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1 Qubits, quantum computing

1.1 Qubits

A qubit is a mathematical description of a particle, e.g. a photon, it is a vector
of unit norm in a Hilbert space H of dimension 2. It is customary to give oneself
a basis of this space, that is written in Dirac notation (|0〉, |1〉) rather than the
usual mathematical notation (e0, e1). A qubit is therefore a quantity expressed
as

α|0〉+ β|1〉

with |α|2 + |β|2 = 1. The physical state of n particles is described by a vector
in the Hilbert space H⊗n, which consists of all complex linear combinations of
products |x1〉⊗|x2〉⊗· · ·⊗|xn〉, where |xi〉 ranges over the two basis vectors of the
i-th copy of the Hilbert space H. Typically one uses the convention xi ∈ {0, 1}
and the basis vectors of the 2n-dimensional complex vector spaceH⊗n are written,
to lighten notation as

|x1〉|x2〉 · · · |xn〉 or simply as |x1x2 . . . xn〉.

This basis of H⊗n will be referred to as the computational basis. Quantum states
are described by vectors of unit norm in H⊗n. Quantum states are also not
changed by multiplication by a complex number of modulus 1, so that strictly
speaking quantum states are unit vectors of H⊗n modulo the multiplicative group
of complex numbers of unit norm.

Unitary transformations. A quantum state |ψ〉 may be changed into another
quantum state |ψ′〉 by any unitary transformation U of the Hilbert space H⊗n.
A unitary transformation is an operator of H⊗n that preserves the hermitian
inner product. In other words it is a linear transformation in H⊗n that takes the
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computational basis to any other orthonormal basis. Quantum physics does not
allow any non-unitary transformation to act on n-qubit states that are perfectly
isolated from the outside environment. Common and useful operators on one
qubit are the Hadamard operator H and the Pauli operators X,Z whose matrices
are, in the computational basis:

H =
1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
.

One-qubit operators can be combined by tensor product to create n-qubit oper-
ators. If U1 and U2 are one-qubit operators then U1 ⊗ U2 is naturally defined to
transform |x〉 ⊗ |y〉 into U1|x〉 ⊗ U2|y〉. For example

(I ⊗H ⊗ I)|000〉 = |0〉 ⊗ 1√
2

(|0〉+ |1〉)⊗ |0〉

=
1√
2

(|000〉+ |010〉).

and
(H ⊗H)|00〉 =

1

2
(|00〉+ |01〉+ |10〉+ |11〉).

Two particles that do not physically perturb each other and are individually
represented by one-qubit states |ψ〉 and |ψ′〉 can be considered together in H2. In
this case their state is naturally |ψ〉⊗|ψ′〉. There are of course non-product states
inH⊗2, and these can be obtained from a product state by applying a non-product
unitary transformation. The most common 2-qubit transformation that is not
a product of 1-bit transformation is the CNOT (Controlled Not) transformation
that transforms the computational basis vector |xy〉 into |x(x+ y)〉 for any x, y ∈
{0, 1}. For example, if we apply first the product unitary H⊗I, and then CNOT,
to the product state |00〉 we get

1√
2

(|00〉+ |11〉)

which is not a product state. two (or more) qubits, or particles, that are in a
non-product states are said to be entangled.

Quantum measurements. A quantum measurement of a quantum state |ψ〉
is associated to a self-adjoint operator on H⊗n with some spectrum Λ and set of
eigenspaces (Eλ)λ∈Λ. Let

|ψ〉 =
∑
λ∈Λ

|ψλ〉

be the decomposition of the vector |ψ〉 into a sum of eigenvectors, |ψλ〉 ∈ Eλ.
The effect of the measurement is random: it randomly transforms the original

2



vector |ψ〉 into one of the |ψλ〉’s, with probability

〈ψλ|ψλ〉 = ‖|ψλ〉‖2.

Furthermore, the associated eigenvalue λ is a visible result yielded by the mea-
suring device, so that it becomes known in which eigenspace Eλ lives the new
quantum state 1

〈ψλ|ψλ〉1/2
|ψλ〉.

This may seem to contradict the principle by which only unitary operations are
allowed on the space H⊗n. But this principle only applies when there is no
intrusion by the environment. A quantum measurement however, is an intrusion
by the environment.

The actual eigenvalue λ is of no practical use to us, so we may think of a mea-
surement slightly more abstractly simply as a decomposition of H⊗n into an
orthogonal direct sum of subspaces

H⊗n = A1

⊥
⊕ · · ·

⊥
⊕ Ak.

The result of the measurement is, with probability pi, the renormalised vector
Πi|ψ〉 where Πi is the orthogonal projection onto the subspace Ai. The value of
the probability pi is the squared hermitian norm of the projected vector Πi|ψ〉.
For a example, measuring a single qubit |ψ〉 = α|0〉 + β|1〉 with respect to the
orthogonal decomposition of H given by the computational basis (|0〉, |1〉) is |0〉
with probability |α|2 and |1〉 with probability |β|2. The measurement also tells
us whether we have obtained |0〉 or |1〉. When we simply speak of measuring the
qubit, it means by default with respect to the basis (|0〉, |1〉).
For a 2-qubit state in H⊗2, measuring the first (say) qubit means measuring
according to the decomposition

H⊗2 = A0

⊥
⊕ A1

where A0 is generated by the vectors |00〉 and |01〉, while A1 is generated by the
vectors |10〉 and |11〉. If we measure the first qubit of a product state

(α0|0〉+ α1|1〉)⊗ (α′0|0〉+ α′1|1〉)

we will get |i〉⊗ (α′0|0〉+α′1|1〉), for i = 0, 1, with probability |αi|2. If we measure
the second qubit, we will get |ψ〉⊗|j〉 with probability |α′j|2, where |ψ〉 is either the
original state α0|0〉+α1|1〉 of the first qubit if the measurement occurs before we
measure the first qubit, or |ψ〉 = |i〉 if the measurement occurs after we measure
the first qubit. Our point is that measuring the first qubit does not change what
is going to happen to the second qubit (and vice versa). However, if instead of
starting from a product state we start from an entangled state

1√
2

(|00〉+ |11〉)
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the situation is very different. Measuring the first qubit will yield |00〉 (say). But
then measuring the second qubit will necessarily leave the state unchanged and
also yield |00〉. The outcome |11〉 has become no longer possible. This is one of
the (many) paradoxes of quantum physics.

1.2 Quantum Computation.

Let F be a function from {0, 1}n to {0, 1}n. Suppose furthermore that F is one-
to-one. Then F extends naturally into a unitary operator on H⊗n that takes |x〉
to |F (x)〉 for every x ∈ {0, 1}n. In classical computing, if we are given a circuit
that computes F , then we can only feed it one input x at time, after which it
will output F (x). In quantum computing we can feed essentially the same circuit
with an input of the form ∑

x∈{0,1}n
αx|x〉

and the circuit will “output” ∑
x∈{0,1}n

αx|F (x)〉. (1)

We can therefore think of the quantum version of the circuit as having computed
simultaneously all values F (x), x ∈ {0, 1}n. Preparing an input state |ψ〉 that is
a superposition of all “classical” states |x〉, x ∈ {0, 1}n, is not very difficult: for
example, starting from the state |00 · · · 0〉 and applying a Hadamard operator to
every qubit yields

1

2n/2

∑
x∈{0,1}n

|x〉.

The real problem is whether we can extract anything useful from the output
state (1) by a clever quantum measurement. It turns out that yes, in some
cases the parallel computation of (1) can be exploited. We will just give a small
example that gives an idea of how quantum computing can work.

Deutch’s problem. This problem has a slightly artificial flavour to it, but it
serves to highlight the potential of quantum computation. Suppose we are given
a device, that we can think of as a black box, that computes some unknown one-
bit boolean function f : {0, 1} → {0, 1}. The only way we can learn something
about what this function does is by querying the black box, i.e. feeding it some
input value and observing the output. Suppose now we wish to learn whether the
function f is constant on {0, 1} or not. With classical computing, there is no way
we can learn this by querying the black box only once, we need to try the two
different input values for f . If we are allowed to use a quantum superposition of
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classical states however, we may learn whether f is constant with only one query.
First, the black box that computes f has to be made into a reversible black box,
i.e. a classical circuit that is a one-to-one function between inputs and outputs,
in order for it to be naturally extended into a unitary transformation. For this
we consider the black box that computes the 2-bit function F : {0, 1}2 → {0, 1}2

(x, y) 7→ (x, y + f(x))

which is bijective since F 2 = I. Note that as before, a single classical query to F

x

y

x

y + f(x)

F

Figure 1: reversible black box that computes f

cannot determine whether f is constant on {0, 1} or not. Now consider the black
box F extended to a unitary transformation. Let us feed F with the input state

|ψ〉 = H⊗2|01〉

=
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉 − |1〉)

=
1

2
|0〉(|0〉 − |1〉) +

1

2
|1〉(|0〉 − |1〉).

The unitary F now outputs:

F |ψ〉 =
1

2
|0〉(|f(0)〉 − |1 + f(0)〉) +

1

2
|1〉(|f(1)〉 − |1 + f(1)〉)

=
1

2
(−1)f(0)|0〉(|0〉 − |1〉) +

1

2
(−1)f(1)|1〉(|0〉 − |1〉)

=
1√
2

(
(−1)f(0)|0〉+ (−1)f(1)|1〉

)
⊗ 1√

2
(|0〉 − |1〉) .

In other words we have

F |ψ〉 =

{
±H|0〉 ⊗H|1〉 if f is constant
±H|1〉 ⊗H|1〉 otherwise.

Applying again H⊗2 we therefore get

H⊗2F |ψ〉 =

{
±|01〉 if f is constant
±|11〉 otherwise.

We then simply measure the first qubit. If f is constant the measurement
yields |0〉 with probability 1: if f is non-constant the measurement yields |1〉
with probability 1.
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2 Quantum error correction

The most natural and simple way of protecting a classical bit b ∈ {0, 1} from a
Hamming error is to use the repetition code that encodes 0 to 000 and 1 to 111.
Consider now a qubit |ψ〉 = α|0〉+ β|1〉. We may try a similar procedure by first
appending to |ψ〉 two extra qubits in the zero state |0〉 which gives us

|ψ〉 ⊗ |0〉 ⊗ |0〉 = α|000〉+ β|100〉.

Next, it is easy to devise a unitary transformation of H⊗3 that takes |000〉 to
|000〉, takes |100〉 to |111〉, and which, when applied to our tensor product state,
gives the encoded state

α|000〉+ β|111〉.

Now suppose an “error” occurs. In the classical case, for binary vectors, Hamming
errors mean that individual bits may be flipped to their opposite value. How-
ever when we use this model we forget that the physical object underlying the
zeros and ones undergoes some continuous transformation, and when we make a
measurement to extract bits from this physical object, we may extract these bits
wrongly, resulting in Hamming errors. In the quantum case something (some-
what) similar happens. A quantum measurement is applied to the quantum state
(which in effect amounts to the syndrome computations that we shall describe
below) and this quantum measurement transforms the real-world error that the
quantum state is subject to into a discrete version of the error. This discrete
error model affects every qubit independently, and either leaves it untouched, or
applies an X = ( 0 1

1 0 ) operator to it, or applies a Z = ( 1 0
0 −1 ) operator, or both

simultaneously, i.e. applies XZ. We therefore need to protect against two types
of errors on every individual qubit, namely X-errors and Z-errors, as opposed to
the unique Hamming-error type in the classical case.

Going back to our encoded state α|000〉+ β|111〉, suppose an X-error occurs on
the second qubit (say). X-errors are very similar to Hamming errors (and are
sometimes called bit-flips): indeed, an X-error on the i-th qubit acts on every
vector |x〉 of the computational basis by flipping the i-th bit of x. So in our
example the error gives us the state:

|φ〉 = α|010〉+ β|101〉.

In the classical Hamming case what would we do ? We would choose a parity-
check matrix H = [ 0 1 1

1 1 0 ] (say) for the repetition code {(000), (111)}, and apply it
to either (010) or (101), giving us the syndrome vector [ 1

1 ] which tells us that an
error has occurred on the second bit. We would then correct the error. Well, in
the quantum case we can do pretty much the same thing. We use two auxiliary
qubits initialised in the |0〉 state. Denoting by σ(x) the syndrome of x ∈ F3

2
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relative to the parity-check matrix H, we have that the mapping

(x, 00) 7→ (x, σ(x))

is one-to-one and can be extended into a one-to-one mapping of F5
2 to F5

2, which
in turn yields a unitary transformation U of H⊗5. Applying U to the quantum
state

(α|010〉+ β|101〉)⊗ |00〉

gives
(α|010〉+ β|101〉)⊗ |11〉.

We now measure the last two qubits: this means that we apply the quantum
measurement relative to the orthogonal decomposition

H⊗5 = A00

⊥
⊕ A01

⊥
⊕ A10

⊥
⊕ A11

where Aij is the subspace generated by the vectors |xij〉 of the computational
basis, x ∈ {0, 1}3. This measurement gives us the syndrome value (11), from
which we deduce that the X-error has occurred on the second qubit. We can
now throw away the last two qubits (which does not hurt since we have a tensor
product state) and we apply to our quantum state |φ〉 an X operator on the
second qubit which, since X2 = I, gives us back our original state

α|000〉+ β|111〉.

Using two auxiliary qubits was something of an artifact to help us mimic multi-
plication by the matrix H. We could do without the auxiliary qubits by using
the decomposition of H⊗3

H⊗3 = B00

⊥
⊕B01

⊥
⊕B10

⊥
⊕B11

where B00 is the subspace generated by |000〉, |111〉, B01 is the subspace generated
by |100〉, |011〉, B10 is the subspace generated by |001〉, |110〉, and B11 is the
subspace generated by |010〉, |101〉. Measuring relative to this decomposition also
gives us the syndrome value, i.e. tells us where the X-error occurred.

Now suppose a Z-error occurred on the second qubit. This transforms the original
state into

α|000〉 − β|111〉. (2)

This type of error, sometimes called a “phase-flip”, has no immediate equivalent in
classical error-correction. The bad news is that the Z-error not only transforms
the original quantum state into the different state (2) (which would also have
been reached if the Z-error had been on the first or the third qubit), this time
there is no measurement that will tell us that such a Z-error occurred.
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So our litte “repetition” quantum code can correct oneX-error but can’t deal with
Z-errors. If we wanted to correct Z-errors but could afford not to be bothered
by X-errors, we could modify our encoding by applying a Hadamard operator H
to every qubit: this would transform the quantum state α|000〉+ β|111〉 to

α|+ + +〉+ β|− − −〉

where

|+〉 = H|0〉 =
1√
2

(|0〉+ |1〉)

|−〉 = H|1〉 =
1√
2

(|0〉 − |1〉)

and |+ + +〉 stands for |+〉 ⊗ |+〉 ⊗ |+〉, and |− − −〉 stands for |−〉⊗ |−〉⊗ |−〉.
Now Z|+〉 = |−〉 and Z|−〉 = |+〉. Therefore the effect of Z-errors on this en-
coding is exactly the same as the effect of X-errors on the original computational
basis. The technique described above to correct X-errors can therefore be trans-
posed to correct Z-errors. But this encoding suffers from the same flaw as the
α|000〉 + β|111〉 encoding, namely it can only deal with one type of error. How-
ever this way of dealing with Z-errors suggests ways to deal with both types of
errors simultaneously. The Shor 9-qubit code combines both previous encodings
by encoding α|0〉+ β|1〉 to

α
1

2
√

2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+β
1

2
√

2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉).

The encoded state is a complex linear combination of basis vectors of the form
|x〉, with x an 9-bit binary vector belonging to the binary linear code of dimension
3 generated by

(111000000), (000111000), (000000111).

It should be clear that a syndrome-measuring technique similar to those described
above will detect whether anX-error has occurred on coordinate i for any i = 1..9.
Such a measurement will also not interfere with any possible Z-error, since Z-
errors only change signs, but do not switch basis vectors of the computational
basis.

Once we have removed a possible X-error by reapplying the X-operator on the
relevant qubit, we are left to deal with the effect of a Z-error on the original state
which can be rewritten as

α|+〉|+〉|+〉+ β|−〉|−〉|−〉
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where

|+〉 =
1√
2

(|000〉+ |111〉)

|−〉 =
1√
2

(|000〉 − |111〉).

Since Z|+〉 = |−〉, we are in a similar situation as when the state α|0〉+ β|1〉
was encoded by the 3-qubit state |+ + +〉+β|− − −〉. The effect of a Z-error on
either the first or the second or the third qubit yields α|−++〉+β|+−−〉, a
Z-error on either of the qubits 4, 5, 6 gives α|+−+〉+β|−+−〉, and a Z-error
on qubits 6, 7 or 8 gives α|++−〉+β|−−+〉. The orthogonal decomposition
of the Hilbert space

H⊗9 = E0

⊥
⊕ E1

⊥
⊕ E2

⊥
⊕ E3

⊥
⊕ F

where

E0 is generated by |+++〉, |−−−〉
E1 is generated by |−++〉, |+−−〉
E2 is generated by |+−+〉, |−+−〉
E3 is generated by |++−〉, |−−+〉
F = (E0 + E1 + E2 + E3)⊥

yields a measurement that tells us exactly whether no Z-error occurred (the state
is in E0), or whether a Z-error occurred on the first, second or third block of 3
qubits (the state is in E1, E2, E3 respectively). In the latter case we apply the
Z-operator to either one of the qubits in the corresponding block to remove the
error and recover the initial state.

3 CSS codes

We now investigate a more systematic way of encoding quantum states. Let C1

and C2 be two binary linear codes of length n such that C2 ⊂ C1. The associated
CSS (Calderbank-Shor-Steane) code encodes k qubits, with k = dimC1/C2 =
dimC1 − dimC2. Its encoded states are all complex linear combinations of the
form

|ψ〉 =
∑
x

αx|x+ C2〉, αx ∈ C (3)

where we use the shorthand

|x+ C2〉 =
1√
|C2|

∑
y∈C2

|x+ y〉
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and where x ranges over a subset of |C1|/|C2| vectors of C1, each one of which
belongs to a distinct coset x+ C2 in C1/C2.

Before considering the error-correcting potential of this family of quantum codes,
we need some preliminaries.

Let us introduce the following notation: to any binary vector v ∈ Fn2 we associate
the unitary operator of H⊗n

Xv = Xv1 ⊗Xv2 ⊗ · · · ⊗Xvn

and Zv, defined similarly. The quantities XuZv and ZuXv should be understood
to mean:

XuZv = Xu1Zv1 ⊗Xu2Zv2 ⊗ · · · ⊗XunZvn

ZuXv = Zu1Xv1 ⊗ Zu2Xv2 ⊗ · · · ⊗ ZunXvn .

From XZ = −ZX, HX = ZH, XH = HZ, and the definition of XuZv and
ZuXv we have the following straightforward properties:

Lemma 1. We have:

(i) XuZv = (−1)(u | v)ZvXu,

(ii) H⊗nXu = ZuH⊗n and H⊗nZu = XuH⊗n,

(iii) for any u, x ∈ Fn2 , Zu|x〉 = (−1)(u |x)|x〉.

The next Lemma is crucial to understanding the structure of CSS codes.

Lemma 2. For any linear code C in Fn2 , and using the notation

|C〉 =
1

|C|1/2
∑
x∈C

|x〉,

we have
H⊗n|C〉 = |C⊥〉.

Proof. We have, for every y ∈ Fn2 ,

H⊗n|y〉 =
1

2n/2

n⊗
i=1

(|0〉+ (−1)yi |1〉)

=
1

2n/2

∑
x∈Fn2

(−1)(y |x)|x〉
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hence

H⊗n|C〉 = H⊗n
1

|C|1/2
∑
y∈C

|y〉

=
1

2n/2
1

|C|1/2
∑
y∈C

∑
x∈Fn2

(−1)(y |x)|x〉

=
1

(
√

2)n+dimC

∑
x∈Fn2

(∑
y∈C

(−1)(y |x)

)
|x〉.

Now any linear form which is non-zero on a binary vector space takes the values
0 and 1 an equal number of times, hence for any x 6∈ C⊥∑

y∈C

(−1)(y |x) = 0

and

H⊗n|C〉 =
1

(
√

2)n+dimC

∑
x∈C⊥

|C||x〉 =
1

(
√

2)n+dimC−2 dimC

∑
x∈C⊥

|x〉

=
1√

2n−dimC

∑
x∈C⊥

|x〉

H⊗n|C〉 = |C⊥〉.

Definition 3. If C is a linear code of Fn2 of dimension k, and if H is an (n−k)×n
parity-check matrix for C, let us associate to them the quantum measurement
associated to the orthogonal decomposition

H =
⊥⊕

s∈Fn−k2

As

where As is the subspace generated by all computational basis vectors |z〉, for z
a binary vector of syndrome s. In other words As is generated by all |z〉 for z
ranging over some coset x + C, with x of syndrome s. We call this quantum
measurement the syndrome measurement relative to C (and H).

Since all cosets modulo C are disjoint, the associated subspaces As of the Hilbert
space are orthogonal. Note in particular that the effect of a pattern Xe of X-
errors on a state |ψ〉 in A0 takes it into the subspace As where s is the syndrome
of the binary vector e. Note also that Z-errors applied to states within a subspace
As may modify the state but leave it within As.
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Let us now consider the action of a mixed pattern of X-errors and Z-errors on a
state |ψ〉 given by (3). This yields a state of the form

XeZf |ψ〉 =
∑

x∈C1/C2

αxX
eZf |x+ C2〉 (4)

where, abusing notation, we identify the cosets of C1/C2 with some subset of
representatives in C1. As just discussed above, we may, without modifying the
quantum state, measure the syndrome of the binary n-tuple e relative to some
parity-check matrix of C1, since the original state |ψ〉 is in the subspace A0

associated to C1. If we suppose that the classical binary code C1 has the ability
to recover the binary word e from its syndrome, then we may apply the unitary
transformation Xe to the quantum state (4) to erase the effect of the X-errors
on the original state |ψ〉 and obtain

Zf |ψ〉 =
∑

x∈C1/C2

αxZ
f |x+ C2〉 =

∑
x

αxZ
fXx|C2〉.

To recover the original state we now only need to extract the binary pattern
f from the modified quantum state. To do this we first apply the Hadamard
transform H⊗n. We get, applying property (ii) of Lemma 1 and Lemma 2:

H⊗nZf |ψ〉 =
∑
x

αxX
fZxH⊗n|C2〉

=
∑
x

αxX
fZx|C⊥2 〉.

Now we see that, by the same argument that followed Definition 3, that the
quantum measurement relative to the code C⊥2 will not modify the quantum
state and will yield the syndrome for the code C⊥2 of the binary vector f . If it
is possible to recover the binary error f from its syndrome, then we may reapply
the Hadamard transform H⊗n to the present quantum state H⊗nZf |ψ〉, which
gives back, since H2 = I, the modified state Zf |ψ〉. Finally, applying Zf yields
the original quantum state |ψ〉.
We have just proved:

Theorem 4. Let C1 and C2 be two binary linear codes such that C2 ⊂ C1. If e
is a binary error pattern that can be recovered from its syndrome by the code C1,
and if f is a binary error pattern that can be recovered from its syndrome by the
binary code C⊥2 , then the quantum error pattern XeZf can be corrected by the
CSS quantum code associated to the pair of binary codes (C1, C2).

Example: the Steane code. Take C1 to be the [7, 4, 3] Hamming code and
C2 = C⊥1 which happens to be included in C1. Both C1 and C2 can correct
an arbitrary Hamming error, therefore the associated CSS code can correct an
arbitrary X-error and an arbitrary Z-error (even if they occur simultaneously).
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Stabilising a CSS code. Let us make some remarks that will pave the way
for a more general class of quantum error correcting codes.

Let HX be a parity-check matrix of C1 and let HZ be a parity-check matrix of
C⊥2 . The condition C2 ⊂ C1 is equivalent to saying that the binary vector space
generated by the rows of HX and the binary vector space generated by the rows
of HZ are orthogonal in Fn2 . A CSS code can thus be defined by a such a pair
(HX ,HZ) of mutually orthogonal parity-check matrices, and the associated quan-
tum code has the property that for any pattern of errors XeZf , the syndromes
HXe

T and HZf
T can be computed. This equivalent way of presenting a CSS

code highlights the symmetrical roles of the X-error correction, provided by HX ,
and the Z-error correction, provided by HZ . In particular if we have a code C1

such that C⊥1 ⊂ C1, then we can take HX = HZ = H, were H is a parity-check
matrix of C1. The Steane code is an example of a CSS code obtained in this way.

Now let us make the following remark. Let e be any binary vector belonging to
C2, i.e. generated by the rows of HZ . Then clearly Xe|x+ C2〉 = |e+ x+ C2〉 =
|x+ C2〉, for any binary vector x. In particular the operator Xe stabilises any
quantum state |ψ〉 of the form (3), i.e. leaves it invariant. Similarly, suppose
f ∈ C⊥1 , equivalently f is generated by the rows of HX . Then, from property (iii)
of Lemma 1,

Zf |y〉 = (−1)(f | y)|y〉

for any y ∈ Fn2 , hence, for any x ∈ C1 we have that every binary vector y in the
coset x+ C2 is in C1 and (f | y) = 0, which implies

Zf |x+ C2〉 = |x+ C2〉.

Therefore Zf |ψ〉 = |ψ〉 for any quantum state |ψ〉 of the form (3).

We have just noticed that for e ∈ C2 and f ∈ C⊥1 , any quantum error pattern
of the form XeZf stabilises the quantum states of the quantum CSS code. Fur-
thermore, since e and f are orthogonal vectors in Fn2 , property (i) of Lemma 1,
implies

XeZf = (−1)(e | f)ZfXe = ZfXe.

In particular, any two stabilising patterns XeZf and Xe′Zf ′ for e, e′ ∈ C2 and
f, f ′ ∈ C⊥1 , commute. Therefore, the set of stabilising patterns XeZf form an
abelian group isomorphic to C2 × C⊥1 . It is natural to ask whether the set of
quantum states stabilised by this group of operators is exactly the set quantum
states (3). It turns out the answer is yes, and that more general quantum codes
can be defined as the subspace of quantum states stabilised by some abelian
subgroup of the group of error patterns of the form XeZf , This is the object of
the next section.
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4 Stabiliser Codes

Let us start with an example of a non-CSS quantum code. Consider the following
four operators on H⊗5:

M1 = X ⊗ Z ⊗ Z ⊗ X ⊗ I
M2 = I ⊗ X ⊗ Z ⊗ Z ⊗ X
M3 = X ⊗ I ⊗ X ⊗ Z ⊗ Z
M4 = Z ⊗ X ⊗ I ⊗ X ⊗ Z

It is easily checked that M1,M2,M3,M4 all commute, so that they generate an
abelian group S of order 16. Consider now the subspace C of states of H⊗5 that
are stabilised by S. The space C is non-empty, indeed it contains all complex
linear combinations

α0|ψ0〉+ α1|ψ1〉
where

|ψ0〉 =
∑
M∈S

M |00000〉

|ψ1〉 =
∑
M∈S

M |11111〉.

That |ψ0〉 and |ψ1〉 are stabilised by S is self-evident: furthermore we notice that
|ψ0〉 is a linear combination of basis vectors |x〉 with x of even weight and |ψ1〉 is
a linear combination of basis vectors |x〉 with x of odd weight, so that |ψ0〉 and
|ψ1〉 are orthogonal, and in particular linearly independent. That the space of
states stabilised by S is exactly the space generated by |ψ0〉 and |ψ1〉 will become
clear later on, see Theorem 8.

Now let E = XeZf be any quantum error pattern. Define the binary 4-tuple
σ(E) = s = (s1, s2, s3, s4) by

si =

{
0 if EMi = MiE

1 if EMi = −MiE

for i = 1, 2, 3, 4. Now we notice, by exhaustively trying all 15 cases, that the
function σ restricted to the 15 error patterns of weight 1, by which we mean the
patterns of the form Xe, or Ze, or XeZe with e a binary 5-tuple of Hamming
weight 1, is in one-to-one correspondence with F4

2 \ (0000). This means that
if we could somehow find a quantum measurement that will extract σ(E) from
E(α0|ψ0〉 + α1|ψ1〉), then we can uncover any error pattern E of weight 1 that
has been applied to the encoded quantum state, and remove it by applying E−1.

It turns out that yes, such a quantum measurement exists. The function σ will
be called a syndrome function. We now proceed to showing in all generality how
syndromes can be measured. First we define general stabiliser groups.

14



The group of Pauli errors Gn. The set of operators of H⊗n of the form
XeZf forms a multiplicative group. We augment this group slightly by allowing
multiplication by the complex number i, so that we also allow operators of the
form iXeZf . This augmented set forms a group denoted by Gn and is usually
referred to as the Pauli group on n qubits. Strictly speaking, it makes no differ-
ence to a quantum state whether we apply to it an operator E or the operator
iE, because quantum states are really defined modulo multiplication by complex
numbers of modulus 1. The error operator XZ acting on one qubit can just as
well be thought of as ZX = −XZ, or iXZ. However it will be technically helpful
to define Y = iXZ and distinguish it from XZ, because we have in particular
Y 2 = I, while (XZ)2 = −I. the usefulness of this distinction will be apparent
shortly. We have Gn ' {±1,±i} × {I,X, Y, Z}n.

Definition 5. A subgroup S of Gn is said to be admissible if −1 6∈ S.

Remark: an admissible subgroup is abelian. Indeed, any two elements of Gn

either commute or anticommute, meaning EF = FE or EF = −FE. Also,
for any E ∈ Gn, E2 = ±1, so if E,F belong to an admissible subgroup, then
E2 = F 2 = 1, and EF = −FE implies EFEF = −EF 2E = −1, therefore there
are no anticommuting pairs of elements in an admissible subgroup.

Definition 6. A stabiliser code is the set of quantum states stabilised by an
admissible subgroup of Gn.

Syndrome function. Let S be an admissible subgroup of Gn and let C be the
associated stabiliser code. Let M1,M2, . . . ,Mr be independent generators of S:
we have therefore |S| = 2r. We define the syndrome function

σ : Gn → {0, 1}r

E 7→

( s1
s2
...
sr

)
with

si =

{
0 if EMi = MiE

1 if EMi = −MiE

and proceed to show that, for any |ψ〉 ∈ C, the syndrome σ(E) can be extracted
from the state E|ψ〉 without modifying it.

For any s ∈ {0, 1}r, define the subspace of H⊗n

C(s) = {|ψ〉, Mi|ψ〉 = (−1)si |ψ〉 for i = 1, . . . r}.

In particular C(0) = C. The following proposition shows that there exists a
quantum measurement that extracts the syndrome.
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Proposition 7. The family of subspaces (C(s))s∈{0,1}r satisfies the following prop-
erties:

1. For any E ∈ Gn and any |ψ〉 ∈ C, we have E|ψ〉 ∈ C(σ(E)).

2. The Hilbert space H⊗n decomposes into the orthogonal direct sum:

H⊗n =
⊥⊕

s∈{0,1}r
C(s). (5)

Proof. Let si = σ(E)i. We have MiE|ψ〉 = (−1)siEMi|ψ〉 by definition of si,
and by definition of C we have Mi|ψ〉 = |ψ〉, hence MiE|ψ〉 = (−1)siE|ψ〉 which
proves point 1. We now prove point 2. Since −1 6∈ S by definition of an admissible
subgroup, we have M2

i = I for any i = 1 . . . r. Therefore the unitary operator
Mi has eigenvalues 1 and −1. Denote by E1(Mi) and E−1(Mi) the corresponding
eigenspaces of Mi. Since the operators Mi commute, there is an orthogonal basis
in which all the Mi are simultaneously diagonal. This implies in particular that
we can write

H⊗n = E1(M1)
⊥
⊕ E−1(M1)

= E1(M1) ∩ E1(M2)
⊥
⊕ E1(M1) ∩ E−1(M2)

⊥
⊕ E−1(M1) ∩ E1(M2)

⊥
⊕ E−1(M1) ∩ E−1(M2)

...

=
⊥⊕

s∈{0,1}r

(
r⋂
i=1

E(−1)si (Mi)

)

and noticing that

C(s) =
r⋂
i=1

E(−1)si (Mi)

proves point 2.

Theorem 8. If S is an admissible group with |S| = 2r, then the associated sta-
biliser code C has dimension dimC C = 2n−r.

Proof. It suffices to show that all spaces C(s) have the same dimension, since
applying the decomposition (5) will then allow us to conclude. The first lines of
the proof of Proposition 7 show that if E ∈ Gn has syndrome s, then the mapping
|ψ〉 7→ E|ψ〉 is one-to-one from C to C(s). It suffices therefore to show that for
any s ∈ Fn2 , there exists a Pauli error pattern E of syndrome σ(E) = s. By
linearity of the syndrome function σ, it suffices to show that for any i = 1 . . . r,
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there exists E ∈ Gn such that σ(E)i = 1 and σ(E)j = 0 for j 6= i. This last fact
can be shown by an orthogonality argument. Error patterns of the form XeZf

are clearly in one-to-one correspondence with couples (e, f) ∈ Fn2 × Fn2 . Consider
the bilinear form b:

(Fn2 × Fn2 )2 → F2

((e, f), (e′, f ′)) 7→ (e | f ′) + (e′ | f) .

Property (i) of Lemma 1 easily shows that XeZf and Xe′Zf ′ commute if and only
if b((e, f), (e′, f ′)) = 0, i.e. (e, f) and (e′, f ′) are orthogonal with respect to b.

Let us consider Pauli errors modulo {±1,±i}, since multiplication by these el-
ements does not change commutation/anticommutation properties, and use the
idenfication

Gn/{±1,±i} ∼−→ Fn2 × Fn2
so that we allow ourselves to write M ⊥b N for M,N ∈ Gn. Let Si be the
subgroup of S generated by {M1, . . . ,Mr} \ {Mi}. We have Si ( S, and since the
bilinear form b is non-degenerate, we have S⊥b ( S⊥bi . Any element E in S⊥bi \S⊥b
has the required syndrome σ(E).

Theorem 8 shows in particular that if S is an admissible group and C is the
associated stabiliser code, then S is uniquely determined (modulo {±1,±i}) and
we may speak of the stabiliser group of C.

Minimum distance. The minimum distance d of a stabiliser code is defined
to be the weight (number of non-identity symbols of an n-tuple in {I,X, Y, Z}n)
of an n-Pauli group element E that has zero syndrome, σ(E) = 0, but does not
belong to the stabiliser group S.

Theorem 9. If C is a quantum stabiliser code and a state |ψ〉 ∈ C is corrupted
by an error E of weight t < d/2, then the state |ψ〉 can be recovered.

Proof. As Proposition 7 and the discussion before it has shown, we can recover
the syndrome s = σ(E) from the corrupted state E|ψ〉. We then look for the
element E ′ ∈ Gn of smallest weight such that σ(E ′) = s. Since Gn is finite,
this is always possible, and there is nothing quantum about this computation.
Exhaustive search may be unrealistic however, and we may need a reasonable low-
complexity algorithm that will come with the stabiliser group for this task, but
this is a purely classical computing issue (although an important one nonetheless)
that we ignore it for the moment. Now we have σ(E ′E) = σ(E ′) + σ(E) = 0,
but since the weight t′ of E ′ satisfies t′ 6 t < d/2, and since the weight of E ′E
is at most t + t′ < d it must be that E ′E ∈ S, meaning in particular that E ′E
stabilises the quantum state represented by |ψ〉. So we can recover the original
quantum state |ψ〉 by applying E ′ to E|ψ〉.
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Since CSS codes are instances of stabiliser codes, Theorem 9 applies in particular
to them. We note that the error-correcting potential given by Theorem 9 is
stronger than that given by Theorem 4. The quantum CSS code of the next
section gives a strong illustration of this.

Parameters of a quantum code. The parameters of a quantum stabiliser
code are usually denoted by [[n, k, d]]. The integer n refers to the length or
the number of qubits, k refers to the code “dimension”, which means that the
dimension over C of C is 2k, and d refers to the minimum distance as defined just
before Theorem 9.

5 Kitaev’s toric code

Kitaev’s toric code (or family of codes) has the specific feature that its stabiliser
group is generated by low-weight elements of Gn, specifically elements of weight 4.
This is a desirable feature of a quantum code that we do not attempt to motivate
properly here but it makes these codes potentially easier to implement and is
relevant to quantum aspects of computational complexity. The Kitaev code is a
CSS code. As such, its stabiliser group is generated by a set of elements of Gn

that can be partitioned into two sets. The first of these sets is made up of error
patterns of the form Ze, that is in one-to-one correspondence with rows e of a
binary matrix that we call HX (because it is used to correct X-errors). Similarly,
the second of these sets corresponds to the rows of a matrix named HZ . The
matrices HX and HZ were introduced at the end of Section 3.

To define the matrices HX and HZ we identify their column coordinates with the
set of edges of a graph T = (V,E), represented below, that is the Cayley graph
of the additive group Z/mZ×Z/mZ with generators (±1, 0) and (0,±1). This is
a 4-regular graph that tiles a 2-dimensional torus – hence the name ’toric code’.
The graph T has |V | = m2 vertices and |E| = n = 2m2 edges.

The matrix HX is defined as the vertex-edge incidence matrix of the graph T and
its rows represent elementary cocycles of the graph. In other words, every vertex
(x, y) gives rise to a row of HX that is a binary vector of weight 4, and whose
1-coordinates are indexed by the edges that connect (x, y) to (x + 1, y), (x, y +
1), (x − 1, y), (x, y − 1). The rows of the matrix HZ correspond similarly to
elementary cycles, or faces of the graph, meaning all 4-cycles of the form (x, y)−
(x, y + 1)− (x+ 1, y + 1)− (x+ 1, y)− (x, y).

We see that any elementary cocycle has an even (0 or 2) number of edges in
common with a face, which means that every row of HX is orthogonal to every
row of HZ , which is exactly the property we need for HX and HZ to define a
quantum CSS code.
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Figure 2: the torus: identify opposing sides of the grid to make v and w into
single vertices. A row vector of HX (HZ) is represented by the thick (dashed)
edges.

Poincaré duality. If we associate to every face of T a vertex, and connect two
of these vertices whenever the corresponding faces have an edge in common, we
obtain the dual graph T∗, as represented on Figure 3.

Figure 3: The dual graph T∗

The classical binary code defined by the parity-check matrix HX is called the
cycle code (or cycle space outside the coding theory context) of the graph T.
We see that the binary code defined by the parity-check matrix HZ is the cycle
code of the dual graph T∗. Since the graph T∗ is isomorphic to T, we have that
HX and HZ are associated to equivalent classical codes, and more generally that
the quantum CSS code defined by (HX ,HZ) will correct exactly the same set of
X-error patterns as that of Z-error patterns.
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Code dimension. Since every column of HX has weight 2, the sum of all the
rows of HX is 0. It can be shown that the dimension of the row space of HX is
exactly m2 − 1. By duality, the dimension of the row space of HZ must also be
m2− 1, and we get that the dimension of the stabiliser group is 2m2− 2 = n− 2,
which means that the dimension of the quantum code is k = 2. The Kitaev code
protects two qubits.

Minimum distance. The classical code defined by the parity-check matrixHX

is a very poor code. Its Hamming minimum distance is 4, since it contains rows
of HZ among its codewords. The quantum minimum distance is better however.
Indeed, this is given by the smallest length of a cycle that cannot be expressed
as a sum of faces. This is seen to be d = m =

√
n/2 (see Figure 4).

Figure 4: Minimal cycles that are not sums of faces

Decoding. Suppose we want to decode an X-error pattern. By duality we
will be able to decode Z-errors in exactly the same way. The X-error gives rise
to a binary syndrome s ∈ FV2 for the parity-check matrix HX , and the decoding
problem consists exactly of finding a minimum weight binary vector e that fits this
syndrome, i.e. such that σ(e) = HXe

T = s. The set of syndrome coordinates is
in one-to-one correspondence with the set V of vertices of T, and the syndrome
vector s is the characteristic vector of a subset of vertices W . The decoding
problem consists of finding a minimum-cardinality set of edges that is equal to
an edge-disjoint union of paths whose endpoints make up a partition of W into
pairs of vertices. An example is illustrated in Figure 5.

How to efficiently find such a minimal weight partition of the “syndrome set” W
is a non-trivial task. It can be done by first computing all minimum distances
between pairs of vertices of W . This gives rise to a weighted complete graph on
the vertex set W . Then one applies Edmonds “Blossom” algorithm which finds a
minimum weight matching for this graph.
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a

b

c

d

Figure 5: An example of the decoding problem. Vertex a should be paired with
d to yield a weight 5 error pattern made up of one path of length 3 from a to d
and a length 2 path from b to c. Other pairings of {a, b, c, d} yield error patterns
of greater weight.
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