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ABSTRACT. We study one-level and two-level densities for low lying zeros of symmetric

power L-functions in the level aspect. It allows us to completely determine the symmetry

types of some families of symmetric power L-functions with prescribed sign of functional

equation. We also compute the moments of one-level density and exhibit mock-Gaussian

behavior discovered by Hughes & Rudnick.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

1.1. Description of the families of L-functions studied. The purpose of this paper is to
compute various statistics associated to low-lying zeros of several families of symmetric
power L-functions in the level aspect. First of all, we give a short description of these
families. To any primitive holomorphic cusp form f of prime level q and even weight1

κÊ 2 (see § 2.1 for the automorphic background) say f ∈ H∗
κ (q), one can associate its r -th

symmetric power L-function denoted by L(Symr f , s) for any integer r Ê 1. It is given by
an explicit absolutely convergent Euler product of degree r +1 on ℜe s > 1 (see § 2.1.4).
The completed L-function is defined by

Λ(Symr f , s) := (
qr )s/2 L∞(Symr f , s)L(Symr f , s)

where L∞(Symr f , s) is a product of r +1 explicit ΓR-factors (see § 2.1.4) and qr is the arith-
metic conductor. We will need some control on the analytic behaviour of this function.
Unfortunately, such information is not currently known in all generality. We sum up our
main assumption in the following statement.

Hypothesis Nice(r, f )� The function Λ
(
Symr f , s

)
is a completed L-function in the sense

that it satisfies the following nice analytic properties:

• it can be extended to an holomorphic function of order 1 on C,
• it satisfies a functional equation of the shape

Λ(Symr f , s) = ε(
Symr f

)
Λ(Symr f ,1− s)

1In this paper, the weight κ is a fixed even integer and the level q goes to infinity among the prime

numbers.
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where the sign ε
(
Symr f

)=±1 of the functional equation is given by

ε
(
Symr f

)
:=

{
+1 if r is even,

ε f (q)×ε(κ,r ) otherwise
(1.1)

with

ε(κ,r ) := i
(

r+1
2

)2
(κ−1)+ r+1

2 =


iκ if r ≡ 1 (mod 8),

−1 if r ≡ 3 (mod 8),

−iκ if r ≡ 5 (mod 8),

+1 if r ≡ 7 (mod 8)

and ε f (q) =±1 is defined in (2.11) and only depends on f and q.

Remark 1� Hypothesis Nice(r, f ) is known for r = 1 (E. Hecke [10, 11, 12]), r = 2 thanks
to the work of S. Gelbart and H. Jacquet [8] and r = 3,4 from the works of H. Kim and
F. Shahidi [22, 21, 20].

We aim at studying the low-lying zeros for the family of L-functions given by

Fr := ⋃
q prime

{
L(Symr f , s), f ∈ H∗

κ (q)
}

for any integer r Ê 1. Note that when r is even, the sign of the functional equation of any
L(Symr f , s) is constant of value +1 but when r is odd, this is definitely not the case. As a
consequence, it is very natural to understand the low-lying zeros for the subfamilies given
by

F ε
r := ⋃

q prime

{
L(Symr f , s), f ∈ H∗

κ (q),ε
(
Symr f

)= ε}
for any odd integer r Ê 1 and for ε=±1.

1.2. Symmetry type of these families. One of the purpose of this work is to determine
the symmetry type of the families Fr and F ε

r for ε=±1 and for any integer r Ê 1 (see § 4.1
for the background on symmetry types). The following theorem is a quick summary of
the symmetry types obtained.

Theorem A� Let r Ê 1 be any integer and ε=±1. We assume that hypothesis Nice(r, f )
holds for any prime number q and any primitive holomorphic cusp form of level q and
even weight κÊ 2. The symmetry group G(Fr ) of Fr is given by

G(Fr ) =
{

Sp if r is even,

O otherwise.

If r is odd then the symmetry group G(F ε
r ) of F ε

r is given by

G(F ε
r ) =

{
SO(even) if ε=+1,

SO(odd) otherwise.

Remark 2� It follows in particular from the value of ε
(
Symr f

)
given in (1.1) that, if r is

even, then Symr f has not the same symmetry type than f and, if r is odd, then f and
Symr f have the same symmetry type if and only if

r ≡ 1 (mod 8) and κ≡ 0 (mod 4)
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or

r ≡ 5 (mod 8) and κ≡ 2 (mod 4)

or

r ≡ 7 (mod 8).

Remark 3� Note that we do not assume any Generalised Riemann Hypothesis for the
symmetric power L-functions.

In order to prove theorem A, we compute either the (signed) asymptotic expectation
of the one-level density or the (signed) asymptotic expectation of the two-level density.
The results are given in the next two sections in which ε=±1, ν will always be a positive
real number, Φ,Φ1 and Φ2 will always stand for even Schwartz functions whose Fourier
transforms Φ̂,Φ̂1 and Φ̂2 are compactly supported in [−ν,+ν] and f will always be a
primitive holomorphic cusp form of prime level q and even weight κ Ê 2 for which
hypothesis Nice(r, f ) holds. We refer to § 2.2 for the probabilistic background.

1.2.1. (Signed) asymptotic expectation of the one-level density. The one-level density (rela-
tively to Φ) of Symr f is defined by

D1,q [Φ;r ]( f ) := ∑
ρ,Λ(Symr f ,ρ)=0

Φ

(
log

(
qr

)
2iπ

(
ℜe ρ− 1

2
+ i ℑmρ

))
where the sum is over the non-trivial zeros ρ of L(Symr f , s) with multiplicities. The
asymptotic expectation of the one-level density is by definition

lim
q prime
q→+∞

∑
f ∈H∗

κ (q)
ωq ( f )D1,q [Φ;r ]( f )

where ωq ( f ) is the harmonic weight defined in (2.5) and similarly the signed asymptotic
expectation of the one-level density is by definition

lim
q prime
q→+∞

2
∑

f ∈H∗
κ (q)

ε(Symr f )=ε

ωq ( f )D1,q [Φ;r ]( f )

when r is odd.

Theorem B� Let r Ê 1 be any integer and ε=±1. We assume that hypothesis Nice(r, f )
holds for any prime number q and any primitive holomorphic cusp form of level q and
even weight κÊ 2 and also that θ is admissible (see hypothesis H2(θ) page 16). Let

ν1,max(r,κ,θ) :=
(
1− 1

2(κ−2θ)

)
2

r 2 .

If ν< ν1,max(r,κ,θ) then the asymptotic expectation of the one-level density is

Φ̂(0)+ (−1)r+1

2
Φ(0).

Let

νε1,max(r,κ,θ) := inf

(
ν1,max(r,κ,θ),

3

r (r +2)

)
.
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If r is odd and ν < νε1,max(r,κ,θ) then the signed asymptotic expectation of the one-level
density is

Φ̂(0)+ (−1)r+1

2
Φ(0).

Remark 4� The first part of Theorem B reveals that the symmetry type of Fr is

G(Fr ) =


Sp if r is even,

O if r = 1,

SO(even) or O or SO(odd) if r Ê 3 is odd.

We cannot decide between the three orthogonal groups when r Ê 3 is odd since in this case
ν1,max(r,κ,θ) < 1 but the computation of the two-level densities will enable us to decide.
Note also that we go beyond the support [−1,1] when r = 1 as Iwaniec, Luo & Sarnak [18]
(Theorem 1.1) but without doing any subtle arithmetic analysis of Kloosterman sums.
Also, A. Güloglu in [9, Theorem 1.2] established some density result for the same family
of L-functions but when the weight κ goes to infinity and the level q is fixed. It turns out
that we recover the same constraint on ν when r is even but we get a better result when r
is odd. This can be explained by the fact that the analytic conductor of any L(Symr f , s)
with f in H∗

κ (q) which is of size

qr ×
{
κr if r is even

κr+1 otherwise

is slightly larger in his case than in ours when r is odd.

Remark 5� The second part of Theorem B reveals that if r is odd and ε = ±1 then the
symmetry type of F ε

r is

G(F ε
r ) = SO(even) or O or SO(odd).

Here ν is always strictly smaller than one and we are not able to recover the result of [18,
Theorem 1.1] without doing some arithmetic on Kloosterman sums.

1.2.2. Sketch of the proof. We give here a sketch of the proof of the first part of Theorem
B namely we briefly explain how to determine the asymptotic expectation of the one-
level density assuming that hypothesis Nice(r, f ) holds for any prime number q and any
primitive holomorphic cusp form of level q and even weight κ Ê 2 and also that θ is
admissible. The first step consists in transforming the sum over the zeros of Λ(Symr f , s)
which occurs in D1,q [Φ;r ]( f ) into a sum over primes. This is done via some Riemann’s
explicit formula for symmetric power L-functions stated in Proposition 3.8 which leads to

D1,q [Φ;r ]( f ) = Φ̂(0)+ (−1)r+1

2
Φ(0)+P 1

q [Φ;r ]( f )+
r−1∑
m=0

(−1)mP 2
q [Φ;r,m]( f )+o(1)

where

P 1
q [Φ;r ]( f ) :=− 2

log
(
qr

) ∑
p∈P
p-q

λ f
(
pr ) log pp

p
Φ̂

(
log p

log
(
qr

))
. (1.2)

The terms P 2
q [Φ;r,m]( f ) are also sums over primes which look like P 1

q [Φ;r ]( f ) but can
be forgotten in first approximation since they can be thought as sums over squares of
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primes which are easier to deal with. The second step consists in averaging over all the f
in H∗

κ (q). While doing this, the asymptotic expectation of the one-level density

Φ̂(0)+ (−1)r+1

2
Φ(0)

naturally appears and we need to show that

− 2

log
(
qr

) ∑
p∈P
p-q

( ∑
f ∈H∗

κ (q)
ωq ( f )λ f

(
pr )) log pp

p
Φ̂

(
log p

log
(
qr

))

is a remainder term provided that the support ν of Φ is small enough. We apply some
suitable trace formula given in Proposition 2.2 in order to express the previous average
of Hecke eigenvalues. We cannot directly apply Peterson’s trace formula since there may
be some old forms of level q especially when the weight κ is large. Nevertheless, these
old forms are automatically of level 1 since q is prime and their contribution remains
negligible. So, we have to bound

− 4πiκ

log
(
qr

) ∑
p∈P
p-q

∑
cÊ1
q |c

S(1, pr ;c)

c
Jκ−1

(
4π

√
pr

c

)
log pp

p
Φ̂

(
log p

log
(
qr

))

where S(1, pr ;c) is a Kloosterman sum and which can be written as

− 4πiκ

log
(
qr

) ∑
cÊ1
q |c

∑
mÊ1

am
S(1,m;c)

c
g (m;c)

where

am := 1[1,qr 2ν](m)
logm

r m1/(2r )
×

{
1 if m = pr for some prime p 6= q ,

0 otherwise

and

g (m;c) := Jκ−1

(
4π

p
m

c

)
Φ̂

(
logm

r log
(
qr

))
.

We apply the large sieve inequality for Kloosterman sums given in proposition 3.4. It
entails that if νÉ 2/r 2 then such quantity is bounded by

¿ε q
(
κ−1

2 −θ)
(r 2ν−2)+ε+q

(
κ
2 −θ

)
r 2ν−(

κ− 1
2−2θ

)+ε.

This is an admissible error term if ν< ν1,max(r,κ,θ). We focus on the fact that we did any
arithmetic analysis of Kloosterman sums to get this result. Of course, the power of spectral
theory of automorphic forms is hidden in the large sieve inequalities for Kloosterman
sums.

1.2.3. (Signed) asymptotic expectation of the two-level density. The two-level density of
Symr f (relatively to Φ1 and Φ2) is defined by

D2,q [Φ1,Φ2;r ]( f ) := ∑
( j1, j2)∈E ( f ,r )2

j1 6=± j2

Φ1

(
ρ̂

( j1)
f ,r

)
Φ2

(
ρ̂

( j2)
f ,r

)
.
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For more precision on the numbering of the zeros, we refer to § 3.2. The asymptotic
expectation of the two-level density is by definition

lim
q prime
q→+∞

∑
f ∈H∗

κ (q)
ωq ( f )D2,q [Φ1,Φ2;r ]( f )

and similarly the signed asymptotic expectation of the two-level density is by definition

lim
q prime
q→+∞

2
∑

f ∈H∗
κ (q)

ε(Symr f )=ε

ωq ( f )D2,q [Φ1,Φ2;r ]( f )

when r is odd and ε=±1.

Theorem C� Let r Ê 1 be any integer and ε=±1. We assume that hypothesis Nice(r, f )
holds for any prime number q and any primitive holomorphic cusp form of level q and
even weight κÊ 2. If ν< 1/r 2 then the asymptotic expectation of the two-level density is[

Φ̂1(0)+ (−1)r+1

2
Φ1(0)

][
Φ̂2(0)+ (−1)r+1

2
Φ2(0)

]
+2

∫
R
|u|Φ̂1(u)Φ̂2(u)du −2�Φ1Φ2(0)+

(
(−1)r + 12N+1(r )

2

)
Φ1(0)Φ2(0).

If r is odd and ν < 1/(2r (r +2)) then the signed asymptotic expectation of the two-level
density is[

Φ̂1(0)+ 1

2
Φ1(0)

][
Φ̂2(0)+ 1

2
Φ2(0)

]
+2

∫
R
|u|Φ̂1(u)Φ̂2(u)du −2�Φ1Φ2(0)−Φ1(0)Φ2(0)

+ 1{−1}(ε)Φ1(0)Φ2(0).

Remark 6� We have just seen that the computation of the one-level density already reveals
that the symmetry type of Fr is Sp when r is even. The asymptotic expectation of the two-
level density also coincides with the one of Sp (see [19, Theorem A.D.2.2] or [26, Theorem
3.3]). When r Ê 3 is odd, the first part of Theorem C together with a result of Katz & Sarnak
(see [19, Theorem A.D.2.2] or [26, Theorem 3.2]) imply that the symmetry type of Fr is O.

Remark 7� The second part of Theorem C and a result of Katz & Sarnak (see [19, Theorem
A.D.2.2] or [26, Theorem 3.2]) imply that the symmetry type of F ε

r is as in Theorem A for
any odd integer r Ê 1 and ε=±1.

In order to prove Theorem C, we need to determine the asymptotic variance of the
one-level density which is defined by

lim
q prime
q→+∞

∑
f ∈H∗

κ (q)
ωq ( f )

(
D1,q [Φ;r ]( f )− ∑

g∈H∗
κ (q)

ωq (g )D1,q [Φ;r ](g )

)2

and the signed asymptotic variance of the one-level density which is similarly defined by

lim
q prime
q→+∞

2
∑

f ∈H∗
κ (q)

ε(Symr f )=ε

ωq ( f )

D1,q [Φ;r ]( f )−2
∑

g∈H∗
κ (q)

ε(Symr g)=ε

ωq (g )D1,q [Φ;r ](g )


2
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when r is odd and ε=±1.

Theorem D� Let r Ê 1 be any integer and ε=±1. We assume that hypothesis Nice(r, f )
holds for any prime number q and any primitive holomorphic cusp form of level q and
even weight κÊ 2. If ν< 1/r 2 then the asymptotic variance of the one-level density is

2
∫
R
|u|Φ̂2(u)du.

If r is odd and ν< 1/(2r (r +2)) then the signed asymptotic variance of the one-level density
is

2
∫
R
|u|Φ̂2(u)du.

1.3. Asymptotic moments of the one-level density. Last but not least, we compute the
asymptotic m-th moment of the one-level density which is defined by

lim
q prime
q→+∞

∑
f ∈H∗

κ (q)
ωq ( f )

(
D1,q [Φ;r ]( f )− ∑

g∈H∗
κ (q)

ωq (g )D1,q [Φ;r ](g )

)m

for any integer m Ê 1.

Theorem E� Let r Ê 1 be any integer and ε=±1. We assume that hypothesis Nice(r, f )
holds for any prime number q and any primitive holomorphic cusp form of level q and
even weight κÊ 2. If mν< 4/(r (r +2)) then the asymptotic m-th moment of the one-level
density is 

0 if m is odd,

2
∫
R
|u|Φ̂2(u)du × m!

2m/2
(m

2

)
!

otherwise.

Remark 8� This result is another evidence for mock-Gaussian behaviour (see [13, 14, 15]
for instance).

Remark 9� We compute the first asymptotic moments of the one-level density. These
computations allow to compute the asymptotic expectation of the first level-densities [13,
§1.2]. We will use the specific case of the asymptotic expectation of the two-level density
and the asymptotic variance in § 5.1.

Let us sketch the proof of Theorem E by explaining the origin of the main term. We
have to evaluate ∑

0É`Ém
0ÉαÉ`

(
m

`

)(
`

α

)
R(q)`−αEh

q

(
P 1

q [Φ;r ]m−`P 2
q [Φ;r ]α

)
(1.3)

where P 1
q [Φ;r ] has been defined in (1.2),

P 2
q [Φ;r ]( f ) =− 2

log(qr )

r∑
j=1

(−1)r− j
∑

p∈P
p-q

λ f

(
p2 j

) log p

p
Φ̂

(
2log p

log(qr )

)

and R(q) satisfies

R(q) =O

(
1

log q

)
.
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The main term comes from the contribution `= 0 in the sum (1.3). Using a combinatorial
lemma, we rewrite this main contribution as

(−2)m

logm (qr )

m∑
s=1

∑
σ∈P (m,s)

∑
i1,...,is

distinct

Eh
q

( s∏
u=1

λ f

(
p̂r

iu

)$(σ)
u

)

where P (m, s) is the set of surjective functions

σ : {1, . . . ,α} � {1, . . . , s}

such that for any j ∈ {1, . . . , s}, either σ( j ) = 1 or there exists k < j such that σ( j ) =σ(k)+1
and for any j ∈ {1, . . . , s}

$(σ)
j := #σ−1({ j }).(

p̂i
)

iÊ1 stands for the increasing sequence of prime numbers different from q . Linearising

each λ f

(
p̂r

iu

)$(σ)
u

in terms of λ f

(
p̂ ju

iu

)
with ju runs over integers in [0,r$(σ)

u ] and using a

trace formula to prove that the only σ ∈ P (m, s) leading to a principal contribution satisfy
$(σ)

j = 2 for any j ∈ {1, . . . , s}, we have to estimate

(−2)m

logm (qr )

m∑
s=1

∑
σ∈P (m,s)

∀ j∈{1,...,s},$(σ)
j =2

∑
i1,...,is

distinct

s∏
u=1

log2 (p̂iu )

p̂iu

Φ̂2
(

log p̂iu

log(qr )

)
. (1.4)

This sum vanishes if m is odd since
s∑

j=1
$(σ)

j = m

and it remains to prove the formula for m even. In this case, and since we already
computed the moment for m = 2, we deduce from (1.4) that the main contribution is

Eh
q (P 1

q [Φ;r ]2)×#
{
σ ∈ P (m,m/2) : $(σ)

j = 2 (∀ j )
}

and we conclude by computing

#
{
σ ∈ P (m,m/2) : $(σ)

j = 2 (∀ j )
}
= m!

2m/2
(m

2

)
!
.

Proving that the other terms lead to error terms is done by implementing similar ideas,
but requires – especially for the double products (namely terms implying both P 1

q and P 2
q )

– much more combinatorial technicalities.

1.4. Organisation of the paper. Section 2 contains the automorphic and probabilistic
background which is needed to be able to read this paper. In particular, we give here
the accurate definition of symmetric power L-functions and the properties of Chebyshev
polynomials useful in section 6. In section 3, we describe the main technical ingredients
of this work namely large sieve inequalities for Kloosterman sums and Riemann’s explicit
formula for symmetric power L-functions. In section 4, some standard facts about sym-
metry groups are given and the computation of the (signed) asymptotic expectation of
the one-level density is done. The computations of the (signed) asymptotic expectation,
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covariance and variance of the two-level density are done in section 5 whereas the compu-
tation of the asymptotic moments of the one-level density is provided in section 6. Some
well-known facts about Kloosterman sums are recalled in appendix A.

Notation� We write P for the set of prime numbers and the main parameter in this paper
is a prime number q , whose name is the level, which goes to infinity among P . Thus, if f
and g are some C-valued functions of the real variable then the notations f (q) ¿A g (q) or
f (q) =O A(g (q)) mean that | f (q)| is smaller than a "constant" which only depends on A
times g (q) at least for q a large enough prime number and similarly, f (q) = o(1) means
that f (q) → 0 as q goes to infinity among the prime numbers. We will denote by ε an
absolute positive constant whose definition may vary from one line to the next one. The
characteristic function of a set S will be denoted 1S .

2. AUTOMORPHIC AND PROBABILISTIC BACKGROUND

2.1. Automorphic background.

2.1.1. Overview of holomorphic cusp forms. In this section, we recall general facts about
holomorphic cusp forms. A reference is [16].
Generalities — We write Γ0(q) for the congruence subgroup of level q which acts on the
upper-half plane H . A holomorphic function f : H 7→Cwhich satisfies

∀
(

a b
c d

)
∈Γ0(q),∀z ∈H , f

(
az +b

cz +d

)
= (cz +d)κ f (z)

and vanishes at the cusps of Γ0(q) is a holomorphic cusp form of level q , even weight
κÊ 2. We denote by Sκ(q) this space of holomorphic cusp forms which is equipped with
the Peterson inner product

〈 f1, f2〉q :=
∫
Γ0(q)\H

yκ f1(z) f2(z)
dx dy

y2 .

The Fourier expansion at the cusp ∞ of any such holomorphic cusp form f is given by

∀z ∈H , f (z) = ∑
nÊ1

ψ f (n)n(κ−1)/2e(nz)

where e(z) := exp(2iπz) for any complex number z. The Hecke operators act on Sκ(q) by

T`( f )(z) := 1p
`

∑
ad=`

(a,q)=1

∑
0Éb<d

f

(
az +b

d

)

for any z ∈H . If f is an eigenvector of T`, we write λ f (`) the corresponding eigenvalue.
We can prove that T` is hermitian if `Ê 1 is any integer coprime with q and that

T`1 ◦T`2 =
∑

d |(`1,`2)
(d ,q)=1

T`1`2/d 2 (2.1)

for any integers `1,`2 Ê 1. By Atkin & Lehner theory [1], we get a splitting of Sκ(q) into
So
κ(q)⊕⊥〈·,·〉q Sn

κ(q) where

So
κ(q) := VectC

{
f (qz), f ∈ Sκ(1)

}∪Sκ(1),

Sn
κ(q) := (

So
κ(q)

)⊥〈·,·〉q
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where "o" stands for "old" and "n" for "new". Note that So
κ(q) = {0} if κ < 12 or κ = 14.

These two spaces are T`-invariant for any integer `Ê 1 coprime with q . A primitive cusp
form f ∈ Sn

κ(q) is an eigenfunction of any operator T` for any integer `Ê 1 coprime with
q which is new and arithmetically normalised namely ψ f (1) = 1. Such an element f is
automatically an eigenfunction of the other Hecke operators and satisfies ψ f (`) =λ f (`)
for any integer `Ê 1. Moreover, if p is a prime number, defineα f (p), β f (p) as the complex
roots of the quadratic equation

X 2 −λ f (p)X +εq (p) = 0 (2.2)

where εq denotes the trivial Dirichlet character of modulus q . Then it follows from the
work of Eichler, Shimura, Igusa and Deligne that

|α f (p)|, |β f (p)| É 1

for any prime number p and so

∀`Ê 1, |λ f (`)| É τ(`). (2.3)

The set of primitive cusp forms is denoted by H∗
κ (q). It is an orthogonal basis of Sn

κ(q). Let
f be a holomorphic cusp form with Hecke eigenvalues

(
λ f (`)

)
(`,q)=1. The composition

property (2.1) entails that for any integer `1 Ê 1 and for any integer `2 Ê 1 coprime with q
the following multiplicative relations hold:

ψ f (`1)λ f (`2) = ∑
d |(`1,`2)
(d ,q)=1

ψ f
(
`1`2

/
d 2 )

, (2.4)

ψ f (`1`2) = ∑
d |(`1,`2)
(d ,q)=1

µ(d)ψ f (`1/d)λ f (`2/d)

and these relations hold for any integers `1,`2 Ê 1 if f is primitive. The adjointness
relation is

λ f (`) =λ f (`), ψ f (`) =ψ f (`)

for any integer ` Ê 1 coprime with q and this remains true for any integer ` Ê 1 if f is
primitive.
Trace formulas — We need two definitions. The harmonic weight associated to any f in
Sκ(q) is defined by

ωq ( f ) := Γ(κ−1)

(4π)κ−1〈 f , f 〉q
. (2.5)

For any natural integer m and n, the ∆q -symbol is given by

∆q (m,n) := δm,n +2πiκ
∑
cÊ1
q |c

S(m,n;c)

c
Jκ−1

(
4π

p
mn

c

)

where S(m,n;c) is a Kloosterman sum defined in appendix A.3 and Jκ−1 is a Bessel func-
tion of first kind defined in appendix A.2.The following proposition is Peterson’s trace
formula.
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Proposition 2.1� If Hκ(q) is any orthogonal basis of Sκ(q) then∑
f ∈Hκ(q)

ωq ( f )ψ f (m)ψ f (n) =∆q (m,n) (2.6)

for any integers m and n.

H. Iwaniec, W. Luo & P. Sarnak proved in [18] a useful variation of Peterson’s trace
formula which is an average over only primitive cusp forms. This is more convenient
when there are some old forms which is the case for instance when the weight κ is large.
Let ν be the arithmetic function defined by

ν(n) := n
∏
p|n

(
1+1/p

)
for any integer n Ê 1.

Proposition 2.2 (H. Iwaniec, W. Luo & P. Sarnak (2001))� If
(
n, q2

) | q and q - m then∑
f ∈H∗

κ (q)
ωq ( f )λ f (m)λ f (n) =∆q (m,n)− 1

qν((n, q))

∑
`|q∞

1

`
∆1

(
m`2,n

)
. (2.7)

Remark 2.3� The first term in (2.7) is exactly the term which appears in (2.6) whereas the
second term in (2.7) will be usually very small as an old form comes from a form of level
1! Thus, everything works in practice as if there were no old forms in Sκ(q).

2.1.2. Chebyshev polynomials and Hecke eigenvalues. Let p 6= q a prime number and
f ∈ H∗

κ (q). The multiplicativity relation (2.4) leads to∑
rÊ0

λ f (pr )t r = 1

1−λ f (p)t + t 2 .

It follows that

λ f (pr ) = Xr
(
λ f (p)

)
(2.8)

where the polynomials Xr are defined by their generating series∑
rÊ0

Xr (x)t r = 1

1−xt + t 2 .

They are also defined by

Xr (2cosθ) = sin((r +1)θ)

sin(θ)
.

These polynomials are known as the Chebyshev polynomials of second kind. Each Xr

has degree r , is even if r is even and odd otherwise. The family {Xr }rÊ0 is a basis forQ[X ],
orthonormal with respect to the inner product

〈P,Q〉ST := 1

π

∫ 2

−2
P (x)Q(x)

√
1− x2

4
dx.

In particular, for any integer $Ê 0 we have

X$
r =

r$∑
j=0

x($,r, j )X j (2.9)
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with

x($,r, j ) := 〈X$
r , X j 〉ST = 2

π

∫ π

0

sin$ ((r +1)θ)sin(( j +1)θ)

sin$−1 (θ)
dθ.

The following relations are useful in this paper

x($,r, j ) =


1 if j = 0 and $ is even,

0 if j is odd and r is even,

0 if j = 0, $= 1 and r Ê 1.

(2.10)

2.1.3. Overview of L-functions associated to primitive cusp forms. Let f in H∗
κ (q). We

define

L( f , s) := ∑
nÊ1

λ f (n)

ns = ∏
p∈P

(
1− α f (p)

p s

)−1 (
1− β f (p)

p s

)−1

which is an absolutely convergent and non-vanishing Dirichlet series and Euler product
on ℜe s > 1 and also

L∞( f , s) := ΓR (s + (κ−1)/2)ΓR (s + (κ+1)/2)

where ΓR(s) :=π−s/2Γ (s/2) as usual. The function

Λ( f , s) := q s/2L∞( f , s)L( f , s)

is a completed L-function in the sense that it satisfies the following nice analytic properties:

• the function Λ( f , s) can be extended to an holomorphic function of order 1 on C,
• the function Λ( f , s) satisfies a functional equation of the shape

Λ( f , s) = iκε f (q)Λ( f ,1− s)

where

ε f (q) =−pqλ f (q) =±1. (2.11)

2.1.4. Overview of symmetric power L-functions. Let f in H∗
κ (q). For any natural integer

r Ê 1, the symmetric r -th power associated to f is given by the following Euler product of
degree r +1

L(Symr f , s) := ∏
p∈P

Lp (Symr f , s)

where

Lp (Symr f , s) :=
r∏

i=0

(
1− α f (p)iβ f (p)r−i

p s

)−1

for any prime number p. Let us remark that the local factors of this Euler product may be
written as

Lp (Symr f , s) =
r∏

i=0

(
1− α f (p)2i−r

p s

)−1

for any prime number p 6= q and

Lq (Symr f , s) = 1− λ f (q)r

q s = 1− λ f (qr )

q s

as α f (p)+β f (p) =λ f (p) and α f (p)β f (p) = εq (p) for any prime number p according to
(2.2). On ℜe s > 1, this Euler product is absolutely convergent and non-vanishing. We also
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defines [4, (3.16) and (3.17)] a local factor at ∞ which is given by a product of r +1 Gamma
factors namely

L∞(Symr f , s) := ∏
0ÉaÉ(r−1)/2

ΓR (s + (2a +1)(κ−1)/2)ΓR (s +1+ (2a +1)(κ−1)/2)

if r is odd and

L∞(Symr f , s) := ΓR(s +µκ,r )
∏

1ÉaÉr /2
ΓR (s +a(κ−1))ΓR (s +1+a(κ−1))

if r is even where

µκ,r :=
{

1 if r (κ−1)/2 is odd,

0 otherwise.

All the local data appearing in these local factors are encapsulated in the following com-
pleted L-function

Λ(Symr f , s) := (
qr )s/2 L∞(Symr f , s)L(Symr f , s).

Here, qr is called the arithmetic conductor of Λ(Symr f , s) and somehow measures the
size of this function. We will need some control on the analytic behaviour of this function.
Unfortunately, such information is not currently known in all generality. Our main as-
sumption is given in hypothesis Nice(r, f ) page 2. Indeed, much more is expected to hold
as it is discussed in details in [4] namely the following assumption is strongly believed to
be true and lies in the spirit of Langlands program.

Hypothesis Symr ( f )� There exists an automorphic cuspidal self-dual representation, de-
noted by Symr π f =⊗′

p∈P ∪{∞} Symr π f ,p , of GLr+1
(
AQ

)
whose local factors L

(
Symr π f ,p , s

)
agree with the local factors Lp

(
Symr f , s

)
for any p in P ∪ {∞}.

Note that the local factors and the arithmetic conductor in the definition ofΛ
(
Symr f , s

)
and also the sign of its functional equation which all appear without any explanations so
far come from the explicit computations which have been done via the local Langlands
correspondence by J. Cogdell and P. Michel in [4]. Obviously, hypothesis Nice(r, f ) is
a weak consequence of hypothesis Symr ( f ). For instance, the cuspidality condition in
hypothesis Symr ( f ) entails the fact that Λ

(
Symr f , s

)
is of order 1 which is crucial for us

to state a suitable explicit formula. As we will not exploit the power of automorphic theory
in this paper, hypothesis Nice(r, f ) is enough for our purpose. In addition, it may happen
that hypothesis Nice(r, f ) is known whereas hypothesis Symr f is not. Let us overview
what has been done so far. For any f in H∗

κ (q), hypothesis Symr f is known for r = 1
(E. Hecke), r = 2 thanks to the work of S. Gelbart and H. Jacquet [8] and r = 3,4 from the
works of H. Kim and F. Shahidi [22, 21, 20].

2.2. Probabilistic background. The set H∗
κ (q) can be seen as a probability space if

• the measurable sets are all its subsets,
• the harmonic probability measure is defined by

µh
q (A) := ∑h

f ∈A
1 := ∑

f ∈A
ωq ( f )

for any subset A of H∗
κ (q).
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Indeed, there is a slight abuse here as we only know that

lim
q∈P

q→+∞
µh

q

(
H∗
κ (q)

)= 1 (2.12)

(see remark 3.12) which means that µh
q is an “asymptotic” probability measure. If Xq is

a measurable complex-valued function on H∗
κ (q) then it is very natural to compute its

expectation defined by

Eh
q

(
Xq

)
:= ∑h

f ∈H∗
κ (q)

Xq ( f ),

its variance defined by

Vh
q

(
Xq

)
:= Eh

q

((
Xq −Eh

q

(
Xq

))2
)

and its m-th moments given by

Mh
q,m

(
Xq

)
:= Eh

q

((
Xq −Eh

q

(
Xq

))m)
for any integer m Ê 1. If X := (

Xq
)

q∈P
is a sequence of such measurable complex-valued

functions then we may legitimely wonder if the associated complex sequences(
Eh

q

(
Xq

))
q∈P

,
(
Vh

q

(
Xq

))
q∈P

,
(
Mh

q,m

(
Xq

))
q∈P

converge as q goes to infinity among the primes. If yes, the following general notations
will be used for their limits

Eh
∞ (X ) , Vh

∞ (X ) , Mh
∞,m (X )

for any natural integer m. In addition, these potential limits are called asymptotic expec-
tation, asymptotic variance and asymptotic m-th moments of X for any natural integer
m Ê 1.

For the end of this section, we assume that r is odd. We may remark that the sign of
the functional equations of any L(Symr f , s) when q goes to infinity among the prime
numbers and f ranges over H∗

κ (q) is not constant as it depends on ε f (q). Let

Hε
κ(q) := {

f ∈ H∗
κ (q),ε(Symr f ) = ε}

where ε=±1. If f ∈ H+1
κ (q), then Symr f is said to be even whereas it is said to be odd if

f ∈ H−1
κ (q). It is well-known that

lim
q∈P

q→+∞
µh

q

({
f ∈ H∗

k (q) : ε f (q) = ε})= 1

2
.

Since ε(Symr f ) is εq ( f ) up to a sign depending only on κ and r (by hypothesis Nice(r, f )),
it follows that

lim
q∈P

q→+∞
µh

q

(
Hε
κ(q)

)= 1

2
.

For Xq as previous, we can compute its signed expectation defined by

E
h,ε
q

(
Xq

)
:= 2

∑h

f ∈Hε
κ(q)

Xq ( f ),
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its signed variance defined by

V
h,ε
q

(
Xq

)
:= Eh,ε

q

((
Xq −Eh,ε

q

(
Xq

))2
)

and its signed m-th moments given by

M
h,ε
q,m

(
Xq

)
:= Eh,ε

q

((
Xq −Eh,ε

q

(
Xq

))m)
for any natural integer m Ê 1. In case of existence, we write Eh,ε∞ (X ),Vh,ε∞ (X ) andMh,ε

∞,m(X )
for the limits which are called signed asymptotic expectation, signed asymptotic variance
and signed asymptotic moments. The signed expectation and the expectation are linked
through the formula

E
h,ε
q (Xq ) = 2

∑h

f ∈H∗
κ (q)

1+ε×ε(Symr f )

2
Xq ( f )

= Eh
q (Xq )−ε×ε(κ,r )

p
q

∑h

f ∈H∗
κ (q)

λ f (q)Xq ( f ). (2.13)

3. MAIN TECHNICAL INGREDIENTS OF THIS WORK

3.1. Large sieve inequalities for Kloosterman sums. One of the main ingredients in this
work is some large sieve inequalities for Kloosterman sums which have been established
by J.-M. Deshouillers & H. Iwaniec in [5] and then refined by V. Blomer, G. Harcos &
P. Michel in [2]. The proof of these large sieve inequalities relies on the spectral theory of
automorphic forms on GL2

(
AQ

)
. In particular, the authors have to understand the size of

the Fourier coefficients of these automorphic cusp forms. We have already seen that the
size of the Fourier coefficients of holomorphic cusp forms is well understood (2.3) but we
only have partial results on the size of the Fourier coefficients of Maass cusp forms which
do not come from holomorphic forms. We introduce the following hypothesis which
measures the approximation towards the Ramanujan-Peterson-Selberg conjecture.

Hypothesis H2(θ)� If π := ⊗′
p∈P ∪{∞}πp is any automorphic cuspidal form on GL2(AQ)

with local Hecke parameters α(1)
π (p), α(2)

π (p) at any prime number p and µ(1)
π (∞), µ(2)

π (∞)
at infinity then

∀ j ∈ {1,2}, |α( j )
π (p)| É pθ

for any prime number p for which πp is unramified and

∀ j ∈ {1,2},
∣∣∣ℜe

(
µ

( j )
π (∞)

)∣∣∣É θ
provided π∞ is unramified.

De�nition 3.1� We say that θ is admissible if H2(θ) is satisfied.

Remark 3.2� The smallest admissible value of θ is currently θ0 = 7
64 thanks to the works

of H. Kim, F. Shahidi and P. Sarnak [21, 20]. The Ramanujan-Peterson-Selberg conjecture
asserts that 0 is admissible.
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De�nition 3.3� Let T : R3 → R+ and (M , N ,C ) ∈ (R \ {0})3, we say that a smooth function
h : R3 →R3 satisfies the property P(T ; M , N ,C ) if there exists a real number K > 0 such that

∀(i , j ,k) ∈N3,∀(x1, x2, x3) ∈
[

M

2
,2M

]
×

[
N

2
,2N

]
×

[
C

2
,2C

]
,

xi
1x j

2 xk
3

∂i+ j+k h

∂xi
1∂x j

2∂xk
3

(x1, x2, x3) É K T (M , N ,C )

(
1+

p
M N

C

)i+ j+k

.

With this definition in mind, we are able to write the following proposition which is
special case of a large sieve inequality adapted from the one of Deshouillers & Iwaniec [5,
Theorem 9] by Blomer, Harcos & Michel [2, Theorem 4].

Proposition 3.4� Let q be some positive integer. Let M , N ,C Ê 1 and g be a smooth
function satisfying property P(1; M , N ,C ). Consider two sequences of complex numbers
(am)m∈[M/2,2M ] and (bn)n∈[N /2,2N ]. If θ is admissible and M N ¿C 2 then

∑
cÊ1
q |c

∑
mÊ1

∑
nÊ1

ambn
S(m,±n;c)

c
g (m,n;c)

¿ε (qM NC )ε
(

C 2

M N

)θ (
1+ M

q

)1/2 (
1+ N

q

)1/2

‖a‖2‖b‖2

for any ε> 0.

We shall use a test function. For any ν > 0 let us define Sν(R) as the space of even
Schwartz function Φ whose Fourier transform

Φ̂(ξ) :=F [x 7→Φ(x)](ξ) :=
∫
R
Φ(x)e(−xξ)dx

is compactly supported in [−ν,+ν]. Thanks to the Fourier inversion formula:

Φ(x) =
∫
R
Φ̂(ξ)e(xξ)dx =F [ξ 7→ Φ̂(ξ)](−x),

such a function Φ can be extended to an entire even function which satisfies

∀s ∈C, Φ(s) ¿n
exp(ν|ℑm s|)

(1+|s|)n

for any integer n Ê 0.The version of the large sieve inequality we shall use several times in
this paper is then the following.

Corollary 3.5� Let q be some prime number, k1,k2 > 0 be some integers, α1,α2,ν be some
positive real numbers and Φ ∈ Sν(R). Let h be some smooth function satisfying prop-
erty P(T ; M , N ,C ) for any 1 É M É qk1α1ν, 1 É N É qk2α2ν and C Ê q . Let

(
ap

)
p∈P

pÉqα1ν
and(

bp
)

p∈P
pÉqα2ν

be some complex numbers sequences. If θ is admissible andνÉ 2
/

(k1α1 +k2α2)
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then

∑
cÊ1
q |c

∑
p1∈P
p1-q

∑
p2∈P
p2-q

ap1 bp2

S(pk1
1 , pk2

2 ;c)

c
h

(
pk1

1 , pk2
2 ;c

)
Φ̂

(
log p1

log(qα1 )

)
Φ̂

(
log p2

log(qα2 )

)

¿ qε
∑]

1ÉMÉqνα1k1

1ÉNÉqνα2k2

CÊq/2

(
1+

√
M

q

)(
1+

√
N

q

)(
C 2

M N

)θ
T (M , N ,C )‖a‖2‖b‖2

where ] indicates that the sum is on powers of
p

2. The constant implied by the symbol ¿
depends at most on ε, k1, k2, α1, α2 and ν.

Proof. Define (âm)m∈N,
(
b̂n

)
n∈N and g (m,n;c) by

âm := am1/k1 1P k1 (m)1[1,qνα1k1 ](m)

b̂n := bn1/k1 1P k1 (n)1[1,qνα1k1 ](n)

g (m,n;c) := h(m,n,c)Φ̂

(
logm

log(qα1k1 )

)
Φ̂

(
logn

log(qα2k2 )

)
.

Using a smooth partition of unity, as detailed in § A.1, we need to evaluate∑]

1ÉMÉqνα1k1

1ÉNÉqνα2k2

CÊq/2

T (M , N ,C )
∑
cÊ1
q |c

∑
mÊ1

∑
nÊ1

âm b̂n
S(m,n;c)

c

gM ,N ,C (m,n;c)

T (M , N ,C )
. (3.1)

Since ν É 2
/

(α1k1 +α2k2) , the first summation is restricted to M N ¿ C 2 hence, using
proposition 3.4, the quantity in (3.1) is

¿‖a‖2‖b‖2qε
∑]

1ÉMÉqνα1k1

1ÉNÉqνα2k2

CÊq/2

T (M , N ,C )

(
1+

√
M

q

)(
1+

√
N

q

)(
C 2

M N

)θ
.

�

3.2. Riemann’s explicit formula for symmetric power L-functions. In this section, we
give an analog of Riemann-von Mangoldt’s explicit formula for symmetric power L-
functions. Before that, let us recall some preliminary facts on zeros of symmetric power
L-functions which can be found in section 5.3 of [17]. Let r Ê 1 and f ∈ H∗

κ (q) for
which hypothesis Nice(r, f ) holds. All the zeros of Λ(Symr f , s) are in the critical strip
{s ∈C : 0 <ℜe s < 1}. The multiset of the zeros of Λ(Symr f , s) counted with multiplicities
is given by {

ρ
( j )
f ,r =β

( j )
f ,r + iγ( j )

f ,r : j ∈ E ( f ,r )
}

where

E ( f ,r ) :=
{
Z if Symr f is odd

Z\ {0} if Symr f is even.
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and

β
( j )
f ,r =ℜe ρ( j )

f ,r ,

γ
( j )
f ,r =ℑmρ

( j )
f ,r

for any j ∈ E ( f ,r ). We enumerate the zeros such that

(1) the sequence j 7→ γ
( j )
f ,r is increasing

(2) we have j Ê 0 if and only if γ( j )
f ,r Ê 0

(3) we have ρ(− j )
f ,r = 1−ρ( j )

f ,r .

Note that if ρ( j )
f ,r is a zero ofΛ(Symr f , s) then ρ( j )

f ,r , 1−ρ( j )
f ,r and 1−ρ( j )

f ,r are also some zeros

of Λ(Symr f , s). In addition, remember that if Symr f is odd then the functional equation
of L(Symr f , s) evaluated at the critical point s = 1/2 provides a trivial zero denoted by
ρ(0)

f ,r . It can be shown [17, Theorem 5.8] that the number of zeros Λ(Symr f , s) satisfying

|γ( j )
f ,r | É T is

T

π
log

(
qr T r+1

(2πe)r+1

)
+O

(
log(qT )

)
as T Ê 1 goes to infinity. We state now the Generalised Riemann Hypothesis which is
the main conjecture about the horizontal distribution of the zeros of Λ(Symr f , s) in the
critical strip.

Hypothesis GRH(r )� For any prime number q and any f in H∗
κ (q), all the zeros of

Λ(Symr f , s) lie on the critical line {s ∈C : ℜe s = 1/2} namely β( j )
r, f = 1/2 for any j ∈ E ( f ,r ).

Remark 3.6� We do not use this hypothesis in our proofs.

Under hypothesis GRH(r ), it can be shown that the number of zeros of the function

Λ(Symr f , s) satisfying |γ( j )
f ,r | É 1 is given by

1

π
log

(
qr )

(1+o(1))

as q goes to infinity. Thus, the spacing between two consecutive zeros with imaginary
part in [0,1] is roughly of size

2π

log
(
qr

) .

We aim at studying the local distribution of the zeros of Λ(Symr f , s) in a neighborhood of
the real axis of size 1/ log qr since in such a neighborhood, we expect to catch only few
zeros (but without being able to say that we catch only one2). Hence, we normalise the
zeros by defining

ρ̂
( j )
f ,r

:= log
(
qr

)
2iπ

(
β

( j )
f ,r −

1

2
+ iγ( j )

f ,r

)
.

Note that

ρ̂
(− j )
f ,r =−ρ̂( j )

f ,r .

2We refer to Miller [25] and Omar [27] for works related to the “first” zero.
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De�nition 3.7� Let f ∈ H∗
κ (q) for which hypothesis Nice(r, f ) holds and let Φ ∈Sν(R). The

one-level density (relatively to Φ) of Symr f is

D1,q [Φ;r ]( f ) := ∑
j∈E ( f ,r )

Φ
(
ρ̂

( j )
f ,r

)
.

To study D1,q [Φ;r ]( f ) for any Φ ∈Sν(R), we transform this sum over zeros into a sum
over primes in the next proposition. In other words, we establish an explicit formula for
symmetric power L-functions. Since the proof is classical, we refer to [18, §4] or [9, §2.2]
which present a method that has just to be adapted to our setting.

Proposition 3.8� Let r Ê 1 and f ∈ H∗
κ (q) for which hypothesis Nice(r, f ) holds and let

Φ ∈Sν(R). We have

D1,q [Φ;r ]( f ) = E [Φ;r ]+P 1
q [Φ;r ]( f )+

r−1∑
m=0

(−1)mP 2
q [Φ;r,m]( f )+O

(
1

log
(
qr

))
where

E [Φ;r ] := Φ̂(0)+ (−1)r+1

2
Φ(0),

P 1
q [Φ;r ]( f ) :=− 2

log
(
qr

) ∑
p∈P
p-q

λ f
(
pr ) log pp

p
Φ̂

(
log p

log
(
qr

))
,

P 2
q [Φ;r,m]( f ) :=− 2

log
(
qr

) ∑
p∈P
p-q

λ f
(
p2(r−m)) log p

p
Φ̂

(
2log p

log
(
qr

))

for any integer m ∈ {0, . . . ,r −1}.

3.3. Contribution of the old forms. In this short section, we prove the following useful
lemmas.

Lemma 3.9� Let p1 and p2 6= q be some prime numbers and a1, a2, a be some nonnegative
integers. Then ∑

`|q∞

∆1(`2pa1
1 , pa2

2 q a)

`
¿ 1

q a/2

the implied constant depending only on a1 and a2.

Proof. Using proposition 2.1 and the fact that Hκ(1) = H∗
κ (1), we write

∆1(`2pa1
1 , pa2

2 q a) = ∑h

f ∈H∗
κ (1)

λ f (`2pa1
1 )λ f (pa2

2 q a)

¿ ∑h

f ∈H∗
κ (1)

|λ f (`2pa1
1 )| · |λ f (pa2

2 )| · |λ f (q a)|. (3.2)

By Deligne’s bound (2.3) we have

|λ f (`2pa1
1 )| · |λ f (pa2

2 )| É τ(`2pa1
1 )τ(pa2

2 ) É (a1 +1)(a2 +2)τ(`2). (3.3)

By the multiplicativity relation (2.4) and the value of the sign of the functional equa-
tion (2.11), we have

|λ f (q a)|¿ 1

q a/2
. (3.4)
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We obtain the result by reporting (3.4) and (3.3) in (3.2) and by using (2.12) and∑
`|q∞

τ(`2)

`
= 1+1/q

(1−1/q)2 ¿ 1.

�

Lemma 3.10� Let m,n Ê 1 be some coprime integers. Then,

∆q (m,n)−δ(m,n) ¿


(mn)1/4

q
log

(
mn

q2

)
if mn > q2

(mn)(κ−1)/2

qκ−1/2
É (mn)1/4

q
if mn É q2.

Proof. This is a direct consequence of the Weil-Estermann bound (A.5) and lemma A.1.
�

Corollary 3.11� For any prime number q, we have

p
q

∑h

f ∈H∗
κ (q)

λ f (q) ¿ 1

qδκ

where

δκ :=


κ−1

2
if κÉ 10 or κ= 14

5

2
otherwise.

Proof of corollary 3.11. Let K = {κ ∈ 2N : 2 É κÉ 14, κ 6= 12}. By proposition 2.2, we have∑h

f ∈H∗
κ (q)

λ f (q) =∆q (1, q)− δ(κ ∉K )

qν(q)

∑
`|q∞

∆1(`2, q)

`
. (3.5)

The term δ(κ ∉K ) comes from proposition 2.1 with the fact that there is no cusp forms
of weight κ ∈K and level 1. Lemma 3.10 gives

∆q (1, q) ¿ 1

qκ/2
(3.6)

and lemma 3.9 gives ∑
`|q∞

∆1(`2, q)

`
¿ 1p

q
. (3.7)

Since ν(q) > q , the result follows from reporting (3.6) and (3.7) in (3.5). �

Remark 3.12� In a very similar fashion, one can prove that

µh
q

(
H∗
κ (q)

)= Eh
q (1) = 1+O

(
1

qγκ

)
. (3.8)

where

γκ :=
κ−

1

2
if κÉ 10 or κ= 14

1 otherwise.

Corollary 3.11, (3.8) and (2.13) imply

E
h,ε
q (1) = 1+O

(
1

qβκ

)
(3.9)
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where

βκ :=

κ−1

2
if κÉ 10 or κ= 14

1 otherwise.

A direct consequence of lemma 3.9 is the following one.

Lemma 3.13� Let α1,α2,β1,β2,γ1,γ2, w be some nonnegative real numbers. Let Φ1 and
Φ2 be in Sν(R). Then,

∑
p1∈P
p1-q

∑
p2∈P
p2-q

log p1

pα1
1

log p2

pα2
2

Φ̂1

(
log p1

log
(
qβ1

))
Φ̂2

(
log p2

log
(
qβ2

)) ∑
`|q∞

∆1(`2pγ1

1 , pγ2

2 q w )

`

¿ qδν−w/2+ε

with δ given in table 1.

H
HHH

HHα2

α1 ]0,1] [1,+∞[

]0,1] β1(1−α1)+β2(1−α2) β2(1−α2)

[1,+∞[ β1(1−α1) 0

TABLE 1. Values of δ

4. LINEAR STATISTICS FOR LOW-LYING ZEROS

4.1. Density results for families of L-functions. We briefly recall some well-known fea-
tures that can be found in [18]. Let F be a family of L-functions indexed by the arithmetic
conductor namely

F = ⋃
QÊ1

F (Q)

where the arithmetic conductor of any L-function in F (Q) is of order Q in the logarithmic
scale. It is expected that there is a symmetry group G(F ) of matrices of large rank endowed
with a probability measure which can be associated to F such that the low-lying zeros
of the L-functions in F namely the non-trivial zeros of height less than 1/ logQ are
distributed like the eigenvalues of the matrices in G(F ). In other words, there should
exist a symmetry group G(F ) such that for any ν> 0 and any Φ ∈Sν(R),

lim
Q→+∞

1

F (Q)

∑
π∈F (Q)

∑
0ÉβπÉ1
γπ∈R

L(π,βπ+iγπ)=0

Φ

(
logQ

2iπ

(
βπ− 1

2
+ iγπ

))

=
∫
R
Φ(x)W1(G(F ))(x)dx

where W1(G(F )) is the one-level density of the eigenvalues of G(F ). In this case, F is
said to be of symmetry type G(F ) and we said that we proved a density result for F . For
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instance, the following densities are determined in [19]:

W1(SO(even))(x) = 1+ sin(2πx)

2πx
,

W1(O)(x) = 1+ 1

2
δ0(x),

W1(SO(odd))(x) = 1− sin(2πx)

2πx
+δ0(x),

W1(Sp)(x) = 1− sin(2πx)

2πx
where δ0 is the Dirac distribution at 0. According to Plancherel’s formula,∫

R
Φ(x)W1(G(F ))(x)dx =

∫
R
Φ̂(x)Ŵ1(G(F ))(x)dx

and we can check that

Ŵ1(SO(even))(x) = δ0(x)+ 1

2
η(x),

Ŵ1(O)(x) = δ0(x)+ 1

2
,

Ŵ1(SO(odd))(x) = δ0(x)− 1

2
η(x)+1,

Ŵ1(Sp)(x) = δ0(x)− 1

2
η(x)

where

η(x) :=


1 if |x| < 1,
1
2 if x =±1,

0 otherwise.

As a consequence, if we can only prove a density result for ν É 1, the three orthogonal
densities are indistinguishable although they are distinguishable from Sp. Thus, the
challenge is to pass the natural barrier ν= 1.

4.2. Asymptotic expectation of the one-level density. The aim of this part is to prove a
density result for the family

Fr := ⋃
q∈P

{
L(Symr f , s), f ∈ H∗

κ (q)
}

for any r Ê 1 which consists in proving the existence and computing the asymptotic ex-
pectation Eh∞ (D1[Φ;r ]) of D1[Φ;r ] := (

D1,q [Φ;r ]
)

q∈P
for any r Ê 1 and forΦ in Sν(R) with

ν> 0 as large as possible in order to be able to distinguish between the three orthogonal
densities if r is small enough. Recall that E [Φ;r ] has been defined in proposition 3.8.

Theorem 4.1� Let r Ê 1 and Φ ∈ Sν(R). We assume that hypothesis Nice(r, f ) holds for
any prime number q and any f ∈ H∗

κ (q) and also that θ is admissible. Let

ν1,max(r,κ,θ) :=
(
1− 1

2(κ−2θ)

)
2

r 2 .

If ν< ν1,max(r,κ,θ) then

Eh
∞ (D1[Φ;r ]) = E [Φ;r ].
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Remark 4.2� We remark that

ν1,max(r,κ,θ0) =
(
1− 16

32κ−7

)
2

r 2 Ê
82

57r 2 ,

ν1,max(r,κ,0) =
(
1− 1

2κ

)
2

r 2 Ê 3

2r 2

and thus ν1,max(1,κ,θ0) > 1 whereas ν1,max(r,κ,θ0) É 1 for any r Ê 2.

Remark 4.3� Note that

E [Φ;r ] =
∫
R
Φ̂(x)

(
δ0(x)+ (−1)r+1

2

)
dx.

Thus, this theorem reveals that the symmetry type of Fr is

G(Fr ) =


Sp if r is even,

O if r = 1,

SO(even) or O or SO(odd) if r Ê 3 is odd.

Some additional comments are given in remark 4 page 5.

Proof of theorem 4.1. The proof is detailed and will be a model for the next density results.
According to proposition 3.8 and (3.8) , we have

Eh
q

(
D1,q [Φ;r ]

)= E [Φ;r ]+Eh
q

(
P 1

q [Φ;r ]
)
+

r−1∑
m=0

(−1)m Eh
q

(
P 2

q [Φ;r,m]
)
+O

(
1

log
(
qr

))
. (4.1)

The first term in (4.1) is the main term given in the theorem. We now estimate the second
term of (4.1) via the trace formula given in proposition 2.2.

Eh
q

(
P 1

q [Φ;r ]
)
=P1

q,new[Φ;r ]+P1
q,old[Φ;r ] (4.2)

where

P1
q,new[Φ;r ] =− 2

log
(
qr

) ∑
p∈P
p-q

∆q (pr ,1)
log pp

p
Φ̂

(
log p

log
(
qr

))
,

P1
q,old[Φ;r ] = 2

q log
(
qr

) ∑
`|q∞

1

`

∑
p∈P
p-q

∆1(pr`2,1)
log pp

p
Φ̂

(
log p

log
(
qr

))
.

Let us estimate the new part which can be written as

P1
q,new[Φ;r ] =−2(2πiκ)

log
(
qr

) ∑
cÊ1
q |c

∑
p∈P

(
log pp

p
δq-p 1[1,qrν](p)

)
S(pr ,1;c)

c

× Jκ−1

(
4π

√
pr

c

)
Φ̂

(
log p

log
(
qr

))
.

Thanks to (A.3), the function

h(m;c) := Jκ−1

(
4π

p
m

c

)
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satisfies hypothesis P(T ; M ,1,C ) with

T (M ,1,C ) =
(

1+
p

M

C

)1/2−κ (p
M

C

)κ−1

.

Hence, if νÉ 2/r 2 then corollary 3.5 leads to

P1
q,new[Φ;r ] ¿ε qε

∑]

1ÉMÉqνr 2

CÊq/2

(
1+

√
M

q

)(p
M

C

)κ−1−2θ

(4.3)

¿ε qε
∑]

1ÉMÉqνr 2

(
M

κ−1
2 −θ

qκ−1−2θ
+ M

κ
2 −θ

qκ−
1
2−2θ

)

thanks to (A.2). Summing over M via (A.1) leads to

P1
q,new[Φ;r ] ¿ε q

(
κ−1

2 −θ)
(r 2ν−2)+ε+q

(
κ
2 −θ

)
r 2ν−(

κ− 1
2−2θ

)+ε (4.4)

which is an admissible error term if ν < ν1,max(r,κ,θ). According to lemma 3.13 (with
α2 =+∞) we have

P1
q,old[Φ;r ] ¿ε q

rν
2 −1+ε (4.5)

which is an admissible error term if ν< 2/r . Reporting (4.4) and (4.5) in (4.2) we obtain

Eh
q

(
P 1

q [Φ;r ]
)
¿ 1

qδ1
(4.6)

for some δ1 > 0 (depending on ν and r ) as soon as ν< ν1,max(r,κ,θ). We now estimate the
third term of (4.1). If 0 É m É r −1 then the trace formula given in proposition 2.2 implies
that

Eh
q

(
P 2

q [Φ;r,m]
)
=P2

q,new[Φ;r,m]+P2
q,old[Φ;r,m]

where

P2
q,new[Φ;r,m] =− 2

log
(
qr

) ∑
p∈P
p-q

∆q
(
p2(r−m),1

) log p

p
Φ̂

(
log

(
p2

)
log

(
qr

))
,

P2
q,old[Φ;r,m] = 2

q log
(
qr

) ∑
`|q∞

1

`

∑
p∈P
p-q

∆1
(
p2(r−m)`2,1

) log p

p
Φ̂

(
log

(
p2

)
log

(
qr

))
.

Let us estimate the new part which can be written as

P2
q,new[Φ;r,m] =−2(2πiκ)

log
(
qr

) ∑
cÊ1
q |c

∑
p∈P

(
log pp

p
δq-p 1

[
1,q

rν
2

](p)

)
S

(
p2(r−m),1;c

)
c

× 1p
p

Jκ−1

4π
√

p2(r−m)

c

Φ̂(
log p

log qr /2

)
.

The function

h(m,c) := Jκ−1

(
4π

p
m

c

)
× 1

m1/(4(r−m))
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satisfies hypothesis P(T ; M ,1,C ) with

T (M ,1,C ) =
(

1+
p

M

C

)1/2−κ (p
M

C

)κ−1
1

M 1/(4(r−m))
.

Hence, if νÉ 2/r 2 then corollary 3.5 leads to

P2
q,new[Φ;r,m] ¿ε qε

∑]

MÉqνr (r−m)

CÊq/2

1

(M)1/(4r−4m)

(p
M

C

)κ−1−2θ (
1+

√
M

q

)
.

This is smaller than the bound given in (4.3) and hence is an admissible error term if
ν< ν1,max(r,κ,θ). According to lemma 3.13, we have

P2
q,old[Φ;r ] ¿ε q−1+ε.

We obtain

Eh
q

(
P 2

q [Φ;r,m]
)
¿ 1

qδ2
(4.7)

for some δ2 > 0 (depending on ν and r ) as soon as ν< ν1,max(r,κ,θ). Finally, reporting
(4.7) and (4.6) in (4.1), we get

Eh
q

(
D1,q [Φ;r ]

)= E [Φ;r ]+O

(
1

log q

)
. (4.8)

�

4.3. Signed asymptotic expectation of the one-level density. In this part, we prove some
density results for subfamilies of Fr on which the sign of the functional equation remains
constant. The two subfamilies are defined by

F ε
r := ⋃

q∈P

{
L(Symr f , s), f ∈ Hε

κ(q)
}

.

Indeed, we compute the asymptotic expectation Eh,ε∞ (D1[Φ;r ]).

Theorem 4.4� Let r Ê 1 be an odd integer, ε = ±1 and Φ ∈ Sν(R). We assume that hy-
pothesis Nice(r, f ) holds for any prime number q and any f ∈ H∗

κ (q) and also that θ is
admissible. Let

νε1,max(r,κ,θ) := inf

(
ν1,max(r,κ,θ),

3

r (r +2)

)
.

If ν< νε1,max(r,κ,θ) then

Eh,ε
∞ (D1[Φ;r ]) = E [Φ;r ].

Some comments are given in remark 5 page 5.

Proof of theorem 4.4. By (2.13), we have

E
h,ε
q

(
D1,q [Φ;r ]

)= Eh
q

(
D1,q [Φ;r ]

)−ε×ε(k,r )
p

q Eh
q

(
λ.(q)D1,q [Φ;r ]

)
.
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The first term is the main term of the theorem thanks to theorem 4.1. According to
proposition 3.8 and corollary 3.11, the second term (without the epsilon factors) is given
by

p
q Eh

q

(
λ.(q)P 1

q [Φ;r ]
)

+p
q

r−1∑
m=0

(−1)m Eh
q

(
λ.(q)P 2

q [Φ;r,m]
)
+O

(
1

log
(
qr

))
. (4.9)

Let us focus on the first term in (4.9) knowing that the same discussion holds for the
second term with even better results on ν. We have

p
q Eh

q

(
λ.(q)P 1

q [Φ;r ]
)
=p

qP1
q,new[Φ;r ]+p

qP1
q,old[Φ;r ]

where

P1
q,new[Φ;r ] =− 2

log
(
qr

) ∑
p∈P
p-q

∆q
(
pr q,1

) log pp
p
Φ̂

(
log p

log
(
qr

))
,

P1
q,old[Φ;r ] = 2

qν(q) log
(
qr

) ∑
`|q∞

1

`

∑
p∈P
p-q

∆1
(
pr`2, q

) log pp
p
Φ̂

(
log p

log
(
qr

))
.

Lemma 3.13 implies
p

qP1
q,old[Φ;r ] ¿ q (νr−4)/2

which is an admissible error term if ν< 4/r . The new part is given by

P1
q,new[Φ;r ] =−2(2πiκ)

log
(
qr

) ∑
cÊ1
q |c

∑
p∈P
q-p

log pp
p

S
(
pr q,1;c

)
c

Jκ−1

(
4π

√
pr q

c

)
Φ̂

(
log

(
p

)
log

(
qr

))
.

and can be written as

−2(2πiκ)

log
(
qr

) ∑
cÊ1
q |c

∑
mÊ1

âm
S(m,1;c)

c
Jκ−1

(
4π

p
m

c

)
Φ̂

(
log

(
m/q

)
log(qr 2 )

)

where

âm := 1[1,q1+νr 2 ]

0 if q - m or m 6= pr q for some p 6= q in P ,
log pp

p if m = pr q for some p 6= q in P .

Thus, if νÉ 1/r 2 then we obtain

P1
q,new[Φ;r,m] ¿ε qε

∑]

MÉq1+νr 2

CÊq/2

(p
M

C

)κ−1−2θ (
1+

√
M

q

)

as in the proof of corollary 3.5. Summing over C via (A.2) gives

P1
q,new[Φ;r,m] ¿ε qε

∑]

MÉq1+r 2ν

(
M

κ−1
2 −θ

qκ−1−2θ
+ M

κ
2 −θ

qκ−
1
2−2θ

)
.
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Summing over M via (A.1) leads to

P1
q,new[Φ;r,m] ¿ε q

(
κ−1

2 −θ)
r 2ν−( κ−1

2 −θ)+ε+q
(
κ
2 −θ

)
r 2ν−(

κ−1
2 −θ)+ε

which is an admissible error term if ν< 1
r 2

(
1− 1

κ−2θ

)
. �

5. QUADRATIC STATISTICS FOR LOW-LYING ZEROS

5.1. Asymptotic expectation of the two-level density and asymptotic variance.

De�nition 5.1� Let f ∈ H∗
κ (q) and Φ1, Φ2 in Sν(R). The two-level density (relatively to Φ1

and Φ2) of Symr f is

D2,q [Φ1,Φ2;r ]( f ) := ∑
( j1, j2)∈E ( f ,r )2

j1 6=± j2

Φ1

(
ρ̂

( j1)
f ,r

)
Φ2

(
ρ̂

( j2)
f ,r

)
.

Remark 5.2� In this definition, it is important to note that the condition j1 6= j2 does not

imply that ρ̂( j1)
f ,r 6= ρ̂

( j2)
f ,r . It only implies this if the zeros are simple. Recall however that

some L-functions of elliptic curves (hence of modular forms) have multiple zeros at the
critical point [24, 3].

The following lemma is an immediate consequence of definition 5.1.

Lemma 5.3� Let f ∈ H∗
κ (q) and Φ1, Φ2 in Sν(R). Then,

D2,q [Φ1,Φ2;r ]( f ) = D1,q [Φ1;r ]( f )D1,q [Φ2;r ]( f )−2D1,q [Φ1Φ2;r ]( f )

+ 1H−1
κ (q)( f )×Φ1(0)Φ2(0).

We first evaluate the product of one-level statistics on average.

Lemma 5.4� Let r Ê 1. Let Φ1 and Φ2 in Sν(R). We assume that hypothesis Nice(r, f )
holds for any prime number q and any f ∈ H∗

κ (q) and also that θ is admissible. If ν< 1/r 2

then

Eh
∞ (D1[Φ1;r ]D1[Φ2;r ]) = E [Φ1;r ]E [Φ2;r ]+2

∫
R
|u|Φ̂1(u)Φ̂2(u)du.

Remark 5.5� Since theorem 4.1 implies that

Eh
∞ (D1[Φ1;r ]D1[Φ2;r ])−E [Φ1;r ]E [Φ2;r ] =

Eh
∞ (D1[Φ1;r ]D1[Φ2;r ])−Eh

∞ (D1[Φ1;r ])Eh
∞ (D1[Φ2;r ]) ,

lemma 5.4 reveals that the term

Ch
∞ (D1[Φ1;r ],D1[Φ2;r ]) := 2

∫
R
|u|Φ̂1(u)Φ̂2(u)du

measures the dependence between D1[Φ1;r ] and D1[Φ2;r ]. This term is the asymp-
totic covariance of D1[Φ1;r ] and D1[Φ2;r ]. In particular, taking Φ1 =Φ2, we obtain the
asymptotic variance.

Theorem 5.6� Let Φ ∈ Sν(R). If ν < 1/r 2 then the asymptotic variance of the random
variable D1,q [Φ;r ] is

Vh
∞ (D1[Φ;r ]) = 2

∫
R
|u|Φ̂2(u)du.
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Proof of lemma 5.4. From proposition 3.8, we obtain

Eh
q

(
D1,q [Φ1;r ]D1,q [Φ2;r ]

)= E [Φ1;r ]E [Φ2;r ]+Ch
q

+ ∑
(i , j )∈{1,2}2

i 6= j

r−1∑
m=0

(−1)m Eh
q

(
P 1

q [Φi ;r ]P 2
q [Φ j ;r,m]

)

+
r−1∑

m1=0

r−1∑
m2=0

(−1)m1+m2 Eh
q

(
P 2

q [Φ1;r,m1]P 2
q [Φ2;r,m2]

)
+O

(
1

log
(
qr

))
with

Ch
q := Eh

q

(
P 1

q [Φ1;r ]P 1
q [Φ2;r ]

)
.

The error term is evaluated by use of theorem 4.1 and equations (2.12), (4.6) and (4.7). We
first compute Ch

q . Using proposition 2.2, we compute Ch
q = E n −4E o with

E n := 4

log2 (
qr

) ∑
p1∈P
p1-q

∑
p2∈P
p2-q

log p1p
p1

log p2p
p2

Φ̂1

(
log p1

log
(
qr

))
Φ̂2

(
log p2

log
(
qr

))
∆q (pr

1 , pr
2)

and

E o := 1

q log2 (
qr

)
× ∑

p1∈P
p1-q

∑
p2∈P
p2-q

log p1p
p1

log p2p
p2

Φ̂1

(
log p1

log
(
qr

))
Φ̂2

(
log p2

log
(
qr

)) ∑
`|q∞

∆1(`2pr
1 , pr

2)

`
.

By definition of the ∆-symbol, we write E n = E n
p + 8πiκ

log2 (qr )
E n

e with

E n
p := 4

log2 (qr )

∑
p∈P
p-q

log2 p

p

(
Φ̂1Φ̂2

)( log p

log(qr )

)

and

E n
e := ∑

cÊ1
q |c

∑
p1∈P
p1-q

∑
p2∈P
p2-q

log p1p
p1

log p2p
p2

Φ̂1

(
log p1

log
(
qr

))
Φ̂2

(
log p2

log
(
qr

))

× S(pr
1 , pr

2 ;c)

c
Jκ−1

4π
√

pr
1 pr

2

c

 .

We remove the condition p - q from E n
p at an admissible cost and obtain, after integration

by parts,

E n
p = 2

∫
R
|u|Φ̂1(u)Φ̂2(u)du +O

(
1

log2 (qr )

)
. (5.1)

Using corollary 3.5, we get

E n
e ¿ 1

log2 (
qr

) (5.2)
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as soon as νÉ 1/r 2. Finally, using lemma 3.13, we see that E o is an admissible error term
for ν< 1/r so that equations (5.1) and (5.2) lead to

Ch
q = 2

∫
R
|u|Φ̂1(u)Φ̂2(u)du +O

(
1

log2 (
qr

))
. (5.3)

Let {i , j } = {1,2}. We prove next that each Eh
q

(
P 1

q [Φi ;r ]P 2
q [Φ j ;r,m]

)
is an error term when

ν< 1/r 2. Using proposition 2.2 and lemma 3.13 we have

Eh
q

(
P 1

q [Φi ;r ]P 2
q [Φ j ;r,m]

)
= 8πiκ

log2 (qr )

∑
cÊ1
q |c

∑
p1∈P
p1-q

∑
p2∈P
p2-q

log p1p
p1

log p2

p2
Φ̂i

(
log p1

log
(
qr

))

× Φ̂ j

(
log p2

log
(
qr /2

))
S(pr

1 , p2r−2m
2 ;c)

c
Jκ−1

4π
√

pr
1 p2r−2m

2

c

+O

(
1

log
(
qr

))2

.

We use corollary 3.5 to conclude that

Eh
q

(
P 1

q [Φi ;r ]P 2
q [Φ j ;r,m]

)
¿ 1

log q
(5.4)

when ν< 1/r 2. Finally, Eh
q

(
P 2

q [Φ1;r,m1]P 2
q [Φ2;r,m2]

)
is shown to be an error term in the

same way. �

Using lemmas 5.3 and 5.4, theorem 4.1, hypothesis Nice(r, f ) and remark 3.12, we prove
the following theorem.

Theorem 5.7� Let r Ê 1. Let Φ1 and Φ2 in Sν(R). We assume that hypothesis Nice(r, f )
holds for any prime number q and any f ∈ H∗

κ (q) and also that θ is admissible. If ν <
ν2,max(r,κ,θ) then

Eh
∞ (D2[Φ1,Φ2;r ]) =

[
Φ̂1(0)+ (−1)r+1

2
Φ1(0)

][
Φ̂2(0)+ (−1)r+1

2
Φ2(0)

]
+2

∫
R
|u|Φ̂1(u)Φ̂2(u)du −2�Φ1Φ2(0)+

(
(−1)r + 12N+1(r )

2

)
Φ1(0)Φ2(0).

Some comments are given in remark 6 page 7.

5.2. Signed asymptotic expectation of the two-level density and signed asymptotic
variance. In this part, r is odd.

Lemma 5.8� Let Φ1 and Φ2 in Sν(R). If ν< 1/(2r 2) then

Eh,ε
∞ (D1[Φ1;r ]D1[Φ2;r ]) = E [Φ1;r ]E [Φ2;r ]+2

∫
R
|u|Φ̂1(u)Φ̂2(u)du.

Remark 5.9� By theorem 4.4 and lemma 5.8 we have

Eh,ε
∞ (D1[Φ1;r ]D1[Φ2;r ])−E [Φ1;r ]E [Φ2;r ] =

Eh,ε
∞ (D1[Φ1;r ]D1[Φ2;r ])−Eh,ε

∞ (D1[Φ1;r ])Eh,ε
∞ (D1[Φ2;r ]) .
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Thus,

Ch,ε
∞ (D1[Φ1;r ],D1[Φ2;r ]) := 2

∫
R
|u|Φ̂1(u)Φ̂2(u)du

is the signed asymptotic covariance of D1[Φ1;r ] and D1[Φ2;r ]. In particular, taking Φ1 =
Φ2, we obtain the signed asymptotic variance.

Theorem 5.10� Let Φ ∈ Sν(R). If ν < 1/(2r 2) then the signed asymptotic variance of
D1[Φ;r ] is

Vh,ε
∞ (D1[Φ;r ]) = 2

∫
R
|u|Φ̂2(u)du.

Proof of lemma 5.8. From proposition 3.8 and (3.9), we obtain

E
h,ε
q

(
D1,q [Φ1;r ]D1,q [Φ2;r ]

)= E [Φ1;r ]E [Φ2;r ]+Ch,ε
q

+ ∑
(i , j )∈{1,2}2

i 6= j

r−1∑
m=0

(−1)m E
h,ε
q

(
P 1

q [Φi ;r ]P 2
q [Φ j ;r,m]

)

+
r−1∑

m1=0

r−1∑
m2=0

(−1)m1+m2 E
h,ε
q

(
P 2

q [Φ1;r,m1]P 2
q [Φ2;r,m2]

)
+O

(
1

log
(
qr

))
(5.5)

with

C
h,ε
q := Eh,ε

q

(
P 1

q [Φ1;r ]P 1
q [Φ2;r ]

)
.

Assume that ν< 1/r 2. Then equations (2.13), (5.3) and proposition 2.2 lead to

C
h,ε
q = 2

∫
R
|u|Φ̂1(u)Φ̂2(u)du −ε×ε(κ,r )(Gn −4Go) (5.6)

with

Gn := 4
p

q

log2 (
qr

) ∑
p1∈P
p1-q

∑
p2∈P
p2-q

log p1p
p1

log p2p
p2

Φ̂1

(
log p1

log
(
qr

))
Φ̂2

(
log p2

log
(
qr

))
∆q

(
pr

1 q, pr
2

)
and

Go := 1
p

q log2 (
qr

)
× ∑

p1∈P
p1-q

∑
p2∈P
p2-q

log p1p
p1

log p2p
p2

Φ̂1

(
log p1

log
(
qr

))
Φ̂2

(
log p2

log
(
qr

)) ∑
`|q∞

∆q
(
`2pr

1 , pr
2 q

)
`

.

Lemma 3.10 implies that if ν< 1/(2r 2) then

Gn ¿ qνr [r (κ−1)+1]/2

q (κ−1)/2
(5.7)

hence Gn is an error term as soon as νÉ 1/(2r 2). Lemma 3.13 implies

Go ¿ q−3/2+νr+ε (5.8)

which is an error term. Reporting equations (5.7) and (5.8) in (5.6) we obtain

Ch,ε
∞ = 2

∫
R
|u|Φ̂1(u)Φ̂2(u)du (5.9)
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for νÉ 1/(2r (r +2)). Next, we prove that each Eh,ε
q

(
P 1

q [Φi ;r ]P 2
q [Φ j ;r,m]

)
is an error term

as soon as νÉ 1/(2r 2). From equations (2.13) and (5.4), we obtain

E
h,ε
q

(
P 1

q [Φi ;r ]P 2
q [Φ j ;r,m]

)
=

−ε×ε(κ,r )
p

q
∑h

f ∈H∗
κ (q)

λ f (q)P 1
q [Φi ;r ]P 2

q [Φ j ;r,m]+O

(
1

log q)

)
. (5.10)

We use proposition 2.2 and lemmas 3.13 and 3.10 to have

p
q

∑h

f ∈H∗
κ (q)

λ f (q)P 1
q [Φi ;r ]P 2

q [Φ j ;r,m] ¿

qνr (2r−m+2)/4−1/4

log2 q
+ q (νr−1)/2+ε

log q
. (5.11)

It follows from (5.11) and (5.10) that

Eh,ε
∞

(
P 1

q [Φi ;r ]P 2
q [Φ j ;r,m]

)
= 0 (5.12)

for νÉ 1/(2r (r +1)). In the same way, we have, for ν in the previous range,

Eh,ε
∞

(
P 2

q [Φ1;r,m1]P 2
q [Φ2;r,m2]

)
= 0. (5.13)

Reporting (5.9), (5.12) and (5.13) in (5.5), we have the announced result. �

Using lemmas 5.3, 5.8, theorem 4.4, hypothesis Nice(r, f ) and (3.9), we prove the
following theorem.

Theorem 5.11� Let f ∈ H∗
κ (q) and Φ1, Φ2 in Sν(R). If ν< 1/(2r (r +1)) then

Eh,ε
∞ (D2[Φ1,Φ2;r ]) =

[
Φ̂1(0)+ 1

2
Φ1(0)

][
Φ̂2(0)+ 1

2
Φ2(0)

]
+2

∫
R
|u|Φ̂1(u)Φ̂2(u)du −2�Φ1Φ2(0)−Φ1(0)Φ2(0)

+ 1{−1}(ε)Φ1(0)Φ2(0).

Remark 5.12� Remark 4.3 together with theorem 5.11 and a result of Katz & Sarnak (see [19,
Theorem A.D.2.2] or [26, Theorem 3.2]) imply that the symmetry type of F ε

r is as in table 2.
Some additional comments are given in remark 2 page 3.

HH
HHHHε

r
even odd

−1 SO(odd)

1 Sp SO(even)

TABLE 2. Symmetry type of F ε
r
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6. FIRST ASYMPTOTIC MOMENTS OF THE ONE-LEVEL DENSITY

In this section, we compute the asymptotic m-th moment of the one level density
namely

Mh
∞,m

(
D1,q [Φ;r ]

)
:= lim

q∈P
q→+∞

Mh
q,m

(
D1,q [Φ;r ]

)
where

Mh
q,m

(
D1,q [Φ;r ]

)= Eh
q

((
D1,q [Φ;r ]−Eh

q (D1,q [Φ;r ])
)m)

for m small enough (regarding to the size of the support of Φ). The end of this section is
devoted to the proof of theorem E. Note that we can assume that m Ê 3 since the work
has already been done for m = 1 and m = 2. Thanks to equation (4.8) and proposition 3.8,
we have

Mh
q,m

(
D1,q [Φ;r ]

)= m∑
`=0

(
m

`

)
Eh

q

(
P 1

q [Φ;r ]m−`
(
P 2

q [Φ;r ]+O

(
1

log q

))`)

= ∑
0É`Ém
0ÉαÉ`

(
m

`

)(
`

α

)
R(q)`−αEh

q

(
P 1

q [Φ;r ]m−`P 2
q [Φ;r ]α

)
where

P 2
q [Φ;r ]( f ) :=− 2

log(qr )

r−1∑
j=0

(−1) j
∑

p∈P
p-q

λ f

(
p2(r− j )

) log p

p
Φ̂

(
2log p

log(qr )

)

=− 2

log(qr )

r∑
j=1

(−1)r− j
∑

p∈P
p-q

λ f

(
p2 j

) log p

p
Φ̂

(
2log p

log(qr )

)
(6.1)

and R is a positive function satisfying

R(q) ¿ 1

log q
.

Thus, an asymptotic formula forMh
q,m

(
D1,q [Φ;r ]

)
directly follows from the next proposi-

tion.

Proposition 6.1� Let r Ê 1 be any integer. We assume that hypothesis Nice(r, f ) holds for
any prime number q and any primitive holomorphic cusp form of level q and even weight
κ. Let αÊ 0 and `Ê 0 be any integers.

• If αÊ 1 and αν< 4/r 2 then

Eh
q

(
P 2

q [Φ;r ]α
)
=O

(
1

log q

)
.

• If 1 ÉαÉ `É m −1 and (α+m −`)ν< 4/(r (r +2)) then

Eh
q

(
P 1

q [Φ;r ]m−`P 2
q [Φ;r ]α

)
=O

(
1

log q

)
.
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• If αÊ 1 and αν< 4/(r (r +2)) then

Eh
q

(
P 1

q [Φ;r ]α
)
=

O
(

1
log2 (q)

)
if α is odd,

2
∫
R|u|Φ̂2(u)du × α!

2α/2
(
α
2

)
!
+O

(
1

log2 (q)

)
otherwise.

6.1. One some useful combinatorial identity. In order to use the multiplicative prop-
erties of Hecke eigenvalues in the proof of proposition 6.1, we want to reorder some
sums over many primes to sums over distinct primes. We follow the work of Hughes &
Rudnick [14, §7] (see also [13] and the work of Soshnikov [28]) to achieve this. Let P (α, s)
be the set of surjective functions

σ : {1, . . . ,α} � {1, . . . , s}

such that for any j ∈ {1, . . . ,α}, eitherσ( j ) = 1 or there exists k < j such thatσ( j ) =σ(k)+1.
This can be viewed as the number of partitions of a set of α elements into s nonempty
subsets. By definition, the cardinality of P (α, s) is the Stirling number of second kind [29,
§1.4]. For any j ∈ {1, . . . , s}, let

$(σ)
j := #σ−1({ j }).

Note that

$(σ)
j Ê 1 for any 1 É j É s and

s∑
j=1

$(σ)
j =α. (6.2)

The following lemma is lemma 7.3 of [14, §7].

Lemma 6.2� If g is any function of m variables then

∑
j1,..., jm

g
(
x j1 , . . . , x jm

)= m∑
s=1

∑
σ∈P (m,s)

∑
i1,...,is
distinct

g
(
xiσ(1) , . . . , xiσ(m)

)
.

6.2. Proof of the first bullet of proposition 6.1. By the definition (6.1), we have

Eh
q

(
P 2

q [Φ;r ]α
)
= (−2)α

logα (qr )

∑
1É j1,..., jαÉr

(−1)αr−( j1+...+ jα)

× ∑
p1,...,pα∈P

q-p1...pα

(
α∏

i=1

log pi

pi
Φ̂

(
2log pi

log(qr )

))
Eh

q

(
α∏

i=1
λ f

(
p2 ji

i

))
.

Writing {p̂i }iÊ1 for the increasing sequence of prime numbers except q , we have

∑
p1,...,pα∈P

q-p1...pα

(
α∏

i=1

log pi

pi
Φ̂

(
2log pi

log(qr )

))
Eh

q

(
α∏

i=1
λ f

(
p2 ji

i

))

= ∑
i1,...,iα

(
α∏
`=1

log p̂i`

p̂i`
Φ̂

(
2log p̂i`

log(qr )

))
Eh

q

(
α∏
`=1

λ f

(
p̂2 j`

i`

))
. (6.3)
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Using lemma 6.2, we rewrite the right sum in (6.3) as

α∑
s=1

∑
σ∈P (α,s)

∑
k1,...,ks
distinct

(
α∏

i=1

log p̂kσ(i )

p̂kσ(i )

Φ̂

(
2log p̂kσ(i )

log(qr )

))
Eh

q

(
α∏

i=1
λ f

(
p̂2 ji

kσ(i )

))

=
α∑

s=1

∑
σ∈P (α,s)

∑
k1,...,ks
distinct

(
s∏

u=1

(
log p̂ku

p̂ku

Φ̂

(
2log p̂ku

log(qr )

))$(σ)
u

)
Eh

q

 ∏
1ÉuÉs
1É jÉr

λ f

(
p̂2 j

ku

)$(σ)
u, j


where

$(σ)
u, j := #{1 É i Éα,σ(i ) = u, ji = j }

for any 1 É u É s and any 1 É j É r . Now, we show that

α−1∑
s=1

∑
σ∈P (α,s)

∑
k1,...,ks
distinct

(
s∏

u=1

(
log p̂ku

p̂ku

Φ̂

(
2log p̂ku

log(qr )

))$(σ)
u

)
Eh

q

 ∏
1ÉuÉs
1É jÉr

λ f

(
p̂2 j

ku

)$(σ)
u, j


¿ logα−1 (q).

For s <α and σ ∈ P (α, s), we use (2.3) together with (3.8) to obtain that the left-hand side
of the previous equation is bounded by

α−1∑
s=1

∑
σ∈P (α,s)

∑
k1,...,ks
distinct

s∏
u=1

(
log p̂ku

p̂ku

∣∣∣∣Φ̂(
2log p̂ku

log(qr )

)∣∣∣∣)$
(σ)
u

.

Since s <α, equation (6.2) implies that $(σ)
u > 1 for some 1 É u É s. These values lead to

convergent, hence bounded, sums. Let

d (σ) := #
{
1 É u É s : $(σ)

u = 1
} ∈ {0, . . . ,α−1},

then

α−1∑
s=1

∑
σ∈P (α,s)

∑
k1,...,ks
distinct

s∏
u=1

(
log p̂ku

p̂ku

∣∣∣∣Φ̂(
2log p̂ku

log(qr )

)∣∣∣∣)$
(σ)
u

¿
α−1∑
s=1

∑
σ∈P (α,s)

∑
k1,...,kd
distinct

d (σ)∏
u=1

(
log p̂ku

p̂ku

∣∣∣∣Φ̂(
2log p̂ku

log(qr )

)∣∣∣∣)¿ logα−1 (q).

We have altogether

Eh
q

(
P 2

q [Φ;r ]α
)
= (−2)α

logα (qr )

∑
1É j1,..., jαÉr

(−1)αr−( j1+...+ jα)

× ∑
k1,...,kα
distinct

( α∏
u=1

(
log p̂ku

p̂ku

Φ̂

(
2log p̂ku

log(qr )

)))
Eh

q

(
λ f

( α∏
u=1

p̂2 ju

ku

))

+O

(
1

log q

)
(6.4)
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since the only element of P (α,α) is the identity function. By lemmas 3.9 and 3.10, we have

Eh
q

(
λ f

( α∏
u=1

p̂2 ju

ku

))
¿ 1

q

α∏
u=1

p̂ ju /2
ku

log p̂ku

hence the first term in the right-hand side of (6.4) is bounded by a negative power of q as
soon as ανr 2 < 4.

6.3. Proof of the third bullet of proposition 6.1. By proposition 3.8, we have

Eh
q (P 1

q [Φ;r ]α) = (−2)α

logα (qr )

∑
p1,...,pα∈P
p1,...,pα-q

(
α∏

i=1

log pip
pi

Φ̂

(
log pi

log qr

))
Eh

q

(
α∏

i=1
λ f

(
pr

i

))
. (6.5)

Using lemma 6.2, we rewrite equation (6.5) as

Eh
q (P 1

q [Φ;r ]α) = (−2)α

logα (qr )

α∑
s=1

∑
σ∈P (α,s)

∑
i1,...,is

distinct

 α∏
j=1

 log p̂iσ( j )√
p̂iσ( j )

Φ̂

( log p̂iσ( j )

log(qr )

)


×Eh
q

(
α∏

j=1
λ f

(
p̂r

iσ( j )

))

= (−2)α

logα (qr )

α∑
s=1

∑
σ∈P (α,s)

∑
i1,...,is

distinct

 s∏
u=1

(
log p̂iu√

p̂iu

Φ̂

(
log p̂iu

log qr

))$(σ)
u


×Eh

q

( s∏
u=1

λ f

(
p̂r

iu

)$(σ)
u

)
. (6.6)

It follows from (2.8) and (2.9) that

λ f

(
p̂r

iu

)$(σ)
u =

r$(σ)
u∑

ju=0
x($(σ)

u ,r, ju)λ f

(
p̂ ju

iu

)
.

Since u 6= v implies that p̂iu 6= p̂iv , equation (6.6) becomes

Eh
q (P 1

q [Φ;r ]α) = (−2)α

logα (qr )

α∑
s=1

∑
σ∈P (α,s)

∑
i1,...,is

distinct

 s∏
u=1

(
log p̂iu√

p̂iu

Φ̂

(
log p̂iu

log(qr )

))$(σ)
u


× ∑

j1,..., js

0É juÉr$(σ)
u

( s∏
u=1

x($(σ)
u ,r, ju)

)
Eh

q

(
λ f

( s∏
u=1

p̂ ju

iu

))
.

Using proposition 2.2 and lemmas 3.10 and 3.9, we get

Eh
q

(
λ f

( s∏
u=1

p̂ ju

iu

))
=

s∏
u=1

δ ju ,0 +O

(
1

q

s∏
u=1

p̂ ju /4
iu

log p̂iu

)
hence

Eh
q (P 1

q [Φ;r ]α) = TP+O(TE) (6.7)
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with

TP := (−2)α

logα (qr )

α∑
s=1

∑
σ∈P (α,s)

∑
i1,...,is

distinct

s∏
u=1

(
log p̂iu√

p̂iu

Φ̂

(
log p̂iu

log(qr )

))$(σ)
u

x($(σ)
u ,r,0) (6.8)

and

TE := 1

q logα (qr )

α∑
s=1

∑
σ∈P (α,s)

∑
i1,...,is

distinct

s∏
u=1

(
p̂(r−2)/4

iu
log2 p̂iu

∣∣∣∣Φ̂(
log p̂iu

log(qr )

)∣∣∣∣)$
(σ)
u

.

We have

TE = 1

q logα (qr )

 ∑
p∈P
p-q

p(r−2)/4 log2 p

∣∣∣∣Φ̂(
log p

log(qr )

)∣∣∣∣

α

¿ qαrν(r+2)/4−1 (6.9)

so that, TE is an error term as soon as

αrν(r +2) < 4.

We assume from now on that this condition is satisfied. According to (2.10) (recall that
r Ê 1), we rewrite (6.8) as

TP = (−2)α

logα (qr )

α∑
s=1

∑
σ∈PÊ2(α,s)

∑
i1,...,is

distinct

s∏
u=1

(
log p̂iu√

p̂iu

Φ̂

(
log p̂iu

log(qr )

))$(σ)
u

x($(σ)
u ,r,0) (6.10)

where

PÊ2(α, s) := {
σ ∈ P (α, s) : ∀u ∈ {1, . . . , s},$(σ)

u Ê 2
}

.

Moreover, if for at least one σ and at least one u (say u0) we have $(σ)
u Ê 3, then

∑
i1,...,is

distinct

s∏
u=1

(
log p̂iu√

p̂iu

Φ̂

(
log p̂iu

log(qr )

))$(σ)
u

x($(σ)
u ,r,0)

¿

 ∑
p∈P

pÉqrν

log3 (p)

p3/2

 s∏
u=1

u 6=u0

 ∑
pu∈P

puÉqrν

log2 (pu)

pu


¿ (log q)2s−2. (6.11)

But, from (6.2), we deduce

2s É
s∑

j=1
$(σ)

j =α
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hence (log q)2s−2 ¿ (log q)α−2. Reinserting this in (6.11) and the result in (6.10), we obtain

TP = (−2)α

logα (qr )

α∑
s=1

∑
σ∈P 2(α,s)

∑
i1,...,is

distinct

s∏
u=1

(
log p̂iu√

p̂iu

Φ̂

(
log p̂iu

log qr

))$(σ)
u

x($(σ)
u ,r,0)

+O

(
1

log2 (q)

)
(6.12)

where

P 2(α, s) := {
σ ∈ P (α, s) : ∀u ∈ {1, . . . , s},$(σ)

u = 2
}

.

From (6.12), (6.9) and (6.7), we deduce

Eh
q (P 1

q [Φ;r ]α) = (−2)α

logα (qr )

α∑
s=1

∑
σ∈P 2(α,s)

∑
i1,...,is

distinct

s∏
u=1

log2 (p̂iu )

p̂iu

Φ̂2
(

log p̂iu

log(qr )

)

+O

(
1

log2 (q)

)
since x(2,r,0) = 1 according to (2.10). Note in particular that, according to (6.2) the
previous sum is zero if α is odd. Thus, we can assume now that α is even and get

Eh
q (P 1

q [Φ;r ]α) = (−2)α

logα (qr )

∑
σ∈P 2(α,α/2)

∑
i1,...,iα/2
distinct

α/2∏
u=1

log2 (p̂iu )

p̂iu

Φ̂2
(

log p̂iu

log(qr )

)

+O

(
1

log2 (q)

)
. (6.13)

However, summing over all the possible (i1, . . . , iα/2) instead of the one with distinct
indices reintroduces convergent sums that enter the error term because of the 1/ logα (qr )
factor. It follows that (6.13) becomes:

Eh
q (P 1

q [Φ;r ]α) =
[

4

log2 (qr )

∑
p∈P

log2 (p)

p
Φ̂2

(
log p

log(qr )

)]α/2

#P 2(α,α/2)

+O

(
1

log2 (q)

)
. (6.14)

Taking m = 2 (we already proved that the second moment is finite, see section 5.1) and
reinserting the result in (6.14) implies that

Eh
q (P 1

q [Φ;r ]α) = Eh
q (P 1

q [Φ;r ]2)#P 2(α,α/2)+O

(
1

log2 (q)

)
.

We conclude by computing

#P 2(α,α/2) = α!

2α/2
(
α
2

)
!
.

(see [30, Example 5.2.6 and Exercise 5.43]).
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6.4. Proof of the second bullet of proposition 6.1. We mix the two techniques which
have been used to prove the first and third bullets of proposition 6.1. We get following the
same lines and thanks to lemma 6.2

Eh
q

(
P 1

q [Φ;r ]m−`P 2
q [Φ;r ]α

)
= (−2)α+m−`

logα+m−` (qr )

∑
1É j1,..., jαÉr

(−1)αr−( j1+...+ jα)
α+m−`∑

s=1

× ∑
σ∈P (α+m−`,s)

∑
i1,...,is

distinct

s∏
u=1

 log$
(σ,1)
u +$(σ,2)

u
(
p̂iu

)
p̂$(σ,1)

u /2+$(σ,2)
u

iu

Φ̂

(
log p̂iu

log(qr )

)$(σ,1)
u

Φ̂

(
2log p̂iu

log(qr )

)$(σ,2)
u


×Eh

q

(
s∏

u=1

(
λ f

(
p̂r

iu

)$(σ,1)
u

r∏
j=1

λ f

(
p̂2 j

iu

)$(σ,2)
u, j

))

where

$(σ,1)
u := #{i ∈ {1, . . . ,m −`} , σ(i ) = u} ,

$(σ,2)
u := #{i ∈ {1, . . . ,α} , σ(m −`+ i ) = u} ,

$(σ,2)
u, j := #

{
i ∈ {1, . . . ,α} , σ(m −`+ i ) = u and ji = j

}
for any 1 É u É s, any 1 É j É r and anyσ ∈ P (α+m−`, s). Note that these numbers satisfy

s∑
u=1

(
$(σ,1)

u +$(σ,2)
u

)= m −`+α (6.15)

and

r∑
j=1

$(σ,2)
u, j =$(σ,2)

u (6.16)

for any 1 É u É r and any σ ∈ P (α+m −`, s) by definition. They also satisfy

∀σ ∈ P (α+m −`, s),∀u ∈ {1, . . . , s} , $(σ,1)
u +$(σ,2)

u Ê 1 (6.17)

since any σ ∈ P (α+m −`, s) is surjective and

∀σ ∈ P (α+m −`, s),∀i ∈ {1,2} ,∃ui ,σ ∈ {1, . . . , s} , $(σ,i )
ui ,σ

Ê 1 (6.18)

since α Ê 1 and m −` Ê 1. The strategy is to estimate individually each term of the σ-
sum. Thus, we fix some integers j1, . . . , jα in {1, . . . ,r }, some integer s in {1, . . . ,r } and some
application σ in P (α+m −`, s).
First case: ∀u ∈ {1, . . . ,s} , $(σ,1)

u /2+$(σ,2)
u É 1.

Let us remark that if $(σ,2)
u = 1 for some 1 É u É s then there exists a unique 1 É jiu É r

depending on σ such that $(σ,2)
u, jiu

= 1 and $(σ,2)
u, j = 0 for any 1 É j 6= jiu É r according to
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(6.16). Thus,

s∏
u=1

(
λ f

(
p̂r

iu

)$(σ,1)
u

r∏
j=1

(
λ f

(
p̂2 j

iu

)$(σ,2)
u, j

))
=λ f

 ∏
1ÉuÉs(

$(σ,1)
u ,$(σ,2)

u

)
=(2,0)

p̂r$(σ,1)
u /2

iu



×λ f

 ∏
1ÉuÉs(

$(σ,1)
u ,$(σ,2)

u

)
=(2,0)

p̂r$(σ,1)
u /2

iu

∏
1ÉuÉs(

$(σ,1)
u ,$(σ,2)

u

)
=(1,0)

p̂r$(σ,1)
u

iu

∏
1ÉuÉs(

$(σ,1)
u ,$(σ,2)

u

)
=(0,1)

p̂
2 jiu$

(σ,2)
u, jiu

iu


where the two integers appearing in the right-hand side of the previous equality are
different according to (6.18). Consequently, proposition 2.2 and lemmas 3.10 and 3.9
enable us to assert that

Eh
q

(
s∏

u=1

(
λ f

(
p̂r

iu

)$(σ,1)
u

r∏
j=1

(
λ f

(
p̂2 j

iu

)$(σ,2)
u, j

)))
¿ 1

q

∏
1ÉuÉs(

$(σ,1)
u ,$(σ,2)

u

)
=(2,0)

log p̂iu

p̂−r$(σ,1)
u /4

iu

× ∏
1ÉuÉs(

$(σ,1)
u ,$(σ,2)

u

)
=(1,0)

log p̂iu

p̂−r$(σ,1)
u /4

iu

∏
1ÉuÉs(

$(σ,1)
u ,$(σ,2)

u

)
=(0,1)

log p̂iu

p̂−r$(σ,2)
u /2

iu

.

Note that, in this first case, the right hand term is

1

q

s∏
u=1

log p̂iu

p̂−r ($(σ,1)
u /4+$(σ,2)

u /2)
iu

hence the contribution of these σ’s to Eh
q

(
P 1

q [Φ;r ]m−`P 2
q [Φ;r ]α

)
is bounded by

qε

q

( ∑
pÉqνr

1

p1/2−r /4

)m−` ( ∑
pÉqνr /2

1

p1−r /2

)α
¿ qνr /4[(m−`)(r+2)+αr ]−1+ε.

This is an admissible error term as long as νr /4[(m −`)(r +2)+αr ] < 1.
Second case: ∃uσ ∈ {1, . . . ,s} , $(σ,1)

uσ /2+$(σ,2)
uσ > 1.

According to (2.8) and (2.9), if 1 É u É s and 1 É j É r then

λ f

(
p̂r

iu

)$(σ,1)
u =

r$(σ,1)
u∑

ku,1=0
x($(σ,1)

u ,r,ku,1)λ f

(
p̂

ku,1

iu

)
and

λ f

(
p̂2 j

iu

)$(σ,2)
u, j =

j$(σ,2)
u, j∑

ku, j ,2=0
x($(σ,2)

u, j ,2 j ,2ku, j ,2)λ f

(
p̂

2ku, j ,2

iu

)
since x($(σ,2)

u, j ,2 j ,ku, j ,2) = 0 if ku, j ,2 is odd (see (2.10)). Then, one may remark that

∏
1É jÉr

λ f

(
p̂

2ku, j ,2

iu

)
=

Ku∑
`u=0

y`uλ f

(
p̂2`u

iu

)
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for some integers y`u and where Ku :=∑
1É jÉr ku, j ,2 for any 1 É u É s. All these facts lead

to

Eh
q

(
P 1

q [Φ;r ]m−`P 2
q [Φ;r ]α

)
= (−2)α+m−`(−1)αr

logα+m−` (qr )

∑
1É j1,..., jαÉr

(−1) j1+...+ jα
α+m−`∑

s=1

× ∑
σ∈P (α+m−`,s)

∑
i1,...,is

distinct

s∏
u=1

 log$
(σ,1)
u +$(σ,2)

u
(
p̂iu

)
p̂$(σ,1)

u /2+$(σ,2)
u

iu

Φ̂

(
log p̂iu

log(qr )

)$(σ,1)
u

Φ̂

(
2log p̂iu

log(qr )

)$(σ,2)
u


× ∑

0Ék1,1Ér$(σ,1)
1

...
0Éks,1Ér$(σ,1)

s

∑
0Ék1,1,2É$(σ,2)

1,1

...
0Éks,1,2É$(σ,2)

s,1

. . .
∑

0Ék1,r,2Ér$(σ,2)
1,r

...
0Éks,r,2Ér$(σ,2)

s,r

∑
0É`1ÉK1

...
0É`sÉKs

×
s∏

u=1

(
x

(
$(σ,1)

u ,r,ku,1
)

y`u

r∏
j=1

(
x

(
$(σ,2)

u, j ,2 j ,2ku, j ,2

)))

×Eh
q

(
λ f

( s∏
u=1

p̂
ku,1

iu

)
λ f

( s∏
u=1

p̂2`u

iu

))
.

Proposition 2.2 and lemmas 3.10 and 3.9 enable us to assert that

Eh
q

(
λ f

( s∏
u=1

p̂
ku,1

iu

)
λ f

( s∏
u=1

p̂2`u

iu

))
=

s∏
u=1

δku,1,2`u +O

(
1

q

s∏
u=1

p̂
ku,1/4+`u /2
iu

log p̂iu

)

and we can write

Eh
q

(
P 1

q [Φ;r ]m−`P 2
q [Φ;r ]α

)
= TP+O(TE)

with

TP := (−2)α+m−`(−1)αr

logα+m−` (qr )

∑
1É j1,..., jαÉr

(−1) j1+...+ jα
α+m−`∑

s=1

× ∑
σ∈P (α+m−`,s)

∑
i1,...,is

distinct

s∏
u=1

 log$
(σ,1)
u +$(σ,2)

u
(
p̂iu

)
p̂$(σ,1)

u /2+$(σ,2)
u

iu

Φ̂

(
log p̂iu

log(qr )

)$(σ,1)
u

Φ̂

(
2log p̂iu

log(qr )

)$(σ,2)
u


× ∑

0Ék1,1,2É$(σ,2)
1,1

...
0Éks,1,2É$(σ,2)

s,1

. . .
∑

0Ék1,r,2Ér$(σ,2)
1,r

...
0Éks,r,2Ér$(σ,2)

s,r

∑
0É`1Ér min

(
$(σ,1)

1 /2,$(σ,2)
1

)
...

0É`sÉr min
(
$(σ,1)

s /2,$(σ,2)
s

)

×
s∏

u=1

(
x

(
$(σ,1)

u ,r,2`u
)

y`u

r∏
j=1

(
x

(
$(σ,2)

u, j ,2 j ,2ku, j ,2

)))
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and

TE := 1

q logα+m−` (qr )

×
α+m−`∑

s=1

∑
σ∈P (α+m−`,s)

∑
i1,...,is

distinct

s∏
u=1

log$
(σ,1)
u +$(σ,2)

u +1 (p̂iu )p̂
(r /2−1)

(
$(σ,1)

u /2+$(σ,2)
u

)
iu

×
∣∣∣∣Φ̂(

log p̂iu

log(qr )

)∣∣∣∣$
(σ,1)
u

∣∣∣∣Φ̂(
2log p̂iu

log(qr )

)∣∣∣∣$
(σ,2)
u

which is bounded by Oε

(
q (α+m−`)νr 2/4−1+ε

)
for any ε> 0 and is an admissible error term

if (α+m −`)ν < 4/r 2. Estimating TP is possible since we can assume that σ satisfies
the following additional property. If $(σ,2)

u = 0 for some 1 É u É s then $(σ,1)
u > 1. Let us

assume on the contrary that $(σ,1)
u É 1 which entails $(σ,1)

u = 1 according to (6.17). Then,

x
(
$(σ,1)

u ,r,2`u
)= x (1,r,0) = 0

since `u = 0 and according to (2.10). Thus, the contribution of the σ’s which do not
satisfy this last property vanishes. As a consequence, the sum over the distinct i1, . . . , is is
bounded by

∑
i1,...,is

distinct

∏
1ÉuÉs(

$(σ,1)
u ,$(σ,2)

u

)
=(2,0)

(
log2 (

p̂iu

)
p̂iu

∣∣∣∣Φ̂(
log p̂iu

log(qr )

)∣∣∣∣2
)

× ∏
1ÉuÉs(

$(σ,1)
u ,$(σ,2)

u

)
=(0,1)

(
log

(
p̂iu

)
p̂iu

∣∣∣∣Φ̂(
2log p̂iu

log(qr )

)∣∣∣∣)

× ∏
1ÉuÉs

$(σ,1)
u /2+$(σ,2)

u >1

 log$
(σ,1)
u +$(σ,2)

u
(
p̂iu

)
p̂$(σ,1)

u /2+$(σ,2)
u

iu

∣∣∣∣Φ̂(
log p̂iu

log(qr )

)∣∣∣∣$
(σ,1)
u

∣∣∣∣Φ̂(
2log p̂iu

log(qr )

)∣∣∣∣$
(σ,2)
u


which is itself bounded by O

(
logAσ (q)

)
where the exponent is given by

Aσ := 2#
{
1 É u É s,$(σ,2)

u = 0 and $(σ,1)
u /2+$(σ,2)

u É 1
}

+#
{
1 É u É s,$(σ,2)

u = 1 and $(σ,1)
u /2+$(σ,2)

u É 1
}< m −`+α.

The last inequality follows from (see (6.15) and the additional property of σ)

m −`+α= Aσ+
∑

1ÉuÉs
$(σ,1)

u /2+$(σ,2)
u >1

(
$(σ,1)

u +$(σ,2)
u

)
.

Thus, the contribution of the TP term of theseσ’s to Eh
q

(
P 1

q [Φ;r ]m−`P 2
q [Φ;r ]α

)
is bounded

by O
(
log−1 (q)

)
.
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APPENDIX A. ANALYTIC AND ARITHMETIC TOOLBOX

A.1. On smooth dyadic partitions of unity. Let ψ : R+ → R be any smooth function
satisfying

ψ(x) =
{

0 if 0 É x É 1,

1 if x >p
2

and x jψ( j )(x) ¿ j 1 for any real number x Ê 0 and any integer j Ê 0. If ρ : R+ → R is the
function defined by

ρ(x) :=
ψ(x) if 0 É x Ép

2,

1−ψ
(

xp
2

)
otherwise

then ρ is a smooth function compactly supported in [1,2] satisfying

x jρ( j )(x) ¿ j 1 and
∑
a∈Z

ρ

(
xp
2

a

)
= 1

for any real number x Ê 0 and any integer j Ê 0.

1

1
√

2

(a) Graph of ψ

1

1
√

2 2

(b) Graph of ρ

If F : Rn+ →R is a function of n Ê 1 real variables then we can decompose it in

F = ∑
a1∈Z

. . .
∑

an∈Z
FA1,··· ,An

where Ai :=p
2

ai and

FA1,··· ,An (x1, · · · , xn) :=
n∏

i=1
ρAi (xi )F (x1, · · · , xn)

with ρAi (xi ) := ρ (
xi

/
Ai

)
is a smooth function compactly supported in [Ai ,2Ai ] satisfying

x j
i ρ

( j )
Ai

(xi ) ¿ j 1 for any real number xi Ê 0 and any integer j Ê 0. Let us introduce the

following notation for summation over powers of
p

2 :∑]

AÉMÉB
f (M) := ∑

n∈N
AÉ2n/2ÉB

f
(
2n/2) .
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We will use such smooth dyadic partitions of unity several times in this paper and we
will also need these natural estimates in such contexts∑]

MÉM1

Mα¿ Mα
1 (A.1)

for any α, M1 > 0 and ∑]

MÊM0

1

Mα
¿ 1

Mα
0

(A.2)

for any α, M0 > 0.

A.2. On Bessel functions. The Bessel function of first kind and order a integer κÊ 1 is
defined by

∀z ∈C, Jκ(z) := ∑
nÊ0

(−1)n

n!(κ+n)!

( z

2

)κ+2n
.

It satisfies the following estimate (founded in [23, Lemma C.2]), valid for any real
number x, any integer j Ê 0 and any integer κÊ 1:( x

1+x

) j
J ( j )
κ (x) ¿ j ,κ

1

(1+x)
1
2

( x

1+x

)κ
(A.3)

for any real number x, any integer j Ê 0 and any integer κÊ 1. The following useful lemma
follows immediately.

Lemma A.1� Let X > 0 and κÊ 1, then

∑
d>0

τ(d)p
d

∣∣∣∣Jκ

(
X

d

)∣∣∣∣¿
{

X 1/2 log X if X > 1,

X κ if 0 < X É 1.

A.3. Basic facts on Kloosterman sums. For any integer m,n,c Ê 1, the Kloosterman sum
is defined by

S(m,n;c) := ∑
x mod (c)

(x,c)=1

e

(
mx +nx

c

)

where x stands for the inverse of x modulo c. We recall some basic facts on these sums.
The Chinese remainder theorem implies the following multiplicativity relation

S(m,n; qr ) = S(mq2,n;r )S(mr 2,n; q) (A.4)

valid as soon as (q,r ) = 1. Here, q (resp. r ) is the inverse of q (resp. r ) modulo r (resp. q).
If p and q are two prime numbers, γ Ê 1 and r Ê 1 then, from (A.4) and [7, (2.312)] we
obtain

S
(
pγq,1; qr

)={
−S

(
pγq ,1;r

)
if (q,r ) = 1,

0 otherwise.

The Weil-Estermann inequality [6] is

|S(m,n;c)| É
√

(m,n,c)τ(c)
p

c. (A.5)
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