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Abstract. This paper explores various aspects of the image decomposition problem using modern variational
techniques. We aim at splitting an original image f into two components u and v, where u holds the geometrical
information and v holds the textural information. The focus of this paper is to study different energy terms and
functional spaces that suit various types of textures. Our modeling uses the total-variation energy for extracting
the structural part and one of four of the following norms for the textural part: L2, G, L1 and a new tunable norm,
suggested here for the first time, based on Gabor functions. Apart from the broad perspective and our suggestions
when each model should be used, the paper contains three specific novelties: first we show that the correlation
graph between u and v may serve as an efficient tool to select the splitting parameter, second we propose a new fast
algorithm to solve the TV − L1 minimization problem, and third we introduce the theory and design tools for the
TV-Gabor model.

Keywords: image decomposition, restoration, parameter selection, BV, G, L1, Hilbert space, projection,
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1. Introduction

1.1. Motivation

Decomposing an image into meaningful components
is an important and challenging inverse problem in
image processing. A first range of models are denoising
models: in such models, the image is assumed to have
been corrupted by noise, and the processing purpose
is to remove the noise. This task can be regarded as a
decomposition of the image into signal parts and noise
parts. Certain assumptions are taken with respect to the

∗Current address: CMLA (CNRS UMR 8536), ENS Cachan,
France.

signal and noise, such as the piecewise smooth nature
of the image, which enables good approximations of
the clean original image.

In modern image-processing, two main successful
approaches are usually considered to solve the denois-
ing problem. The first one is based on manipulating
the wavelet coefficients of the image (Donoho and
Johnstone, 1995; Mallat, 1989; Chambolle et al., 1998;
Malgouyres, 2002a, 2002b; Meyer, 2001). The second
one is based on solving nonlinear partial-differential
equations (PDE’s) associated with the minimization
of an energy composed of some norm of the gradient
(Rudin et al., 1992; Chambolle and Lions, 1997;
Aubert and Kornprobst, 2002; Meyer, 2001; Nikolova,
2004; Osher et al., 2004).
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A related but different problem, which is the main
topic of this paper, is the decomposition of an im-
age into its structural and textural parts. The aim of
this type of decomposition is harder to formulate ex-
plicitly. The general concept is that an image can be
regarded as composed of a structural part, correspond-
ing to the main large objects in the image, and a tex-
tural part, containing fine scale-details, usually with
some periodicity and oscillatory nature. The definition
of texture is vague and highly depends on the image
scale. A “structure” in one scale, can be regarded as
“texture” in another scale. Nevertheless, we will at-
tempt to use various variational models, to decom-
pose an image into meaningful structural and textural
parts. Moreover, we will examine the ability to per-
form the task automatically using the correlation crite-
rion. This criterion is very simple and does not assume
any information on the nature or scale of the texture.
It works well in simple cases and can aid in finding
the right weight between the structural and textural
components. In more complicated multi-scale images,
more elaborated mechanisms are needed, based on ad-
ditional information. We will discuss the advantages
and drawbacks of the correlation criterion and suggest
possible ways for further research to solve this difficult
problem.

In this paper, we will focus on image decomposition
models based on total variation regularization meth-
ods, as originally proposed in Rudin et al. (1992). This
approach has recently been analyzed in Meyer (2001),
which is the inspiration source of many works (Vese
and Osher, 2003; Osher et al. 2003; Aujol et al., 2005;
Aubert and Aujol, 2005; Starck et al., 2003; Aujol and
Chambolle, 2005; Bect et al., 2004; Chan and Ese-
doglu, 2004; Daubechies and Teschke, 2004; Le and
Vese, 2004; Yin et al., 2005). In Section 2 we review
the decomposition models that are considered in this
paper.

We aim at splitting an original image f into two
components u and v, u containing the geometrical in-
formation and v the textural information. Our mod-
eling is based on TV regularization approaches: we
minimize a functional with two terms, a first one
based on the total variation and a second one on
a different norm adapted to the texture component.
One aim of the paper is to analyze the different
structure-texture models and to point out the sim-
ilarities and differences between the decomposition
techniques. In addition, three main contributions are
presented:

1. First, we show that the correlation graph between
u and v is an efficient tool to select the splitting
parameter.

2. Second, we propose a new fast algorithm to solve
the TV − L1 minimization problem.

3. Third, we introduce a new TV-Gabor model which
leads us to adaptive frequency and directional image
decomposition.

All the algorithms we consider are inspired by the
ROF model (Rudin et al., 1992), in the sense that they
are all of the generic form TV-another norm.

1.2. Outline of the Paper

A main purpose of the paper is to know when one
should use each model. The organization of the pa-
per is influenced by our final conclusions. The four
models can be classified to fit three main types of tex-
tures: general oscillating patterns (TV − L2 and TV −
G), structural textures (TV − L1) and smooth periodic,
possibly directional, textures (TV-Gabor).

The paper is organized as follows. In Section 2,
the four decomposition models are formulated. In
Section 3, we introduce the notations that will be used
in the rest of the paper. We briefly review Chambolle’s
projection algorithm, which is a recent and efficient
method to solve the ROF problem (Chambolle, 2004).
We recall how Chambolle’s algorithm can be used to
solve the A2BC model (Aujol et al., 2005). We also
recall the framework of the TV-Hilbert regularization
of Aujol and Gilboa (2004). In Section 4, we propose
a method to compute the decomposition of an image
using a correlation criterion, inspired by the work of
Mrázek and Navara (2003). In Section 5, we exam-
ine general type decompositions using the TV − L2

and T V − G models and relate their parameters in
the A2BC framework (which well approximates TV −
G). In Section 6, we introduce a new fast and effi-
cient algorithm to solve the TV − L1 minimization
problem (5). We carry out the complete mathematical
analysis of this new algorithm. The advantages and
drawbacks of using the correlation method for param-
eter tuning to this kind of regularization are presented.
In Section 7, we design a family of Hilbert spaces
based on Gabor functions. This provides us with a
new TV-Gabor model in which one can take advantage
of knowledge of both the frequency and the direction
of the texture. It is also shown how the correlation
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criterion can be used to select the regularization pa-
rameter. We then conclude the paper in Section 8
with some final remarks and future prospects. In
Appendix A1, we detail the proofs of the mathematical
results of Section 6.

2. Four Decomposition Models

From now on, we denote by f the original image to
decompose. It is reasonnable and classical to assume
that f is defined on a bounded and connected Lipschitz
open set � (typically � is a rectangle), and that f is
bounded. Therefore f belongs to L∞(�). Since � is
bounded, f also belongs to L2(�).

2.1. TV − L2 (ROF)

Rudin, Osher and Fatemi proposed in Rudin et al.
(1992) a popular denoising algorithm which preserves
well the edges of the original image, while removing
most of the noise. This algorithm decomposes an image
f into a component u belonging to BV and a component
v in L2. In this approach the following functional is
being minimized:

inf
(u,v)∈BV ×L2/ f =u+v

(∫
|Du| + λ‖v‖2

L2

)
(1)

where
∫ |Du| is the total variation of u. For a detailed

mathematical study of (1) we refer the reader to
Chambolle and Lions (1997).

2.2. TV − G (Meyer)

Meyer (2001), Meyer suggests a new decomposition
model. He proposes the following functional:

inf
(u,v)∈BV ×G/ f =u+v

(∫
|Du| + λ‖v‖G

)
(2)

where the Banach space G contains signals with large
oscillations, and thus in particular textures and noise.
We give here the definition of G.

Definition 1. G is the Banach space composed of
distributions f which can be written as

f = ∂1g1 + ∂2g2 = div(g) (3)

with g1 and g2 in L∞. The space G is endowed with
the following norm:

‖v‖G = inf{‖g‖L∞ /v = div(g), g = (g1, g2),

g1 ∈ L∞, g2 ∈ L∞, |g(x)| =
√

(|g1|2 + |g2|2)(x)}
(4)

A function belonging to G may have large oscil-
lations and nevertheless have a small norm. Thus the
norm on G is well-adapted to capture the oscillations of
a function in an energy minimization method. We refer
the reader to Aujol and Chambolle (2005) for some
numerical computations of typical image G norm. In
Meyer (2001), the author did not propose any numer-
ical scheme to compute the decomposition. Vese and
Osher (2003) were the first to propose a numerical
scheme to solve this model using Euler-Lagrange equa-
tions based on Lp norms. Aujol et al. (2003, 2005) sug-
gested a different method based on projection (A2BC)
which will be explained in Section 3.3. Notice that an
approach based on second order cone programming
has recently been proposed in Yin et al. (2005).

2.3. TV − L1

In Aliney (1997) and Nikolova (2004) it was suggested
to replace the L2 norm in the ROF model by a L1 norm.
The functional to minimize in this case is

inf
(u,v)∈BV ×L1/ f =u+v

(∫
|Du| + λ‖v‖L1

)
(5)

Nikolova has showed that the L1 norm is particularly
well suited to remove salt and pepper noise (Nikolova,
2004). Comparing to the ROF model (1), this func-
tional does not erode structures, and presents other
interesting properties.

This model has recently been studied mathemat-
ically in the continuous case in Chan and Esedoglu
(2004). The authors present interesting quantitative
properties of the model related to scale-space and show
that geometrical features are better preserved. Numer-
ically, one of the main drawbacks of the model is that,
until now, there was no fast algorithm to solve (5). An
important contribution of the paper is to address this
problem and to propose a fast and efficient algorithm
to solve (5). We will study problem (5) in Section 6.
A different method based on second order cone
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programming has recently been proposed in Yin et al.
(2005).

2.4. TV-Hilbert

Motivated by Rudin et al. (1992) and Osher et al.
(2003), the authors of Aujol and Gilboa (2004) have
proposed a generalization of the ROF and OSV mod-
els:

inf
(u×v)∈BV ×H/ f =u+v

{∫
|Du| + λ‖v‖2

H

}
(6)

where H is some Hilbert space. In the case when
H = L2, then (6) is the ROF model (Rudin et al.
1992), and when H = H−1 then (6) is the OSV model
(Osher et al., 2003). By choosing suitably the Hilbert
space H, it is possible to compute a frequency and di-
rectional adaptive image decomposition, as we will see
in Section 7. One of the main contributions of the paper
is the designing of a family of Hilbert spaces based on
Gabor wavelets for such a purpose.

3. Settings and Previous Projection Algorithms

In this paper all our models are solved numerically by
projections algorithms, and not by using the more clas-
sical techniques based on Euler-Lagrange equations.
Notice that a method based on convex analysis to solve
TV models was recently proposed in Combettes and
Luo (2002), and another one based on Support Vector
Regression in Steidl et al. (2005) We present Cham-
bolle’s projection algorithm, which is a recent method
to solve the ROF problem (Chambolle, 2004). An im-
portant advantage of this algorithm is that there is no
need to regularize the TV energy. When using Euler-
Lagrange equations to minimize a TV term, one first
needs to regularize the functional and consider instead∫ √

|∇u|2 + ε2. The small parameter ε is necessary
to prevent numerical instabilities. The main advantage
of Chambolle’s projection method is that it does not
use this additional artificial parameter, and is therefore
more faithful to the continuous formulation of the en-
ergy. Moreover, in this projection framework, we can
easily and rigourously show the convergence of the
algorithms towards the minimizers of the functional.

We also recall how Chambolle’s algorithm can be
used to solve the A2BC model (Aujol et al., 2005).
We then recall how Chambolle’s algorithm has been
extended to a larger class of TV-Hilbert functionals in

Aujol and Gilboa (2004). We begin by introducing the
notations that we will use in the rest of the paper.

3.1. Discretization

From now on and through the rest of the paper, we
consider the discrete case. The image is a two dimen-
sion vector of size N × N . We denote by X the Eu-
clidean space R

N×N , and Y = X × X . The space X
will be endowed with the L2 inner product (u, v)L2 =∑

1≤i, j≤N ui, jvi, j and the norm ‖u‖L2 = √
(u, u)L2 .

We also set ‖u‖L1 = ∑
1≤i, j≤N |ui, j |. To define a dis-

crete total variation, we introduce a discrete version
of the gradient operator. If u ∈ X , the gradient ∇u is
a vector in Y given by: (∇u)i, j = ((∇u)1

i, j , (∇u)2
i, j ),

with

(∇u)1
i, j =

{
ui+1, j − ui, j if i < N

0 if i = N

and

(∇u)2
i, j =

{
ui, j+1 − ui, j if j < N

0 if j = N
.

The discrete total variation of u is then defined by:

J (u) =
∑

1≤i, j≤N

|(∇u)i, j | (7)

We also introduce a discrete version of the diver-
gence operator. We define it by analogy with the
continuous setting by div = −∇∗ where ∇∗ is the
adjoint of ∇: that is, for every p ∈ Y and u ∈ X,
(−divp, u)L2 = (p,∇u)Y . It is easy to check that:

(div(p))i, j =




p1
i, j − p1

i−1, j if 1 < i < N

p1
i, j if i = 1

−p1
i−1, j if i = N

(8)

+




p2
i, j − p2

i, j−1 if 1 < j < N

p2
i, j if j = 1

−p2
i, j−1 if j = N

From now on, we will use these discrete operators. We
are now in position to introduce the discrete version of
Meyer’s space G.
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Definition 2.

G = {v ∈ X / ∃g ∈ Y such that v = div(g)} (9)

and if v ∈ G

‖v‖G = inf
{‖g‖∞ / v = div(g), g = (g1, g2) ∈ Y,

|gi, j | =
√(

g1
i, j

)2 + (
g2

i, j

)2}
(10)

where ‖g‖∞ = maxi, j |gi, j |.

Moreover, we will denote:

Gµ = {v ∈ G / ‖v‖G ≤ µ} (11)

We recall that the Legendre-Fenchel transform of
F is given by F∗(v) = supu(u, v)L2 − F(u) (see
Ekeland and Temam, 1974). The following result
is proved in Aujol et al. (2005). We see that J (·)
(resp.‖.‖G) is the polar of ‖ · ‖G(resp.J (·)).

Proposition 1. The space G identifies with the fol-
lowing subspace:

X0 =
{

v ∈ X

/ ∑
i, j

vi, j = 0

}
(12)

Notice that these results are in discrete. See Aubert
and Aujol, 2005) for the definition of G in the
continuous case. We also refer the interested reader
to Hintermuller and Kunisch (2004) about the relation
between the discrete and the continuous Fenchel dual.

3.2. Chambolle’s Projection Algorithm

Since J defined by (7) is homogeneous of degree one
(i.e. J (λu) = λJ (u) ∀u and λ > 0), it is then standard
(see Ekeland and Temam, 1974) that J∗ is the indicator
function of some closed convex set, which turns out to
be the set G1 defined by (11):

J ∗(v) = χG1 (v) =
{

0 if v ∈ G1

+∞ otherwise
(13)

This can be checked out easily (see Chambolle,
2004) for details). In Chambolle (2004), the author

proposes a nonlinear projection algorithm to minimize
the ROF model. The problem is:

inf
u∈X

(
J (u) + 1

2λ
‖ f − u‖2

L2

)
(14)

We have the following result, which comes from
standard convex duality theory (Ekeland and Temam
1974):

Proposition 2 (Chambolle 2004): The solution of
(14) is given by: u = f − PGλ

( f ) where P is the
orthogonal projector on Gλ (defined by (11)).

We use the following algorithm to compute PGλ
( f ).

It indeed amounts to finding:

min
{‖λdiv(p) − f ‖2

L2 : p / |pi, j | ≤
1 ∀i, j = 1, . . . , N

}
(15)

This problem can be solved by a fixed point method:
p0 = 0 and

pn+1
i, j = pn

i, j + τ (∇(div(pn) − f/λ))i, j

1 + τ |(∇(div(pn) − f/λ))i, j | (16)

In Chambolle (2004) is given a sufficient condition
ensuring the convergence of the algorithm: it is shown
that as long as τ ≤ 1/8, then λdiv(pn) converges to
PGλ

( f ) as n → +∞.

3.3. Aujol-Aubert-Blanc-Féraud-Chambolle Model
(A2BC)

Inspired from the work by Chambolle (2004) and by
the numerical results of Vese and Osher (2003), the
authors of Aujol et al. (2003, 2005) propose a relevant
approach to solve Meyer problem. They consider the
following problem

inf
(u,v)∈X×Gµ

(
J (u) + 1

2α
‖ f − u − v‖2

L2

)
(17)

where Gµ = {v ∈ G/‖v‖G ≤ µ}, and ‖v‖G is defined
by (10), and J(u) by (7).

The authors of Aujol et al. (2005) present their model
in a discrete framework. See also Aubert and Aujol
(2005) for a study of this model in a continuous setting,
and Aujol and Kang (2004) for an extension to color
images. In this paper, we will focus on the A2BC model



Aujol et al.

to solve Meyer’s problem automatically in Section 5. In
Aujol et al. (2003, 2005), the authors use Chambolle’s
projection algorithm (Chambolle, 2004) to solve (17).
We describe their method below.

Minimization: Since J∗ is the indicator function of G1

(see (13)), we can rewrite (17) as

inf
(u,v)∈X×X

1

2α
‖ f − u − v‖2

L2 + J (u) + J ∗
(

v

µ

)
(18)

With this formulation, we see the symmetric roles
played by u and v. To solve (18), we consider the
two following problems:

• v being fixed, we search for u as a solution of:

inf
u∈X

(
J (u) + 1

2α
‖ f − u − v‖2

L2

)
(19)

• u being fixed, we search for v as a solution of:

inf
v∈Gµ

‖ f − u − v‖2
L2 (20)

From Proposition 2, we know that the solution of
(19) is given by: û = f − v − PGα

( f − v). And the
solution of (20) is simply given by: v̂ = PGµ

( f − u).

Algorithm:

1. Initialization:

u0 = v0 = 0 (21)

2. Iterations:

vn+1 = PGµ
( f − un) (22)

un+1 = f − vn+1 − PGα
( f − vn+1) (23)

3. Stopping test: we stop if

max(|un+1 − un|, |vn+1 − vn|) ≤ ε (24)

It is shown in Aujol et al. (2005) that the sequence
(un,vn) given by (21)–(23) converges to the unique
minimizer of problem (17).

Parameters: Algorithm (21)–(23) needs thus the two
parameters α and µ. The parameter α controls the L2-
norm of the residual f − u − v. The smaller α is,
the smaller the L2 norm of the residual f − u − v is.
The larger µ is, the more v contains information, and
therefore the more u is averaged. In fact, the choice
of α is easy. One just needs to set it very small. For
instance, in all the examples presented hereafter, we
have chosen α=1, and found out a maximum norm for
f − u − v of about 0.5 (for values ranging from 0 to
255). But the µ parameter is much harder to tune. It
controls the G norm of the oscillating component v.
In the case of image denoising, a first method to tune
µ with respect to the standard deviation of the noise
has been proposed in Aujol and Chambolle (2005). We
will present a way to select µ in the case of image
decomposition in Section 5.

3.4. H Hilbert Space

In Aujol and Gilboa (2004), the authors have consid-
ered other spaces to model oscillating patterns. They
propose to use a general family of Hilbert spaces that
we will consider in Section 7. These Hilbert spaces are
defined thanks to an operator K.

K a linear symmetric positive-definite operator from
to L2, where $ is either X0 or L2 (we recall that X0 is
defined by (12)). In the case when A = X0, then we
extend K to the whole L2 by setting K (x) = +∞ if
x ∈ L2\X0. Notice that with these assumptions, then
we can define K−1 on I mK = {z ∈ L2 such that ∃x ∈
A with z = K (x)}.

If f and g are in X0, then let us define:

〈 f, g〉H = 〈 f, K g〉L2 (25)

This defines a inner product on X0 = {x ∈
X /

∑
i, j xi, j = 0}.

We note that since we only deal here with the discrete
case, all the spaces we consider are of finite dimension
and are therefore Euclidean spaces.

Examples.

1. When K=Id, then H = L2.
2. When K = −	, then H = H = { f ∈ L2,∇ f ∈

L2}.
3. When K = −	−1, then H = H−1 = (H 1

0 )∗ (see
Adams (1975) for the definition of H−1.
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Remark. In Section 7, we will assume A = L2, i.e. that
K is positive-definite on L2.

3.5. TV-Hilbert Regularization model

The model studied in Aujol and Gilboa (2004) is the
following:

inf
u

(
J (u) + λ

2
‖ f − u‖2

H

)
(26)

In Aujol and Gilboa (2004), the authors give some
mathematical results about this problem. In particu-
lar, they show the existence and uniqueness of a so-
lution for (26). They also propose a modification of
Chambolles’s projection algorithm (Chambolle, 2004)
to compute the solution of problem (26):

p0 = 0 (27)

and

pn+1
i, j = pn

i, j + τ (∇(K −1div(pn) − λ f ))i, j

1 + τ |(∇(K −1div(pn) − λ f ))i, j | (28)

Theorem 1 If τ ≤ 1
8‖K −1‖L2

, then 1
λ

K −1divpn → v̂

as n → ∞, and f − 1
λ

K −1divpn → û as n → ∞,
where û is the solution of problem (26) and v̂ = f − û.

In Aujol and Gilboa (2004), the authors apply their
framework to solve the OSV model (Osher et al., 2003)
(i.e. when H = H−1), and they study the problem
of image denoising. In this paper, we intend to use
(26) to carry out frequency and directional adaptive
image decomposition. Indeed, by choosing the kernel
K in a suitable way, we can emphasize the weight of
some frequencies and directions. SWe will address this
problem in Section 7.

Now that we have introduced the notations and pre-
sented some of the previous works, we present a gen-
eral criterion based on correlation to select the regular-
ization parameter in the different models that we will
consider.

4. The Correlation Tool for Selecting the Balance
Between the Energies

In this section, we propose a method to select the
weight parameter for a proper decomposition of an

image. The authors are not aware of any suggested
method on how to choose the value of λ for decompo-
sition. Therefore we first discuss shortly the solutions
at present that are used for denoising and explain the
difficulties that arise in decomposition.

For the denoising problem, one often assumes that
the variance of the noise σ 2 is known a-priori or can
be well estimated from the image. As the v part in
the denoising case should contain mostly noise, a nat-
ural condition is to select λ such that the variance of
v is equal to that of the noise, that is var(v) = σ 2.
Such a method was used in Rudin et al. (1992) in the
constrained ROF model, and this principle dates back
to Morosov (1966) in regularization theory. A modern
approach, suggested recently in Gilboa et al. (2004),
is to try to optimize a criterion, such as the Signal-to-
Noise Ratio (SNR). It was shown that this method can
achieve better results than the constrained formulation,
in terms of SNR and visually, for a wide class of im-
ages. This method also relies on an estimation of the
noise variance.

Both of the above approaches cannot be applied for
finding λ in decomposition. Here we do not know of
a good way to estimate the texture variance, also there
is no performance criterion like the SNR, which can
be optimized. Therefore we should resort to a different
approach.

Our approach follows the work of Mrázek and
Navara (2003), used for finding the stopping time for
denoising with nonlinear diffusions. The method relies
on a correlation criterion and assumes no knowledge
of noise variance. As shown in Gilboa et al. (2004), its
performance is inferior to the SNR-based method of
Gilboa et al. (2004) and to an analogue of the variance
condition for diffusions. For decomposition, however,
the approach of Mrázek and Navara (2003), adopted
for the variational framework, may be a good basic
way for the selection of λ.

In this paper the general decomposition framework
is of the form:

EStructure(u) + λET exture(v), f = u + v, (29)

where u and v minimize the above total energy. Our
goal is to find the right balance between the energy
terms, or the value of λ, which produces a meaningful
structure-texture decomposition.

Let us define first the (empirical) notions of mean,
variance and covariance in the discrete setting of N ×
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N pixels image. The mean is

q̄
.= 1

N 2

∑
1≤i, j≤N

qi, j ,

the variance is

V (q)
.= 1

N 2

∑
1≤i, j≤N

(qi, j − q̄)2,

and the covariance is

cov(q, r )
.= 1

N 2

∑
1≤i, j≤N

(qi, j − q̄)(ri, j − r̄ ).

We would like to have a measure that defines orthog-
onality between two signals and is not biased by the
magnitude (or variance) of the signals. A standard mea-
sure in statistics is the correlation, which is the covari-
ance normalized by the standard deviations of each
signal:

corr(q, r )
.= cov(q, r )√

V (q)V (r )
.

By the Cauchy-Schwarz inequality it is not hard
to see that cov(q, r ) ≤ √

V (q)V (r ) and therefore
|corr(q, r )| ≤ 1. The upper bound 1 (completely cor-
related) is reached for signals which are the same,
up to an additive constant and up to a positive mul-
tiplicative constant. The lower bound −1 (completely
anti-correlated) is reached for similar signals but with
a negative multiplicative constant relation. When the
correlation is 0 we refer to the two signals as not corre-
lated. This is a necessary condition (but not a sufficient
one) for statistical independence. It often implies that
the signals can be viewed as produced by different
“generators” or models.

To guide the parameter selection of a decomposition
we use the following assumption:

Assumption. The texture and the structure compo-
nents of an image are not correlated.

This assumption can be relaxed by stating that the
correlation of the components is very low. Let us de-
fine the pair (uλ, vλ) as the one minimizing (29) for a
specific λ. As proved in Meyer (2001) for the TV − L2

model (and in Gilboa et al. (submitted) for any convex

structure energy term with L2, we have cov(uλ, vλ) ≥ 0
for any non-negative λ and therefore

0 ≤ corr(uλ, vλ) ≤ 1, ∀λ ≥ 0. (30)

This means that one should not worry about nega-
tive correlation values. Note that positive correlation is
guaranteed in the TV − L2 case. As we will later see, in
the TV − L1 case we may have negative correlations,
and should therefore be more careful.

Following the above assumption and the fact that the
correlation is non-negative, to find the right parameter
λ, we are led to consider the following problem:

λ∗ = argminλ (corr(uλ, vλ)) . (31)

In practice, one generates a scale-space using the pa-
rameter λ (in our formulation, smaller λ means more
smoothing of u) and selects the parameter λ∗ as the
first local minimum of the correlation function be-
tween the structural part u and the oscillating part v.
See also Gilboa et al. (submitted, 2003, 2005, Mrazek
and Navara (2003), Aujol and Gilboa (2004) for related
approaches.

This selection method can be very effective in simple
cases with very clear distinction between texture and
structure. In these cases corr(u, v) behaves smoothly,
reaches a minimum approximately at the point where
the texture is completely smoothed out from u, and
then increases, as more of the structure gets into the
v part. See Figs. 1 to 5 in the next section for some
numerical examples. The graphs of corr(u, v) in the TV
− L2 case behave quite as expected, and the selected
parameter lead to a good decomposition. We will make
more comments about the numerical results in the next
section.

For more complicated images, there are textures and
structures of different scales and the distinction be-
tween them is not obvious. In terms of correlation,
there is no more a single minimum and the function
may oscillate.

As a first approximation of a decomposition with a
single scalar parameter, we suggest to choose λ after
the first local minimum of the correlation is reached.
In some cases, a sharp change in the correlation is also
a good indicator: after the correlation sharply drops
or before a sharp rise. At this stage we cannot claim a
fully automatic mechanism for the parameter selection
that always works, but rather a highly relevant
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measurement that should be taken into consideration
in future development of automatic decompositions.

5. TV − L2 and TV − G Regularizations

In this section, we first show how we can use the cor-
relation tool to select the parameter in the TV − L2

regularization model. We then show how we can ex-
tend this method to the TV − G model.

5.1. Parameter Selection for the TV − L2 Model

Let us first recall here the TV − L2 problem (Rudin et
al. 1992):

inf
u∈X

(
J (u) + 1

2β
‖ f − u‖2

L2

)
(32)

We denote by (uβ, vβ ) the solution of (32). This
regularization model has encountered a large success in
image denoising. One of the main reason of this success
is that the total variation regularization preserve the
edges of the restored image. It is straightforward to
apply the correlation criterion of Section 4 to select the
parameter in the TV − L2 model.

5.2. Parameter Selection for the TV − G Model

We focus here on the A2BC model (Aujol et al., 2005),
which is a very good approximation. We show how
we can use the correlation criterion for the ROF model
(Rudin et al. 1992) to carry out automatic image de-
composition with the A2BC model. A first approach
would be to consider the correlation between u and v

computed with the A2BC algorithm. We have rejected
this approach because of computation time: indeed, to
compute an accurate solution with the A2BC algorithm
is about ten times slower than the classical TV − L2

minimization approach. We have decided instead to use
the mathematical connections between the ROF model
and the A2BC algorithm to select the parameter in a
much faster way.

To this end, we first need to give some mathematical
properties of the A2BC model, (17), which is a way
to solve Meyer’s problem. As we have said in Sec-
tion 3, the parameter α in (17) is set to a fixed small
value (α=1 in our numerical examples). The difficulty
is to tune the µ parameter. We intend here to propose
a method to compute automatically the parameter µ.

The idea is to use the method proposed for the ROF
model in Section 5.1 (which is a straightforward appli-
cation of the general method presented in Section 4).
By choosing β as the first minimum of the function
β �→ corr(uβ, vβ ) (where uβ is the solution of the ROF
problem (32) and vβ = f − uβ), we have an automatic
algorithm to compute the right parameter β for (32).
All we need to do then is to relate the parameter β in
(32) to µ in the A2BC model (17).

5.2.1. Relating β to µ. In Meyer (2001), Meyer
introduced the G norm to analyze the mathematical
properties of the ROF model. As noticed in Strong
et al. (2005), one of the main results of Meyer
(2001) happens to be a straightforward corollary of
Proposition 2:

Corollary 1. Let us denote by uβ the solution of (32),
by vβ = f − uβ , and by f̄ the mean of f.

• If ‖ f − f̄ ‖G ≥ β, then ‖vβ‖G = ‖ f − uβ‖G = β.
• If ‖ f − f̄ ‖G ≤ β, then uβ = f̄ .

As we can see, the behavior of the ROF model is
closely related to the G norm of the initial data f.

Lemma 1. The parameter β computed in Section 4
is such that ‖vβ‖G = β.

Proof. Let us denote βmax = ‖ f − f̄ ‖G . It is easy to
show that if β ∈ (0, βmax), then corr(uβ, vβ) remains
bounded. From Corollary 1, we get that if β ≥ βmax,
then uβ = f̄ and vβ = f − f̄ . Therefore the first local
minimum of the correlation is such that β ≤ βmax. We
then conclude thanks to Corollary 1. �

Thanks to Section 5.1, we know how to compute
automatically the decomposition of an original image
with the ROF model. And thanks to Lemma 1, we also
know the G norm of the v component we get with the
ROF model, i.e. ‖v‖G = β. As we have explained in
the introduction, Meyer’s idea is to replace the L2 norm
in the ROF model (32) by the G norm. The G norm
is better suited to capture oscillating patterns, such as
textures, than the L2 norm (as it is numerically shown
in Aujol and Chambolle (2005)). Therefore, a possi-
ble improvement of the algorithm of Section 5.1 is to
compute Meyer’s decomposition under the constraint
that ‖v‖G = β. Since the G norm is a better choice
to capture the texture part of an image (Meyer, 2001;
Aubert and Aujol, 2005; Aujol and Chambolle, 2005),



Aujol et al.

this would indeed gives a better decomposition result
than the ROF model.

This naturally leads us to consider the A2BC model
(17) with

µ = β (33)

Indeed, with such a parameter, the v component com-
puted with the A2BC model is such that ‖v‖G ≤ β.
And we prove in the following subsection that in fact
we have ‖v‖G = β.

5.2.2. Some Mathematical Results About the A2BC
Model. The functional to minimize in (17) is the fol-
lowing:

F(u, v) = J (u)+ J ∗
(

v

µ

)
+ 1

2α
‖ f −u −v‖2

L2 (34)

The following Lemma is proved in Aujol et al.
(2005):

Lemma 2. There exists a unique couple (û, v̂) ∈ X ×
Gµ minimizing F on X × X.

From now on, let us denote by (û, v̂) the unique
solution of the A2BC problem (17). The next result
will help to see the connection between the parameter
β in the ROF model and the parameter µ in the A2BC
algorithm:

Proposition 3. The following alternative holds:

• If ‖ f − f̄ ‖G ≤ µ, then v̂ = f − f̄ .
• If ‖ f − f̄ ‖G ≥ µ, then ‖v̂‖G = µ.

Proof. Let us first remark that F(u, v) ≥ 0 for all
(u, v) in X × X . Moreover, if we assume that ‖ f −
f̄ ‖G ≤ µ, we have F( f̄ , f − f̄ ) = 0, which means
that ( f̄ , f − f̄ ) is a minimizer of F. We then get the
first point of Proposition 3 thanks to the uniqueness
result of Lemma 2.

We now turn our attention to the second point of
Proposition 3. We therefore assume that ‖ f − f̄ ‖G ≥
µ. Let us consider the following function defined on
X × X :

H (u, v) = J (u) + 1

2α
‖ f − u − v‖2

L2 (35)

H is a proper convex continuous function defined on
X×X . There exists therefore (ũ, ṽ) in X×Gµ such that
(ũ, ṽ) is a minimizer of H on X×Gµ. Let us remark that
H ( f̄ , f − f̄ ) = 0. We then consider the function g :
t �→ ‖t ṽ+(1− t)( f − f̄ )‖G . g is a continuous function
on [0,1]. Moreover, we have g(0) = ‖ f − f̄ ‖G ≥ µ

and g(1) = ‖ṽ‖G ≤ µ. There exists thus ť in [0, 1] such
that g(ť) = ‖ť ṽ+ (1− ť)( f − f̄ )‖G = µ. Let us denote
by v̌ = ť ṽ + (1 − ť)( f − f̄ ) and ǔ = ť ũ + (1 − ť) f̄ .
Since H is a convex function, we get that H (ǔ, v̌) ≤
ť H (ũ, ṽ)+(1−ť)H ( f̄ , f − f̄ ) ≤ H (ũ, ṽ). We therefore
deduce that (ǔ, v̌) is a minimizer of H on X ×Gµ. Since
H and F coincide on X × Gµ, we get that (ǔ, v̌) is a
minimizer of F on X × X . From Lemma 2, we then
conclude that (ǔ, v̌) = (û, v̂) the unique minimizer of
F on X × X , and ‖v̂‖G = ‖v̌‖G = µ. �

From Lemma 1 and Corollary 1, we know that ‖ f −
f̄ ‖G ≥ β. And from (33), we have β = µ. From
Proposition 3, we thus deduce that v̂, the v component
we get with the A2BC algorithm, is such that ‖v̂‖G = µ.
This new v component has therefore the same G norm
as the one of the v component (vβ) computed with the
ROF model in Section 5.1. But since the G norm is
better at capturing the oscillating patterns then the L2

norm, this new decomposition is more accurate than
the previous one.

This analysis is confirmed by the numerical results
we get in the next subsection.

5.3. Numerical Results

Let us first summarize the method we propose to com-
pute the decomposition into geometry and texture with
the A2BC model.

Automatic algorithm for the A2BC model:

1. Set α = 1 in (17).
2. Compute β as the first minimum of the function

β �→ corr(uβ, vβ ) (where uβ is the solution of the
ROF problem (32) and vβ = f − uβ).

3. Set µ = β in (17).
4. Compute the decomposition with the algorithm

(21)–(23).

We show some numerical results in Figs. 1–5 of TV
− L2 and TV − G decompositions. As expected, the
results obtained with the A2BC algorithm are slightly
better than the ones obtained with the ROF model. For
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Figure 1. A simple example.

instance, on Fig. 1, one can check that the square is
less eroded with Meyer’s G norm (and in this case, the
square is a geometrical feature and should remain in
the u component). On Fig. 5, one sees that the leg of the
table appears much more in the v component with the
ROF model than with the A2BC algorithm. In general,
the ROF model already does a good job, and the A2BC
algorithm seems to bring a small improvement. Notice
that we do not claim that we compute the best possible
results (see Vese and Osher, 2003; Osher et al., 2003;
Aujol et al., 2005; Aujol and Chambolle, 2005) for
instance where the parameters are tuned manually):
what we claim is that our parameter selection method
leads to a visually good result (for both models).

Detailed explanation on the correlation graph: In
these experiments the correlation corr(u, v) of 50 val-
ues of λ is plotted. We initially set λ0 = 1 and re-
duced each time the value by a factor of 0.9 such
that λn+1 = 0.9λn . To solve the minimization prob-
lem for λn+1 we initialized with the solution obtained
for λn , and therefore the convergence is quite fast. Also
note that in practice one needs not compute the whole

Figure 2. A synthetic image.

Figure 3. Barbara image and TV − L2 correlation graph.

graph and can stop when the first local minimum is
reached. One may also use courser λ resolutions to save
some computational efforts. Note that the correlation
graph finds well the right splitting parameter in Figs.
1 and 2 and even in the more complex Barbara image,
Figs. 3–5. In these cases a fully automatic decomposi-
tion is possible. In all the correlation graphs the split-
ting point chosen by our automatic algorithm is marked
with “x”.
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Figure 4. u component of TV − L2 and TV − G decompositions
of the Barbara image (the TV − G decomposition is approximated
with the A2BC algorithm).

Now that we have introduced a method to auto-
matically compute the µ parameter in (17), that is
to automatically compute Meyer’s decomposition,
we turn our attention to another interesting, more
geometric, decomposition model.

6. TV − L1 Regularization

Let us first recall the model studied in Nikolova (2004):

inf
u

{J (u) + λ‖ f − u‖L1} (36)

6.1. A Fast Algorithm for TV- L1 Regularization

In this section, we introduce a new fast and efficient
algorithm to solve the TV − L1 minimization problem
(15). We carry out the complete mathematical analy-
sis of this new algorithm. We can then adapt the cor-

Figure 5. v component of TV − L2 and TV − G decompositions
of the Barbara image (the TV − G decomposition is approximated
with the A2BC algorithm).

relation method for parameter tuning to this kind of
regularization.

As we have done previously for the ROF model,
we want to derive an automatic algorithm to compute
the parameter λ automatically. Our idea is to use the
correlation assumption as in Section 4. To this end,
we first need to propose a fast algorithm to minimize
(36). Indeed, the algorithm used for instance in Chand
and Esedoglu (2004) is a very slow algorithm: the au-
thors first regularize the functional by considering the
approximated problem:

inf
u

{∫ √
|∇u|2 + ε2

1 + λ

∫ √
( f − u)2 + ε2

2

}
(37)

They compute the solution of this new problem by
solving the associated Euler-Lagrange equation.

In Nikolova (2004), the author solves the problem:

inf
u

{∫ √
|∇u|2 + ε2 + λ‖ f − u‖L1

}
(38)
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The author proposes a relaxation algorithm to compute
the solution, but this is also a slow algorithm. Notice
that in this case there may be several possible solutions.

We mention also the very recent work (Yin et al.,
2005) where the authors minimize (38), for ε = 0,
with an algorithm based on second order cone pro-
gramming.

6.1.1. A New Functional. We remind the reader that
in this paper we only consider the discrete case.

We propose here another possible regularization of
(36). We consider the functional:

inf
u,v

{
J (u) + 1

2α
‖ f − u − v‖2

L2 + λ‖v‖L1

}
(39)

The parameter α is small so that we almost have
f = u + v.

Proposition 4. β being a positive parameter, the so-
lution V of the problem

inf
v

{
1

2β
‖g − v‖2

L2 + ‖v‖L1

}
(40)

is given by:

vi, j =




gi, j − β if gi, j ≥ β

0 if |gi, j | ≤ β

gi, j + β if gi, j ≤ −β

(41)

We will write v = ST(g, β), i.e. v is the Soft Thresholding
of g with level of threshold β.

Proof. The proof is the same as the one proposed
in Chambolle et al. (1998) (page 323) in the case of
Wavelet Soft Thresholding. It is just a simple 1D mini-
mization problem, since all the equations are indepen-
dent, and the computation is straightforward. �

Let us now look at the minimization of (39). Since
the functional is convex, a natural way to compute the
solution is to minimize with respect to each of the
variables separately, and to iterate until convergence as
in the A2BC model for instance. See also (Combettes
and Wajs 2004; 2005) for a general approach of such
minimization problems. We therefore consider the two
following problems:

• v being fixed, we search for u as a solution of:

inf
u

(
J (u) + 1

2α
‖ f − u − v‖2

L2

)
(42)

• u being fixed, we search for v as a solution of:

inf
v

1

2α
‖ f − u − v‖2

L2 + λ‖v‖L1 (43)

From Proposition 2, we know that the solution of
(42) is given by: û = f − v − PGα

( f − v). And from
Proposition 4, the solution of (43) is given by: v̂ =
ST ( f − u, αλ).

It is possible to show as in Aujol et al. (2005) (for the
A2BC model) that iterating these two minimizations is
a way to compute the solution of problem (39). The
main advantage of this new algorithm is that instead
of the two regularization parameters ε1 and ε2 used in
Chand and Esedoglu (2004), here we only have one
regularization parameter λ. Moreover, this new algo-
rithm seems to be faster.

6.1.2. A Thresholding Algorithm. To increase the
speed of the previous algorithm, we propose a slight
modification of problem (39). We consider the new
functional:

inf
u,v

{
‖u‖Ḃ1

1,1
+ 1

2α
‖ f − u − v‖2

L2 + λ‖v‖L1

}
(44)

where B1
1,1 is the usual homogeneous Besov space

(Meyer 2001; Aujol and Chambolle 2005).
Although we consider the discrete case, we give here

the definition of B1
1,1 in the continuous case for the sake

of clarity.

Definition 3. Let � j,k an orthonormal base composed
of smooth and compactly supported wavelets. B1

1,1 is a
subspace of L2 (R2), and a function f belongs to B1

1,1 if
and only if:

∑
j∈Z

∑
k∈Z2 |c j,k | < +∞, where cj,k are

the wavelet coefficients of f.

In this paper, since we want to approximate J(u) by
‖u‖Ḃ1

1,1
, we only consider the case of the Haar wavelet.

It is proved in Steidl et al. (2004) that in 1D, total
variation minimization is equivalent to wavelet soft
thresholding (in the case of the Haar wavelet with one
level of decomposition). However, the two regulariza-
tion spaces (BV and B1

1,1) are different. In particular,
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characteristic functions of sets with finite perimeter be-
long to BV but are not in B1

1,1. This is the reason why
it can be expected that the edges of the original image
f are better put in the geometrical component u with
model (39) than with (44).

Let us now look at the minimization of (44). We
adopt the same strategy as for solving (39), that is we
minimize with respect to each of the variables sepa-
rately. We therefore consider the two following prob-
lems:

• v being fixed, we search for u as a solution of:

inf
u

(
‖u‖Ḃ1

1,1
+ 1

2α
‖ f − u − v‖2

L2

)
(45)

• u being fixed, we search for v as a solution of:

inf
v

1

2α
‖ f − u − v‖2

L2 + λ‖v‖L1 (46)

From Chambolle et al. (1998), we know that the
solution of (45) is given by: û = W ST ( f − v, α),
where W ST ( f − v, α) stands for the Wavelet Soft
Thresholding of f-v with threshold α (Meyer, 2001;
Aujol and Chambolle, 2005). And from Proposition,
the solution of (46) is given by:v̂ = ST ( f − u, αλ),
where ST ( f −u, αλ) stands for the Soft Thresholding
of f-u with threshold αλ

The advantage for having replaced J(u) by ‖u‖Ḃ1
1,1

is that now, to minimize the new functional (44), we
just need to iterate thresholding schemes. This is why
the following algorithm is a very fast one (much faster
than the one used in Chand and Esedoglu (2004) for
instance).

Algorithm:

1. Initialization:

u0 = v0 = 0 (47)

2. Iterations:

vn+1 = ST ( f − un, αλ) (48)

un+1 = W ST ( f − vn+1, α) (49)

3. Stopping test: we stop if

max(|un+1 − un|, |vn+1 − vn|) ≤ ε (50)

6.1.3. Mathematical Analysis. We now show some
mathematical results about our new model, and we
prove the convergence of the algorithm. We will use
the notation:

M(u, v) = ‖u‖Ḃ1
1,1

+ 1

2α
‖ f −u−v‖2

L2 +λ‖v‖L1 (51)

Theorem 2. Problem (44) admits a unique solution
(ū, v̄) in (X × X).

Proof. See Appendix A.1.. �

The next result is a consequence of Theorem 2:

Proposition 5. The sequence (un, vn) built in (47)–
(49) converges to the unique minimizer of problem (44).

Proof. See Appendix A.2.. �

The next result shows that when α goes to 0, then
the solution of problem (44) goes to a solution of the
problem:

inf
u

(‖u‖Ḃ1
1,1

+ λ‖ f − u‖L1

)
(52)

Proposition 6. Let us fix λ >0 in (52). We consider
αn a decreasing sequence in R+∗ such that αn → 0.
Let us denote by (uαn , vαn ) the solution of problem
(44). Then the sequence (uαn , vαn ) is bounded, and any
cluster point is of the form (u0, f − u0) with u0 solution
of problem (52).

Proof. See Appendix A.2.. �

Remark. It is easy to show that problem (52) has a
solution (the functional is convex and coercive). In the
case when problem (52) has a unique solution u0, then
the sequence ((uαn , vαn ) converges to $(u0, f − u0).

6.2. Numerical Results

A main difference with the classical TV − L2 approach
(Rudin et al., 1992) is that with the TV − L1 model, the
v component is not constrained to be of zero mean (nu-
merical experiments show that indeed the mean value
changes for different values of λ and is not necessarily
close to zero).
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Figure 6. Removing salt and pepper noise (algorithm (47)–49)).

All the numerical results shown on Figs. 6 to 8 have
been obtained with the algorithm (47)–(49), the param-
eter λ being computed automatically. The parameter α

is set to 1 in all our experiments. The maximal absolute
values of the computed residuals f − u − v are always
smaller than 1 (and the values of the images rank from
0 to 255). This means that the residual energy term,
needed mainly for numerical and theoretical reasons
(uniqueness), does not affect much the model and the
decomposition results.

Remark about Parameter Selection: To choose the
parameter λ, we consider the correlation graph as in
Section 4. The difference is that in this case we are
not interested in a local minimum of the graph, but
in a large variation. This is related to the non-smooth
behavior of TV − L1 regularization, as pointed out in
Chand and Esedoglu (2004). We should remark that
the correlation can attain also negative values, unlike
the TV − L2 case. If one is interested in decorrelation
between u and v, one should seek values close to zero
and not minimal ones.

Figure 6 shows an example of removing salt and pep-
per noise. This relates decomposition to the denoising

Figure 7. Approximation of the TV-L1 decomposition of non-
geometric texture (algorithm (47)–49)).

Figure 8. Approximation of the TV-L1 decomposition of
non-geometric texture (with non-invariant Haar wavelet soft-
thresholding)) with algorithm (47)–49)).

problem, where in this case the structural part is the
clean image and the noise can be regarded as a form
of texture. It has been shown in Nikolova (2004) that
the L1 term is particularly well suited to remove such
a noise. This is due to the close connections between
the L1 norm and the median operator. In this simple
case, the restoration is almost perfect. In Fig. 6, second
row, the decomposition at the 6th iteration is shown,
right after the significant correlation change. Most of
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Figure 9. TV-L1 decomposition with the algorithm of Ying et al.
(2005). First row: restoration of the image of Fig. 6; second row:
decomposition of the image of Fig. 7.

the noise is already filtered, but it is better to assume a
steadier correlation state, such as at the 10th iteration,
depicted in the bottom row. In Figs. 7 a decomposi-
tion of non-geometric texture is shown. The result is
relatively good, though somewhat different than the
decomposition of the same image by TV − L2 and TV
− G (see Fig. 2). The structural part is less eroded and
edges are strong. However, the rounded top left part is
not recovered well, and tends to be blocky.

In the case of Fig. 8, the decomposition is exact (in
this case, the maximum of the absolute of the residual
f − u-v is equal to 0.001), and the result is perfect
(it is clearly better than the results of Fig. 1). The L1

norm seems to be particularly well suited to capture
non smooth textures. Notice however that this image
is particularly well suited for the Haar wavelet.

We present, in Fig. 9, the decomposition results ob-
tained with the algorithm of Yin et al. (2005), which
exactly solves (36) as a second-order cone program.
We see that both algorithms give similar results for salt
and peper noise removal as well as for structure/texture
separation.

In this section, we have mainly considered non
smooth textures. On the contrary, we will consider
smooth textures in the next section.

7. TV-Gabor Regularization

In this section, we design a family of Hilbert spaces
based on Gabor wavelets (Mallat, 1998). Gabor func-

tions, proposed by Gabor (1946), have been found to
be very useful in texture processing applications, e.g.
(Dunn and Higgins, 1995; Jain and Farrokhnia, 1991),
and to have close relations with the human-visual sys-
tem (Porat and Zeevi, 1988). The Gabor wavelets were
also defined by Zibulski and Zeevi in the context
of Multiwindow Gabor frames (Zibulski and Zeevi,
1997). We introduce a new TV-Gabor model in which
one can take advantage of a-priori knowledge of both
the frequency and the direction of the textures of inter-
est. We show how the correlation criterion can be used
also in this case to select the regularization parameter.

7.1. Introduction

Let us first recall the model studied in Aujol and Gilboa
(2004):

inf
u

(
J (u) + λ

2
‖ f − u‖2

H

)
(53)

In Aujol and Gilboa (2004), the authors apply their
framework to solve the OSV model Osher et al. (2003)
(i.e. when H = H−1), and they study the problem of
image denoising. Here, we intend to use (53) to carry
out frequency and directional adaptive image decom-
position. Indeed, by choosing the kernel K in a suitable
way, we can emphasize the weight of some frequen-
cies and some directions. Notice that, even though K
is a linear filter, solving (53) does not amount to lin-
ear filtering due to the non linear term J(u). It is well
known in image processing that linear filtering cannot
preserve edges in an image, but thanks to the total vari-
ation term (53) does not suffer from this drawback. To
construct the “texture-norm we use Gabor wavelets.

The projection algorithm proposed in Aujol and
Gilboa (2004) to solve (53) is given by (27)–(28) (in
Section 3). In fact, one needs to use K−1 and not K to
solve (53) with this algorithm. It is therefore easier to
construct K−1 (so that K has some good properties, but
without computing K explicitly). K needs to be a non
negative symmetric linear operator. Here we even as-
sume that K is positive-definite. This implies that K−1

is also a symmetric positive linear operator.

Remark on a Possible Alternative Construction: K
being a positive-definite symmetric operator, there ex-
ists a unique positive-definite symmetric linear oper-
ator, denoted by

√
K , such that

√
K

2 = K . In par-
ticular, we have ‖ f − u‖2

H = 〈 f − u, K ( f − u)〉L2 =
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Figure 10. The kernel K and its inverse K−1 for the OSV, ROF
and the proposed TV-Gabor model.

‖√K ( f −u)‖2
L2 . We can then rewrite problem (53) as:

inf
u

(
J (u) + λ

2
‖
√

K ( f − u)‖2
L2

)
(54)

In fact, instead of K−1, it also may be interesting to
construct

√
K

−1
. In what follows, we only focus on

K−1, but our construction can be applied to
√

K
−1

as
well.

7.2. Texture-specific Kernels

In Aujol and Gilboa (2004) it was shown that the differ-
ence between the OSV model (Osher et al., 2003) and
ROF model (Rudin et al., 1992) could be understood as
frequency weighting of the L2 norm for the H−1 fidelity
term of OSV. The frequency weighting of the square
norm is proportional to 1

ω2 , which corresponds to the
	−1 operator in the frequency domain, see Fig. 10. The
low frequencies are therefore highly penalized in the
fidelity term, considerably reducing the eroding effect
compared with ROF. This has proved to be an efficient

tool for image denoising (Osher et al., 2003; Aujol and
Chambolle 2005). In Aujol and Gilboa (2004) it was
suggested that other linear kernels could be used for
adaptive frequency algorithms.

In this section we address the problem of designing
a family of kernels for image decomposition. The op-
erator K is a convolution operator, therefore K−1 in the
Fourier domain is simply its inverse. Moreover, K−1 is
also a convolution operator. We denote by H the asso-
ciated filter, and in the rest of the section we focus on
the designing of this filter.

In the u+v decomposition model K penalizes fre-
quencies that are not considered as part of the texture
component. Therefore K−1 could be interpreted as the
frequencies which should mainly be included in the
texture part. A general and simple characterization of
textures could be done using Gabor functions. These
functions would typically describe the type of textures
we would like to extract. Naturally, they apply as good
candidates for K−1. As already mentioned, the inverse
kernel is actually the one needed in the numerical im-
plementation. Thus our proposed design strategy is to
use Gabor functions for constructing the inverse ker-
nel. Notice that other design methods could be used.
We use the function:

g(x) = cos (2πνx)
1√

2πσ 2
exp

(−x2

2σ 2

)
(55)

This gives the following values for the filter H:

hk = cos (2πνk)
1√

2πσ 2
exp

(−k2

2σ 2

)
(56)

v ∈ (0, 0.5] is the frequency of the texture. σ is related
to the width of the band-pass around this frequency. A
small σ in the spatial domain means a wide band-pass
in the frequency domain. If we know the frequency
of the texture we want to get, it is then interesting to
use a large σ (which means a small band-pass in the
frequency domain). Note that some restrictions apply
for choosing σ , see Lemma 4. Actually, σ cannot be
very large, which may be interpreted as a from of an
uncertainty principle.

Equation (55) is a one dimension filter. There are
many methods to then design a 2D filter. One pos-
sibility is to consider the product g(x)g(y). We will
analyze this possibility later. Another choice to con-
struct our filter H is to use rotationally invariant Gabor
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wavelets as:

g(x, y) = cos
(

2πν
√

x2 + y2
) 1√

2πσ 2

× exp

(−x2 − y2

2σ 2

)
(57)

Such a choice will give better numerical results when
the texture is known to be rotationally invariant.

Directions: Many textures are not rotationally in-
variant. It is therefore interesting to add this direction
information in our filter H. To do so, we just need to
use a 1D filter as (55), and then rotate it so that it fits
the direction of the texture. A possible improvement
is to use an ellipse (see Dunn and Higgins (1995) for
instance).

7.3. 1D and 2D filters

In this subsection, we propose a way to construct a 2D
kernel K−1 (in fact of the associated filter H) out of a
1D filter:

Hx =
(

h d−1
2

, . . . , h1, h0, h1, . . . , h d−1
2

)
(58)

where d is the dimension of the filter Hx, and hk is given
by (56). Since K−1 is symmetric, we also choose Hx to
be symmetric. We then set H = Hx∗Hy , where H stands
for the filter associated to K−1, ∗ denotes convolution,
and Hy = Hx

T , where T stands for transpose.

Remark. In all this section, for the convolution, we
consider periodic boundary conditions.

7.4. Eigenvalues

In this subsection, we compute the eigenvalues of K−1,
and give a sufficient condition so that they are positive.

The filter H associated with K−1 should define a
linear symmetric positive operator. By construction,
H defines a linear symmetric operator. But as we will
see, we have to impose some conditions on the values
hk of the filter so that it is positive. We recall that a
linear symmetric operator is positive if and only of
its eigenvalues are positive (this can even be taken
as a definition). To get the positivity for H, we are
therefore lead to compute its associated eigenvalues
(the ones of the associated linear mapping). Since we

have constructed H out of two 1-D filters, we are in
fact interested in the eigenvalues of these filters (since
they will give us the eigenvalues of K−1). Since K−1

is positive, we also impose the constraint that Hx is
positive.

The filtering of an image of size N × M by Hx

corresponds to a linear mapping from R
NM to R

NM

(this is the reason why we speak of the eigenvalues of
the filter H, which are in fact the eigenvalues of the
corresponding linear mapping). Let us denote by Ax

(resp Ay) the matrix of size (NM)2 associated to Hx

(resp Hy). An image I is a matrix (Ii,j), with 1 ≤ i ≤ N
and 1 ≤ j ≤ M. We rewrite it as a 1 Dimensional vector
Ik, with 1 ≤ k ≤ NM, using Ik=Ii,j if k=M(i-1)+j.

Since Ax and Ay have a very particular form (they
are both circulant matrices), we can compute the exact
values of their eigenvalues, as stated by the following
result:

Proposition 7. The eigenvalues of Ax are:


h0 + 2

d−1
2∑

k=1

hk cos

(
2πqk

M

)
, 0 ≤ q ≤ M

2


 (59)

and the ones of Ay are:


h0 + 2

d−1
2∑

k=1

hk cos

(
2πqk

N

)
, 0 ≤ q ≤ N

2


 (60)

Proof. The proof is just a consequence of the fact that
Ax and Ay are circulant matrix. We refer the interested
reader to Aujol et al. (2005) for the details. �

Now that we have computed the eigenvalues of Ax

and Ay, we can get the ones of K−1. Since Ax and Ay

commute, the eigenvalues of K−1 are contained in the
set:
{

P1
(
ω

p
M

)
P2

(
ω

q
N

)
, 0 ≤ q ≤ M

2
, 0 ≤ q ≤ N

2

}
(61)

Since the eigenvalues of Ax and Ay are positive, so
are the ones of K−1. If we denote by γ x

min (resp γ
y

min) the
smallest eigenvalue of Ax (resp Ay) and by γ x

max (resp
γ

y
max) the largest eigenvalue of Ax (resp Ay), then, if γ

is an eigenvalue of K−1, we have:

γ x
minγ

y
min ≤ γ ≤ γ x

maxγ
y

max (62)
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From this last point, we deduce in particular that

‖K −1‖L2 ≤ γ x
maxγ

y
max (63)

Lemma 3. If we choose τ ≤ 1
8γ x

maxγ
y

max
in algorithm

(28), then the algorithm converges.

Proof. This a direct consequence of (63) and of
Theorem 1 (in Section 3). �

Unfortunately, the eigenvalues of K−1 can be neg-
ative. The next lemma gives a sufficient condition for
the eigenvalues of K−1 to be positive.

Lemma 4. If

h0 ≥ 2

d−1
2∑

k=1

|hk | (64)

then the eigenvalues of Ax, Ay and K−1 are positive.

Proof. This is a consequence of Proposition 7 and of
(61). �

Notice that (64) is only a sufficient condition. The
eigenvalues can still be positive in less restrictive cases,
and can be computed explicitly for the designed kernel
(see Proposition 7).

By using Lemma 4 and the explicit values of hk

given by (56), we can derive more explicit sufficient
conditions about the positivity of the eigenvalues of
K−1. In particular, we show that if σ is small enough,
then the eigenvalues of H are positive, see more details
in Aujol and Gilboa (2005).

7.5. Numerical Results

We show some numerical results obtained with the new
TV-Gabor model on Figs. 11 to 16.

In Fig. 11, the texture is a periodic signal of fre-
quency 1/π ≈ 0.32. In this case we use a rotation-
ally symmetric Gabor function of frequency 0.25 and
σ=1 (no directional knowledge is incorporated). As
expected, the decomposition in this case is very good.
In the next two examples we focus on the ability of
the model to have directional selectivity of the textu-
ral part, a main feature that clearly distinguishes the

Figure 11. Decomposition of a simple image by TV-Gabor.

TV-Gabor model from the previous ones. In case the
textural directions are not known beforehand, we sug-
gest to select them by the dominant peaks in the Fourier
domain in medium and high frequencies. This can give
basic but sufficient information for designing the ker-
nel (choosing frequency and preferred direction). The
Fourier transforms of the processed images are shown
in Figs. 14 and 15. In Figs. 12 and 13 the original image
is composed of two types of textures and a synthetic
structural part. We would like to extract the periodic
texture in the ellipses, and not the small squares on
the top right. This type of selectivity is quite hard,
but is achieved quite well, as seen in Fig. 12. Edges
of the structural part are kept sharp, and clearly out-
performs any linear kernel that would be designed to
achieve a similar goal. Compared to TV − L2 (Fig. 13,
bottom) one observes that both textures are mostly in
the v part. Also there is some more erosion of the
structure (seen in the brighter triangle in the v com-
ponent) and some “left-overs” of the ellipses-texture
in the u part. The comparison was made such that
both v parts of TV-Gabor and TV-L2 have the same L2

norm.
In Figs. 15 and 16, we show another example of di-

rectional decomposition of part of a Dollar note image.
In this case, we use the directional TV-Gabor model in
the y direction to capture the forehead textures. For
comparison, we also display the result with the stan-
dard TV-L2 model. As the textures are quite fine with
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Figure 12. u component of the decomposition of a synthetic image
with textures of specific frequency and orientation by TV-Gabor and
TV-L2. The TV-Gabor can be more selective and reduce the inclusion
in v of undesired textures / small-structures like the small blocks
on the top right. Also erosion of large structures is reduced (more
apparent in the brighter triangle).

low contrast, we show in Fig. 16, bottom, a contrast
enhanced version of v, by multiplying the v part by
4. Again here, both v components have the same L2

norm. One clearly sees the high directional selectivity
of the TV-Gabor model on the left, versus the non-
selectiveness of TV-L2.

Figure 13. v component of the decomposition of a synthetic image
with textures of specific frequency and orientation by TV-Gabor (top)
and TV-L2 (bottom). See the caption of Fig. 12.

Figure 14. Fourier transform and the correlation of TV-Gabor of
the synthetic image in Fig. 12.

8. Conclusion

In this paper, we have studied the problem of image
decomposition. Given an original image f, we split it
into two components u and v, u containing the geo-
metric information and v the texture information. Our
modeling is focused on TV regularization approaches:
we minimize a functional with two terms, the first one
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Figure 15. Decomposition of a Dollar note image by directional
TV-Gabor in the y direction to capture the forehead textures.

Figure 16. Decomposition of a Dollar note image by TV-Gabor in
the y direction and by TV-L2.

is based on the total variation semi-norm and the sec-
ond one on a different norm adapted to the texture
component of the image. We have considered four dif-
ferent decomposition models: TV-L2, TV-G, TV-L1 and
TV-Gabor.

An interesting conclusion of this study is a form of
“recipe” we can derive to carry out image decomposi-
tion:

1. If the texture part is known to be very structured,
then the TV-L1 approach seems to be the best choice.

2. In the case of directional texture or if an estimation
of the frequency of the texture is known, and if the
texture is rather smooth, then the TV-Gabor model
is the more appropriate approach.

3. In a general case, when no a-priori knowledge of the
texture is at hand, we advocate the TV-L2 approach,
or its improvement with the TV-G regularization.

This provides us with a sort of image decomposition
toolbox for a wide class of synthetic and natural im-
ages.

Apart from the broad perspective and our sugges-
tions when each model should be used, the main con-
tributions of our paper are related to the three following
issues:

1. First, we show that the correlation graph between
u and v is an efficient tool to select the splitting
parameter. We have applied this method to the four
models. As far as we know, this is the first attempt to
tune the decomposition parameter of such models
other than by trial and error (the problem had been
considered before only in the denoising case).

2. Second, we propose new and fast algorithms to
solve the TV-L1 minimization problem using pro-
jection and thresholding techniques. We have car-
ried out the complete mathematical study of these
algorithms, and shown their efficiency with some
numerical examples.

3. Third, we introduce a new TV-Gabor model which
leads us to adaptive frequency and directional im-
age decomposition. In the case when we have some
additional information about the texture, then we
can take advantage of it by incorporating this in-
formation in the functional. We have designed and
studied the corresponding filters, and we have illus-
trated this new approach with numerical examples.
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In this paper we presented a way to design simple
texture-specific filters based on Gabor functions. Other,
more sophisticated methods could be incorporated to
this framework, such as ones based on wavelets (Starck
et al., 2003). In future works we intend to explore these
issues. Notice that a straightforward extension of the
new TV-Gabor model to multiple selected directions,
is to use the linearity of the Hilbert fitting term and
simply add several directional kernels.

A natural generalization for the u+v decomposition
is to consider a multi-scale approach, as done in
Tadmor et al. (2004), Gilboa et al. (2003, submitted),
Osher et al. (2004), and Groetsch and Scherzer
(2001). This also relates to the parameter selection
problem, where better and more accurate mechanisms
could be used instead of the correlation criterion. A
more detailed version of this work, with some more
theoretical results and proofs can be found in our
report (Aujol and Gilboa, 2004).

Appendix A: Proofs for the TV − L1 Algorithm

In this appendix, we give the proofs of the Mathemati-
cal results stated in Section 6 for the new fast TV − L1

algorithm.

A.1. Existence and Uniqueness of a Solution

We give here the proof of Theorem 2 stated in Section 6.
We first recall the theorem:

Theorem 2. Problem (44) admits a unique solution
(ū, v̄) in (X × X).

To prove Theorem 2, we will use the following
lemma:

Lemma 5. Let us assume that f �= 0 (i.e. that there
exists (i, j) such that fi, j �= 0). If g ε X, then (0, g) is
not a minimizer of problem (44).

Proof. (Lemma 5): By contradiction, let us assume
that there exists gεX such that (0, g) is a minimizer
of problem (44), then in particular we have:

M(0, g) = inf
v

(
1

2α
‖ f − v‖2

L2 + λ‖v‖L1

)
(65)

From Proposition 4, we get that g = ST ( f, αλ). Since
f ≥ 0 (in our case, we even have 0 ≤ f ≤ 255), we
deduce that g ≥ 0.

• Let us first assume that there exists (i, j) such that gi, j

>0. Let us define ε = min f t(gi, j such that gi, j >

0). We have M(ε, g−ε) = M(0, g)−N 2ε (we recall
that f is of size N × N), which contradicts the fact
that (0, g) is a minimizer of problem (44).

• Let us now assume that gi, j = 0 for all (i, j) ∈ N 2.
We define ε1 =

∫
f

N 2 (we know that
∫

f > 0). We
have M(ε2, 0) = 1

2α
‖ f − ε2‖2

L2 . But ‖ f − ε2‖2
L2 =

‖ f ‖2
L2 +N 2ε2

2 −2ε2
∫

f < ‖ f ‖2
L2 . Therefore, we get

M(ε2, 0) < 1
2α

‖ f ‖2
L2 = M(0, 0), which contradicts

the fact that (0, g) is a minimizer of problem (44).
�

Proof. (Theorem 2): The existence of a solution for
problem (44) is standard. It is a straightforward conse-
quence of the fact that M the functional to minimize is
convex and coercive.

Let us now show the uniqueness. In the case when f
= 0, then it is clear that (0, 0) is the unique minimizer
of problem (44). Let us therefore assume that f �= 0
(i.e. that there exists (i, j) such that fi,j �=0). By con-
tradiction, let us assume that there exist two solutions
for problem (44), (u1, v1) and (u2, v2). We denote by
m = M(u1, v1) = M(u2, v2). If t ∈ (0, 1), then we
get:

M(tu1 + (1 − t)u2, tv1 + (1 − t)v2) =
‖tu1 + (1 − t)u2‖Ḃ1

1,1
+ λ‖tv1 + (1 − t)v2‖L1

+ 1

2α
‖t( f − u1 − v1) + (1 − t)( f − u2 − v2)‖2

L2

(66)

But by convexity, we have:

‖tu1+(1−t)u2‖Ḃ1
1,1

≤ t‖u1‖Ḃ1
1,1

+(1−t)‖u2‖Ḃ1
1,1

(67)

and

‖tv1 + (1 − t)v2‖L1 ≤ t‖u1‖L1 + (1 − t)‖u2‖L1 (68)

as well as

‖t( f − u1 − v1) + (1 − t)( f − u2 − v2)‖2
L2

≤ t‖ f − u1 − v1‖2
L2 + (1 − t)‖ f − u2 − v2‖2

L2

(69)
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From (66)–(69), we deduce that (since M(u1, v1) =
M(u2, v2) = m):

M(tu1 + (1 − t)u2, tv1 + (1 − t)v2) ≤ m (70)

and (70) is an equality if and only if (67)–(69) are
equalities. But by definition, we have M(tu1 + (1 −
t)u2, tv1 + (1 − t)v2) ≥ m. Therefore (70) must be an
equality, as well as (67)–(69).

The function in (69) is strictly convex. Therefore
(69) is an equality if and only if f − u1 − v1 = f −
u2 − v2, i.e. if and only if

u1 − u2 = v2 − v1 (71)

Equation (67) is an equality if and only if there exists
wu ∈ X\{0} and (au, bu) ∈ R

2
+ such that u1 = auwu

and u2 = buwu . 68) is an equality if and only if there
exists wv ∈ X\{0} and (av, bv) ∈ R

2
+ such that v1 =

avwv and v2 = bvwv . Using wu and wv, then (71)
becomes (au −bu)wu = (av −bv)wv . Since we assume
that (u1, v1) �= (u2, v2), this implies that we cannot
have simultaneously au = bu and av = bv. We thus get
that wu and wv are proportional.

We therefore deduce that there exists w ∈ X\{0} and
(a, b, c) ∈ R

4 such that u1 = aw, u2 = bw, v1 = cw
and v2 = (a − b + c)w. Moreover, we have a-b �=
0. Let us remark that: M(tu1 + (1 − t)u2, tv1 + (1 −
t)v2) = M(u2 + t(u1 −u2), v2 + t(v1 −v2)) = M(u1 +
(t − 1)(u1 − u2), v1 + (t − 1)(v1 − v2)). We recall that
t ∈ (0, 1). We assume that a �= 0 and b �= 0 (in the case
when a=0 or b=0, then we get a contradiction thanks
to Lemma 5). We impose 0 ≤ t < min(1,

|a|
|a−b| ,

|b|
|a−b| ):

0 ≤ M(u2 + t(u1 − u2), v2 + t(v1 − v2)) − M(u2, v2)

= ‖aw + t(a − b)w‖Ḃ1
1,1

− ‖aw‖Ḃ1
1,1

+ λ‖bw − t(a − b)w‖L1 − λ‖bw‖L1

= t |a − b|(‖w‖Ḃ1
1,1

− λ‖w‖L1

)

We therefore deduce that ‖w‖Ḃ1
1,1

−λ‖w‖L1 ≥ 0. By
using the fact that 0 ≤ M(u1 + (t − 1)(u1 − u2), v1 +
(t − 1)(v1 − v2)) − M(u1, v1), we get exactly as before
that ‖w‖Ḃ1

1,1
−λ‖w‖L1 ≤ 0. We therefore deduce that:

‖w‖Ḃ1
1,1

= λ‖w‖L1 (72)

And (72) also holds with u1, u2, v1 and v2. In particular,
this implies that (0, u1 +v1) is a minimizer of problem
(44). Since we assume that f �= 0 (i.e that there exists

(i, j) such that fi,j �= 0), we get a contradiction thanks
to Lemma 5. �

A.2. Convergence of the TV − L1 algorithm

We give here the proofs of Proposition 5 and 6 stated
in Section 6.

Proof. (Proposition 5): The proof uses the same
ideas as the ones of Proposition 3.4 in Aujol et al. 2005,
but we put it here for the sake of completeness.

We first remark that, as we solve successive mini-
mization problems, we have:

M(un, vn) ≥ M(un, vn+1) ≥ M(un+1, vn+1) (73)

In particular, the sequence M(un, vn) is nonincreasing.
As it is bounded from below by 0, it thus converges in
R . We denote by m its limit. We want to show that

m = inf
(u,v)∈X×X

M(u, v) (74)

As M is coercive and as the sequence M(un, vn)
converges, we deduce that the sequence (un, vn) is
bounded in X × X. We can thus extract a subsequence
(unk , vnk ) which converges to û, v̂ as nk → +∞, with
(û, v̂) ∈ X × X . Moreover, we have, for all nk ∈ N
and all v in X:

M(unk , vnk+1) ≤ M(unk , v) (75)

and for all nk ∈ N and all u in X:

M(unk , vnk ) ≤ M(u, vnk ) (76)

Let us denote by v a cluster point of (vnk+1). Con-
sidering (73), we get (since M is continuous on X ×
X):

m = M(û, v̂) = M(û, ṽ) (77)

By passing to the limit in (48), we get:ṽ = ST ( f −
û, αλ), i.e. v is the solution of infv( 1

2α
‖ f − û − v‖2

2 +
λ‖v‖L1 ). But from (77), we know that: 1

2α
‖ f −û−ṽ‖2

2+
λ‖ṽ‖L1 = 1

2α
‖ f − û − v̂‖2

2 +λ‖v̂‖L1 . By uniqueness of
the solution, we conclude that ṽ = v̂. Hence vnk+1 →
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v̂. By passing to the limit in (75) (M is continuous on
X × X), we therefore have for all v:

M(û, v̂) ≤ M(û, v) (78)

And by passing to the limit in (76), for all u:

M(û, v̂) ≤ M(u, v̂) (79)

(78) and (79) can respectively be rewritten:

M(û, v̂) = inf
v∈X

M(û, v) (80)

M(û, v̂) = inf
u∈X

M(u, v̂) (81)

But, from the definition of M(u, v), (81) is equivalent
to (see, Ekeland and Temam (1974):

0 ∈ − f + û + v̂ + α∂ JB(û) (82)

and (80) to:

0 ∈ − f + û + v̂ + αλ∂ JL1 (v̂) (83)

where the functions JB is defined by JB(u) = ‖u‖Ḃ1
1,1

and JL1 by JL1(v) = ‖v‖L1 . The subdifferential of M
at (û, v̂) is given by:

∂ M(û, v̂) = 1

α

( − f + û + v̂ + α∂ JB(û)
− f + û + v̂ + αλ∂ JL1 (v̂)

)
(84)

And thus, according to (82) and (83), we have:

(
0
0

)
∈ ∂ M(û, v̂) (85)

which is equivalent to: M(û, v̂) = inf(u,v)∈X2

M(u, v) = m. Hence the whole sequence M(un, vn)
converges towards m the unique minimum of M on X
× X. We deduce that the sequence (un,vn) converges to
(û, v̂), the minimizer of M, when n tends to +∞. �

Proof. (Proposition 6): The proof is very similar to
the one of Proposition 3.8 in Aujol et al. 2005.

The existence and uniqueness of (uαn , vαn ) is given
by Theorem 2. Since (uαn , vαn ) is the solution of prob-
lem (44), we have

M(uαn , vαn ) ≤ M( f, 0) (86)

From this, we get that (uαn , vαn ) is bounded. Then, up
to an extraction, there exists (u0, v0) ∈ X × X such
that (uαn , vαn ) converges to (u0, v0). From (86), we get
that ‖ f − uαn − vαn ‖2

2 ≤ 2α‖ f ‖Ḃ1
1,1

. By passing to the
limit n → +∞, we get: ‖ f − u0 − v0‖2 = 0, i.e.
v0 = f − u0.

To conclude the proof of the proposition, there re-
mains to show that (u0, f −u0) is a solution of problem
(52). Let u ∈ X . We have:

‖u‖Ḃ1
1,1

+ λ‖ f − u‖L1 + 1

2αn
‖ f − u − ( f − u)‖2︸ ︷︷ ︸

=0

≥ ‖uαn ‖Ḃ1
1,1

+ λ‖vαn ‖L1 + 1

2αn
‖ f − uλn − vλn ‖2

≥ ‖uαn )‖Ḃ1
1,1

+ λ‖vαn ‖L1︸ ︷︷ ︸
→‖u0‖Ḃ1

1,1
+λ‖ f −u0‖L1

�
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