
Data-driven regularization of Wasserstein barycenters with an
application to multivariate density registration

Jérémie Bigot∗, Elsa Cazelles & Nicolas Papadakis

Institut de Mathématiques de Bordeaux et CNRS (UMR 5251)
Université de Bordeaux

May 3, 2019

Abstract

We present a framework to simultaneously align and smooth data in the form of mul-
tiple point clouds sampled from unknown densities with support in a d-dimensional Eu-
clidean space. This work is motivated by applications in bioinformatics where researchers
aim to automatically homogenize large datasets to compare and analyze characteristics
within a same cell population. Inconveniently, the information acquired is most certainly
noisy due to mis-alignment caused by technical variations of the environment. To over-
come this problem, we propose to register multiple point clouds by using the notion of
regularized barycenters (or Fréchet mean) of a set of probability measures with respect to
the Wasserstein metric. A first approach consists in penalizing a Wasserstein barycenter
with a convex functional as recently proposed in [5]. A second strategy is to transform the
Wasserstein metric itself into an entropy regularized transportation cost between proba-
bility measures as introduced in [12]. The main contribution of this work is to propose
data-driven choices for the regularization parameters involved in each approach using the
Goldenshluger-Lepski’s principle. Simulated data sampled from Gaussian mixtures are
used to illustrate each method, and an application to the analysis of flow cytometry data
is finally proposed. This way of choosing of the regularization parameter for the Sinkhorn
barycenter is also analyzed through the prism of an oracle inequality that relates the error
made by such data-driven estimators to the one of an ideal estimator.

1 Introduction

1.1 Motivations

This paper is concerned with the problem of aligning (or registering) elements of a dataset that
can be modeled as n random densities, or more generally, probability measures supported on
Rd. As raw data in the form of densities are generally not directly available, we focus on the
setting where one has access to a set of random vectors (Xi,j)1≤j≤pi; 1≤i≤n in Rd organized in
the form of n subjects (or multiple point clouds), such that Xi,1, . . . , Xi,pi are iid observations
sampled from a random density f i for each 1 ≤ i ≤ n. In presence of phase variation in
the observations due to mis-alignment in the acquisition process, it is necessary to use a
∗J. Bigot is a member of Institut Universitaire de France.



registration step to obtain meaningful notions of mean and variance from the analysis of the
dataset. In Figure 1(a), we display a simulated example of n = 2 random distributions made
of observations sampled from random Gaussian mixtures f i. Certainly, one can estimate a
mean density using a preliminary smoothing step (with a kernel K and data-driven choices
of the bandwidth parameters (hi)i=1,...,n) followed by standard averaging, that is considering

f̄n,p(x) = 1
n

n∑
i=1

1
pihi

pi∑
j=1

K

(
x−Xi,j

hi

)
, x ∈ Rd. (1.1)

Unfortunately this leads to an estimator which is not consistent with the shape of the f i’s.
Indeed, the estimator f̄n,p (Euclidean mean) has four modes due to mis-alignment of the data
from different subjects.

(a) (b)

Figure 1: A simulated example of n = 2 subjects made of p1 = p2 = 300 observations sampled
from Gaussian mixtures with random means and variances. The red and blue bar graphs are
histograms with bins of equal and very small size to display the two sets of observations. The
red and blue curves represent the kernel density estimators associated to each subject with
data-driven choices (using cross-validation) of the bandwidths. (a) The dashed black curve is
the Euclidean mean f̄n,p of the red and blue densities. (b) The solid black curve is the entropy
regularized Wasserstein barycenter r̂ε̂n,p (defined in (1.5)) of the raw data using a Sinkhorn
divergence and the numerical approach from [14], with a data-driven choice for ε̂ = 2.55.

The need to account for phase variability in the statistical analysis of such datasets is a
well-known problem in various scientific fields. For the one-dimensional case (d = 1), examples
can be found in biodemographic and genomics studies [35], economics [22], and in the analysis
of spike trains in neuroscience [34] or functional connectivity between brain regions [27]. For
d ≥ 2 the issue of data registration arises in the statistical analysis of spatial point processes
[18, 26] or flow cytometry data [20, 29].
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1.2 Related works

In this work, in order to simultaneously align and smooth multiple point clouds (in the
idea of recovering the underlying density function), we average the data using the notion
of Wasserstein barycenter (as introduced in the seminal work [1]). Surely, this barycenter
has been shown to be a relevant tool to account for phase variability in density registration
[6, 25, 26]. A Wasserstein barycenter is a Fréchet mean [15] in the space P2(Ω) of probability
measures with finite second moment supported on a convex domain Ω ⊂ Rd. It is endowed
with the Wasserstein metric W2 defined as

W2(µ, ν) = inf
π∈Γ(µ,ν)

(∫∫
Ω2
|x− y|2dπ(x, y)

)1/2
, for µ, ν ∈ P2(Ω),

where Γ(µ, ν) is the set of probability measures on the product space Ω× Ω with respective
marginals µ and ν, and | · | denotes the usual Euclidean norm on Rd.

In the case of a finite space ΩN = {x1, . . . , xN} ∈ (Rd)N of cardinal N , a discrete probabil-
ity distribution r (with fixed support included in ΩN ) is identified by a vector in the simplex
ΣN = {r = (r1, . . . , rN ) ∈ RN+ with

∑N
k=1 rk = 1} such that r =

∑N
k=1 rkδxk where δx is the

Dirac distribution at x. The Wasserstein distance between two discrete distributions r and q
in ΣN then becomes

W2(r, q) := min
U∈U(r,q)

〈C,U〉1/2,

where the set of couplings is defined as U(r, q) := {U ∈ RN×N+ such that U1N = r, UT1N =
q} with 1N the N dimensional vector with all entries equal to 1 and C the cost matrix given
by Cml = |xm − xl|2, for all m, l ∈ {1, . . . , N}.

In what follows, we consider two approaches for the computation of a regularized Wasser-
stein barycenter of n discrete probability measures given by

ν̂pii = 1
pi

pi∑
j=1

δXi,j for 1 ≤ i ≤ n, (1.2)

from observations (Xi,j)1≤j≤pi; 1≤i≤n.

1.2.1 Penalized Wasserstein barycenters

Adding a convex penalization term to the definition of an empirical Wasserstein barycenter
[1] leads to the estimator

µ̂γn,p = arg min
µ∈P2(Ω)

1
n

n∑
i=1

W 2
2 (µ, ν̂pii ) + γE(µ), (1.3)

where γ > 0 is a regularization parameter, and E : P2(Ω) → R+ is a smooth and convex
penalty function which enforces the measure µ̂γn,p to be absolutely continuous. Theoretical
properties (such as existence and consistency) of the penalized Wasserstein barycenter µ̂γn,p
have been considered in [5]. In this paper, we discuss the choice of the penalty function E,
as well as the numerical computation of µ̂γn,p (using an appropriate discretization of Ω and a
binning of the data), and its benefits for statistical data analysis.

Remark 1.1. Note that the restriction of the minimization in (1.3) to the set P2(Ω) instead
of the whole Wasserstein space P2(Rd) is inconsequential.
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1.2.2 Fréchet mean with respect to a Sinkhorn divergence

Another way to regularize an empirical Wasserstein barycenter is to use the notion of entropy
regularized optimal transportation [12, 11] leading to the so-called Sinkhorn divergence

W 2
2,ε(µ, ν) = inf

π∈Γ(µ,ν)

∫∫
Ω2
|x− y|2dπ(x, y)− εh(π), (1.4)

where ε > 0 is a regularization parameter, and h stands for the (negative) entropy of the
transport plan π with respect to the Lebesgue measure on Ω×Ω. A regularized Wasserstein
barycenter [13, 14] is then obtained by considering the estimator

r̂εn,p = arg min
µ∈P2(Ω)

1
n

n∑
i=1

W 2
2,ε(µ, ν̂

pi
i ), (1.5)

that can be interpreted as a Fréchet mean with respect to a Sinkhorn divergence and that we
call Sinkhorn barycenter.

1.3 Contributions

The selection of the regularisation parameters γ or ε is the main issue for computing adequate
penalized or Sinkhorn barycenters in practice. In this paper, we rely on the Goldenshluger-
Lepski (GL) principle in order to perform an automatic calibration of such parameters.

1.3.1 Data-driven choice of the regularizing parameters

The main contribution in this paper is to propose a data-driven choice for the regularization
parameters γ in (1.3) and ε in (1.5) using the Goldenshluger-Lepski (GL) method (as formu-
lated in [23]), which leans on a bias-variance trade-off function, described in details in Section
4. The method consists in comparing estimators pairwise, for a given range of regulariza-
tion parameters, with respect to a given loss function. It provides an optimal regularization
parameter that minimizes a bias-variance trade-off function. We displayed in Figure 2 this
functional for the dataset of Figure 1, which leads to an optimal (in the sense of GL’s strategy)
parameter choice ε̂ = 2.55. The entropy regularized Wasserstein barycenter in Figure 1(b) is
thus chosen accordingly.

From the results on simulated data displayed in Figure 1(b), it is clear that computing
the regularized Wasserstein barycenter r̂εn,p (with an appropriate choice for ε) leads to the
estimation of mean density whose shape is consistent with the distribution of the data for each
subject. In some sense, the regularization parameters γ and ε may also be interpreted as the
usual bandwidth parameter in kernel density estimation, and their choice greatly influences
the shape of the estimators µ̂γn,p and r̂εn,p (see Figure 6 and Figure 8 in Section 5).

To choose the optimal parameter, the GL’s strategy requires an upper bound on the decay
to zero of the expected L2(Ω) distance between a regularized empirical barycenter (computed
from the data) and its population counterpart. For penalized barycenters (1.3), adequate
bounds have already been provided in [5].

1.3.2 Variance of Sinkhorn estimators

To the best of our knowledge, the automatic selection of ε in the definition of a Sinkhorn
divergence has not been considered so far. Another main contribution of this work then
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Figure 2: The GL’s trade-off function associated to the entropy regularized Wassertein
barycenters of the dataset in Figure 1, for ε ranging from 0.2 to 5

consists in derivating upper bounds on the variance for the estimators r̂εn,p which explicitly
depends on ε, the number n of measures, the number p = min1≤i≤n pi of observations per
measures and the size of their support. Such bounds therefore make possible the application
of the GL’s strategy.

1.3.3 Theoretical analysis of the GL’s strategy for Sinkhorn barycenters

For Sinkhorn barycenters, we show that the GL’s principle leads to a data-driven choice ε̂ of
the regularization parameter which allows to obtain an estimator r̂ε̂n,p that satisfies an oracle
inequality implying an optimal trade-off of this estimator between bias and variance terms
among a collection of regularization parameters.

1.3.4 Computation issues: binning of the data and discretization of Ω

In our numerical experiments we consider algorithms for computing regularized barycenters
from a set of discrete measures (or histograms) defined on possibly different grids of points of
Rd (or different partitions). They are numerical approximations of the regularized Wasserstein
barycenters µ̂γn,p and r̂εn,p by a discrete measure of the form

∑N
k=1wkδxk using a fixed grid

ΩN = {x1, . . . , xN} of N equally spaced points xk ∈ Rd (bin locations). For simplicity, we
adopt a binning of the data (1.2) on the same grid, leading to a dataset of discrete measures
(with supports included in ΩN ) that we denote

q̃pii = 1
pi

pi∑
j=1

δX̃i,j , where X̃i,j = arg min
x∈ΩN

|x−Xi,j |, (1.6)

for 1 ≤ i ≤ n. In this paper, we rely on the smooth dual approach proposed in [14] to
compute penalized and Sinkhorn barycenters on a grid of equi-spaced points in Ω (after a
proper binning of the data).

Binning (i.e. choosing the grid ΩN ) surely incorporates some sort of additional regular-
ization. A discussion on the influence of the grid size N on the smoothness of the barycenter
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is proposed in Section 4 where we describe the GL’s strategy. In our simulations, the choice
of N is mainly guided by numerical issues on the computational cost of the algorithms used
to approximate µ̂γn,p and r̂εn,p.

1.3.5 Registration of flow cytometry data

In biotechnology, flow cytometry is a high-throughput technique that can measure a large
number of surface and intracellular markers of single cell in a biological sample. With this
technique, one can assess individual characteristics (in the form of multivariate data) at a
cellular level to determine the type of cell, their functionality and the way they differ. At the
beginning of flow cytometry, the analysis of such data was performed manually by visually
separating regions or gates of interest on a series of sequential bivariate projection of the
data, a process known as gating. However, the development of this technology now leads to
datasets made of multiple measurements (e.g. up to 18) of millions of individuals cells. A
significant amount of work has thus been carried out in recent years to propose automatic
statistical methods to overcome the limitations of manual gating (see e.g. [20, 21, 24, 29] and
references therein).

When analyzing samples in cytometry measured from different patients, a critical issue
is data registration across patients. As carefully explained in [20], the alignment of flow
cytometry data is a preprocessing step which aims at removing effects coming from tech-
nological issues in the acquisition of the data rather than significant biological differences.
In this paper, we use data analyzed in [20] that are obtained from a renal transplant ret-
rospective study conducted by the Immune Tolerance Network (ITN). This dataset is freely
available from the flowStats package of Bioconductor [17] that can be downloaded from
http://bioconductor.org/packages/release/bioc/html/flowStats.html. It consists of
samples from 15 patients.

After an appropriate scaling trough an arcsinh transformation and an initial gating on
total lymphocytes to remove artefacts, we focus our analysis on the cell markers FSC (forward-
scattered light) and SSC (side-scattered light) which are of interest to measure the volume
and morphological complexity of cells. The number of considered cells by patient varies from
88 to 2185. The resulting dataset is displayed in Figure 3. It clearly shows a mis-alignment
issue between measurements from different patients.

The last contribution of the paper is thus to demonstrate the usefulness of regularized
Wasserstein barycenters to correct mis-alignment effects in the analysis of data produced by
flow cytometers.

1.4 Organization of the paper

The analysis of the variance of the regularized Wasserstein barycenters µ̂γn,p and r̂εn,p are
detailed in Section 2 and Section 3 respectively. Section 4 contains a description of the
Goldenshluger-Lepski principle to choose the regularization parameters γ and ε as well as an
oracle inequality justifying this technique for Sinkhorn barycenters. Section 5 finally reports
the results from numerical experiments using simulated data and the flow cytometry dataset
displayed in Figure 3. We conclude the paper in Section 6 by a brief discussion. Some proofs
and technical results are presented in Appendix A, Appendix B, and Appendix C. Algorithmic
details on the computation of the estimator µ̂γn,p are gathered in Appendix D.
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Figure 3: Example of flow cytometry data measured from n = 15 patients (restricted to a
bivariate projection). The horizontal axis (resp. vertical axis) represent the values of the FSC
(resp. SSC) cell marker.

2 Penalized Wasserstein barycenters
In this section, we adopt the framework from [5] in which the Wasserstein barycenter is
regularized through a convex penalty function as presented in (1.3).

2.1 Minimization problem and variance properties

Let us remind some of the basic definitions in [5]. We define W2(P2(Ω)) as the space of
distributions P supported on P2(Ω). The penalized Wasserstein barycenter associated to the
distribution P is defined as a solution of the minimization problem

min
µ∈P2(Ω)

∫
P2(Ω)

W 2
2 (µ, ν)dP(ν) + γE(µ)

where γ > 0 is a penalization parameter and the penalty function writes

E(µ) =
{
‖f‖2

Hk(Ω), if f = dµ
dx and f ≥ α,

+∞ otherwise.
(2.1)

where ‖ · ‖Hk(Ω) denotes the Sobolev norm associated to the L2(Ω) space, α > 0 is arbitrarily
small and k > d− 1. Remark that the function E is strictly convex on its domain

D(E) = {µ ∈ P2(Ω) such that E(µ) < +∞}. (2.2)
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This choice is supported by the discussion in Section 5 of [5], that in particular imposes
the barycenter µ to belong to Pac2 (Ω), the space of measures in P2(Ω) that are absolutely
continuous. It is mainly driven by the need to retrieve an absolutely continuous measure
from discrete observations (Xij), as it is often done when approximating data through kernel
smoothing in density estimation. Others examples of penalty functions are given in [5],
including a class of relative G-functional described in Section 9.4 in [2].

Definition 2.1. Let ν1, . . . ,νn ∈ P2(Ω) be iid measures with distribution P such that
P(Pac2 (Ω)) > 0. The empirical probability measure defined by (νi)i=1,...,n writes Pn =
1
n

∑n
i=1 δνi . Let us then consider the randommeasures (ν̂pii )1≤i≤n of the form ν̂pii = 1

pi

∑pi
j=1 δXi,j

where (Xi,j)1≤j≤pi are iid random variables of law νi. From there on we define for γ > 0 the
barycenters:

µγ = arg min
µ∈P2(Ω)

∫
P2(Ω)

W 2
2 (µ, ν)dP(ν) + γE(µ) = Eν∼P[W 2

2 (µ,ν)] + γE(µ) (2.3)

µ̂γn,p = arg min
µ∈P2(Ω)

∫
P2(Ω)

W 2
2 (µ, ν)dPn(ν) + γE(µ) = 1

n

n∑
i=1

W 2
2 (µ, ν̂pii ) + γE(µ) (2.4)

called respectively penalized population barycenter (2.3) and penalized empirical barycenter
(2.4).

In [5], the existence and uniqueness of these barycenters have been shown for γ > 0. This
holds true for measures defined on P2(Rd). By penalizing the barycenters with function E
as in (2.1), we enforce them to be absolutely continuous. Therefore, let f̂γn,p and fγP be the
densities associated to µ̂γn,p and µγP.

In order to apply the GL’s strategy, we now study the expected squared L2(Ω)-distance
E(‖f̂γn,p − f

γ
P‖2) that will be referred to as a “variance term” for µ̂γn,p.

Theorem 2.2 (Section 5 in [5]). Let Ω ⊂ Rd be compact and f̂γn,p and fγP be the density
functions of µ̂γn,p and µ

γ
P, induced by the choice (2.1) of the penalty function E. Then, provided

that d < 4, there exists a constant c > 0 depending only on Ω such that

E
(
‖f̂γn,p − f

γ
P‖

2
L2(Ω)

)
≤ c

( 1
γp1/4 + 1

γn1/2

)
(2.5)

where p = min1≤i≤n pi.

Thanks to this result, we will be able to automatically calibrate the parameter γ > 0 by
following the GL’s parameter selection strategy described in Section 4.

Remark 2.1. As already mentioned above, in practice, we discretize Ω into a sufficiently fine
and fixed grid on which we compute a discretized version the penalized Wasserstein barycenter
f̂
γ
n,p. Therefore, the upper bound (2.5) should be considered with some caution as it is not

exactly a control of the variance of the discretized estimator that is used in our numerical
experiments. Moreover, the upper bound (2.5) involves a constant c > 0 whose derivation is
guided by theoretical arguments. However, a good calibration of c is of primary importance as
discussed in the numerical experiments reported in Section 5.
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2.2 Numerical computation

As a practical complement to [5], we provide in Appendix D efficient minimization algorithms
for the computation of f̂γn,p, after a binning of the data on a fixed grid ΩN . For Ω included in
the real line, a simple subgradient descent is considered. When data are histograms supported
on Rd, d ≥ 2, we rely on a smooth dual approach based on the work of [14].

3 Sinkhorn barycenters via entropy regularized optimal trans-
port

In this section, we analyze the variance of the Sinkhorn barycenter defined in (1.5).

3.1 Variance properties of the Sinkhorn barycenters

As before we consider a binning of the data on a fixed and finite discrete grid ΩN . For two
discrete measures r, q ∈ ΣN , the Sinkhorn divergence (1.4) reads for ε > 0

W 2
2,ε(r, q) := min

U∈U(r,q)
〈C,U〉 − εh(U). (3.1)

where the discrete (negative) entropy for a given coupling U ∈ U(r, q) is given by h(U) :=
−
∑
m,` Um` logUm`. We shall then use two key properties to analyze the variance of Sinkhorn

barycenters which are the strong convexity (see Theorem 3.4 below) and the Lipschitz conti-
nuity (see Lemma 3.5 below) of the mapping r 7→W 2

2,ε(r, q) (for a given q ∈ ΣN ).
However, to guarantee the Lipschitz continuity of this mapping, it is necessary to restrict

the analysis to discrete measures r belonging to the convex set

Σρ
N =

{
r ∈ ΣN : min

1≤`≤N
r` ≥ ρ

}
,

where 0 < ρ < 1 is an arbitrarily small constant. This means that our theoretical results
on the variance of the Sinkhorn barycenters hold for discrete measures with non-vanishing
entries. Nevertheless, we obtain upper bounds on these variances which depend explicitly on
the constant ρ, allowing to discuss its choice.

Then, as it has been done for the penalized barycenters in Definition 2.1, we introduce
the definitions of empirical and population Sinkhorn barycenters.

Definition 3.1. Let 0 < ρ < 1/N , and P be a probability distribution on Σρ
N . Let

q1, . . . , qn ∈ Σρ
N be an iid sample drawn from the distribution P. For each 1 ≤ i ≤ n,

we assume that (X̃i,j)1≤j≤pi are iid random variables sampled from qi. For each 1 ≤ i ≤ n,
let us define the following discrete measures

q̃pii = 1
pi

pi∑
j=1

δX̃i,j and q̂pii = (1− ρN)q̃pii + ρ11N ,

where 11N is the vector of RN with all entries equal to one. Thanks to the condition 0 <
ρ < 1/N , it follows that q̂pii ∈ Σρ

N for all 1 ≤ i ≤ n, which may not be the case for some
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q̃pii , 1 = 1, . . . , n. Then, we define

rε = arg min
r∈ΣρN

Eq∼P[W 2
2,ε(r, q)] the population Sinkhorn barycenter (3.2)

r̂εn,p = arg min
r∈ΣρN

1
n

n∑
i=1

W 2
2,ε(r, q̂

pi
i ) the empirical Sinkhorn barycenter (3.3)

In the optimisation problem (3.3), we choose to use the discrete measures q̂pii instead of
the empirical measures q̃pii to guarantee the use of discrete measures belonging to Σρ

N in the
definition of the empirical Sinkhorn barycenter r̂εn,p.

Remark 3.1. The population and empirical Sinkhorn barycenters in Definition 3.1 are con-
strained to belong to the set Σρ

N so that the Lipschitz continuity of r 7→W 2
2,ε(r, q) holds true.

The following theorem is the main result of this section which gives an upper bound on
E(|rε − r̂εn,p|2) which will be referred to as the variance of r̂εn,p in what follows. In particular,
the asymptotic regime in which we are interested in is the number n of measures defining the
barycenter as well as the number p of observations per measures.

Theorem 3.2. Recall that p = min1≤i≤n pi and let ε > 0. Then, one has that

E(|rε − r̂εn,p|2) ≤
16L2

ρ,ε

ε2n
+ 2Lρ,ε

ε

(√
N

p
+ 2ρ(N +

√
N)
)
, (3.4)

with

Lρ,ε =

 ∑
1≤m≤N

(
2ε log(N) + sup

1≤`,k≤N
|Cm` − Ck`| − ε log(ρ)

)2
1/2

. (3.5)

A few remarks can be made about the above result. The bound in the right-hand side
of (3.4) explicitly depends on the size N of the grid. This will be taken into account for the
choice of the optimal parameter ε̂ (see Section 4). Moreover, it can be used to discuss the
choice of ρ. First, if one takes ρ = εκ, the Lipschitz constant (Lemma 3.5) Lρ,ε = Lε becomes

Lε =

 ∑
1≤m≤N

(
ε(2 log(N)− κ log(ε)) + sup

1≤`,k≤N
|Cm` − Ck`|

)2
1/2

,

which is a constant (not depending on ρ) such that

lim
ε→0

Lε =

 ∑
1≤m≤N

(
sup

1≤`,k≤N
|Cm` − Ck`|

)2
1/2

.

If we further assume that ρ = εκ < min(1/N, 1/p) we obtain the upper bound

E(|rε − r̂εn,p|2) ≤ 16L2
ε

ε2n
+ 2Lε

ε

(√
N

p
+ 2

(
N

p
+
√
N

p2

))
. (3.6)

Therefore, choosing ε = ε(n, p) −→
min(n,p)→∞

such that 1/ε2n → ∞ and 1/εp → ∞, we have

that E(|rε − r̂εn,p|2) −→
n,p→∞

(take for example ε = 1/nαpβ with 0 < α < 1/2 and 0 < β < 1.
Finally, it should be remarked that Theorem 3.2 holds for general cost matrices C that

are symmetric and non-negative.
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3.2 Proof of Theorem 3.2

The proof of the upper bound (3.4) relies on strong convexity of the functional r 7→W 2
2,ε(r, q)

for q ∈ ΣN , without constraint on its entries. This property can be derived by studying the
Legendre transform of r 7→ W 2

2,ε(r, q). For a fixed distribution q ∈ ΣN , using the notation in
[14], we define the function

Hq(r) := W 2
2,ε(r, q), for all r ∈ ΣN .

Its Legendre transform is given for g ∈ RN by H∗q (g) = max
r∈ΣN

〈g, r〉 −Hq(r) and its differenti-
ation properties are presented in the following theorem.

Theorem 3.3 (Theorem 2.4 in [14]). For ε > 0, the Legendre dual function H∗q is C∞.
Its gradient function ∇H∗q is 1/ε-Lipschitz. Its value, gradient and Hessian at g ∈ RN are,
writing α = exp(g/ε) and K = exp(−C/ε),

H∗q (g) = ε(E(q) + 〈q, log(Kα)〉), ∇H∗q (g) = diag(α)K q

Kα
∈ ΣN

∇2H∗q (g) = 1
ε

(
diag

(
diag(α)K q

Kα

))
− 1
ε

diag(α)K diag
(

q

(Kα)2

)
K diag(α),

where the notation q
r stands for the component-wise division of the entries of q and r.

From this result, we can deduce the strong convexity of the dual functional Hq as stated
below.

Theorem 3.4. Let ε > 0. Then, for any q ∈ ΣN , the function Hq is ε-strongly convex for
the Euclidean 2-norm.

The proof of Theorem 3.4 is deferred to Appendix A. We can also ensure the Lipschitz
continuity of Hq(r), when restricting our analysis to the set r ∈ Σρ

N .

Lemma 3.5. Let q ∈ ΣN and 0 < ρ < 1. Then, one has that r 7→ Hq(r) is Lρ,ε-Lipschitz on
Σρ
N with Lρ,ε defined in (3.5).

The proof of this Lemma is given in Appendix B.
We can now proceed to the proof of Theorem 3.2. Let us introduce the following Sinkhorn

barycenter

rεn = arg min
r∈ΣρN

1
n

n∑
i=1

W 2
2,ε(r, qi) = arg min

r∈ΣρN

1
n

n∑
i=1

Hqi(r), (3.7)

of the iid random measures q1, . . . , qnsampled from the distribution P supported on Σρ
N . By

the triangle inequality, we have that

E(|rε − r̂εn,p|2) ≤ 2E(|rε − rεn|2) + 2E(|rεn − r̂εn,p|2). (3.8)

To control the first term of the right hand side of the above inequality, we use that (for any
q ∈ ΣN ) r 7→ Hq(r) is ε-strongly convex by Theorem 3.4 and Lρ,ε-Lipschitz on Σρ

N by Lemma
3.5 where Lρ,ε is the constant defined by equation (3.5). Under these assumptions, it follows
from the arguments in the proof of Theorem 6 in [32] that

E(|rε − rεn|2) ≤
8L2

ρ,ε

ε2n
. (3.9)
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The strong convexity of Hq has a major role here as it brings out the distance between the
empirical minimizer rεn and any other point in ΣN . For the second term in the right hand
side of (3.8), we obtain by the strong convexity of Hq that

1
n

n∑
i=1

Hqi(r̂
ε
n,p) ≥

1
n

n∑
i=1

Hqi(r
ε
n) + 1

n

n∑
i=1
∇Hqi(r

ε
n)T (r̂εn,p − rεn) + ε

2 |r
ε
n − r̂εn,p|2.

Theorem 3.1 in [14] ensures that 1
n

∑
i∇Hqi(rεn) = 0. The same inequality also holds for the

terms Hq̂pii , and we therefore have

1
n

n∑
i=1

Hqi(r̂
ε
n,p) ≥

1
n

n∑
i=1

Hqi(r
ε
n) + ε

2 |r
ε
n − r̂εn,p|2,

1
n

n∑
i=1

Hq̂pii
(rεn) ≥ 1

n

n∑
i=1

Hq̂pii
(r̂εn,p) + ε

2 |r
ε
n − r̂εn,p|2.

Using the symmetry of the Sinkhorn divergence, Lemma 3.5 also implies that the mapping
q 7→ Hq(r) is Lρ,ε-Lipschitz on Σρ

N for any discrete distribution r. Hence, by summing the
two above inequalities, and by taking the expectation on both sides, we obtain that

εE(|rεn − r̂εn,p|2) ≤ 2Lρ,ε
n

n∑
i=1

E(|qi − q̂
pi
i |).

Using the inequalities

|qi − q̂
pi
i | ≤ |qi − q̃

pi
i |+ ρN |q̃pii |+ ρ|11N | ≤ |qi − q̃

pi
i |+ ρ(N +

√
N),

we finally have that

εE(|rεn − r̂εn,p|2) ≤ 2Lρ,ε

(
1
n

n∑
i=1

√
E(|qi − q̃

pi
i |2) + ρ(N +

√
N)
)
. (3.10)

Conditionally on qi, one has that piq̃
pi
i is a random vector following a multinomial distribution

M(pi, qi). Hence, for each 1 ≤ k ≤ N , denoting qi,k (resp. q̃pii,k) the k-th coordinate of qi
(resp. q̃pii ), one has that

E
(
q̃pii,k|qi

)
= qi,k and E

[(
q̃pii,k − qi,k

)2
|qi
]

=
qi,k(1− qi,k)

pi
≤ 1

4pi
.

Thus, we have

E(|qi − q̃
pi
i |

2) =
N∑
k=1

E(qi,k − q̃
pi
i,k)

2 ≤ 1
4

N∑
k=1

p−1
i ≤

N

4p (3.11)

and we obtain from (3.10) and (3.11) that

E(|rεn − r̂εn,p|2) ≤ Lρ,ε
ε

(√
N

p
+ 2ρ(N +

√
N)
)
. (3.12)

Combining inequalities (3.8), (3.9), and (3.12) concludes the proof of Theorem 3.2.
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4 Goldenshluger-Lepski method and oracle inequality
In this section, we present a method to choose, in a data-driven way, the parameters γ in (1.3)
and ε in (1.5). By analogy with the work in [23] based on the Goldenshluger-Lepski (GL)
principle [19], we propose to compute a bias-variance trade-off functional which will provide
an automatic selection method for the regularization parameters within a finite set for either
penalized or Sinkhorn barycenters. The method consists in comparing estimators pairwise,
for a given range of regularization parameters, with respect to a loss function.

Since the formulation of the GL’s principle is similar for both estimators, we only present
its principle for the Sinkhorn barycenter described in Section 3. We also show that the
formulation of the GL’s principle proposed in this paper for the Sinkhorn barycenter leads to
a data-driven estimator satisfying an oracle inequality which sheds some light on its theoretical
properties.

The key point in the GL method is the definition of a data-driven trade-off functional that
is composed of a term measuring the disparity between two estimators and of a penalty term
that is chosen according to the upper bounds on the variance of the Sinkhorn barycenter given
in Section 3. More precisely, we assume that we have at our disposal a collection of estimators
(r̂εn,p)ε for ε ranging in a finite set Λ ⊂ R+ depending on the data at hand. The GL method
consists in choosing a value ε̂ which minimizes the following bias-variance trade-off function:

ε̂ = arg min
ε∈Λ

B(ε) + 3V (ε) (4.1)

for which we set the “bias term” as

B(ε) = sup
ε̃≤ε

[
|r̂εn,p − r̂ε̃n,p|2 − 3V (ε̃)

]
+

(4.2)

where x+ = max(x, 0) denotes the positive part, and the “variance term” V is chosen accord-
ingly to the oracle inequality in the Theorem (4.1) below as follows

V (ε) = Vb1,b2(ε) := b1
8L2

ρ,ε

ε2n
+ 2Lρ,ε

ε

(√
b2
N

p
+ ρ(N +

√
N)
)
, (4.3)

where b1 > 0 and b2 > 0 are constants whose choice is discussed below. Note that, in
definition (4.2) of the bias term, it is implicitly understood that the supremum is restricted
to the regularization parameters ε̃ ≤ ε such that ε̃ ∈ Λ. To stress the dependence of the
variance term on b1 and b2, we sometimes write V (ε) = Vb1,b2(ε).

Following [23], we propose to show that, under an appropriate choice of the constants b1
and b2, the selected estimator r̂ε̂n,p satisfies an oracle inequality which represents an optimal
bias-variance tradeoff (depending on the set Λ) for its risk |r̂ε̂n,p − r0|2, where

r0 ∈ arg min
r∈ΣρN

Eq∼P[W 2
2,0(r, q)] with W 2

2,0(r, q) := min
U∈U(r,q)

〈C,U〉. (4.4)

Remark 4.1. It should be remarked that we chose to refer to E(|rε − r̂εn,p|2) as a “variance
term”. This is somewhat imprecise as the estimator r̂εn,p is certainly such that E(r̂εn,p) 6= rε.
Therefore, E(|rε− r̂εn,p|2) is not the usual statistical notion of variance for r̂εn,p. Similarly, we
have chosen to implicitly referred to |rε− r0| as a bias term which is rather an approximation
error term. Nevertheless, we prefer to keep this terminology of bias and variance as it is
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consistent with the one used to present the GL’s principle in [23] for the classical problem of
kernel density estimation for which the standard notions of a bias term and an approximation
error coincide.

Now, as in [23], we introduce the following generalized approximation error

D(ε) := max
(

sup
ε̃≤ε
|rε̃ − rε|, |rε − r0|

)

which satisfiesD(ε) ≤ 2 supε̃≤ε |rε̃−r0|. The following result shows that, under an appropriate
choice of b1 and b2, the data-driven choice ε̂ of the regularization parameter by the GL method
leads to a Sinkhorn barycenter r̂ε̂n,p satisfying an oracle inequality leading to an optimal bias-
variance tradeoff within the collection Λ of regularization parameters.

Theorem 4.1. Assume that the constants b1 and b2 in the calibration of the variance term
V (ε) = Vb1,b2(ε) are such that

b1 > (1 +
√

log(|Λ|/2))2 and b2 > log(2) + log(n) +
√

log(|Λ|/2)
N

. (4.5)

where |Λ| denotes the cardinal of Λ. Then, one has that

|r̂ε̂n,p − r0| ≤ (1 + 2
√

3) inf
ε∈Λ

{
D(ε) +

√
Vb1,b2(ε)

}
, (4.6)

with probability larger than 1− |Λ|
(
e−(
√
b1−1)2 + eN(log(2)−b2)+log(n)

)
.

Proof. We first start as in the proof of Proposition 1 in [23] by showing that for any ε ∈ Λ

|r̂ε̂n,p − r0| ≤
√

2B(ε) + 6V (ε) + |r̂εn,p − rε|+D(ε). (4.7)

For completeness, we repeat the arguments in [23] yielding to inequality (4.7) as they allow
to shed some lights on the basic principles of the GL method. For any fixed ε ∈ Λ one has
that

|r̂ε̂n,p − r0| ≤ |r̂ε̂n,p − r̂εn,p|+ |r̂εn,p − r0| ≤ |r̂ε̂n,p − r̂εn,p|+ |r̂εn,p − rε|+ |rε − r0|
≤ |r̂ε̂n,p − r̂εn,p|+ |r̂εn,p − rε|+D(ε). (4.8)

Then, for any ε̃ ≤ ε, the definition (4.2) of the bias term implies that |r̂ε̃n,p − r̂εn,p|2 ≤
B(ε) + 3V (ε̃) which can also be written as |r̂ε̃n,p − r̂εn,p|2 ≤ B(max(ε, ε̃)) + 3V (min(ε, ε̃)) for
all ε, ε̃ ∈ Λ. Therefore, by definition (4.1) of ε̂, one obtains that

|r̂ε̂n,p − r̂εn,p|2 ≤ B(max(ε, ε̂)) + 3V (min(ε, ε̂)) ≤ B(ε) + 3V (ε) + max(B(ε), 3V (ε)). (4.9)

Hence, inserting inequality (4.9) into (4.8) finally yields inequality (4.7).
Now that inequality (4.7) has been established, the main steps in the proof are the control

of the stochastic terms B(ε) and |r̂εn,p − rε|. First, using the triangle inequality

|r̂εn,p − rε| ≤ |r̂εn − rε|+ |r̂εn − r̂εn,p|

14



we obtain by Proposition C.1 and Proposition C.2 that are presented in the appendix, that
for any u1 > 0 and u2 > 0,

P

|r̂εn,p − rε| > (1 + u1)2
√

2Lρ,ε
ε
√
n

+

√
2Lρ,ε
ε

(
u2 + ρ(N +

√
N)
) ≤ exp

(
−u2

1

)
+2Nn exp

(
−pu2

2

)

where p = min1≤i≤n pi. Hence, choosing u1 >
√
b1 − 1 and u2 >

√
b2
N
p , implies that

|r̂εn,p − rε| ≤
√
V (ε), for all ε ∈ Λ, (4.10)

with probability larger than 1 − |Λ|
(
e−(
√
b1−1)2 + eN(log(2)−b2)+log(n)

)
. To control B(ε) with

a bias term, we use the upper bound

|r̂εn,p − r̂ε̃n,p|2 ≤
(
|r̂εn,p − rε|+ |r̂ε̃n,p − rε̃|+ |rε − rε̃|

)2

combined with inequality (4.10) to obtain that

|r̂εn,p − r̂ε̃n,p|2 ≤
(√

V (ε) +
√
V (ε̃) + |rε − rε̃|

)2
≤ 3

(
V (ε) + V (ε̃) + |rε − rε̃|2

)
,

for all ε and ε̃ belonging to Λ, with probability 1 − |Λ|
(
e−(
√
b1−1)2 + eN(log(2)−b2)+log(n)

)
,

which finally implies that (with the same probability)

B(ε) ≤ 3V (ε) + 3D2(ε). (4.11)

Combining inequalities (4.7), (4.10) and (4.11), we obtain that

|r̂ε̂n,p − r0| ≤
√

6D2(ε) + 12V (ε) +
√
V (ε) +D(ε),

≤ (1 + 2
√

3)
(
D(ε) +

√
V (ε)

)
, for all ε ∈ Λ,

with probability larger than 1 − |Λ|
(
e−(
√
b1−1)2 + eN(log(2)−b2)+log(n)

)
, which completes the

proof of Theorem 4.1.

5 Numerical experiments
In this section, we first illustrate with one-dimensional datasets the performances of the
Goldenshluger-Lepski method to choose the regularization parameters γ and ε. Then, we
report the results from numerical experiments on simulated Gaussian mixtures and flow cy-
tometry dataset in R2.

Unfortunately, in numerical experiments, we have found that the Lipschitz constant (3.5)
leads to a too rough estimate of the variance term E(|rε− r̂εn,p|2) which has a magnitude much
smaller than the upper bound (3.4). Using the conditions of Theorem 4.1 on b1 and b2 leads
to a quantity V (ε) which is much larger than the bias term B(ε) leading to always choosing
the smallest value of ε in Λ. To overcome this problem, it is necessary to either scale the
magnitude of V (ε) by choosing small values of b1 and b2, or to improve the upper bound (3.4)
using numerical methods. To this end, we use Monte-Carlo simulations to obtain the right
order for the variance term, which allows to show that the Goldenshluger-Lepski principle
leads to satisfactory choices of ε in this setting.
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Figure 4: A subset of 8 histograms (out of n = 15) obtained with random variables sampled
from one-dimensional Gaussian mixtures distributions νi (with random means and variances).
Histograms are constructed by binning the data (Xi,j)1≤i≤n ;1≤p on a grid ΩN of size N = 28.

5.1 Simulated data: one-dimensional Gaussian mixtures

We illustrate GL’s principle for the one-dimensional example of random Gaussian mixtures
that is displayed in Figure 4. Our dataset consists of observations (Xi,j)1≤i≤n ;1≤p sampled
from n = 15 random distributions νi that are mixtures of two Gaussian distributions with
weights (0.35, 0.65), random means respectively belonging to the intervals [−6,−2] and [2, 6]
and random variances both belonging to the interval (0, 2]. For each random mixture distri-
bution, we sample p = 50 observations. A first step is to perform Monte-Carlo experiments
over 20 regularized barycenters r̂εn,p for each different values of ε in the interval [0.2, 5]. The
results are presented in Figure 5 where we plot the estimation of the variance E(|rε − r̂εn,p|2)
with respect to the regularization parameter ε ∈ [0.2, 5] for different values of N = 26, 27, 28.
A first aspect is that the variance term estimated by Monte Carlo simultions decreases as the
regularization parameter increases.

From now on, we fix the size N = 28 of the grid, and we comment on the choice of
the parameters ε̂ and γ̂. To obtain this data-driven choice of regularization, we use the
Goldenshluger-Lepskii principle where the variance term V (ε) is given by the variance function
displayed in Figure 5 obtained via Monte-Carlo simulations. We display in Figure 6(a) the
trade-off function B(ε) + 3V (ε), and we discuss the influence of ε on the smoothness the
Sinkhorn barycenter.

From Figure 6(b), we observe that, when the parameter ε = 0.2 is small (dotted blue
curve), then the corresponding Sinkhorn barycenter r̂εn,p is irregular, and it presents spurious
peaks. On the contrary, too much regularization, e.g. ε = 5, implies that the barycenter
(dashed green curve) is flattened and its mass is spread out. The optimal barycenter (solid
red curve), that is r̂ε̂n,p for ε̂ = 3.8 minimizing the trade-off function (4.1), gives here a good
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(a) N = 26 (b) N = 27 (c) N = 28

Figure 5: A Monte-Carlo experiments for estimating the variance E(|rε − r̂εn,p|2) for three
values of the grid N .

compromise between under and over-smoothing.
We repeat the same experiment for the penalized barycenter f̂γn,p of Section 2 with the

Sobolev norm H1(Ω) in the penalization function E (2.1) . In particular, we remark that the
size of the grid does not appear explicitly in the the upper bound of the variance function in
inequality (2.5). The Monte-Carlo experiments are presented in Figure 7 for N = 28. This
gives us an approximation for the variance term in Goldenshluger-Lepskii.

The results of the Goldenshluger-Lepskii technique are displayed in Figure 8. The ad-
vantage of choosing a Sobolev penalty function over an entropy term is that the mass of
the barycenter is overall less spread out and the spikes are sharper. However, for a small
regularization parameter γ = 20 (dotted blue curve), the barycenter fγn,p presents a lot of
irregularities as the penalty function tries to minimize its L2-norm. When the regularization
parameter increases in a significant way (γ = 1000 associated to the dashed green curve),
the irregularities disappear and the support of the penalized barycenter becomes wider. The
GL’s principle leads to the choice γ̂ = 840 which corresponds to a penalized barycenter (solid
red curve) that is satisfactory.

We compare these Wasserstein barycenters to the Euclidean mean f̄n,p (1.1), obtained
after a pre-smoothing step of the data for each subject using the kernel method. From Figure
9, the density f̄n,p is very irregular and it suffers from mis-alignment issues. The irregularity
of this estimator mainly comes from the low sample size per subject (p = 50).

5.2 Sinkhorn versus penalized barycenters

To conclude these numerical experiments with one-dimensional simulated data, we would like
to point out that computing the Sinkhorn barycenter is much faster than computing the pe-
nalized barycenter. Indeed, entropy regularization of the transport plan in the Wasserstein
distance has been first introduced in order to reduce the computational cost of a transport
distance. The computation of an unregularized transport distance requires O(N3 logN) op-
erations for discrete probability measures with a support of size N when the computation of a
Sinkhorn divergence only takes O(N2) operations at each iteration of a gradient descent (see
e.g. [12]). We have also found that the Sinkhorn barycenter yields more satisfying estimators
in terms of smoothness. Therefore, in the rest of this section, we do not consider the penalized
barycenter anymore.
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(a) (b)

Figure 6: One dimensional Gaussian mixtures dataset and Sinkhorn barycenters. (a) The
trade-off function ε 7→ B(ε) + 3V (ε) which attains its optimum at ε̂ = 3.8. (b) Three
Sinkhorn barycenters r̂ε̂n,p associated to the parameters ε = 0.2, 3.8, 5.

Figure 7: A Monte-Carlo experiments for estimating the variance E
(
‖f̂γn,p − f

γ
P‖2L2(Ω)

)
.
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(a) (b)

Figure 8: One dimensional Gaussian mixtures dataset and penalized barycenters. (a) The
trade-off function γ 7→ B(γ) + 3V (γ) which attains its optimum at γ̂ = 840. (b) Three
penalized barycenters fγn,p associated to the parameters γ = 20, 840, 100.

Figure 9: Euclidean mean density f̄n,p of the one dimensional Gaussian mixtures dataset
using a preliminary smoothing step of each subject with a Gaussian kernel.
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Figure 10: Dataset (Xi,j)1≤j≤p ;1≤i≤n generated from n = 15 two-dimensional random Gaus-
sian mixtures νi with p = 50.

5.3 Simulated data: two-dimensional Gaussian mixtures

In this section, we illustrate our methods for two-dimensional data. We consider a simulated
example of observations (Xi,j)1≤i≤n ;1≤j≤p sampled from n = 15 random distributions νi that
are a mixture of three multivariate Gaussian distributions νi =

∑3
j=1 θjN (mi

j ,Γij) with fixed
weights θ = (1/6, 1/3, 1/2). The means mi

j and covariance matrices Γij are random variables
with expectation given by (for j = 1, 2, 3)

m1 =
(

0
0

)
, m2 =

(
7
4

)
, m3 =

(
1
9

)
, and Γ1 = Γ2 = Γ3 =

(
1 0
0 1

)
.

The covariances Γi are chosen diagonal to ensure that the perturbed random covariances
that form our dataset are positive semi-definite matrices to properly define the Gaussian
distributions associated. For each i = 1, . . . , n, we simulate a sequence (Xi,j)1≤j≤p of p = 50
iid random variables sampled from νi =

∑3
j=1 θjN (mi

j ,Γij) where mi
j (resp. Γij) are random

vectors (resp. matrices) such that each of their coordinate follows a uniform law centered in
mj with amplitude ±2 (resp. each of their diagonal elements follows a uniform law centered
in Γj with amplitude ±0.95). We display in Figure 10 the dataset (Xi,j)1≤j≤p ;1≤i≤n. Each
Xi,j is then binned on a grid of size 64× 64 (thus N = 4096).

First, we compute 60 Sinkhorn barycenters by letting ε ranging from 0.1 to 6. We draw
in Figure 11(a) the trade-off function that is also based on 10 Monte-Carlo experiments to
approximate the term V , with its minimizer at ε̂ = 3. The corresponding Sinkhorn barycenter
r̂ε̂n,p is displayed in Figure 11(b). We also present the Euclidean mean f̄n,p (after a preliminary
smoothing step) in Figure 12(b). The Sinkhorn barycenter has three distinct modes. Hence,
this approach handles in a very efficient way the scaling and translation variations in the
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(a) (b)

Figure 11: Two-dimensional Gaussian mixtures dataset. (a) The trade-off function ε 7→
B(ε) + 3V (ε) which attains its optimum at ε̂ = 3. (b) The Sinkhorn barycenter r̂ε̂n,p for ε̂ = 3
chosen by the GL’s principle.

dataset (which corresponds to the correction of the mis-alignment issue). On the other hand,
the Euclidean mean mixes the distinct modes of the Gaussian mixtures. It is thus less robust
to outliers since the support of the barycenter is significantly spread out.

5.4 Real data: flow cytometry

We have at our disposal data from flow cytometry that have been described in Section 1.3.5,
and we focus on the FSC and SSC cell markers resulting in the dataset that is displayed in
Figure 3. We again apply a binning of the data on a two-dimensional grid of size N = 64×64.
In Figure 13(a) we plot the trade-off function related to the Sinkhorn barycenters. To that end,
we use the results on the Monte-Carlo estimation of the variance in the gaussian case (see the
previous Section 5.3). Indeed, as the upper-bound of the variance in (3.4) depends explicitly
on parameters of the problem, we can compare the parameters from the 2D gaussian case to
the parameters of the real cytometry data case. Let us first remark that in both experiments,
the size of the grid is chosen as N = 642, the number of distributions is equal to n = 15, the
minimum number of observations per measure is approximately p ∼ 50, and the collection
of parameters ε = [0.1, 6] that we test is the same. However, the grid differs in these two
experiments. For the gaussian case, the grid is taken as the square [−5, 15]2; in the cytometry
case, the measurements of the cells are within the rectangle [200, 600] × [0, 250]. Therefore,
in the Lipschitz constant term, the quantity

(∆m)m := ( sup
1≤`,k≤N

|Cm` − Ck`|)m,

which is a vector of length 64, involving the cost function will differ. For the gaussian case grid
we have maxm ∆m = 800, for the cytometry case grid we have maxm ∆m = 217600. For the
reason, we thus choose to scale the variance term in the GL method by 800/217600 = 1/272.
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Figure 12: Two-dimensional Gaussian mixtures dataset. The Euclidean mean f̄n,p (after a
preliminary smoothing step).

The regularization parameter ε still ranges from 1 to 6. The minimum of the trade-off function
is reached for ε̂ = 2.6. We display the corresponding Sinkhorn barycenter in Figure 13(b).
This barycenter clearly corrects mis-alignment issues of the data.

To analyze the relevance of this result, we present in Figure 14(a) the Euclidean mean
f̄n,p of this dataset (after kernel smoothing of the data for each patient). The support of this
estimator is again spread out due to the presence of a strong translation variance in the data
which clearly need to be registered. We also compare our method to the more relevant one
proposed in [20] which consists in approximating each of the 15 subjects with a two dimen-
sional kernel density estimate (with an automatic choice of the bandwidth parameter). The
densities obtained are then projected onto a one dimensional space. Landmarks are estimated
by identifying peaks of the resulting one-dimensional densities. Then, these landmarks are
registered across the whole dataset in order to finally align the densities. The L2-mean den-
sity obtained after this pre-processing step is displayed in Figure 14(b). This method leads to
results that are similar to the one obtained with a data-driven Sinkhorn barycenter. However,
contrary to regularized Wasserstein barycenters that can handle automatically non registered
multi-modal densities, the procedure in [20] suffers from two main drawbacks: (i) the reg-
istration of densities is performed by one-dimensional projections, (ii) the number of peaks
to align is chosen manually. Notice that we have also conducted experiments for Sinkhorn
barycenters with non-equal weights, corresponding to the proportion of measurements for
each patient. The result being analogous, we do not report them.

6 Conclusion and perspectives
It would be interesting to derive more accurate upper bounds of the variance term for the
Sinkhorn barycenter that would be of a magnitude of the same order than the one found in
numerical experiments using Monte Carlo simulations. An additional difficulty is the possi-
bility of using Sinkhorn barycenters with data-driven choice of the regularization parameter
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(a) (b)

Figure 13: Two dimensional flow cytometry dataset and Sinkhorn barycenter. (a) The trade-
off function ε 7→ B(ε)+3V (ε) which attains its optimum at ε̂ = 2.6. (b) Sinkhorn barycenter
r̂ε̂n,p associated to the parameter ε̂ = 2.6.

(a) (b)

Figure 14: Two dimensional flow cytometry dataset. (a) Euclidean mean f̄n,p of the data
(after smoothing but without registration), (b) L2-mean of pre-processed data using kernel
smoothing and density registration by landmark alignment with the method in [20].
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for the registration of multiple point clouds beyond the dimension d ≥ 3, e.g. for applications
in flow cytometry where the dimension d can be 30 or 40. This is clearly a challenging task.
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State, managed by the French National Research Agency (ANR) in the frame of the GOTMI
project (ANR-16-CE33-0010-01).

A Strong convexity of the Sinkhorn divergence - Proof of The-
orem 3.4

The proof of Theorem 3.4 relies on the analysis of the eigenvalues of the Hessian matrix
∇2H∗q (g) of the functional H∗q .

Proposition A.1. For all g ∈ RN , ∇2H∗q (g) admits λN = 0 as eigenvalue with its associated
normalized eigenvector vN := 1√

N
1N ∈ RN , which means that rank(∇2H∗q (g)) ≤ N − 1 for

all g ∈ RN and q ∈ ΣN .

Proof. Let g ∈ RN , then by Theorem 3.3

∇2H∗q (g)vN = 1
ε

diag(α)K q

Kα
− 1
ε

diag(α)K diag
(

q

(Kα)2

)
Kα

= 1
ε

diag(α)K q

Kα
− 1
ε

diag(α)K q

Kα
= 0,

and λN = 0 is an eigenvalue of ∇2H∗q (g).

Let (vk)1≤k≤N be the eigenvectors of ∇2H∗q (g), depending on both q and g, with their
respective eigenvalues (λk)1≤k≤N . As the Hessian matrix is symmetric and diagonalisable, let
us now prove that the eigenvalues associated to the eigenvectors (vk)1≤k≤N−1 of ∇2H∗q (g) are
all positive.

Proposition A.2. For all q ∈ ΣN and g ∈ RN , we have that

0 = λN < λk for all 1 ≤ k ≤ N − 1.

Proof. The eigenvalue λN = 0 associated to vN has been treated in Proposition A.1. Let
v ∈ V = (Vect(vN ))⊥ (i.e. v does not have constant coordinates) an eigenvector of ∇2H∗q (g).
Hence we can suppose that, let say v(j), is its larger coordinate, and that their exists i 6= j
such that v(j) > v(i). Without loss of generality, we can assume that v(j) > 0. Then

[∇2H∗q (g)v]j =
[1
ε

(
diag

(
diag(α)K q

Kα

))
v

]
j
−
[1
ε

diag(α)K diag
(

q

(Kα)2

)
K diag(α)v

]
j

= 1
ε
αjv

(j)
N∑
i=1

Kji
qi

[Kα]i
− 1
ε

N∑
i=1

N∑
m=1

αjKjm
qm

[Kα]2m
αiKmiv

(i)

>
1
ε
αjv

(j)
N∑
i=1

Kji
qi

[Kα]i
− 1
ε

N∑
i=1

N∑
m=1

αjKjm
qm

[Kα]2m
αiKmiv

(j) since v(j) ≥ v(i),∀i

= 0 since
N∑
i=1

αiKim = [Kα]m.
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Thus λv(j) = [∇2H∗q (g)v]j > 0, and we necessarily have that λ > 0.

The set of eigenvalues of ∇2H∗q (g) is also bounded from above.

Proposition A.3. For all q ∈ ΣN and g ∈ RN we have that Tr(∇2H∗q (g)) ≤ 1
ε and thus

λk ≤ 1/ε for all k = 1, . . . , N .

Proof. We directly get from Theorem 3.3 that

Tr(∇2H∗q (g)) ≤ 1
ε
Tr

diag
(

diag(α)K q

Kα

)
︸ ︷︷ ︸

∈ ΣN

 = 1
ε
.

We can now provide the proof of Theorem 3.4. Since Hq is convex, proper and lower-
semicontinuous, we know by the Fenchel-Moreau theorem that H∗∗q = Hq. Hence by Corollary
12.A in the Rockafellar’s book [30], we have that

∇Hq = (∇H∗q )−1, (A.1)

in the sense that ∇H∗q ◦ ∇Hq(r) = r for any r ∈ ΣN .
To continue the proof, we focus on a definition of the function Hq restricted to the linear

subspace V . Let (v1, . . . , vN−1) be an orthonormal basis of V = (Vect(vN ))⊥ and P =
[v1 · · · vN−1] ∈ RN×(N−1) the matrix of the basis. Remark that PP T is the matrix of the
orthogonal projection onto V , and that PP T = IN − vNvTN . If we define Σ̃N−1 := P TΣN ∈
RN−1, then for r ∈ ΣN , there exists r̃ ∈ Σ̃N−1 such that r = P r̃ + 1√

N
vN . Hence we can

introduce the functional H̃q : Σ̃N−1 → R defined by

H̃q(r̃) := Hq

(
P r̃ + 1√

N
vN

)
.

For g̃ ∈ RN−1 we have that

H̃∗q (g̃) = max
r̃∈Σ̃N−1

〈g̃, r̃〉 − H̃q(r̃)

= max
r∈ΣN

〈g̃, P T r − uN 〉 −Hq(r) where uN = 1
N

(
N∑
i=1

v
(i)
1 , . . . ,

N∑
i=1

v
(i)
N−1

)
= H∗q (P g̃)− 〈g̃, uN 〉.

Since H∗q is C∞ (see Theorem 3.3), we can differentiate H̃∗q with respect to g̃ to obtain that

∇H̃∗q (g̃) = P T∇H∗q (P g̃)− uN
∇2H̃∗q (g̃) = P T∇2H∗q (P g̃)P.

By Proposition A.2, we know that ∇2H∗q (P g̃) ∈ RN×N admits a unique eigenvalue equals to
0 which is associated to the eigenvector vN . All other eigenvalues are positive (Proposition
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A.2) and bounded from above by 1/ε (Proposition A.3). Since ∇H̃∗q : R(N−1) → R(N−1) is a
C∞-diffeomorphism, using equality (A.1) (that is also valid for H̃q), we have that

∇2H̃q(r̃) = ∇
(
(∇H̃∗q )−1(r̃)

)
= [∇2H̃∗q ((∇H̃∗q )−1(r̃))]−1

= [∇2H̃∗q (∇H̃q(r̃))]−1,

where the second equality follows from the global inversion theorem, and the last one again
uses equality (A.1). Thus we get

λmin(∇2H̃q(r̃)) ≥ ε.

The above inequality implies the strong convexity of H̃q which reads for r̃0, r̃1 ∈ Σ̃n−1

H̃q(r̃1) ≥ H̃q(r̃0) +∇H̃q(r̃0)T (r̃1 − r̃0) + ε

2‖r̃1 − r̃0‖2,

and this translates for Hq and r0, r1 ∈ ΣN to

Hq(r1) ≥ Hq(r0) +∇Hq(r0)TPP T (r1 − r0) + ε

2‖PP
T (r1 − r0)‖2.

To conclude, we remark that (r1−r0) ∈ V (indeed one has that r1−r0 =
∑N−1
j=1 〈vj , r1−r0〉vj

since 〈vN , r1− r0〉 = 0 and thus PP T (r1− r0) = r1− r0). Hence, we finally obtain the strong
convexity of Hq

Hq(r1) ≥ Hq(r0) +∇Hq(r0)T (r1 − r0) + ε

2‖(r1 − r0)‖2.

This completes the proof of Theorem 3.4.

B Lipschitz constant of Hq - Proof of Lemma 3.5
The dual version of the minimization problem (3.1) is given in [13] by

W 2
2,ε(r, q) = max

α,β∈RN
αT r + βT q −

∑
1≤m,`≤N

εe−
1
ε

(Cm`−αm−β`) (B.1)

where Cm` are the entries of the matrix cost C. We recall the notation

Σρ
N =

{
r ∈ ΣN : min

1≤`≤N
r` ≥ ρ

}
for some 0 < ρ < 1.

We now recall the Lemma 3.5.

Lemma B.1. Let q ∈ ΣN and 0 < ρ < 1. Then, one has that r 7→ Hq(r) is Lρ,ε-Lipschitz on
Σρ
N with

Lρ,ε =

 ∑
1≤m≤N

(
2ε log(N) + sup

1≤`,k≤N
|Cm` − Ck`| − ε log(ρ)

)2
1/2

. (B.2)
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Proof. Let r, s, q ∈ ΣN . We denote by (αq,r, βq,r) a pair of optimal dual variables in the
problem (B.1). Then, we have that

|Hq(r)−Hq(s)| = (Hq(r)−Hq(s))1Hq(r)≥Hq(s) + (Hq(s)−Hq(r))1Hq(r)≤Hq(s)

≤

〈αq,r, r〉+ 〈βq,r, q〉 −
∑
m,`

εe−
1
ε

(Cm`−αq,rm −βq,r` ) − 〈αq,r, s〉 − 〈βq,r, q〉+

∑
m,`

εe−
1
ε

(Cm`−αq,rm −βq,r` )

1(Hq(r)≥Hq(s))

+

〈αq,s, s〉+ 〈βq,s, q〉 −
∑
m,`

εe−
1
ε

(Cm`−αq,sm −βq,s` ) − 〈αq,s, r〉 − 〈βq,s, q〉+

∑
m,`

εe−
1
ε

(Cm`−αq,sm −βq,s` )

1(Hq(r)≤Hq(s))

≤ sup
α∈{αq,r,αq,s}

|〈α, r − s〉| ≤ sup
α∈{αq,r,αq,s}

|α| |r − s|. (B.3)

Let us now prove that the norm of the dual variable αq,r (resp. αq,s) is bounded by a constant
not depending on q and r (resp. q and s). To this end, we follow some of the arguments in
the proof of Proposition A.1 in [16]. Since the dual variable αq,r achieves the maximum in
equation (B.1), we have that for any 1 ≤ m ≤ N

rm −
∑

1≤`≤N
e−

1
ε

(Cm`−αq,rm −βq,r` ) = 0.

Let r ∈ Σρ
N . Hence, rm 6= 0, and thus one may define λm = ε log(rm). Then, it follows from

the above equality that
∑

1≤`≤N e
− 1
ε

(Cm`+λm−αq,rm −βq,r` ) = 1 which implies that

αq,rm = −ε log

 ∑
1≤`≤N

e−
1
ε

(Cm`+λm−βq,r` )

 .
Now, for each 1 ≤ m ≤ N , we define

α̃q,rm = min
1≤`≤N

{
Cm` + λm − βq,r`

}
= min

1≤`≤N

{
Cm` − βq,r`

}
+ λm, (B.4)

and we consider the inequality

|αq,rm − α
q,r
k | ≤ |α

q,r
m − α̃q,rm |+ |α̃q,rm − α̃

q,r
k |+ |α̃

q,r
k − α

q,r
k |. (B.5)

By equation (B.4) one has that α̃q,rm + βq,r` − Cm` − λm ≤ 0. Hence we get

− αq,rm = ε log

 ∑
1≤`≤N

e−
1
ε
α̃q,rm e

1
ε

(α̃q,rm +βq,r
`
−Cm`−λm)

 ≤ −α̃q,rm + ε log(N). (B.6)

On the other hand, using the inequality∑
1≤`≤N

e−
1
ε

(Cm`+λm−βq,r` ) ≥ e−
1
ε

(Cm`∗+λm−βq,r`∗ ) = e−
1
ε
α̃q,rm ,
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where `∗ is a value of 1 ≤ ` ≤ N achieving the minimum in (B.4), we obtain that

− αq,rm ≥ −α̃q,rm . (B.7)

By combining inequalities (B.6) and (B.7), we finally have

|α̃q,rm − αq,rm | ≤ ε log(N). (B.8)

To conclude, it remains to remark that, by equation (B.4), the vector (α̃q,rm − λm)1≤m≤N is
the c-transform of the vector (βq,r` )1≤`≤N for the cost matrix C. Therefore, by using standard
results in optimal transport which relate c-transforms to the modulus of continuity of the cost
(see e.g. [31], p. 11) one obtains that

|α̃q,rm − α̃
q,r
k + λk − λm| ≤ sup

1≤`≤N
|Cm` − Ck`|,

which implies that

|α̃q,rm − α̃
q,r
k | ≤ sup

1≤`≤N
|Cm` − Ck`|+ ε| log(rm)− log(rk)|. (B.9)

By combining the upper bounds (B.8) and (B.9) with the decomposition (B.5) we finally come
to the inequality

|αq,rm − α
q,r
k | ≤ 2ε log(N) + sup

1≤`≤N
|Cm` − Ck`|+ ε| log(rm)− log(rk)|.

Since the dual variables achieving the maximum in equation (B.1) are defined up to an additive
constant, one may assume that αq,rk = 0. Under such a condition, we finally obtain that

|α| ≤

 ∑
1≤m≤N

(
2ε log(N) + sup

1≤k≤N

{
sup

1≤`≤N
|Cm` − Ck`|+ ε| log(rm)− log(rk)|

})2
1/2

.

Using inequality (B.3) and the assumption that r ∈ Σρ
N (in particular ρ ≤ rm/rk ≤ 1/ρ),

we can thus conclude that r 7→ Hq(r) is Lρ,ε-Lipschitz on Σρ
N for

Lρ,ε =

 ∑
1≤m≤N

(
2ε log(N) + sup

1≤`,k≤N
|Cm` − Ck`| − ε log(ρ)

)2
1/2

. (B.10)

C Useful concentration inequalities
We state and prove below the various concentration inequalities that have been used in the
proof of Theorem 4.1.

Proposition C.1. For any u > 0

P
(
|r̂εn − rε| > (1 + u)2

√
2Lρ,ε
ε
√
n

)
≤ exp

(
−u2

)
, (C.1)

where rεn is the Sinkhorn barycenter of the iid random measures q1, . . . , qn (assumed to belong
to Σρ

N ) as defined by (3.7).
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Proof. To derive a concentration inequality for the random variable

Z = |r̂εn − rε|,

we write it as Z = f(q1, . . . , qn) where f : Σρ
N × . . .×Σρ

N → R is a measurable function, and
we shall prove that f satisfies the following bounded difference inequality

|f(q1, . . . , qi, . . . , qn)− f(q1, . . . , q
′
i, . . . , qn)| ≤

4L2
ρ,ε

εn
, for any 1 ≤ i ≤ n, (C.2)

where q′i denotes an independent random measure of the sample q1, . . . , qn that is distributed
as q. To this end, we introduce the following empirical versions of the function

r 7→ F (r) := Eq∼P[W 2
2,ε(r, q)] (C.3)

that are defined as

F̂ (r) = 1
n

n∑
i=1

W 2
2,ε(r, qi) and F̂ (i)(r) = 1

n

 n∑
j=1,j 6=i

W 2
2,ε(r, qj) +W 2

2,ε(r, q′i)

 ,
and we introduce the quantities

rε,(i)n = arg min
r∈ΣρN

F̂ (i)(r) and Z(i) = |rε,(i)n − rε|.

Then, we proceed as in the proof of Theorem 6 in [32]. First, we remark that

F̂ (rε,(i)n )− F̂ (rεn) =
W 2

2,ε(r
ε,(i)
n , qi)−W 2

2,ε(rεn, qi)
n

+ 1
n

n∑
j=1,j 6=i

W 2
2,ε(rε,(i)n , qj)−W 2

2,ε(rεn, qj)

=
W 2

2,ε(r
ε,(i)
n , qi)−W 2

2,ε(rεn, qi)
n

+
W 2

2,ε(rεn, q′i)−W 2
2,ε(r

ε,(i)
n , q′i)

n

+F̂ (i)(rε,(i)n )− F̂ (i)(rεn)

≤
|W 2

2,ε(r
ε,(i)
n , qi)−W 2

2,ε(rεn, qi)|
n

+
|W 2

2,ε(rεn, q′i)−W 2
2,ε(r

ε,(i)
n , q′i)|

n

≤ 2Lρ,ε
n
|rε,(i)n − rεn|, (C.4)

where the first inequality follows from the fact that rε,(i)n is a minimizer of F̂ (i), and the second
one from Lemma 3.5 on the Lipschitz continuity of r 7→W 2

2,ε(r, q). Now, using Theorem 3.4,
one has that the function F̂ is ε-strongly convex, which implies that

F̂ (rε,(i)n )− F̂ (rεn) ≥ ε

2 |r
ε,(i)
n − rεn|2. (C.5)

Combining (C.4) and (C.5), we obtain that |rε,(i)n −rεn| ≤
4Lρ,ε
εn , and note that by the Lipschitz

continuity of r 7→W 2
2,ε(r, q), it follows that, for any q ∈ Σρ

N ,

|W 2
2,ε(rε,(i)n , q)−W 2

2,ε(rεn, q)| ≤
4L2

ρ,ε

εn
. (C.6)
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By the triangle inequality we finally obtain that

|Z − Z(i)| = ||rεn − rε| − |rε,(i)n − rε|| ≤ |rε,(i)n − rεn| ≤
4Lρ,ε
εn

,

which proves that inequality (C.2) holds. Now, using concentration of measure for a function
of random variables satisfying the bounded difference inequality (C.2), we obtain that, for
any t > 0 (see e.g. Theorem 6.2 in [7])

P (|r̂εn − rε| − E[|r̂εn − rε|] > t) ≤ exp
(
−nε

2t2

8L2
ρ,ε

)
. (C.7)

To conclude the proof it remains to obtain an upper bound on E[|r̂εn − rε|]. We start with
the basic inequality

E[|r̂εn − rε|] ≤
√
E[|r̂εn − rε|2]. (C.8)

By Theorem 3.4, it follows that the function F defined in (C.3) is ε-strongly convex for the
Euclidean 2-norm. Hence, as rε is by definition a minimizer of F , one has that

|r̂εn − rε|2 ≤
2
ε

(F (r̂εn)− F (rε)) , (C.9)

Then, for any 1 ≤ i ≤ n, since q′i is an independent copy of qi, we clearly have that

E[F (r̂εn)] = E[F (rε,(i)n )] = E[W 2
2,ε(rε,(i)n , qi)]

Hence, we may write E[F (r̂εn)] = 1
n

∑n
i=1 E[W 2

2,ε(r
ε,(i)
n , qi)], and since one also has that

E[F̂ (r̂εn)] = 1
n

∑n
i=1 E[W 2

2,ε(r̂εn, qi)], inequality (C.6) yields

E[F (r̂εn)− F̂ (r̂εn)] ≤
4L2

ρ,ε

εn
.

Finally, as F (rε) = E[F̂ (rε)] ≥ E[F̂ (r̂εn)] we obtain from the above inequality that

E[F (r̂εn)]− F (rε) ≤
4L2

ρ,ε

εn
. (C.10)

Combining inequalities (C.7), (C.8) (C.9) and (C.10) allows to conclude the proof of Propo-
sition C.1.

Proposition C.2. For any u > 0

P
(
|rεn − r̂εn,p|2 >

2Lρ,ε
ε

(
u+ ρ(N +

√
N)
))
≤ 2N

n∑
i=1

exp
(
−piu2

)
, (C.11)

where rεn is the Sinkhorn barycenter of the iid random measures q1, . . . , qn (assumed to belong
to Σρ

N ) as defined by (3.7).
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Proof. By arguing as in the proof of Theorem 3.2, we have the following inequality

|rεn − r̂εn,p|2 ≤
2Lρ,ε
ε

(
1
n

n∑
i=1
|qi − q̃

pi
i |+ ρ(N +

√
N)
)
. (C.12)

Then, conditionally on qi, we recall that piq̃pii is a random vector following a multinomial
distributionM(pi, qi). Hence, using the fact that the Euclidean 2-norm satisfies |qi − q̃

pi
i | ≤∑N

k=1 |qi,k− q̃
pi
i,k|, it follows from the so-called Bretagnolle-Huber-Carol inequality (see Propo-

sition A6.6 in [33]) and by conditioning on qi that, for any u > 0,

P (|qi − q̃
pi
i | ≥ u) ≤ 2N exp

(
−piu

2

2

)
. (C.13)

Hence, combining inequalities (C.12) and (C.13) with the union bound P
(

1
n

∑n
i=1 |qi − q̃

pi
i | ≥ u

)
≤∑n

i=1 P (|qi − q̃
pi
i | ≥ u) allows to complete the proof of Proposition C.2.

D Algorithms to compute penalized Wasserstein barycenters
of Section 2

In this section we describe how the minimization problem

min
µ

1
n

n∑
i=1

W 2
2 (µ, νi) + γE(µ) over µ ∈ P2(Ω), (D.1)

can be solved numerically by using an appropriate discretization to compute a numerical
approximation of a regularized Wasserstein barycenter and the work of [14]. In our numerical
experiments, we focus on the case where E(µ) = +∞ if µ is not a.c. to enforce the regularized
Wasserstein barycenter to have a smooth pdf (we write E(f) = E(µf ) if µ has a density f).
In this setting, if the grid of points is of sufficiently large size, then the weights fk yield a
good approximation of this pdf. A discretization of the minimization problem (D.1) is used to
compute a numerical approximation of a regularized Wasserstein barycenter µγPn . It consists
of using a fixed grid {xk}Nk=1 of equally spaced points xk ∈ Rd, and to approximate µγPn by
the discrete measure

∑N
k=1 f

kδxk where the fk are positive weights summing to one which
minimize a discrete version of the optimization problem (D.1).

In what follows, we first describe an algorithm that is specific to the one-dimensional case,
and then we propose another algorithm that is valid for any d ≥ 1.

Discrete algorithm for d = 1 and data defined on the same grid We first propose
to compute a regularized empirical Wasserstein barycenter for a dataset made of discrete
measures ν1, . . . , νn (or one-dimensional histograms) defined on the same grid of reals {xk}Nk=1
that the one chosen to approximate µγPn . Since the grid is fixed, we identify a discrete measure
ν with the vector of weights ν = (ν(x1), . . . , ν(xN )) in RN+ (with entries that sum up to one)
of its values on this grid.

The estimation of the regularized barycenter onto this grid can be formulated as:

min
f

1
n

n∑
i=1

W 2
2 (f, νi) + γE(f) s.t

∑
k

fk = 1, and fk = f(xk) ≥ 0, (D.2)

31



with the obvious abuse of notation W 2
2 (f, νi) = W 2

2 (µf , νi) and E(f) = E(µf ).
Then, to compute a minimizer of the convex optimization problem (D.2), we perform a

subgradient descent. We denote by (f (`))`≥1 the resulting sequence of discretized regularized
barycenters in RN along the descent. Hence, given an initial value f (1) ∈ RN+ and for ` ≥ 1,
we thus have

f (`+1) = ΠS

(
f (`) − τ (`)

[
γ∇E(f (`)) + 1

n

n∑
i=1
∇1W

2
2 (f (`), νi)

])
(D.3)

where τ (`) is the `-th step time, and ΠS stands for the projection on the simplex S = {y ∈
RN+ such that

∑N
j=1 y

j = 1}. Thanks to Proposition 5 in [28], we are able to compute a sub-
gradient of the squared Wasserstein distance W 2

2 (f (`), νi) with respect to its first argument
(for discrete distributions). For that purpose, we denote by Rf (s) =

∑
xj≤s f(xj) the cdf of

µf =
∑N
k=1 f(xk)δxk and by R−f (t) = inf{s ∈ R : Rf (s) ≥ t} its pseudo-inverse.

Proposition D.1 ([28]). Let f = (f(x1), f(x2), . . . , f(xN )) and ν = (ν(x1), ν(x2), . . . , ν(xN ))
be two discrete distributions defined on the same grid of values x1, . . . , xN in R. For p ≥ 1,
the subgradients of f 7→W p

p (f, ν) can be written as

∇1W
p
p (f, ν) : xj 7→

∑
m≥j
|xm − x̃m|p − |xm+1 − x̃m|p (D.4)

where {
x̃m = xk if Rg(xk−1) < Rf (xm) < Rν(xk)
x̃m ∈ [xk−1, xk] if Rf (xm) = Rν(xk)

Even if subgradient descent is only shown to converge with diminishing time steps [8], we
observed that using a small fixed step time (of order 10−5) is sufficient to obtain in practice a
convergence of the iterates (f (`))`≥1. Moreover, we have noticed that the principles of FISTA
(Fast Iterative Soft Thresholding, see e.g. [3]) accelerate the speed of convergence of the above
described algorithm.

Discrete algorithm for d ≥ 1 in the general case We assume that data ν1, . . . , νn are
given in the form of n discrete probability measures (histograms) supported on Rd (with
d ≥ 1) that are not necessarily defined on the same grid. More precisely, we assume that

νi =
pi∑
j=1

νji δyji

for 1 ≤ i ≤ n where the yji ’s are arbitrary locations in Ω ⊂ Rd, and the νji ’s are positive
weights (summing up to one for each i).

The estimation of the regularized barycenter onto a given grid {xk}Nk=1 of Rd can then be
formulated as the following minimization problem:

min
f

1
n

n∑
i=1

W 2
2 (f, νi) + γE(f) s.t

∑
k

fk = 1, and fk ≥ 0, (D.5)

with the notation f = (f1, f2, . . . , fN ) and the convention thatW 2
2 (f, νi) denotes the squared

Wasserstein distance between µf =
∑N
k=1 f

kδxk and νi.
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Problem (D.5) could be exactly solved by considering the discrete pi×N transport matrices
Si between the barycenter µf to estimate and the data νi. Indeed, problem (D.5) is equivalent
to the convex problem

min
f

min
S1···Sn

1
n

n∑
i=1

pi∑
j=1

N∑
k=1
||yji − x

k||2Sj,ki + γE(f) (D.6)

under the linear constraints

∀i = 1, . . . , n,
pi∑
j=1

Sj,ki = fk,
N∑
k=1

Sj,ki = νji , and S
j,k
i ≥ 0.

However, optimizing over the pi × N transport matrices Si for 1 ≤ i ≤ n involves memory
issues when using an accurate discretization grid {xk}Nk=1 with a large value of N . For this
reason, we consider subgradient descent algorithms that allow dealing directly with problem
(D.5).

To this end, we rely on the dual approach introduced in [10] and the numerical optimisation
scheme proposed in [14]. Following these works, one can show that the dual problem of (D.5)
with a regularization of the form E(Kf) and K a discrete linear operator reads as

min
φ0,···φn

n∑
i=1

Hνi(φi) + E∗γ(φ0) s.t KTφ0 +
n∑
i=1

φi = 0, (D.7)

where the φi’s are dual variables (vectors in RN ) defined on the discrete grid {xk}Nk=1, E∗γ is
the Legendre transform of γE and Hνi(.) is the Legendre transform of W 2

2 (., νi) that reads:

Hνi(φi) =
pi∑
j=1

νji min
k=1···N

(1
2 ||y

j
i − x

k||2 − φki
)
.

Barycenter estimations fi can finally be recovered from the optimal dual variables φi solution
of (D.7) as:

fi ∈ ∂Hνi(φi), for i = 1 · · ·n. (D.8)

Following [10], one value of the above subgradient can be obtained at point xk as:

∂Hνi(φi)k =
pi∑
j=1

νji S
j,k
i , (D.9)

where Sj,ki is any row stochastic matrix of size pi ×N checking:

Sj,ki 6= 0 iff k ∈ arg min
k=1···N

(1
2 ||y

j
i − x

k||2 − φki
)
.

From the previous expressions, we see that fki =
∑pi
j=1 ν

j
i S

j,k
i corresponds to the discrete

pushforward of data νi with the transport matrix Si with the associated cost:

Hνi(φi) =
pi∑
j=1

N∑
k=1

(1
2 ||y

j
i − x

k||2 − φki
)
Sj,ki νji .
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Numerical optimization Following [14], the dual problem (D.7), can be simplified by
removing one variable and thus discarding the linear constraint KTφ0 +

∑n
i=1 φi = 0. In

order to inject the regularity given by φ0 in all the reconstructed barycenters obtained by
φi, i = 1 · · ·n, we modified the change of variables of [14] by setting ψi = φi + KTφ0/n for
i = 1 · · ·n and ψ0 = φ0, leading to

∑n
i=1 ψi = 0. One variable, say ψn, can then be directly

obtained from the other ones. Observing that φn = −KTψ0 −
∑n−1
i=1 ψi/n, we thus obtain:

min
ψ0,···ψn−1

n−1∑
i=1

Hνi(ψi −KTψ0/n) +Hνn(−KTψ0 −
n−1∑
i=1

ψi/n) + E∗γ(ψ0). (D.10)

The subgradient (D.9) can then be used in a descent algorithm over the dual problem (D.10).
For differentiable penalizers E, we consider the L-BFGS algorithm [36, 4] that integrates a
line search method (see e.g. [9]) to select the best time step τ (`) at each iteration ` of the
subgradient descent:{

ψ
(`+1)
0 = ψ

(`)
0 − τ (`)(∇E∗γ(ψ(`)

0 ) + d`0)
ψ

(`+1)
i = ψ

(`)
i − τ (`)d`i i = 1 · · ·n− 1,

(D.11)

where:

d`0 = K
(
∂Hνn

(
−KTψ

(`)
0 /n−

∑n−1
i=1 ψ

(`)
i

)
−
∑n−1
i=1 ∂Hνi

(
ψ

(`)
i −KTψ

(`)
0 /n

))
d`i = ∂Hνi

(
ψ

(`)
i −KTψ

(`)
0 /n

)
− ∂Hνn

(
−KTψ

(`)
0 /n−

∑n−1
i=1 ψ

(`)
i

)
.

The barycenter is finally given by (D.8), taking φi = ψi −KTψ0/n. Even if we only treated
differentiable functions E in the theoretical part of this paper, we can numerically consider
non differentiable penalizers E, such as Total Variation (K = ∇, E = |.|1). In this case, we
make use of the Fista algorithm. This just modifies the update of ψ0 in (D.11), by changing
the explicit scheme involving ∇E∗γ onto an implicit one through the proximity operator of E∗γ :

ψ
(`+1)
0 = Proxτ(`)E∗

γ

(
ψ

(`)
0 − τ (`)d`0

)
= arg min

ψ

1
2τ (`) ||ψ

(`)
0 − τ (`)d`0 − ψ||2 + E∗

γ(ψ).

Algorithmic issues and stabilization As detailed in [10], the computation of one subgra-
dient in (D.9) relies on the look for Euclidean nearest neighbors between vectors (yji , 0) and
(xk,

√
c− φki ), with c = maxk φki . Selecting only one nearest neighbor leads to bad numerical

results in practice as subgradient descent may not be stable. For this reason, we considered
the K = 10 nearest neighbors for each j to build the row stochastic matrices Si at each
iteration as: Sj,ki = wjki /

∑
k′ w

jk′

i , with wjki = exp(−(1
2‖y

j
i − xk‖2 − φki )/ε) if k is within the

K nearest neighbors for j and data i and wjki = 0 otherwise.
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