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ABSTRACT. This paper establishes new bridges between the class of complex functions, which contains

zeta functions of arithmetic schemes and closed with respect to product and quotient, and the class of

mean-periodic functions in several spaces of functions on the real line. In particular, the meromorphic

continuation and functional equation of the Hasse zeta function of arithmetic scheme with its expected

analytic shape is shown to imply the mean-periodicity of a certain explicitly defined function associ-

ated to the zeta function. Conversely, the mean-periodicity of this function implies the meromorphic

continuation and functional equation of the zeta function. This opens a new road to the study of zeta

functions via the theory of mean-periodic functions which is a part of modern harmonic analysis. The

case of elliptic curves over number fields and their regular models is treated in more details, and many

other examples are included as well.
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1. INTRODUCTION AND FLAVOUR OF THE RESULTS

1.1. Boundary terms in the classical one-dimensional case. The completed zeta function of a num-
ber fieldK is defined on ℜe (s) > 1 by

ζ̂K(s) := ζ∞,K(s)ζK (s)

where ζK(s) is the Dedekind zeta function of K and ζK,∞(s) is a finite product of Γ-factors defined in
(5.3). It satisfies the integral representation (see [51])

ζ̂K(s) =
∫
A×
K

f (x)|x|s dµA×
K

(x)

where f is an appropriately normalized function in the Schwartz–Bruhat space on AK and | | stands
for the module on the ideles A×

K
of K. An application of analytic duality on K ⊂ AK leads to the

decomposition

ζ̂K(s) = ξ(
f , s

)+ξ(
f̂ ,1− s

)+ω f (s)

where f̂ is the Fourier transform of f , ξ( f , s) is an entire function and

ω f (s) =
∫ 1

0
h f (x)xs dx

x

with

h f (x) :=−
∫
γ∈A1

K/K×

∫
β∈∂K×

(
f (xγβ)−x−1 f̂

(
x−1γβ

))
dµ(β)dµ(γ).

Every continuous function onAK which vanishes onK× vanishes onK, and the boundary ∂K× ofK×

is K \K× = {0}. The meromorphic continuation and the functional equation for ζ̂K(s) are equivalent
to the meromorphic continuation and the functional equation for ω f (s). Let us remark that ω f (s) is
the Laplace transform of H f (t ) := h f

(
e−t

)
thanks to the change of variable x = e−t . The properties of

the functions h f (x) and H f (t ), which are called the boundary terms for obvious reason, are crucial in
order to have a better understanding of ω f (s). We have

h f (x) = −µ(
A1
K

/
K× )(

f (0)−x−1 f̂ (0)
)

,

H f (t ) = −µ(
A1
K

/
K× )(

f (0)−e t f̂ (0)
)
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since ∂K× is just the single point 0, with the appropriately normalized measure on the idele class
group. As a consequence, ω f (s) is a rational function of s invariant with respect to f 7→ f̂ and s 7→
(1− s). Thus, ζ̂K(s) admits a meromorphic continuation to C and satisfies a functional equation with
respect to s 7→ (1− s).

1.2. Mean-periodicity and analytic properties of Laplace transforms. The previous discussion in
the one-dimensional classical case naturally leads to the analytic study of Laplace transforms of
specific functions. In particular, the meromorphic continuation and functional equation for Mellin
transforms of real-valued functions f on R×+ of rapid decay at +∞ and polynomial order at 0+ is
equivalent to the meromorphic continuation and functional equation of

ω f (s) :=
∫ 1

0
h f (x)xs dx

x
=

∫ +∞

0
H f (t )e−st dt

with

h f (x) = f (x)−εx−1 f
(
x−1)

and H f (t ) = h f
(
e−t

)
, where ε = ±1 is the sign of the expected functional equation (see Section 3).

The functions h f (x) and H f (t ) are called the boundary terms by analogy. The main question is the
following one. What property of h f (x) or H f (t ) implies the meromorphic continuation and functional
equation for ω f (s)? One sufficient answer is mean-periodicity1. Mean-periodicity is an easy general-
ization of periodicity; a function g of a functional space X is X -mean-periodic if the space spanned
by its translates is not dense in X . When the Hahn-Banach theorem is available in X , g is X -mean-
periodic if and only if g satisfies a convolution equation g ∗ϕ = 0 for some non-trivial element ϕ of
the dual space X ∗ and a suitable convolution ∗. Such a convolution equation may be thought as a
generalized differential equation. Often2 mean-periodic functions are certain limits of exponential
polynomials, and the latter were used already by Euler in his method of solving ordinary differential
equations with constant coefficients. The functional spaces X , which are relevant for number theory,
are mainly

X× =


C (R×+) the continuous functions on R×+ (Section 2.2),

C ∞(R×+) the smooth functions on R×+ (Section 2.2),

C ∞
poly(R×+) the smooth functions on R×+ of at most polynomial growth (see (2.4))

in the multiplicative setting, which is related to h f (x) and

X+ =


C (R) the continuous functions on R (Section 2.2),

C ∞(R) the smooth functions on R (Section 2.2),

C ∞
exp(R) the smooth functions on R of at most exponential growth (see (2.3))

in the additive setting, which is related to H f (t ). A nice feature is that the spectral synthesis holds
in both X+ and X×. The general theory of X×-mean-periodic functions shows that if h f (x) is X×-
mean-periodic thenω f (s) has a meromorphic continuation given by the Mellin–Carleman transform
of h f (x) and satisfies a functional equation. Similarly, if H f (t ) is X+-mean-periodic then ω f (s) has a
meromorphic continuation given by the Laplace–Carleman transform of H f (t ) and satisfies a func-
tional equation. See Theorem 3.2 for an accurate statement. Note that in general ω f (s) can have a
meromorphic continuation to C and can satisfy a functional equation without the functions h f (x)
and H f (t ) being mean-periodic (see Remark 3.1 for explicit examples).

1The general theory of mean-periodicity is recalled in Section 2.
2In this case one says that the spectral synthesis holds in X (see Section 2.1).
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1.3. Hasse zeta functions and higher dimensional adelic analysis. For a scheme S of dimension n
its Hasse zeta function

ζS(s) := ∏
x∈S0

(1−|k(x)|−s)−1

whose Euler factors correspond to all closed points x of S, say x ∈ S0, with finite residue field of car-
dinality |k(x)|, is the most fundamental object in number theory. Very little is known about it when
n > 1. The papers [20], [21], [22] initiated a higher dimensional adelic analysis, which aims to study
the Hasse zeta functions ζS(s) using integral representations on higher adelic spaces and analytic du-
ality. In particular, it is expected that the n-th power of the completed versions of the Hasse zeta func-
tions ζS(s) times a product of appropriately completed and rescaled lower dimensional zeta functions
can be written as an adelic integral over an appropriate higher dimensional adelic space against an
appropriate translation invariant measure. Then a procedure similar to the one-dimensional proce-
dure given above leads to the decomposition of the completed zeta functions into the sum of two
entire functions and another term, which in characteristic zero is of the type

ωS(s) :=
∫ 1

0
hS(x)xs dx

x
=

∫ +∞

0
HS(t )e−st dt

where hS(x) and HS(t ) := hS(e−t ) are called the boundary terms for the following reason. The func-
tions hS(x) are expected to be an integral over the boundary of some higher dimensional space over
some suitably normalised measure. Let us mention that the structure of both the boundary and the
measure is quite mysterious. In particular, the boundary is expected to be a very large object, which
is totally different from the one-dimensional situation. For the case of arithmetic surfaces corre-
sponding to regular model of elliptic curves over global fields, see [22], [21]. Thus, the previous de-
composition of ζS(s) implies that the meromorphic continuation and the functional equation of the
Hasse-zeta functions ζS(s) are equivalent to the same properties for the terms ωS(s).

1.4. Boundary terms of Hasse zeta functions and mean-periodicity. The papers [21], [22] suggested
to use the property of mean-periodicity of the functions hS(x) in an appropriate functional space for
the study of the meromorphic continuation and the functional equation of the Hasse zeta functions
ζS(s). The main new contribution of this work is to demonstrate novel important links between the
world of Hasse zeta functions ζS(s) coming from number theory and the world of mean-periodic
functions. Let us give a flavour of these links (see Theorem 5.18 for a precise statement).

Let S be an arithmetic scheme proper flat over SpecZ with smooth generic fibre. We prove that if
its Hasse zeta function ζS(s) extends to a meromorphic function on the complex plane with special
(and typical in number theory) analytic shape, and satisfies a functional equation with sign ε, then
there exists an integer mζS Ê 1 such that for every integer m Ê mζS the boundary term hζS ,m(x), given
by

hζS ,m(x) := fζS ,m(x)−εx−1 fζS ,m(x−1)

where fζS ,m(x) is the inverse Mellin transform of the mth power of the completed Riemann zeta func-
tion times the completed and rescaled version of the Hasse zeta function ζS(s), is C ∞

poly(R×+)-mean-

periodic. The proof uses some of analytic properties of arithmetic zeta functions and does not appeal
to higher dimensional adelic analysis, thus it is self-contained. Conversely, if the function hζS ,mζS

(x) is
C ∞

poly(R×+)-mean-periodic then ζS(s) has a meromorphic continuation to C and satisfies the expected

functional equation, whose sign is ε. Note that a similar statement holds for HζS ,m(t ) := hζS ,m(e−t ). In
particular, as a consequence, we get a correspondence

C : S 7→ hζS ,mζS

from the set of arithmetic schemes whose Hasse zeta function ζS(s) has the expected analytic prop-
erties to the space of C ∞

poly(R×+)-mean-periodic functions.
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1.5. The case of Hasse zeta functions of models of elliptic curves. Let E be an elliptic curve over the
number field K and qE its conductor. We denote r1 the number of real archimedean places of K and
r2 the number of conjugate pairs of complex archimedean places ofK. A detailed study of essentially
three objects associated to E is done in this work namely

• the L-function L(E , s), whose conjectural sign of functional equation is ωE =±1,
• the Hasse–Weil zeta function ζE (s). It can be defined as the product of factors over all val-

uations of K each of which is the Hasse zeta function of the one-dimensional model corre-
sponding to a local minimal Weierstrass equation of E with respect to the valuation. Taking
into account the computation of the zeta functions for curves over finite fields we get

ζE (s) = ζK(s)ζK(s −1)

L(E , s)
,

• the Hasse zeta function ζE (s) of a regular proper model E of E . We get

ζE (s) = nE (s)ζE (s)

where the factor nE (s) is the product of finitely many, say J , zeta functions of affine lines over
finite extensions of the residue field of bad reduction primes. The square of ζE (s) occurs in
the two-dimensional zeta integral defined and studied in the two dimensional adelic analysis.

The boundary terms associated to these particular Hasse zeta functions are given by

hE (x) := fZE (x)− (−1)r1+r2ωE x−1 fZE

(
x−1) ,

HE (t ) := hE
(
e−t ) ,

hE (x) := fZE
(x)− (−1)r1+r2+JωE x−1 fZE

(
x−1) ,

HE (t ) := hE

(
e−t )

where fZE (x) is the inverse Mellin transform of ZE (s) :=ΛK(s)
(
NK|Q(qE )−1

)2s/2
ζE (2s) and fZE

(x) is the

inverse Mellin transform of ZE (s) := (∏
1ÉiÉI ΛKi (s)

)(
c−1
E

)2s/2
ζE (2s), I Ê 1 being the number of chosen

horizontal curves in the two-dimensional zeta integral briefly mentioned before. It is shown in this
paper that

• if the completed L-function Λ(E , s) can be extended to a meromorphic function of expected
analytic shape on C and satisfies the functional equation then hE (x) and hE (x) are C ∞

poly(R×+)-

mean-periodic3,
• if hE (x) is C ∞

poly(R×+)-mean-periodic or hE (x) is C ∞
poly(R×+)-mean-periodic then the Hasse–Weil

zeta function ζE (s) can be extended to a meromorphic function on C and satisfies the ex-
pected functional equation and the Hasse zeta function ζE (s) can be extended to a meromor-
phic function on C and satisfies the expected functional equation.

See Theorem 5.6 and Theorem 5.13 for complete statements.
Note that if the Hasse–Weil zeta function ζE (s) can be extended to a meromorphic function onC of

expected analytic shape and satisfies the functional equation or the Hasse–Weil zeta function ζE (s)
can be extended to a meromorphic function on C of expected analytic shape and satisfies the func-
tional equation then the completed L-function Λ(E , s) can be extended to a meromorphic function
and satisfies the expected functional equation.

It is explained in Remark 5.12 that the function hE (x) cannot be C (R×+)-mean periodic or C ∞(R×+)-
mean-periodic and that the function HE (t ) cannot be C (R)-mean periodic or C ∞(R)-mean-periodic.
Remark 5.9 focuses on the fact that the function hE (x) encodes in its Fourier series some information
on the poles of ζE (s), which are mainly the non-trivial zeros of L(E , s).

3Note that the C ∞
poly(R×+)-mean-periodicity of hE (x) (respectively hE (x)) is equivalent to the C ∞

exp(R)-mean-periodicity

of HE (t ) (respectively HE (t )).
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Very briefly, the proofs employ the following three properties:

(1) polynomial bound in t for |L(E ,σ+ i t )| in vertical strips;
(2) exponential decay of the gamma function in vertical strips;
(3) polynomial bound in tn for |L(E ,σ+ i tn)|−1 in vertical strips for certain sequences tn tending

to infinity.

The first and second properties are essential in the proof of Theorem 4.7, the last property is used in
the proof of Theorem 4.2.

1.6. Other results. As a further development of the study of relations of the location of poles of ζ(s)
and single sign property of hζ(x) initiated in [21, Section 4.3], [22, Section8] and [50], the paper in-
cludes a general Proposition 4.10. The case of the Dedekind zeta functions is studied in Proposition
6.1 and Proposition 6.3.

Products and quotients of completed L-functions associated to cuspidal automorphic represen-
tations are briefly discussed in Section 6.2. Using Eisenstein series, continuous families of mean-
periodic functions are constructed in Section 6.3, which leads to several interesting questions.

Corollary 4.6 contains a new general explicit formula which involves the sum over all integers and
thus differs from the standard explicit formulas for L-functions.

1.7. New perspectives. The Langlands philosophy relates motivic L-functions and automorphic rep-
resentations. The Hasse zeta functions are expected to factorize into the product and ratio of several
shifted L-functions, whose automorphic property is normally not inherited by the Hasse zeta func-
tions: for example already the Hasse–Weil zeta functions of elliptic curves are not expected to be
automorphic. The traditional method to prove the meromorphic continuation and the functional
equation of an arithmetic zeta function ζS(s) is to prove automorphic properties of each of the L-
factors, which is not entirely satisfactory, see [31]. We hope that the correspondence C between
arithmetic zeta functions and mean-periodic functions, which arises from this work, could be help-
ful to establish the meromorphic continuation and functional equation of arithmetic zeta functions
without proving the automorphic property of their L-factors.

Many questions naturally appear. For instance, it would be very interesting to determine the im-
age of the map C . Another investigation could be the following one. In the context of automorphic
representations, there are many operations (tensor product, symmetric power, exterior power, func-
toriality), which give rise to different automorphic L-functions. Is it possible to translate these oper-
ations in the world of mean-periodic functions and thus get different Hasse zeta functions? Last but
not least, the detailed study of models of elliptic curves over general global field, which is done in this
work, gives the feeling that it may be possible to prove the analytic properties of Hasse zeta functions
of arithmetic schemes of dimension d +1 assuming the same analytic properties for Hasse zeta func-
tions of arithmetic schemes of dimension d . This general feeling has already been highlighted in the
context of L-functions, see [37], [25] and [5] for instance.

1.8. Organisation of the paper. The general background on mean-periodic functions is given in Sec-
tion 2. In Section 3, we give some sufficient conditions, which implies that the Mellin transforms of
real-valued function on R×+ of rapid decay at +∞ and polynomial order at 0+ have a meromorphic
continuation to C and satisfy a functional equation (see Theorem 3.2). All the general results on
mean-periodic functions are proved in Section 4. In the next two sections, we go in the opposite di-
rection, deducing from analytic properties of zeta functions the mean-periodicity of associated func-
tions. Various links between mean-periodicity and analytic properties of zeta functions of schemes,
in particular zeta functions of models of elliptic curves, are shown in Section 5. Section 6 provides
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many further instances of mean-periodic functions arising from number theory. Appendix A con-
tains an analytic estimate for general L-functions, which enables us to apply the general results on
mean-periodicity in relevant cases for number theory.

Notation– Z+ stands for the non-negative integers and R×+ for the positive real numbers. If k is an

integer and x is a positive real number then logk (x) := (
log x

)k .

2. MEAN-PERIODIC FUNCTIONS

In this section, we give some information on mean-periodic functions, which first appeared in
Delsarte [14] but whose theory has been initially developed by Schwartz in [43]. The general the-
ory of mean-periodic functions can be found in Kahane [29], especially the theory of continuous
mean-periodic functions of the real variable. [39, Section 11.3] is a complete survey on the sub-
ject. [2, Chapter 6] is a nice reference for the smooth mean-periodic functions of the real variable
whereas [1, Chapter 4] deals with smooth mean-periodic functions of the real variable but focuses on
convolution equations. We also suggest the reading of [3], [36, Pages 169–181] and [40].

2.1. Generalities. Three definitions of mean-periodicity are given in a very general context and links
between them are mentioned. Let X be a locally convex separated topological C-vector space. Such
space is specified by a suitable family of seminorms. In this paper, it will always be a Fréchet space
or the inductive or projective limit of Fréchet spaces. Let G be a locally compact topological abelian
group. Denote by X ∗ the topological dual space of X for some specified topology. We assume that
there is a (continuous) representation

τ : G → End(X )

g 7→ τg .

For f ∈ X , we denote by T ( f ) the closure of the C-vector space spanned by {τg ( f ), g ∈G} namely

T ( f ) := VectC
({
τg ( f ), g ∈G

})
.

Definition 2.1– f ∈ X is X -mean-periodic if T ( f ) 6= X .

Let us assume that there exists an involution map

ˇ : X → X

f 7→ f̌ .

For f ∈ X and ϕ ∈ X ∗, we define the convolution f ∗ϕ : G →C by

( f ∗ϕ)(g ) := 〈τg f̌ ,ϕ〉
where 〈 , 〉 is the pairing on X ×X ∗.

Definition 2.2– f ∈ X is X -mean-periodic if there exists a non-trivial elementϕ of X ∗ satisfying f ∗ϕ=
0.

Finally, let us assume that

• G =R (respectively R×+),
• X is a C-vector space of functions or measures or distributions on G ,
• there exists an open set Ω ⊂ C such that the exponential polynomial P (t )eλt (respectively

xλP (log x)) belongs to X for any polynomial P with complex coefficients and any λ ∈Ω.

Definition 2.3– f ∈ X is X -mean-periodic if f is a limit (with respect to the topology of X ) of a sum of
exponential polynomials belonging to T ( f ) .
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The first and second definitions are equivalent in a large class of spaces X where the Hahn-Banach
theorem is applicable. The equivalence between the first and third definitions depends on X and is
related to the following spectral problems (see [29, Section 2.3]). The spectral synthesis holds in X if

T ( f ) =
{

VectC
({

P (t )eλt ∈T ( f ),λ ∈Ω})
if G =R,

VectC
({

xλP (log x) ∈T ( f ),λ ∈Ω})
if G =R×+.

for any f in X satisfying T ( f ) 6= X . A representation of a mean-periodic function as a limit of expo-
nential polynomials generalizes the Fourier series representation for continuous periodic functions.
If X = C (R) (see [29, Sections 4 and 5] and [36]) or C ∞(R) (see [43]) then the three definitions are
equivalent since the spectral synthesis holds in these spaces. The spectral analysis holds in X if for
any f in X there exists a finite-dimensional translation invariant subspace X0 of X contained in T ( f ).
For instance, T (t neλt ) is a finite-dimensional invariant subspace if G =R.

2.2. Quick review on continuous and smooth mean-periodic functions. Let X =C (R) be the space
of continuous functions on R with the compact uniform convergence topology. It is a Fréchet space,
hence completed and locally convex, whose dual space X ∗ = M0(R) is the space of compactly sup-
ported Radon measures. The pairing between f ∈C (R) and µ ∈ M0(R) is given by

〈 f ,µ〉 =
∫
R

f dµ.

Let G =R. The additive involution is defined by

∀x ∈R,∀ f ∈ X , f̌ (x) = f (−x) (2.1)

and the additive representation τ+ by

∀(x, y) ∈R2,∀ f ∈ X , τ+x ( f )(y) := f (y −x). (2.2)

such that the additive convolution ∗+ is

∀x ∈R, ( f ∗+µ)(x) :=
∫
R

f (x − y)dµ(y).

The space C (R) has two important properties. Firstly, the definitions 2.1, 2.2 and 2.3 are equivalent.
In other words, the spectral synthesis holds for this space (see [29, Sections 4 and 5], [36]). Secondly,
it is possible to develop the theory of Laplace–Carleman transforms of C (R)-mean-periodic func-
tions. It turns out that Laplace–Carleman transforms in mean-periodicity are as important as Fourier
transforms in harmonic analysis. Their theory is developed in Section 2.5 in a more general context
but let us justify a little bit the analogy. If f is any non-trivial C (R)-mean-periodic function then its
Laplace–Carleman transform LC( f )(s) is a meromorphic function on C having at least one pole, oth-
erwise f = 0. In addition, its denominator belongs to the Cartwright class C defined in (5.9), for which
the distribution of zeros is quite regular ( [33, Chapter 17]). The set of all poles of LC( f )(s) with mul-
tiplicity is called the spectrum of f . The exponential polynomials belonging to T ( f ) are completely
determined by the spectrum of f and f is characterized by the principal parts of the poles of LC( f )(s)
(see [29, Sections 4-6]). Let us just mention that if X = C ∞(R), the space of smooth functions on R
with the compact uniform convergence topology, then all what has been said above for C (R) holds.
In particular, the spectral synthesis holds in C ∞(R) (see [43]). Finally, we would like to say that the
spaces of continuous functions C (R×+) and smooth functions C ∞(R×+) on R×+ share the same proper-
ties than C (R) and C ∞(R). In particular, we can develop the theory of Mellin-Carleman transform
via the homeomorphisms

HC : C (R×
+) → C (R)

f (x) 7→ f
(
e−t )
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and

HC ∞ : C ∞(R×
+) → C ∞(R)

f (x) 7→ f
(
e−t ) .

This will be done in a more general context in Section 2.6.

2.3. Some relevant spaces with respect to mean-periodicity. In this section, we introduce several
spaces for which the elements of the dual space are not necessarily compactly supported. Let C ∞

exp(R)
be the C-vector space of smooth functions on R, which have at most exponential growth at ±∞
namely

∀n ∈Z+,∃m ∈Z+, f (n)(x) =O
(
exp(m|x|)) (2.3)

as x → ±∞. This space is a L F -space, namely an inductive limit of Fréchet spaces (Fm)mÊ1, the
topology on each Fm (m Ê 1) being induced from the following family of seminorms

‖ f ‖m,n = sup
x∈R

| f (n)(x)exp(−m|x|)|

for any n Ê 0. Let C ∞
poly(R×+) be the C-vector space of smooth functions on R×+, which have at most

polynomial growth at 0+ and at +∞ namely

∀n ∈Z+,∃m ∈Z, f (n)(t ) =O
(
t m)

(2.4)

as t →+∞ and t → 0+. The space C ∞
poly(R×+) is endowed with a topology such that the bijection

HC ∞∗ : C ∞
exp(R) → C ∞

poly(R×
+)

f (t ) 7→ f (− log x)

becomes a homeomorphism. Let C ∞
exp(R)∗ be the dual space of C ∞

exp(R) equipped with the weak ∗-
topology. The dual space C ∞

exp(R)∗ (respectively C ∞
poly(R×+)∗) is considered as a space of distributions

on R (respectively R×+) having an over exponential decay (respectively over polynomial decay) in a
suitable sense. In fact, every smooth function g on R satisfying |g (x)| = O(exp(−a|x|)) for every real
number a > 0 is identified with an element of C ∞

exp(R)∗. Let 〈 , 〉 be the pairing between C ∞
exp(R)∗ and

C ∞
exp(R) namely 〈ϕ, f 〉 = ϕ( f ) for ϕ ∈ C ∞

exp(R)∗ and f ∈ C ∞
exp(R). The additive convolution f ∗+ϕ of

f ∈C ∞
exp(R) and ϕ ∈C ∞

exp(R)∗ is defined as

∀x ∈R, ( f ∗+ϕ)(x) := 〈ϕ,τ+x f̌ 〉
where the definitions of the involutionˇand of the representation τ+ are adapted from (2.1) and (2.2).
One can define the multiplicative convolution f ∗×ϕ : R×+ → C of f ∈ C ∞

poly(R×+) and ϕ ∈ C ∞
poly(R×+)∗

thanks to the homeomorphism HC ∞∗ .

Let S (R) be the Schwartz space on Rwhich consists of smooth functions on R satisfying

‖ f ‖m,n = sup
x∈R

|xm f (n)(x)| <∞

for all m and n inZ+. It is a Fréchet space over the complex numbers with the topology induced from
the family of seminorms ‖ ‖m,n . Let us define the Schwartz space S (R×+) on R×+ and its topology via
the homeomorphism

HS : S (R) → S (R×
+)

f (t ) 7→ f (− log x).

The strong Schwartz space S(R×+) is defined by

S(R×
+) := ⋂

β∈R

{
f :R×

+ →C,
[

x 7→ x−β f (x)
]
∈S (R×

+)
}

. (2.5)
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One of the family of seminorms on S(R×+) defining its topology is given by

‖ f ‖m,n = sup
x∈R×+

|xm f (n)(x)| (2.6)

for m ∈Z and n ∈Z+. The strong Schwartz space S(R×+) is a Fréchet space over the complex numbers
where the family of seminorms defining its topology is given in (2.6). In fact, it is a projective limit
of Fréchet spaces (Fm)mÊ1 since a decreasing intersection of Fréchet spaces is still a Fréchet space.
This space is closed under the multiplication by a complex number and the pointwise addition and
multiplication ( [35]). The strong Schwartz space S(R) and its topology are defined via the homeo-
morphism

HS : S(R×
+) → S(R)

f (x) 7→ f
(
e−t ) .

(2.7)

Let us mention that the Fourier transform is not an automorphism of S(R) since the Fourier transform
of an element f ∈ S(R) does not necessary belong to S(R). This feature is different from what happens
in S (R). Let S(R×+)∗ be the dual space of S(R×+) equipped with the weak ∗-topology, whose elements
are called weak-tempered distributions. The pairing between S(R×+) and S(R×+)∗ is denoted 〈 , 〉 namely

〈 f ,ϕ〉 =ϕ( f )

for f ∈ S(R×+) and ϕ ∈ S(R×+)∗. A linear functional ϕ on S(R×+) is a weak-tempered distribution if
and only if the condition limk→+∞ ‖ fk‖m,n = 0 for all multi-indices m, n implies limk→+∞〈 fk ,ϕ〉 =
limk→+∞ϕ( fk ) = 0. The multiplicative representation τ× of R×+ on S(R×+) is defined by

∀x ∈R×
+, τ×x f (y) := f (y/x)

and the multiplicative convolution f ∗×ϕ of f ∈ S(R×+) and ϕ ∈ S(R×+)∗ by

∀x ∈R×
+, ( f ∗×ϕ)(x) = 〈τx f̌ ,ϕ〉

where the multiplicative involution is given by f̌ (x) := f (x−1). One can define the additive convolu-
tion f ∗+ϕ : R→ C of f ∈ S(R) and ϕ ∈ S(R)∗ thanks to the homeomorphism HS. The multiplicative
dual representation τ×,∗ on S(R×+)∗ is defined by

〈 f ,τ×,∗
x ϕ〉 := 〈τ×x f ,ϕ〉.

One can define the additive dual representation τ+,∗ on S(R)∗ thanks to the homeomorphism HS.
If V is a C-vector space then the bidual space V ∗∗ (the dual space of V ∗ with respect to the weak
∗-topology on V ∗) is identified with V in the following way. For a continuous linear functional F on
V ∗ with respect to its weak ∗-topology, there exists v ∈ V such that F (v∗) = v∗(v) for every v∗ ∈ V ∗.
Therefore, we do not distinguish the pairing on V ∗∗ ×V ∗ from the pairing on V ×V ∗. Under this
identification, it turns out that

C ∞
exp(R) ≺ S(R)∗, C ∞

poly(R×
+) ≺ S(R×

+)∗

and

S(R) ≺ C ∞
exp(R)∗, S(R×

+) ≺ C ∞
poly(R×

+)∗,

where A ≺ B means that A is a subset of B and that the injection map A ,→ B is continuous.

2.4. Mean-periodic functions in these relevant spaces. In this section, X always stands for one of
the spaces C ∞

exp(R), C ∞
poly(R×+), S(R)∗ and S(R×+)∗.

Definition 2.4 (additive)– Let X be C ∞
exp(R) or S(R)∗. x ∈X is said to be X-mean-periodic if there exists

a non-trivial element x∗ in X∗ satisfying x ∗+ x∗ = 0.

Definition 2.5 (multiplicative)– Let X be C ∞
poly(R×+) or S(R×+)∗. x ∈ X is said to be X-mean-periodic if

there exists a non-trivial element x∗ in X∗ satisfying x ∗× x∗ = 0.
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For x ∈X, we denote by T (x) the closure of the C-vector space spanned by {τg (x), g ∈G} where

τ=


τ+ if G =R and X=C ∞

exp(R),

τ+,∗ if G =R and S(R)∗,

τ× if G =R×+ and X=C ∞
poly(R×+),

τ×,∗ if G =R×+ and X= S(R×+)∗.

Hahn-Banach theorem leads to another definition of X-mean-periodic functions.

Proposition 2.6– An element x ∈X is X-mean-periodic if and only if T (x) 6=X.

The spectral synthesis holds for X = C ∞
exp(R), this follows from [23, Theorem A, Page 627] which

uses [32]. The previous definitions and identifications lead to the following links between the dif-
ferent X-mean-periodicities. Let L1

loc,exp(R) be the space of locally integrable functions H(t ) on R

satisfying H(t ) =O(exp(a|t |)) as |t |→+∞ for some real number a Ê 0.

Proposition 2.7– Let H(t ) ∈ L1
loc,exp(R).

• If H(t ) ∈ C ∞
exp(R) is C ∞

exp(R)-mean-periodic and F ∗+ H = 0 for some non-trivial F ∈ S(R) then
H(t ) is S(R)∗-mean-periodic.

• If H(t ) is S(R)∗-mean-periodic and F ∗+ H = 0 for some non-trivial F ∈ S(R), which is continu-
ous and compactly supported on R, then H(t ) is C (R)-mean-periodic.

2.5. Mean-periodicity and analytic properties of Laplace transforms I. Let G =R and X be a locally
convex separated topological C-vector space consisting of functions or distributions on G . Develop-
ing the theory of Laplace–Carleman transforms on X requires the following additional properties on
X :

• there exists an open set Ω ⊂ C such that every exponential monomial t p eλt with p ∈ Z+ and
λ ∈Ω belongs to X ,

• the two sided Laplace transform

L±(ϕ)(s) := 〈e−st ,ϕ〉
(
=

∫ +∞

−∞
ϕ(t )e−st dt

)
is a holomorphic function on Ω for all ϕ ∈ X ∗.

• if f ∗+ϕ= 0 for some ϕ ∈ X ∗ \ {0} then the two sided Laplace transforms

L±( f −∗+ϕ)(s) =
∫ +∞

−∞
( f −∗+ϕ)(t )e−st dt

and

L±( f +∗+ϕ)(s) =
∫ +∞

−∞
( f +∗+ϕ(t ))e−st dt

are holomorphic functions on Ω, where

f +(x) :=
{

f (x) if x Ê 0,

0 otherwise

f −(x) :=
{

0 if x Ê 0,

f (x) otherwise.

Of course, X =C (R) and X =C ∞(R) both satisfy the previous conditions withΩ=C since the respec-
tive dual spaces consist of compactly supported measures and distributions.
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Definition 2.8– The Laplace–Carleman transform LC( f )(s) of a X -mean-periodic function (distribu-
tion) f ∈ X is defined by

LC( f )(s) := L±( f +∗+ϕ)(s)

L±(ϕ)(s)
=−L±( f −∗+ϕ)(s)

L±(ϕ)(s)
.

for a ϕ ∈ X ∗ \ {0} satisfying f ∗+ϕ= 0.

It is easy to see that LC( f )(s) does not depend on the particular choice of ϕ ∈ X ∗ \ {0} satisfying
f ∗+ϕ= 0. Its main analytic properties are described in the following proposition (see essentially [36,
Section 9.3]).

Proposition 2.9– Let X be a locally convex separated topological C-vector space consisting of func-
tions or distributions on R satisfying the conditions above.

• If f is a X -mean-periodic function, then its Laplace–Carleman transform LC( f )(s) is a mero-
morphic function on Ω.

• If f is a X -mean-periodic function whose Laplace transform L( f )(s) exists for some right-
half plane ℜe(s) > σ0 contained in Ω then LC( f )(s) = L( f )(s) in that region and the Laplace–
Carleman transform LC( f )(s) is the meromorphic continuation of L( f )(s) to Ω.

Proving some functional equations may sometimes be done thanks to the following proposition.

Proposition 2.10– Let X+ be C (R) or C ∞(R) or C ∞
exp(R) or S(R)∗. Let f1(t ) and f2(t ) be two X+-mean-

periodic functions whose Laplace transforms are defined on ℜe(s) >σ0 for some σ0. If

f1(−t ) = ε f2(t )

for some complex number ε of absolute value one, then the Laplace–Carleman transforms LC( f1)(s)
and LC( f2)(s) of f1(t ) and f2(t ) satisfy the functional equation

LC( f1)(−s) =−εLC( f2)(s).

Proof of Proposition 2.10. Letϕ1,ϕ2 6= 0 be two elements of X∗+ satisfying f1∗+ϕ1 = 0 and f2∗+ϕ2 = 0.
If ℜe (s) >σ0 then

L±( f +
1 ∗+ϕ1)(s) =

∫ +∞

−∞

(∫ +∞

−∞
f +

1 (t −x)e−st dt

)
dϕ1(x),

=
∫ +∞

−∞

(∫ +∞

−∞
f +

1 (t )e−st dt

)
e−sx dϕ1(x),

= L( f1)(s) L±(ϕ1)(s)

and so LC( f1)(s) = L( f1)(s). On the other hand, if ℜe (s) <−σ0 then

−L±( f −
2 ∗+ϕ2)(s) = −

∫ +∞

−∞

(∫ +∞

−∞
f −

2 (t −x)e−st dt

)
dϕ2(x),

= −
∫ +∞

−∞

(∫ +∞

−∞
f −

2 (t )e−st dt

)
e−sx dϕ2(x),

= −
∫ 0

−∞
f2(t )e−st dt L±(ϕ2)(s)

= −ε−1L( f1)(−s) L±(ϕ2)(s)

the last line being a consequence of the functional equation satisfied by f1 and f2. Thus, if ℜe (s) <
−σ0 then LC( f2)(s) = −ε−1L( f1)(−s) or if ℜe (s) > σ0 then LC( f2)(−s) = −ε−1L( f1)(s). We have just
proved that

LC( f1)(s) =−εLC( f2)(−s)

if ℜe (s) >σ0. Such equality remains valid for all complex numbers s by analytic continuation. �
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Remark 2.11– In the previous proof, the formal equality (3.7) is implicitly used. For instance, if f1(t ) =
f2(t ) and ε=+1 then the C (R)-mean-periodicity of f1(t ) can be formally written as

0 =
∫ +∞

−∞

∫ +∞

−∞
f1(t −x)e−st dϕ1(t ) =

(∫ +∞

−∞
f1(t )e−st dt

)
×

(∫ +∞

−∞
e−sx dϕ1(x)

)
.

Such formal equality can be compared with the formal Euler equality
∑

n∈Z zn = 0 (z 6= 1), which
Euler used to calculate values of ζ(s) at negative integers. This equality was also used in the proof of
rationality of zeta functions of curves over finite fields ( [42]). For modern interpretations of the Euler
equality, see [7] and also [20, Section 8].

2.6. Mean-periodicity and analytic properties of Laplace transforms II. The multiplicative setting
is sometimes more convenient in analytic number theory than the additive one. In particular, it is
used in the study of boundary terms of two-dimensional zeta integrals in which caseR×+ = |JS | (see [21,
Section 35]). This is the reason why we define the multiplicative analogue of the Laplace–Carleman
transform. Of course, all the arguments provided below hold in the additive setting via the change of
variable t 7→ x = exp(−t ). Let L1

loc,poly(R×+) be the space of locally integrable functions on R×+ satisfying

h(x) =
{

O(xa) as x →+∞,

O(x−a) as x → 0+

for some real number a Ê 0. Each h ∈ L1
loc,poly(R×+) gives rise to a distribution ϕh ∈ S(R×+)∗ defined by

∀ f ∈ S(R×
+), 〈 f ,ϕh〉 =

∫ +∞

0
f (x)h(x)

dx

x
.

If there is no confusion, we denote ϕh by h itself and use the notations 〈 f ,h〉 = 〈 f ,ϕh〉 and h(x) ∈
S(R×+)∗. Then

xλ logk (x) ∈C ∞
poly(R×

+) ⊂ L1
loc,poly(R×

+) ⊂ S(R×
+)∗

for all k ∈ Z+ and λ ∈ C. Moreover, if h ∈ L1
loc,poly(R×+) then the multiplicative convolution f ∗× ϕh

coincides with the ordinary multiplicative convolution on functions on R×+ namely

( f ∗× h)(x) = 〈τ×x f̌ , f 〉 =
∫ +∞

0
f (x/y)h(y)

dy

y
=

∫ +∞

0
f (y)h(x/y)

dy

y
.

For a h ∈ L1
loc,poly(R×+) define h+ and h− by

h+(x) :=
{

0 if x Ê 1,

h(x) otherwise
h−(x) :=

{
h(x) if x Ê 1,

0 otherwise.

Clearly, h± ∈ L1
loc,poly(R×+) for all h ∈ L1

loc,poly(R×+).

Lemma 2.12– Let h ∈ L1
loc,poly(R×+). If f ∗× h = 0 for some non-trivial f ∈ S(R×+) then the Mellin trans-

forms

M( f ∗× h±)(s) =
∫ +∞

0
( f ∗× h±)(x)xs dx

x
are entire functions on C.

Proof of Lemma 2.12. On one hand, f ∗×h− is of rapid decay as x → 0+ and on the other hand, f ∗h+ is
of rapid decay as x →+∞. Both are of rapid decay as x → 0+ and as x →+∞ since f ∗×h− =− f ∗×h+.
Hence the Mellin transforms of f ∗h± are defined on the whole complex plane and entire. �

Definition 2.13– Let h ∈ L1
loc,poly(R×+). If f ∗× h = 0 for some non-trivial f ∈ S(R×+) then the Mellin–

Carleman transform MC(h)(s) of h(x) is defined by

MC(h)(s) := M( f ∗× h+)(s)

M( f )(s)
=−M( f ∗× h−)(s)

M( f )(s)
.
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The change of variable x 7→ t = − log x entails that the Mellin–Carleman transform coincides with
the Laplace–Carleman transform namely

MC(h(x)) = LC(h(e−t )).

As a consequence, MC(h) does not depend on the particular choice of non-trivial f satisfying f ∗×h =
0.

Proposition 2.14– Let h be an element of L1
loc,poly(R×+)

• If h is S(R×+)∗-mean-periodic then the Mellin–Carleman transform MC(h)(s) of h is a meromor-
phic function on C.

• If h ∈ C ∞
poly(R×+) is C ∞

poly(R×+)-mean-periodic and f ∗× h = 0 for some non-trivial f ∈ S(R×+) ⊂
C ∞

poly(R×+)∗ then MC(h)(s) is a meromorphic function on C.

Proof of Proposition 2.14. It follows immediately from the fact that the Mellin transform M( f )(s) is an
entire function since f ∈ S(R×+) and from Lemma 2.12. �

Let us focus on the fact that the Mellin–Carleman transform MC(h)(s) of h(x) is not a generaliza-
tion of the Mellin transform of h but is a generalization of the following integral, half Mellin transform,∫ 1

0
h(x)xs dx

x
.

according to the following proposition.

Proposition 2.15– Let h ∈ L1
loc,poly(R×+). If f ∗× h = 0 for some non-trivial f ∈ S(R×+) and if the integral∫ 1

0 h(x)xs dx/x converges absolutely for ℜe(s) >σ0 for some real number σ0 then

MC(h)(s) =
∫ 1

0
h(x)xs dx

x

on ℜe (s) >σ0.

The following proposition is the analogue of Proposition 2.10 and its proof is omitted.

Proposition 2.16– Let X× be C (R×+) or C ∞(R×+) or C ∞
poly(R×+) or S(R×+)∗. Let f1(x) and f2(x) be two

X×-mean-periodic functions whose transforms∫ 1

0
fi (x)xs dx

x

are defined on ℜe(s) >σ0 for some σ0. If

f1
(
x−1)= ε f2(x)

for some complex number ε of absolute value one then the Mellin–Carleman transforms MC( f1)(s) and
MC( f2)(s) of f1(x) and f2(x) satisfy the functional equation

MC( f1)(−s) =−εMC( f2)(s).

Finally, let us mention the following result, which is the analogue of [29, Theorem Page 23].

Proposition 2.17– Let h ∈ L1
loc,poly(R×+) and let P (t ) be a polynomial of degree n with complex coeffi-

cients. Let us assume that h is S(R×+)∗-mean-periodic. The exponential polynomial xλP (log x) belongs
to T (h) if and only if λ is a zero of order at least n of the Mellin transform M( f )(s) of f , where f runs
through all elements of S(R×+) satisfying f ∗× h = 0. Moreover, xλP (log x) belongs to T (h) if and only if
λ is a pole of order at least n of the Mellin–Carleman transform MC(h)(s) of h.
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3. MEAN-PERIODICITY AND ANALYTIC PROPERTIES OF BOUNDARY TERMS

3.1. The general issue. If f (x) is a real-valued function on R×+ satisfying

(1) f (x) is of rapid decay as x →+∞ namely f (x) =O
(
x−A

)
for all A > 0 as x →+∞,

(2) f (x) is of polynomial order as x → 0+ namely f (x) =O
(
x A

)
for some A > 0 as x → 0+

then its Mellin transform

M( f )(s) :=
∫ +∞

0
f (x)xs dx

x

is a holomorphic function on ℜe (s) À 0. We are interested in necessary and sufficient conditions on
f , which imply the meromorphic continuation and functional equation of M( f )(s). We get immedi-
ately

M( f )(s) =ϕ f ,ε(s)+ω f ,ε(s)

where

ϕ f ,ε(s) :=
∫ +∞

1
f (x)xs dx

x
+ε

∫ +∞

1
f (x)x1−s dx

x

and

ω f ,ε(s) :=
∫ 1

0
h f ,ε(x)xs dx

x
(3.1)

with

h f ,ε(x) = f (x)−εx−1 f
(
x−1) (3.2)

where ε is ±1. Assumption (1) ensures that ϕ f ,ε(s) is an entire function satisfying the functional
equation

ϕ f ,ε(s) = εϕ f ,ε(1− s).

Thus, the meromorphic continuation of ω f ,ε(s) is equivalent to the meromorphic continuation of
M( f )(s), and the functional equation ω f ,ε(s) = εω f ,ε(1− s) is equivalent to the functional equation
M( f )(s) = εM( f )(1− s). The change of variable x = e−t shows that ω f ,ε(s) is the Laplace transform of

H f ,ε(t ) = h f ,ε
(
e−t ) (3.3)

namely

ω f ,ε(s) = L
(
H f ,ε

)
(s) =

∫ +∞

0
H f ,ε(t )e−st dt . (3.4)

The functions h f ,ε(x) and H f ,ε(t ) are called boundary terms, having in mind the motivation given in
Section 1.1. The issue is then the following one. What property of the boundary terms ensures that
their Laplace transforms admit a meromorphic continuation to C and satisfy a functional equation?
One possible answer, in which the keyword is mean-periodicity, is given in the two following parts.
We shall see there that mean-periodicity of h f ,ε(x) or H f ,ε(t ) is a sufficient condition.

In this section, X+ will be one of the following spaces

C (R) defined in Section 2.2,

C ∞(R) defined in Section 2.2,

C ∞
exp(R) defined in (2.3),

S(R)∗ whose dual is defined in (2.7)
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whereas X× will be one of the following spaces

C (R×
+) defined in Section 2.2,

C ∞(R×
+) defined in Section 2.2,

C ∞
poly(R×

+) defined in (2.4),

S(R×
+)∗ whose dual is defined in (2.5).

For the definitions of X+-mean periodic functions and of X×-mean periodic functions, we refer the
reader to Section 2.

3.2. Mean-periodicity and meromorphic continuation of boundary terms. The general theory of
mean-periodic functions asserts that if h f ,ε, defined in (3.2), is X×-mean-periodic then ω f ,ε, defined
in (3.1), admits a meromorphic continuation to C. More precisely, the Mellin–Carleman transform
MC

(
h f ,ε

)
of h f ,ε (see Definition 2.13) is the meromorphic continuation of ω f ,ε (see Proposition 2.14

and Proposition 2.15). Similarly, if H f ,ε defined in (3.3) is X+-mean-periodic then its Laplace trans-
form ω f ,ε(s) (see (3.4)) admits a meromorphic continuation to C. Indeed, the Laplace–Carleman
transform LC

(
H f ,ε

)
of H f ,ε (see Definition (2.8)) is the meromorphic continuation ofω f ,ε (see Propo-

sition 2.9).

3.3. Mean-periodicity and functional equation of boundary terms. Let us focus on the eventual
functional equation satisfied by ω f ,ε(s). Note that h f ,ε(x) satisfies the functional equation

h f ,ε
(
x−1)=−εxh f ,ε(x). (3.5)

according to (3.2). In other words, the function h̃ f ,ε :=p
xh f ,ε(x) satisfies

h̃ f ,ε
(
x−1)=−εh̃ f ,ε (x) .

In terms of H f ,ε(t ), it exactly means that the function H̃ f ,ε(t ) := e−t/2H f ,ε(t ) satisfies

H̃ f ,ε(−t ) =−εH̃ f ,ε(t ).

In general, (3.5) does not imply the functional equation ω f ,ε(s) = εω f ,ε(1− s), even if ω f ,ε(s) admits
a meromorphic continuation to C. For example, if f (x) = e−x and ε = 1 then h f (x) = e−x − x−1e−1/x

and M( f )(s) = Γ(s) is a meromorphic function on C, which does not satisfy M( f )(s) =M( f )(1− s).

Let us assume that ω f ,ε(s) satisfies the functional equation ω f ,ε(s) = εω f ,ε(1− s). It can be formally
written as ∫ 1

0
h f ,ε(x)xs dx

x
= ε

∫ 1

0
h f ,ε(x)x1−s dx

x
. (3.6)

The right-hand side is equal to

−ε2
∫ 1

0
h f ,ε(x−1)x−s dx

x
=−

∫ +∞

1
h f ,ε(x)xs dx

x

according to (3.5). Hence we get∫ 1

0
h f ,ε(x)xs dx

x
+

∫ +∞

1
h f ,ε(x)xs dx

x
= 0. (3.7)

Conversely, if we suppose (3.7) then we formally obtain (3.6) by using (3.5). As a consequence, we
guess that, under the meromorphic continuation of ω f ,ε(s), the functional equation of ω f ,ε(s) is
equivalent to (3.5) and (3.7), and (3.7) corresponds to the mean-periodicity.

Once again, the general theory of mean-periodic functions asserts that if h f ,ε(x), defined in (3.2),
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is X×-mean-periodic then the Mellin–Carleman transform MC
(
h̃ f ,ε

)
(s) of h̃ f ,ε(x) satisfies the func-

tional equation

MC
(
h̃ f ,ε

)
(s) = εMC

(
h̃ f ,ε

)
(−s)

according to Proposition 2.16. This is equivalent to the functional equation

ω f ,ε(s) = εω f ,ε(1− s)

since MC
(
h̃ f ,ε

)
(s) =MC

(
h f ,ε

)
(s+1/2). Similarly, if H f ,ε(t ) defined in (3.3) is X+-mean-periodic then

the Laplace–Carleman transform LC
(
H̃ f ,ε

)
(s) of H̃ f ,ε(t ) satisfies the functional equation

LC
(
H̃ f ,ε

)
(s) = εLC

(
H̃ f ,ε

)
(−s)

according to Proposition 2.10. This is equivalent to the functional equation

ω f ,ε(s) = εω f ,ε(1− s)

since LC
(
H̃ f ,ε

)
(s) = LC

(
H f ,ε

)
(s +1/2).

Remark 3.1– One can give various kinds of examples of smooth functions on the real line of exponen-
tial growth, which on one hand are not X+-mean-periodic for every functional space X+ of functions
given at page 15, and on the other hand whose Laplace transform extends to a symmetric mero-
morphic function on the complex plane. A series of examples due to A. Borichev is supplied by the
following general construction. First, recall that if real bn > 1 are some of zeros of a function holo-
morphic and bounded in the half-place ℜe (s) > 0 then

∑
1/bn <∞, see e.g. [41, Problem 298, sect.2

Ch.6 Part III]. Using the map z → exp(−i z) we deduce that if i bn , bn > 0, are some of zeros of an entire
function bounded in the vertical strip |ℜe (s)| < π/2 then

∑
exp(−bn) <∞. Now choose a sequence

(an) of positive real numbers such that the set {i an} is not a subset of all zeros of any entire func-
tion bounded in the vertical strip |ℜe (s)| < π/2. For example, using what has been said previously
in this remark, one can take an = logn. Choose sufficiently fast decaying non-zero coefficients cn

so that H(t ) = ∑
cn sin(an t ) belongs to the space X+ of smooth functions of exponential growth and

its Laplace transform w(s) =∑
cn an/(s2 +a2

n) is a symmetric meromorphic function on the complex
plane. Assume that H(t ) is X+-mean-periodic. Then H∗+τ= 0 for some non-zero τ ∈X∗+. Convolving
τ with a smooth function we can assume that τ is a smooth function of over exponential decay. The
mean-periodicity of H(t ) implies that the meromorphic function w(s) coincides with the Laplace–
Carleman transform of H(t ), and so the set of poles {±i an} of w(s) is a subset of zeros of the two
sided Laplace transform of τ. Note that the two sided Laplace transform of a smooth function with
over exponential decay is an entire function v(s) such that for every positive integer m the function
|v(s)|(1+ |s|)m is bounded in the vertical strip |ℜe (s)| < m. The choice of the sequence (an) gives a
contradiction. Hence the function H(t ) is not X+-mean-periodic and its Laplace transform extends
to a symmetric meromorphic function.

3.4. Statement of the result. Let us encapsulate all the previous discussion of this section in the
following theorem.

Theorem 3.2– Let X× be C (R×+) or C ∞(R×+) or C ∞
poly(R×+) or S(R×+)∗ and X+ be C (R) or C ∞(R) or

C ∞
exp(R) or S(R)∗. Let f (x) be a real-valued function onR×+ of rapid decay as x →+∞ and of polynomial

order as x → 0+. Let ε=±1.

• If h f ,ε(x) = f (x)−εx−1 f
(
x−1

)
is a X×-mean-periodic function then the Mellin transform M( f )(s)

of f (x) admits a meromorphic continuation to C and satisfies the functional equation

M( f )(s) = εM( f )(1− s).
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More precisely,

M( f )(s) =
∫ +∞

1
f (x)xs dx

x
+ε

∫ +∞

1
f (x)x1−s dx

x
+ω f ,ε(s)

where ω f ,ε(s) coincides on ℜe (s) À 0 with
∫ 1

0 h f ,ε(x)xs dx/x , admits a meromorphic contin-
uation to C given by the Mellin–Carleman transform MC

(
h f ,ε

)
(s) of h f ,ε(t ) and satisfies the

functional equation

ω f ,ε(s) = εω f ,ε(1− s).

• If H f ,ε(t ) = h f ,ε(e−t ) is a X+-mean-periodic function then the Mellin transform M( f )(s) of f (x)
admits a meromorphic continuation to C and satisfies the functional equation

M( f )(s) = εM( f )(1− s).

More precisely,

M( f )(s) =
∫ +∞

1
f (x)xs dx

x
+ε

∫ +∞

1
f (x)x1−s dx

x
+ω f ,ε(s)

where ω f ,ε(s) coincides on ℜe (s) À 0 with the Laplace transform L
(
H f ,ε

)
(s) of H f ,ε(t ), admits

a meromorphic continuation to C given by the Laplace–Carleman transform LC
(
H f ,ε

)
(s) of

H f ,ε(t ) and satisfies the functional equation

ω f ,ε(s) = εω f ,ε(1− s).

4. ON A CLASS OF MEAN-PERIODIC FUNCTIONS ARISING FROM NUMBER THEORY

In this section, we show that for a certain class of functions, which naturally come from number
theory (zeta functions of arithmetic schemes), their meromorphic continuation and their functional
equation are essentially equivalent to the mean-periodicity of some associated functions.

4.1. Functions which will supply mean-periodic functions. Firstly, we define some suitable set of
functions, from which mean-periodic functions will be built.

Definition 4.1– F is defined by the set of complex-valued functions Z (s) of the shape

Z (s) = γ(s)D(s)

where γ(s) and D(s) are some meromorphic functions on Cwith the following conditions

• all the poles of Z (s) belong to the vertical strip |ℜe (s)−1/2| É w for some w > 0,
• γ(s) satisfies the uniform bound

∀σ ∈ [a,b],∀|t | Ê t0, |γ(σ+ i t )|¿a,b,t0 |t |−A (4.1)

for all real numbers a É b and every real number A > 0,
• If σ> 1/2+w then

D(σ+ i t ) ¿|t |A1 (4.2)

for some real number A1,
• there exists a real number A2 and a strictly increasing sequence of positive real numbers {tm}mÊ1

satisfying

|D(σ± i tm)| =O
(
t A2

m

)
(4.3)

uniformly for σ ∈ [1/2−w −δ,1/2+w +δ] for some δ> 0 and for all integer m Ê 1.
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If λ is a pole of Z (s) in F of multiplicity mλ Ê 1 then the principal part is written as

Z (s) =
mλ∑

m=1

Cm(λ)

(s −λ)m +O(1) (4.4)

when s →λ. Note that we can associate to a element Z ∈F its inverse Mellin transform namely

fZ (x) := 1

2iπ

∫
(c)

Z (s)x−s ds (4.5)

for c > 1/2+w . By (4.1), (4.3) and the fact that the poles of Z (s) lie in some vertical strip |ℜe (s)−1/2| É
w for some w > 0, we have

fZ (x) =O
(
x−A)

as x →+∞

for all A Ê 0 and
fZ (x) =O

(
x−1/2−w−ε) as x → 0+.

As a consequence, fZ (x) is of rapid decay as x →+∞ and is at most of polynomial growth as x → 0+.
Let Zi (s) = γi (s)Di (s) for i = 1,2 be two elements of F linked by the functional equation

Z1(s) = εZ2(1− s)

where ε is a complex number of absolute value one. Let us define h12(x) by

h12(x) := fZ1 (x)−εx−1 fZ2

(
x−1) (4.6)

and h21(x) by
h21(x) := fZ2 (x)−ε−1x−1 fZ1

(
x−1) . (4.7)

The functions h12(x) and h21(x) are at most of polynomial growth as x → 0+ and x →+∞ since fZ1

and fZ2 are of rapid decay as x →+∞ and are at most of polynomial growth as x → 0+. The purpose
of this section is to establish the mean-periodicity of these functions.

4.2. Mean-periodicity of these functions.

Theorem 4.2– Let Zi (s) = γi (s)Di (s) for i = 1,2 be two elements of F and ε be a complex number of
absolute value one. The functions h12(x) and h21(x) defined by (4.6) and (4.7) are continuous functions
on R×+ satisfying the functional equation

h12
(
x−1)=−εxh21(x). (4.8)

In addition, if Z1(s) and Z2(s) satisfy the functional equation

Z1(s) = εZ2(1− s) (4.9)

then

(1) h12(x) and h21(x) are limits, in the sense of compact uniform convergence, of sums of exponen-
tial polynomials4 in C (R×+),

(2) h12(x) and h21(x) belong to C ∞
poly(R×+).

Remark 4.3– An equivalent statement of the previous theorem is

(1) H12(t ) = h12(e−t ) and H21(t ) = h21(e−t ) are two elements of C ∞
exp(R) satisfying the functional

equation
H12 (−t ) =−εe−t H21(t ),

(2) H12(t ) and H21(t ) are limits, in the sense of compact uniform convergence, of sums of expo-
nential polynomials5 in C (R).

4Remember that exponentials polynomials in C (R×+) are given by x−λP (log x).
5Remember that exponentials polynomials in C (R) are given by P (t )eλt .
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Remark 4.4– Di (s) (i = 1,2) have infinitely many poles in practice. Thus, applying this theorem will
require some effort to check (4.3).

Remark 4.5– Of course, the estimate (4.3) can be relaxed if we have some stronger estimate for γ(s),
for instance some exponential decay in vertical strip. The main condition is that one can choose a
sequence {tm}mÊ1 such that |Z (σ+ i tm)| = O(t−a

m ) uniformly in |ℜe (s)−1/2| É w +δ, |t | Ê t0 and for
some a > 1.

Proof of Theorem 4.2. Equation (4.8) is essentially trivial. From definition (4.5), fZ1 (x) and fZ2 (x) are
continuous functions on R×+, which entails that h12(x) and h21(x) are also continuous functions on
R×+ by (4.6). The functional equation (4.8) is an immediate consequence of (4.6) and (4.7). The second
assertion is implied by the first one and the fact that

h12(x),h21(x) =
{

O
(
x−1/2+w+δ) as x →+∞,

O
(
x−1/2−w−δ) as x → 0+.

since fZi (x) = O(x−1/2−w−δ) (i = 1,2) for some δ > 0. Let us focus on the first assertion for h12 only.
We consider the clockwise oriented rectangle R = [1/2−w −δ,1/2+w +δ]× [−T,T ]. We get

1

2iπ

∫
R

Z1(s)x−s ds = ∑
λ pole of Z1

of multiplicity mλ

|ℑm (λ)|<T

mλ∑
m=1

Cm(λ)
(−1)m−1

(m −1)!
logm−1 (x)x−λ

where Cm(λ) 6= 0 (1 É m É mλ) are defined in (4.4). We cut the rectangle symmetrically at the points
1/2±i T . By the functional equation (4.9), the integral on the left part of this rectangle equals−ε1ε2x−1

times the same integral on the right part of this rectangle in which Z1 is replaced by Z2 and x is
replaced by x−1. Thus,

h12(x) = ∑
λ pole of Z1

of multiplicity mλ

|ℑm (λ)|<T

mλ∑
m=1

Cm(λ)
(−1)m−1

(m −1)!
logm−1 (x)x−λ

+R1(Z1, x,T )+R2(Z1, x,T )−ε1ε2x−1(R1(Z2, x−1,T )−R2(Z2, x−1,T ))

where R1(Z1, x,T ) (and similarly R1(Z1, x−1,T )) is given by

R1(Z1, x,T ) =− 1

2iπ

∫ 1/2+w+δ

1/2
Z1(σ+ i T )x−(σ+i T ) dσ

+ 1

2iπ

∫ 1/2+w+δ

1/2
Z1(σ− i T )x−(σ−i T ) dσ

and R2(Z1, x,T ) (and similarly R2(Z2, x−1,T )) by

R2(Z1, x,T ) = 1

2π

∫ ∞

T
Z1(1/2+w +δ+ i t )x−1/2−w−δ−i t dt

+ 1

2π

∫ −T

−∞
Z1(1/2+w +δ+ i t )x−1/2−w−δ−i t dt .

Equation (4.2) implies that for i = 1,2,

R2(Zi , x,T ) =O
(
T −A)

uniformly on every compact set of R×+ and for every large A > 0. By (4.1) and (4.3), we can take an
increasing sequence (tm)mÊ1 so that for i = 1,2

R1(Zi , x, tm) =O(t−A
m )
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uniformly on every compact set of R×+ and for every large A > 0. As a consequence,

h12(x) = ∑
λ pole of Z1

of multiplicity mλ

mλ∑
m=1

Cm(λ)
(−1)m−1

(m −1)!
logm−1 (x)x−λ (4.10)

in the sense of the compact uniform convergence. �

A closer inspection of the proof of the previous theorem reveals that, in some particular case, we
also establish a kind of summation formula for the poles of the functions belonging to F . This for-
mula is described in the following corollary.

Corollary 4.6– Let Z (s) = γ(s)D(s) be an element of F , ε = ±1 and φ be a real-valued smooth com-
pactly supported function on R×+. If Z (s) satisfies the functional equation

Z (s) = εZ (1− s)

and

D(s) = ∑
mÊ1

dm

ms

for ℜe (s) >σ0 then∑
λ pole of Z

of multiplicity mλ

mλ∑
m=1

Cm(λ)

(m −1)!
M(φ)(m−1)(λ) = ∑

mÊ1
dm

[
(φ∗×κ)(m)−ε(φ∨∗×κ)(m)

)

where φ∨(x) = x−1φ(x−1), κ(x) is the inverse Mellin transform of γ(s) namely

κ(x) := 1

2iπ

∫
(c)
γ(s)x−s ds

for c >σ0.

Proof of Corollary 4.6. If Z1(s) = Z2(s) = Z (s) then we notice that

fZ (x) = ∑
mÊ1

dm
1

2iπ

∫
(c)
γ(s)(mx)−s ds = ∑

mÊ1
dmκ(mx),

which implies

h12(x) = ∑
mÊ1

dm
[
κ(mx)−εx−1κ(mx−1)

]
.

Equation (4.10) implies that∑
λ pole of Z

of multiplicity mλ

mλ∑
m=1

Cm(λ)
(−1)m−1

(m −1)!
logm−1 (x)x−λ = ∑

mÊ1
dm

[
κ(mx)−εx−1κ(mx−1)

]
.

The corollary follows from multiplying by φ(x−1) and integrating over R×+ with respect to the measure
dx/x �

Theorem 4.7– Let Z1(s) = γ1(s)D1(s) and Z2(s) = γ2(s)D2(s) be two elements of F satisfying the func-
tional equation

Z1(s) = εZ2(1− s)

for some complex number ε of absolute value one. Let us suppose that Z1(s) and Z2(s) can be written
as

Zi (s) = Ui (s)

Vi (s)
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for i = 1,2 where Ui (s) and Vi (s) (i = 1,2) are some entire functions satisfying the functional equations

U1(s) = εUU2(1− s), (4.11)

V1(s) = εV V2(1− s) (4.12)

for some complex numbers εU ,εV of absolute value one, and satisfying the bounds

|Ui (σ+ i t )|, |Vi (σ+ i t )| =Oa,b

(
|t |−(1+δ)

)
(i = 1,2) (4.13)

for some δ > 0 in every vertical strip of finite width a É σ É b and every |t | Ê 1. Under the previous
assumptions, the functions h12(x) and h21(x), which are defined in (4.6), satisfy

v1 ∗× h12 = 0, v2 ∗× h21 = 0.

where vi ∈ S(R×+) is the inverse Mellin transform of Vi for i = 1,2. In other words, the functions h12(x)
and h21(x) are C ∞

poly(R×+)-mean-periodic and S(R×+)∗-mean-periodic.

Remark 4.8– An equivalent statement of the previous theorem is that the functions H12(t ) = h12(e−t )
and H21(t ) = h21(e−t ) are S(R)∗-mean-periodic and C ∞

exp(R)-mean-periodic.

Remark 4.9– In general, C ∞
poly(R×+)-mean-periodicity (or S(R×+)∗-mean-periodicity) of h12(x) and h21(x)

do not imply that Zi (s) (i = 1,2) are meromorphic functions of order one. For example, let ζΓ(s) be
the Selberg zeta function associated to a discrete co-compact torsion free subgroup Γ of SL2(R). Then
ζΓ(s) is an entire function of order two which has the simple zero at s = 1, order 2g −1 zero at s = 0
and has the functional equation

(Γ2(s)Γ2(s +1))2g−2ζΓ(s) = (Γ2(1− s)Γ2(2− s))2g−2ζΓ(1− s),

where g > 1 is the genus of Γ\SL2(R)/SO(2) and Γ2(s) is the double gamma function ( [44] [26], [30]).
Put γ(s) = (Γ2(s)Γ2(s +1))2g−2, D(s) = (s(s −1))−2ζΓ(s) and ZΓ(s) = γ(s)D(s). Then we find that ZΓ(s)
belongs to F and its poles are simple poles s = 0,1 only. The function hΓ(x) attached to ZΓ is equal
to c0 + c1x−1 for some real numbers c0,c1, where hΓ(x) = fZΓ

(x)− x−1 fZΓ
(x−1) with the inverse Mellin

transform fZΓ
of ZΓ. Hence hΓ is C ∞

poly(R×+)-mean-periodic. Moreover hΓ is C (R×+)-mean-periodic.

The Mellin–Carleman transform of hΓ is the rational function c1(s −1)−1 − c0s−1. However, as men-
tioned above, ZΓ is a meromorphic function of order two.

Proof of Theorem 4.7. We only prove the result for h12. Let ui be the inverse Mellin transform of Ui

namely

ui (x) = 1

2iπ

∫
(c)

Ui (s)x−s ds

and vi be the inverse Mellin transform of Vi namely

vi (x) = 1

2iπ

∫
(c)

Vi (s)x−s ds

for i = 1,2. These integrals converge for every real number c according to (4.13). In addition, these
functions belong to S(R×+) by shifting the contours to the right or to the left. Let us define f̃ (x) :=
x−1 f (x−1). We remark that

u1 = v1 ∗× fZ1 = εU ṽ2 ∗× f̃Z2 (4.14)

since U1(s) = V1(s)Z1(s) and U1(s) = εUU2(1− s) = εU V2(1− s)Z2(1− s) according to the functional
equation (4.11). In addition, v1 = εV ṽ2 by the functional equation (4.12). As a consequence,

εU ṽ2 = εv1 (4.15)

since ε= εUεV
−1. Equations (4.14) and (4.15) altogether imply

v1 ∗× ( fZ1 −ε f̃Z2 ) = 0
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which is the desired result since S(R×+) ≺ C ∞
poly(R×+)∗. �

4.3. On single sign property for these mean-periodic functions.

Proposition 4.10– Let Z (s) = γ(s)D(s) be an element of F and ε = ±1. Let h(x) = h12(x) = h21(x) be
the function defined in (4.6). If h(x) can be split into h(x) = h0(x)+h1(x), where

• h1(x) is a C ∞
poly(R×+)-mean-periodic real-valued function or a S(R×+)∗-mean-periodic real-valued

function on R×+ satisfying h1(x−1) =−εxh1(x),
• there exists t0 > 0 such that h1(e−t ) is of constant sign on (t0,+∞),
• the Mellin–Carleman transform MC (h1) (s) of h1(x) has no poles in (1/2+δ,+∞) for some 0 É
δ< w where w is the positive real number in Definition 4.1

then all the poles of MC (h1) (s) belong to the strip |ℜe(s)−1/2| É δ. In particular, if MC (h1) (s) does not
have any poles on (1/2,+∞) namely δ= 0 then all the poles of MC(h1)(s) are on the line ℜe (s) = 1/2.

Proposition 4.10 is a consequence of the following lemma ( [54, Chapter II, Section 5]) since

MC(h)(s) =
∫ 1

0
h(x)xs dx

x
=

∫ +∞

0
h(e−t )e−st dt

on ℜe (s) > 1/2+w , and MC(h1)(s) = εMC(h1)(s) by the first assumption and Proposition 2.16.

Lemma 4.11– Let f (x) be a real-valued function on R×+. If there exists x0 > 0 such that f (x) is of
constant sign on (x0,+∞) and if the abscissa σc of convergence (not of absolute convergence) of the
Laplace transform L( f )(s) of f (x) is finite then L( f )(s) has a singularity at s =σc .

5. ZETA FUNCTIONS OF ARITHMETIC SCHEMES AND MEAN-PERIODICITY

The main references for the arithmetic and analytic objects briefly introduced in this section are
[45] and [46].

5.1. Background on Hasse zeta functions of schemes. Let S be a scheme of dimension n. Its Hasse
zeta function is the Euler product

ζS(s) = ∏
x∈S0

(1−|k(x)|−s)−1

whose Euler factors correspond to all closed points x of S, say x ∈ S0, with residue field of cardinality
|k(x)|. It is known to converge absolutely in ℜe(s) > n. If S is a B-scheme then the zeta function ζS(s)
is the product of the zeta functions ζSb (s) where Sb runs through all fibres of S over B .

Let K be a number field. Let E be an elliptic curve over K. Define the Hasse–Weil zeta function
ζE (s) of E as the product of factors for each valuation ofK, the factors are the Hasse zeta function of a
minimal Weierstrass equation of E with respect to the valuation. If E has a global minimal Weierstrass
equation (for example, this is so if the class number ofK is 1), then the Hasse–Weil zeta function ζE (s)
equals the Hasse zeta function ζE0 of the model E0 corresponding to a global minimal Weierstrass
equation for E . All this follows from the description of the special fibre of a minimal Weierstrass
equation, see e.g. [34, 10.2.1]. The Hasse–Weil zeta function depends on E only.
Using the computation of the Hasse zeta function for curves over finite fields one gets the familiar
equality

ζE (s) = ζK(s)ζK(s −1)

L(E , s)
on ℜe (s) > 2 where ζK(s) is the Dedekind zeta function of K, and L(E , s) is the L-function of E . This
equality can be viewed as the definition of L(E , s).
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Let E be a regular model of E , proper over the ring of integers of K. The description of geometry
of models in [34, Thms 3.7, 4.35 in Ch. 9 and section 10.2.1 in Ch. 10] immediately implies that

ζE (s) = nE (s)ζE (s)

where nE (s) is the product of zeta functions of affine lines over finite extension k(b j ) of the residue
fields k(b):

nE (s) = ∏
1É jÉJ

(
1−q1−s

j

)−1

and q j = |k(b j )| (1 É j É J ), J is the number of singular fibres of E . See [22, Section 7.3] and also [4,
Section 1]. Note that nE (s)±1 are holomorphic functions on ℜe (s) > 1.

In the next sections we study L-functions of elliptic curves, Hasse-Weil zeta functions of elliptic curves
and Hasse zeta functions of elliptic curves and last but not least Hasse zeta functions of schemes.

5.2. Conjectural analytic properties of L-functions of elliptic curves. Let K be a number field. Let
E be an elliptic curve over K, denote its conductor by qE . The L-function L(E , s) has an absolutely
convergent Euler product and Dirichlet series on ℜe (s) > 3/2, say

L(E , s) := ∑
nÊ1

an

ns . (5.1)

The completed "L-function" Λ(E , s) of E is defined by

Λ(E , s) := (
NK|Q(qE )|dK|2

)s/2
L∞(E , s)L(E , s)

where dK is the discriminant ofK and

L∞(E , s) := ΓC(s)r1 ΓC(s)2r2 .

Here, r1 is the number of real archimedean places of K, r2 is the number of conjugate pairs of com-
plex archimedean places of K, and ΓC(s) := (2π)−s Γ(s) as usual (see [46, Section 3.3]). The expected
analytic properties of Λ(E , s) are encapsulated in the following hypothesis.

Hypothesis Nice−Ell(K)– (respectively Nice[−Ell(K)) If E is an elliptic curve over the number fieldK
then the function Λ(E , s) is a completed L-function (respectively almost completed L-function) in the
sense that it satisfies the following nice analytic properties:

• it can be extended to a holomorphic function (respectively meromorphic function with finitely
many poles) of order 1 on C,

• it satisfies a functional equation of the shape

Λ(E , s) =ωEΛ(E ,2− s)

for some sign ωE =±1.

Remark 5.1– If E is an elliptic curve over a general number field K with complex multiplication then
its completed L-function is nice by the work of M. Deuring (see [15], [16], [17], [18]). If K = Q then
Hypothesis Nice−Ell(Q) is completely known. This is implied by the fact that an elliptic curve over
the field of rational numbers is modular (see [55], [52], [19], [10], [6]).

Remark 5.2– Assuming Hypothesis Nice−Ell(K), the L-function L(E , s) of every elliptic curve E over
K satisfies the convexity bounds

L(E , s) ¿E ,ε
[|ℑm (s)|r1+2r2

]µE (ℜe (s))+ε
(5.2)
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for every ε> 0 where

µE (σ) =


0 if σÊ 3/2,

−σ+3/2 if 1/2 ÉσÉ 3/2,

2(1−σ) otherwise.

(see [28, Equation (5.21)]). Note that even if Hypothesis Nice−Ell(K) is relaxed to Hypothesis Nice[−Ell(K)
then L(E , s) is still polynomially bounded (see section 5.5).

One of the purposes of this section is to establish a strong link between Hypothesis Nice−Ell(K)
and mean-periodicity. This will be achieved by investigating analytic properties of Hasse zeta func-
tions of elliptic curves, in agreement with the philosophy of [21].

5.3. Hasse–Weil zeta functions of elliptic curves. LetK be a number field. Remember that the com-
pleted Dedekind zeta function ofK is given by

ΛK(s) := |dK|s/2ζK,∞(s)ζK(s)

where

ζK,∞(s) := ΓR(s)r1 ΓC(s)r2 (5.3)

with ΓR(s) = π−s/2Γ(s/2) as usual and ΓC(s) has already been defined in the previous section. ΛK(s)
is a meromorphic function of order 1 on Cwith simple poles at s = 0,1, which satisfies the functional
equation

ΛK(s) =ΛK(1− s).

Moreover, ζK(s) satisfies the convexity bounds

ζK(s) ¿K,ε
[|ℑm (s)|r1+2r2

]µK(ℜe (s))+ε
(5.4)

for all ε> 0 where

µK(σ) =


0 if σÊ 1,

(−σ+1)/2 if 0 ÉσÉ 1,

1/2−σ otherwise.

(see [28, Equation (5.21)]). Let E be an elliptic curve over K. The Hasse–Weil zeta function of E may
be written in terms of the completed zeta-functions and L-function as follows

ζE (s) = |dK|1/2NK|Q(qE )s/2 L∞(E , s)

ζK,∞(s)ζK,∞(s −1)

ΛK(s)ΛK(s −1)

Λ(E , s)
.

The functional equation Γ(s+1) = sΓ(s) and the equality 2ΓC(s) = ΓR(s)ΓR(s+1), which is implied by
Legendre’s duplication formula, lead to

ζE (s) = |dK|1/2NK|Q(qE )s/2
(

s −1

4π

)r1
(

s −1

2π

)r2 ΛK(s)ΛK(s −1)

Λ(E , s)
. (5.5)

As a consequence, Hypothesis Nice−Ell(K) implies the following hypothesis.

Hypothesis Nice−HW(K)– For every elliptic curve E over the number field K, the Hasse–Weil zeta
function ζE (s) satisfies the following nice analytic properties:

• it can be extended to a meromorphic function on C,
• it satisfies a functional equation of the shape(

NK|Q(qE )−1)s/2
ζE (s) = (

NK|Q(qE )−1)(2−s)/2
(−1)r1+r2ωEζE (2− s)

for some sign ωE =±1.
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Remark 5.3– Note that the constants in the conjectural functional equations of Hasse-Weil zeta func-
tions of elliptic curves are much simpler than in the conjectural functional equations of L-functions
of elliptic curves. In particular, they do not depend on the discriminant of the field. Note the absence
of gamma-factors in the functional equations Hasse-Weil zeta functions of elliptic curves. Even the
total conjectural sign in the functional equations does not depend on archimedean data associated
to K. Hasse–Weil zeta functions of elliptic curves are, from several points of view, more basic objects
than L-functions of elliptic curves.

Remark 5.4– Hypothesis Nice−HW(K) implies the meromorphic continuation of Λ(E , s) and the
conjectural functional equation of Λ(E , s) for every elliptic curve E over the number field K. In par-
ticular, Hypothesis Nice−HW(K) recover the gamma-factor L∞(E , s) and the norm of the conductor
NK|Q(qE )|dK|2 of L(E , s) by (5.5) and the one-dimensional study of ζK(s).

Remark 5.5– The conjectural automorphic property of L-functions of elliptic curves is lost when one
goes to Hasse–Weil zeta functions of elliptic curves. It is then natural to wonder which replacement of
automorphic property should correspond to Hasse–Weil zeta functions of elliptic curves. This work
shows the mean-periodicity is one of such replacements.

Here we state the following hypothesis for the mean-periodicity.

Hypothesis Mp−HW(K)– For every elliptic curve E overK, if

ZE (s) =ΛK(s)
(
NK|Q(qE )−1)2s/2

ζE (2s)

then the function

hE (x) := fZE (x)− (−1)r1+r2ωE x−1 fZE

(
x−1)

is C ∞
poly(R×+)-mean-periodic (respectively S(R×+)∗-mean-periodic), or the function HE (t ) := hE (e−t ) is

C ∞
exp(R)-mean-periodic (respectively S(R)∗-mean-periodic), where fZE is the inverse Mellin transform

of ZE defined in (4.5).

Clearly, the mean-periodicity for hE (x) and the mean-periodicity for HE (t ) are equivalent. One
link with mean-periodicity is described in the following theorem.

Theorem 5.6– LetK be a number field. Then

• Hypothesis Nice[−Ell(K) implies Hypothesis Mp−HW(K).
• Hypothesis Mp−HW(K) implies Hypothesis Nice−HW(K).

Remark 5.7– We have already mentioned that Hypothesis Nice−Ell(Q) holds. As a consequence, the
two other hypothesis are also true. Let us give some more information on the mean-periodic func-
tions, which occur in this particular case (see Corollary 4.6). If E is an elliptic curve overQ and

ζE (2s) := ∑
mÊ1

cm

ms (5.6)

then the mean-periodic function hE satisfies

HE (t ) = hE (e−t ) = ∑
λ pole of ZE (s)

of multiplicity mλ

mλ∑
m=1

Cm(λ)
1

(m −1)!
t m−1eλt

= 2
∑

nÊ1

(∑
d |n

cd

)[
exp

(−πn2e−2t )+ωE exp
(
t −πn2e2t )]

where the coefficients Cm(λ) (1 É m É mλ) are defined in (4.4).
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Proof of Theorem 5.6. The second assertion is a consequence of Theorem 3.2. Let us show the first
assertion applying Theorem 4.2 and Theorem 4.7. Adopting the same notation as in Theorem 4.2,

we choose Z1(s) = Z2(s) = γ(s)D(s) = ZE (s) with γ(s) =ΛK(s) and D(s) = (
NK|Q(qE )−1

)2s/2
ζE (2s). The

functional equation satisfied by ZE (s) is

ZE (s) = (−1)r1+r2ωE ZE (1− s).

In addition, ZE (s) belongs to F since ΛK(s) has two poles and the poles of γ(s) and D(s) are in the
vertical strip |ℜe (s)−1/2| É 1/2 := w and

• the estimate (4.1) follows from Stirling’s formula and classical convexity bounds for Dedekind
zeta functions given in (5.4),

• the estimate (4.2) follows from the Dirichlet series expansion of ζE (s) for ℜe(s) > 2,
• the crucial condition (4.3) is an application of Proposition A.2 and the convexity bounds for

the Dedekind zeta function given in (5.4).

From Hypothesis Nice[−Ell(K), the function P (s)L(E , s) is an entire function for some polynomial
P (s) satisfying P (s) = P (1− s). Adopting the same notation as in Theorem 4.7, we choose U1(s) =
U2(s) =U (s) and V1(s) =V2(s) =V (s) where

U (s) := (4π)−r1 (2π)−r2 |dK|1/2(2s −1)r1+r2+1s2(s −1)2ΛK(s)ΛK(2s)ΛK(2s −1)P (2s),

V (s) := (2s −1)s2(s −1)2Λ(E ,2s)P (2s).

U (s) and V (s) are entire functions satisfying the functional equations

U (s) = (−1)r1+r2+1U (1− s),

V (s) = −ωE V (1− s).

The estimate (4.13) is a consequence of Stirling’s formula and convexity bounds for P (s)L(E , s) and
the Dedekind zeta function given in (5.2) and in (5.4). �

We get, arguing along the same lines, the following proposition.

Proposition 5.8– LetK be a number field and E be an elliptic curve overK.

• If Hypothesis Nice[−Ell(K) holds then the function

h(2)
E (x) := fZ 2

E
(x)−x−1 fZ 2

E

(
x−1)

with ZE (s) := ΛK(s)
(
NK|Q(qE )−1

)2s/2
ζE (2s) is C ∞

poly(R×+)-mean-periodic (respectively S(R×+)∗-

mean-periodic), and the function H (2)
E (t ) := h(2)

E (e−t ) is C ∞
exp(R)-mean-periodic (respectively

S(R)∗-mean-periodic), where fZ 2
E

is the inverse Mellin transform of Z 2
E defined in (4.5).

• If h(2)
E (x) is C ∞

poly(R×+)-mean-periodic or S(R×+)∗-mean-periodic, or H (2)
E (t ) is C ∞

exp(R)-mean-

periodic or S(R)∗-mean-periodic, then ζ2
E (s) extends to a meromorphic function on C, which

satisfies the functional equation(
NK|Q(qE )−2)s/2

ζ2
E (s) = (

NK|Q(qE )−2)(2−s)/2
ζ2

E (2− s).

Remark 5.9– If E is an elliptic curve overQof conductor qE , which only satisfies Hypothesis Nice−Ell(Q),
then the mean-periodic function h(2)

E satisfies

h(2)
E (e−t ) = ∑

λ pole of Z 2
E (s)

of multiplicity mλ

mλ∑
m=1

Cm(λ)
1

(m −1)!
t m−1eλt

= 4
∑

nÊ1

(∑
d |n

cdσ0(n/d)

)[
K0(2πne−t )−e t K0(2πne t )

]
(5.7)
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since
1

2iπ

∫
(c)
ΛK(s)2x−s ds = 4

∞∑
n=1

σ0(n)K0 (2πnx)

where K0 is the modified Bessel function, the coefficients Cm(λ) (1 É m É mλ) are defined in (4.4), the
coefficients (cm)mÊ1 are defined in (5.6) and σ0(n) =∑

d |n 1 for integer n Ê 1 as usual. In addition, the
function

v(x) := 1

2iπ

∫
(c)

(2s −1)2s4(s −1)4Λ(E ,2s)2x−s ds = ∑
nÊ1

anW

(
n2x

q2
E

)
(5.8)

belongs to S(R×+) and satisfies v ∗× h(2)
E = 0 where the coefficients (an)nÊ1 are defined in (5.1) and

W (x) := 1

2iπ

∫
(c)

(2s −1)2s4(s −1)4
Γ(2s)2x−s ds.

Remark 5.10– Using the series representation in the right-hand side of (5.7) and the right-hand side
of (5.8) one can directly check that h(2)

E (x) ∈ C ∞
poly(R×+), v(x) ∈ C ∞(R×+) and v(x) is of rapid decay as

x →+∞. If one can prove that v ∗× h(2)
E = 0 and that v(x) is of rapid decay as x → 0+ then it implies

the meromorphic continuation of ζ2
E (s) and its functional equation, without using the modularity of

E .

Remark 5.11– Let E be an elliptic curve overQ and let h(2)
E (x) be C ∞

poly(R×+)-mean-periodic. According

to (5.7), we can split h(2)
E (x) into

h(2)
E (x) := h(2)

E ,0,0(x)+h(2)
E ,0,1(x)+h(2)

E ,1(x)

where

h(2)
E ,0,0(x) :=

4∑
m=1

Cm(0)
(−1)m−1

(m −1)!
logm−1 (x),

h(2)
E ,0,1(x) :=

4∑
m=1

Cm(1)
(−1)m−1

(m −1)!
logm−1 (x)x−1

and

h(2)
E ,1(x) := ∑

λ pole of Z 2
E (s)

of multiplicity mλ

λ6=0,1

mλ∑
m=1

Cm(λ)
(−1)m−1

(m −1)!
logm−1 (x)x−λ.

All these three functions are C ∞
poly(R×+)-mean-periodic by the assumption. As a consequence,

MC
(
h(2)

E

)
(s) =MC

(
h(2)

E ,0,0

)
(s)+MC

(
h(2)

E ,0,1

)
(s)+MC

(
h(2)

E ,1

)
(s),

where MC
(
h(2)

E ,0,0

)
(s) has only one pole of order four at s = 0, MC

(
h(2)

E ,0,1

)
(s) has only one pole of order

four at s = 1 and the poles of MC
(
h(2)

E ,1

)
(s) are given by the non-trivial zeros of L(E ,2s) according

to the conjectural linear independence of zeros of L-functions (see [11, Page 13]). Proposition 4.10

entails that if h(2)
E ,1(e−t ) is of constant sign6 on (t0,+∞) for some real number t0 and if MC

(
h(2)

E ,1

)
(s)

does not have poles on the real axis except at s = 1/2 then all the poles of MC
(
h(2)

E ,1

)
(s) are on the line

ℜe(s) = 1/2. In other words, L(E , s) satisfies the Generalized Riemann Hypothesis.
We would like to provide some evidence7 for the single sign property of h(2)

E ,1(e−t ) to hold. Set HE (t ) :

=−e−t h(2)
E (e−t ), then the function HE (t ) coincides with the function H(t ) defined in [22, Section 8.1].

Then the single sign property of H ′′′′
E (t ) implies the single sign property of h(2)

E ,1(e−t ). On the other
hand, the single sign of H ′′′′

E (t ) holds under the Generalized Riemann Hypothesis for L(E , s) if all the

6This function is said to satisfy the single sign property.
7For numerical computations, see http://www.maths.nott.ac.uk/personal/ibf/comp.html

http://www.maths.nott.ac.uk/personal/ibf/comp.html
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non trivial zeros, except s = 1, of L(E , s) are simple and E is not of analytic rank 0 (see [50, Proposition
4]).

Remark 5.12– Finally, let us explain why the functions hE (e−t ) and h(2)
E (e−t ) cannot be C (R)-mean-

periodic neither C ∞(R)-mean-periodic. For instance, let us assume that HE (t ) = hE (e−t ) is C (R)-
mean-periodic and that Λ(E , s) is nice. We can choose a non-trivial compactly supported measure µ
on R satisfying HE ∗µ= 0. According to the explicit formula (5.7), the poles of the Laplace–Carleman
transform LC(HE )(s) are exactly the poles of ZE (s) with multiplicities. Thus, if λ ∈ C \ {0,1/2,1} is a
pole of LC(HE )(s) then λ is a non-trivial zero of L(E ,2s) of multiplicity Mλ Ê 1 and a non-trivial zero
of ζK(s) of multiplicity nλ < Mλ. Let ΛE be the multiset (with multiplicities) of poles of LC(HE )(s)
(except 0,1/2 and 1 as previously) and let ZE be the multiset (with multiplicities) of non-trivial zeros
of L(E ,2s). We have just seen that ΛE ⊂ZE . On one hand, there exists a constant CE 6= 0 such that

N (R;ZE ) := |{λ ∈ZE , |λ| É R}| =CE R logR +O(R)

according to [28, Theorem 5.8]. On the other hand, the set ΛE is a subset of the multiset (with multi-
plicities) of the zeros of L±(µ)(s) by definition of the Laplace–Carleman transform. According to [33,
Page 97], the function L±(µ)(s) belongs to the Cartwright class C, which is the set of entire functions
ψ of exponential type satisfying ∫ +∞

−∞
log+ |ψ(t )|

1+ t 2 dt <∞. (5.9)

Here, the fact that µ is compactly supported is crucial. It implies that ( [33, Equation (5) Page 127]),

N
(
R;L±(µ)

)
:= |{λ ∈C,L±(µ) = 0, |λ| É R

}| =C ′
E R +o(R)

for some C ′
E 6= 0. As a consequence,

N (R;ΛE ) := |{λ ∈ΛE , |λ| É R}| =OE (R)

and

N (R;ZE \ΛE ) 'R→+∞ N (R;ZE ).

Statistically speaking, this means that if 2λ is a zero of L(E , s) of multiplicity Mλ then λ is a zero
of ζK(s) of multiplicity greater than Mλ. Of course, such result would not agree with the general
admitted expectation that zeros of essentially different L-functions are linearly independent (see [11,
Page 13]).

5.4. Hasse zeta functions of models of elliptic curves. Let E be an elliptic curve overK of conductor
qE and E be a regular model of E over K. In the two-dimensional adelic analysis the Hasse zeta
function of E is studied via its lift to a zeta integral on a certain two-dimensional adelic space, see [22].
We assume that E satisfies all the conditions given in [22, Sections 5.3 and 5.5], i.e. the reduced part
of every fibre is semistable and E has good or multiplicative reduction in residue characteristic 2 and
3. If f0 is a well-chosen test function in the Schwartz–Bruhat space on some two-dimensional adelic
space then the two-dimensional zeta integral ζE ( f0, s) defined in [22, Section 5] equals

ζE ( f0, s) = ∏
1ÉiÉI

ΛKi (s/2)2c1−s
E ζE (s)2

where i runs through finitely many indices andKi are finite extensions ofKwhich includeK itself,

cE := ∏
y singular

ky .

Let us say a few words on the constant cE . We know that

NK|Q(qE ) = ∏
y = Eb singular

|k(b)| fb
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according to [46, Section 4.1] and that

ky :=
{
|k(b)| fb+mb−1 if y = Eb is singular,

1 otherwise

where mb is the number of irreducible geometric components of the fibre ( [22, Section 7.3]). As a
consequence, the constant cE satisfies

cE = NK|Q(qE )
∏

1É jÉJ
q j (5.10)

since ∏
1É jÉJ

q j =
∏

b∈B0

|k(b)|mb−1

according to [22, Section 7.3].

In [22] it is conjectured that the two-dimensional zeta integral satisfies the functional equation

ζE ( f0, s) = ζE ( f0,2− s)

namely (
c−2
E

)s/2
ζE (s)2 = (

c−2
E

)(2−s)/2
ζE (2− s)2

(note that the completed rescaled zeta functions of Ki will cancel each out in the functional equa-
tion). It is easy to check the compatibility with the previously seen functional equations. If ζE (s)
satisfies the functional equation(

NK|Q(qE )−1)s/2
ζE (s) = (−1)r1+r2ωE

(
NK|Q(qE )−1)(2−s)/2

ζE (2− s)

then

ζE (s) = nE (s)ζE (s)

= (−1)r1+r2ωE NK|Q(qE )s−1 nE (s)

nE (2− s)
ζE (2− s)

= (−1)r1+r2+JωE

(
NK|Q(qE )

∏
1É jÉJ

q j

)s−1

ζE (2− s)

= (−1)r1+r2+J c s−1
E ωEζE (2− s)

according to (5.10). Thus, Hypothesis Nice−HW(K) is equivalent to the following hypothesis.

Hypothesis Nice−H(K)– For every elliptic curve E over the number field K the Hasse zeta function
ζE (s) satisfies the following nice analytic properties:

• it can be extended to a meromorphic function on C,
• it satisfies a functional equation of the shape(

c−1
E

)s/2
ζE (s) = (−1)r1+r2+JωE

(
c−1
E

)(2−s)/2
ζE (2− s)

for some sign ωE =±1.

Hypothesis Mp−H(K)– For every elliptic curve E overK, if

ZE (s) =
( ∏

1ÉiÉI
ΛKi (s)

)(
c−1
E

)2s/2
ζE (2s)

then the function

hE (x) := fZE
(x)− (−1)r1+r2+JωE x−1 fZE

(
x−1)
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is C ∞
poly(R×+)-mean-periodic (respectively S(R×+)∗-mean-periodic), or the function HE (t ) := hE (e−t ) is

C ∞
exp(R)-mean-periodic (respectively S(R)∗-mean-periodic), where fZE

is the inverse Mellin transform
of ZE defined in (4.5).

Another link with mean-periodicity is described in the following theorem.

Theorem 5.13– LetK be a number field.

• Hypothesis Nice[−Ell(K) implies Hypothesis Mp−H(K).
• If Hypothesis Mp−H(K) or Hypothesis Mp−HW(K) holds then Hypothesis Nice−HW(K) and

Hypothesis Nice−H(K) hold.

Remark 5.14– We do not describe the explicit formula for hE (e−t ) here but let us say that such formula
should contain the contribution of the poles of nE (2s).

Proof of Theorem 5.13. We have already seen that Hypothesis Nice−HW(K) and Hypothesis Nice−H(K)
are equivalent. Hence the second assertion is a consequence of Theorem 3.2. Let us show the first
assertion applying Theorem 4.2 and Theorem 4.7. Adopting the same notations as in Theorem 4.2,

we choose Z1(s) = Z2(s) = γ(s)D(s) = ZE (s) with γ(s) =∏
1ÉiÉI ΛKi (s) and D(s) = (

c−1
E

)2s/2
ζE (2s). The

functional equation satisfied by ZE (s) is

ZE (s) = (−1)r1+r2+JωE ZE (1− s).

In addition, ZE (s) belongs to F since each ΛKi (s) has two poles at s = 0,1 and the poles of γ(s) and
D(s) are in the vertical strip |ℜe (s)−1/2| É 1/2 := w and

• the estimate (4.1) follows from Stirling’s formula and convexity bounds for Dedekind zeta
functions given in (5.4),

• the estimate (4.2) follows from the Dirichlet series expansion of ζE (s) for ℜe(s) > 2 and from
the fact that nE (2s) is uniformly bounded on ℜe (s) > 1/2+w , w > 0,

• the crucial condition (4.3) is an application of Proposition A.2 and the convexity bounds for
the Dedekind zeta function given in (5.4). Note that nE (2s) is a finite Euler product, which
may have infinitely many poles only on the critical line ℜe (s) = 1/2 but its set of poles is a
well-spaced set namely

q1É jÉJ
2π

log q j
Z.

From Hypothesis Nice[−Ell(K), P (s)L(E , s) is an entire function for some polynomial P (s) satisfying
P (s) = P (1− s). Adopting the same notations as in Theorem 4.7, we choose U1(s) =U2(s) =U (s) and
V1(s) =V2(s) =V (s) where

U (s) := (4π)−r1 (2π)−r2 |dK|1/2(2s −1)r1+r2+1s1+I (s −1)1+I

( ∏
1ÉiÉI

ΛKi (s)

)
ΛK(2s)ΛK(2s −1)P (2s),

V (s) := (2s −1)s1+I (s −1)1+I (
c−1
E

)−2s/2 (
NK|Q(qE )−1)2s/2

nE (2s)−1Λ(E ,2s)P (2s).

U (s) and V (s) are some entire functions satisfying the functional equations

U (s) = (−1)r1+r2+1U (1− s),

V (s) = (−1)1+JωE V (1− s).

Note that the sign (−1)J , which occurs in the second functional equation, is implied by (5.10). The
estimate (4.13) is an easy consequence of Stirling’s formula and convexity bounds for L(E , s) and the
Dedekind zeta function given in (5.2) and in (5.4). �

We get, arguing along the same lines, the following theorem.

Theorem 5.15– LetK be a number field and E be an elliptic curve overK.
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• If Hypothesis Nice[−Ell(K) holds then the function

h(2)
E

(x) := fZ 2
E

(x)−x−1 fZ 2
E

(
x−1) ,

where ZE (s) := (∏
1ÉiÉI ΛKi (s)

)(
c−1
E

)2s/2
ζE (2s), is C ∞

poly(R×+)-mean-periodic (respectively S(R×+)∗-

mean-periodic), and the function H (2)
E

(t ) := h(2)
E

(e−t ) is C ∞
exp(R)-mean-periodic (respectively

S(R)∗-mean-periodic), where fZ 2
E

is the inverse Mellin transform of Z 2
E

defined in (4.5).

• If h(2)
E

(x) is C ∞
poly(R×+)-mean-periodic or S(R×+)∗-mean-periodic, or H (2)

E
(t ) is C ∞

exp(R)-mean-

periodic or S(R)∗-mean-periodic, then ζE (s)2 extends to a meromorphic function on C, which
satisfies the functional equation(

c−2
E

)s/2
ζ2
E (s) = (

c−2
E

)(2−s)/2
ζ2
E (2− s).

Remark 5.16– The first part of the previous theorem justifies the hypothesis on mean-periodicity of
H (2)

E
(t ) suggested in [21, Section 47] and [22, Section 7.3]

Remark 5.17– For a description of the convolutor of the h(2)
E

(x) which uses the Soulé extension [47]
of the theory of Connes [9] see [49]. Assuming the modularity of E , this work demonstrates some
duality between the two dimensional commutative adelic analysis on E and the theory of cuspidal
automorphic adelic GL(2)-representations.

5.5. Hasse zeta functions of schemes and mean-periodicity.

Theorem 5.18– Let Z (s) be a complex valued function defined in ℜe (s) >σ1.
(I) Assume that there exists a decomposition Z (s) =L1(s)L2(s)−1 such that

• Li (s) (i = 1,2) are some absolutely convergent Dirichlet series in the half plane ℜe(s) >σ1,
• Li (s) (i = 1,2) have a meromorphic continuation to C,
• there exist some qi > 0, ri Ê 1, λi , j > 0, Re(µi , j ) >−σ1λi , j (1 É j É ri ) and |εi | = 1 such that the

function

L̂i (s) := γi (s)Li (s) := qs/2
i

ri∏
j=1

Γ(λi , j s +µi , j )Li (s),

satisfies the functional equation L̂i (s) = εi L̂i (d +1− s̄) for some integer d Ê 0,
• there exists a polynomial P (s) such that P (s)L̂i (s) (i = 1,2) are entire functions on the complex

plane of order one,
• the logarithmic derivative of L2(s) is an absolutely convergent Dirichlet series in the right-half

plane ℜe(s) >σ2 Êσ1.

Under the above assumptions, we define

ΛZ (s) := L̂1(s)

L̂2(s)
= γ1(s)

γ2(s)
Z (s) = γ(s)Z (s),

ΛZ̃ (s) := ΛZ (s)

and the inverse Mellin transforms

fZ ,m(s) := 1

2πi

∫
(c)
ΛQ(s)mΛZ ((d +1)s) x−sd s,

fZ̃ ,m(s) := 1

2πi

∫
(c)
ΛQ(s)mΛZ̃ ((d +1)s) x−sd s

where c > 1/2+w. Then there exists an integer mZ ∈Z such that the function

hZ ,m(x) := fZ ,m(x)−εx−1 fZ̃ ,m(x−1), (ε= ε1ε
−1
2 ) (5.11)
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is C ∞
poly(R×+)-mean-periodic and S(R×+)∗-mean-periodic, and the function HZ ,m(t ) := hZ ,m(e−t ) is C ∞

exp(R)-

mean-periodic and S(R)∗-mean-periodic for every integer m Ê mZ .

(II) Conversely, suppose that there exists a meromorphic function γ(s) on C and an integer m such
that

ΛQ(s)mγ((d +1)s) ¿a,b,t0 |t |−1−δ (s =σ+ i t , a ÉσÉ b, |t | Ê t0)

for some δ> 0 for all a É b, and that the function hZ ,m(x) defined in (5.11) is C ∞
poly(R×+)-mean-periodic

or S(R×+)∗-mean-periodic, or the function HZ ,m(t ) := hZ ,m(e−t ) is C ∞
exp(R)-mean-periodic or S(R)∗-

mean-periodic. Then the function Z (s) extends meromorphically to C and satisfies the functional
equation

γ(s)Z (s) = εγ(d +1− s̄)Z (d +1− s̄).

Remark 5.19– If Z (s) is real-valued on the real line, namely the Dirichlet coefficients of Li (s) (i = 1,2)
are real, then Z (s̄) = Z (s) for any complex number s and Z (s) is self-dual with ε = ±1. This is the
case when studying Hasse zeta functions of arithmetic schemes.

Remark 5.20– Theorem 5.18 can be applied to the study of Hasse zeta functions of arithmetic schemes.
Let S be a scheme of dimension d +1 proper flat over SpecZ with smooth generic fibre. Denote by
ZS(s) the rescaled Hasse zeta function ζS(s) defined in section 5.1 such that its functional equation is
with respect to s → 1− s. The function ZS(s) can be canonically written as the quotient of two mero-
morphic functions with finitely many poles L1(s)L2(s)−1, and the numerator and denominator are
factorized into the product of certain L-factors. In particular, all the assumptions of the theorem
above follow from the much stronger standard conjectures on the L-factors of the zeta functions, see
e.g. Serre ( [46]). The last condition about the absolute convergence of the logarithmic derivative of
the denominator follows from the fact that the denominator of the Hasse zeta function is the product
of Euler factors (1−α1(p)p−s)−1 . . . (1−αd+1(p)p−s)−1, such that |αi (p)| < pa for some a Ê 0, for al-
most all p and finitely many factors (1−gp (p−s))−1 with polynomials gp of degree not exceeding d+1.

Thus, we have a correspondence between Hasse zeta functions which admit meromorphic contin-
uation and functional equation of the type expected in number theory and mean-periodic functions
in certain functional spaces: for each such ZS(s) and every m Ê mZS we get the function hZS ,m .

More generally, the previous theorem can be applied to the class of functions closed with respect to
product and quotient and generated by rescaled Hasse zeta functions (and L-functions) of arithmetic
schemes.

Remark 5.21– Note that the function hZS ,m preserves the information about poles of the zeta func-
tion and essentially about zeros of the denominator L2(s), but not the information about zeros of the
zeta function. We can also apply the previous theorem to the function ZS(s)−1 then the correspond-
ing hZ −1

S ,m(x) will preserve information about zeros of ζS(s).
In dimension two the numerator of the zeta function of a regular model of a curve over a number field
is the product of one-dimensional zeta functions, whose meromorphic continuation and functional
equation is the one dimensional theory. The two-dimensional object is actually the denominator of
the zeta function and the conjectural mean-periodicity of the associated function h implies the con-
jectural meromorphic continuation and functional equation of the denominator of the zeta function.
One can imagine a more general recursive procedure, applied to zeta functions of arithmetic schemes
of dimension d +1 assuming the knowledge of meromorphic continuation and functional equation
in smaller dimensions.
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Proof of Theorem 5.18. We show only (I), since (II) is a consequence of the general theory of mean-
periodicity as above.
We prove that there exists mZ ∈Z such that for every m Ê mZ the function ΛQ(s)mΛZ ((d +1)s) and
ΛQ(s)mΛZ̃ ((d+1)s) are in the class F (see Definition 4.1) and then we obtain (I) by applying Theorem
4.2 and Theorem 4.7 to ΛQ(s)mΛZ ((d +1)s) and ΛQ(s)mΛZ̃ ((d +1)s) with entire functions

U1(s) = ΛQ(s)mP (s)L̂1(s),

U2(s) = ΛQ(s)mP (s)L̂1(s),

V1(s) = P (s)L̂2(s),

V2(s) = P (s)L̂2(s).

By the assumption of the theorem the function L̂1(s) has finitely many poles. Using the Dirichlet
series representation of L2(s) we get L2(σ+i t ) = an1 n−σ

1 (1+o(1))) as ℜe(s) =σ→∞, for some integer
n1 with a non-zero Dirichlet coefficient an1 . Therefore L2(s) 6= 0 in some right-half plane ℜe(s) > c2 Ê
σ1. Since γ2(s) does not vanish for ℜe(s) >σ1, the function L̂2(s) has no zeros in the right-half plane
ℜe(s) > c2 Ê σ1. By the functional equation, L̂2(s) 6= 0 in the left-half plane ℜe(s) < d +1− c2. Hence
all zeros of L̂2(s) are in the vertical strip d +1− c2 Éℜe(s) É c2. Thus all poles of ΛQ(s)mΛZ ((d +1)s)
are in some vertical strip, say |s −1/2| É w .
We choose

γ(s) = ΛQ(s)mγ1(s)γ2(s)−1,

D(s) = L1(s)L2(s)−1

as a decomposition of ΛQ(s)mΛZ ((d +1)s) in definition 4.1.
Using Stirling’s formula we have (4.1) if m is sufficiently large. Using the Dirichlet series of Li (s) (i =
1,2) we have (4.2), if necessary, by replacing the above w by a larger real number.
For (4.3), we first prove that

• L1(s) is polynomially bounded in vertical strips a Éℜe(s) É b for all a É b,
• there exists a real number A and a strictly increasing sequence of positive real numbers {tm}

satisfying L2(σ± i tm)−1 ¿ t A
m uniformly for |(d +1)(σ−1/2)| É 1/2+w +δ.

The first assertion is obtained by a standard convexity argument. The function L1(s) is bounded
in the half-plane ℜe(s) >σ1 +ε by the absolute convergence of the Dirichlet series. Hence we have a
polynomial bound for L1(s) in the half-plane ℜe(s) < d+1−σ1−ε by the functional equation and Stir-
ling’s formula. Then the polynomial bound in the remaining strip follows by the Phragmen-Lindelöf
principle. From the assumptions for L2(s) we have

• the number of zeros ρ =β+ iγ of L2(s) such that |γ−T | É 1, say m(T ), satisfies m(T ) ¿ logT
with an implied constant depends only on γ2(s),

• there exists c ′2 Ê c2 such that

L ′
2(s)

L2(s)
= ∑

|t−γ|<1

1

s −ρ +O(log |t |)

for all s = σ+ i t with d +1− c ′2 É σÉ c ′2, |t | Ê t0, where the sum runs over all zeros ρ = β+ iγ
such that d +1− c2 ÉβÉ c2 and |γ− t | < 1

as an application of Proposition A.1. The above two claims allow us to prove the above assertion for
L2(s)−1 as an application of Proposition A.2, if necessary, by replacing w by a larger real number.
Combining the polynomial bounds for L1(s) and L2(s)−1 we obtain (4.3).
Hence we find that ΛQ(s)mΛZ ((d +1)s) is in F if m is sufficiently large. Finally, we show (4.13) for
U1(s) and V1(s) for instance, having in mind that the same argument gives (4.13) for U2(s) and V2(s).
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Because ζ(s), P (s) and L1(s) are polynomially bounded in every vertical strip, the decomposition
U1(s) = Γm

R
(s)γ1(s) ·ζmP (s)L1(s) and Stirling’s formula give (4.13) for U1(s). Similarly, L2(s) is poly-

nomially bounded in every vertical strip. By Stirling’s formula and V1(s) = γ2(s)P (s)L2(s), we have
(4.13) for V2(s). �

6. OTHER EXAMPLES OF MEAN-PERIODIC FUNCTIONS

6.1. Dedekind zeta functions and mean-periodicity. In this part we apply the general results in sec-
tion 4 to the Dedekind zeta functions. LetK be a number field and

ZK(s) = ΛK(2s)ΛK(2s −1)

ΛK(s)
,

which satisfies the functional equation ZK(s) = ZK(1− s).

Proposition 6.1– LetK be a number field. The function

hK(x) := fZK(x)−x−1 fZK(x−1)

is C ∞
poly(R×+)-mean-periodic and S(R×+)∗-mean-periodic, where fZK is the inverse Mellin transform of

ZK defined in (4.5). Moreover, the single sign property for hK and the non-vanishing of ΛK on the real
line imply that all the poles of ZK(s) lie on the critical line ℜe (s) = 1/2.

Remark 6.2– Equivalently, the function HK(t ) := hK(e−t ) is C ∞
exp(R)-mean-periodic and S(R)∗-mean-

periodic.

Proof of Proposition 6.1. We can decompose ZK(s) in ZK(s) = γ(s)D(s) where

γ(s) := |dK|
3s−1

2
ζK,∞(2s)ζK,∞(2s −1)

ζK,∞(s)
,

D(s) := ζK(2s)ζK(2s −1)

ζK(s)
.

The function ZK(s) belongs to F since all its poles are in the critical strip |ℜe (s)−1/2| É 1/2 (w = 1/2)
and

• the estimate (4.1) follows from Stirling’s formula namely

∀σ ∈ [a,b],∀|t | Ê t0, γ(σ+ i t ) ¿a,b,t0

(
|t | 3

2σ−1e−
3π
4 |t |

)r1
(
|t |3σ− 3

2 e−
3π
2 |t |

)r2

for all real numbers a É b,
• the estimate (4.2) follows from classical convexity bounds for Dedekind zeta functions given

in (5.4),
• the crucial condition (4.3) is an application of Proposition A.4 and the convexity bounds for

the Dedekind zeta function given in (5.4).

Adopting the same notations as in Theorem 4.7, we choose U1(s) =U2(s) =U (s) and V1(s) = V2(s) =
V (s) where

U (s) := s(s −1)(2s −1)2ΛK(2s)ΛK(2s −1),

V (s) := s(s −1)(2s −1)2ΛK(s).

U (s) and V (s) are some entire functions satisfying the functional equations

U (s) = U (1− s),

V (s) = V (1− s).

The estimate (4.13) is a consequence of Stirling’s formula and convexity bounds for Dedekind zeta
functions given in (5.4). The mean-periodicity of hK follows from Theorem 4.2 and Theorem 4.7. The
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final assertion of the proposition is a consequence of Proposition 4.10, since ZK(s) is holomorphic at
s = 0,1. �

Proposition 6.3– Assume that all the zeros ofΛK(s) lie on the lineℜe(s) = 1/2 and that all the non-real
zeros are simple. If ∑

ΛK(1/2+iγ)=0
0<γ<T

|ζK(1/2+ iγ)|−1 ¿A e AT (6.1)

for any positive real numbers A > 0 then the function hK(x) defined in Proposition 6.1 has a single sign
on (0, x0) for some x0 > 0.

Remark 6.4– In the case of the Riemann zeta function, it is conjectured that∑
0<γ<T

|ζ(1/2+ iγ)|−2k ¿k T (logT )(k−1)2

for any real k ∈R by Gonek [24] and Hejhal [27], under the Riemann hypothesis and assuming that all
the zeros of ζ(s) are simple. Assumption (6.1) is quite weaker than this conjectural estimate.

Proof of Proposition 6.3. Suppose that ΛK(1/2) 6= 0 for simplicity. The case ΛK(1/2) = 0 is proved by
a similar argument. ZK(s) has a double pole at s = 1/2, and all the other poles are simple. Applying
Theorem 4.2 to ZK(s) we have

x1/2hK(x) = c1 log x + c0 + lim
T→∞

∑
0<|γ|ÉT

cγx−iγ,

by (4.10), where {γ} is the set of all imaginary parts of the zeros of ΛK(s). Here c0 and c1 are given by

c1 log x + c0 =
C 2
K

4ΛK(1/2)2

(
ΛK(1/2) log x +Λ′

K(1/2)
)

,

where

ΛK(s) = CK
s −1

+ AK+O(s −1) =−CK
s

+ AK+O(s).

Hence, in particular, c1 is a non-zero real number. As for cγ, we have

cγ = ΛK(2iγ)ΛK(1+2iγ)

ζK,∞(1/2+ iγ)ζ′
K

(1/2+ iγ)
= ζK,∞(2iγ)ζK,∞(1+2iγ)

ζK,∞(1/2+ iγ)

ζK(2iγ)ζK(1+2iγ)

ζ′
K

(1/2+ iγ)
.

Using Stirling’s formula, assumption (6.1) and the convex bound (5.4) of ζK(s), we have∑
|γ|>T

|cγ|¿N T −N

for any positive real number N > 0. Hence we have∣∣∣∣∣ lim
T→∞

∑
0<|γ|ÉT

cγx−iγ

∣∣∣∣∣É lim
T→∞

∑
0<|γ|ÉT

|cγ| =O(1)

uniformly for every x ∈ (0,∞). Thus

x1/2hK(x) = c1 log x +O(1)

with c1 6= 0 and for all x ∈ (0,∞). This implies hK(x) has a single sign near x = 0. �
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6.2. Cuspidal automorphic forms and mean-periodicity. The following proposition provides some
evidence for the fact that mean-periodic functions also appear in the context of automorphic cuspi-
dal representations. The analytic background is available in [38]. Let us say that ifπ is an automorphic
cuspidal irreducible representation of GLm(AQ) with unitary central character then its completed L-
function Λ(π, s) satisfies the functional equation

Λ(π, s) = επΛ(π̃, s)

where επ is the sign of the functional equation and π̃ is the contragredient representation of π.

Proposition 6.5– Let $1, · · · ,$n in {±1} and π1, · · · ,πn some automorphic cuspidal irreducible repre-
sentations of GLm1 (AQ), · · · ,GLmn (AQ) with unitary central characters. There exists an integer m0 Ê 0
such that for every integer m Ê m0, the function

hm(x) := fZm (x)−
(

n∏
i=1

ε
$i
πi

)
x−1 f Z̃m

(
x−1)

is C ∞
poly(R×+)-mean-periodic and S(R×+)∗-mean-periodic, where

Zm(s) := ΛQ(s)m
n∏

i=1
Λ(πi , s)$i ,

Z̃m(s) := ΛQ(s)m
n∏

i=1
Λ(π̃i , s)$i ,

and fZm (respectively f Z̃m
) is the inverse Mellin transform of Zm (respectively Z̃m) defined in (4.5).

Remark 6.6– Equivalently, the function Hm(t ) = hm(e−t ) is S(R)∗-mean-periodic and C ∞
exp(R)-mean-

periodic.

Remark 6.7– We would like to focus on the fact that, unlike for zeta-functions of schemes, the objects
are not necessarily self-dual but the general results on mean-periodicity proved in Section 4 are still
applicable in this context.

Remark 6.8– The proof of the previous proposition is omitted since it is an immediate application
of Theorems 4.2 and 4.7. Proving that Zm(s) belongs to F requires the convexity bounds for general
L-functions of GLn given in [38, Section 1.3] and, of course, the use of Proposition A.4.

6.3. Eisenstein series and mean-periodicity. In this section, we construct several continuous fam-
ilies of mean-periodic functions, the main tool being Eisenstein series. For simplicity, let us restrict
ourselves to K =Q. Let h be the upper-half plane. The non-holomorphic Eisenstein series attached
to the full modular group Γ= PSL(2,Z) is defined by

Ê(τ, s) =ΛQ(2s)E(τ, s) =ΛQ(2s)
∑

(∗ ∗
c d

)
∈Γ∞\Γ

y s

|cτ+d |2s

for τ= x + i y ∈ h and ℜe (s) > 1, where Γ∞ = {(∗ ∗
0 ∗

)}∩Γ. For a fixed τ ∈ h, Ê(τ, s) has a meromorphic
continuation toCwith simple poles at s = 0,1 and satisfies the functional equation Ê(τ, s) = Ê(τ,1−s).
Fix a τ ∈ h, then

ZQ(τ, s) := Ê(τ, s)

ΛQ(s)
,

Z∨
Q (τ, s) := ΛQ(2s)ΛQ(2s −1)

Ê(τ, s)

satisfy the functional equations ZQ(τ, s) = ZQ(τ,1− s) and Z∨
Q

(τ, s) = Z∨
Q

(τ,1− s).
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Proposition 6.9– The functions

hQ(τ, x) := fZQ(τ,.)(x)−x−1 fZQ(τ,.)
(
x−1) ,

h∨
Q(τ, x) := fZ∨

Q
(τ,.)(x)−x−1 fZ∨

Q
(τ,.)

(
x−1)

are C ∞
poly(R×+)-mean-periodic and S(R×+)∗-mean-periodic, where fZQ(τ,.) (respectively fZ∨

Q
(τ,.)) is the in-

verse Mellin transform of ZQ(τ, s) (respectively Z∨
Q

(τ, s)) defined in (4.5). Moreover, if x 7→ hQ(τ, x) does
not identically vanish then the single sign property for hQ(τ, x) implies that all the poles of ZQ(τ, s) lie
on the critical line ℜe (s) = 1/2.

Proof of Proposition 6.9. Let us only prove that both ZQ(τ, s) and Z∨
Q

(τ, s) belong to F since the results
are an application of Theorem 4.2, Theorem 4.7 and Proposition 4.10. Note that ZQ(τ, s) is regular at
s = 0,1 and ΛQ(s) 6= 0 on the real line. Let us focus on Z∨

Q
(τ, s) since the case of ZQ(τ, s) is very similar

to the case of ZQ(s). We can decompose in Z∨
Q

(τ, s) = γ(τ, s)D(τ, s) where

γ(τ, s) := ΓR(2s −1),

D(τ, s) := ζQ(2s −1)

E(τ, s)
.

By Stirling’s formula, we have

γ∨Q(τ, s) ¿a,b,t0 |t |σ−1e−
π
2 |t |

for all real numbers a É b, all σ in [a,b] and all |t | Ê t0. For a fixed τ ∈ h, Z+Zτ is a lattice in C. Thus,
the image of (m,n) 7→ |mτ+n|2 is discrete in R×+∪ {0}. We arrange the distinct values of its image as

0 = cτ(0) < cτ(1) < cτ(2) < ·· ·→∞,

and define Nτ(k) = |{(m,n) ∈Z×Z, |mτ+n|2 = cτ(k)
}|. Then,

E(τ, s) = y s
∑
kÊ1

Nτ(k)

cτ(k)s = Nτ(1)(y cτ(1)−2)s(1+o(1))

as ℜe (s) → ∞ since Nτ(k) ¿τ cτ(k) uniformly for all fixed τ ∈ h, and
∑

cτ(k)ÉT cτ(k) ¿τ T 2. Thus,
E(τ, s) 6= 0 for ℜe(s) Àτ 0, and E(τ, s)−1 is uniformly bounded in every vertical strip contained in some
right-half plane. In other words, there exists στ Ê 1 such that

D∨
Q(τ,σ+ i t ) ¿|t |A1

uniformly in every vertical strip contained in the right-half plane ℜe(s) > στ for some real number
A1. In addition, we have

E ′(τ, s)

E(τ, s)
= y s E(τ, s)−1

∑
kÊ1

Nτ(k)
(
log y − logcτ(k)

)
cτ(k)s

for ℜe(s) Àτ 0, where E ′(τ, s) = d
d s E(τ, s). Hence E ′(τ, s)/E(τ, s) is bounded in every vertical strip

contained in the right-half plane ℜe(s) Êσ′
τ Êστ. Now we obtain

E ′(τ, s)

E(τ, s)
= ∑

E(τ,ρ)=E(τ,β+iγ)=0
1−στ<β<στ

|t−γ|<1

1

s −ρ +Oτ(log t )

uniformly for −σ′
τ ÉσÉ 1+σ′

τ and t Ê 2, and∑
E(τ,ρ)=E(τ,β+iγ)=0

1−στ<β<στ
|t−γ|<1

1 =Oτ(log t )
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with an implied constant depending only on τ following the same lines as used in the proof of Propo-
sition A.2, since s(s−1)Ê(τ, s) is an entire function of order one 8. These two facts entail the existence
of a sequence of positive real numbers{tm}mÊ1 and of some real number A such that E(τ,σ+i tm)−1 =
Oτ(t A

m) uniformly for−σ′
τ ÉσÉ 1+σ′

τ. Hence there exists a sequence of positive real numbers {tm}mÊ1

and a real number A2 such that

|D∨
Q(τ,σ+ i tm)|¿τ t A2

m

uniformly for σ ∈ [−σ′
τ,1+σ′

τ] and for every integer m Ê 1. The above estimates imply Z∨
Q

(τ, s) is an
element of F . �

Remark 6.10– If τ ∈ h is a generic point then MC(hQ(τ, x)) is expected to have infinitely many poles
whereas if τ ∈ h is a special point then MC(hQ(τ, x)) does not have poles since

E(τ, s) = absζQ(s)L

(
s,

(
D

·
))

for some positive real numbers a, b at certain CM-point τ (see [56]). Thus, hQ(τ, x) identically van-
ishes in the second case according to (4.10).

Remark 6.11– It is known that Ê(τ, s) has infinitely many zeros outside the critical line (see [8], [12],
[13] and [48]). Hence it is expected that the behaviour of the families {hQ (τ, x)}τ∈h and {h∨

Q (τ, x)}τ∈h

are quite different. The comparison of these two families is an interesting problem, from a number
theoretical point of view. In particular, we would like to have information on the single sign property
for both families.

APPENDIX A. A USEFUL ANALYTIC ESTIMATE FOR L-FUNCTIONS

Proposition A.2 below is used several times in this paper. Proposition A.2 is deduced from Proposi-
tion A.1 which holds for the “L-functions” defined in [28, Section 5.1] and is a slight extension of [28,
Proposition 5.7]. In particular, Proposition A.2 holds for the L-functions in [28, Section 5.1]. To prove
Proposition A.1 and Proposition A.2 we use the Hadamard product of order one entire functions,
Stirling’s formula and the boundedness of the logarithmic derivative of a function in a vertical strip
contained in a right-half plane.

Proposition A.1– Let L (s) be a complex valued function defined in the right half plane Re(s) > σ1.
Assume that

• L (s) is expressed as an absolutely convergent Dirichlet series in the right-half plane Re(s) >σ1,
• L (s) has a meromorphic continuation to C,
• there exist some q > 0, r Ê 1, λ j > 0, Re(µ j ) > −σ1λ j (1 É j É r ) and |ε| = 1 such that the

function

L̂ (s) := γ(s)L (s) := qs/2
r∏

j=1
Γ(λ j s +µ j )L (s),

satisfies the functional equation L̂ (s) = εL̂ (d +1− s̄) for some integer d Ê 0 (the condition
Re(µ j ) >−σ1λ j tells us that γ(s) has no zeros in C and no poles for ℜe(s) ≥σ1).

• there exists a polynomial P (s) such that P (s)L̂ (s) is an entire function on the complex plane of
order one,

8Ê(τ, s) is not a L-function in the sense of [28], but the proof of [28, Proposition 5.7] only requires that (s(s −1))r L( f , s)

is an entire function of order one and L′/L(s) is bounded with respect to the conductor in every vertical strip contained in

some right-half plane.
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• the logarithmic derivative of L (s) is expressed as an absolutely convergent Dirichlet series

−L ′(s)

L (s)
=

∞∑
n=1

ΛL (n)

ns

in the right-half plane ℜe(s) >σ2 Êσ1.

Then

(1) the number of zero ρ =β+ iγ such that |γ−T | ≤ 1, say m(T ), satisfies

m(T ) =O(log |T |)
with an implied constant depending on L (s) only,

(2) there exists c ≥ max{σ1, (d+1)/2} such that all zeros of L̂ (s) are in the strip d+1−c ≤ℜe(s) ≤ c,
(3) there exists t0 > 0 such that for any s =σ+i t in the strip d +1−c−1 ≤σ≤ c+1, |t | ≥ t0 we have

L ′(s)

L (s)
= ∑

|s−ρ|<1

1

s −ρ +O(log |t |)

where the sum runs over all zeros ρ =β+ iγ of L (s) such that d +1− c ≤β≤ c and |s −ρ| < 1.

Proof of Proposition A.1. We argue similarly to the proof of Proposition 5.7 in [28] which is essentially
the proof in [53, section 9.6]. First we prove (2). Using the Dirichlet series of L (s) we obtain L (σ+
i t ) = an1 n−σ

1 (1+o(1)) as ℜe(s) = σ→ +∞ for some integer n1 with a non-zero Dirichlet coefficient
an1 . Therefore there exists c Ê max{σ1, (d + 1)/2} such that L (s) 6= 0 in the right-half plane ℜe(s) >
c. Since γ(s) does not vanish for ℜe(s) > σ1, the function L̂ (s) has no zeros in the right-half plane
ℜe(s) > c Êσ1. By the functional equation, L̂ (s) 6= 0 in the left-half plane ℜe(s) < d +1− c. Hence all
zeros of L̂ (s) are in the vertical strip d +1− c Éℜe(s) É c.

By the assumptions there exist constants a, b and a nonnegative integer m such that

P (s)L̂ (s) = (s(s −d −1))mea+bs
∏

ρ 6=0,d+1

(
1− s

ρ

)
e s/ρ ,

whereρ ranges over all zeros of P (s)L̂ (s) different from 0, d+1. This is a consequence of the Hadamard
factorization theorem for entire functions of order one. Taking the logarithmic derivative,

−L ′(s)

L (s)
= 1

2
logq+ γ′(s)

γ(s)
−b + P ′(s)

P (s)
− m

s
− m

s −d −1
−∑

ρ

(
1

s −ρ + 1

ρ

)
. (A.1)

We take c ′ ≥ max{σ2,c} such that the polynomial P (s) has no zero in the right-half plane ℜe(s) ≥ c ′.
Let T ≥ 2 and s0 = c ′+2+ i T . Then∣∣∣∣L ′(s0)

L (s0)

∣∣∣∣≤ ∞∑
n=1

|ΛL (n)|
nc ′+2

=O(1). (A.2)

By Stirling’s formula we have
1

2
logq+ γ′(s0)

γ(s0)
=O(log |T |).

For every zero ρ =β+ iγ we have

2

(2c −d +1)2 + (T −γ)2 ≤ℜe

(
1

s0 −ρ
)
≤ 2c −d +1

4+ (T −γ)2 .

Hence we can take the real part in (A.1) for s0 = c ′ + 2+ i T and rearrange the resulting absolutely
convergent series to derive that ∑

ρ

1

1+ (T −γ)2 =O(log |T |). (A.3)

This implies (1). Here we used the fact that
∑
ρ 6=0,d+1( 1

ρ + 1
ρ

) converges absolutely, which is a conse-

quence of the order one condition and d +1− c ≤ℜe(ρ) ≤ c.
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To prove (3), we write s =σ+ i t . We suppose that d +1− c −1 ≤ℜe(s) ≤ c ′+1 and take t0 such that
γ(s) and P (s) has no pole for |t | ≥ t0. We have

−L ′(s)

L (s)
=−L ′(s)

L (s)
+ L ′(c ′+2+ i t )

L (c ′+2+ i t )
+O(log |t |).

By (A.1), (A.2) and Stirling’s formula, we obtain

−L ′(s)

L (s)
= γ′(s)

γ(s)
+ P ′(s)

P (s)
− m

s
− m

s −d −1
−∑

ρ

(
1

s −ρ − 1

c ′+2+ i t −ρ
)
+O(log |t |).

In the series, keep the zeros with |s −ρ| < 1 and estimate the remainder by O(log |t |) using∣∣∣∣ 1

s −ρ − 1

c ′+2+ i t −ρ
∣∣∣∣≤ 2c −d +1

1+ (t −γ)2

and (A.3). Moreover we have
γ′(s)

γ(s)
=O(log |t |)

uniformly for d +1− c −1 ≤ℜe(s) ≤ c ′+1 and |t | ≥ t0 by Stirling’s formula. Thus (3) follows. �

Using Proposition A.1 we have the following proposition which is used several times in this paper.

Proposition A.2– Let L (s) be a function satisfying the conditions in Proposition A.1. Let H > 1 and
T Ê max{2, t0} be some real numbers, and let a < b be real numbers such that a ≤ d + 1− c − 1 and
b ≥ c+1, where t0 and c are real numbers appeared in Proposition A.1. Then there exists a real number
A and a subset ET of (T,T +1) such that

∀t ∈ ET ,∀σ ∈ (a,b), L ( f ,σ± i t )−1 =O
(
t A)

and

µ [(T,T +1) \ET ] É 1

H
where µ stands for the Lebesgue measure on R.

Remark A.3– In the case of ζ(s), this proposition is nothing else than [53, Theorem 9.7].

Proof of Proposition A.2. The following arguments are essentially as in [53, section 9.7]. We use the
notation s =σ+ i t , t > 0. It sufficies to prove for a = d +1− c −1 and b = c +1, since L ′(s)/L (s) has
absolutely convergent Dirichlet series for ℜe(s) > c ≥σ2 and has a functional equation. We have

L ′(s)

L (s)
= ∑

L (ρ)=L (β+iγ)=0
d+1−c<β<c

|t−γ|<1

1

s −ρ +O(log t ) (A.4)

uniformly for d +1− c −1 ÉσÉ c +1 and t Ê t0 by Proposition A.1 . The difference between the sum
in (A.4) and the sum in Proposition A.1 (3) does not exceed O(log t ) according to Proposition A.1 (1).
Assuming that L (s) does not vanish on ℑm (s) = t and integrating (A.4) from s to c +1+ i t , we get

logL (s) = ∑
L (ρ)=L (β+iγ)=0

d+1−c<β<c
|t−γ|<1

log(s −ρ)+O(log t ), (A.5)

uniformly for d+1−c−1 ÉσÉ c+1, t Ê t0, where logL (s) has its usual meaning (−π<ℑm (logL (s)) É
π). The fact that the number of ρ = β+ iγ satisfying |t −γ| < 1 is O(log t ) (Proposition A.1 (1)) is used
here. Taking real parts in (A.5), we have

log |L (s)| = ∑
L (ρ)=L (β+iγ)=0

d+1−c<β<c
|t−γ|<1

log |s −ρ|+O(log t ) Ê ∑
L (ρ)=L (β+iγ)=0

d+1−c<β<c
|t−γ|<1

log |t −γ|+O(log t ).
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One would like to integrate with respect to t from T Ê t0 to T + 1 taking care of the fact that there
may be zeros of L (s) of height between (T,T +1) where the previous inequality does not hold. Let
y1 < ·· · < yM be a finite sequence of real numbers satisfying

∀ j ∈ {1, · · · , M },∃σ ∈ [−1,2], L (σ+ i y j ) = 0.

Setting y0 := T and YM+1 := T + 1 and assuming that L (s) does not vanish on ℑm (s) = T and on
ℑm (s) = T +1, we have

M∑
j=0

∫ y j+1

y j

∑
L (ρ)=L (β+iγ)=0

d+1−c<β<c
|t−γ|<1

log |t −γ|dt =
M∑

j=0

∑
L (ρ)=L (β+iγ)=0

d+1−c<β<c
y j−1<γ<y j+1+1

∫ min(γ+1,y j+1)

max(γ−1,y j )
log |t −γ|dt

Ê
M∑

j=0

∑
L (ρ)=L (β+iγ)=0

d+1−c<β<c
y j−1<γ<y j+1+1

∫ γ+1

γ−1
log |t −γ|dt

=
M∑

j=0

∑
L (ρ)=L (β+iγ)=0

d+1−c<β<c
y j−1<γ<y j+1+1

(−2)

> −A logT

The last inequality is a consequence of an analogue of [28, Theorem 5.8]. Thus,∑
L (ρ)=L (β+iγ)=0

d+1−c<β<c
|t−γ|<1

log |t −γ| > −AH logT

for all t in (T,T +1), except for a set of Lebesgue measure 1/H . �

If L( f , s) is a L-function defined in [28, Section 5.1], Proposition A.2 can be stated in the following
form.

Proposition A.4– Let H > 1 and T Ê 2 be some real numbers. If L( f , s) is a L-function in the sense
of [28] then there exists a real number A and a subset ET of (T,T +1) such that

∀t ∈ ET ,∀σ ∈
(
−1

2
,

5

2

)
, L( f ,σ± i t )−1 =O

(
t A)

and

µ [(T,T +1) \ET ] É 1

H
where µ stands for the Lebesgue measure on R.
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