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This article is concerned with the problem of finding a regular and homogeneous partition of a
Lipschitz open set � of R2. This type of problem occurs in image classification which consists in
assigning a label (that is a class or a phase) to each pixel of an observed image. Such a problem
can numerically be solved by using a level set formulation. But this approach generally relies on
heuristic arguments. We intend here to give a theoretical justification in the two phases case. In
the first part of the paper, we prove that the partition problem we consider admits a solution.
And in the second part, we justify the numerical approach which is generally used to compute a
solution.
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1. Introduction

This paper is concerned with the problem of finding a regular and homogeneous parti-
tion of a Lipschitz open set � of R

2. A partition of � consists in searching for
a family of sets Eif gi¼1...I such that � ¼

SI
i¼1 Ei

S
i �i with Ei

T
Ej ¼ 6 0 if i 6¼ j, and

where �i ¼ @Ei

T
� is the intersection of the boundary of Ei with �. In fact,

�i ¼
S

j 6¼i �ij, where �ij ¼ �ji, i 6¼ j, is the interface between Ei and Ej. By regular,
we mean that �is are of minimal length. We also want to get a homogeneous
partition in the sense that each set Ei is homogeneous with respect to a given criterion.
Typically this type of problem occurs in image classification which consists in
assigning a label (that is a class or a phase) to each pixel of an observed image. Here
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the feature criterion is, for example, the spatial distribution of the intensity, and each
class is the set of pixels having the same distribution. Other discriminant features
can be used, such as texture for instance. An efficient way to get an optimal partition
is to search for Eis as minimizers of a partition functional of the form,

FðE1, . . . ;EI Þ ¼
XI
i¼1

j�ij þ
XI
i¼1

Z
�

Bi ; � ¼
[I
i¼1

Ei

[
�i; Ei

\
Ej ¼ 6 0 if i 6¼ j

( )

ð1Þ

where j�ij stands for the one-dimensional Hausdorff measure of �i, and Bi is a given
data term.

A difficulty in the above formulation comes from the fact that unknowns are sets
and not functions. To overcome this difficulty which is a real problem for numerical
computations, we often use a level set formulation. If we assume that we can write
Ei ¼ f�i > 0g for some Lipschitz function �i, with @Ei ¼ f�i ¼ 0g, then we can rewrite
(1) as

FðE1, . . . ;EI Þ ¼
XI
i¼1

Z
�i¼0

dsþ
XI
i¼1

Z
�

BiHð�iÞ;
XI
i¼1

Hð�iÞ ¼ 1

( )
; ð2Þ

where H stands for the Heaviside function. In fact, in real applications, we relax the
partion constraint

PI
i¼1 Hð�iÞ ¼ 1 by considering the functional

FðE1, . . . ;EI Þ ¼
XI
i¼1

Z
�i¼0

dsþ
XI
i¼1

Z
�

BiHð�iÞ þ

Z
�

XI
i¼1

Hð�iÞ � 1

 !2

ð3Þ

or an approximated version of (3),

F�ðE1, . . . ;EI Þ ¼
XI
i¼1

Z
�

��ð�iÞjr�ij þ
XI
i¼1

Z
�

BiH�ð�iÞ þ

Z
�

XI
i¼1

H�ð�iÞ � 1

 !2

; ð4Þ

where �� and H� are respectively smooth approximations of the Dirac measure
and the Heaviside function.

Functionals of the kind (1), (2), (3), or (4) have been abundantly used in the image
processing literature [6,8,10,21,22,24], but as far as we know, the theoretical study of
such minimization problems has not been addressed yet. The goal of this paper is to
fill this gap in the two phases case (the case I>2 is more technical and will be addressed
in a future work). Therefore, in this case, we only need one unknown function � and (3),
(4) simplified

inf
�2Lipð�Þ

Z
�¼0

dsþ

Z
�

BHð�Þ

� �
ð5Þ

inf
�2Lipð�Þ

Z
�

��ð�Þjr�j þ

Z
�

BH�ð�Þ

� �
ð6Þ
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where B 2 L1ð�Þ. Such simplified functionals are used in [8,10,21,22,24]. But in all
these works all the computations are formal and we intend here to develop a
theoretical justification.

The plan of the paper is as follows. We first recall a few basic facts about sets
with finite perimeter in section 2. We are then in position to study (5): we prove the
existence of a solution for problem (5) in section 3. In section 4, thanks to a change
of function  ¼ H�ð�Þ, we get the existence of Lipschitz function for problem (6).
This jusitifies the numerical approach used in [8,10,21,22,24]. We end this paper
by showing some experimental classification results obtained by minimizing (6),
in section 5.

2. Sets with finite perimeter

For this section, we refer the reader to [2,4,13,14,18], our presentation being inspired
essentially from [4]. We first recall the definition of BVð�Þ (we suppose that �, the
domain of the image, is a bounded Lipschitz open set of R2).

Definition 2.1 BVð�Þ is the subspace of functions u 2 L1ð�Þ such that the following
quantity is finite.

JðuÞ ¼ sup

Z
�

uðxÞDivð�ðxÞÞdx=� 2 C1
c ð�;R2

Þ; k�kL1ð�Þ � 1

� �
ð7Þ

where C1
c ð�Þ stands for the set of functions in C1ð�Þ with compact support in �. BVð�Þ

endowed with the norm kukBVð�Þ ¼ kukL1ð�Þ þ JðuÞ is a Banach space. If u 2 BVð�Þ, the
distributional derivative Du is a bounded Radon measure and (7) corresponds to the
total variation jDujð�Þ.

We now come to the definition of a set with finite perimeter.

Definition 2.2 Let E be a measurable subset of R2. Then for any open set � � R
2, we

call perimeter of E in �, denoted by PðE;�Þ, the total variation of 1E in �, i.e.,

PðE;�Þ ¼ sup

Z
E

Divð�ðxÞÞdx=� 2 C1
c ð�;R2

Þ; k�kL1ð�Þ � 1

� �
ð8Þ

We say that E has finite perimeter if PðE;�Þ <1.

Remark If E has a C1-boundary, this definition of the perimeter corresponds to the
classical one. We then have

PðE;�Þ ¼ H1 @E
\

�
� �

ð9Þ

where H1 stands for the 1-dimensional Hausdorff measure [4]. The result remains true
when E has a Lipschitz boundary.

In the general case, if E is any open set in �, and if H1ð@E
T

�Þ < þ1, then,

PðE;�Þ � H1 @E
\

�
� �

ð10Þ
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Definition 2.3 We denote by FE the reduced boundary of E.

FE ¼ x 2 support jDnE j

\
�

� �
=�E ¼ lim

�!0

D1E ðB�ðxÞÞ

D1E ðB�ðxÞÞ

�� �� exists and verifies �Ej j ¼ 1

( )

ð11Þ

Definition 2.4 For all t 2 ½0; 1�, we denote by Et the set

x 2 R
2= lim

�!0

E
T

B�ðxÞ
�� ��

B�ðxÞ
�� �� ¼ t

( )
ð12Þ

of points where E is of density t, where B�ðxÞ ¼ fy=kx� yk � �g. We set
@�E ¼ R

2
n E0

S
E1

� 	
the essential boundary of E.

THEOREM 2.1 Let E be a set with finite perimeter in �. Then

FE
\

� � E1=2 � @�E ð13Þ

and

H1 �n E0
[

FE
[

E1
� �� �

¼ 0: ð14Þ

Remark If E is Lipschitz, then @E � @�E. In particular, since we always have
FE � @E (see [13]).

PðE;�Þ ¼ H1 @E
\

�
� �

¼ H1 @�E
\

�
� �

¼ H1 FE
\

�
� �

: ð15Þ

THEOREM 2.2 Let E be a Lebesgue measurable set of R
2. Then FE is 1-rectifiable.

We recall that E is 1-rectifiable if and only if there exist Lipschitz functions
fi : R

2
! R such that E �

Sþ1

i¼0 fiðRÞ.

3. The two phases problem

In this section, � will be a bounded Lipschitz open set of R2. We consider a functional
involving two terms: a length penalization term, and a data term. We denote by E a
set in � such that E and �nE correspond respectively to the two phases. We call a
partitionning functional, the functional,

GðEÞ ¼

Z
�

D1Ej j þ

Z
�

B1E ð16Þ
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We assume that B 2 L1ð�Þ and introduce the following three problems:

inf
�2Lipð�Þ

Z
�¼0

dsþ

Z
�

BHð�Þ

� �
; ð17Þ

inf
E2Bð�Þ

PðE;�Þ þ

Z
E

B

� �
; ð18Þ

and

inf
 2BVð�Þ; 0� �1

Z
�

jD j þ

Z
�

B 

� �
; ð19Þ

where Bð�Þ stands for the set of Borel subsets in �, and Lipð�Þ stands for the set of
functions which are Lipschitz in �.

Remark The functional (6) can be seen as an approximated version of (17), in the
sense that for all Lipschitz function �, we have (see (49)),

lim
�!0

Z
�

��ð�Þjr�j þ

Z
�

B�Hð�Þ ¼

Z
�¼0

dsþ

Z
�

BHð�Þ: ð20Þ

In the sequel, we will show that these two problems are very close to each other.
Problem (18) corresponds to the classification problem with two phases that we have
introduced with (16). It is a classical problem in the theory of minimal sets with pre-
scribed mean curvature [2,17,18]. The theory of sets with finite perimeter has already
been used many times in image processing [3,11,19,20]. In (19), if  is a characteristic
function, then we exactly get (16). The main result of this section is that there exists
a characteristic function which is a solution of (19) (Proposition 3.2). Then we will
be in position to show that (17) admits a solution (Proposition 3.3).

3.1. Study of problem (18)

Problem (18) has been completely solved by Massari in [17]. We use here the presenta-
tion of [2]. We have the three following results (whose proofs are given in [2,18]).

PROPOSITION 3.1 Problem (18) admits at least one solution.

THEOREM 3.1 Let E be a solution of (18). Then FE ¼ @�E, and FE is C1;1.

Due to these results, we know that problem (18) has at least one solution ~EE, and
moreover that ~EE has a C1;1-boundary. In particular, we have: Pð ~EE;�Þ ¼ H1ð@ ~EE

T
�Þ

(see (15)).

3.2. Study of problem (19)

PROPOSITION 3.2 There exists ~EE 2 Bð�Þ solution of (18) such that 1 ~EE is a solution
of (3.4).
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Proof We consider the following functional defined on  2 BVð�Þ; 0 �  � 1

 �

:

Gð Þ ¼

Z
�

B þ

Z
�

jD j ð21Þ

G is convex and lower semicontinuous on BV�weak *. Due to the condition 0 �  � 1
we can conclude that there exists a solution ~  for (19).

Let us recall the co-area formula [4]Z
�

jD j ¼

Z þ1

�1

D1f �sg
�� ��ds ¼ Z þ1

�1

P f � sg; �ð Þ ds ð22Þ

As we impose the condition 0 �  � 1, we can rewrite (22) asZ
�

jD jÞ ¼

Z 1

0

D1f �sg
�� ��ds ¼ Z 1

0

P f � sg; �ð Þ ds: ð23Þ

We concentrate now on the second term of the functional. We first remark that,
since 0 �  � 1,

 ðxÞ ¼

Z  ðxÞ

0

ds ¼

Z 1

0

1 ðxÞ�s ds ð24Þ

and thus, Z
�

B ¼

Z
�

BðxÞ

Z 1

0

1f ðxÞ�sgds

� �
dx

(Fubini) ¼

Z 1

0

Z
�

BðxÞ1f ðxÞ�sgdx ds

¼

Z 1

0

Z
f �sg

BðxÞ dx ds:

Hence,

Gð Þ ¼

Z
�

jD j þ B ð Þ ¼

Z 1

0

P f � sg; �ð Þ þ

Z
f �sg

B

� �
ds; ð25Þ

which implies

inf
 2BVð�Þ; 0� �1

Z
�

jD j þ B ð Þ ¼ inf
 2BVð�Þ; 0� �1

Z 1

0

P f � sg; �ð Þ þ

Z
f �sg

B

� �
ds: ð26Þ

Let ~EE be a solution of problem (18). We denote by ~  ¼ 1 ~EE . We want to show that ~  is a
solution of (19). Let s 2 ð0; 1Þ.

� Let x 2 ~EE. Then ~  ðxÞ ¼ 1 ~EEðxÞ ¼ 1. Thus ~  ðxÞ � s. Hence ~EE � f ~  � sg.
� Let x 2 f ~  � sg. Then ~  ðxÞ � s > 0. Thus ~  ðxÞ ¼ 1 (since ~  ¼ 0 or 1). Hence

f ~  � sg � ~EE.

We eventually deduce that, 8s 2 ð0; 1Þ: ~EE ¼ f ~  � sg.
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Now, we consider  2 BVð�Þ such that 0 �  � 1. We have (due to (25)),

Gð Þ ¼

Z
�

jD j þ B ð Þ

¼

Z 1

0

P f � sg; �ð Þ þ

Z
f �sg

B

� �
ds: ð27Þ

In the same way as above,

Gð ~  Þ ¼

Z 1

0

P f ~  � sg; �
� 	

þ

Z
f ~  �sg

B

� �
ds

¼

Z 1

0

P ~EE; �
� 	

þ

Z
~EE

B

� �
ds

¼ P ~EE; �
� 	

þ

Z
~EE

B:

As ~EE is a solution of problem (18), we have

P ~EE; �
� 	

þ

Z
~EE

B � P f � sg; �ð Þ þ

Z
f �sg

B ð28Þ

And by integrating (28) with respect to s, we get for any  2 BVð�Þ, 0 �  � 1,

P ~EE; �
� 	

þ

Z
~EE

B|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Gð ~  Þ

�

Z 1

0

P f � sg; �ð Þ þ

Z
f �sg

B

� �
ds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼Gð Þ

ð29Þ

And ~  is therefore a solution of problem (19). g

We have thus shown that problem (19) has at least one solution which is a character-
istic function. We are in position to treat problem (17).

3.3. Study of problem (18)

PROPOSITION 3.3 Let ~EE be a solution of problem (18), and let ~�� be the Euclidean signed
distance function to @ ~EE (see Definition 3.1). Then ~�� is a solution of problem (17).

To show Proposition (3.3), we will need the two following lemmas:

LEMMA 3.1 Let � be Lipschitz. We set  ¼ Hð�Þ. Then:
R
f�¼0g ds �

R
� jD j.

Proof Thanks to the co-area formula [4], we have

Z
�

jD j ¼

Z þ1

�1

Pðf � sg;�Þ ds ¼

Z 1

0

Pðf � sg;�Þ ds ð30Þ
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since 0 �  � 1. Thus
R
� jD j ¼

R 1
0 PðfHð�Þ � sg;�Þ ds. We set E ¼ f� > 0g (E is an

open set since � is continuous). We therefore have E ¼ fHð�Þ > sg, 8s > 0. We have

Z 1

0

PðfHð�Þ � sg;�Þ ds ¼

Z 1

0

PðE;�Þ ds ¼ PðE;�Þ: ð31Þ

Hence
R
� jD j ¼ PðE;�Þ. Then we conclude by remarking that

PðE;�Þ � H1ð@E
\

�Þ �

Z
f�¼0g

ds ð32Þ

The following lemma is straightforward. g

LEMMA 3.2 Let A 2 Bð�Þ. The Euclidean signed distance function u to A is 1-Lipschitz.

Definition 3.1 If A 2 Bð�Þ, we call Euclidean signed distance function to A the func-
tion u defined by

uðxÞ ¼
dðx;AÞ if x 2 �nA

dðx;�nAÞ if x 2 A

�
ð33Þ

where dð:;AÞ stands for the Euclidean distance to A.

Proof of Proposition 3.3 Thanks to Lemma 3.2, we know that ~�� is 1-Lipschitz. Let
� 2 Lipð�Þ. We denote E ¼ f� > 0g. From the proof of Lemma 3.1, we have:R
�¼0 ds � PðE;�Þ. Thus

Z
�¼0

dsþ

Z
�

BHð�Þ � PðE;�Þ þ

Z
�

B1E

� Pð ~EE;�Þ þ

Z
�

B1 ~EE;

ð34Þ

since ~EE is a solution of (18). HenceZ
�¼0

dsþ

Z
�

BHð�Þ � Pð ~EE;�Þ þ

Z
�

BHð ~��Þ: ð35Þ

But ~EE being a solution of (18), we know, from Theorem 3.1, that ~EE has a C1;1-bound-
ary, and we therefore have: Pð ~EE;�Þ ¼ H1ð@ ~EE

T
�Þ ¼

R
~��¼0 ds. We thus conclude that,Z

�¼0

dsþ

Z
�

BHð�Þ �

Z
~��¼0

dsþ

Z
�

BHð ~��Þ ð36Þ

which shows that ~�� is a solution of problem (17). g

Remark In the proof of Proposition 3.3, we have shown the following result.

LEMMA3.3 Let E be an open set with C1-boundary, and let � the signed distance function
to @E. Then:

R
�¼0 ds ¼ PðE;�Þ.

22 G. Aubert and J.-F. Aujol



3.4. Equivalence between problems (17), (18) and (19)

Now that we have studied problems (17), (18) and (19), and seen that they present
several connections, we want to state a kind of equivalence result between them. To
do so, we will need the following result.

PROPOSITION 3.4 Let � a solution of problem (17). Then  ¼ Hð�Þ is a solution of
problem (19).

Proof According to Lemma 3.1, we have:
R
f�¼0g ds �

R
� jD j. Thus

Z
�¼0

dsþ

Z
�

BHð�Þ �

Z
�

jD j þ

Z
�

B ð37Þ

�

Z
�

jD ~  j þ

Z
�

B ~  ; ð38Þ

where ~EE is a solution of problem (18), and ~  ¼ 1 ~EE (due to Proposition 3.2, we know
that ~  is a solution of problem (19)). We denote by ~�� the signed distance function to
@ ~EE. Due to Proposition 3.3, ~�� is a solution of problem (17), and we thus have

Z
f�¼0g

dsþ

Z
�

BHð�Þ ¼

Z
f ~��¼0g

dsþ

Z
�

BHð ~��Þ: ð39Þ

But with Lemma 3.3, we have

Z
�¼0

dsþ

Z
�

BHð�Þ ¼ Pð ~EE;�Þ þ

Z
�

B1 ~EE ¼

Z
~��¼0

dsþ

Z
�

BHð ~��Þ: ð40Þ

We conclude that (37) and (38) are in fact equalities, and therefore  is a solution
of problem (19). g

Remark In particular, we have shown that

inf
�2Lipð�Þ

Z
�¼0

dsþ

Z
�

BHð�Þ

� �
¼ inf

 2BVð�Þ; 0� �1

Z
�

jD j þ

Z
�

B 

� �
: ð41Þ

We have also proved the following result.

LEMMA 3.4 Let � be a solution of problem (17), and let  ¼ Hð�Þ. Then:R
�¼0 ds ¼

R
� jD j.

We have shown an equivalence between problems (17), (18) and (19), equivalence
that we sum up with the following theorem.

THEOREM 3.2

(1) If � is a solution of problem (17), then E ¼ f� > 0g is a solution of problem (18), and
 ¼ Hð�Þ is a solution of problem (19).

(2) If E is a solution of problem (18), then  ¼ 1E is a solution of problem (19), and � the
signed distance function to @E is a solution of problem (17).
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(3) If  is a solution of problem (19), and if we can write  ¼ 1E, then E is a solution of
problem (18), and � the signed distance function to @E is a solution of problem (17).

Proof This is a consequence of Propositions 3.2, 3.3 and 3.4, and of Theorem 3.1.
g

In order to have a complete equivalence between problems (17), (18) and (19),
we would need that any solution of (19) is a characteristic function, i.e., it can be
written  ¼ 1E . Unfortunately, this result does not hold in general.

Indeed, it is immediate to check that if B has zero mean, then any constant
function (provided this constant lies between 0 and 1) is a solution of problem (19).

In fact, even when
R
�
B 6¼ 0, problem (19) can have solutions which are not

characteristic functions, as shown by the following example.

Example We give here an example in dimension 1, of an open set � and of a data term
function B such that problem (19) has solutions which are not characteristic
functions. We recall that the functional we want to minimize in problem (19) is

Fð Þ ¼

Z
�

B þ

Z
�

jD j: ð42Þ

We consider the case depicted on figure 1. We choose B ¼ �1 on the segments ½O;P�
and ½Q;R� which have both the same length a>1. And we choose B¼ 1 on the segment
½P;Q� which has a length equal to 2. From Proposition 3.2, we know that the infimum
in (19) is a minimum, and that it is reached by at least one characteristic function. If  is
a characteristic function, then: Fð Þ ¼ nbþ

R
� B , where nb stands for the number of

jumps of  on �.
We consider some particular characteristic functions,

 0 ¼
1 on fB ¼ �1g

0 on fB ¼ 1g

�
ð43Þ

as well as  1 ¼ 1 on �, and  2 ¼ 0 on �. We have Fð 2Þ ¼ 0, and Fð 0Þ ¼ 2� 2a ¼

Fð 1Þ. As we have chosen a>1, we also have Fð 0Þ < Fð 2Þ.

xB=-1

a 2 a

1

B=-1P Q R0 B=1

Figure 1. Example of solutions of problem (19) which are not characteristic functions.
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If  is a characteristic function, then
R
� B � �2a. Thus Fð Þ � nb� 2a.

But Fð 0Þ ¼ 2� 2a; therefore if  is a characteristic function and is a solution
of (19), then we necessarily have: nb � 2. It is then easy to check that in fact  0

and  1 reach the minimum of (19), and that the value of this minimum is equal
to 2� 2a.

Now, we consider the familly of functions defined for 0 � � � 1:

 � ¼
1 on fB ¼ �1g

� on fB ¼ 1g

�
ð44Þ

We have Fð �Þ ¼ 2ð1� �Þ � 2aþ 2� ¼ 2� 2a ¼ Fð 0Þ. Thus � is a solution of prob-
lem (19) 8� 2 ½0; 1�. And if 0 < � < 1, then  � is not a characteristic function. g

4. The approximated problems

Here, we get interested in the numerical model (6), as well as its link with the theoretical
model of Section 3. For the study of the numerical model, we need to state results about
the existence of solutions, and we also need to get information about the regularity of
these solutions. Indeed, in the numerical method, we assume the existence of continuous
solutions. To do this, we are first going to regularize the problem. We will then pass
to the limit (�! 0) to come back to our initial problem, the main argument being a
perturbation theorem by R. Temam [12,23].

When � is fixed, we will show the existence of a continuous solution of problem (6)
(this is the main result of this section).

4.1. Smooth approximations of H and �

We will use the following smooth approximations of the Heaviside function H and
the Dirac distribution �. We assume that 0 � � � 1.

��ðsÞ ¼

1

2�
1þ cos

�s

�

� �
if jsj � ~ss

� if jsj � ~ss

8<
: ð45Þ

H�ðsÞ ¼

1
2 1þ

s

�
þ

1

�
sin
�s

�

� �
if jsj � ~ss

1
2

1þ
~ss

�
þ

1

�
sin
�~ss

�

� �
þ �ðs� ~ssÞ if s > ~ss

1
2

1þ
�~ss

�
þ

1

�
sin

��~ss

�

� �
þ �ðsþ ~ssÞ if s < �~ss

8>>>>>>>>><
>>>>>>>>>:

ð46Þ

where

~ss ¼
2�

�
arccosð�Þ: ð47Þ
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With this definition of ~ss, we have (when �! 0): 0 � ~ss � � and ~ss � �. Moreover,
��ð~ssÞ ¼ ��ð�~ssÞ ¼ �, lim�!0 H�ð~ssÞ ¼ 1 , and lim�!0 H�ð� ~ssÞ ¼ 0.

As � is bounded, we have when �! 0: �� ! � and H� ! H (in the distributional
sense).

LEMMA 4.1 For all �, 0 < � � 1, H� is a C1-nondecreasing diffeomorphism from
R to R. Moreover,  � ¼ H�ð�Þ is Lipschitz if and only if the function � is Lipschitz.

Proof We have H
0

� ¼ ��, thus

� � H
0

� �
1

�
; and H�1

� ðyÞ
� 	0

¼
1

H
0

� H�ðyÞð Þ
¼

1

�� H�ðyÞð Þ
:

.

Therefore, � � H�1
�

� 	0
� 1

�. g

Remark We recall that the problem we want to solve numerically in the two phases
case is

inf
�2Lipð�Þ

Z
�

��ð�Þjr�j þ

Z
�

BH�ð�Þ

� �
: ð48Þ

We can show that (see [6]),

lim
�!0þ

Z
�

��ð�Þjr�j

� �
¼

Z
�¼0

ds ð49Þ

We easily deduce that (17) is the limit problem of (48) when �! 0þ.
There remains to check if problem (48) admits a solution for �>0. There exists a

very simple link between problem (48) and problem (19) which we recall here

inf
 2BVð�Þ; 0� �1

Z
�

jD j þ

Z
�

B 

� �
ð50Þ

Indeed, if we set:  � ¼ H�ð�Þ, then D � ¼ ��ð�Þr�, and for all �>0,Z
�

BH�ð�Þ þ

Z
�

��ð�Þjr�j ¼

Z
�

B � þ

Z
�

jr �j: ð51Þ

4.2. Locally continuous solutions

As we do not know how to show directly that (48) has solutions (when � is fixed),
since it is difficult to get some properties for minimizing sequences, we consider an
approximated problem, as suggested in [12,23],

inf
�2W1;2ð�Þ

F ��;	ð�Þ ð52Þ

where

F ��;	ð�Þ ¼

Z
�

g	ð��ð�Þjr�jÞ þ

Z
�

BH�ð�Þ þ

Z
�

h	ðH�ð�ÞÞ

� �
þ
�

2

Z
�

��ð�Þjr�jð Þ
2; ð53Þ
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the function g	 : R
2
! R being defined by

g	ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�j2 þ 	2

q
ð54Þ

and the function h	 : R ! R by

h	ðxÞ ¼

x4

	5
if x � 0

0 if 0 � x � 1

ðx�1Þ4

	5
if x � 1

8>>>><
>>>>:

ð55Þ

Here W1;p denotes the Sobolev space: f� 2 Lpð�Þ; r� 2 Lpð�Þ; 1 � p � 1g [1]. The
function h	 is convex and C3 on R. When we compute the Euler–Lagrange equation
associated to functional (52), the term coming from

R
� g	ð��ð�Þjr�jÞ corresponds to

the one used in the numerical scheme (we indeed introduce a parameter 	 > 0 to
avoid division by 0) (see [22]). The function h	 will replace the condition 0 �  � 1
in the approximation of problem (50) (or (19)).

It is still unclear to show directly that (52) admits a solution on W1;2ð�Þ, since
F ��;	ð�Þ is only coercive on W1;1ð�Þ. Let us set

 � ¼ H�ð�Þ ð56Þ

This implies r � ¼ ��ð�Þr� (since � 2 W1;2ð�Þ). This leads us to consider the problem

inf
 2W1;2ð�Þ

G�	ð Þ ð57Þ

where,

G�	ð Þ ¼

Z
�

g	ðjr jÞ þ

Z
�

B þ

Z
�

h	ð Þ

� �
þ
�

2

Z
�

jr j2: ð58Þ

In fact, we will show later (Proposition 4.2) that problems (52) and (57) are equivalent.
In the sequel, parameter 	 will depend on parameter � by the relation

	ð�Þ ¼
4�3

kBkL1ð�Þ

� �1=5

ð59Þ

(we will see the justification of this relation in the proof of Proposition 4.1).
We have introduced problems (57) and (52) in order to get existence and regularity

results about their solutions. We then want to let �! 0 to get information about the
solution of problems

inf
�2W1;1ð�Þ

T
L2ð�Þ

F0
�;	ð�Þ; ð60Þ
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and

inf
�2W1;1ð�Þ

T
L2ð�Þ

G0
	ð Þ: ð61Þ

Remark In problems (57) and (61), there is no constraint 0 �  � 1. This constraint
comes from the function h	 (see 55).

4.3. A perturbation result

We are going to use a perturbation result due to R. Temam [12,23] (Theorem 1.1 page
125 of [23], [12] page 140). This theorem is itself based on results by Ladyzenskaya and
Ural’Ceva [15,16].

The result by Temam has already been used successfully in image processing in [7]
in a slightly modified form. This is this last result that we are going to use. We consider
a functional of the form,

inf
 2W1;2ð�Þ

Z
�

gðjr jÞ þ

Z
�

pðxÞ þ

Z
�

hð Þ þ
�

2

Z
�

jr j2
� �

: ð62Þ

We assume that the following hypotheses hold:

(H1) The function � ! gð�Þ is convex and C3 from R
2 into R.

(H2) The function x ! gðqðxÞÞ is measurable on � for all q in L1ð�Þ
2.

There exist some constants 
i � 0, i ¼ 0, . . . ; 8, such that for all � 2 R
2:

(H3)

gð�Þ � 
0j�j � 
1; 
0 > 0

(H4)

@g

@�i
ð�Þ � 
2; i ¼ 1; 2

(H5)

X2
i¼1

@g

@�i
ð�Þ�i � 
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�j2

q
� 
4; 
3 > 0

(H6)


6j�
0j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�j2
p �

X
i;j

@2g

@�i@�j
ð�Þ�i�j �


7j�
0j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�j2
p 8� 2 R

2; 
6; 
7 > 0

where j�0j2 ¼ j�j2 � ð�:�Þ2

1þj�j2
.
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(H7)

kpkW1;1 � 
8

(H8)

X2
i¼1

@g

@�i
ð�Þ�i � 0 8� 2 R

2

(H9) The function t ! hðtÞ is convex and h0ð0Þ ¼ 0.

THEOREM 4.1 [Temam [12,23]]. � is assumed to be C2. Then problem (62) has a
smooth solution  � bounded independently of � in L1ð�Þ

T
W1;1ð�Þ. This solution is

unique up to an additive constant. Moreover, for any relatively compact open set V in
�, there exists a constant KðV;�Þ independent of � such that

k �kW1;1ðVÞ � KðV;�Þ ð63Þ

k �kH2ðVÞ � KðV;�Þ: ð64Þ

In particular, we can apply this theorem to problem (57).
We even have a maximum principle result for problem (57).

PROPOSITION 4.1 The solution  	;� of problem (59) given by Theorem 4.1 is such that

�Að	Þ �  	;� � 1þ Að	Þ; ð65Þ

where

Að	Þ ¼
	5kBkL1ð�Þ

4

� �1
3

ð66Þ

and

k 	;�kW1;1ð�Þ � j�j 1þ Að	Þ þ 	þ ð1þ Að	ÞÞkBkL1ð�Þ

� 	
: ð67Þ

In particular, if 	 � 1 (which is equivalent to � � ð=kBk1=3L1ð�Þ
Þ=ð45=3Þ, see (49))

�Að1Þ �  	;� � 1þ Að1Þ ð68Þ

and

k 	;�kW1;1ð�Þ � j�j Að1Þ þ 2þ ð1þ Að1ÞÞkBkL1ð�Þ

� 	
: ð69Þ

This result will help us to see what happens when �! 0.

Proof of Proposition 4.1 We consider for � and �>0, the problem

inf
�2W1;2ð�Þ

T
L2ð�Þ

G�	ð Þ þ �

Z
�

j j2 ð70Þ
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where G�	 is given by (58). The existence and the uniqueness of a solution  ��;	 are stan-
dard. We then split the proof into three parts.

Step 1 We are going to show that

k ��;	kL1ð�Þ � M0; ð71Þ

(we will set the constant M0 in the sequel). To do this, we are first going to show that

 ��;	ðxÞ � M1 a.e. x 2 � ; ð72Þ

where M1 is a constant also to be precised later. For all v 2 W1;2ð�Þ
T

L2ð�Þ,  ��;	
verifies

Z
�

�ðr ��;	;rvÞ þ 2� ��;	vþ
X2
i¼1

@g	
@�i

ðr ��;	Þ
@v

@xi
þ ðh

0

	ð 
�
�;	Þ þ BÞv

" #
dx ¼ 0: ð73Þ

We then choose v ¼ ð ��;	 �M1Þþ (where the function ðxÞþ is equal to x if x� 0,
and 0 otherwise). We then get

Z
�
T

f �
�;	
>M1g

½�jr ��;	j
2 þ 2� ��;	ð 

�
�;	 �M1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�0

� dx

¼

Z
�
T

f �
�;	
>M1g

h
�
X2
i¼1

@g	
@�i

ðr ��;	Þ
@ ��;	
@xi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�0 from (H 8)

�ðh
0

	ð 
�
�;	Þ þ BÞð ��;	 �M1Þ

i
dx:

Hence

�h
0

	ðM1Þ þ kBkL1ð�Þ

� �
ð ��;	 �M1Þþ � 0: ð74Þ

If we impose

h
0

	ðM1Þ > kBkL1ð�Þ; ð75Þ

we then have ð ��;	 �M1Þþ ¼ 0, which proves (72). We just need to set M1 so that (75)
be fulfilled. But

h
0

	ðxÞ ¼

4x3

	5
if x � 0

0 if 0 � x � 1

4ðx�1Þ3

	5
if x � 1

8>>>><
>>>>:

ð76Þ

30 G. Aubert and J.-F. Aujol



We deduce that (75) holds if and only if (M1 � 1),

4ðM1 � 1Þ3

	5
> kBkL1ð�Þ

ð77Þ

i.e., if and only if

M1 > 1þ
	5kBkL1ð�Þ

4

� �1
3

: ð78Þ

In the same way as above, we also get:

 ��;	ðxÞ � M2 a:e: x 2 � ð79Þ

if

M2 < �
	5kBkL1ð�Þ

4

� �1
3

ð80Þ

By setting M0 ¼ maxðM1;�M2Þ ¼ M1, we deduce (71).

Step 2 We want to bound kr ��;	kL1ð�Þ. We have

G�	ð 
�
�;	Þ þ �

Z
�

j ��;	j
2 � G�	ð0Þ ¼ 	j�j; ð81Þ

where j�j ¼
R
� dx. But (due to (71))

G�	ð 
�
�;	Þ þ �

Z
�

j ��;	j
2 � kr ��;	kL1ð�Þ � kBkL1ð�Þj�jM0: ð82Þ

Hence

kr ��;	kL1ð�Þ � j�j 	þM0kBkL1ð�Þ

� 	
ð83Þ

We show in the same way as above that,

kr ��;	kL2ð�Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0kBkL1ð�Þj�j

�

r
ð84Þ

On the other hand, due to (71), we get

k ��;	kW1;2ð�Þ �
cffiffiffi
�

p ; ð85Þ

where c is a constant which does not depend on �.
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Step 3 By letting �! 0, we get the existence of  �;	 2 W1;2ð�Þ
T

L1ð�Þ, and  �;	
vérifies (71). Moreover, we show in the same way as in the preceeding step that
r �;	 still verifies (83). We then have (from (71))

k ��;	kW1;1ð�Þ � M0j�j þ j�j 	þM0kBkL1ð�Þ

� 	
; ð86Þ

where we recall that M0 � 1þ 	5kBkL1ð�Þ=4
� 	1

3. g

COROLLARY 4.1 We assume that parameter 	 is given by (59). We then have

�� �  	;� � 1þ �: ð87Þ

Proof This is an immediate consequence of Proposition 4.1. g

Due to Theorem 4.1, we can let �! 0 in problem (57). We thus get the following
result (see [12,23]).

COROLLARY 4.2 We assume that B 2 W1;1ð�Þ, and � is C2. Problem (61) admits
a solution  	 in L1ð�Þ

T
W1;1ð�Þ, and  	 is unique up to an additive constant.

Moreover, for any relatively compact open set V in �, there exists a constant KðV;�Þ

such that

k 	kW1;1ðVÞ � KðV;�Þ ð88Þ

k 	kH2ðVÞ � KðV;�Þ: ð89Þ

Remark From (89), we deduce that  	 belongs to Lip(V) for any relatively compact
open set V in � (thanks to Sobolev injections [1,9]).

4.4. ‘Equivalence’ between problems (52) and (57)

We can now show that when � is fixed, problems (60) and (61) have the same value.

PROPOSITION 4.2 We have

inf
�
F0
�;	ð�Þð�Þ ¼ inf

 
G0
	ð Þ: ð90Þ

Proof Let � 2 W1;1ð�Þ
T

L2ð�Þ. We set  � ¼ H�ð�Þ. We have

F0
�;	ð�Þ ¼ G0

	ð �Þ � inf
 

G0
	ð Þ: ð91Þ

And with Theorem 4.1, we know that problem (57) admits a solution  	. Therefore,

F0
�;	ð�Þ � inf

�
F0
�;	ð�Þ � inf

 
G0
	ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼G0
	
ð 	Þ

ð92Þ
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With Lemma 4.1, we can define ��;	 such that H�ð��;	Þ ¼  	. We then get

F0
�;	ð��;	Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼G0

	
ð 	Þ

� inf
�
F0
�;	ð�Þ � inf

 
G0
	ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼G0
	
ð 	Þ

ð93Þ

from which we deduce (90). g

4.5. Back to �

We work here with �>0 fixed. We have got (50) from (48) with  ¼ H�ð�Þ. To come
back to �, we just need to do the reverse operation.

COROLLARY 4.3 Problem (60) has a solution �� 2 L1ð�Þ
T

W1;1ð�Þ. Moreover, for any
relatively compact open set V in �, we have: �� 2 LipðVÞ.

Proof We consider  	 a solution of (57) given by Corollary 4.2. We set �� ¼ H�1
� ð 	Þ

(which is possible due to Lemma 4.1), and we conclude due to Proposition 4.2. g

COROLLARY 4.4 	 being given by (59), we have

�1� � � �� � 1þ �: ð94Þ

Proof This an immediate consequence of Corollary 4.1 and the definition of H� (46).
g

4.6. Letting �! 0

PROPOSITION 4.3 There exists ~  2 BVð�Þ and a sequence 	n, with 	n ! 0 as n ! þ1,
such that  	n ! ~  in BV weak * (where  	 is a solution of (57) with 	 ¼ 	n given by
Corollary 4.2). Moreover, ~  is a solution of problem (50).

Proof We just need to let 	ð�Þ ! 0 (i.e., �! 0) in (61) (with �¼ 0) from
Proposition 4.1. g

Remark Letting 	ð�Þ ! 0 does not preserve more regularity for  . In this case,
we do not know how to come back to �.

In practice, we set � to a fixed value �0 in the numerical model. Indeed, if � is too
small, the narrow band introduced by the support of �� is then itself too small to
make any discretization of the equations. In fact, as � decreases to 0, we would also
need to make the discretization step (of the evoluting equation) decrease (this last
one is equal to the pixel size) (see [5]).

5. Experimental classification results

In this final section, we want to show some experimental classification result. We
follow the numerical approach used in [6,8,10,21,22,24]. To minimize (6), we con-
sider the associated Euler–Lagrange equation (we assume that Neumann conditions
are verified).

0 ¼ ��ð�Þ
r�

jr�j
þ BðxÞ

� �
ð95Þ
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We embed it in the following dynamical scheme

@�

@t
¼ ���ð�Þ div

r�

jr�j

� �
þ BðxÞ

� �
: ð96Þ

We discretize this system with finite differences (see [8,22] for more details).
We display here two examples. The first one (figure 2) is obtained with the algorithm

of [22]. This algorithm deals with the classification of nontextured images. The second
one (figure 3) is obtained with the algorithm of [8]. This algorithm deals with the
classification of textured images.

In [8,22], one can find examples of classification results in the case of I>2 phases.
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