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ABSTRACT

In this paper, we tackle the problem of image nonlinear approx-
imation. During the last past years, many algorithms have been
proposed to take advantage of the geometry of the image. We
intend here to propose a new nonlinear approximation algorithm
which would take into account the structures of the image, and
which would be powerful even when the original image has some
textured areas. To this end, we first split our image into two
components, a first one containing the structures of the image,
and a second one the oscillating patterns. We then perform the
nonlinear approximation of each component separately. Our fi-
nal approximated image is the sum of these two approximated
components. This new nonlinear approximation algorithm out-
performs the standard biorthogonal wavelets approximation.

1. INTRODUCTION

Image nonlinear approximation is a very active field of
research. The aim is to find a sparse representation for
an image, so that one needs to store few coefficients to
retrieve the image.

Wavelets have proved to be a powerful tool in this area
[1]. They indeed provide sparse representations for im-
ages (especially for texture images). But (see [1] for in-

stance), edges lead to many significant wavelet coefficients.

That is why there have been a lot of works these last past
years to find sparse representations of images that would
better take into account the geometry of the images. Some
algorithms [2, 3, 4, 5, 6, 7, 8, 9] have thus been proposed
to improve wavelets approximation by taking advantage
of the structures in the image. Such methods have proved
to be efficient for geometrical images.

We want to propose a framework which would extend
these methods to images containing both structure and
texture information. Structure approximation and texture
approximation are not done with the same algorithms.

Therefore, we first want to split the image, that we want
to approximate, into a geometrical part and a texture part,
and then to carry out the approximation of both compo-
nents separately. To achieve our goal, we are going to use
a decomposition algorithm recently introduced in [10, 11,
12]. Such an approach has been successfully introduced
in [13] for image inpainting.

The plan of the paper is as follows. We first present the
decomposition model of [11, 12]: we recall its link with
Meyer’s model [14], and show some numerical examples.
We then introduce the nonlinear approximation algorithm
of [5]: it is well adapted for geometrical images. And we
use the classical 7-9 biorthogonal wavelets [1] for textured
images. This way, we are in position to describe our new
nonlinear approximation algorithm. We show some nu-
merical results to illustrate the relevance of our method.
We end the paper with a short discussion.

2. ADECOMPOSITION ALGORITHM

In [14], Meyer has discussed the classical Rudin-Osher-
Fatemi model [15]. He has introduced a new model to
split a given image f into a sum u + v of a bounded vari-
ation component and a component containing the oscillat-
ing part of the image. The u component can be viewed
as a sketch of the original image f. This model has first
been successfully implemented by Vese and Osher [10].
A different approach has been proposed in [11, 12]. We
will use this one, where the decomposition is computed
by minimizing a convex functional which depends on the
two variables « and v, alternatively in each variable. Each
minimization is based on a projection algorithm to mini-
mize the total variation [16]. See also [17, 18] for other
interesting approaches.



2.1. Modelling

Let © be a bounded open set of R? with Lipschitz bound-
ary. The space used to model the geometrical compo-
nent w of an image f is the space BV of functions with
bounded variation. We recall here its definition [16]:
Definition: BV () is the subspace of functions u € L()
such that the following quantity is finite:

J(u) = sup{/gu(:c)diV({(x))dw, (1)

£ € CHYR?), |1€] o) < 1}

BV (Q2) endowed with the norm ||u|| v () = [|ullz1 (o) +
J(u) is a Banach space. If u € BV (Q), the distributional
derivative Du is a bounded Radon measure and (1) corre-
sponds to the total variation | Du|(2).
In [14], Meyer has proposed a new decomposition model:
(u,v)eBV(Q;QG(Q)/f:IH—u (J(w) +afvlla) @
The Banach space G(£2) contains signals with large oscil-
lations, and thus in particular textures and noise. The G-
norm replaces the classical L? norm of the Rudin-Osher-
Fatemi model [15]. We give here the definition of G(Q2):
Definition: G(£2) is the Banach space composed of the
distributions f which can be written

f = 0191 + G292 = div(g) 3)

with g; and g2 in L>=(Q2). On G, the following norm is
defined:

inf {|g|Loo(Q) = esssgtllp lg(x)| /v =div (g),
€
g = (gla92)a g1 € LOO(Q)792 S LOO(Q)a

l9(@)| = Vg1 P +192P(2) | @

A function belonging to G may have large oscillations and
nevertheless have a small norm [14, 18].

lolle =

2.2. Functional

In[11, 12], the authors have introduced the following func-
tional:

. 1 )
(u,'u)GB%/n(f;l)G“(Q) (J(u) + ﬁ”f —Uu— U||L2(Q)> (5)
where

Gu(Q) ={v e GQ)/|lvlle < p} (6)

The parameter X controls the L2-norm of the residual f —
u — v. The smaller it is, the smaller the L2-norm of the
residual gets. And pu controls the G-norm of the oscillat-
ing part v. It is shown in [11, 12] that solving (5) is a way
to solve (2).

Figure 1: Barbara image

The minimum of (5) is computed by minimizing alter-
natively in each variable « and v. Each minimization is
based on a projection algorithm to minimize the total vari-
ation [16].

We denote by Py the orthogonal projection on a set K.
When K = G, for some p > 0, this projection is com-
puted thanks to Chambolle’s algorithm [16].

Algorithm:

1. Initialization:
ug =v9 =0 (7)

2. lterations:

Unt1 = PG’,,L (f - un) (8)

Un41 = f — Un+1 — PGA (f - vn+1) (9)
3. Stopping test: we stop if

max(|uni1 — Unl, [vny1 —vn]) <€ (10)

2.3. Numerical experiments

In the results that we present in this subsection, we have
decided to add the small residual f —u — v to the geomet-
rical component. This way, we have an exact decompo-
sition, which is a good point since we intend to carry out
approximation on this decomposition. Figures 1 and 2 are
the images which we want to decompose. The numerical
results are displayed on Figures 3, 4, 5 and 6.



Figure 2: Lighthouse image

3. NONLINEAR MULTISCALE
REPRESENTATIONS FOR GEOMETRICAL
IMAGES

While standard 2-d wavelets provide sparse representa-
tions of smooth textured images, they are not able to ex-
ploit the fact that the discontinuities (edges) delineating
different textured regions lie along smooth contours, lead-
ing to poor algorithmic performance results. This has mo-
tivated new directions of research towards compact repre-
sentations of geometry : curvelets [2], contourlets [3] and
bandlets [4]. Edge adapted (EA) multiscale representa-
tions introduced and studied in [5, 8] are another possible
track for such improvements. This transform has as guide-
line the discrete 1-d framework of Ami Harten [19].

3.1. Harten’s framework

The ideas of A. Harten can be described as follows: we
start from a finite set v/ = (v]) of discrete data at the
resolution level .J. For all j, we define a decimation op-
erator Dg’l, which extracts from (v7,) the discrete data
(vi ') at the next coarser level, and a prediction oper-
ator P]{l, which yields an approximation (vk) of (v})
from (v]~"). The decimation is always a linear opera-
tor, and the prediction is allowed to be a nonlinear oper-
ator, but they satisfy the following consistency condition
DJ PJ . = 1. Consequently, we represent v7 in terms
of (vi— 1 ./~ 1), where e~ is the prediction error which
belongs to the null space of Dg_l (due to the consistency

relation). We represent the error e/ in terms of a basis of
the null space of Dj_l, resulting in the detail vector d7—1.

Figure 3: BV component u of the Barbara image (A =
0.1 and p = 60).

Therefore we can represent v/ by (vi—1 d~1). By iterat-
ing this procedure from the finest level J to the coarsest
level 5 = 0 we obtain the multiscale representation of v~
into (v°,d°, ...,d"1).

3.2. Edge Adapted multiresolution representations
3.2.1. 1-d formalism

For the sake of clarity, we consider here the 1-d case (for
the 2-d case, we refer the reader to [5, 7, 8]). We con-
sider hierarchical discretizations by cell-averages v], :=
27 f z)dz, where ¢ = [k277,(k + 1)277). This

J=1._ 1
ch0|ce flxes the deC|mat|on asvl ' = L(vg, + U2k+1)

Using el + €2k+1 = 0, we define the details by d] '

€

We now want to define a good prediction operator which
makes the approximation error and then the detail coef-
ficents as small as possible, resulting in a sparse repre-
sentation. The S|mplest choice for such an operator is
o, = v%ﬂ = v]~", which corresponds to the decom-
position in the Haar system with a low order of accu-
racy. The order of approximation can be raised by using a
higher order polynomial reconstruction, by defining p;~ !
as the unique quadratic polynomial which fits the averages
(vl 1, vl viﬁ) and by defining 93, and 43, , as the
averages of p; ! on the corresponding intervals. The re-
sulting multiscale transform is equivalent to the biorthog-
onal wavelet transform (BW), raising the approximation
order in smooth regions and also generating oscillations



Figure 4: Oscillatory component v of the Barbara image
(A=0.1and u = 60).

near singularities.

ENO mechanism: we can improve the method by using
a nonlinear prediction operator, such as essentially non-
oscillatory (ENO) reconstruction, as proposed in [19]. The
goal of such an operator is to improve the approxima-
tion order near the singularities. The ENO reconstruc-
tion chooses among the polynomials (p]~},pi ', pi, ;)
the least oscillatory one with respect to some numerical
criterion based only on the values at the coarser level.
Subcell resolution technique: we can go further with these
ideas by using the subcell resolution technique in the cells
containing singularities. These cells are detected as those
for which the supports of the adjacent polynomials (se-
lected by the ENO mechanism) do not intersect (see figure
7).

For such cells, we then use a piecewise polynomial recon-
struction p{cjlgl]_wy] + p{cjél[y,oo[, where y is obtained
by consistency with the average vi_l.

Example: in Figure 8 we show the reconstruction of a
piecewise smooth function from a resolution level of 3.
This illustrates the accuracy of our nonlinear reconstruc-

tion method (ENO-SR). BW prediction is accurate for smooth

functions and exact for poynomial functions, while ENO-
SR prediction is accurate for piecewise smooth functions
and exact for piecewise polynomial functions.

3.2.2. Edge Adapted prediction for images

All the ideas developed in the 1-d case can be generalised
to the 2-d case (with some technical tricks).

Figure 5: BV component u of the lighthouse image (A =
0.1and 1 = 12).

For more details on EA prediction we refer the reader
to [5], [6] and [7] where this procedure has been intro-
duced and where some properties have been investigated,
namely the exactness of the prediction operator with re-
spect to simplified model and also the approximation or-
der.

4. ANEW NONLINEAR APPROXIMATION
ALGORITHM

4.1. Presentation

The algorithm presented in Section 3 (EA) is an efficient
approximation algorithm for geometrical images. Its per-
formance comes from the fact that it takes into account the
geometry of the image. Such an algorithm is thus particu-
larily well suited for the approximation of the geometrical
component of an image.

The idea of our algorithm (UVEA) is the following. We
first decompose our original image f into two components
u and v with the algorithm presented in Section 2 , u being
the geometrical component, and v the oscillatory part. We
then use the approximation algorithm of Section 3 (EA)
on u, and a classical approximation algorithm on v. For
v, we have decided to use the 7-9 biorthogonal wavelets
(BW) [1].

4.2. Numerical results and comments

Figure 1 is the Barbara image which we want to approxi-
mate. When testing our algorithm, we have chosen to use



Figure 6: Oscillatory component v of the lightouse image
(A=0.1and px = 12).

I J I
Figure 7: Singular cell

images such as this one: images containing both geomet-
rical and texture information. Figure 9 is the result we get
with our algorithm. We have kept 7% of the coefficients
of the geometrical part and 13% for the textured part.
Figure 10 is the result we get with the EA algorithm. We
have kept 20% of the coefficients. Since it has been devel-
oped for geometrical image, it performs not very well with
images containing textures. Figure 11 is the result we get
with the standard BW algorithm (we have also kept 20%
of the coefficients so that we can compare the results).
Table 1 shows the L2-error. The best L2-error is perfomed
by our algorithm. Moreover, the geometrical information
of the image is much more preserved with our algorithm
than with BW: this can be checked on the leg of the table
for instance (see also Figure 12 which is a zoom of Bar-
bara’s shoulder). And some textures which disappear with
the BW algorithm are preserved with our algorithm (see

Table 1: L2-errors (Barbara image)

Algorithm | UVEA EA BW
L?-error | 1497 | 19.94 | 15.75
PSNR 2479 | 22.13 | 24.23

e

Figure 8: (a) Original function, (b) BW and (c) ENO-SR

Figure 9: Compressed image with our method (UVEA)
(7% of the coefficients for the u component and 13% for
the v component)

Figure 13 which is a zoom of Barbara’s knee). Therefore,
our algorithm gives a better result than the BW algorithm.

We have conducted experiments on several images, and
this has confirmed these results. For instance, Figure 14
shows the result we get with our algorithm with the light-
house image of Figure 2. We have kept 10% of the coef-
ficients of both the geometrical part and the textured part.
And Figure 15 is the result we get with the BW algorithm
(with 20% of the coefficients). The same conclusions hold
for the lighthouse image as for the Barbara image (see Ta-
ble 2).

Table 2: L2-errors (lighthouse image)

Algorithm | UVEA | BW
L?-error 9.14 9.96
PSNR 28.88 | 28.19




Figure 10: Compressed image with EA (20% of the coeffi- Figure 11: Compressed image with biorthogonal wavelets
cients) (BW) (20% of the coefficients)

UVEA BW

. -
5. CONCLUSION AND FUTURE PROSPECTS ":

We have presented a new nonlinear approximation algo-

rithm for images containing both structure and texture in-

formation. We first split the image to approximate into o

two components, one containing the structures, and an- : |

other one the textures. We then carry out the approxima- h .

tion of these two components with adapted algorithms: the

EA algorithm of [5] for the geometrical part, and the 7-9
biorthogonal wavelets for the texture part. This procedure
gives us a powerful nonlinear approximation algorithm (it
indeed leads to a compact representation of the image).

Figure 12: Zoom on Barbara’s shoulder

In our numerical tests, it outperforms the standard biorthog- 6. REFERENCES
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