IRREGULAR TO REGULAR SAMPLING, DENOISING AND DECONVOLUTION

GABRIELE FACCIOLO ∗, ANDRÉS ALMANSA †, JEAN-FRANÇOIS AUJOL ‡, AND VICENT CASELLES §

Abstract. We propose a restoration algorithm for band limited images that considers irregular (perturbed) sampling, denoising, and deconvolution. We explore the application of a family of regularizers that allow to control the spectral behavior of the solution combined with the irregular to regular sampling algorithms proposed by H.G. Feichtinger, K. Gröchenig, M. Rauth and T. Strohmer. Moreover, the constraints given by the image acquisition model are incorporated as a set of local constraints. And the analysis of such constraints leads to an early stopping rule meant to improve the speed of the algorithm. Finally we present experiments focused to the restoration of satellite images, where the micro-vibrations are responsible of the type of distortions we are considering here. We will compare results of the proposed method with previous methods and show an extension to zoom.

Key words. Image restoration, Total Variation, variational methods, satellite images.

AMS subject classifications. 68U10, 65K10, 65J20, 94A08

1. Introduction. A general image acquisition system may be modelled by the following image formation model

\[
z(\xi_k) = (h * u)(\xi_k) + n_{\xi_k}, \quad \xi_k \in \Xi,
\]

where \(\Xi = \{\xi_k\}_{k=1}^{N^2} \subseteq \mathbb{R}^2 \) is a finite set of regular or irregular samples, \(u : \mathbb{R}^2 \to \mathbb{R} \) is the ideal undistorted image, \(h : \mathbb{R}^2 \to \mathbb{R} \) is a blurring kernel whose Fourier spectrum \(\hat{h} \) has most of its energy concentrated in the spectral support of \(u \), \(z \) is the observed sampled image which is represented as a function \(z : \Xi \to \mathbb{R} \), and \(n_{\xi_k} \) is, as usual, a white Gaussian noise with zero mean and standard deviation \(\sigma \).

Reconstructing a signal \(u : \mathbb{R}^2 \to \mathbb{R} \) over an infinite support from a finite set of samples \(z(\xi_k) \) is not possible without imposing restrictions. As in most works, in order to simplify this problem, we shall assume that the functions \(h \) and \(u \) are periodic of period \(N \) in each direction. That amounts to neglecting some boundary effects. Let us denote by \(\Omega_N \) the interval \([0, N]^2\). Therefore, we shall assume that \(h, u \) are functions defined in \(\Omega_N \). To fix ideas, we assume that \(h, u \in L^2(\Omega_N) \), so that \(h * u \) is a continuous function in \(\Omega_N \) [28] (which may be extended to a continuous periodic function in \(\mathbb{R}^2 \)), then the samples \((h * u)(\xi_k) \), \(\xi_k \in \Xi \), are well defined.

We shall concentrate in the particular case of perturbed sampling and we shall assume that \(\Xi \) is a subset of \(N^2 \) samples which take the particular form

\[
\Xi = \mathbb{Z}^2 \cap \Omega_N + \varepsilon(\mathbb{Z}^2 \cap \Omega_N),
\]

where \(\varepsilon : \mathbb{R}^2 \to \mathbb{R} \) is a "smooth and small" perturbation function in the sense that \(\text{supp } \varepsilon \subseteq [-N, N]^2 \) for some period \(T_\varepsilon > 2 \) corresponding to the maximum vibration

∗Dept. Tecnologia, Universitat Pompeu Fabra, Passeig de Circumvalació, 8, 08003 Barcelona, Spain, gabriele.facciolo@upf.edu
†TELECOM ParisTech and CMLA, ENS Cachan, CNRS, UniverSud, France Andres.Almansa@TELECOM-ParisTech.fr
‡CMLA, ENS Cachan, CNRS, PRES UniverSud, France Jean-François.Aujol@cmla.ens-cachan.fr
§Dept. Tecnologia, Universitat Pompeu Fabra, Passeig de Circumvalació, 8, 08003 Barcelona, Spain, vicent.caselles@upf.edu
frequency and the mean amplitude of the perturbation \(\left(\frac{\int_{\Omega} |\varepsilon(x)|^2 dx}{\int_{\Omega} dx} \right)^{\frac{1}{2}} \) is small with respect to 1 pixel (we refer to Section 2 for a model (2.1) of this perturbation and also for a general overview of irregular sampling aspects).

Even knowing the exact sampling geometry \(\Xi \), the blurring kernel \(h \) and the statistics of the noise \(n \), the problem of recovering \(u \) from \(z \) is ill-posed due to the ill-conditioning of the convolution operator \(h * u \). A common strategy to solve this ill-conditioning is regularization. And the typical constrained formulation of a regularization method [46] consists in choosing between all possible solutions of (1.1) the one which minimizes the penalization functional \(J(u) \). The image acquisition model (1.1) is introduced as a constraint in the formulation, but since we can only recover statistical information about the noise, we have expressed the constraint as an upper estimate of the noise variance \(\sigma^2 \). The constrained problem becomes

\[
\min_u J(u),
\]

subject to \(\sum_{\xi_k \in \Xi} |(h * u)(\xi_k) - z(\xi_k)|^2 \leq N^2 \sigma^2. \)

The regularizer \(J(u) \) embodies our a-priori knowledge of the image, specifying its smoothness properties. The use of the Dirichlet integral \(\int_{\Omega_N} |D u| dx \) is not satisfactory, mainly due to the inability of the previous functional to resolve discontinuities (edges) and oscillatory textured patterns, the information corresponding to high frequencies of \(z \) being attenuated by it. Indeed, functions in \(W^{1,2}(\Omega) \) (i.e., functions \(u \in L^2(\Omega) \) such that \(Du \in L^2(\Omega) \)) cannot have discontinuities along rectifiable curves. These observations motivated the introduction of Total Variation (TV \((u) = \int_{\Omega_N} |Du| \)) in image restoration problems by L. Rudin, S. Osher and E. Fatemi in their work [44]. The a priori hypothesis is that functions of bounded variation (the BV model) ([6, 25]) are a reasonable functional model for many problems in image processing, in particular, for restoration problems ([44]). Typically, functions of bounded variation have discontinuities along rectifiable curves, being continuous in the measure theoretic sense away from discontinuities. The discontinuities could be identified with edges. The ability of total variation regularization to recover edges is one of the main features which advocates for the use of this model (its ability to describe textures is less clear, some textures can be recovered, but up to a certain scale of oscillation). We refer to [25] for the definition of functions of bounded variation and their basic properties.

We shall explore in this paper a family of regularizers that takes into account the spectral decay of the Fourier coefficients in the class of images we are looking for. In the case of satellite images, this spectral behavior can be estimated by statistical measures of the decay of Fourier coefficients. The general class of regularizers we consider is

\[
J_A(u) = \int_{\Omega_N} |A(D)u|
\]

where \(A(D)u \) is defined by the coefficients of its Fourier series \(\mathcal{F}(A(D)u)(\omega) = A(i\omega)\hat{u}(\omega) \), \(\omega \in \mathbb{Z}^2 \). Note that \(J_A(u) < \infty \) imposes a frequency penalization according to the profile \(A(i\omega) \). In practice we choose \(A(i\omega) \) so that \(|A(i\omega)| \sim |\frac{1}{N^2} \omega|^p \) for large \(|\omega| \), \(1 \leq p \leq 2 \). This is in consonance with the approach of Gröchenig and Strohmer [32] that proposes to incorporate some a-priori decay in the restoration process (see Section 2).
In [4] (see also [5, 13, 43]), the authors proposed a restoration algorithm that performs denoising using a local estimate of the noise variance around the restored pixel. In this way, the authors were able to improve the texture recovering of the method. Following the mentioned proposal we replace the constraint
\[
\sum_{\xi_k \in \Xi} |(h * u)(\xi_k) - z(\xi_k)|^2 \leq N^2 \sigma^2,
\]
by
\[
G \ast |\Delta_\Xi (h * u) - z|^2 (\xi_k) \leq \sigma^2, \quad \forall \xi_k \in \Xi,
\]
(1.4)
where the sampling operator \(\Delta_\Xi : C(\mathbb{R}^2) \to \ell^2(\Xi) \) is given by \(\Delta_\Xi (v) = \{ v(\xi_k) \}_{k=1}^{N^2} \) and \(G \) is a discrete convolution kernel such that \(G(\xi) > 0 \) for all \(\xi \in \Xi \) and \(\sum_k G(\xi_k) = 1 \).

Combining the two ideas described above, the use of a regularizer that takes into account the spectral decay of images in a certain class (1.3), and the incorporation of the image acquisition model as a set of local constraints (1.4), we propose the following constrained variational model for restoring \(u \)
\[
\min_u \int_\Omega |A(D)u|,
\]
subject to \(\left[G \ast |\Delta_\Xi (h * u) - z|^2 \right] (\xi_k) \leq \sigma^2 \quad \forall \xi_k \in \Xi. \)
(1.5)

The constrained formulation (1.5) can be solved using the unconstrained formulation
\[
\min_u \max_{(\lambda_k)_{k \geq 0}} \int_\Omega |A(D)u| + \frac{1}{2} \sum_{\xi_k \in \Xi} \lambda_k \left\{ \left[G \ast |\Delta_\Xi (h * u) - z|^2 \right] (\xi_k) - \sigma^2 \right\}
\]
(1.6)
where \(\lambda_k \geq 0 \) is a Lagrange multiplier that has to be chosen so that the constraints (1.4) are satisfied. Let us say explicitly that both the blurring kernel \(h \) and the sampling grid \(\Xi \) (alternatively the grid perturbation function \(\varepsilon \)) are assumed to be known exactly, and that the only thing known about the noise \(n_\xi \) is that it is a white Gaussian noise with zero mean and known variance \(\sigma^2 \). Several methods exist to estimate all these parameters [34] for a given acquisition device and we shall not address this question here.

The case of recovering an irregularly sampled image on a regular sampling grid was already considered by the second author in [3], but the blurring kernel \(h \) was assumed to be an ideal window (with Nyquist frequency cutoff), i.e., \(\hat{h} = \chi_{[-1/2,1/2]}^2 \). Different numerical algorithms were tested in the case where the sampling set is perturbed according to (1.2) and they worked relatively well only within a low-frequency spectral region \(R \subseteq [-\alpha, \alpha] \), where \(\alpha \approx 1/2 - 1/T_\varepsilon \). When attempting to recover \(\hat{u} \) in the high frequency band \([-1/2,1/2] \setminus R \) serious theoretical and numerical problems appeared and, actually, restoration errors were most important there. Subsequently, the restoration problem (1.5) was studied in [5] when \(J(u) \) is the total variation and the image acquisition model was incorporated as a set of local constraints on a partition of the image obtained as a result of a segmentation. The use of local constraints (1.4) was advocated in [4] and we also adopt this technique here. The main novelty of this paper consists in the introduction of the frequency adaptive regularization functionals given by (1.3) and the use of (1.4) in the study of restoration with irregular
to regular bandlimited sampling [32, 42]. Further contributions of the paper (to be discussed later) relate to a fast numerical algorithm, its convergence proof, and more useful stopping criteria taking a global error propagation analysis into account.

Let us finally mention that many numerical algorithms have been proposed to minimize total variation (or similar models) subject to a global constraint as in (1.5) [44, 29, 14, 48, 17, 19, 20, 24, 16]. Imposing local constraints in a partition of the image was proposed in [43] and further developed in [13, 5, 4]. In [37] the authors combined total variation minimization with a set of constraints of type \(|(h^* u - z, \psi)| \leq \tau\) where \(\psi\) varies along an orthonormal basis of wavelets (or a family of them) and \(\tau > 0\). The aim was also to construct an algorithm which preserves textures and has good denoising properties. As we will do here, these constraints were incorporated using Uzawa’s algorithm. In [30], the authors proposed to minimize total variation subject to a family of local constraints which control the local variance of the oscillatory part of the signal. The constraints are introduced via Lagrange multipliers with an approach similar to the one used in [44]. This amounts to adding a spatially varying fidelity term that locally controls the extent of denoising over image regions depending on their content. Besides the fact that we use Uzawa’s algorithm and we try to address the problem of deconvolution and denoising of irregularly sampled images, the work [30] is quite similar to our approach.

Let us finally explain the plan of the paper. In Section 2 we introduce the problem of irregular to regular sampling and we discuss the ACT algorithm of Gröchenig and Strohmer [32]. In Section 3 we introduce our frequency adaptive variational restoration model with local constraints and discuss a computational improvement introduced by L. Moisan in [38]. In Section 4 we study the existence, uniqueness and numerical approximation to the model introduced in the previous Section. This study is completed in Section 5 where we describe a Quasi-Newton algorithm for the solution of the Euler Lagrange equation corresponding to the energy in (1.6) for fixed values of the Lagrange multipliers \((\lambda_k)\). In Section 6 we propose a practical stopping condition for the restoration algorithm for the local constraint model. In Section 7 we display some experiments concerning restoration and zooming of irregularly sampled images. Section 8 summarizes the main conclusions of this work.

1.1. Preliminaries and notations. Let us introduce some notation.

For any function \(u \in L^2(\Omega_N)\) (assuming periodicity of period \(N\) in each direction) we denote its Fourier coefficients as

\[
\hat{u}(p, q) = \frac{1}{N^2} \int_{\Omega_N} u(x, y)e^{-2\pi i \frac{(px+qy)}{N}} \, dxdy \quad \text{for } (p, q) \in \mathbb{Z}^2.
\]

As in [40], our plan is to compute a band limited approximation to the solution of the restoration problem. For that, assume for simplicity that \(M\) is an even number and define

\[
\mathcal{B}_M := \{ u \in L^2(\Omega_N) : \hat{u} \text{ is supported in } I_M \} \quad \text{where} \quad I_M := \{-\frac{M}{2} + 1, \ldots, \frac{M}{2}\}^2
\]

We notice that \(\mathcal{B}_M\) is a finite dimensional vector space of dimension \(M^2\) which can be identified with \(\mathbb{R}^{M^2}\) by mapping \(u \in \mathcal{B}_M\) to the vector \(\vec{u} = (u(\frac{rN}{M}, \frac{lN}{M}))^{M^2}_{r,l=0}\). Moreover, if \(u \in \mathcal{B}_M\) we may write

\[
u(x, y) = \sum_{-\frac{M}{2} < p, q \leq \frac{M}{2}} \hat{u}(p, q)e^{2\pi i \frac{(px+qy)}{N}}.
\]
where
\[\hat{u}(p,q) = \frac{1}{M^2} \sum_{0 \leq r,l < M} u \left(\frac{r}{M}, \frac{l}{M} \right) e^{-2\pi i \left(\frac{pr + ql}{M} - \frac{1}{2} \right)}, \quad -\frac{M}{2} < p,q \leq \frac{M}{2}. \]

Then the values \(u \left(\frac{r}{M}, \frac{l}{M} \right), 0 \leq r,l < M \), can be recovered as the discrete inverse Fourier transform of \(\hat{u}(p,q) \). Hence \(u \in B_M \) can also be identified with the vector of Fourier coefficients \(\hat{u} \in \mathbb{R}^{M^2} \).

We intend to solve the restoration problem in the class of band-limited functions \(B_M \). Later on we will comment on this choice. We will also use the operator notation for Fourier transform \(\mathcal{F}u \) that applied to the function \(u \) returns a vector of its Fourier coefficients: \(\hat{u} = \mathcal{F}u \), conversely \(\mathcal{F}^{-1} \hat{u} = u \) denotes the inverse transform, then \(\mathcal{F}^{-1} \mathcal{F} = \text{Id} \).

2. Irregular to regular sampling. Opposed to digital photographs, satellite images are generally not acquired by a squared array of sensors but by a sweeping bar of sensors known as TDI (Time Delay Integrator) [45]. This acquisition geometry called push-broom is widely applied in aerospace imaging applications and, nowadays, it provides the highest resolution in earth imaging applications. As a consequence of this progressive acquisition mode, the micro-vibrations of the satellite together with irregularities in sensors position result in perturbed sampling sets. In most cases, the knowledge of certain vibration modes and the analysis of acquired images help to estimate, with high accuracy the perturbations in the sampling grid, which can be modeled [3] by

\[\varepsilon(x) = \sum_{k=1}^{q} a_k(x) \cos(2\pi \langle \omega_k N, x \rangle + \phi_k), \quad x \in \mathbb{R}^2, \quad (2.1) \]

for some \(q \geq 1 \), where \(a_k(x) \) are smooth modulation functions and the vibration frequencies \(\omega_k \) are an order of magnitude (or even more) below the Nyquist frequency of the sampling rate. The bound on the modulation functions is inversely proportional to \(\omega_k \) and the number of vibration modes is small. This results in smooth and small perturbations, with \(|\varepsilon(x)| \) no larger than a few pixels, and perturbation slope \(|\nabla \varepsilon(x)| \) no larger than about one tenth of a pixel per pixel. As a consequence these perturbations are hardly noticeable and we should talk of perturbed sampling rather than irregular sampling in those cases. Even if the image distortion is not evident from a geometrical point of view it is very important to correct the perturbations in image registration applications where a sub-pixel accuracy is necessary.

In order to be less dependent on a particular physical instrument, in our experiments we used a simplified version of this model which still captures its main characteristics, namely the perturbation function \(\varepsilon = (\varepsilon_1, \varepsilon_2) \) is simulated as a discrete colored noise, i.e. for \(\omega \in \mathbb{Z}^2 \) we define

\[\bar{\varepsilon_i}(\omega) \sim N(0, \tilde{\sigma}^2) \quad \text{if } |\omega| \leq N/T_e \]
\[= 0 \quad \text{otherwise} \quad (2.2) \]

where \(\tilde{\sigma} \) is chosen in such a way that the standard deviation of \(\varepsilon_i(x) \) is \(A \) for \(i \in \{1,2\} \). This gives \(\tilde{\sigma} = \frac{A_1}{T_e} \) (we have taken the Fourier transform as an isometry). Thus the

\[^1 \text{Note that we shall mainly study here the critical sampling case } M = N. \text{ We keep two different symbols } M \text{ for the bandwidth and } N \text{ for the domain size and number of samples, just in order to make it easier to analyze the zero-padding to double bandwidth } M = 2N \text{ that is needed in certain parts of the algorithm.} \]
behavior of the perturbation is characterized by the two parameters “amplitude” \(A \) and maximal vibration frequency \(N/T_x \) (or “minimal vibration period” \(T_x \)). The precise values of \(A \) and \(T_x \) used in our experiments will be specified in the experiments section.

There are many works in the literature dealing with the irregular to regular sampling problem. Let us mention that, according to Kadec’s theorem [35], we have a perfect recovery of the signal if we consider a perturbed sampling with small perturbations \(|\varepsilon(x)| \leq 0.11 \). Recall also that Beurling-Landau’s theorem [36], ensures perfect reconstruction of a function from its samples for arbitrary stable sampling sets [36], but it requires the (lower) sampling density to be greater than 1. These condition are very restrictive and do not hold true for most of the image restoration applications. For a comparison between several iterative methods we refer the reader to [12, 27, 3].

2.1. The ACT algorithm. One of the best performing reconstruction methods available for irregular to regular sampling is the ACT algorithm (for Adaptive-weights Conjugate-gradient on Toeplitz-matrix) introduced by Gröchenig et. al. in [32]. This method represents a discrete image \(u \) as a trigonometric polynomial of order \(M/2 \) in each variable (for simplicity of notation we shall assume that \(M \) is an even number) so that the interpolation at the sampling points \(\Xi = \{\xi_k\}_{k=1}^{N^2} \subseteq \mathbb{R}^2 \) becomes

\[
u(\xi_k) = \sum_{t \in \{-\frac{M}{2}+1, \ldots, \frac{M}{2}\}^2} a_{t\xi} e^{2\pi i \langle t, \xi_k \rangle}, \quad k \in \{1, \ldots, N^2\}. \tag{2.3}\]

Thus, if \(z \) represents the irregularly sampled data we may write [32]

\[
z = Sa, \quad \text{where} \quad S = ((s_{kt})) = e^{2\pi i \langle t, \xi_k \rangle}, \tag{2.4}\]

i.e. \(S \) is the Vandermonde matrix associated to the trigonometric polynomial in (2.3). Note that \(S \) maps \(a \in \ell^2((-\frac{M}{2}+1, \ldots, \frac{M}{2})^2) \) to \(z = \{z(\xi_k)\} \in \ell^2(\Xi) \) as given in (2.3). The bandwidth of the trigonometric polynomial \(M \) is chosen to be \(M \leq N \), so the system (2.4) is expected to be determined or over-determined.

Following [32], the ACT algorithm recovers the coefficients \(a \) of the trigonometric polynomial by solving the least squares problem

\[
\arg \min_a \|\sqrt{W}(Sa - z)\|^2, \tag{2.5}\]

where the matrix \(W = \text{diag}(\{w_k\}_{k=1}^{N^2}) \) assigns weights that are inversely proportional to the sampling density at \(\xi_k \):

\[
w_k = \text{area}(V_k) \quad \text{where} \quad V_k := \{x : |x - \xi_k| < |x - \xi_j|, \forall j \neq k\}. \tag{2.6}\]

If we interpret the discrete data \(z(\xi_k) \) as a piecewise constant function \(\sum_k z(\xi_k) \chi_{V_k} \), then the weights \(w_k \) guarantee the isometry between the irregular sampling on the grid \(\Xi \) and its function representation, thus compensating the local variations in the sampling density. Moreover, by using the weights \(W \), Gröchenig and Strohmer provide an explicit estimate for the rate of convergence of the ACT algorithm [32].

The system of normal equations associated to (2.5) is

\[
S^T W S a = S^T W z. \tag{2.7}\]

Observe that the \(M^2 \times M^2 \) matrix \(S^T W S \) has a Toeplitz structure [32] and, thus, \(S^T W S a \) is efficiently computed in \(O(M^2 \log_2(M^2)) \) time using Fourier methods.
Moreover the entries of $T := S^T W S$ and $b := S^T W z$ can be approximated using the NFFT \cite{41} in $O(M^2 \log_2(M^2))$ time each \cite{32}. Finally, (2.7) is solved using a conjugate gradient (CG) method. The following algorithm summarizes the method.

Algorithm I: ACT algorithm for a fixed bandwidth M

Requires: N^2 irregular samples in vector z.

Ensures: M^2 regular samples in vector u.

1. Compute $T = S^T W S$ and $b = S^T W z$ using the NFFT.
2. Solve $Ta = b$ using conjugate gradients.
3. Compute the regular samples $u(i \frac{N}{M}, j \frac{N}{M})$ for $(i, j) \in \{0, \ldots, M - 1\}^2$ by applying the inverse FFT to a.

Let us note that in the more realistic cases where T is not invertible or ill-conditioned, the CG solver acts as a regularizer and chooses the minimum norm solution a among those that satisfy (2.7). This is a constrained variational formulation that can be written using a Lagrange multiplier $\lambda > 0$ as the unconstrained minimization problem

$$
\min_a \|a\|^2 + \lambda \|Ta - b\|^2.
$$

This formulation also applies to the following two variants of the ACT algorithm \cite{32} that incorporate a-priori spectral decay rate $|\hat{u}(\omega)| \leq L\phi(\omega)$, for some $L > 0$, of the image class to be restored (when available). For satellite images this estimation has been performed by Almansa in \cite{3} and it is given by $\phi(\omega) = (1 + |\frac{2\pi}{M}\omega|)^{-p}$ for some value of p near 1.6.

- The first proposed variant solves $CTa = Cb$ (instead of (2.7)) using the CG algorithm, where $C = \text{diag}(\{\phi(\omega)\}_{\omega \in \{-\frac{M}{2}+1, \ldots, \frac{M}{2}\}})$. Notice that we can write the problem as

$$
(ACT_D) \quad \min_a \|a\|^2 + \lambda \|CTa - b\|^2,
$$

for some $\lambda > 0$. Notice that the weighting matrix C is applied on the residuals $Ta - b$ and its effect is to reduce the relative cost of errors at high frequencies. The effect is reflected on CG search directions, affecting the intermediary solutions that will fit the low frequency before than the higher ones.

- The second ACT variant solves $Td = b$ where $a = Cd$. Re-writing it as an optimization problem, observe that the weights appear now in the regularity term

$$
(ACT_R) \quad \min_a \|C^{-1}a\|^2 + \lambda \|Ta - b\|^2.
$$

The spectral weights C^{-1} are now penalizing the apparition of higher frequencies in the solution a and not in the residual.

In either case, if T is invertible and the CG algorithm converged, then the solution of both variants coincides with the solution of (2.7). But the CG iteration is truncated before its convergence mainly due to the ill-conditioning of the operator T. So, the solutions obtained by the above methods differ because the search directions have changed. As it can be observed experimentally, incorporating the spectral decay indeed reduces the restoration errors, specially when applied to the regularity term in (2.9) (see Table 7.1 in Section 7). In that case, it amounts to finding a solution in a class of functions with a particular spectral decay.
Remark 1. In [32] the authors also proposed to extend the ACT algorithm in order to consider the presence of Gaussian noise \(n \) (with standard deviation \(\sigma \)) in the image formation model:

\[Sa + n = z. \]

This extension is implemented as a stopping condition for the CG algorithm (Step 2 of Algorithm I), that is designed to avoid the over-fitting of the solution and hence the amplification of the noise, thus we stop the CG iterations when

\[\|Sa - z\|^2 \leq \tau N^2 \sigma^2 \quad \text{where} \quad \tau \simeq 1. \]

Remark 2. Notice that the ACT Algorithm is based on the underlying assumption that the data can be represented by a trigonometric polynomial. Other interpolation models like the B-Spline have been used in the literature [8]. In this work we will restrict ourselves to trigonometric polynomials mainly because convolutions are more easily modeled in this setting, but we intend to explore the use of B-splines in the future.

2.2. The ACT + TV extension. In [5] the authors proposed to combine the ACT algorithm written as (2.5) with total variation regularization, i.e.,

\[
\min_u \int_{\Omega_N} |Du|, \\
\text{subject to} \quad \|\sqrt{W}(S\hat{u} - z)\|^2 \leq N^2 \sigma^2.
\]

For convenience, let us refer to this model as ACT+TV. As reported in [5] (see also Table 7.1 in Section 7) we observe an improvement of ACT+TV with respect to the original ACT algorithm in terms of MSE error, this improvement is mainly attributed to the edge preserving ability of the TV regularizer.

Inspired by (2.9) we propose to integrate the spectral weight priors given by the matrix \(C \) in the ACT+TV formulation. To motivate our developments in next Section, let us shortly write the corresponding model. If we denote by \(\hat{u} \) (resp. \(u^\vee \)) the Fourier transform (resp. the inverse Fourier transform) of \(u \), inspired by (2.9) and the ACT+TV model, we consider the model

\[
\min_u \int_{\Omega_N} |(\phi(\omega)^{-1}i\omega\hat{u}(\omega))^\vee|, \\
\text{subject to} \quad \|\sqrt{W}(S\hat{u} - z)\|^2 \leq N^2 \sigma^2
\]

This is the idea behind the Frequency Adaptive Regularizer described in the next section, that allows to model the frequency penalty directly into the regularity term without changing the data term. Weighting the residuals as in (2.8) reduces the condition number of \(T \), but distorts the estimations of the noise. And controlling the condition number of \(T \) is not so important in conjunction with TV-like regularizers. Therefore we shall drop the spectral weights from the data term and only include them in the regularizer.

3. A Frequency Adaptive Restoration model with local constraints.

3.1. Regularization choice. Our next purpose is to introduce frequency adaptive regularization operators and use them for image restoration under local constraints that control the variance of the noise in the image acquisition model (1.1).
Let $\omega \in \mathbb{Z}^2 \rightarrow A(\omega) \in \mathcal{C} \times \mathcal{C}$. Assume that

$$A(0) = 0, \quad A(\omega) \neq 0 \quad \forall \omega \neq 0, \quad \text{and} \quad |A(\omega)| \leq L \left(1 + \frac{|2\pi \omega|}{M}\right)^k, \quad \forall \omega \in \mathbb{Z}^2,$$

for some $L > 0$, $\kappa \geq 0$. If $u \in C^\infty(\Omega_N)$ can be extended as a smooth and periodic function to \mathbb{R}^2, we define $A(D)u$ by its Fourier coefficients

$$A(D)u(\omega) = A(\omega)\hat{u}(\omega) \quad \omega \in \mathbb{Z}^2.$$

We define the functional

$$J_A(u) = \int_{\Omega_N} |A(D)u|.$$

Notice that $J_A(u)$ can be defined for any $u \in L^2(\Omega_N)$ such that $A(D)u$ is a Radon measure.

The total variation $J(u) = \int_{\Omega_N} |Du|$ corresponds to the choice $A(\omega) = \frac{2\pi}{M} i\omega$. Recall that functions with finite total variation are a good model for image restoration since they permit to recover the discontinuities of the image. But, in practice, digital images may exhibit a stronger decay in its Fourier coefficients than $\frac{2\pi}{M} |\omega|^{-1}$ and other functional models can be acceptable.

Let us stress here the fact that the regularization functional J_A is adapted to the restoration of functions with infinite resolution and its numerical approximation restricts the solution to be in a finite dimensional space. We are going to adopt here the following practical point of view. Since our data consists of a finite set of samples, we are going to reconstruct a sampled version of the image and therefore we work in a finite dimensional space. This reflects the fact that digital images have a finite resolution. Usually, the restored image is modeled as a piecewise constant image (the values given on the set of pixels), here we consider images as bandlimited functions with a finite number of frequencies since this is a reasonable model for restoring digital images. Moreover this model is adapted to compute convolutions and permits to impose easily a frequency decay of the Fourier coefficients.

Let us formulate our regularization functional in a discrete context. If $u \in B_M$, then we define

$$J_A^d(u) = \frac{1}{M^2} \sum_{0 \leq r,l < M} \left| A(D)u \left(\frac{rN}{M}, \frac{1N}{M} \right) \right|.$$

(3.2)

If $A(i\omega)$ satisfies (3.1), then $J_A(u)$ and $J_A^d(u)$ are seminorms in B_M and the only function $u \in B_M$ such that $J_A(u) = 0$ (resp. such that $J_A^d(u) = 0$) is $u = \text{constant}$. Thus $J_A(u)$ and $J_A^d(u)$ are norms in the finite dimensional quotient space B_M/\mathbb{R}, hence they are equivalent. Notice that if $u \in B_M$ and we define $J_A^d(k)$ by replacing M by k in (3.2), then $J_A^d(k) \rightarrow J_A(u)$ as $k \rightarrow \infty$. Unless we intend to zoom and restore the images, we take $M = N$, where N^2 is the number of data.

Assume that the data consists of N^2 samples $\{z(\xi_k)\}_k$. Let $G \in \ell^\infty(\mathbb{Z}^2)$, $a \in \mathbb{N}$, be a discrete, positive, normalized convolution kernel such that $G(r,l) \geq 0$ and $\sum_{(r,l) \in \mathbb{Z}^2} G(r,l) = 1$. Then we propose to minimize the functional

$$\min_{u \in B_M} J_{\beta,A}(u) := \sum_{0 \leq r,l < N} \sqrt{\beta^2 + |A(D)u(r,l)|^2},$$

subject to $\left[G * |\Delta_{\Xi}(h * u) - z|^2 \right](\xi_k) \leq \sigma^2 \quad \forall \xi_k \in \Xi,$

(3.3)
where $\sigma, \beta > 0$. The convolution of G and $v \in \ell^\infty(\Xi)$ is defined in the usual way by imposing an arbitrary regular grid structure on Ξ, i.e. $(G * v)(\xi_k) = \sum_{l \in \mathbb{Z}^2} G(l - k)v(\xi_k)$. In the case of perturbed sampling this regular grid structure may come from the original unperturbed grid. Otherwise it may be based on a nearest neighbor computation. It is a common approximation to take the regularizer $J_{\beta,A}$ instead of J_A to avoid the non differentiability at 0.

Let us explain our choice of the operator $A(D)$. The operator $A(D)$ permits us to penalize the frequencies according to the profile $A(i\omega)$. Notice that

$$|A(i\omega)\hat{u}(\omega)| = |A(D)u(\omega)| \leq \frac{1}{N^2} \sum_{0 \leq r, l < N} |A(D)u(r, l)| =: L$$

for all $\omega = (p, q) \in \mathcal{I}_M$, hence

$$|\hat{u}(\omega)| \leq \frac{L}{|A(i\omega)|}.$$

If $|A(i\omega)| \sim \left|\frac{2\pi}{M}\omega\right|^s$ for large $|\omega|$, then $|\hat{u}(\omega)|$ decreases as $\left|\frac{2\pi}{M}\omega\right|^{-s}$. In this way we can impose the decrease of the Fourier coefficients of u.

In the rest of the paper, we assume that the blurring kernel h satisfies

$$h \in L^2(\Omega_N), \quad \text{supp } \hat{h} \subseteq \left[-\frac{M}{2}, \frac{M}{2}\right]^2, \quad \text{and } \hat{h}(0, 0) = 1. \quad (3.4)$$

If $u \in \mathcal{B}_M$, then we can compute $h * u$ using the Fourier transform $\hat{h} * u(p, q) = \hat{h}(p, q) \hat{u}(p, q)$.

As we mentioned in the introduction, we have incorporated the image acquisition model (1.1) as a set of local constraints

$$[G * |\Delta_{\Xi}(h * u) - z|^2](\xi_k) \leq \bar{\sigma}^2, \quad \forall \xi_k \in \Xi. \quad (3.5)$$

Notice that we have used the value $\bar{\sigma} > 0$ as an estimate of the standard deviation of the noise. We will make tests with $\bar{\sigma} = \sigma$ and also with values of $\bar{\sigma}$ different from σ. The effective support of G must permit the statistical estimation of the variance of the noise with (3.5). In Section 6 we will come back to the noise estimation issue and the choice of $\bar{\sigma}$.

Then we minimize the functional $J_{\beta,A}(u)$ on \mathcal{B}_N subject to the family of constraints (3.5). Our purpose is to prove that the constrained formulation of (3.3) can be solved using Uzawa’s method once we guarantee that the assumptions of Uzawa’s method [26] hold. But before that, we comment on a improved discretization formula for the formula (3.3).

3.2. An improved discretization formula.
In this Section we follow the proposal made by Moisan in [38]. The basic observation is the following: the computation of $|\nabla u|^2$ cannot be done accurately unless we zoom the image. Let us explain this in detail.

Assume that $u \in \mathcal{B}_M$, that is, we assume that we want to reconstruct a periodic signal of fundamental period $[0, N)^2$ whose spectrum is contained in $\left\{-\frac{M}{2} + 1, \ldots, \frac{M}{2}\right\}^2$. Then u is determined by $\hat{u}(p, q)$ where $(p, q) \in I_M := \left\{-\frac{M}{2} + 1, \ldots, \frac{M}{2}\right\}^2$.

Let us observe that if $v = \nabla u \cdot \nabla u$ then v is again periodic of period $[0, N)^2$ and its spectrum is contained in $\left\{-M + 1, \ldots, M\right\}^2$ since

$$\nabla u \cdot \nabla u = \nabla u \ast \nabla u.$$
That is \(v \) is determined by its Fourier coefficients \(\hat{v}(p, q) \) where now \((p, q) \in I_{2M} := \{ -M + 1, \ldots, M \}^2 \) and

\[
\hat{v}(p, q) = \frac{1}{4M^2} \sum_{0 \leq r, l < 2M} v \left(\frac{rN}{2M}, \frac{lN}{2M} \right) e^{-2\pi i \left(\frac{pr + ql}{M} \right)}.
\]

In particular, we observe that [38]

\[
\int_{[0, N]^2} v(x, y) \, dxdy = \sum_{(p, q) \in I_{2M}} \hat{v}(p, q) \int_{[0, N]^2} e^{2\pi i \left(\frac{pr + ql}{M} \right)} \, dxdy
\]

\[
= \frac{1}{(2M)^2} \sum_{(p, q) \in I_{2M}} \sum_{0 \leq r, l < 2M} v \left(\frac{rN}{2M}, \frac{lN}{2M} \right) \int_{[0, N]^2} e^{2\pi i \left(\frac{pr + ql}{M} \right)} e^{-2\pi i \left(\frac{pr + ql}{M} \right)} \, dxdy
\]

\[
= \frac{N^2}{(2M)^2} \sum_{0 \leq r, l < 2M} v \left(\frac{rN}{2M}, \frac{lN}{2M} \right)
\]

while

\[
\int_{[0, N]^2} u(x, y) \, dxdy = \frac{N^2}{M^2} \sum_{0 \leq r, l < M} u \left(\frac{rN}{M}, \frac{lN}{M} \right)
\]

that is, we need to double the samples in order to compute the integral of \(\langle \nabla u, \nabla u \rangle \) in \([0, N]^2\). That is we need to zoom the image in order to compute the Dirichlet integral.

If \(M = N \), that is, if we plan to restore an image with \(N \times N \) degrees of freedom (therefore given by \(N \times N \) samples), then we observe that the computation of the Dirichlet integral involves doubling the number of samples in the term \(|\nabla u|^2\) since

\[
\int_{[0, N]^2} v(x, y) \, dxdy = \frac{1}{4} \sum_{0 \leq r, l < 2N} v \left(\frac{r}{2}, \frac{l}{2} \right).
\]

The same argument can be applied to the operator \(A(D)u \).

Finally, let us observe that the computation has been done for \(\int_{\Omega_N} |A(D)u|^2 \) and not for \(\int_{\Omega_N} \sqrt{\beta^2 + |A(D)u|^2}, \beta > 0 \). Indeed in this case, an exact computation would involve an infinite number of samples, but Moisan has shown for the TV case [38] that doubling the number of variables leads to a good approximation of the above integral, being a good compromise between precision and algorithmic efficiency.

Let us introduce some notation needed in what follows. For each \(M \in \mathbb{N} \), we denote by \(X_M \) the Euclidean space \(\mathbb{R}^{M \times M} \). The Euclidean scalar product and the norm in \(X_M \) will be denoted by \(\langle \cdot, \cdot \rangle_{X_M} \) and \(\| \cdot \|_{X_M} \), respectively, but in absence of ambiguities we will omit the subindex. \(X_M \) represents the space of images \(B_M \) sampled in the regular grid \(\{ 0, \ldots, M - 1 \} \times \{ 0, \ldots, M - 1 \} \) (or given by its Fourier coefficients \(\hat{u} \in \ell^2(I_M) \). Let us introduce the operator

\[
P : X_N \rightarrow X_{2N}
\]

\[
P \{ u(k, l) \} = \left\{ \hat{u} \left(\frac{r}{2}, \frac{l}{2} \right) \right\}_{r, l \in \{ 0, \ldots, 2N - 1 \}}
\]

where \(\{ u(r, l) \}_{r, l \in \{ 0, \ldots, N - 1 \}} \in X_N \) and \(\hat{u} \) is the function of \(B_N \) defined by the samples \(\{ u(r, l) \}_{r, l \in \{ 0, \ldots, N - 1 \}} \). Observe that \(\hat{P}u(p, q) = 1_{I_N} (p, q) \hat{u}(p, q) \). So we may consider
the operator $A(D)$ as acting on X_{2N} or as acting on X_N. Notice that if $u \in X_N$ we may write $A(D)Pu = PA(D)u$. From now on we will avoid (except exceptional cases) the use of subindexes to specify the function spaces of norms and scalar products. The function space should be clear from the variables, in particular let us remark that if the operand contains the oversampling operator P then the function must belong to X_{2N} (like: $\langle A(D)Pu, A(D)Pu \rangle = \langle A(D)Pu, A(D)Pu \rangle_{X_{2N}}$) otherwise to X_N.

Thus the improved restoration model is formulated as the constrained minimization

$$\min_{u \in X_N} K_{\beta,A}(u) := \sum_{0 \leq r,l < 2N} \sqrt{\beta^2 + |A(D)Pu(r,l)|^2},$$

subject to $[G * |\Delta^z(h * u) - z|^2](\xi_k) \leq \sigma^2 \quad \forall \xi_k \in \Xi$ (3.6)

and

$$\sum_{0 \leq r,l < N} u(r,l) = \sum_{\xi_k \in \Xi} w_kz(\xi_k) =: \sigma^w.$$

The additional constraint on the global mean of u is required to make sure that there is a unique solution. Since data fitting is provided by just some loose inequality constraints, the solution may be undetermined up to a constant (in the kernel of the regularizer) in areas where the variance of z is bounded smaller than one in the high density areas (where the sampling is more than sufficient).

Remark 3. A further improvement of the restoration formula (3.6) allows to consider the locality of the sampling density by incorporating a weighting function $a(x,y) \in X_{2N}$

$$K_{\beta,A,a}(u) := \sum_{0 \leq r,l < 2N} \sqrt{\beta^2 + |a(r,l)A(D)Pu(r,l)|^2}.$$

Local weights for total variation have been used in [39] to reduce the ringing artifacts in homogeneous regions of the image. But in the present case the weighting function $a(x,y)$ takes as value the area of the Voronoi cell of the nearest sample (recall (2.6)): $a(x,y) = \text{area}(V_{\text{arg} \min_{\xi_k \in \Xi} |(x,y) - (r,l)|})$. These values will be bigger than one there where the gaps are (thus, penalizing the apparition of artifacts) and smaller than one in the high density areas (where the sampling is more than sufficient).

4. The well-posedness of the model and its numerical solution.

Proposition 4.1. Assume that (3.4) holds. Then there exists a unique minimum $u \in X_N$ of (3.6).

Proof. Let u_m be a minimizing sequence of (3.6). Since $A(D)Pu_m$ is bounded in X_{2N}, and $\omega = 0$ is the only vanishing frequency for $A(i\omega)$ we deduce that $u_m := u_m - \overline{u_m}(0,0)$ is bounded in X_N. Now, since $\overline{u_m}(0,0)$ is constrained to be Ξ^c, we have that u_m is bounded in X_N. By extracting a subsequence, if necessary, we may assume that $u_m \to u$. It is immediate to see that u satisfies the constraints. Since $K_{\beta,A}$ is lower semicontinuous, we have that u is a minimum of (3.6).

Now, let u_1, u_2 be two minima of (3.6). If $A(D)Pu_1 \neq A(D)Pu_2$, letting $\overline{u} = \frac{u_1 + u_2}{2}$, then the strict convexity of $K_{\beta,A}$ proves that $K_{\beta,A}(\overline{u}) < \min_{u \in X_N} K_{\beta,A}(u)$, a contradiction. Thus $A(D)Pu_1 = A(D)Pu_2$ and we have uniqueness modulo constants, i.e., $u_1 - u_2 = c$ for some $c \in \mathbb{R}$. Since $\hat{u}_1(0,0) = \hat{u}_2(0,0)$ we deduce that $c = 0$, and therefore, $u_1 = u_2$. □
Remark 4. Proposition 4.1 is also true if instead of assuming the average constraint in (3.6) we assume that \(\inf_{x \in \mathbb{R}} G \ast (z - c)^2 > \sigma^2 \). This can be proved as in [13, 17]. But in that case, we should also use a different (gradient descent based) algorithm to minimize (3.6) as described in [13].

From now on, we assume that the constraints are qualified, that is there is \(u \in X_N \) such that

\[
\hat{u}(0,0) = \bar{z}^w \quad \text{and} \quad \left[G \ast |\Delta_{\Xi}(h \ast u) - z|^2 \right](\xi_k) < \sigma^2, \quad \forall \xi_k \in \Xi, \tag{4.1}
\]

which implies that the set of functions satisfying the constraints is non-empty.

We prove that the solution of (3.6) can be computed by adapting Uzawa’s algorithm. Let \(\mu > 0 \) and \(\lambda = (\lambda_k)_{k=1}^{N^2} \geq 0 \). Define the Lagrangian function

\[
\mathcal{L}^\mu(u, \{\lambda\}) = K_{\beta,A}(u) + \mu (\hat{u}(0,0) - \bar{z}^w)^2 + \sum_{\xi_k \in \Xi} \frac{\lambda_k}{2} \left(|G \ast |\Delta_{\Xi}(h \ast u) - z|^2 \right)(\xi_k) - \sigma^2).
\]

To adapt Uzawa’s algorithm we need the following result which can be proved as in the proof of Proposition 4.1.

Theorem 4.2. For each \(\lambda = (\lambda_k)_{k=1}^{N^2} \geq 0 \), there is a unique solution \(u \) of

\[
\min_{u \in X_N} \mathcal{L}^\mu(u, \{\lambda\}).
\]

Proof. Since \(\mathcal{L}^\mu(u, \{\lambda\}) \) is lower semicontinuous in \(u \), it suffices to prove that any minimizing sequence \(u_n \) is bounded. Since \(\mathcal{L}^\mu(u_m, \{\lambda\}) \) is bounded, we know that \(A(D)(u_m) \) and \((\hat{u}_m(0,0) - \bar{z}^w)^2 \) are bounded. The boundedness of \(A(D)(u_m) \) implies that \(u_m - \hat{u}_m(0,0) \) is bounded. Since \((\hat{u}_m(0,0) - \bar{z}^w)^2 \) is bounded, then \(\hat{u}_m(0,0) \) is also bounded. \(\square \)

We solve (3.6) with Uzawa’s algorithm.

Algorithm II: TV based restoration algorithm with local constraints

1. Choose any set of values \(\lambda_k^0 \geq 0, k = 1, \ldots, N^2 \), and \(\mu^0 > 0 \).
2. Iterate from \(p = 0 \) until convergence of \(\lambda^p \) the following steps:
3. Update \(\mu \) and \(\lambda \) in the following way:

\[
\mu^{p+1} = \mu^p + 1,
\]

\[
\lambda_k^{p+1} = \max(\lambda_k^p + \rho_p \left(|G \ast |\Delta_{\Xi}(h \ast u_p) - z|^2 \right)(\xi_k) - \sigma^2), 0) \quad \forall \xi_k, \tag{4.3}
\]

where \(0 < \rho_* \leq \rho_p \leq \rho^* \).

Proposition 4.3. Assume that there exists \(u \in X_N \) such that \(\hat{u}(0,0) = \bar{z}^w \) and \(z(\xi_k) = h \ast u(\xi_k) \forall \xi_k \in \Xi \). Then Uzawa’s algorithm converges to the solution of (3.6).

To prove Proposition 4.3 we need to reformulate problem (3.6) as

\[
\min_{u \in X_N} \max_{\lambda \geq 0, \alpha_+, \alpha_- \geq 0} \mathcal{L}(u, \{\lambda\}, \alpha_+, \alpha_-), \tag{4.4}
\]
where \(\lambda = (\lambda_k)_{k=1}^{N^2}, \alpha_+, \alpha_- \geq 0, \)
\[
\mathcal{L}(u, \{\lambda\}, \alpha_+, \alpha_-) = K_{\beta,A}(u) + \sum_{\xi_k \in \Xi} \lambda_k([G \ast |\Delta \Xi(h \ast u) - z|^2](\xi_k) - \sigma^2)
+ \alpha_+ \varphi_+(u) + \alpha_- \varphi_-(u),
\]
and
\[
\varphi_+(u) := \hat{u}(0,0) - \varpi^w \quad \text{and} \quad \varphi_-(u) = -\hat{u}(0,0) + \varpi^w,
\]
so that the equality constraint is written as the two inequalities \(\varphi_+(u) \leq 0, \varphi_-(u) \leq 0. \)

Since, by Proposition 4.1, problem (3.6) has a solution, the classical existence result of saddle points (see [26]) proves the existence of a solution of (4.4). Indeed the following result is classical and can be found, for instance, in [26] (Theorems 4 and 6, pp. 59-61) or [21] (Theorem 9.3.2).

Theorem 4.4. Assume that (4.1) holds. Let \(u \) be the solution of (3.6). Then there are \(\{\lambda\}, \alpha_+, \alpha_- \geq 0 \) such that \((u, \{\lambda\}, \alpha_+, \alpha_-) \) is a solution of (4.4), i.e., a saddle point of \(\mathcal{L}(\cdot, \cdot, \cdot, \cdot). \) If \((u, \{\lambda\}, \alpha_+, \alpha_-) \) is a solution of (4.4), then \(u \) is a solution of (3.6).

Since we will need it below, let us compute the gradient of \(K_{\beta,A}(u). \) For any \(v \in X_N \) we have
\[
\langle \nabla K_{\beta,A}(u), v \rangle_{X_N} = \left\langle \frac{A(D)Pu}{\sqrt{\beta^2 + |A(D)Pu|^2}}, A(D)Pv \right\rangle_{X_{2N}}
= \left\langle P^T A(D)^T \left(\frac{A(D)Pu}{\sqrt{\beta^2 + |A(D)Pu|^2}} \right), v \right\rangle_{X_N}
\]
for each \(v \in X_N \) vanishing on the boundary of \(\{0, \ldots, N - 1\}^2. \) Thus, we may write
\[
\nabla K_{\beta,A}(u) = A(D)^TP^T \left(\frac{A(D)Pu}{\sqrt{\beta^2 + |A(D)Pu|^2}} \right) \in X_N.
\]
Now, we notice that \(P^T f \) is just the restriction operator (subsampling operator) that considers only the samples of \(f \in X_{2N} \) in the grid \(\{0, \ldots, N - 1\}^2. \)

Finally, using this and the last two formulas, we deduce that
\[
\frac{A(D)Pu}{\sqrt{\beta^2 + |A(D)Pu|^2}} \nu^{(0, \ldots, N-1)^2} = 0
\]
where \(\nu^{(0, \ldots, N-1)^2} \) is the discrete normal.

As usual, we denote by \(||v||_q = \left(\sum_{i,j=1}^{N^2} |v(i,j)|^q \right)^{1/q} \) for any \(v \in X_N, 1 \leq q < \infty. \) We denote \(||v||_\infty = \max_{(i,j) \in \{(1, \ldots, N)\}} |v(i,j)|. \) And for simplicity in the cases where there is no ambiguity, we shall omit the subindexes for the \(L_2 \) norm, then \(||u||_2 = ||u||. \)

Proof of Proposition 4.3. Let us write \(Q(u) = (\hat{u}(0,0) - \varpi^w)^2, R(u) = G \ast |\Delta \Xi(h \ast u) - z|^2. \) To adapt the convergence proof of Uzawa’s method to our case, we need to prove that
(a) If \(U \) is a bounded subset of \(X_N \) then there is a constant \(\alpha > 0 \) such that
\[
\langle \nabla K_{\beta,A}(u) - \nabla K_{\beta,A}(v), u - v \rangle + \mu(Q(u) - Q(v), u - v) \geq \alpha ||u - v||^2
\]
for all \(u, v \in U \).
(b) \(R(u) \) is Lipschitz on bounded sets of \(X_N \) and
(c) the sequence \(u_p \) constructed in Step 2 of the above algorithm is bounded in \(X_N \).
To prove (a) we use the inequality [47]
\[
\left\langle \frac{\xi}{\sqrt{\beta^2 + |\xi|^2}}, \frac{\xi'}{\sqrt{\beta^2 + |\xi'|^2}} \right\rangle \geq \beta^2 \frac{|\xi - \xi'|^2}{(\beta^2 + |\xi|^2 + |\xi'|^2)^{3/2}} \quad \forall \xi, \xi' \in \mathbb{R}^k
\]
with \(k = 2 \) and we compute
\[
\langle \nabla K_{\beta, A}(u) - \nabla K_{\beta, A}(v), u - v \rangle \geq \sum_{(r,l)} \frac{|A(D)Pu(r,l) - A(D)Pv(r,l)|^2}{(\beta^2 + |A(D)Pu(r,l)|^2 + |A(D)Pv(r,l)|^2)^{3/2}} \geq \alpha \sum_{(r,l)} |A(D)Pu(r,l) - A(D)Pv(r,l)|^2
\]
where \((r,l) \in \{0, 1, \ldots, 2N - 1\} \), the constant \(\alpha > 0 \) depends on the bound for \(U \), and
\[
\langle \nabla Q(u) - \nabla Q(v), u - v \rangle = 2(\hat{u}(0,0) - \hat{v}(0,0))^2.
\]
Then (a) follows as a consequence of the two previous inequalities.
(b) Assume that \(U \subseteq X_N \) is a bounded set. Let \(u, \pi \in U \). Since \(\|G\|_1 \leq 1 \), we have
\[
\|R(u) - R(v)\| \leq \|G\|_1 \|h * (u - z)\|^2 - (h * v - z)^2\| \leq 2\|\pi\|_\infty \|h * (u - v)\| + \|h * (u + v)\|_\infty \|h * (u - v)\| \leq C\|u - v\|
\]
where \(C \) is a constant depending on the norms of \(h \) and \(z \) and on the bound for \(U \).
(c) To prove that \(\{u_p\}_p \) is bounded we observe that
\[
\mathcal{L}^u(u_p, \{\lambda_p\}) \leq \mathcal{L}^u(u, \{\lambda^p\}), \quad \forall u \in X_N, \tag{4.5}
\]
for all \(p \). Choosing \(u \in X_N \) such that \(\hat{u}(0,0) = \pi^0 \) and \(z = \Delta_{\Xi}(h * u) \), we obtain that
\[
K_{\beta, A}(u_p) + \mu^p Q(u_p) \leq K_{\beta, A}(u),
\]
hence \(\{u_p\}_p \) is bounded in \(X_N \).
Now, we can adapt the proof of Uzawa’s method to our case (see Theorem 5 in [26], Sect. 3.1). Since \(u_p \) satisfies (4.5) we have
\[
\langle \nabla K_{\beta, A}(u_p), u - u_p \rangle + \mu^p \langle \nabla Q(u_p), u - u_p \rangle + \langle \lambda_p, R(u) - R(u_p) \rangle \geq 0 \quad \forall u \in X_N. \tag{4.6}
\]
Let \(u^* \) be the solution of problem (3.6). Since, by Theorem 4.4, we have
\[
\mathcal{L}(u^*, \lambda, \alpha_+, \alpha_-) \leq \mathcal{L}(u, \lambda, \alpha_+, \alpha_-) \quad \forall u \in X_N,
\]
we also have
\[
\langle \nabla K_{\beta, A}(u^*), u - u^* \rangle + \langle \lambda, R(u) - R(u^*) \rangle + \alpha_+(\varphi_+(u) - \varphi_+(u^*)) + \alpha_-(\varphi_-(u) - \varphi_-(u^*)) \geq 0 \tag{4.7}
\]
for all $u \in X_N$. Since u^* is a solution of (3.6), we have that

$$\nabla Q(u^*) = 0,$$

and we can add $\mu_p \langle \nabla Q(u^*), u - u^* \rangle$ to the inequality (4.7). Taking $u = u^p$ in this form of the second inequalities, and $u = u^*$ in (4.6) and adding both of them we obtain

$$\langle \nabla K_{\beta,A}(u_p) - \nabla K_{\beta,A}(u^*), u_p - u^* \rangle + \mu_p \langle \nabla Q(u_p) - Q(u^*), u_p - u^* \rangle - \alpha_+ (\varphi_+(u_p) - \varphi_+(u^*)) - \alpha_- (\varphi_-(u_p) - \varphi_-(u^*)) + \langle \lambda^p - \lambda, R(u_p) - R(u^*) \rangle \leq 0$$

Since

$$\langle \nabla K_{\beta,A}(u_p) - \nabla K_{\beta,A}(u^*), u_p - u^* \rangle \geq \alpha \|A(D)u_p - A(D)u^*\|^2$$

and

$$\mu_p \langle \nabla Q(u_p) - Q(u^*), u_p - u^* \rangle - \alpha_+ (\varphi_+(u_p) - \varphi_+(u^*)) - \alpha_- (\varphi_-(u_p) - \varphi_-(u^*)) = 2\mu_p (\hat{u}_p(0,0) - \hat{u}(0,0))^2 - (\alpha_+ - \alpha_-)(\hat{u}_p(0,0) - \hat{u}(0,0)) \geq \mu_p (\hat{u}_p(0,0) - \hat{u}(0,0))^2$$

for p large enough, we have

$$\langle \lambda^p - \lambda, R(u_p) - R(u^*) \rangle \leq -\alpha \|A(D)u_p - A(D)u^*\|^2 - \mu_p (\hat{u}_p(0,0) - \hat{u}(0,0))^2 \leq -\alpha_0 \|u_p - u^*\|. \tag{4.8}$$

Now, the proof follows in a standard way. Let us give the details for the sake of completeness. Using (4.3), we have

$$\|\lambda^{p+1} - \lambda\| \leq \|\lambda^p - \lambda + \rho_p (R(u_p) - R(u^*))\|.$$

Taking squares, we have

$$\|\lambda^{p+1} - \lambda\|^2 \leq \|\lambda^p - \lambda\|^2 + 2\rho_p \|\lambda^p - \lambda, R(u_p) - R(u^*)\| + \rho_p^2 \|R(u_p) - R(u)\|^2.$$

Using (4.8) and (b), we have

$$\|\lambda^{p+1} - \lambda\|^2 \leq \|\lambda^p - \lambda\|^2 - 2\alpha_0 \rho_p \|u_p - u^*\|^2 + \rho_p^2 L^2 \|u_p - u^*\|^2.$$

for some $L > 0$. If we choose ρ_p such that

$$2\alpha_0 \rho_p - L^2 \rho_p^2 \geq \gamma > 0$$

that is

$$0 < \rho_* \leq \rho_p \leq \rho^*$$

we have

$$\|\lambda^{p+1} - \lambda\|^2 \leq \|\lambda^p - \lambda\|^2 - \gamma \|u_p - u^*\|^2.$$

Then we deduce that $\|\lambda^p - \lambda\|$ is decreasing and, thus, has a limit $\ell \geq 0$. Then letting $p \to \infty$ we have that $\|u_p - u^*\| \to 0$. \Box
5. A Quasi-Newton algorithm for the solution of (4.2). The purpose of this Section is to explain the algorithm used to solve problem (4.2) in Algorithm II. For convenience, let us denote the convolution and irregular sampling operators, as $\Delta_{\Xi}(h * u)$ for any $u \in X_N$.

Observe that the Euler-Lagrange equation corresponding to (4.2) is

$$
A(D)^T \left(P^T \frac{A(D)Pu}{\sqrt{\beta^2 + |A(D)Pu|^2}} \right) + 2\mu(\hat{u}(0,0) - \Xi u) + S^T(G * \lambda)(Su - z) = 0. \quad (5.1)
$$

To shorten our expressions, let us define the following operators:

$$
M u = (\sqrt{G * \lambda})Su, \quad \text{so that} \quad M^T u = S^T(\sqrt{G * \lambda}u),
$$

$$
N u = \hat{u}(0,0), \quad \mu = S^T((G * \lambda)z) + 2\mu \Xi w,
$$

$$
A[v](u) = A(D)^T P^T \left(\frac{A(D)Pu}{\sqrt{\beta^2 + |A(D)Pu|^2}} \right)
$$

and

$$
T[v](u) = A[v](u) + 2\mu Nu + M^T Mu.
$$

where $u, v \in X_N$.

We want to solve (5.1) with a fixed point iteration:

$$
A[u^t](u^{t+1}) + 2\mu Nu^{t+1} + M^T Mu^{t+1} = b. \quad (5.2)
$$

The rest of this section is devoted to showing that such a fixed point algorithm converges to the minimizer of (4.2). Notice that a proof based on convex analysis (the half-quadratic regularization approach) can be found in [17] in the continuous case, or in [20, 9] for the discrete case. Further analysis can be found in [1, 23, 48]. Here, we will extend the proof proposed by Chan and Mulet in [19]. The advantage of such an approach is that only basic algebra is needed. Moreover, the linear convergence rate of this algorithm can be shown explicitly. The difference with the approach in [19] relies on the fact that the operator M is not assumed to be invertible, in our case the presence of the mean constraint μN permits to prove the same convergence result as in [19], without an invertibility hypothesis on M.

Remark 5. Note that computing $M^T M$ in (5.2) entails the computation of an operator with a Toeplitz structure. Which is efficiently computed in $O(N^2 \log_2 N^2)$ steps, as in the ACT algorithm (Section 2.1).

5.1. Existence of u^t and its boundedness. The sequence u^t will be defined iteratively using (5.2).

Proposition 5.1. The equation (5.2) has a unique solution $u^{t+1} \in X_N$ which is the minimizer of

$$
E(u) = \left\| \frac{A(D)Pu}{(\beta + |A(D)Pu|^2)^{1/4}} \right\|^2 + \frac{1}{2} \|Mu - z\|^2 + \mu \|Nu - \Xi w\|^2 \quad (5.3)
$$

where $\left\| \frac{A(D)Pu}{(\beta + |A(D)Pu|^2)^{1/4}} \right\|^2 = \sum_{(r,l)} \left| \frac{A(D)Pu(r,l)}{(\beta + |A(D)Pu(r,l)|^2)^{1/4}} \right|^2$ and $z' = \sqrt{G * \lambda}z$.

Proof. It is standard that (5.3) admits a unique solution \(u^{t+1} \in X_N \). Moreover, (5.2) is the Euler-Lagrange equation associated to (5.3) and solutions of (5.2) are minimizers of (5.3).

Proposition 5.2. (i) There exists \(K_0 > 0 \) such that
\[
\| A(D)Pu \| \leq K_0.
\]
(ii) \(T[u^t] \) is a bounded coercive operator. Indeed we have
\[
\langle T[u^t]u, u \rangle \geq \alpha \| u \|^2
\]
for some \(\alpha > 0 \) independent of \(t \).
(iii) The sequence \(u^t \) is uniformly bounded.

Proof. Since \(u^{t+1} \) is a minimizer of \(\mathcal{E}(u) \), we have \(\mathcal{E}(u^{t+1}) \leq \mathcal{E}(0) = \frac{1}{2} \| z' \|^2 + \mu \| \omega \|^2 \), and thus:
\[
\left\| \frac{1}{(\beta^2 + |A(D)Pu|^2)^{1/4}} A(D)Pu^{t+1} \right\|^2 \leq \mathcal{E}(0) = \frac{1}{2} \| z' \|^2 + \mu \| \omega \|^2.
\]

We have
\[
\frac{1}{(\beta^2 + |A(D)Pu|^2)^{1/4}} A(D)Pu^{t+1} \geq \frac{|A(D)Pu^{t+1}|^2}{\sqrt{\beta^2 + |A(D)Pu|^2}}.
\]

Thus \(\| A(D)Pu^{t+1} \|^2 \leq \mathcal{E}(0) \sqrt{\beta^2 + |A(D)Pu|^2} \leq \mathcal{E}(0) \sqrt{\beta^2 + \| A(D)Pu \|^2} \). But since we deal with finite dimensional spaces, there exists \(L > 0 \) which does not depend on \(u^t \) such that \(\| A(D)Pu \| \leq L \| A(D)Pu \| \). Hence we deduce that
\[
\| A(D)Pu^{t+1} \|^2 \leq \mathcal{E}(0) \sqrt{\beta^2 + L^2 \| A(D)Pu \|^2}
\]

Assume that \(\| A(D)Pu \| \leq K \). Using (5.1), to get that \(\| A(D)Pu^{t+1} \| \leq K_0 \), it is sufficient to choose \(K > 0 \) large enough so that
\[
\mathcal{E}(0) \sqrt{\beta^2 + L^2 K^2} \leq K^2.
\]

(ii) The boundedness of \(T[u^t] \) is immediate and we omit its proof. Let us prove that \(T \) is a coercive operator. Using the bounds in Step (i), we have
\[
\langle A[u^t]u, u \rangle \geq \frac{1}{\sqrt{\beta^2 + L^2 K_0^2}} \| A(D)Pu \|^2 \geq \alpha_0 \| u_0 \|^2,
\]
where we wrote \(u = u_0 + c \), with \(c = N_u \) and \(N_u = 0 \), and we used the fact that \(A(D)P \) is a linear operator whose kernel are the constants. Using \(A[u^t]c = 0 \) and \((u_0, c) = 0 \), we get
\[
(T[u^t])(u_0 + c, u_0 + c) \geq \langle A[u^t](u_0 + c), u_0 + c \rangle + 2\mu(\mathcal{N}(u_0 + c), u_0 + c) \geq \langle A[u^t]u_0, u_0 \rangle + 2\mu c^2 \geq \alpha_0 \| u_0 \|^2 + 2\mu c^2.
\]
Thus, we deduce (5.4).

(iii) From (5.4), we know that $\langle T[u']u^{t+1}, u^{t+1} \rangle \geq \alpha \|u^{t+1}\|^2$. But from (5.1), we know that $\langle T[u']u^{t+1}, u^{t+1} \rangle = \langle b, u^{t+1} \rangle \leq \|b\|\|u^{t+1}\|$. We deduce that $\|u^{t+1}\| \leq \frac{\|b\|}{\alpha}$. □

5.2. Convergence of the fixed point algorithm. For simplicity, given $\lambda = (\lambda_k)_{k=1}^N$, we write $\mathcal{L}(u) = \mathcal{L}^\nu(u, \{\lambda\})$. Recall that

$$
\nabla_u \mathcal{L}(u) = Tu - 2\mu z' - \mathcal{M}z'.
$$

Let us finally define

$$
\mathcal{G}(v, u) = \mathcal{L}(u) + \langle v - u, \nabla_u \mathcal{L}(u) \rangle + \frac{1}{2} \langle v - u, T[u](v - u) \rangle
$$

Proposition 5.3. The following inequality holds for any $u, v \in X_N$:

$$
\mathcal{L}(v) \leq \mathcal{G}(v, u)
$$

Proof. We follow the proof in [19]. Since

$$
\mathcal{G}(v, u) - \mathcal{L}(v) = \mathcal{L}(u) - \mathcal{L}(v) + \langle v - u, \nabla_u \mathcal{L}(u) \rangle + \frac{1}{2} \langle v - u, T[u](v - u) \rangle,
$$

standard computations lead to

$$
\mathcal{G}(v, u) - \mathcal{L}(v) = \sum_{(r,l)} \left(a - \overline{a} + \frac{1}{2a} (\overline{a}^2 - a^2) \right)
$$

with $a = \sqrt{\beta^2 + |A(D)Pu(r,l)|^2}$ and $\overline{a} = \sqrt{\beta^2 + |A(D)Pv(r,l)|^2}$ where $(r,l) \in \{0,1,\ldots,2N-1\}$. Since $a, \overline{a} > 0$, and $a - b + \frac{1}{2a} (b^2 - a^2) = \frac{(a-b)^2}{2a} \geq 0$, we have that $\mathcal{G}(v, u) - \mathcal{L}(v) \geq 0$.

Proposition 5.4. (i) The function u^{t+1} defined by (5.2) is such that:

$$
u^{t+1} = \arg\min_u \mathcal{G}(v, u)
$$

i.e.: $0 = \nabla_u \mathcal{L}(u^t) + T[u^t](u^{t+1} - u^t)$.

(ii) We have $\lim_{t \to \infty} \|u^{t+1} - u^t\| = 0$.

Proof. (i) Let us denote by $\bar{u} = \arg\min_u \mathcal{G}(v, u')$. We thus have $0 = \nabla_u \mathcal{L}(u^t) + T[u^t](\bar{u} - u^t)$. And this last equation is precisely equation (5.2), which implies that $\bar{u} = u^{t+1}$.

(iii) From (5.5) and (5.6), we have $\mathcal{L}(u^{t+1}) \leq \mathcal{G}(u^{t+1}, u^t) \leq \mathcal{G}(u^t, u^t) \leq \mathcal{L}(u^t)$, i.e. ($\mathcal{L}(u^t)$) is decreasing. Now, from (5.5) and (5.6), we have:

$$
\mathcal{L}(u^{t+1}) \leq \mathcal{G}(u^{t+1}, u^t)
$$

$$= \mathcal{L}(u^t) + \langle u^{t+1} - u^t, \nabla_u \mathcal{L}(u^t) \rangle + \frac{1}{2} \langle u^{t+1} - u^t, T[u^t](u^{t+1} - u^t) \rangle
$$

$$= \mathcal{L}(u^t) - \frac{1}{2} \langle u^{t+1} - u^t, T[u^t](u^{t+1} - u^t) \rangle
$$

Using (5.4), we deduce: $\frac{1}{2} \alpha \|u^{t+1} - u^t\|^2 \leq \frac{1}{2} \|u^{t+1} - u^t, T[u^t](u^{t+1} - u^t)\| \leq \mathcal{L}(u^t) - \mathcal{L}(u^{t+1})$ and (ii) follows. □
We are now in position to state a convergence result.

Theorem 5.5. The sequence u^t defined by (5.2) converges to the solution of (4.2).

Proof. From Proposition 5.2.(iii), we know that u^t is uniformly bounded. There exists u such that we can extract a convergent subsequence, which we still denote by u^t, with $u^t \to u$ as $t \to +\infty$. From Proposition 5.4.(ii), we know that u^{t+1} is also convergent and $u^{t+1} \to u$ as $t \to +\infty$. Letting $t \to +\infty$ in equation (5.2), we deduce that u is the solution of (5.1) (and thus of (4.2)). By uniqueness of the solution of (4.2), we conclude that the whole sequence u^t converges to u, solution of (4.2).

We end this section by stating a result about the convergence rate. We denote by \tilde{u} the solution of Problem (4.2). We use the following notations:

$$\gamma_t := \frac{\mathcal{G}(\tilde{u}, u^t) - \mathcal{L}(\tilde{u})}{\frac{1}{2}(\tilde{u} - u^t, T[u^t](\tilde{u} - u^t))}$$

and

$$\eta := 1 - \lambda_{\min}(T[\tilde{u}]^{-1}\nabla^2 \mathcal{L}(\tilde{u}))$$

where $\lambda_{\min}(M)$ denotes the smallest eigenvalue of the matrix M; in particular if M is positive definite then $\lambda_{\min}(M) > 0$

Proposition 5.6.

1. $\mathcal{L}(u^{t+1}) - \mathcal{L}(\tilde{u}) \leq \gamma_t(\mathcal{L}(u^t) - \mathcal{L}(\tilde{u}))$.
2. $\eta < 1$ and $0 \leq \gamma_t \leq \eta$, for t sufficiently large. In particular, $\mathcal{L}(u^t)$ has a linear convergence rate of at most η.
3. u^t is r-linearly convergent with a convergent rate of at most $\sqrt{\eta}$.

Proof. We refer the interested reader to the proof of Theorem 6.1 in [19] which can easily be extended to our case.

6. **Band constraints and stop conditions.** Coming back to the optimization problem (3.6), since both the functional $K_{\beta,A}(u)$ and the constraints are convex, and the constraint’s feasible set V does not contain the absolute min of $K_{\beta,A}(u)$, then the solution lies in the boundary of V. In practice, computing a solution in ∂V is not only computationally too expensive (due to the size of the problems), but also unnecessary because of the noise. Since we rely on noise estimates that have a certain accuracy, exceeding this accuracy in the data fitting is useless (as we will see
the case of the ball shaped constraint, or P_S band constraint. Observe that a constraint of the type imposed when solving exactly (3.6) was already doomed to failure since it has zero number of satisfied constraints is estimated by the probability P_S since to remove less noise than noise is actually present in the image. Gilboa studied with a slightly higher TV value in order to avoid the loss of textures.

Later in this section. Moreover, as it has been observed in all numerical experiments

[14, 16, 17, 18, 19, 20, 24, 29, 10, 31, 44, 48], using total variation as regularizer in denoising or restoration generally carries some loss of texture and it is not desirable to compute the solution that (absolutely) minimizes the TV but to keep a solution with a slightly higher TV value in order to avoid the loss of textures.

As a consequence, to avoid this degradation, the rule of thumb has been ever since to remove less noise than noise is actually present in the image. Gilboa studied this in [10] and concluded that in terms of SNR the optimal selection of $\bar{\sigma}$ is between 0.7 and 0.8 times the value of σ. In what follows we will modify the constraints to account for this change:

$$[G \ast |\Delta_G (h \ast u) - z|^2] (\xi_k) \leq \sigma^2 \quad \forall \xi_k \in \Xi$$

where $\sigma < \sigma$, and we denote \bar{n} the noise with variance $\bar{\sigma}^2$. That is, we do not remove all noise in order to keep more texture in u: $z = S(u_0 + S^{-1}(n - \bar{n})) + \bar{n}$ and we identify $u_0 + S^{-1}(n - \bar{n})$ with u.

Motivated by this observation and by the fact that, due to noise, there is always some uncertainty in the neighborhood of ∂V, we will avoid the computational overhead of getting to ∂V by stopping the algorithm as soon as the solution is close to it. This is the notion behind the band constraint

$$(1 - \alpha)\sigma^2 \leq [G \ast |\Delta_G (h \ast u) - z|^2] (\xi_k) \leq (1 + \alpha)\bar{\sigma}^2 \quad \forall \xi_k \in \Xi,$$

with $\alpha > 0$. The constraint described by equation (6.1) is clearly non-convex, and therefore it cannot be integrated in the method presented here. But since Uzawa’s algorithm always pushes the solution towards the boundary of the feasible set, then (at least in practice) it can be used to stop Uzawa’s loop by testing if (6.1) is fulfilled.

In what follows we will see that even considering relaxed constraints like (6.1), it is not possible to fulfill all the local constraints at once, since they rely on a statistical estimation of the noise. Then we will see how this relaxation of constraints is used to early stop Uzawa’s iterations and this helps to improve the efficiency of our implementation.

In our experiments, we have chosen $\sigma = 0.8\sigma$ and α such that $0.8(1 + \alpha) < 1$.

6.1. Expected number of satisfied constraints in the band. Let us summarize the arguments of [4]. Each local constraint relies on a local estimate of the residual variance

$$S_G(\xi_k) = [G \ast |\Delta_G (h \ast u) - z|^2] (\xi_k) = [G \ast |\bar{n}|^2] (\xi_k)$$

(6.2)

where G is a Gaussian or uniform window centered at the interest point and n_k denotes a zero mean Gaussian noise and variance $\bar{\sigma}^2$ (recall that we are going to remove only a noise of variance $\bar{\sigma}^2 < \sigma^2$). Since S_G is a random variable itself, the number of satisfied constraints is estimated by the probability $P[S_G \leq (1 + \alpha)\sigma^2]$ in the case of the ball shaped constraint, or $P[(1 - \alpha)\sigma^2 \leq S_G \leq (1 + \alpha)\bar{\sigma}^2]$ for the band constraint. Observe that a constraint of the type $\bar{S}_G = \bar{\sigma}^2$ (that is in practice imposed when solving exactly (3.6)) was already doomed to failure since it has zero probability $P[S_G = \bar{\sigma}^2] = 0$.

Using the Central Limit Theorem gives only a loose estimate of the probability distribution of S_G. To improve the estimation of the expected number of satisfied constraints let us simplify S_G. Approximating the discrete convolution with G (of
standard deviation $\tilde{\sigma}$) by a mean over a disk I of radius $r = 2\tilde{\sigma}$ we can define a simpler estimator $S_I = \frac{1}{|I|} \sum_{k \in I} \bar{\sigma}_k^2$.

For the case of the ball constraint, the expected number of satisfied constraints is the number of pixels times

$$P[S_I \leq (1 + \alpha)\sigma^2] = P \left[\frac{1}{|I|} \sum_{k \in I} \bar{\sigma}_k^2 \leq (1 + \alpha)\sigma^2 \right] = P \left[\sum_{k \in I} \left(\frac{\bar{\sigma}_k}{\sigma} \right)^2 \leq (1 + \alpha)|I| \right].$$

Notice that in the rightmost equation $\sum_{k \in I} \left(\frac{\bar{\sigma}_k}{\sigma} \right)^2$ is a sum of $|I|$ squared normalized Gaussian random variables, so it follows a chi-square distribution with $|I|$ degrees of freedom ($\chi^2(|I|)$). And the probability can be computed using the incomplete gamma function $\Gamma(a, x) = \int_{x}^{\infty} t^{a-1}e^{-t}dt$

$$P[S_I \leq (1 + \alpha)\sigma^2] = P \left[\chi^2(|I|) \leq (1 + \alpha)|I| \right] = \Gamma \left(\frac{(1 + \alpha)|I|}{2}, \frac{|I|}{2} \right).$$

In the case of the band constraint the expected number of satisfied constraints $N(\alpha, r)$ is the number of pixels times the following probability

$$P \left[(1 - \alpha)\sigma^2 \leq S_I \leq (1 + \alpha)\sigma^2 \right] = \Gamma \left(\frac{(1 + \alpha)|I|}{2}, \frac{|I|}{2} \right) - \Gamma \left(\frac{(1 - \alpha)|I|}{2}, \frac{|I|}{2} \right). \quad (6.3)$$

Equation (6.3) expresses the expected proportion of satisfied constraints as a function of the radius of the disk $r (|I| = \pi r^2)$ and the width of the band α. We plot in Figure 6.2 this function, for different values of α to give an intuition of its behavior. Notice that the expected number of satisfied constraints decreases as we reduce the band width α or the radius r. This allows us to compute one parameter as a function of the other two, i.e. using a disk of radius $r = 13$ (or a Gaussian with standard deviation 7.0) and defining a band of width $0.2\sigma^2$ ($\alpha = 0.1$) gives 89% of satisfied constraints. In practice, either we specify α, r and then the expected number of satisfied constraints is $N(\alpha, r)$, or we give α and N_α and we compute r so that $N(\alpha, r) = N_\alpha$. We have taken the second option in the experiments displayed in Section 7.

Remark 6. Observe that in (6.2) the estimation of the noise variance corresponds to the case when the mean of the random variable is zero. Indeed, the global mean is enforced to be zero in (3.6). We should also impose that the local means are zero with a new set of constraints, otherwise S_G will be an overestimation of the noise variance. Adding the local mean constraint $\sum_{\xi \in \Xi} |G * (\Delta_{\Xi}(h * u) - z)|^2(\xi) = 0$ in (3.6)
Adapts to the formalism developed in this paper. But to avoid the computational overhead of its implementation, and since the overestimation plays in favor of the relaxation arguments presented earlier in this section, we will not include it in the present formulation.

6.2. Practical stopping conditions for an efficient implementation

Using (6.3) we may derive a practical rule to stop Uzawa’s loop. Indeed, the user specifies α and the proportion of constraints N_α/N that must lie within the band of width α, and the algorithms deduces the radius r of the kernel G such that $N(\alpha, r) = N_\alpha$. Then we iterate the Uzawa’s loop in Algorithm II until the number of pixels that satisfy the constraint (6.3) is N_α.

The truncation error of the Quasi-Newton has three sources: (i) truncation of the Quasi-Newton iterations themselves, (ii) truncation of the nested CG loop, and (iii) propagation of the CG error along QN iterations. Here we summarize how to estimate and control the combination of the three errors for a given (global) target error bound on the QN result $\|u_p - u'_p\|_2 \leq \eta/\|S\|$. Using standard error propagation analysis [22] and the knowledge that QN is at least linearly convergent we can estimate the global error if we can estimate (ii) and bound the inverses of the operators $T[u']$ and their dependence on u'. In our case these bounds are estimated empirically, and the CG error is approximated by its residual. Figure 6.3 shows that this procedure is quite effective in practice. First our CG stopping condition makes the truncated QN sequence indistinguishable from the non-truncated QN sequence (i.e. the one with CG iterated until exact convergence is reached, and thus not affected by CG truncation errors (ii) and their propagation (iii)). This is because the actual QN truncation error:

\[
\text{error} = ||u_p - u'_p||
\]

Quasi-Newton iteration t

- **Truncated sequence**
- **Non-truncated sequence**
- **Estimated truncation error**
- **Desired error** $\eta/\|S\|$

Table 6.1: Relation between the width of the constraint band and the restoration time. Reducing the width of the band increases the computational cost of the restoration algorithm. In the table the value of η was selected according to the rule $\eta = \frac{1}{4}(\sqrt{1+\alpha \bar{\sigma}} - \sqrt{1-\alpha \bar{\sigma}})$, and $\bar{\sigma} = 1$. All the reported times correspond to experiments run on a 1.6GHz CPU restoring a 256 × 256 pixels image.

<table>
<thead>
<tr>
<th>Band Width parameter: α</th>
<th>Effective Band $\sqrt{(1 - \alpha)\bar{\sigma} + \eta}$</th>
<th>Total running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>0.84</td>
<td>3 min 3 sec</td>
</tr>
<tr>
<td>0.34</td>
<td>0.93</td>
<td>3 min 37 sec</td>
</tr>
<tr>
<td>0.22</td>
<td>0.96</td>
<td>4 min 58 sec</td>
</tr>
<tr>
<td>0.10</td>
<td>0.98</td>
<td>18 min</td>
</tr>
</tbody>
</table>

Fig. 6.3. Truncation of the Quasi-Newton method. The first sequence shows the error evolution along the Quasi-Newton iterations, without applying the stopping condition for the CG algorithm. The second sequence was obtained stopping the CG with the empirical bound, observe that the two sequences are indistinguishable. The third sequence depicts the estimated error used to effectively stop the Quasi-Newton iterations, as soon as the desired error is achieved.
error (with either CG truncated or not) is considerably over-estimated by our error propagation analysis as shown in Figure 6.3. This also means that the desired error is achieved much faster than predicted by the our error bounds.

Let us now take into account the truncation error of the Quasi-Newton method in the determination of the band constraints. Assume that we are computing Quasi-Newton solution \(u_p \) and we have controlled the errors \(\| S u_p - S u_p^t \| \leq \| S \| \| u_p - u_p^t \| \leq \eta \), where \(u_p^t \) denotes the solution obtained at the \(t \)-th iteration of the method. Then we may erode the band by \(\eta \) as seen in Figure 6.1. In this way we ensure that if we stop the Quasi-Newton solution with the criterion \(\| S \| \| u_p - u_p^t \| \leq \eta \), we are sure that we have truncated a solution \(u_p \) that satisfies (6.3). Clearly \(\eta \) must satisfy the inequality \(\eta < \frac{1}{2}(\sqrt{1+\alpha\sigma} - \sqrt{1-\alpha\sigma}) \) and we have taken \(\eta := \frac{1}{4}(\sqrt{1+\alpha\sigma} - \sqrt{1-\alpha\sigma}) \). Figure 6.1 shows the band and its reduced version for a single constraint.

Finally, we notice that the computational complexity of the algorithm increases if we reduce the width of the band. Indeed, taking \(\alpha \to 0 \) makes it harder to satisfy the constraints. And to illustrate this we display in Table 6.1 the computation times corresponding to some values of \(\alpha \).

7. Experiments. To test and compare the proposed algorithm we devised the following experiments that highlight separately different characteristics of the method. First we show an experiment of restoration of an irregularly sampled image with noise. In this experiment we compare different variants of the proposed algorithm with the ACT Algorithm and its variants [32], and the algorithm in [5]; moreover this case serves as a preliminary testbed for the choice of regularizer \(A(D)u \). Then, in Subsection 7.1, we display experiments on denoising and deconvolution. Finally in the last subsection we consider the full restoration problem, with deconvolution, denoising, and zooming. All the experiments were performed with simulated images. The perturbations \(\varepsilon(x) \) were computed according to the model (2.2), with an amplitude \(A = 0.88 \) (standard deviations of \(\varepsilon(x) \)), and where \(\text{supp} \ \hat{\varepsilon} \subseteq [-0.5/T\varepsilon, 0.5/T\varepsilon]^2 \) for \(T\varepsilon = 10 \). The perturbed samples \(z \) were computed with a high accuracy (usually \(10^{-8} \)) by approximating the irregular sampling formula (2.3) with the transposed NFFT [41].
Comparison of the algorithms in the irregular to regular sampling and denosing task. These results correspond to the restoration of the image shown in Figure 7.1, corrupted by a white Gaussian noise with standard deviation $\sigma = 1$. The error column is obtained by comparing the restored image u with the ground truth u_0 with the RMSE $\sqrt{\frac{1}{N} \| u - u_0 \|^2}$ of the noise variance. Its value evidence that all the algorithms achieve errors similar to the noise variance. In all the experiments the power of the removed noise was set to be $\frac{1}{N} \| Su - z \|^2 \sim 0.908$, this allows to improve the result’s RMSE and the visual quality of the restored images.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Regularizer</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT [32] or (2.5)</td>
<td></td>
<td>1.354</td>
</tr>
<tr>
<td>ACT (2.8) residual preconditioning</td>
<td></td>
<td>1.121</td>
</tr>
<tr>
<td>ACT (2.9) regularity preconditioning</td>
<td></td>
<td>1.049</td>
</tr>
<tr>
<td>ACT+TV [5] or (2.10)</td>
<td>$J_{β,A}(u)$ eq. (3.3)</td>
<td>0.904</td>
</tr>
<tr>
<td>QN+TV $</td>
<td>A(iω)</td>
<td>= \frac{1}{\sqrt{N}}</td>
</tr>
<tr>
<td>QN+TV $</td>
<td>A(iω)</td>
<td>= \frac{1}{\sqrt{N}}</td>
</tr>
<tr>
<td>QN+TV $</td>
<td>A(iω)</td>
<td>= \frac{1}{\sqrt{N}}</td>
</tr>
<tr>
<td>QN+FAR $</td>
<td>A(iω)</td>
<td>= \frac{1}{\sqrt{N}}</td>
</tr>
<tr>
<td>QN+FAR $</td>
<td>A(iω)</td>
<td>= \frac{1}{\sqrt{N}}</td>
</tr>
<tr>
<td>QN+FAR $</td>
<td>A(iω)</td>
<td>= \frac{1}{\sqrt{N}}</td>
</tr>
</tbody>
</table>

Finally, we added a white noise of standard deviation σ to the irregular samples. In the experiment displayed here, we have taken $\sigma = 1$ gray levels (i.e. the noise power is 890 times smaller than the image power, $SNR = 29.5dB$). The perturbed image shown in Figure 7.1 was simulated according to this procedure.

To quantify the errors we adopt the classical root mean squared error measure $\sqrt{\frac{1}{N} \| u - u_0 \|^2}$ against the ground truth image (denoted as u_0), and the method noise for a qualitative analysis. The method noise was originally aimed to compare denoising algorithms, it consists in subtracting the restored image to the noisy one, and studying the remaining noise. In our context assuming an image formation model like (1.1) and denoting u the image obtained by a restoration algorithm, the method noise becomes $(z - Su)$, where z are the noisy samples and S stands for the irregular sampling and convolution operators. Since the restoration is expected to recover the original image $u \simeq u_0$, this method noise should be as similar to a white noise as possible. In addition, since we would like the original image u_0 not to be altered by restoration method, the method noise should be as small as possible within the allowed regular functions.
(a) ACT$_R$ eq. (2.9) regularizer precondition RMSE= 1.049
(b) ACT+TV eq. (2.10) RMSE= 0.961
(c) QN+TV eq. (3.6) with $|A(i\omega)| \sim \frac{|2\pi\omega|}{N}$ RMSE= 0.864
(d) QN+FAR eq. (3.6) with $|A(i\omega)| \sim \frac{|2\pi\omega|}{N}$ RMSE= 0.757

Fig. 7.3. Method noise of the different algorithms in the experiment of irregular to regular sampling plus denoising. The images in the first row display the method noise $(z - Su)$ for different methods, less visible structure indicates a better reconstruction. The images display the grayscale range $[-3, 3]$ scaled to $[0, 255]$ (the full grayscale range of the image z is $[0, 155]$). In the second row we show the corresponding Fourier transforms, the spectrum highlights the structures that are barely visible in the spatial domain.

We report in Table 7.1 the results of the denoising experiments. Observe the quantitative improvement of proposed algorithm with respect to previous ones. In Figure 7.3 are shown the method noise of the results obtained by the ACT$_R$ algorithm, the ACT+TV algorithm and the proposed algorithm with and without spectral weights. Observe (specially in the Fourier transforms) how the method noise of the proposed algorithm retain less structure, meaning that the method removes just the noise with less alteration of the texture.

Also notice that imposing a spectral profile produces a consistent improvement in all the cases ($\frac{|2\pi\omega|}{N}$ vs. $\frac{|2\pi\omega|}{N}^{1.6}$ vs. $\frac{|2\pi\omega|}{N}^{1.9}$), and that imposing the profile corresponding to the coefficient decay of the reference image (Figure 7.1) produces the best results. The precise computation of gradients described in formula (3.6) $K_{\beta, A}(u)$ (see Section 3.2) also represents a small improvement but it comes at a very high computational cost. Observe that the lowest RMSE corresponds to the case of the regularizer (3.3) combined with the strong spectral profile, in this case the strong penalty to higher frequencies inhibits the apparition of aliasing artifacts due to the coarse discretization of the regularizer.

In Figure 7.2 we analyze the frequency distribution of the error of the restored images with respect to the reference image (GT). Using the total variation, the low frequencies are heavily penalized and most of the errors come from them, but imposing the profile corresponding to this image ($\frac{|2\pi\omega|}{N}^{1.9}$) we reduce the errors in the low frequency range.

Lastly let us mention about the impact of the practical stopping conditions pro-
posed in Section 6, it allows a significant speed up of the algorithm reducing the execution times from 200 sec (stopping after 50 iterations), to 30 sec for images of size 149 × 149 pixels.

Remark 7. We also tested the algorithm with an image created by random sampling, while solving for the perturbed case we achieved an error of RMSE = 0.771, for a randomly sampled image it is only possible to achieve an RMSE = 1.295.

7.1. Denoising and deconvolution

We consider in this Section the denoising and deconvolution of irregularly sampled images. For that we include in our image formation model the MTF corresponding to SPOT 5 HRG (High Resolution Geometric) satellite with Hipermode sampling [33]. Shortly, Hipermode is a push-broom acquisition mode that uses two shifted bars of sensors to sample on a double-density grid. The MTF associated to this system is modeled by

\[
\hat{h}(p,q) = \left(\text{sinc}_\pi \left(\frac{p}{N} \right) \text{sinc}_\pi \left(\frac{q}{N} \right) \right) e^{-\beta_s |p|} e^{-\alpha_o \sqrt{p^2+q^2}} \text{sinc}_\pi \left(\frac{q}{N} \right) e^{-\beta_o N \sqrt{p^2+q^2}}, \quad -\frac{N}{2} < p, q \leq \frac{N}{2}
\]
Finally, the samples with a reference image support \([-\frac{N}{2},\frac{N}{2}]^2\) over the extended frequency interval \([-1,1]^2\) and we apply it to the original high resolution image \(u_0\). Finally, the samples \(z\) (Figure 7.4) are obtained by subsampling on the irregular grid

\[
z((r,l) + \varepsilon(r,l)) = \sum_{\omega \in \{-N+1,\ldots,N\}^2} e^{2\pi i \left(\frac{\omega \cdot (r,l) + \varepsilon(r,l))}{2N}\right)} \hat{h}(\omega) \hat{u}_0(\omega) \quad (r,l) \in \mathbb{Z}^2.
\]

In this way, we consider the effects of the aliasing introduced by the irregular sampling. Since the restored image \(z\) is defined on the spectral support \([-1/2,1/2]^2\), it cannot be directly compared with the original high resolution image (with support in \([-1,1]^2\)).

So, in order to compute the a-posteriori error, we compute a low resolution ground truth image by subsampling a filtered version of \(u_0\), where the filter is a smooth low-pass filter \(K_{[-1,1]^2}\). Using the notation of of Section 3.2, the subsampling by a factor of 2 is represented by the operator \(P^T\). Thus, we compute the error \(MSE = \frac{1}{P^T} ||P^T K_{[-1,1]^2} u_0 - K_{[-1/2,1/2]^2} u||^2\), where, to avoid any bias in the computation of the error, we also applied the previous filter (in a restricted form \(K_{[-1/2,1/2]^2}\)) to the restored image \(u\).
Fig. 7.6. Restoration with deconvolution computed with ACT+TV [5] (left), and with QN+TV (right) using (3.6). In the first row are shown the restored images. In the second row, the method errors, that are re-scaled from $[-5,5]$ (the range of the image is $[0,255]$). The third row is shown the Fourier transform of the method noise (it should resemble the white noise).
Table 7.3

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Regularizer</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT+TV [5]</td>
<td></td>
<td>6.752</td>
</tr>
<tr>
<td>QN+TV $</td>
<td>A(i\omega)</td>
<td>=</td>
</tr>
<tr>
<td>QN+FA</td>
<td>$</td>
<td>A(i\omega)</td>
</tr>
<tr>
<td>QN+TV $</td>
<td>A(i\omega)</td>
<td>=</td>
</tr>
<tr>
<td>QN+FA</td>
<td>$</td>
<td>A(i\omega)</td>
</tr>
<tr>
<td>QN+FA</td>
<td>$</td>
<td>A(i\omega)</td>
</tr>
</tbody>
</table>

In Figure 7.1 and Table 7.2 are reported the results of the restoration experiments with the Hipermode MTF. Let us start remarking that the filter h makes the restoration harder per-se, since the the error obtained after the restoration of a blurred but regularly sampled image (last row of Table 7.2) is almost equal to the corresponding irregular case. This is also confirmed by the small variability between all the results. Anyway, the proposed algorithm outperforms ACT+TV [5] mainly due to the local formulation of the constraints. This is particularly evident in Figure 7.1 when observing the Fourier transforms of the method noise ($z - S u$). As in the denoising case, the improved restoration formula (Section 3.2) produced a marginal improvement compared to the high computational cost that must be paid.

We observed that manipulating the spectral profile $A(D)$ does not produce improvements consistent with the denoising case (see Figure 7.5). This is because the reference image has a spectral decay different from the target image class ($|\frac{2\pi}{N}\omega|^{1.6}$). Indeed the fourier coefficients decay of the reference image decay as ($|\frac{2\pi}{N}\omega|^{0.4}$), explaining why the best results are obtained with the total variation. Notice in Figure 7.5(b) that the total variation controls the error in the low frequency range, but in the high frequency range is is too conservative and does not allow the spectral extrapolation, contrary to the effect of the $|\frac{2\pi}{N}\omega|^{0.4}$. This observation motivates the following experiment, building a profile that combines, in the low frequency range, the decay proper of the total variation, with the decay similar to $|\frac{2\pi}{N}\omega|^{0.4}$ in the high frequency range. The result of this experiment is shown in the Table 7.2 and its profile is depicted in the Figure 7.5(b), there we can confirm the desired effect.

7.2. Extension to zooming. Zooming requires to interpolate and restored the image while preserving and enhancing the shapes, this can be seen as a spectrum extrapolation problem. The basic idea is to fit, in as much as this is possible, the low frequency components of the restored and zoomed image to the original data, and to extrapolate the spectrum to the rest of the frequency domain by means of the regularization functional. This regularization allows to recover some high frequencies, which is indeed much more convenient than just filling them with zeros, a technique which is known to produce ringing.

Since the FAR regularizer allows to control the spectral behavior of a solution, in particular the extrapolated part, it will allow to improve the zoom results. Let us first extend the formulation (3.6) to consider the restoration of irregularly sampled
images with a zoom of factor n

$$\min_{u \in \mathbb{R}^{N \times N}} K_{n,\beta,A}(u) := \sum_{0 \leq r,l < nN} \sqrt{\beta^2 + |A(D)Pu(r,l)|^2},$$

subject to $[G \ast |\Delta \Xi (h \ast p \ast u) - z|^2](\xi_k) \leq \sigma^2 \quad \forall \xi_k \in \Xi \quad (7.1)$

and $\sum_{0 \leq r,l < nN} u(r,l) = \sum_{\xi_k \in \Xi} w_k z(\xi_k)$.

The zoomed and restored image u is a vector of size $nN \times nN$ (we recall that the size of z is $N \times N$), and p is a spectral projector (e.g. $\hat{p} = \chi_R$ or a prolate function) on a low-band region R which depends both on the MTF and the sampling set. In the context we are considering here, \hat{p} will be different from zero in the frequency band corresponding to the resolution of the data $[-1/2,1/2]^2$ and the constraint is saying that the data is explained by the lower frequency part of $h \ast p \ast u$. The regularization functional $K_{n,\beta,A}(u)$ penalizes the oscillations that may appear when we extrapolate the high frequencies in the spectral region $[-n/2,n/2]^2 \setminus [-1/2,1/2]^2$. Let us mention that, as discussed in [3] in the context of regular sampling, the right choice of the spectral region R permits to reduce the aliasing effects, but we shall not consider this problem here. For us, if we want to restore and zoom the image u by a factor n, \hat{p} will be different from zero on the region $R = [-1/2,1/2]^2$ and zero on $[-n/2,n/2]^2 \setminus R$. This is a way to impose that the restored image fits the data z at low frequencies and the high ones are extrapolated via the minimization of $K_{n,\beta,A}(u)$. This minimization problem (7.1) with $\hat{p}(\omega) = 1_{I_n}(\omega)$ is a direct extension of the oversampling and denoising method introduced by Malgouyres and Guichard [40] to the more general case of irregular to regular sampling, deconvolution, denoising and oversampling.

The experiments were performed with images simulated using the same procedure as in the deconvolution experiments. Since this time the restored image and the reference image have the same size, they can be directly compared. In Figure 7.7 are shown the distorted and the reference image as well as two restorations.

Let us first comment on the stair-casing effect that is noticeable in the bottom left image of Figure 7.7. It is a common observation that the total variation introduces a stair-casing effect in the restored images, but let us point out that in our case where the derivatives are computed analytically this effect may not appear. When it appears is due to the poor discretization of the total variation. Notice that the same image processed with a finer approximation as proposed in Section 3.2 does not exhibit this artifact, see bottom right image in Figure 7.7. As we mentioned above, the aliasing effect product of the coarse discretization of the total variation was negligible in the cases of restoration without zoom. But when zooming it is important to avoid this effect since it produces un-natural looking images.

The final quality of the zoomed image is influenced by the penalty in the frequencies imposed by the regularization term. In Table 7.3 we display the results obtained with different penalization profiles, and we observe that the best results are obtained by imposing the decay $|A(i\omega)| \sim \omega^{1.6}$.

In contrast with the previous applications, in the present case, not removing all the noise leads to some noise artifacts. The noise is defined over the original grid (be either regular or irregular), but any residual of the original noise becomes a low frequency colored noise in the zoomed image that is visible as artifacts.
8. Conclusions. We have proposed an algorithm for the restoration of band limited images that considers irregular (perturbed) sampling, denoising, and deconvolution. We have combined the irregular to regular sampling algorithms proposed by H.G. Feichtinger, K. Gröchenig, M. Rauth and T. Strohmer [32] with the application of a family of regularization terms that allow to control the spectral behavior of the solution. Moreover, the constraints given by the image acquisition model are incorporated as a set of local constraints. We have presented experiments focused to the restoration of satellite images, where the micro-vibrations are responsible of the type of distortions we are considering here. We have shown in the experiments that
the combination of frequency adaptive regularization with local constraints is able to
transfer from irregular to regular sampling in case of noisy images. Since high frequen-
cies that have been killed by the MTF, in the case of deconvolution and denoising,
its recovery is favored by a small spectral penalty at high frequencies. Finally, we
have discussed the application of our model to the zooming of irregularly sampled,
convolved and noisy images.

Currently, we plan to adapt our algorithm to the use splines as the underlying
interpolation model, and to introduce anti-aliasing filters to handle the case of aliased
data.

Acknowledgement. Vicent Caselles acknowledges partial support by the PNPGC
project, reference MTM2006-14836. Gabriele Facciolo acknowledges support by the
ALFA project, No. AMI/19.0902/97/0666/II-0366-FA.

REFERENCES

[1] R. Acar and C. Vogel, Analysis of total variation penalty methods for ill-posed problems,
[2] A. Aldroubi and K. Gröchenig, Non-uniform sampling and reconstruction in shift-
sampled, blurred and noisy images by accurate total variation minimization with local
[6] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discon-
[7] F. Andreu-Vaillo, V. Caselles, and J.M. Mazón, Parabolic Quasilinear Equations Min-
from arbitrarily spaced samples: a fast multiresolution spline solution, IEEE Trans. Image
[12] P. Azmi and F. Marvasti, Comparison between several iterative methods for recovering sig-
als from nonuniformly spaced samples, Sampl. Theory Signal Image Process., 1 (2002),
pp. 207–224.
[13] M. Bertalmío, V. Caselles, B. Rougé, and A. Solé, TV based image restoration with local
[14] L. Blanc-Féraud, P. Charbonnier, G. Aubert and M. Barlaud, Nonlinear image process-
ing: modeling and fast algorithm for regularization with edge detection, in Proceedings of

