
agree with the local factors L, (Sym” f, s) for any p in 2 U {oo}.

Note that the local factors and the arithmetic conductor in the definition of A (Sym” f, s)
and also the sign of its functional equation which all appear without any explanations so
far come from the explicit computations which have been done via the local Langlands
correspondence by J. Cogdell and P. Michel in [4]. Obviously, hypothesis Nice(r, f) is
a weak consequence of hypothesis Sym’ (f). For instance, the cuspidality condition in
hypothesis Sym’ (f) entails the fact that A (Sym” f, s) is of order 1 which is crucial for us
to state a suitable explicit formula. As we will not exploit the power of automorphic theory
in this paper, hypothesis Nice(r, f) is enough for our purpose. In addition, it may happen
that hypothesis Nice(r, f) is known whereas hypothesis Sym” f is not. Let us overview
what has been done so far. For any f in H; (q), hypothesis Sym” f is known for r = 1
(E. Hecke), r = 2 thanks to the work of S. Gelbart and H. Jacquet [8] and r = 3,4 from the
works of H. Kim and E Shahidi [22,21, 20].

2.2. Probabilistic background. The set H; () can be seen as a probability space if

o the measurable sets are all its subsets,
 the harmonic probability measure is defined by

,ug(A) = Zhl =) wq(f)

feA feA

for any subset A of H; (q).
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Indeed, there is a slight abuse here as we only know that
. h * _
Llilerg) tg (He (@) =1 (2.12)
q—+o0

(see remark 3.12) which means that ,u},; is an “asymptotic” probability measure. If X is
a measurable complex-valued function on Hy (g) then it is very natural to compute its
expectation defined by

Bh(X)= X" X,
feHe(q)

its variance defined by
2
Vi (X,) =Ef ((Xq ~E8 (X)) )

and its m-th moments given by

Mt (Xg) =Bl (4 - B (X)) )

for any integer m > 1. If X == (X) qew 18 asequence of such measurable complex-valued
functions then we may legitimely wonder if the associated complex sequences

([Eg (Xq))qe@ ’ (\/2 (Xq))qeg’ ’ (M};’m (Xq))qe,@

converge as g goes to infinity among the primes. If yes, the following general notations
will be used for their limits

Eb (X), VE(X), M, X

for any natural integer m. In addition, these potential limits are called asymptotic expec-
tation, asymptotic variance and asymptotic m-th moments of X for any natural integer
mz=1.

For the end of this section, we assume that r is odd. We may remark that the sign of
the functional equations of any L(Sym’ f, s) when g goes to infinity among the prime
numbers and f ranges over H, (q) is not constant as it depends on € ¢(g). Let

He (@)= {f € H{(q),e(Sym” f) = e}

where ¢ = +1. If f € H}'!(q), then Sym’ f is said to be even whereas it is said to be odd if
f € H: Y (g). Tt is well-known that

N =

Ll}gg) ,u}q1 {feH{(@:er(q=¢})=

g—+00

Since (Sym” f) is £4(f) up to a sign depending only on x and r (by hypothesis Nice(r, f)),
it follows that

N =

lim pb(HE =
limy g (He(@)
g—+00
For X, as previous, we can compute its signed expectation defined by

EfS (Xq)=2 2" Xq(P),
feH(@)
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its signed variance defined by

uhe () =B (x5 (%))

and its signed m-th moments given by
m
Mg (Xq) = Eg© ((Xq ~Ey° (Xq)) )

for any natural integer m > 1. In case of existence, we write E2 (X), VI (X) and M{,‘;‘m (X)
for the limits which are called signed asymptotic expectation, signed asymptotic variance
and signed asymptotic moments. The signed expectation and the expectation are linked
through the formula

h l+exe(Sym’ f)

EF(Xg) =2 ) > Xq(f)
FER @)
=ED (X)) —exet, VG Y Ap(@)Xq(f). 2.13)
feH: (q)

3. MAIN TECHNICAL INGREDIENTS OF THIS WORK

3.1. Large sieve inequalities for Kloosterman sums. One of the main ingredients in this
work is some large sieve inequalities for Kloosterman sums which have been established
by J.-M. Deshouillers & H. Iwaniec in [5] and then refined by V. Blomer, G. Harcos &
P. Michel in [2]. The proof of these large sieve inequalities relies on the spectral theory of
automorphic forms on GL; (Ag). In particular, the authors have to understand the size of
the Fourier coefficients of these automorphic cusp forms. We have already seen that the
size of the Fourier coefficients of holomorphic cusp forms is well understood (2.3) but we
only have partial results on the size of the Fourier coefficients of Maass cusp forms which
do not come from holomorphic forms. We introduce the following hypothesis which
measures the approximation towards the Ramanujan-Peterson-Selberg conjecture.
Hypothesis H,(0)—If 1 := ®Ip€§”u{oo}np is any automorphic cuspidal form on GLy(Ag)
with local Hecke parameters a,(,l) (p), a,(,z) (p) at any prime number p and ,ug,l) (00), uﬁf) (00)
at infinity then
vie,2, lafpi<p’

for any prime number p for which i), is unramified and
Vjell,2), ‘me(uﬁ,”(oo)ﬂse

provided 1, is unramified.

Definition 3.1- We say that 6 is admissible if Ho(0) is satisfied.

Remark 3.2—The smallest admissible value of 6 is currently 8, = 67—4 thanks to the works
of H. Kim, E Shahidi and P. Sarnak [21, 20]. The Ramanujan-Peterson-Selberg conjecture
asserts that 0 is admissible.
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Definition 3.3— Let T: R® — R* and (M, N, C) € (R\ {0})%, we say that a smooth function
h: R — R3 satisfies the property P(T; M, N, C) if there exists a real number K > 0 such that

M N C
V(i, j, k) €N?, Y (x1, X2, x3) € - 2M | x| 2N | x 5,26],
o ek
. 6z+]+kh /MN i+
X} x) X —————(x1, %2, x3) <KT(M,N,C) 1+ .
axiox!oxk C
1 2 3

With this definition in mind, we are able to write the following proposition which is
special case of a large sieve inequality adapted from the one of Deshouillers & Iwaniec [5,
Theorem 9] by Blomer, Harcos & Michel [2, Theorem 4].

Proposition 3.4— Let q be some positive integer. Let M,N,C = 1 and g be a smooth
function satisfying property P(1; M, N, C). Consider two sequences of complex numbers
(@m) memiz,2m and (bp) neinse,2ny- If 0 is admissible and MN < C? then

Xy ambn—s(m’jn;c)g(m, n;c)

czlm=1n=1
qlc

2 0

< (MNC)* (C—

M 1/2 N 1/2
(1+—) (1+—) lall2llbll2
MN q

q

foranye>0.

We shall use a test function. For any v > 0 let us define .%, (R) as the space of even
Schwartz function ® whose Fourier transform

D) = F[x— D)) = ‘[Rq)(x)e(—xf) dx
is compactly supported in [-v, +v]. Thanks to the Fourier inversion formula:

O(x) = fR B e(x) dx = F[E — BE)] (),

such a function ® can be extended to an entire even function which satisfies

exp (v|Sm s|)

VseC, P(s)
) ) <n = s

for any integer n = 0.The version of the large sieve inequality we shall use several times in
this paper is then the following.

Corollary 3.5— Let q be some prime number, ki, ko > 0 be some integers, a1, a2,v be some
positive real numbers and ® € %, (R). Let h be some smooth function satisfying prop-
erty P(T; M,N,C) foranyl <M < g“%", 1< N < g% andC = q. Let (ap) pew and

pgqalv
(bp) pew besomecomplex numbers sequences. If 0 is admissible andv <2 [ (kya, + ko)
p<q“?’
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then

S(pfl,p?;d v & \~[ logpi \~( logps
ap, bp,——————h|p}", p,’;ic CD( )CD( )
;pgypgﬂ T ¢ ( bz ) log(q®) ) \log(q®2)

¢ pitg potq
M N\(c2 Y
<y T (1+ /_)(H,/_)(C_) T(M, N, C)llall2 bl
1sM<g*91k q q)\MN

1sN<gV®2ke
Czql2

wheret indicates that the sum is on powers of /2. The constant implied by the symbol <
depends at mostone, ky, k2, ay, ax andv.

Proof. Define (@m) men, (bn) ,cpy and g(m, n;c) by

Qm = Qi Igr (M) ﬂ[l,qvalkl] (m)
Bn =b,uk Igk (1) ﬂ[lqulkl] (n)

logm ) - ( logn )
log(g®ik)) ~ \log(q®zk2) )’

Using a smooth partition of unity, as detailed in § A.1, we need to evaluate

g(m,n;c) = h(m,n, c)CTD(

§ .. =~ S(m,n;c) gu,Nn,c(m, n;c)
T(M,N,C) amb . (3.1)
1<M§,W1k1 ;mzz“lr;l e ¢ T(M,N,C)

1sN<gV®2ke qle
C=ql2

Since v <2 /(a1k; + azk»), the first summation is restricted to MN <« C? hence, using

proposition 3.4, the quantity in (3.1) is
[M N\ ez’
< bl g TN, O |14+ =1+ = (—)
lall2lbl2g® ). ( ) q)( Vv

1<sM<g¥ah
1<N<gV%2ke
C=ql2

O

3.2. Riemann’s explicit formula for symmetric power L-functions. In this section, we
give an analog of Riemann-von Mangoldt’s explicit formula for symmetric power L-
functions. Before that, let us recall some preliminary facts on zeros of symmetric power
L-functions which can be found in section 5.3 of [17]. Let r = 1 and f € H (q) for
which hypothesis Nice(r, f) holds. All the zeros of A(Sym’ f,s) are in the critical strip
{s€C: 0 <Res < 1}. The multiset of the zeros of A(Sym” f, s) counted with multiplicities
is given by

o0 =) +iv']: jesr,n}
where
Z if Sym” f is odd

E(f,r) = ) ]
Z\{0} ifSym” f is even.
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and

(€] (6]
ﬁ] :§Repfj,r,

0 _ ()
Yf r for

for any j € £(f, r). We enumerate the zeros such that

C"mp

(1) the sequence j — y}])r is increasing

(2) we have j =0 if and only if)/(]) =0

for
(= (7

3) wehavepf =1- pfr.

Note that if p;])

of A(Sym" f,s). In addition, remember that if Sym” f is odd then the functional equation
of L(Sym” f, s) evaluated at the critical point s = 1/2 provides a trivial zero denoted by

p;fn It can be shown [17, Theorem 5.8] that the number of zeros A(Sym” f, s) satisfying

Iy(]) |<Tis

(1)

is a zero of A(Sym’ f, s) then p o ,1— psc])r and 1— p(j )r are also some zeros

T rTr+1

. 2ne) ) +0(log(gD)

as T = 1 goes to infinity. We state now the Generalised Riemann Hypothesis which is
the main conjecture about the horizontal distribution of the zeros of A(Sym’ f, s) in the
critical strip.

Hypothesis GRH(r)—For any prime number q and any f in H¢(q), all the zeros of
A(Sym’ f,s) lie on the critical line {s € C: Res = 1/2} namely ﬁ(r]} =1/2 forany je E(f, ).

Remark 3.6—We do not use this hypothesis in our proofs.

Under hypothesis GRH(r), it can be shown that the number of zeros of the function
A(Sym’ f,s) satistying |y for | < 1is given by

;log(q J(L+0(1)

as g goes to infinity. Thus, the spacing between two consecutive zeros with imaginary
partin [0, 1] is roughly of size
27
log(q")’

We aim at studying the local distribution of the zeros of A(Sym’ f, s) in a neighborhood of
the real axis of size 1/logg" since in such a neighborhood, we expect to catch only few
zeros (but without being able to say that we catch only one?). Hence, we normalise the
zeros by defining

_(j) ._ log(q )(,6 (j))
27

Lr 2in Wil
Note that
A(—j) ~()
Prr = Prr

2We refer to Miller [25] and Omar [27] for works related to the “first” zero.



20 G. RICOTTA AND E. ROYER

Definition 3.7— Let f € H; (q) for which hypothesis Nice(r, f) holds and let ® € #,(R). The
one-level density (relatively to ®) of Sym' f is

Dygl®;rl(f):= ¥ @(5%)_
Jje&(f,r)

To study Dy 4[®; r](f) for any ® € 4, (R), we transform this sum over zeros into a sum
over primes in the next proposition. In other words, we establish an explicit formula for
symmetric power L-functions. Since the proof is classical, we refer to [18, §4] or [9, §2.2]
which present a method that has just to be adapted to our setting.

Proposition 3.8—Letr =1 and f € H; (q) for which hypothesis Nice(r, f) holds and let
® e &, (R). We have

r—1 1
Dy 41®; 11(f) = E[®; 11+ P[®; r1(f) + Y (1) PL[®; 1, mI(f) + o( )

m=0 log(g")
where
R (_1)r+1
E[®;r]:=®(0) + ®(0),
2 logp - ( logp
PLI®;r1(f) = - A(p' q)( )
I log(q") p;9 1) vp \log(q")
priq
_. logp - ( 2logp
P®;r,ml(f) = ——— 3 Ap(p?™ q)( )
! log(q") p;@ sl ) p log(q")
pta

for any integer m € {0,...,r —1}.

3.3. Contribution of the old forms. In this short section, we prove the following useful
lemmas.

Lemma 3.9— Let p, and p» # q be some prime numbers and a,, a,, a be some nonnegative
integers. Then

A (%P1, patg®) 1
Z < al2
2|q>® 4 q

the implied constant depending only on a; and a,.

Proof. Using proposition 2.1 and the fact that Hy (1) = H; (1), we write
A PP ps gD = Y AP

feHz (1)
< YA PMIIA PN Ap (). 3.2)
feHz (1)
By Deligne’s bound (2.3) we have
AP 1A (p5)] < TP pIT(ps?) < (ar +1) (@2 +2)T(6%). (3.3)

By the multiplicativity relation (2.4) and the value of the sign of the functional equa-
tion (2.11), we have

1
Ar(g™)| < PR (3.4)
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We obtain the result by reporting (3.4) and (3.3) in (3.2) and by using (2.12) and
2
T(69) _ 1+1/q2 <1,
fe € -1/

O
Lemma 3.10— Let m, n = 1 be some coprime integers. Then,
1/4
(mrcz’) log(%) ifmn> g*
Ag(m,n)—b6(m,n) < B
(mn)(K 1)/2 (mn)1/4 ifmn< q2
qK—l/Z =4

Proof. This is a direct consequence of the Weil-Estermann bound (A.5) and lemma A.1.
O

Corollary 3.11- For any prime number q, we have

1
feH (@) q

where

K .
—— ifx<10orx=14
s..=4 2

K =
otherwise.

N O

Proof of corollary 3.11. Let £ = {x € 2N: 2 < x < 14, x # 12}. By proposition 2.2, we have

h k¢ H) « A2 q)
Af(q)=A0q(1, q) - :
fe%ﬁ(q) i o qv(q) [%oo ¢

(3.5)

The term 6 (x ¢ £ ) comes from proposition 2.1 with the fact that there is no cusp forms
of weight x € # and level 1. Lemma 3.10 gives

1
Aq(l,q) << W (3.6)

and lemma 3.9 gives
AP g 1

. (3.7
2|g>® 4 \/ﬁ
Since v(q) > g, the result follows from reporting (3.6) and (3.7) in (3.5). |
Remark 3.12—1In a very similar fashion, one can prove that
1
h * _rh _
tg (Hy (@) =E4(1) = 1+O(W). (3.8)
where )
k—— ifx<l0orx=14
’yK = 2
1 otherwise.
Corollary 3.11, (3.8) and (2.13) imply
h, B 1
E5 () =1+0 prey (3.9)
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where
xk—1 .
—— ifx<10orx=14
ﬁK:: 2

1 otherwise.
A direct consequence of lemma 3.9 is the following one.

Lemma 3.13- Let a;, @y, f1,B2,Y1,Y2, W be some nonnegative real numbers. Let ®, and
D, be in #(R). Then,

Yy log p1 logpgé\l( log p1 )@( log p» ) A (2p!, pY g™y
DI1EDP preP p?l sz log(qﬁl) log(qﬁz) 21q>® 4
pitq potq

« qév—w/2+5

with 6 given in table 1.

“ 10,1] [1, +ool
az

10,1] Br1l—a))+Ba(l—az) | B2(1-ap)
(1, +oo] f1l-ay) 0

TABLE 1. Values of 6

4. LINEAR STATISTICS FOR LOW-LYING ZEROS

4.1. Density results for families of L-functions. We briefly recall some well-known fea-
tures that can be found in [18]. Let & be a family of L-functions indexed by the arithmetic
conductor namely
F=UZW0Q
Q=1

where the arithmetic conductor of any L-function in & (Q) is of order Q in the logarithmic
scale. Itis expected that there is a symmetry group G(%) of matrices of large rank endowed
with a probability measure which can be associated to % such that the low-lying zeros
of the L-functions in & namely the non-trivial zeros of height less than 1/logQ are
distributed like the eigenvalues of the matrices in G(%). In other words, there should
exist a symmetry group G(&) such that for any v > 0 and any ® € %, (R),

) 1 logQ ( I ))

lim —— CI)( : ——+1

Q_’+OO E(Q) HE;(Q) Os%sl 217[ ﬁ” 2 Yﬂ
YreR

L(m,Br+iyn)=0

_ fR D) Wi (G(F)) (x) dx

where W) (G(&)) is the one-level density of the eigenvalues of G(&). In this case, & is
said to be of symmetry type G() and we said that we proved a density result for &. For
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instance, the following densities are determined in [19]:
sin (27 x)

Wi(SO(even))(x) =1+ ——,
271X

1
Wi(0)(x) =1+ 55o(x),

Wy(SO(0dd) (x) = 1 — ST s 0,
27X
sin (27 x)
wSp)x)=1- ——
27X

where 6§ is the Dirac distribution at 0. According to Plancherel’s formula,
fRdD(x)Wl(G(ﬁ"))(x) dx= fR@(X)Wl(G(ﬁf‘))(x) dx
and we can check that

_ 1
W1 (SO(even))(x) = 6o(x) + En(x),
- 1
W1(0)(x) = 6o (x) + 2’
- 1
W1(SO(odd)) (x) = dp(x) — En(x) +1,

_ 1
W1(Sp)(x) =0p(x) — En(x)

where
if |x] <1,

n(x) := ifx =41,

S D=

otherwise.

As a consequence, if we can only prove a density result for v < 1, the three orthogonal
densities are indistinguishable although they are distinguishable from Sp. Thus, the
challenge is to pass the natural barrier v = 1.

4.2. Asymptotic expectation of the one-level density. The aim of this part is to prove a
density result for the family
Fr=|J {LSym" f,9), f € H; ()}
qe»p

for any r = 1 which consists in proving the existence and computing the asymptotic ex-
pectation EX (D1 [®; r]) of Dy [®; 7] := (Dy,q(®; r])qeg for any r = 1 and for @ in .%, (R) with
v > 0 as large as possible in order to be able to distinguish between the three orthogonal
densities if r is small enough. Recall that E[®; r] has been defined in proposition 3.8.

Theorem 4.1—Letr =1 and ® € %, (R). We assume that hypothesis Nice(r, f) holds for
any prime number q and any f € H; (q) and also that 0 is admissible. Let
1 2
Vi max(1,K,0) == (1 - m) =z
Ifv <v1max(1,x,0) then
ES, (D1[®; 1) = E[®; 7].
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Remark 4.2—We remark that

16 2 82
Vl,max(ryK,HO) = (1 - 321(—7) ﬁz W»
1) 2 3
Vl,max(r,K,O)Z(l—g)ﬁ Bﬁ

and thus v max(1,%,0¢) > 1 whereas v max (7, k,00) < 1 for any r = 2.

Remark 4.3—Note that

. (_1)r+1
E[®;r] :fd)(x) (60(x)+ 5 )dx.
R

Thus, this theorem reveals that the symmetry type of &, is
Sp if r is even,
GF)={0 ifr=1,
SO(even) or O or SO(odd) if r =3is odd.
Some additional comments are given in remark 4 page 5.

Proof of theorem 4.1. The proofis detailed and will be a model for the next density results.
According to proposition 3.8 and (3.8) , we have

B (D15 71) = E[®; ] + B} (P @371

r—1

+ Y (~)"Ey (P2, m))+0
m=0

)
. 4.1)
log(g")
The first term in (4.1) is the main term given in the theorem. We now estimate the second
term of (4.1) via the trace formula given in proposition 2.2.

B (P43 71) = Pl e[ @571 + P 1 [®57] (4.2)
where
logp - ( logp
Pl newl®; 7] = ———— A(pr,l)—q)( )
anenl 1= 50 ) 1705 g
ptq
2 1 logp . ( logp
Pl @ =—— ) = Al(prlz,l)—fl)( )
4old qbgwﬂeééfgé' VP \log(q")

rtq
Let us estimate the new part which can be written as

log

227i%) ( p
_5 1 rv (p)
log(q") %”’;@ NG atp *[1,q™]

S(p", 10
SO LES e

A/ p" |\ ~( 1
X]K—l( P )(D( ogpr )
c log(q")
Thanks to (A.3), the function

h(m;c) == Jx-1 (47:;/%)
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satisfies hypothesis P(T; M, 1, C) with

K—1

VM

\/M 1/2—x
C

T(M,1,C) = (1+—
C

Hence, if v < 2/r? then corollary 3.5 leads to

xk—1-260
Pl newl®; 11 <¢ g° % (1“/%)(@) 4.3)

1sM<q""
C=ql2
k=1 LS
€ § Mz M2~0
KLg g Z qK—l—ZG + K—1-20
1<M<qg"? q :

thanks to (A.2). Summing over M via (A.1) leads to

2

qnew[q) rl <, q(;—@)(r v— 2)+£+q( 0)r2v— (K—%—29)+E (4.4)

which is an admissible error term if v < v max (7, %,60). According to lemma 3.13 (with
a» = +00) we have

Pl oal®rl < g2 7' (4.5)
which is an admissible error term if v < 2/r. Reporting (4.4) and (4.5) in (4.2) we obtain
1
h{plig. L
ED (Pq (@; r]) < (4.6)

for some 67 > 0 (depending on v and r) as soon as v < v max (7, &, 8). We now estimate the
third term of (4.1). If 0 < m < r — 1 then the trace formula given in proposition 2.2 implies
that

B (P2(05 7, 7)) = P o [95 ,m1] + P2 g [57, )

where
2 _m 1 logp - (log(p?)
P? ewl®r,ml = ———— 5" A, (p?"™ 1 ) ,
g,new log(qr) p;@ 11( ) p log(q’)
ptq
P2 @ m = —— Z AL (P2 logpé(log(pz))
G qlog(q7) fige €y p \log(q))
pta
Let us estimate the new part which can be written as
2(2mi¥) logp S(p?T=™ 1;¢)
P? newl®; 7, m] = = ( —=5 5 (p))—
gnew g( )CZIIPEZ@ \/— q)(p[ } c
qlc
1 ; 474/ p?lr=m C’I‘)( logp )
X — Jp— .
vp ! c logq'
The function s
41/ m 1
h(m,C) = ]K_l( c ) X ml/(4(r—m))
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satisfies hypothesis P(T; M, 1, C) with

1/2—x k-1
vM vM 1
TM,1,C) = (1+T C MLGr—m)

Hence, if v < 2/r? then corollary 3.5 leads to

1 \/M x—1-260 M
P2 [@; 1, m] <, g° 4 1+4/—].
q,new[ ] eq Ms%“*’") (M)l/(4r—4m) C ( q )
C=q/2

This is smaller than the bound given in (4.3) and hence is an admissible error term if
V < V1,max(7,k,0). According to lemma 3.13, we have

|P2

. —1+e
q,old[q)’ rl<e q .

We obtain

1
E} (Pé[d); r, m]) < 4.7)

for some 6, > 0 (depending on v and r) as soon as v < vy max(7, k,0). Finally, reporting
(4.7) and (4.6) in (4.1), we get

E} (D) 4(®;7]) = E[®; 7]+ O (—1 ) . (4.8)
qyThar ’ logqg
O

4.3. Signed asymptotic expectation of the one-level density. In this part, we prove some
density results for subfamilies of %, on which the sign of the functional equation remains
constant. The two subfamilies are defined by

7= {LSym’ £,9), f € HE (@)}
qe»

Indeed, we compute the asymptotic expectation [E{.lg’ (D1 [®; r]).

Theorem 4.4—Let r = 1 be an odd integer, € = +1 and ® € #,(R). We assume that hy-
pothesis Nice(r, f) holds for any prime number q and any f € H; (q) and also that 6 is
admissible. Let

Vimax(r’K’H) = inf| v max(7,%,0), o +2)

Ifv <v] hax (%, 0) then

EQ (D1[®; 7)) = E[®; 7.
Some comments are given in remark 5 page 5.
Proof of theorem 4.4. By (2.13), we have

Ep* (Dy,ql®;r]) = E} (D1,q[®; 1) — £ x £(k, 1) VG E} (A.(q) D1,q[®; r1).
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The first term is the main term of the theorem thanks to theorem 4.1. According to
proposition 3.8 and corollary 3.11, the second term (without the epsilon factors) is given
by

VaEL (A (@ Py@;r])

r—1
+ \/ﬁmZ:O(—l)’“ [E},} (A.(q)Pf,[CD; T, m]) +0 (4.9)

@)
log(q7))"
Let us focus on the first term in (4.9) knowing that the same discussion holds for the
second term with even better results on v. We have

VAES (AL (@PY®; 1) = VAP e[ 057+ VGPE g5 7]

where
[®; 7] = 2 Z Ay (P g,1) log &)(M)
P e log(q") yez 7 \log(q")
ptq

1 C] —
P} o1al® 7] =

Z Z A ( pre2q logp&)( logp )
qv(q)log ") fiae € pe VP \log(q")
pta

Lemma 3.13 implies
VAP ql®; 11 < VY2

which is an admissible error term if v < 4/r. The new part is given by

o ]__2(2m"‘) y v logp S(p’q,l;C)]K_l(‘lﬂ\/ﬂ)@(log(p) )
Py log(q" )c>1p€9’ VP ¢ ¢ log(q")
qic gtp
and can be written as
_2(2mi") i S(m,1;c) Jeor (4n\/m) & (log(m/q))
log(q") =11 ¢ log(q")

where
4o 0 if gt mor m# p" q for some p # q in 2,
g™l 10% if m = p" q for some p # q in 22.

Thus, if v < 1/r2 then we obtain

x—1-20
VM M
Pl @inml<e gt Y | 144/ —
quh—vrz C q
C=ql2

as in the proof of corollary 3.5. Summing over C via (A.2) gives

x1l_g X_p
1 . € i M= M:
IPLI Hew[q)r rml < q . Z} ) (qK—l—Zﬂ qk—%—ZG ) ’
Sq +rev
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Summing over M via (A.1) leads to

P}ynew[q); r,ml <, q(%—ﬂ)rzv—(%l—e)ﬂ:+q(§—6)r2v—(’%1—9)+8

which is an admissible error term if v < r—lg (1-- }29 ). O

5. QUADRATIC STATISTICS FOR LOW-LYING ZEROS
5.1. Asymptotic expectation of the two-level density and asymptotic variance.

Definition 5.1- Let f € H; (q) and @1, ®, in %, (R). The two-level density (relatively to @,
and ®,) of Sym” f is
Dogl@,®2r1(N= ¥ o (p}))ex(p).
(j1,j2)€8(f,r)?
h#£)2

Remark 5.2—1n this definition, it is important to note that the condition j; # j, does not

imply that ﬁ;f‘r) # ﬁ;jzr) It only implies this if the zeros are simple. Recall however that

some L-functions of elliptic curves (hence of modular forms) have multiple zeros at the
critical point [24, 3].

The following lemma is an immediate consequence of definition 5.1.
Lemma 5.3—Let f € H; (q) and ®,, ; in %, (R). Then,
D3 @1, @2;71(f) = D1, [P@1; 11(f) D1,¢[@2; 11(f) = 2D1,¢[P1D2; 71(f)
+ ‘ﬂHgl(q) (f) x ©1(0)D2(0).
We first evaluate the product of one-level statistics on average.

Lemma 5.4—Letr = 1. Let ®, and ©, in &, (R). We assume that hypothesis Nice(r, f)
holds for any prime number q and any f € H} (q) and also that 0 is admissible. If v < 1/r?
then

ER, (D1[®1; 71Dy [@2; 7]) = E[®@y; 11 El®g; 1] + ZL'”'(E(”)@(”) du.

Remark 5.5—Since theorem 4.1 implies that
ED, (D1[®1; r1D1[@2; 71) — E[®y; 1] El®y; 1] =
Ef, (D1 [@1; 71 D1 (@33 71) — EX, (D1 [©1; 1) ES, (D1 [@2;71),
lemma 5.4 reveals that the term
CY (D1(®1; 7], D1 (@2 7)) :=2fR|uI<T>\1(u)CT>\z(u)du

measures the dependence between D, [®;;r] and D, [®,;r]. This term is the asymp-
totic covariance of D1 [®;r] and D; [®,;r]. In particular, taking ®; = @, we obtain the
asymptotic variance.

Theorem 5.6— Let ® € .%,(R). Ifv < 1/r? then the asymptotic variance of the random
variable Dy 4[®; ] is

V(D [®@; 1)) = 2[ |u|®? () du.
R
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Proof of lemma 5.4. From proposition 3.8, we obtain

Ef (D1,4[®1; 71Dy ¢[®2;7]) = E[®y; 11 E[®y; 1]+ C))

r—1
Y Y DM@ r1P2 ) m)
(i,j)€{1,2}> m=0
i£]

r-1 r-1 1
+ ()™M R P2 (D) 1 my | P2 [@; 1, mo] | + o( )
m12::O m;:O q ( T 1 ) log(qr)

with

Ch =B (Ph@1; 11 P} 03 1),
The error term is evaluated by use of theorem 4.1 and equations (2.12), (4.6) and (4.7). We
first compute Cg. Using proposition 2.2, we compute Cg = E"" — 4E° with

B 4 log p1 logpzA( log p: )A( log p»

= 1 2
108> (q") prew pe» VP1 VP2 \log(q") log (g
pitq ptq

))Aq(p{mﬁ)

and
EC=———
qlog’ (q")
y logp1 108192/\( logp1 )A( log p ) A1 (£2p1, py)
1 2 .
l)1g>®

v e VP1 VP2 \log(q") log(q") ¢
pita patq

By definition of the A-symbol, we write E" = Ef + logzﬂ(i;r) E!' with
4 log’p ,~ . ( logp
E}:=—5 - (CD1CD2)(1 . )
log®(q") pe» P og(q")
pta

and

logpy logps —( logpy \ —( logpa
) (et )% s ()

1 2
Slpiewper VP VP2 \log(q")) “\log(q")
qle pitq p2tq

) S(p{,pQ;C)] 4m\/ pyp;

k-1
c Cc

We remove the condition pt g from Ej atan admissible cost and obtain, after integration
by parts,

Egzzfm@(u)@(u)dmo (5.1)
R

log? (g") ) '
Using corollary 3.5, we get

El' < (5.2)

log*(q")
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as soon as v < 1/r2. Finally, using lemma 3.13, we see that E° is an admissible error term
for v < 1/r so that equations (5.1) and (5.2) lead to

a:gzzfmm?l(u)@(u)dmo (5.3)
R

1
log? (7))
Let {i, j} = {1,2}. We prove next that each [Eg (P; (®;; r]Pé [@j;1, m]) is an error term when
v<1/re. Using proposition 2.2 and lemma 3.13 we have

8mi¥ I 1 ~ (1
[Eg(Pcly[d)i;r]Pfy[‘Dj;r,m])=—72” 1 ogp2®i( wla )
log®(q") Elpicwpeer VP1 P2 \log(q")
9 pitg pata
Xq?_( log pa )S(p{,pér‘z'";m P Y pips 2" +O( 1 )2
"\log(q™"?) c et c log(q"))
We use corollary 3.5 to conclude that
1
B (Py (@ r1P3 (@5, ml) < oga (5.4)

when v < 1/r2. Finally, [Eg (Ps (@y;7, ml]Pfi (@7, I’)’lg]) is shown to be an error term in the
same way. O

Using lemmas 5.3 and 5.4, theorem 4.1, hypothesis Nice(r, f) and remark 3.12, we prove
the following theorem.

Theorem 5.7—Letr = 1. Let ®, and @, in #,(R). We assume that hypothesis Nice(r, f)
holds for any prime number q and any f € H; (q) and also that 0 is admissible. If v <
Vo max(T,K,0) then

h . (_1)r+1 - (_1)1‘+l
Eoo (D2[®1,P2;1]) = | P1(0) + ®1(0)| |P2(0) + D, (0)
+2f|u|éi(u)q?2(u)du—2q>’lq>\2(0)+((—1)’+1]2N+Tl(r))q>1(0)q>2(0).
R

Some comments are given in remark 6 page 7.

5.2. Signed asymptotic expectation of the two-level density and signed asymptotic
variance. In this part, r is odd.

Lemma 5.8 Let @, and ®, in %, (R). Ifv < 1/(2r?) then
ER (D1[®1; 71Dy [@2;7]) = E[@1; 1] E[®g; 1] +2 fR |ul®@1 (1) D5 () du.
Remark 5.9—By theorem 4.4 and lemma 5.8 we have

EYE (D [@y; 71Dy [@o; 7)) — E[@y; 1] E[@; 7] =
EYE (D [@y; 71D [@y; 7]) — EXE (D [y 7]) EXE (D1 [@o; 7).
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Thus,
Che (D1 [@1; 7], Dy [@;7]) :=2L|u|@(u)@(u)du

is the signed asymptotic covariance of D1 [®;;r] and D, [®y; r]. In particular, taking ®; =
®,, we obtain the signed asymptotic variance.

Theorem 5.10—Let ® € .%,(R). Ifv < 1/(2r?) then the signed asymptotic variance of
D1 [®;r] is

VS (D1@5r1) =2 [ 1@ ) du
R
Proof of lemma 5.8. From proposition 3.8 and (3.9), we obtain

Ey® (D1,ql®1; 11Dy g[®2; 71) = E[®y; 1] E[@g; r] +Cl*

r—1
Y Y COMEY (Ph@srI P2 ml)
(i,ef1,2}2 m=0

i#]
+ rf rf (—1)m*me ghe (Pz[dn'r my P2 [®; 1 m2])+0( . ) (5.5)
m;=0my=0 1 g 1 log(qr)
with
che = (PLi@y; 1Py (@a ).
Assume that v < 1/r2. Then equations (2.13), (5.3) and proposition 2.2 lead to
([:2'"E =2f|u|§)\1(u)d/>\2(u)du—£xs(1<, r(G"-4G°) (5.6)
R
with
4,/q logpy logps ~ [ logp: \ —~( logp2
6= 1( ; )(Dz( ; )Aq(p{q,pﬁ)
10g”(q") preow pser VP1 VP2 \log(q") log(q")
pita p2q
and
G°:= _
valog® (q")

<Y log p1 108!’2&)\1( log p1 )/\2( log 2 ) Aq (%P1, p3a)
P1ED peP m \/ﬁ log(qr) log(qr) £|q>® ¢

pitq p21q

Lemma 3.10 implies that if v < 1/(2r?) then
qu[r(K—1)+1]/2

n
G'x D72 (5.7)
hence G" is an error term as soon as v < 1/(2r?). Lemma 3.13 implies
GO « q—3/2+vr+£ (5.8)

which is an error term. Reporting equations (5.7) and (5.8) in (5.6) we obtain

Chi=2 f |ul®1 (1) D2 (1) du (5.9)
R



32 G. RICOTTA AND E. ROYER

for v <1/@2r(r +2)). Next, we prove that each [Eg"E (P}, (D;; r]Pé ([@j;1, m]) is an error term

as soon as v < 1/(2r2). From equations (2.13) and (5.4), we obtain

Ey* (PhI@;r1P3 (@57, ml) =

—exek, VG Y Ap(@PL®;rIPE®};r,m]+0
feH; (q)

. (5.10
logq)) ( )

We use proposition 2.2 and lemmas 3.13 and 3.10 to have

Va Y Ap(@PL®; P m) <
feH(q)

qu(2r—m+2)/4—1/4 q(vr—l)/2+£
5 + (5.11)
log” g logq
It follows from (5.11) and (5.10) that

ERS (Ph1s; rI P10 r,ml) = 0 (5.12)

forv<1/@2r(r +1)). In the same way, we have, for v in the previous range,
ERe (P21 7, my | PE(@y; 1, mal | =0, (5.13)
Reporting (5.9), (5.12) and (5.13) in (5.5), we have the announced result. (]

Using lemmas 5.3, 5.8, theorem 4.4, hypothesis Nice(r, f) and (3.9), we prove the
following theorem.

Theorem 5.11- Let f € H; (q) and @, @, in %, [R). Ifv<1/2r(r +1)) then

— 1
EYE (D3 [@y, Do; 7)) = | D) (0) + S®100)

—~ 1
[d)g )+ ECDZ (0

+ ZfRWﬁ)\l(u)‘i)\z(u) du-— ZCE_CD\Z(O) — @1 (0)D2(0)
+ -1 (€) @1 (0) D2 (0).

Remark 5.12— Remark 4.3 together with theorem 5.11 and a result of Katz & Sarnak (see [19,
Theorem A.D.2.2] or [26, Theorem 3.2]) imply that the symmetry type of & is as in table 2.
Some additional comments are given in remark 2 page 3.

r even odd
€
-1 SO(odd)
1 Sp | SO(even)

TABLE 2. Symmetry type of £
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6. FIRST ASYMPTOTIC MOMENTS OF THE ONE-LEVEL DENSITY

In this section, we compute the asymptotic m-th moment of the one level density
namely
h . — 1 h .
Mg, (D1,q[®@;71) == Lllleng}a Mg i (D1,419; 1)
g—+00
where
m
M5 (D1,q1®371) = B (D1,4193 71 = B (D1 g 05 71)) )

for m small enough (regarding to the size of the support of ®). The end of this section is
devoted to the proof of theorem E. Note that we can assume that m = 3 since the work
has already been done for m = 1 and m = 2. Thanks to equation (4.8) and proposition 3.8,
we have

e
=0

m\[¢
_Os;s:m(g) a

1ray. 1M | D2 1. 1 ))[
0| Pyl;r] (Pq[q>,r1+o(logq

R(g) " E5 (Py(@; 1™ P2(0;7)°)

O<as/
where
2 = - _i) logp ~ ( 2logp
Pz[d);r]( )= — (-1)/ A 2(r—j) q)( )
q f log(q’)jgo pg@ f(P ) p log(qr)
ptq
2 ¢ —j N logp [ 2logp
= DY Ar (P —<I>( ) 6.1
log(qr)jz‘:1 p;@ f(p ) p log(g")
ptq

and R is a positive function satisfying

1
R —
() < logq

Thus, an asymptotic formula for Mg, m (DL ql®; r]) directly follows from the next proposi-
tion.

Proposition 6.1— Let r = 1 be any integer. We assume that hypothesis Nice(r, f) holds for
any prime number q and any primitive holomorphic cusp form of level q and even weight
K. Let @ = 0 and ¢ = 0 be any integers.

e Ifa=1and av<4/r? then
1
h 2. 10 —
[Eq(Pq[CD,r] )_o(—logqj.
e lflsasfl<sm-1land(a+m—20)v<4/(r(r+2)) then

h 1 .gm—f p2 Y2 1
[Eq(Pq[d),r] Pq[CD,r])—O(logq).



34 G. RICOTTA AND E. ROYER

e Ifa=1and av<4/(r(r+2)) then

o ifa isodd,
S I SRV
ZfRIUIq) (u)du x 27 (T); + O(log2 (q)) otherwise.

6.1. One some useful combinatorial identity. In order to use the multiplicative prop-
erties of Hecke eigenvalues in the proof of proposition 6.1, we want to reorder some
sums over many primes to sums over distinct primes. We follow the work of Hughes &
Rudnick [14, §7] (see also [13] and the work of Soshnikov [28]) to achieve this. Let P(a, s)
be the set of surjective functions

o:{1,...,a}—»{1,...,s}

such thatfor any j € {1,..., a}, either o(j) = 1 or there exists k < j such that o (j) = o (k) + 1.
This can be viewed as the number of partitions of a set of a elements into s nonempty
subsets. By definition, the cardinality of P(«, s) is the Stirling number of second kind [29,
§1.4]. For any j € {1,...,s}, let

@ =#o" ().
Note that

(0) . (o) _
a)j =21 foranyl<js<s and Z(Dj =q. (6.2)

The following lemma is lemma 7.3 of [14, §7].

Lemma 6.2-If g is any function of m variables then

m

Z g(le""’xjm)zz Z Z g(xia(l)""’xia(m))'

j] ..... ]m s:laeP(m,s) i1 ..... l’s
distinct

6.2. Proof of the first bullet of proposition 6.1. By the definition (6.1), we have

[Eh(Pz[cp-r]“)——(_Z)a ORNCE Ve
a\"a™ " T e
log (qr) 1<ji,.,jasST

- (ﬁlngi&)(ZIngi))[Eg(ﬁ/lf(p?]'i))'

Pl Pa€P \i=1 pi log(q’)

Writing {p;};>1 for the increasing sequence of prime numbers except g, we have

u logpiA(Zlogpi) h T 2j;
) E A
pzpegz(l:[l pi log(gn) )| * ,:Hl / (p’ )
q*pl-npa

e logpi, ~ (2logp; @ ;
i1yeenria /=1
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Using lemma 6.2, we rewrite the right sum in (6.3) as

b W B EX | B R )

s=1o0€P(a,s) ky,..., i=1 pka(i) log(qr) i=1 o
distinct
z T (108 Pk, 5 (2108 P, o _2/\®i)
-5 % (I[P | 1 ()
s=1o€P(a,s) ky,...,ks \u=1 k,, log(q ) I<us<s “
distinct Isjsr

where
ng} =#{l<i<ao()=uj;=j}

forany 1< u<sandanyl < j<r. Now, we show that

frox
s=1o€eP(a,s) ky,..., ks \u=1
distinct 1<j<r

<log® 1(g).

For s < a and 0 € P(«, s), we use (2.3) together with (3.8) to obtain that the left-hand side
of the previous equation is bounded by

al log pi, |~ (ZIOgﬁk ) )‘”57)
(D u
szi aepz(;'x s) k1§ l_[ ( ku log(g")

dlstlnct

Since s < a, equation (6.2) implies that (D(L?) > 1 for some 1 < u < s. These values lead to
convergent, hence bounded, sums. Let

d9=#{l<us<s: @9 =1} e{0,...,a-1},

then
5o s
s=1o€P(a,s) ky,....k; u=1 log(qr)
distinct
= 4% (log pr, |~ (2108 Pi
< o CD( “) )<< log® 1 (g).
s;lae};a,s) klgkd 1[[1( Pk, log(g")
distinct
We have altogether

(—2) Z (_l)ar—(j1+...+ja)
log® (g") 1<y~ j

q) u
" klzka (51( Pk, log(qr) u=l Pr,

dié.t.i}lct
1
+ O( ) (6.4)
logg

E) (Pf7 (@; r]“) -
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since the only element of P(a, ) is the identity function. By lemmas 3.9 and 3.10, we have
a
h ~2Ju jul2 ~
Eq (ﬂf(l_llpk,{ )) < - H pr. " logpr,
u=

hence the first term in the right-hand side of (6.4) is bounded by a negative power of g as
soon as avr? < 4.

6.3. Proof of the third bullet of proposition 6.1. By proposition 3.8, we have

2 @ a1 i~(1 i a -

i=1 l logq i=1

.....

Using lemma 6.2, we rewrite equation (6.5) as

(-2)¢ & @ Piry & log pi,
EXPL @) = ———— > ) ]'[ .
aq9 log® (q") & j= log(q")
sloepla ”éig’t;;;’ét VP
a
h ~r
X[Eq (jzl/lf (pl'am))

(0)
(-2* & s (logpi, ~ (log i\
R x| )

108" (9") A vebra,) iyois \u=1\ /Pi, \l0gq"
distinct
h s (D(O)
~I u
x[Eq(Hlﬂf (piu) ) (6.6)
u=
It follows from (2.8) and (2.9) that
o ro?
Af(pl) =Y x(@¥¢ r]u)/lf( Ju)
ju:()

Since u # v implies that p;, # p;,, equation (6.6) becomes

(o)

—2)@ & SlllAi‘D“
o G5 ¢ (o))

1 8 (qr) s=1o€eP(a,s) i,...,is VP log(qr)

distinct
T o(m (@) h Y
x ) (H x(a)lf,r,ju))[Eq(/lf(H pi:)).
JireeorJs u=1 u=1
0<j,<r@?

Using proposition 2.2 and lemmas 3.10 and 3.9, we get
S

S s 1 ul N
e (2 (1T 72)) = TT 81,0+ 0( T1 7108
u=

hence
[E}q‘(P; [@; 1Y) = TP+O(TE) (6.7)
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with
a a 1 1 ID(GJ
(-2) 08 Pi, 5 ( 0gpi, )) —_—
_ x(@,,’,1,0) (6.8)
" log” (qr)szlgepz(m hzh U ( Vpi, \log(g")
distinct
and
(o)
1 & ( 2)/4 A(logﬁi ))‘D
= log ) z .
glog® (q") s;aepz(a,s) ll,.Z..,,s LHl log(g")
distinct
We have
a
~( lo
(r-2)/41, q)( gp )‘ « gOrvir+2)/a-1 6.9)
qlog (g") pézp 19 log(g") q
ptq

so that, TE is an error term as soon as
arv(r+2)<4.

We assume from now on that this condition is satisfied. According to (2.10) (recall that
r = 1), we rewrite (6.8) as

(0)

(=2)* & logp,u (logﬁiu )) “ @)
—_— x(@;,’,1,0) (6.10)
log (qr) ;UEPZZ((X s) llzh l:[ ( \/ log(C]r)

distinct

where
P**(a,s):={oeP(a,s): Yuell,...,s},@? =2}.
Moreover, if for at least one o and at least one u (say 1) we have (DE?) = 3, then

(o)

logplu (logﬁiu ) o (0’)
@, 1,0
Z U ( VDi log(g") x( )

i1,
dlstlnct

> log® (p) ﬁ 5 log” (pu)
peP p3/2 u=1 Pue?P Pu
psqrv u;éuo pusqrv

< (logg)*™2. (6.11)

But, from (6.2), we deduce

S
2s< Z (DS.G) =a
=
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hence (log g)** "2 < (log )% 2. Reinserting this in (6.11) and the result in (6.10), we obtain

(o)

2 @ logpi, ~ (logpi \\™* .
C2° & 5 > H(ogpu (ogpz:)) @9, 1,0)

108 (q") = loeP2(a,s) i1 =1\ VPi logq
dlstlnct
+0 5 ) (6.12)
log®(g)

where

PX(a,5):={o€P(a,s): Yuell,...,s},0? = 2}.
From (6.12), (6.9) and (6.7), we deduce

(-2 g s log? (pi )A log p;

a q 1 g (qr) SZIUEPZZ(C( S) llgls l!:[l plu log(qr)
distinct
1
=
log” (q)

since x(2,r,0) = 1 according to (2.10). Note in particular that, according to (6.2) the
previous sum is zero if @ is odd. Thus, we can assume now that « is even and get

(-2)¢ a/2 1og* (H M)A log pi,
ED(PLI®;r]%) = —— Y ] g Pi 2( gp,r)
1 g (CI )0'€P2(a,a/2)l1 ..... iqp u=1 log(q )
distinct
O( ) (6.13)
logg(q)

However, summing over all the possible (iy,...,i4/2) instead of the one with distinct
indices reintroduces convergent sums that enter the error term because of the 1/log® (¢")
factor. It follows that (6.13) becomes:

al2
#P% (a0, a/2)

4 logz(p)a)z( logp )

ED (P} [®; r]%) =
- log? (q") jez» P log(q")

O( ) (6.14)
log2 (@)

Taking m = 2 (we already proved that the second moment is finite, see section 5.1) and
reinserting the result in (6.14) implies that

Ef (P [®@;r]%) = Ef (P [@; r1*)#P% (@, a/2) + O (m) :
We conclude by computing
a!
#P* (@, @/2) = ———r.
202(2)

(see [30, Example 5.2.6 and Exercise 5.43]).
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6.4. Proof of the second bullet of proposition 6.1. We mix the two techniques which
have been used to prove the first and third bullets of proposition 6.1. We get following the
same lines and thanks to lemma 6.2

h( 1 012 ) (—2)‘“’"”_[ Z I )a+in:—€
E, | Py [@; 7] PL[D; 1% | = (1)@ =Ur+eta
e ! 108a+m_£ (G") 1<j1 o jasr =1

(o,1)

(0,2)

< Y ¥ ﬁ Lo+ (m)@(logpzu)” q,(zmgp,,,)a’

oeP(a+m—2,s) i1,...,is u=1 o 12+al? log(g™) log(q™)
distinct Iu

(0,2)

(11 on)™ 1152
where

OV =#{ie{l,...m-0}, o(i) = u},
O =#{iefl,...,a}, oc(m-C+i)=u},

(0,2) \_ yf; ) = =17
oy =#{ie{l,...,a},0(m-C+i)=uand j = j}

foranyl<u<s,anyl < j<randanyo € P(a+m—/,s). Note that these numbers satisfy
S
Y (@Y +00 ) =m-l+a (6.15)
u=1

and

Z (D(U ,2) _ (D(U 2) (6.16)

forany 1 < u<r and any o € P(a + m— /¢, s) by definition. They also satisfy
VoePla+m—-{,5),Yuell,...,s}, @9V+09?>1 (6.17)
since any o € P(a +m— /¢, s) is surjective and

VoePla+m—{(,5),Vie{1,2},qujgell,...,s}, @) =1 (6.18)
since ¢ = 1 and m — ¢ = 1. The strategy is to estimate individually each term of the o-
sum. Thus, we fix some integers ji, ..., jo in{1,...,r}, some integer sin {1, ..., r} and some
application o in P(a+ m—2¢,s).
Firstcase: Vuell,...,s}, @5"1)/2+ (Df’Z) < 1.
Let us remark that if 7? = 1 for some 1 < u < s then there exists a unique 1 < Ji, ST
depending on o such that (D(” 2 =1 and (D(U 2 =0 forany 1< # Ji, < r according to

’ iy
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(6.16). Thus,

$ @Dy j (DSZY'Z) P~ 54{7,1)

H(M(ﬁ,ﬁ,) H(Af(ﬁfu’) ’))=7‘f I "
SUSS

(04" 0?)=2,0)

[CA)) CA)) 2ji @92
~T @, 12 ~T Dy’ u® Wipy,
X . .
Ar [1 P, [1 Pi, [1 Pi,
1<us<s 1<sus<s 1<us<s
(04" 0%2)=(2,0) (0¥,0?)=0,0 (04" 0%?)=(0,1)

where the two integers appearing in the right-hand side of the previous equality are
different according to (6.18). Consequently, proposition 2.2 and lemmas 3.10 and 3.9
enable us to assert that

h S .y (D(ol) r ( LD(UZ)) 1 logﬁiu
Al (o™ A6 )<
(04" .07?)=0 "

5 I log pi, I log pi,
—ray" 14 —roy? 2’
l<us<s 57T Ou 1<us<s 577 Ou
(0" 0% ?)=0,0 " (0" .07?)=01 "

Note that, in this first case, the right hand term is

ﬁ log pi,
21 A r@ Y 14+ 12)
P;

ll

1
qu

hence the contribution of these ¢’s to [Eg (Pcll [D;r] m_fPé (D; r]“) is bounded by

m—¢ a
q¢ 1 1 VIAl(m=0)(r+2)+ar]-1+¢
a4 Z 1/2-r/4 Z 12| <4 :
q \p<q P p<q'r'2 P

This is an admissible error term as long as vr/4[(m—€)(r +2) + ar] < 1.
Second case: Jugy €{l,...,s}, (D(U D2+ DS
According to (2.8) and (2.9),ifflsu<s and 1< j<rthen

@y ra??

) ot
ku,1:O
and
/\2] SZ}Z) ] 5:7]2 (0’ 2) 2ku]2
A (P = k )y [ @uj 2l 2huiay 7"
u,j2=

since x(a)(g 2) 12], ku,j2) =0if ky j2 is odd (see (2.10)). Then, one may remark that

I as(7) = X vets(2)

Isjsr =0
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for some integers yy, and where Ky, := ¥.1< j<, ky,j,2 for any 1 < u < s. All these facts lead
to

h( 1 ¢ p2 ) (—2)atm=t(_p)yer ¥ o “+§—f
EX P, [®;r]" P [D;1r]%) = (—1)J1+tia
! ! I loga"'m_[ (qr) lsjl,...,jasr s=1
@YY 292

s +@f? (. 5. \@u
y Z Z l—[ log 1 (flu)a\)(logplu ) Q(Zlogplu)
~0\ 7V 12+ log(g") log(g™)

geP(a+m—{,s) iy,...,is u=1 p.
distinct

OSkLISTLDEU’I) OSkl,LgSlDYT{ZJ OSklmgﬁrtDYTr'z) 0</1<K;

iy

: : 0<l,<K.
Ok 1 <r@? 0ks1220%?  O<kyo<ral? T

S r
1] ( (0,1 k) e, 1 (x(072.2 j,z;cu,j,z)))
u=1 j=1
h = Aku,l : ’\Zéu
xEg|As Hlpiu Ag Hpiu :
u=

u=1

Proposition 2.2 and lemmas 3.10 and 3.9 enable us to assert that

S S S S
Ey (M(H 4 (1192 = T o +0($ 17" logp,)

u=1 u=1 u=1
and we can write

ED (P}7 [@; 11"~ P2 [@; r]“) =TP+O(TE)

with
(_2)a+m—€(_1)ar . X a+m-{
TP = po— Z (_1)]l+‘-~+]a Z
10g (q’) 1<j1,0enr ja ST s=1
(a D, 02 , =R (@,1) . (@,2)
5 Z Z ﬁ log?u ™ *Ou’ (Piu)a)(logpi,, )‘D“ (,I\)(ZIOgPi,, )‘D“
o€eP(a+m—V¥,s) ii,...,is u=1 "‘D(gl)/z"'@wz log(qr) log(qr)
distinct Iy

D S 3 3

2 2 .
0<ky <@y} 0<kyo<r@\7” 0<¢,<rmin (a)g"'“ /2,@5"'”)

’ 2
Osks,l_zswgf’l ) 0<k3,2\ra)§r 0<Zssrm1n(a)(” Dy (D(am)

S r
. ( (0, 1.26,) ye, [1 (x(072.2 ,-,Zku,j,z)))
j=1

u=1
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and
1

qugOH—m— (qr)

a+m—~ s (0,1) (0,2)
(0,1) , ~(0,2) o ri2=Dloy 12+
x 3 Y X [Tleg™ ™ (pi)p;, | )
s=1 oeP(a+m—1,s) iy,...,is u=1
distinct
<’IS( log pi, ) i (T)(ZIOgﬁiu) @y?

log(g") log(g")

which is bounded by O, (q(‘”m_[ vrila-l+e ) for any € > 0 and is an admissible error term

if (a+m—20)v<4alr?, Estimating TP is possible since we can assume that o satisfies
the following additional property. If (D(u”’Z) =0 for some 1 < u < s then (Dg”l) > 1. Let us

assume on the contrary that (D(u”’n < 1 which entails (D(u”’n =1 according to (6.17). Then,
(@Y, r,20,) = x(1,1,0)=0

since ¢, = 0 and according to (2.10). Thus, the contribution of the ¢’s which do not
satisfy this last property vanishes. As a consequence, the sum over the distinct iy, ..., i is
bounded by

2)

log” (Pi,) | 5 ( log i,
2l e ®liogiar )
1yenis 1<us<s pi, og(q")
distinct (@5;"“,@5;’2)):(2,0)

. 1 (logA(ﬁiu) &)(ZIOgﬁiu))
Isu<s piu log(qr)
(0",0%?)=(0,1)

(o,1) (0,2) —~ —~ (o,1) Py (0,2)
< T log® " (Pi) |5 (logPi, \|™* |5 (2108 ||
s ~oV12+0” log(q") log(g")

o s, U P

which is itself bounded by O (log”” (¢)) where the exponent is given by
Ap=2#{1<u<s0%?=0and @7V /2+07? <1}
+#{l<su<s,0@? =1and @V /2+09? <1} <m-C+a.
The last inequality follows from (see (6.15) and the additional property of o)

m—C+a=Ags+ Y (@Y + @2,
Isuss
@7V 12+00?>1

Thus, the contribution of the TP term of these ¢’s to [Eg (P}] [@; r]m—¢ Pfi [®; r] “) is bounded
by O (log™" (9)).



LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 43

APPENDIX A. ANALYTIC AND ARITHMETIC TOOLBOX

A.1. On smooth dyadic partitions of unity. Let y: R, — R be any smooth function

satisfying
) 0 ifosx<l,
XxX) =
v 1 ifx>v2

and x/y) (x) «; 1 for any real number x > 0 and any integer j > 0. If p: R, — R is the
function defined by

w(x) ifo<x<v2,
1 —w(%) otherwise

then p is a smooth function compactly supported in [1, 2] satisfying

o X
xfp(f)(x) «:1 and p( ):1
J a;z \/za

for any real number x = 0 and any integer j = 0.

1- 1-

I I
1 NG, 1 /3 2

(a) Graphof ¢ (b) Graph of p

If F: R — Ris a function of n = 1 real variables then we can decompose it in

F=) .. ) Fa,a,

meZ apeZ

where A; = \/iai and

n
Fppeeon, (X1, %0) = [ [ pa, (x) F(x1,+ -+, xp)
i=1
with p 4, (x;) == p (x; / A; ) is a smooth function compactly supported in [A;,2A;] satisfying
x{ pi{i) (xi) < 1 for any real number x; = 0 and any integer j = 0. Let us introduce the
following notation for summation over powers of v/2 :
Zﬁ f(M) — Z f(zn/Z)

A<M<B neN
A<2™?<B
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We will use such smooth dyadic partitions of unity several times in this paper and we
will also need these natural estimates in such contexts

Y M« M A1)
M<M,;
for any a, M} >0 and
g1 1
M>M, 0

for any a, My > 0.

A.2. On Bessel functions. The Bessel function of first kind and order a integer x = 1 is
defined by
VzeC, Jk(z)=)_

(=D K+2n
=0 nl(x + n)! (z)

2
It satisfies the following estimate (founded in [23, Lemma C.2]), valid for any real
number x, any integer j = 0 and any integer x = 1:

(L)K (A.3)

(m)] K (1+x)% 1+x

for any real number x, any integer j = 0 and any integer « = 1. The following useful lemma
follows immediately.
Lemma A.1-Let X >0andx =1, then
5 7(d) ; (X)’ X"2logX if X>1,
— -l
o vd " \d X* ifo<Xx<1.

A.3. Basic facts on Kloosterman sums. For any integer m, n, ¢ = 1, the Kloosterman sum
is defined by

S(m,n;c) = Z e(m)

x mod (c) c
(x,0)=1

where X stands for the inverse of x modulo c¢. We recall some basic facts on these sums.
The Chinese remainder theorem implies the following multiplicativity relation

S(m, n; gr) = S(mq*, n; 1)S(M72, n; q) (A.4)

valid as soon as (g, r) = 1. Here, ¢q (resp. 7) is the inverse of g (resp. r) modulo r (resp. g).
If p and g are two prime numbers, y = 1 and r = 1 then, from (A.4) and [7, (2.312)] we
obtain

-S(p¥q,1;r) if(q,r =1,

S(p¥q,1;qr) =
(pa.1iar) {0 otherwise.

The Weil-Estermann inequality [6] is

IS(m, n; )| < v/ (m,n,c)T(c)ve. (A.5)



—

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

LOW-LYING ZEROS OF SYMMETRIC POWER L-FUNCTIONS 45

REFERENCES

. A. O. L. Atkin and J. Lehner, Hecke operators onI'g(m), Math. Ann. 185 (1970), 134-160. MR MR0268123
(42 #3022)

. V. Blomer, G. Harcos, and P. Michel, A Burgess-like subconvex bound for twisted L-functions, Forum Math.
19 (2007), no. 1, 61-106.

. Joe P. Buhler, Benedict H. Gross, and Don B. Zagier, On the conjecture of Birch and Swinnerton-Dyer for
an elliptic curve of rank 3, Math. Comp. 44 (1985), no. 170, 473-481. MR MR777279 (86g:11037)

. J. Cogdell and P. Michel, On the complex moments of symmetric power L-functions at s = 1, Int. Math. Res.
Not. (2004), no. 31, 1561-1617. MR MR2035301 (2005f:11094)

. J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math.
70 (1982/83), no. 2, 219-288. MR MR684172 (84m:10015)

. T. Estermann, On Kloosterman'’s sum, Mathematika 8 (1961), 83-86. MR MR0126420 (23 #A3716)

. Th. Estermann, Vereinfachter Beweis eines Satzes von Kloosterman., Abhandlungen Hamburg 7 (1929),
82-98 (German).

. Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of GL(2) and GL(3),
Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), no. 4, 471-542. MR MR533066 (81e:10025)

. Ahmet Muhtar Gililoglu, Low-lying zeroes of symmetric power L-functions, Int. Math. Res. Not. (2005),

no. 9, 517-550. MR MR2131448

E. Hecke, Uber die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112

(1936), no. 1, 664-699. MR MR1513069

, Uber Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. 1,

Math. Ann. 114 (1937), no. 1, 1-28. MR MR1513122

_____, Uber Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. II,

Math. Ann. 114 (1937), no. 1, 316-351. MR MR1513142

C. P Hughes, Mock-Gaussian behaviour, Recent perspectives in random matrix theory and number theory,

London Math. Soc. Lecture Note Ser., vol. 322, Cambridge Univ. Press, Cambridge, 2005, pp. 337-355.

MR MR2166468 (2006g:11191)

C. P Hughes and Z. Rudnick, Linear statistics of low-lying zeros of L-functions, Q. ]J. Math. 54 (2003), no. 3,

309-333. MR MR2013141 (2005a:11131)

, Mock-Gaussian behaviour for linear statistics of classical compact groups, J. Phys. A 36 (2003),

no. 12, 2919-2932, Random matrix theory. MR MR1986399 (2004€e:60012)

Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, Ameri-

can Mathematical Society, Providence, RI, 1997. MR MR1474964 (98e:11051)

Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society

Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR MR2061214

(2005h:11005)

Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak, Low lying zeros of families of L-functions, Inst. Hautes

Etudes Sci. Publ. Math. (2000), no. 91, 55-131 (2001). MR MR1828743 (2002h:11081)

Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American

Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, R,
1999. MR MR1659828 (2000b:11070)

Henry H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GLp, J. Amer. Math.
Soc. 16 (2003), no. 1, 139-183 (electronic), With appendix 1 by Dinakar Ramakrishnan and appendix 2 by
Kim and Peter Sarnak. MR MR1937203 (2003k:11083)

Henry H. Kim and Freydoon Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J.
112 (2002), no. 1, 177-197. MR MR1890650 (2003a:11057)

, Functorial products for GLy x GL3 and the symmetric cube for GLp, Ann. of Math. (2) 155 (2002),
no. 3, 837-893, With an appendix by Colin J. Bushnell and Guy Henniart. MR MR1923967 (2003m:11075)
E. Kowalski, P. Michel, and J. VanderKam, Rankin-Selberg L-functions in the level aspect, Duke Math. J.
114 (2002), no. 1, 123-191. MR MR1915038 (2004c:11070)




46

24.

25.

26.

27.

28.

29.

30.

G. RICOTTA AND E. ROYER

Jean-Francois Mestre, Courbes de Weil et courbes supersinguliéres, Seminar on number theory, 1984-1985
(Talence, 1984/1985), Univ. Bordeaux I, Talence, 1985, pp. Exp. No. 23, 6. MR MR848380 (88b:11034)
Stephen D. Miller, The highest lowest zero and other applications of positivity, Duke Math. J. 112 (2002),
no. 1, 83-116. MR 1 890 648

Steven ]J. Miller, One- and two-level densities for rational families of elliptic curves: evidence for the
underlying group symmetries, Compos. Math. 140 (2004), no. 4, 952-992. MR MR2059225 (2005¢:11085)
Sami Omar, Majoration du premier zéro de la fonction zéta de Dedekind, Acta Arith. 95 (2000), no. 1,
61-65. MR MR1787205 (2001h:11143)

Alexander Soshnikov, The central limit theorem for local linear statistics in classical compact groups and
related combinatorial identities, Ann. Probab. 28 (2000), no. 3, 1353-1370. MR MR1797877 (2002f:15035)
Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics,
vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected
reprint of the 1986 original. MR MR1442260 (98a:05001)

, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cam-
bridge University Press, Cambridge, 1999, With a foreword by Gian-Carlo Rota and appendix 1 by Sergey
Fomin. MR MR1676282 (2000k:05026)




	1. Introduction and statement of the results
	1.1. Description of the families of L-functions studied
	1.2. Symmetry type of these families
	1.2.1. (Signed) asymptotic expectation of the one-level density
	1.2.2. Sketch of the proof
	1.2.3. (Signed) asymptotic expectation of the two-level density

	1.3. Asymptotic moments of the one-level density
	1.4. Organisation of the paper

	2. Automorphic and probabilistic background
	2.1. Automorphic background
	2.1.1. Overview of holomorphic cusp forms
	2.1.2. Chebyshev polynomials and Hecke eigenvalues
	2.1.3. Overview of L-functions associated to primitive cusp forms
	2.1.4. Overview of symmetric power L-functions

	2.2. Probabilistic background

	3. Main technical ingredients of this work
	3.1. Large sieve inequalities for Kloosterman sums
	3.2. Riemann's explicit formula for symmetric power L-functions
	3.3. Contribution of the old forms

	4. Linear statistics for low-lying zeros
	4.1. Density results for families of L-functions
	4.2. Asymptotic expectation of the one-level density
	4.3. Signed asymptotic expectation of the one-level density

	5. Quadratic statistics for low-lying zeros
	5.1. Asymptotic expectation of the two-level density and asymptotic variance
	5.2. Signed asymptotic expectation of the two-level density and signed asymptotic variance

	6. First asymptotic moments of the one-level density
	6.1. One some useful combinatorial identity
	6.2. Proof of the first bullet of proposition 6.1
	6.3. Proof of the third bullet of proposition 6.1
	6.4. Proof of the second bullet of proposition 6.1

	Appendix A. Analytic and arithmetic toolbox
	A.1. On smooth dyadic partitions of unity
	A.2. On Bessel functions
	A.3. Basic facts on Kloosterman sums

	References

