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cUniversité de Bordeaux, IMB, INRIA Futurs, Projet MC2

33405 Talence Cedex, France

Abstract

In this work a vortex method is used to simulate an incompressible two-dimensional
transitional flow over a backward-facing step. The simulations are validated for
two different Reynolds numbers comparing to previous studies. Then, two different
control strategies are implemented to modify the shedding, the recirculation zone
behind the step and the transport in the channel. The first technique consists in
using a pulsing inlet velocity and the second one is based on local oscillating jets
implemented on the step vertical wall. The influence of these controls on several
characteristic functionals related to the flow is carefuly investigated. Both, open-
loop and closed-loop active control approaches are performed in order to choose the
most efficient control methods.
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1 Introduction

Control of internal separated and reattaching flows is motivated by a wide
amount of engineering applications, like sudden changes of sections or cor-
ners in pipes, cavitation in pumps, mixing in diffusers or combustors. Targets
to reach are very diversified, according to the wanted effect: Drag reduction,
noise suppression, mixing enhancement, flow stabilization, etc...
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In this kind of flow, the backward-facing step test is one of the most stud-
ied cases, because this problem exhibits all the essential features of internal
separated flows. Indeed, the pressure increases in the direction of the flow,
which causes the boundary layer to separate from the solid surface. The flow
reattaches downstream, forming a recirculation bubble. In the same time, this
configuration allows some important simplifications with respect to more com-
plex cases. for example, the separation point is a priori known to be located
at the edge of the step.
Bibliographic data about the backward-facing step is incredibly wide. Nev-
ertheless, some references among the available papers are already useful to
have a large overview. Description of such a flow was given on several di-
mensioned geometries for laminar, transitional or turbulent regimes. Armaly
et al [1] investigated the detailed description from the laminar to the turbu-
lent regime (70 < Re < 8000), both experimentally and numerically. Their
study focused not only on the primary zone of recirculation attached to the
backward-facing step, but also on the additional regions of recirculation. They
confirmed that available computer codes for flow predictions can be success-
fully employed to compute backward-facing step flows. Le et al [18] worked
on the pressure fluctuation contours and on the reattachment length obtained
by a direct numerical simulation for a turbulent regime, and were interested
in the skin friction coefficient particularly high in the recirculation regions.
Another reference on the skin friction distribution is the paper of Spazzini
et al [27], which analysed in details the behavior of instantaneous wall shear
stresses downstream of the step. More recently, Wee et al [29] and Yi et al [31]
considered a two-dimensional direct numerical simulation to obtain the dom-
inant absolute mode frequency and to investigate large eddy formation and
shedding phenomena in the backward-facing step flow as well as instabilities
which occur.

Papers on control of such flows are also available. Chun and Sung [10] exper-
imentally produced excitations to separated flow by means of a sinusoidally
oscillating jet issuing from a thin slit near the separation line for a turbulent
regime. The effects of the amplitude and of the frequency on the reattachment
length were analysed. More recently, Kaiktsis anf Monkewitz [16] investigated
the global destabilization of a two-dimensional flow over a backward-facing
step embedded in a channel using self-excited oscillations of the entire flow,
induced by an appropriate local blowing and suction device. Wengle et al [28]
experimentally and numerically studied the effect of a low amplitude and pe-
riodic blowing and suction excitation through a narrow slot at the edge of the
step on the mean recirculation length. Creusé and Mortazavi [7] numerically
investigated the recirculation areas obtained by an inlet pulsed velocity in a
laminar configuration.
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A closed-loop control by local forcing near the separation point was studied
by Yi et al [30]: Using an adaptive sliding controller based on a proper orthog-
onal decomposition, a very significant reduction in the kinetic energy of the
fluctuations was achieved. Two other very interesting references correspond
to the turbulent channel flow control. Even if the configuration is no more
the back-facing step, the flow control procedure can be used in a similar way
to confined flow problems and to the separation control. The first of them
is Hammond et al [13], which succeeded in attenuating near wall turbulence
and reducing drag in wall bounded turbulent flows. It consists in blowing and
suction at the wall, in the opposite direction to the wall normal fluid veloc-
ity. The direction is recorded respecting the flow unsteadiness at every time
step in the vicinity of the boundary. The second is the one of Joshi et al [14],
which developed feedback controllers based on linear theory that stabilize a
two-dimensional plane Poiseuille flow to infinitesimal disturbances, using also
a blowing/suction device to the wall in the normal direction for a laminar flow
configuration.

The aim of the present work is to develop two different active control strategies
to manipulate the flow characteristics inside a backward-facing step channel
with a transitional flow regime: 1) using pulsed inlet velocities, with open and
closed-loop frequency choices; 2) implementing two vertical jets to the verti-
cal step wall with passive, open-loop or closed-loop action into the lower and
upper levels of the step. This work follows the primary results obtained by
the authors in a previous paper, devoted to the open-loop control of laminar
flows in a similar geometry [7]. In this work, the impact of the control on sev-
eral significant flow characteristics like vorticity, energy, fluctuations, velocity
gradients etc. are carefully analysed.

The numerical simulations are performed using a Vortex-In-Cell method [5].
In VIC calculations, an Eulerian grid can be implemented in order to compute
efficiently the velocity field on the Lagrangian particles. The goal is to obtain
a fast computation of the particle velocities in regular bounded domains. VIC
methods for viscous flows may be viewed as an appealing alternative to pure
grid-free vortex methods in simple geometries. In this case, the use of fast
Poisson solvers also enables fast velocity evaluations. Compared with pure
finite-difference methods, VIC methods offer the advantage of a robust and
accurate treatment of the convective part of equations with time steps not
constrained by convective CFL conditions [6]. Moreover, the diffusion part
of equations are solved by the Random Walk Algorithm [12] that is easy to
implement with very small CPU time consuming and well adaptable to the
Lagrangian particles transport [25], [22], [26].
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In the following we describe the flow simulation method with some validation
tests. This section covers the flow configuration, the governing equations, and
the numerical code used for the simulation. The uncontrolled simulation is
then validated, by comparing our results to some other numerical experiments
available in the literature for two different Reynolds number ([26],[29]). The
second part explains the control objectives in term of functionals definitions
as well as different control strategies: open-loop control, closed-loop control
with intrusive or non intrusive sensors. The next part is devoted to discussion
on controlled numerical results related to the first approach (oscillating inlet
velocities), to find which procedure is the most relevant in order to make
the control efficient. Finally, in the last part the second control strategy (jets
normal to the step wall) is numerically implemented and discussed in details.
The results are then compared to each other.

2 Flow simulation and validation

2.1 Flow configuration and governing equations

The dynamics of a two-dimensional incompressible flow over a backward-facing
step is governed by the conservation of mass and momentum, namely the two-
dimensional incompressible Navier-Stokes equations, given by :

∇.u=0 in Ω (1)

∂u

∂t
+ u.∇u =−∇p +

1

Re
∆u in Ω, (2)

where Ω is the computational domain of Figure 1 with Ldown = 10,Hstep = 0.5
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Fig. 1. The computational domain

andHup = 0.5. According to the validation objective, we will set either Lup = 1
(similarly to [26]) or Lup = 5. The boundary conditions to impose on the wall
Γwall as well as on the inflow Γin and on the outflow Γout will be specified below.
Here, u = (u, v) is the velocity normalized with respect to a given velocity
U , x = (x, y) the two orthogonal space directions normalized with respect to
2H where H is the physical height of the step (that’s why the computational
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height is Hstep = 0.5), t the time normalized with respect to 2H/U , and p the
pressure normalized with respect to ρU2 where ρ is the density of the fluid.
The numerical Reynolds number Re is then defined by Re = 2ρUH/µ, with µ
the dynamic viscosity of the fluid, which corresponds to a physical Reynolds
number Reφ = ρUH/µ = Re/2. The commonly used differential operators
are given by:

∇.(f1, f2)
T =

∂f1

∂x
+
∂f2

∂y
, ∇f =

(

∂f

∂x
,
∂f

∂y

)T

, ∆f =
∂2f

∂x2
+
∂2f

∂y2
.

The vorticity ω is defined in two dimensions by the curl of the velocity vector :

ω = ∇× u =
∂v

∂x
−
∂u

∂y
. (3)

Taking the curl of equation (2) and using equation (1), we get the Helmholtz
or the Vorticity Transport Equation (VTE):

∂ω

∂t
+ u.∇ω =

1

Re
∆ω in Ω, (4)

expressing the transport of vorticity by convection and diffusion. Solving this
equation permits us to convect and diffuse the vorticity field. Once the vorticity
field known, integrating the equations (1) and (3) permits to describe the
velocity field. The unsteady structure of these equations permits to find out
the solution along the time. Finally, because the VTE doesn’t contain directly
the pressure term (taking the curl of Navier-Stokes equations this term is
vanished), the pressure can be recovered from the velocity field by integrating
the following Poisson equation:

∆p = 2

(

∂u

∂x

∂v

∂y
−
∂u

∂y

∂v

∂x

)

in Ω, (5)

which is derived as the divergence of equation (2) also using the equation (1).

2.2 Numerical method

The previous equations are approximated using a Vortex method [3], [6]. These
methods that are very robust and low-cost to simulate high Reynolds number
recirculating flows (see for example [11], [26]), are more recently used to imple-
ment control techniques in fluid mechanics [24]. In this kind of approach, the
VTE equation (4) is solved using a two-fractional step (or viscous splitting)
method. It corresponds to approximate separately the diffusion and convection
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terms at each time step. Beale and Majda [2] prooved that the viscous split-
ting method converges towards the solution of the Navier-Stokes equations as
the viscosity increases. The two fractional steps are:

∂ω

∂t
+ u.∇ω=0, (6)

∂ω

∂t
=

1

Re
∆ω. (7)

The convective part is solved using a ”Vortex-In-Cell (VIC)” method (see e.g.
[6]) with a semi-Lagrangian resolution. In this fractional step, the transport
of vorticity due to convection is obtained from the solution of equation (6) in
terms of the Lagrangian displacement of a set of finite vortex elements. If we
define the stream function Ψ by :

u =
∂ψ

∂y
and v = −

∂ψ

∂x
, (8)

and then substituting it in the equation (3), the following Poisson equation is
achieved :

−∆ψ = ω. (9)

Let assume that a number nvn of the finite vortex elements, located at xn(it)
with a circulation (strength) γn(it), are known at time tn, 1 ≤ it ≤ nvn. Let
also assume that the vorticity field ωn(i, j) at time tn is known on a cartesian
mesh of the computational domain, i and j being respectively the horizontal
and vertical indices of the mesh. The main target of the resolution method
is to compute the same quantities at time tn+1 = tn + δt as nvn+1, xn+1(it),
γn+1(it) and ωn+1(i, j).
In the first step of the computational procedure, the equation (9) with associ-
ated boundary conditions (see paragraph 2.3) is solved to recover the stream
function field Ψn(i, j). Then, solving the equation (8), the velocity un(i, j) is
computed at each node of the mesh. Finally, using a linear interpolation pro-
cedure, a convective velocity un

v (it) is associated to each finite vortex element
(1 ≤ it ≤ nvn), and so a convective displacement is given by dlnconv(it) = un

v δt.

In the second fractional step, the solution of the equation (7) is simulated
stochastically with the displacement of the vortex elements by the random
walk method. This method is based on the theorem expressing that the brow-
nian motion of an infinite number of particles converges towards the solution
of the heat equation ([3], [12]). The Green function of the two-dimensional
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diffusion equation (7) is given by:

Gr(x, y, t) =
Re

4πt
exp

(

−
Re(x2 + y2)

4t

)

, (10)

which is identical to the probability density fonction of a Gaussian random
variable η = (ηx, ηy) with a zero mean and a standard deviation σ(t) =
√

2t/Re:

G(ηx, ηy, t) =
1

2πσ2(t)
exp

[

−
1

2σ2(t)

(

η2
x + η2

y

)

]

, (11)

where ηx and ηy are two independant random variables related to directions x
and y. Based on the linearity of equation (7), the solution of (7) is simulated
stochastically by 2-dimensional displacement of the vortex elements in per-
pendicular directions x and y using two sets of independant Gaussian random

numbers with a zero mean and σ =
√

2 δt/Re standard deviation . This leads

to a random and markovian Lagrangian displacement of dlndiff (it) from time
tn to time tn+1.
Then, the final location of each finite vortex element xn+1

∗
(it) at time tn+1 is

obtained as the sum of the convective and diffusive movements during the last
time step:

xn+1
∗

(it) = xn(it) + dlnconv(it) + dlndiff (it). (12)

If the vortex element leaves the computational domain through the inlet or
outlet boundary, then the vortex is destroyed and does not exist any more
in the domain. However, because the lagrangian property of vortex methods
there is a very small probability that a computational particle leaves the do-
main by a solid wall. Of course, such an event is not natural and is related to
the computational errors in the fluid trajectory especially because the random
walk method ([26], [12]). In this case, the vortex element has to be replaced in
the computational domain. To achieve this aim, the exited particle is reflected
to the internal domain through the solid wall. This reflection procedure is
symmetrical respecting to the wall position. It should be outlined that this
element ”recapturing” approach is only valid for a very small number of ex-
hausted elements and the computation is interrupted if the number of exited
vortices via solid walls becomes higher than an accuracy limit ([3], [6]).

In incompressible flows the unique source of generation of the vorticity is the
no-slip boundary condition. Vortex methods mimic this physical phenomenon.
So, the slip velocity on the wall is nullified by the generation of new vortex
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elements on the boundary [4]; it also compensates the vorticity leaving the
domain from the exit boundary. Therefore, the last step of the algorithm is
devoted to the vortex generation on the solid boundary. The task is performed
using an induced circulation cancelling of the slip velocity un(i, j) . τ computed
in the first step on the nodes of the wall boundary, where τ is the tangential
vector to the wall. New vortices are then injected in the domain by the normal
diffusion. The number of newly created vortices is determined by the value of
the slip velocity in order to achieve a zero velocity at each boundary point.
The new number of vortices nvn+1 as well as their location xn+1(it) and cir-
culation γn+1(it) is then known (1 ≤ it ≤ nvn+1).

The circulation of vortices is finally distributed on the grid nodes, allowing
to recover the vorticity field ωn+1(i, j) for the post-processing needs, and to
repeat the whole procedure to get the variables at the following time steps.

2.3 Boundary conditions

To close the problem, boundary conditions on u have to be added to the set
of equations (1)-(2), which are :

u=(0, 0)T on Γwall, (13)

u=(1, 0)T on Γin, (14)

∂v

∂x
=0 on Γout. (15)

Boundary conditions (13) and (14) are very common. The choice of u = 1 for
the boundary Γin, means that the normalizing velocity U introduced in the
section 2.1 corresponds to the physical inlet velocity. The boundary condition
(15) is chosen for its accuracy and simplicity to implement in vortex techniques
[20]. In vortex methods, boundary conditions are only used to solve the Poisson
equation (9), and have to be expressed in terms of the non-primitive variable
Ψ. Since Ψ has a constant variation from the lower to the upper wall, we
set Ψ(O) = 0, with O as the origin of the axis (see Figure 1). Therefore,,
on the bottom part of Γwall, the boundary condition (13) leads to Ψ = 0.
On Γin, the boundary condition (14) leads to ∂Ψ/∂y = 1, that also means
Ψ(−1, y) = y−Hstep since Ψ(A) = 0. On the upper part of Γwall, the boundary
condition (13) reads Ψ = Ψ(B) = Hup −Hstep. Finally, on Γout, the boundary
condition (15) is resumed as ∂2Ψ/∂x2 = 0.
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2.4 Validation of the simulation

The validation of the simulation is performed for two Reynolds numbers :
Re = 500 (ReΦ = 250), and Re = 2000 (ReΦ = 1000). The first flow corre-
sponds to a low transitional regime. It is motivated by the fact that our results
can be compared to existing literature [26] on the same geometry (Lup = 1)
for several characteristic quantities : The length of the averaged recirculation
area, the streamwise velocity profiles, the time trace of of the streamwise ve-
locity at several monitoring points in the flow. Some computations are also
performed on a geometry with (Lup = 5), to make the comparisons possible
with other bibliography references concerning the length of the averaged recir-
culation area ([1,15,19,9,23]). We should also outline that for the first Reynolds
number, several experiments to validate the vortex computations are available.

The second one corresponds to a higher transitional regime, and constitutes
the reference flow to control in the following of the paper. For this case, the
validation is ensured by the verification of the grid convergence property on
the length of the averaged recirculation area as well as the comparisons with
the literature [29] concerning the frequency behavior related to the control
strategy. Here, even if the flow is transitional with the onset of instabilities,
our validations respect to other studies, permit to build a coherent control
benchmark that can be used in a generic way. The main target is to perform
a large number of control simulations in order to develop a useful data base
on the backward-facing step active control. Such a source can be obtained by
the two-dimensional case studies.

2.4.1 Validation at Re = 500

Three sets of discretization parameters are used in vortex methods. These
parameters are summarized in Table 1. The parameters nx and ny are re-
spectively, the number of mesh nodes in the horizontal and vertical directions.
Cmax is the elementary circulation value of a vortex element, and δt the time
step. Previous studies have shown that an appropriate choice of these param-
eters considering their mutual influence on each other is necessary in order to
achieve accurate and low-cost computations ([25], [22], [21]).

Taking h = (Lup + Ldown)/nx = (Hstep + Hup)/ny, the values of parame-
ters Cmax and δt with respect to h from coarse (level 1) to fine grids (level 3)
are chosen with a linear evolution. This property was inspired from the work
of Pellerin [25] for a similar vortex method, and also from studies of Mortazavi
et al. [22], [21], who studied the dependence between these three discretization
parameters for a purely lagrangian vortex approach.
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Level 1 Level 2 Level 3

nx 150+15 Lup 300+30 Lup 600+60 Lup

ny 15 30 60

Cmax 2E-04 1E-04 5E-05

δt 2E-01 1E-01 5E-02

Table 1
The three sets of parameters.

Min. / Max. values of Lr Level 1 Level 2 Level 3

in [1,15,19,9,23]

4.16 / 5.97 3.63 4.71 4.62

Table 2
The averaged recirculation length Lr values for Re = 500 (Reφ = 250), Lup = 5.

At t = 0, there is no vortices in the domain and the velocity is equal to zero
excepted at the inlet (condition (14)). The calculation is performed from t = 0
to t = 600, and to obtain a well established flow the time-averaged quantities
are processed from t = 300 to t = 600.

A first set of tests is performed using Lup = 5. Here, the inlet section is far
enough from the step to provide a fully developped parabolic velocity profile
just in front of the step. Results are compared to the ones obtained by many
other papers ([1,15,19,9,23]) on the averaged recirculation length Lr. Table
2 gives the value of Lr obtained by the computations in this work, as well
as its lowest and highest values obtained in previously mentionned works for
the same Reynolds number. We can see that using level 1 computations the
value of Lr is very different from the litterature, but the results are in good
agreement with the available literature for levels 2 and 3.
A second set of tests is then performed using Lup = 1 to be compared to

Sethian and Ghoniem ([26]). In this case, the parabolic velocity is not entirely
developped at the step position. Figure 2 shows the averaged recirculation area
for each of the three sets of discretization parameters, and Table 3 gives the
corresponding value of Lr, comparing it to the value obtained in [26]. Then,
Figure 3 shows the averaged velocity profiles at x = 1, x = 2, x = 3, x = 4,
x = 5 and x = 6, again compared to Sethian and Ghoniem.
Results obtained in Table 3 with levels 2 and 3 are in very good agreement
with the corresponding results in [26] (less than 0.8% of relative error). The
grid convergence is achieved from level 2, since the results obtained with Level
2 and Level 3 on Figures 2 and 3 are very close to each other (on Figure 3,
the dotted line (level 2) can not been distinguished from the plain one (level 3).
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Ref. [26] Level 1 Level 2 Level 3

Lr 3.93 3.50 3.95 3.96

Table 3
The averaged recirculation length Lr values for Re = 500, Lup = 1.

Figure 4 shows the time history of the horizontal component of the velocity
u from t = 40 to t = 90 at three different monitoring points M1 = (8.0, 0.2),
M2 = (8.0, 0.5) and M3 = (8.0, 0.8), for every discretization parameter set.
For all of the three different parameter sets, the averaged value of u is larger
in M2 than in M1 and M3. It corresponds to the fact that the motion of some
eddies are more sharper near the top and bottom walls than in the middle of
the section. The same behavior was underlined in [26].
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Fig. 2. Averaged recirculation areas for Re = 500 : Isovalue Ψ = 0. Top : Level 1,
Middle : Level 2, Bottom : Level 3.
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Fig. 3. Averaged streamwise velocity profiles for Re = 500. Dashed : Level 1, Dotted :
Level 2, Plain : Level 3.
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Fig. 4. u for Re = 500 from t = 40 to t = 90 at points M1 (top), M2 (middle) and
M3 (bottom). Dashed : Level 1, Dotted : Level 2, Plain : Level 3.

Level 2 Level 3

Lr 4.58 4.39

Table 4
The averaged recirculation length Lr values for Reφ = 1000, Lup = 1.

This first validation leads to the conclusion that for Re = 500, level 1 fails to
give a sufficiently accurate solution whereas level 2 and level 3 ensure very good
results compared to the litterature references. Consequently, the validation at
Re = 2000 will be performed using only level 2 and level 3.

2.4.2 Validation at Re = 2000

A second validation is now performed at Re = 2000 in the high transitional
regime, in order to obtain a more unsteady flow, which will be the reference
flow to control. In order to preserve -at least partially- the initial aspect of the
inlet flow, we set Lup = 1. In fact, because the physical target of this paper is
to implement control tools into the inlet flow (see next section), the upstream
channel is chosen as short as possible to avoid the dissipation of these effects
before the step. The table 4 gives the corresponding values of Lr for the two
parameter sets. The obtained results are very close to each other for both
discretizations levels (less than 4% of relative error).

When the regime is established, a spectral analysis of
∂2u

∂y2
as a function of
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Dominant frequency Level 2 Level 3

Sensor x = 6 0.1367 0.16

Sensor x = 7 0.1367 0.1267

Sensor x = 8 0.1367 0.1267

Table 5
Dominant frequency at Re = 2000 for sensors located at x = 6, x = 7 and x = 8.

the time is performed for Level 2, at 3 sensors on the bottom wall (y = 0)
respectively located at x = 6, x = 7 and x = 8 (see Figure 5). The choice of
this particular physical quantity to record by the sensors is justified below.
For each of these sensors, the dominant frequency of the signal corresponds
to a Strouhal number close to 0.067 (this frequency is equal to 2St since
Hstep = 0.5). This result is the same as the one obtained in Wee et al ([29]):
The absolute mode frequencies corresponding to the downstream region are all
in the order of St ∼ 0.07 that is the standard Strouhal number for this range of
Reynolds numbers in channel flows. The slow variation of the absolute mode
frequency is directly due to the slow change of the shear layer thickness in
the region close to the end of the recirculation zone. As the table 5 indicates,
this dominant frequency is captured by every sensor (especially for the two
sensors located at the highest x-values (x = 7 and x = 8), whatever the used
discretization grid level. So, the grid convergence is achieved for Re = 2000.
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Fig. 5. Signal of
∂2u

∂y2
(t) for Re = 2000 at intrusive sensors on the bottom wall at

x = 6, x = 7 and x = 8 for level 2 and spectral analysis.

Based on the above validations and the numerical convergence results, all the
numerical tests in forthcoming sections are performed on the level 2 discretiza-
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tion parameter zone. This level is not only fine enough to get accurate results,
but also needs a reasonable computational cost in order to explore efficient
control strategies with a large number of numerical experiments. A simulation
on the level 2 grid at Re = 2000 generates about nv = 2.5.106 vortices with
δt = 0.1 and a quite fast establishment of the number of discrete particles
towards a plateau confirming the convergence of the calculations [22]. Never-
theless, the same simulation on a level 3 needs more than 6.5.106 particles
with a twice smaller time step, therefore a slower initial establishment and a
CPU time six times larger than for level 2. These observations confirm our
choice to use the level 2, as a good compromise between the accuracy and a
low computational cost.

3 Control

In this section different active control tools are designed and studied in order
to manipulate the main recirculation zone developped behind the step wall.
Among the control targets we can mention the reduction of the recirculation
area or to shorten the reattachment length. This procedure is directly related
in modifying the vortex shedding on the step and then altering the vortex dy-
namics inside the channel. This control can also permit to reduce or increase
the residence time of trapped particles inside the recirculation zone. It should
be outlined that we focus in this work on the control of the vortex shedding
and the vorticity field mainly generated by the step effect and its recirculation
zone. We don’t include the secondary vortices which are generated close to
the upper wall without any important effect on the shedding dynamics.

The control is performed either by taking an oscillating inlet velocity u(t) =
(uin(t), 0)T on Γin, instead of the uniform velocity boundary condition (14)
associated to the non-controlled simulation (Figure 6, Control1), or by two
small jets implemented on the upper and lower parts of the step (Figure 6,
Control2).

Both, open loop and closed-loop controls are used and compared to each other.
The open loop control studies are performed in both cases for a wide range
of parametric values to get the most efficient control configurations. These
values are then compared to the closed-loop control simulations to verify its
efficiency for every control problem. Since the value of the inflow velocity is
no more constant in time, boundary condition on Ψ on the inflow boundary
as well as on the top boundary, needed for the resolution of (9), is updated at
each computational time step.
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Fig. 6. Control devices on the step geometry.

3.1 Control functionals and devices

As mentioned before, the control effect is focused on the vortex shedding,
transport phenomena and the step recirculation zone behavior. In order to
quantify this control, the following time dependent fonctionnals are intro-
duced :

(1) The recirculation area length Lr(t). This functional is the most com-
mon physical quantity to characterize the backward-facing step flow. It
is defined as the distance between the point O (Figure 1) and the point
located on the bottom wall for which the normal gradient of the hor-
izontal velocity component is equal to zero and after reachs a positive
value;

(2) The total enstrophy in the domain that measures the vorticity of the
flowfield, defined as:

Jω(u(t)) =
1

2

∫

Ω

ω2(t) dt,

where ω is defined by (3).
(3) The total kinetic energy in the domain. One of the control tasks is to

tune the energy of vortical structures. It is defined as:

JE(u(t)) =
1

2

∫

Ω

u2(t) + v2(t) dt.

The control has to reduce the entrophy and energy of the flow.
(4) The near wall recirculation area intensity that corresponds to the level of

shear forces defined by:

JW (u(t)) =

C
∫

0

∂u

∂y
(t)

(

∂u

∂y
(t) −

∣

∣

∣

∣

∣

∂u

∂y
(t)

∣

∣

∣

∣

∣

)

dx.
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Breaking the step-side large recirculation zone this functional may in-
crease because the creation of smaller structures with high velocity gra-
dient close to the wall.

(5) The fluctuation coefficient. This coefficient corresponds to the flow insta-
bilities in transition towards turbulence deviating the flow from the mean
values:

JF (u(t)) =
∫∫

B

dx dy

1 + (u′(t))2+(v′(t))2

2

,

where B is the box [0; 6]× [0; 0.5], and u′(t) (resp. v′(t)) is the variation of
u(t) (resp. v(t)) around its mean value. This functional is quite sensible
to flow oscillations induced by the pulsing control strategy.

The above functionals will be used not only in their unsteady time evolution,
but also for their following time-averaged values achieved between t = T1 and
t = T2 who write as:

Lr = Lr(u) JF =
1

T2 − T1

T2
∫

T1

JF (u(t)) dt

Jω = Jω(u) Jω =
1

T2 − T1

T2
∫

T1

Jω(u(t)) dt

JE = JE(u) JE =
1

T2 − T1

T2
∫

T1

JE(u(t)) dt

JW = JW (u) JW =
1

T2 − T1

T2
∫

T1

JW (u(t)) dt

with :

u =
1

T2 − T1

T2
∫

T1

u(t) dt.

Our objective is to control these instantaneous and time-averaged functionals.
In the following, the simulations are performed between t = 0 and t = 600.
The control starts at t = 300, and the time-averaged functionals are evaluated
from T1 = 320 and T2 = 600.

3.2 Control with pulsing inlet velocities

In this part the control is achieved oscillating the inlet velocity profile:
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uin(t) = 1.0 + A cos(2 π f t).

The frequency f and the amplitude A of this oscillating flow can be obtained
either by an extensive parametric study (open-loop control) or implement-
ing the dominant frequencies of the vorticity formation and transport in the
pulsing flow as the reference value (closed-loop control).

3.2.1 Open-loop Control: Influence of the frequency f

In this section the influence of the frequency f on the flow behavior for a
constant value of A will be studied.

The value of amplitude is taken A = 0.2, in the same order as the average
fluctuations absolute value. For 50 low frequencies uniformly distributed in the
range [0.0; 1.0], the averaged functional values defined in part 3.1 are ploted
as a function of the frequency f (see Figure 7).
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Fig. 7. Open-loop control: Functionals versus frequency. Dashed line: uncontrolled
simulation

As the figure shows, an extremum value for each functional for a frequency
nearly equal to the basic fundamental frequency of the flow, namely f ≈ 0.14
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is achieved. Lr as well as Jω (and Jω), JE (and JE) and JF are significatively

diminished, and JW is consequently increased. It corresponds to the fact that
the recirculation area is broken by this control strategy, and then the total
enstrophy and energy of the flow descreases and is focused in the near wall
small coherent structures. Nevertheless, the increase of JW for the mean flow
does’nt represent the control efficiency, because JW is more related to the in-
stantaneous near-wall shear effects of vortical structures. That’s why in the

following we will only consider JW which is a more relevant quantity. For the
larger values of the frequency, the efficiency of the control is reduced, but it
becomes stable with a permanent effect on the flow behavior.

3.2.2 Open-loop Control: Influence of the amplitude A

The value of the frequency is taken f = 0.14 (the basic fundamental frequency
of the flow). For 10 amplitude values distributed in the range [0.0; 1.0], we
plot the averaged functional values defined in part 3.1 as a function of the
frequency A (see Figure 8).

This figure shows that the efficiency of the control almost linearly increases
with the increasing values of the amplitude until A = 0.2, attending then a
”plateau”. For larger values of amplitude the control effect doesn’t change
anymore. These results confirm the existence of an optimal control amplitude
A = 0.2 and there is no need to take higher A values.

3.2.3 Closed-loop control

The closed-loop control consists in using the fundamental frequencies of flow
shedding or transport in order to fit the oscillation frequency. The frequency
measuring sensors may be implemented on the wall (non-intrusive sensors) or
inside the flow field (intrusive sensors). The main advantage of the closed-loop
control is that the control frequency is taken directly from the principal flow
frequencies. Therefore, with a good choice of sensors, it is not only very simple
to implement but also it avoids the heuristic trial and error type approaches
necessary in open-loop methods.

3.2.4 Non-intrusive sensors

This first section is devoted to closed-loop control using non-intrusive sensors.
Because the non-intrusive sensors are implemented in the channel walls and
deal with the measure of the wall tangential pressure gradient, they are much
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Fig. 8. Open-loop control: Functionals versus amplitude. Dashed line: uncontrolled
simulation

more easier to be used in experimental and industrial applications. However,
their near wall location makes them vulnerable to the noisy near-wall high
gradient flow motion. From numerical point of view, because vortex methods
approximate non-primitive variables, the pressure field is not directly obtained
from computations. Therefore, the boundary layer models are used to connect
the quantity ∂2u/∂y2, to the pressure gradient. Indeed, in the wall since u ≡ 0,
the equation (2) is reduced to:

∂p

∂x
=

1

Re

∂2u

∂y2
. (16)

The right member of the equation (16) represents the Lighthill’s conceptual
model of vorticity generation at the wall [17], vorticity acquired by the fluid
elements near the wall. As a consequence, on the wall, the signal ∂2u/∂y2(t)
is equivalent to the signal ∂p/∂x(t).

Closed-loop control consists in taking:

uin(t) = 1.0 +M
(

∂2u/∂y2(t)
)

Sn

,

where M = 2.5.10−3 is chosen to make vary uin(t) in the range of [0.8; 1.2] as
in section 3.2.2, and (∂2u/∂y2(t))Sn

is the value of ∂2u/∂y2(t) quantity related
to a non intrusive sensor Sn. Five simulations are performed, using for each
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of them a different sensor locations (xSn
= 3 + n, ySn

= 0, 1 ≤ n ≤ 5).
These locations permit to get on the wall different dominant frequency values
from the recirculation area until the downstream channel region. We plot the
functional values as a function of xSn

on Figure 9. For each graph, we also
plot the value of the functional values for the uncontrolled simulation (cf. part
2.4.2) as well as the best value obtained by the open-loop control (the optimal
values observed for these functionals).
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Fig. 9. Closed-loop control: Functionals versus n. Dashed line : uncontrolled simu-
lation, solid line: best value obtained by open-loop control.

As Figure 9 shows, closed-loop control is efficient since each obtained func-
tional value is close to the best result achieved by the open-loop control,
whatever the sensor used. The important advantage of the closed-loop control
is that automatically without a huge computational cost the backward-facing
step flow is controlled. Especially, the sensor values recorded on the edge of
the reattachment point are very interesting. As the figure shows, these points
give an excellent recirculation length, fluctuation, energy and vorticity reduc-
tion. The wall stress forces for the mean flow also are reduced even if the
average value of the shear forces is still larger than non-controlled flow. As
mentioned before, this last behavior is because the control is achieved by the
flow oscillation.

To understand the dynamics of the flow, instantaneous streamlines are ploted
on figures 10 and 11 from time t = 592.5 to t = 600. It coresponds to a
simulation time of 7.5 equivalent to fundamental period at basic control fre-
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quency f = 0.1367. Figure 10 corresponds to the uncontrolled flow, and figure
11 to the controlled flow with the sensor located at xS = 8. Similarly, the
instantaneous recirculation areas are shown on Figure 12 (without control)
and figure 13 (with control). As the figures show the recirculation zone area is
considerably reduced in the controlled case and replaced by two small counter-
rotating vortex structures. The shedding mechanism il also changed: the up-
per clockwise structure breaks the lower counter-clockwise one and creates a
shorter shedding process, and generates small faster traveling vortices. Finally,
the efficiency of this closed-loop control is verified plotting the mean stream-
lines and the mean recirculation areas, and comparing them to mean flows
in uncontrolled cases (Figures 14 and 15). As the figures show the averaged
recirculation zones are remarquably reduced and concentrated in a small area
behind the step using the closed-loop control. That means that with control
less particles will be trapped in the main recirculation region.
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Fig. 10. Streamlines from t = 592.5 to t = 600.0, with ∆t = 1.5, uncontrolled
regime.

Fig. 11. Streamlines from t = 592.5 to t = 600.0, with ∆t = 1.5, closed-loop
controlled (non-intrusive) regime.
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Fig. 12. Horizontal velocity u < 0 from t = 592.5 to t = 600.0, with ∆t = 1.5,
uncontrolled regime.

Fig. 13. Horizontal velocity u < 0 from t = 592.5 to t = 600.0, with ∆t = 1.5,
closed-loop controlled (non-intrusive) regime.

3.2.5 Intrusive sensors

We now wonder if it would be possible to improve results obtained with the
previous non-intrusive closed-loop control. Using intrusive sensors seems to
be an alternative way. Even if it is not possible to use such sensors without
perturbating the flow, it can be used as an interesting step to understand and
modify the flow behavior related to transport phenomena inside the channel.
This control consists in the following velocity definition:

uin(t) = 1.0 + 2A

(

uSi
(t) − uSi

umax
Si

− umin
Si

)

,
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Fig. 14. Mean streamlines for uncontrolled (up) and closed-loop (non-intrusive)
controlled (down) regime.

Fig. 15. Mean horizontal velocity u < 0 for uncontrolled (up) and closed-loop
(non-intrusive) controlled (down) regime.

Uncontrolled Open-loop Closed-loop non intrusive Closed-loop intrusive

Smallest value of Lr 4.51 2.08 2.71 2.38

Smallest value of Jω 63.53 55.32 54.52 52.64

Smallest value of JE 2.45 2.24 2.16 2.09

Highest value of JW 122.09 185.75 146.13 159.95

Smallest value of JF 3.19 3.13 3.15 3.15

Table 6
Values of the functionals for different active control techniques.

where the intrusive sensor Si is located at x = 6 and y = 0.33, and where uSi
,

umin
Si

and umax
Si

are respectively the average, the minimum and the maximum
values of the uncontrolled velocity uSi

(t) computed at the same time and
space location. Therefore, the spectrum of this signal is the same as the one
recorded on the sensor Si. Using the previous results the amplitude is set equal
to A = 0.2, leading to an inlet velocity uin oscillating between 0.8 and 1.2,

that has been verified by numerical tests. Values of the functionals Lr, Jω,

JE , JW and JF are reported on table 6 and compared to the uncontrolled
case, the best result obtained with the open-loop control, and the best result
obtained with closed-loop and non intrusive sensors. Moreover, numerical tests

indicated that the behavior of Jω (respectively JE) is similar to the one of Jω

(respectively JE). They show exactly the same evolution.

As the table 6 indicates, the control effect in the intrusive case is slightly
more efficient than in the non intrusive one. This behavior can be explained
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as follows: in the non-intrusive case the sensors are placed on the wall that
is quite noisy because the vorticity generation procedure and local near-wall
effects. It perturbates the captured frequencies that are used for the control
task. This perturbation slightly affects the control efficiency. In the intrusive
configuration, the sensors are placed inside the flow that is less perturbated
by the wall effects, and so the flow dominating basic frequencies are better
captured and then control is more efficient.
To verify this phenomenon the inlet velocity uin(t) time history is plotted for
both non-intrusive and intrusive cases from t = 280 to t = 400 (Figure 16). It
should be noted that control starts at t = 300. As the figure shows the intrusive
velocity has a regular quasi-periodical evolution, but the non-intrusive one is
quite perturbated and oscillating around the quasi-periodic evolution.
The intrusive control results are also very close to the best open-loop control
results. It prooves that this closed-loop control approach is almost an ideal
noise-free frequency capturing tool, permitting to record precisely the flow’s
dominant frequencies.
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Fig. 16. Signal of uin(t) for closed-loop control: with non intrusive sensor located at
x = 6 (top) and with intrusive sensor located at x = 6 and y = 0.33 (bottom).

3.3 Control with active jets on the step wall

In this section two small jets are implemented on the upper and lower parts
of the vertical step (Figure 6, Control2). The main target of this control tech-
nique is to influence directly the vortex shedding and the main recirculation
zone: the upper jet changes the shedding dynamics and the lower one per-
turbates and pushes away the recirculation zone. The flow around the step
is characterized by the vortex shedding process and the roll-up of the sep-
arating boundary layer into Kelvin-Helmholtz type shear layer vortices [24].
Implementing actuators on two upper and lower levels of the step modifies
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both of the above characteristics and then is a useful control tool to study.
The actuators placed in the close vicinity of the bottom and the top of the
step, blow or expell an horizontal flow inside the flow. On the level 2 grid,
the modelisation of each actuator is performed using two points of the mesh.
This geometrical configuration will remain unchanged during all the study. In
following, different possibilities as steady open-loop, active open-loop and ac-
tive closed-loop actuators are applied to this configuration and their efficiency
is verified. All computations are performed with a level 2 grid that has been
validated in section 1.3., and the final results are verified comparing to a level
3 grid. The control efficiency is measured using the average flow field and the
same functionals as in the previous section. Especially, the following function-
als should decrease (respectively increase) to get a good control with step jet

configuration: Lr, Jω, JE (respectively JW ). The inlet velocity is taken equal
to unity; uju and ujb correspond to the uniform jet velocities respectively on
the top and the bottom of the step. Then, the oscillation should be imposed
to these velocities.

3.3.1 Open-loop control

In this subsection the efficiency of several open-loop control techniques on the
flow mechanism is studied. The first range of results is obtained with steady
jets on the step walls. Then, other studies with pulsing open-loop approaches
are presented. In order to find the most efficient open-loop control setups, a
parametric study on the choice of the frequency and the amplitude values is
performed.

Control with steady jets- The simplest control actuator is a constant jet
blowing or sucking a steady flow inside the main fluid. Several computations
with different positive and negative velocities on the upper and lower parts of
the step were performed. All of these results will not be shown here, but some
important remarks are resumed as follows:

(1) To perturbate efficiently the vortex shedding and to reduce the size of
the recirculation zone the suction should take place in the top of the
step and the blowing in the bottom. In fact, this configuration creates a
momentum, breaking the large recirculation zone and pushing it out of
the diffusive formation zone.

(2) To achieve the best functionals and to break down the recirculation zone
the suction should be stronger than the blowing. This setup is justified,
because the suction is just behind the shedding region and a higher energy
is necessary to cross it.
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(uju, ujb) (0, 0) (−1.0, 1.0) (-0.5,0.5) (0.5,−0.5) (−1.0, 0.5) (−1.0, 0.25) (−0.5, 0.25)

Lr 4.5 3.43 3.97 3.46 2.31 1.90 3.35

Jω 51.6 47.0 49.6 52.4 44.1 47.3 48.0

JW 122 122 127 89 166 217 148

Table 7
Effect of permanent jet actuators on different global functionals.

In the Table 7 the effect of different constant jet devices on three control
functionals is resumed. As the Table shows the average recirculation length
Lr is considerably reduced when the jet velocity coefficient is equivalent to
(uju, ujb) = (−1.0, 0.5) or (−1.0, 0.25), where uju and ujb are respectively the
upper and lower jet velocities. The mean vorticity Jω is decreased and near

wall shear stresses JW related to the reduction of the large recirulation zone are
increased. It confirms the above-mentioned remarks and then for the open-loop
control the flow oscillates around the configuration (uju, ujb) = (−1.0, 0.5). It
should be outlined that in the oscillating cases, (uju, ujb) are the coefficients
of the amplitude A related to the upper and the lower jets.

Control with pulsing jets- In this section two open-loop approaches with
step jets are studied. In the first case the actuators are pulsed by: uj(t) =
(uju, ujb)(A+ A cos(2 π f t)). It means that in both devices the jet varies be-
tween 0 and |2A|, with a negative jet in the upper side of the step and a
positive one in the lower part. Here, the influence of the amplitude A and the
frequency f on the flow behavior is explored. First, for a constant frequency
f = 0.2 (close to the one used in the previous section) the amplitude is var-
ied with A = 0.5, 1.0 and 2.0. The table 8 shows the functional values for
different amplitudes compared to uncontrolled case. As the figure shows the
recirculation length linearly decreases with amplitude, as well as the energy.
The results for the enstrophy give an optimal value for A = 1.0 and the wall
stresses show a reasonable increase for all cases. These results show that as a
compromise the amplitudes A = 0.5 or A = 1.0 are both efficient to control
the flow with a slight energy consuming.
Otherwise, a large frequency analysis for frequencies in the gap [0.1; 2.0] with a
0.1 stepping was performed. The amplitude was taken as A = 1.0. The results
were almsot like each other and the only observed difference was the slight
proportionality of Lr value with the frequency. It appears that for frequen-
cies larger than f = 0.05 the efficiency of the control very slowly decreases
increasing the frequency. This result confirms the observed behavior for the
frequency in the previous section.

In the second case the actuators are pulsed by: uj(t) = (uju, ujb)A cos(2 π f t),
always with f = 0.2. It means that in both devices the jet varies between −A
and A and there is no absolutely positive or negative device, even they never
coincide to each other. For this reason we decided to perform some compu-
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Uncontrolled A = 0.25 A = 0.5 A = 1.0 A = 2.0

Lr 4.5 3.46 2.95 2.04 1.98

Jω 51.6 47.5 44.9 37.5 40.5

JE 2.31 2.20 2.07 1.86 1.78

JW 122 139 154 131 140

Table 8
Effect of oscillating jet actuators with uj(t) = (uju, ujb)(A + A cos(2π f t)) on dif-
ferent global functionals.

A(uju, ujb) 0.0 0.25(−1.0, 0.5) 0.5(−1.0, 0.5) 1.0(−1.0, 0.5) 1.0(−1.0, 1.0) 1.0(1.0, 0.5)

Lr 4.5 3.77 3.22 2.55 2.61 2.18

Jω 51.6 48.3 45.3 41.2 45.6 38.3

JE 2.31 2.22 2.16 2.07 2.20 2.02

JW 122 132 136 140 98 152

Table 9
Effect of oscillating jet actuators with uj(t) = (uju, ujb)A cos(2π f t) on different
global functionals.

tations with different pulsing properties. As the table 9 shows the case with
A = 1.0 and (uju, ujb) = (−1.0, 0.5) gives a very good compromise concern-
ing all controlled functionals. Another altenative is to use an actuator with
A = 1.0 and (uju, ujb) = (−1.0, 1.0), where the inlet and outlet velocities are
equivalent, then there is no energy add or loss in the system.

To verify several implemented techniques in this section the mean stream-
lines are plotted for three different controlled flows and compared to the un-
controlled case (Figure 17). As the figures show the three different control
techniques reduce remarquably the recirculation area growth and stop the
shedding progress.

3.3.2 Closed-loop control

The closed-loop control in this section is focused only on non-intrusive sensors
because they are more practical in engineering applications, also because the
channel flow is directly influenced by step jets a then the noise-free behavior
oberved in the previous section for the intrusive sensors has less meaning here.
Finally, the control with step jets is a more local technique than the inlet flow
and the near-wall frequencies are enough energetic to implement this control.
As the previous section the closed-loop control is used to vary the flow around
(uju, ujb) = (−1.0, 0.5). The first closed-loop control formula is similar to the
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Fig. 17. Mean streamlines (from up to down) for uncontrolled, uniform jet con-
trol (uju, ujb) = (−1.0, 0.5), open-loop with uj(t) = (uju, ujb)(A + A cos(2π f t))
and open-loop control with uj(t) = (uju, ujb)A cos(2π f t) where A = 1.0 and
(uju = −1.0, ujb = 0.5).

one in the section 2.2, and is given by:

uj(t) = (uju, ujb)(A+M
(

∂2u/∂y2(t)
)

Sn

(referred as CLC1). The amplitude of the negative upper jet varies between
0 and 2A, while the amplitude of the positive lower jet varies between 0 and
A. It was made possible by choosing empirically the M parameter. The study
here consists in implementing the sensors on two locations x = 4 and x = 7
on top of the channel bottom wall. Also, the effect of the amplitude on the
control efficiency is verified. In the table 10 the effect of the amplitude choice
is verified for both sensors. As the table shows the control efficiency almost lin-
early increases with the amplitude value. This behavior seems natural because
increasing the amplitude the energy induced in order to change the shedding
and the recirculation zone is increased. Nevertheless, even for small amplitudes
(e.g. A = 0.25) the flow functionals are improved by this closed-loop control.
Otherwise, the table shows that the sensor placed at x = 7 is slightly more
efficient than the sensor at x = 4. It is due to the fact that at x = 4 the flow is
still influenced by the large recirculation zone behind the step. The best reults
are achieved for A = 1. at x = 7 where the average recirculation length is re-
duced more than half and all other functionals also are considerably improved.
In the second case the actuators are pulsed by: uj(t) = (uju, ujb)M (∂2u/∂y2(t))Sn

(referred as CLC2). This definition means that the amplitude of the upper jet
varies between 0 and A, while the amplitude of the lower jet varies between 0
and A/2, but this time there is no absolutely positive or negative setup. The
flow showing slightly better results using the sensor x = 7, only the compu-
tations related to this later actuator are reported. As the table 11 indicates
the results are again linearly improved increasing the amplitude value. How-
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(x,A) uncontrolled (4, 0.25) (4,0.5) (4, 1.0) (7, 0.25) (7, 0.5) (7, 1.0)

Lr 4.5 3.5 3.1 2.1 3.4 2.9 1.9

Jω 51.6 48.0 45.7 39.0 47.8 45.1 37.8

JE 2.31 2.19 2.12 1.90 2.18 2.08 1.86

JW 122 140 149 152 139 155 151

Table 10
Effect of closed-loop jet actuators on global functionals with two different sensors
located at x = 4.0 and x = 7.0 for different jet amplitudes and negative upper and
positive bottom jets (CLC1).

A(uju, ujb) uncontrolled 0.25(−1, 0.5) 0.5(−1, 0.5) 1.0(−1, 0.5) 1.0(−1, 1)

Lr 4.5 3.7 3.2 2.7 2.9

Jω 51.6 47.9 44.9 41.7 44.0

JE 2.31 2.22 2.16 2.11 2.15

JW 122 130 134 135 123

Table 11
Effect of closed-loop step jet actuators with a sensor located at x = 7.0 and different
amplitudes on global functionals and both jets oscillating around zero (CLC2).

ever, the control is less impressive than the previous case because the velocity
differences between the two jets are in average smaller for this control. Fur-
thermore, as the table shows, even for jet velocities with the same absolute
value ((uju, ujb) = (−1.0, 1.0)), where the added energy flux is almost zero,
the control is still very efficient and the mean recirculation length is sensibly
reduced from 4.5 to 2.9. This result underlines the main advantage of this
closed-loop control approach that permits to implement an efficient zero-flux
control strategy.

Finally, in figure 18 the mean streamlines for three different closed-loop control
cases are compared to the uncontrolled flow. As the figure shows the CLC1
technique due to its higher flux gradients is the most efficient one and almost
reduces the recirculation zone until about one third of the uncontrolled case.
Nevertheless, using the CLC2 method also suitable results are ahieved, even
implementing a zero-flux approach. We can conclude this part with two re-
marks. First, not only the closed-loop control is very convenient to achieve
efficient control results but also it avoids heavy trial and error calculations to
choose the control modes. Second, even if the best results are obtained with
significant energy supplies, a convenient control can also be achieved using
lower amplitudes or nullifying the flux flowrate.

To verify the grid convergence for this family of control approachs, some of
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these controlled flows are computed using a fine level 3 grid and compared
to the uncontrolled flow. The observed trends of the flow behavior, like the
decrease or the increase of the functionals or the average streamlines, are
always similar to the results obtained by the level 2 grid and confirm the
numerical convergence.

Fig. 18. Mean streamlines (from up to down) corresponding respectively to
uncontrolled, CLC1 with (uju, ujb) = (−1.0, 0.5) and A = 1.0, CLC2 with
(uju, ujb) = (−1.0, 0.5) and A = 1.0, CLC2 with (uju, ujb) = (−1.0, 1.0) and A = 1.0
closed-loop strategies.

4 Conclusion

In this work, both open and closed-loop control methods were applied to
control a backward-facing step flow. Computations were performed using a
Vortex-In-Cell method and adapted to this control procedure. The numerical
convergence was then detaily verified and compared to experimental results
for transitional flows. Then, two control configurations were studied, the first
configuration correponding to a pulsing inlet flow and the second one to jets
introduced into the lower and upper parts of the step. The achieved results for
the first strategy showed that the natural fundamental frequency of the flow
offers the characteristic value to tune the pulsing frequency. The control should
therefore be based on this value whatever the used devices. We also observed
the efficiency of implementing the intrusive sensors. This approach improves
the closed-loop control results, reducing the near-wall flow fluctuations. With
an appropriate control, the flow functionals like the recirculation length, the
global flow energy or the enstrophy were dramatically reduced.
For the second strategy we observed that the best control results are achieved
with a high velocity negative upper jet compared to a positive bottom jet.
This result was also true for oscillating jets. Then, an effcient closed-loop
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control technique was build using the above considerations. As an important
conclusion, it was verified that an automatic closed-loop approach can provide
a control as efficient as the best open-loop control. This observation confirms
the essential importance of robust closed-loop control methods as the most
practical techniques designed to manipulate today’s fluid flow problems.
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