

/1

Espace de Wasserstein

Transport optimal avec coût quadratique. Notons $\mathcal{P}_2(\mathbf{R}^d)$ l'ensemble des mesures de probabilités sur \mathbf{R}^d de second moment finis, pour ρ_0 et ρ_1 dans $\mathcal{P}_2(\mathbf{R}^d)$, la 2-distance de Wasserstein entre ρ_0 et ρ_1 , $W_2(\rho_0, \rho_1)$ est donnée par

$$W_2^2(\rho_0,\rho_1) = \inf_{\gamma \in \Pi(\rho_0,\rho_1)} \int_{\mathbf{R}^d \times \mathbf{R}^d} |x-y|^2 \mathrm{d}\gamma(x,y)$$

où $\Pi(\rho_0, \rho_1)$ est l'ensemble des plans de transport entre ρ_0 et ρ_1 i.e. les probas sur $\mathbf{R}^d \times \mathbf{R}^d$ ayant ρ_0 et ρ_1 pour marges.

Formulation à la Monge

$$\inf_{T: T_{\#}\rho_0 = \rho_1} \int_{\mathbf{R}^d} |x - T(x)|^2 \mathrm{d}\rho_0(x)$$

où $T_{\#}\rho_0$ désigne la mesure image:

$$T_{\#}\rho_0(B) = \rho_0(T^{-1}(B)).$$

La contrainte $T_{\#}\rho_0 = \rho_1$ exprime le fait que T transporte ρ_0 sur ρ_1 . Transports induisent des plans: $(\mathrm{id}, T)_{\#}\rho_0 \in \Pi(\rho_0, \rho_1)$. C'est un problème non linéaire et il se peut qu'il n'existe pas de transport de ρ_0 vers ρ_1 (ex $\rho_0 = \delta_x$ et $\rho_1 = \frac{1}{2}(\delta_y + \delta_z)$ avec $y \neq z$), néanmoins si ρ_0 n'a pas d'atome, on a

$$W_2^2(\rho_0, \rho_1) = \inf_{T : T_{\#}\rho_0 = \rho_1} \int_{\mathbf{R}^d} |x - T(x)|^2 \mathrm{d}\rho_0(x)$$

L'existence d'un plan est presque triviale, $\Pi(\rho_0, \rho_1)$ est tendu et le critère est faiblement * sci. W_2 est une distance sur $\mathcal{P}_2(\mathbf{R}^d)$, $(\mathcal{P}_2(\mathbf{R}^d), W_2)$ espace de Wasserstein. Cette distance métrise la convergence faible * (+ convergence des seconds moments). Mais surtout, comme c'est un problème linéaire, il a une formulation duale (commode en l'occurence). Dualité de Kantorovich (cf livres de Villani, Santambrogio):

$$\frac{1}{2}W_2^2(\rho_0,\rho_1) = \sup\left\{\int_{\mathbf{R}^d} \varphi \rho_0 + \int_{\mathbf{R}^d} \psi \rho_1 \ : \ \varphi(x) + \psi(y) \le \frac{1}{2}|x-y|^2\right\}$$

ce sup est atteint, ses solutions sont appelées potentiels de Kantorovich, ces potentiels sont reliés par les formules d'inf-convolution

$$\varphi(x) = \inf_{y} \{ \frac{1}{2} |x - y|^2 - \psi(y) \}$$

 et

$$\psi(y) = \inf_{x} \{ \frac{1}{2} |x - y|^2 - \varphi(x) \}.$$

En particulier φ et ψ sont semi-concaves: $u := \frac{1}{2}|.|^2 - \varphi$ et $v := \frac{1}{2}|.|^2 - \psi$ sont convexes et conjuguées:

$$u = v^*, v = u^*$$

transformée de Legendre:

$$v^*(x) := \sup_x \{x \cdot y - v(y)\}.$$

Si γ est un plan optimal et $\varphi,\,\psi$ est un couple de potentiels de Kantorovich on a

$$\varphi(x) + \psi(y) = \frac{1}{2}|x - y|^2 \gamma$$
-p.p.

ce qui revient à

$$u(x) + u^*(y) = x \cdot y \ \gamma\text{-p.p.}$$

ce qui revient à dire que $y \in \partial u(x)$ si bien que le support de γ est inclus dans le graphe de ∂u . Il est bien connu que les fonctions convexes finies sont différentiables en dehors d'ensemble "petits".

On appellera ensemble petit de \mathbb{R}^d tout Borélien de dimension de Hausdorff au plus d - 1.

Théorème de Brenier, McCann: si ρ_0 ne charge pas les ensembles petits, il y a une unique solution γ au problème de transport optimal, qui est caractérisée par $\gamma = (\mathrm{id}, \nabla u)_{\#} \rho_0$ avec u convexe. Lien avec l'équation de Monge-Ampère:

 $\det(D^2 u)\rho_1(\nabla u) = \rho_0, \ u \text{ convexe.}$

Théorie de la régularité L. Caffarelli (avancées récentes: Figalli, De Philippis, livre récent de Figalli). Si ρ_0 , ρ_1 ont des densités $C^{r,\alpha}$ bornées par en dessous et des supports convexes, le transport optimal ∇u est un $C^{r+1,\alpha}$ -difféomorhisme.

Noter que $W_2^2(\rho_0, \rho_1)$ est une fonction convexe de ρ_0 et ρ_1 . Si en outre, ρ_0 ne charge pas les ensembles petits alors $\rho_1 \in \mathcal{P}_2(\mathbf{R}^d) \mapsto W^2(\rho_0, \rho_1)$ est *strictement* convexe. En effet supposons que

 $W_2^2(\rho_0, (1-t)\rho_1 + t\nu_1) = (1-t)W_2^2(\rho_0, \rho_1) + tW_2^2(\rho_0, \nu_1),$ $t \in (0, 1)$ alors si $\gamma = (\mathrm{id}, T)_{\#}\rho_0$ (resp. $\theta = (\mathrm{id}, S)_{\#}\rho_0$) est un plan optimal entre ρ_0 et ρ_1 (resp. ν_1) alors $(1-t)\gamma + t\theta$ est optimal entre ρ_0 et $(1-t)\rho_1 + t\nu_1$. Ce plan devrait donc être porté par un graphe ce qui n'est le cas que lorsque S = T ρ_0 -p.p. i.e $\rho_1 = \nu_1$. Interpolation (McCann): courbe de mesures $t \in [0,1] \mapsto \rho_t = ((1-t) \operatorname{id} + t \nabla u)_{\#} \rho_0$, c'est la géodésique (à vitesse constante) entre ρ_0 et ρ_1 . Notion de convexité par déplacement i.e. de convexité le long de ces géodésiques, nous y reviendrons. Formulation dynamique de Benamou-Brenier:

$$W_2^2(\rho_0, \rho_1) = \inf \int_0^1 \int_{\mathbf{R}^d} |v_t(x)|^2 \rho_t(\mathrm{d}x) \mathrm{d}t$$

sous les contraintes:

$$\partial_t \rho + \operatorname{div}(\rho v) = 0, \ \rho_{|_{t=0}} = \rho_0, \ \rho_{|_{t=1}} = \rho_1.$$

F. Otto: structure formelle de variété Riemannienne, calcul d'Otto. Formellement, étant donnée une énergie E sur $\mathcal{P}_2(\mathbf{R}^d)$, l'équation

$$\partial_t \rho = \operatorname{div}(\rho \nabla E'(\rho))$$

est le flot de gradient (pour W_2) de E. En particulier $E(\rho) = \int_{\mathbf{R}^d} \rho \log(\rho)$: le flot de la chaleur est le flot de l'entropie pour W_2 . Multiples exemples, théorie très riche (livre d'Ambrosio-Gigli-Savaré)

Barycentres dans l'espace de Wasserstein

Soit N un entier plus grand que 1, ν_1, \ldots, ν_N des éléments de $\mathcal{P}_2(\mathbf{R}^d)$ et $\lambda = (\lambda_1, \ldots, \lambda_N) \in \mathbf{R}^N_+$ des poids positifs normalisés par $\sum_{i=1}^N \lambda_i = 1$, un barycentre dans l'espace de Wasserstein des mesures ν_i avec les poids λ_i est un minimiseur de

$$J_{\lambda}(\mu) := \sum_{i=1}^{N} \frac{\lambda_i}{2} W_2^2(\nu_i, \mu).$$
 (1)

Existence par la méthode directe du calcul des variations (suite minimisante, borne sur le moment d'ordre 2 puis sci de J_{λ}), unicité par stricte convexité si l'un des ν_i ne charge pas les ensembles petits.

C'est un cas particulier de moyenne de Fréchet (même principe: minimisation de sommes de carrés de distance mais dans un espace métrique général), unicité pour les espaces NPC ce qui n'est pas la cas de l'espace de Wasserstein (cf. travaux de Karcher, Sturm, Arnaudon...). Mauvais comportement (concave et non semi-convexe) de W_2^2 le long des géodésiques. Ici c'est la convexité (usuelle, plate) qui nous sert pas la convexité le long des géodésiques.

Théorème 1 Le problème (1) possède au moins une solution, qui est unique dès que l'un des ν_i ne charge pas les ensembles petits. On appelle alors cette solution barycentre Wasserstein de (ν_1, \dots, ν_N) avec les poids λ_i .

Caractérisation par dualité. Dual de (1):

$$\sup\left\{F(f_1, ..., f_N) = \sum_{i=1}^N \int_{\mathbf{R}^d} S_{\lambda_i} f_i d\nu_i : \sum_{i=1}^N f_i = 0, \right\}$$
(2)

where

$$S_{\lambda}f(x) := \inf_{y \in \mathbf{R}^d} \left\{ \frac{\lambda}{2} |x - y|^2 - f(y) \right\}, \quad \forall x \in \mathbf{R}^d, \, \lambda > 0.$$

Soit

$$Y := (1 + |.|^2)C_b(\mathbf{R}^d) = \Big\{ f \in C(\mathbf{R}^d) : \frac{f}{1 + |.|^2} \text{ borné } \Big\},\$$

muni de la norme

$$||f||_Y := \sup_{x \in \mathbf{R}^d} \frac{|f(x)|}{1+|x|^2}.$$

Soit X le sous-espace fermé de Y défini par

$$X := (1+|.|^2)C_0(\mathbf{R}^d) = \left\{ f \in C(\mathbf{R}^d) : \lim_{|x| \to \infty} \frac{f(x)}{1+|x|^2} = 0 \right\}.$$

Proposition 1 L'inf de (1) et le supremum de (2) (avec des f_i dans Y) sont atteints et coïncident.

Notant $\mathcal{M}(\mathbf{R}^d)$ l'espace des mesures de Radon bornées sur Radon sur \mathbf{R}^d , identifié au dual de $C_0(\mathbf{R}^d)$ et par $\mathcal{M}^1_+(\mathbf{R}^d)$ les mesures de probabilités sur \mathbf{R}^d , on identifie le dual de X

$$X' = \{ \mu \in \mathcal{M}(\mathbf{R}^d) : (1 + |x|^2) \mu \in \mathcal{M}(\mathbf{R}^d) \}.$$

La fonctionnelle

$$H_i(f) := -\int_{\mathbf{R}^d} S_{\lambda_i} f(x) d\nu_i(x)$$

est convexe sci sur Y et il découle de la dualité de Kantorovich que, pour tout $\nu \in X'$,

$$H_i^*(\nu) = \begin{cases} \frac{\lambda_i}{2} W_2^2(\nu_i, \nu) & \text{si } \nu \in X' \cap \mathcal{M}_+^1(\mathbf{R}^d) \\ +\infty & \text{sinon.} \end{cases}$$

On a directement

$$\inf(1) \ge \sup_{f_i \in Y, \sum f_i = 0} F(f_1, \cdots, f_N) \ge \sup_{f_i \in X, \sum f_i = 0} F(f_1, \cdots, f_N)$$

On définit alors pour $f \in X$,

$$H(f) = \inf\{\sum_{i=1}^{N} H_i(f_i) : \sum_{i=1}^{N} f_i = f\}$$

qui est convexe et bornée (donc continue) au voisinage de 0. Il est bien connu que (sur X')

$$H^* = \sum_{i=1}^N H_i^*$$

ainsi

$$\inf(1) = \inf_{X'} \sum_{i=1}^{N} H_i^* = \inf_{X'} H^* = -H^{**}(0)$$

Tandis que

$$\sup_{f_i \in X, \sum f_i = 0} F(f_1, \cdots, f_N) = \sup_{f_i \in X, \sum f_i = 0} -\sum_i H_i(f_i) = -H(0)$$

comme H est continu en 0 on a l'égalité. Pour montrer l'existence de f_i optimaux (dans Y et pas X) il faut travailler un peu.... Relations d'extrémalité. Soit μ un barycentre i.e une solution de (1), γ_i un plan de transport optimal entre ν_i et μ , et $f_i \in Y$, $\sum_i f_i = 0$ solution du dual. On a

$$\sum_{i=1}^{N} \frac{\lambda_i}{2} W_2^2(\nu_i, \nu) = \sum_{i=1}^{N} \int_{\mathbf{R}^d} S_{\lambda_i} f_i d\nu_i + \sum_{i=1}^{N} \int_{\mathbf{R}^d} f_i d\mu_i$$

et donc, on a pour chaque i

$$\frac{\lambda_i}{2}W_2^2(\nu_i,\nu) = \int_{\mathbf{R}^d} S_{\lambda_i} f_i d\nu_i + \int_{\mathbf{R}^d} f_i d\mu$$

si bien que γ_i est portée par l'ensemble des (x, y) pour les quels

$$S_{\lambda_i} f_i(x) + f_i(y) = \frac{\lambda_i}{2} |x - y|^2$$

En particulier $f_i(y) \ge S_{\lambda_i}(S_{\lambda_i}f_i)(y)$ et comme $S_{\lambda_i}(S_{\lambda_i}f_i) \ge f_i$, on a

$$\sum_{i=1}^{N} S_{\lambda_i} \left(S_{\lambda_i} f_i \right) \ge 0, \ \sum_{i=1}^{N} S_{\lambda_i} \left(S_{\lambda_i} f_i \right) = 0 \quad \mu\text{-p.p.}$$

On définit le potentiel convexe ϕ_i

$$\lambda_i \phi_i(x) := \frac{\lambda_i}{2} |x|^2 - S_{\lambda_i} f_i(x),$$

et ϕ_i^* son potentiel conjugué i.e.

$$\lambda_i \phi_i^*(y) := \frac{\lambda_i}{2} |y|^2 - S_{\lambda_i} \left(S_{\lambda_i} f_i \right)(y)$$

les relations précédentes expriment que γ_i est porté par $\partial \phi_i$ de sorte que si ν_i ne charge pas les ensembles petits $\nabla \phi_i$ est le transport optimal de Brenier: $\mu = \nabla \phi_{i \#} \nu_i$.

Les ϕ_i sont liés implicitement par

$$\sum_{i=1}^{N} \lambda_i \phi_i^*(y) \leq \frac{|y|^2}{2}, \, \forall y \in \mathbf{R}^d, \, \text{avec egalité } \mu\text{-p.p.}$$

Ceci implique que le support du barycentre est dans l'ensemble de contact entre $\sum_{i=1}^{N} \lambda_i \phi_i^*$ et une fonction lisse: les ϕ_i^* sont donc différentiables (leur gradient et le transport optimal du barycentre μ vers ν_i) et l'on a

$$\sum_{i=1}^{N} \lambda_i \nabla \phi_i^* = \text{id } \mu\text{-p.p.}.$$
(3)

En posant $\psi_i = \phi_i^*$ on a un problème de type obstacle pour un système d'équations de Monge-Ampère:

$$\nabla \psi_{i \#} \mu = \nu_i$$
 soit formellement $\mu = \det(D^2 \psi_i) \nu_i (\nabla \psi_i)$

avec

$$\sum_{i} \lambda_i \psi_i \leq \frac{1}{2} |.|^2, \text{ avec \'egalit\'e sur le support de } \mu.$$

La principale difficulté réside dans le fait qu'on ne connait pas ce support, c'est un problème (délicat) de frontière libre. Noter qu'il y a toujours un transport optimal (c'est $\nabla \phi_i^*$ qui est continue sur le support de μ) de μ vers ν_i (pas d'hypothèse). Un point de vue point fixe (Alvarez-Esteban et al, 2016): on a vu que $T_i = \nabla \phi_i^*$ est le transport optimal de μ vers les ν_i et que $\sum_{i=1}^N \lambda_i T_i = \text{id } \mu\text{-p.p.}$ ceci implique en particulier que le barycentre μ est un point fixe de l'application G qui à μ associe

$$G(\mu) = \left(\sum_{i=1}^{N} \lambda_i T_{\mu \to \nu_i}\right)_{\#} \mu$$

où $T_{\mu \to \nu_i}$ est le transport optimal de μ vers ν_i (on peut aussi généraliser la construction de G avec des plans). Le fait d'être un point fixe est nécessaire mais a priori pas suffisant. Estimation quantitative intéressante (Alvarez-Esteban et al, 2016):

$$J_{\lambda}(\nu) \ge J_{\lambda}(G(\nu)) + \frac{1}{2}W_{2}^{2}(\nu, G(\nu)).$$

En effet posons
$$T_i = T_{\nu \to \nu_i}$$
 et $T := \sum_{i=1}^N \lambda_i T_i$, on a
 $W_2^2(\nu_i, \nu) = \|T_i - \operatorname{id}\|_{L^2(\nu)}^2 = \|T_i - T\|_{L^2(\nu)}^2 + \|T - \operatorname{id}\|_{L^2(\nu)}^2$
 $+ 2 \int_{\mathbf{R}^d} (T_i(x) - T(x), T(x) - x) \mathrm{d}\nu(x)$
 $\ge W_2^2(\nu_i, G(\nu)) + W_2^2(\nu, G(\nu))$
 $+ 2 \int_{\mathbf{R}^d} (T_i(x) - T(x), T(x) - x) \mathrm{d}\nu(x)$

et donc en sommant on a bien

$$J_{\lambda}(\nu) \ge J_{\lambda}(G(\nu)) + \frac{1}{2}W_{2}^{2}(\nu, G(\nu)).$$

Pour le moment, on n'a considéré que le barycentre Wasserstein d'un nombre fini de mesures sur \mathbf{R}^d , généralisations importantes:

- population Wasserstein barycenter ou barycentre d'une proba plus générale sur $(\mathcal{P}_2(\mathbf{R}^d), W_2)$: Bigot et Klein, Loubes et Le Gouic (nous y reviendrons),
- barycentres Wasserstein sur une variété Riemannienne: Pass et Kim.

Formulation multi-marges

Le problème (1) qui définit les barycentres peut-être reformulé comme un problème multi-marges avec coût quadratique similaire à celui résolu par Gangbo et Święch 1998. Pour $x := (x_1, ..., x_N) \in (\mathbf{R}^d)^N$, soit

$$T(x) := \sum_{i=1}^{N} \lambda_i x_i.$$
(4)

Considérons le problème multi-marges

$$\inf\left\{\int_{\mathbf{R}^{N}} \left(\sum_{i=1}^{N} \frac{\lambda_{i}}{2} |x_{i} - T(x)|^{2}\right) d\gamma(x_{1}, \dots, x_{N}), \ \gamma \in \Pi(\nu_{1}, \dots, \nu_{N})\right\}$$
(5)
$$\Pi(\nu_{1}, \dots, \nu_{N}): \text{ probas sur } (\mathbf{R}^{d})^{N} \text{ ayant } \nu_{1}, \dots, \nu_{N} \text{ comme marges.}$$

Formulation multi-marges/1

Formulation équivalente de (5):

$$\sup \left\{ \int_{\mathbf{R}^N} \left(\sum_{1 \le i < j \le N} \lambda_i \lambda_j x_i \cdot x_j d\gamma(x_1, \dots x_N), \ \gamma \in \Pi(\nu_1, \dots, \nu_N) \right) \right\}$$

dont le dual s'écrit

$$\inf\left\{\sum_{i=1}^{N}\int_{\mathbf{R}^{d}}g_{i}(x_{i})\mathrm{d}\nu_{i}(x_{i}),\ \sum_{i=1}^{N}g_{i}(x_{i})\geq\lambda_{i}\lambda_{j}x_{i}\cdot x_{j}\right\}$$
(7)

On peut minimiser sur les potentiels vérifiant en outre

$$g_i(x_i) = \sup_{(x_j)_{j \neq i}} \left\{ \frac{1}{2} \sum_{1 \le j \ne i \le N} \lambda_i \lambda_j x_i \cdot x_j - \sum_{j \ne i} g_j(x_j) \right\}$$

qui sont en particulier convexes.

Formulation multi-marges/2 $\,$

(6)

Gangbo et Święch 1998 ont montré que les valeurs étaient les mêmes et qu'il existait des solutions pour le primal (γ) et le dual (g_1, \dots, g_N) . Relation d'extrémalité

$$\sum_{i=1}^{N} g_i(x_i) = \frac{1}{2} \sum_{1 \le j \ne i \le N} \lambda_i \lambda_j x_i \cdot x_j \ \gamma \text{-p.p.}$$

En un point de différentiabilité de g_i (si ν_i ne charge pas les ensembles petits, g_i est différentiable ν_i -p.p.), on a donc

$$\nabla g_i(x_i) = \lambda_i \sum_{j \neq i} \lambda_j x_j.$$

Formulation multi-marges/3 $\,$

En définissant le potentiel fortement convexe u_i par

$$u_i(x_i) = \frac{g_i(x_i)}{\lambda_i} + \frac{\lambda_i}{2}|x_i|^2$$

on a donc γ -p.p.

$$\nabla u_i(x_i) = \sum_{i=1}^N \lambda_j x_j = T(x)$$

De sorte que si aucun ν_i ne charge les ensembles petits, on a

$$T(x) = \nabla u_1(x_1) = \nabla u_2(x_2) = \dots = \nabla u_N(x_N)$$

ou encore

$$x_i = \nabla u_i^* \circ \nabla u_1(x_1), i = 1, \cdots, N,$$

(noter que ∇u_i^* est λ_i^{-1} Lipschitz).

30

Formulation multi-marges/4

Résultat de Gangbo et Święch,

Théorème 2 Soit $\nu_i \in \mathcal{P}_2(\mathbf{R}^d)$ ne chargeant pas les ensembles petits, le problème multi-marges (6) possède une unique solution γ et celle-ci est de type Monge (portée par un graphe)

$$\gamma = (\mathrm{id}, T_2^1, \cdots, T_N^1)_{\#} \nu_1$$

où $T_i^1 = \nabla u_i^* \circ \nabla u_1$ et les potentiels fortement convexes u_i sont obtenus comme précédemment.

Lien avec le barycentre:

Théorème 3 Soit $\nu_i \in \mathcal{P}_2(\mathbf{R}^d)$ ne chargeant pas les ensembles petits, et soit T_i^1 les transports optimaux multi-marges du théorème précédent alors le barycentre des ν_i avec les poids $\lambda_i > 0$ est donné par $\mu = T_{\#}\gamma$ i.e.

$$\mu = \left(\sum_{i=1}^{N} \lambda_i T_i^1\right)_{\#} \nu_1 = \left(\lambda_1 \operatorname{id} + \sum_{i=2}^{N} \lambda_i \nabla u_i^*\right)_{\#} (\nabla u_{1\#} \nu_1).$$

Noter que T_i^1 transporte ν_1 sur ν_i mais ce n'est pas le transport de Brenier (il voit toutes les mesures) sauf en dimension 1. Conséquences immédiates

- $\operatorname{spt}(\mu) \subset \sum_{i=1}^N \lambda_i \operatorname{spt}(\nu_i),$
- centre de masse du barycentre:

$$\int_{\mathbf{R}^d} x \mathrm{d}\mu(x) = \sum_{i=1}^N \lambda_i \int_{\mathbf{R}^d} x \mathrm{d}\nu_i(x)$$

(qui peut évidemment s'obtenir directement à partir du barycentre en optimisant sur les translations)

Implique aussi de l'intégrabilité comme nous le verrons ultérieurement.

Formulation multi-marges/7 $\,$

Le problème multi-marges (5) est en grande dimension, il nous a fourni de la structure sur le barycentre mais n'est pas très commode à manipuler. Autre reformulation linéaire plus parcimonieuse, miniminiser

$$\sum_{i=1}^{N} \frac{\lambda_i}{2} \int_{\mathbf{R}^d \times \mathbf{R}^d} |x_i - x|^2 \mathrm{d}\gamma_i(x_i, x)$$

sous les contraintes:

- La première marge de γ_i est ν_i ,
- La seconde marge de γ_i est indépendante de i (et c'est le barycentre à l'optimum).

Exemples

Exemples

Le cas de la dimension 1

Soit $\nu_1, \dots, \nu_N \in \mathcal{P}_2(\mathbf{R})$ sans atome, cdf F_i , le transport optimal de ν_1 vers ν_i est l'unique transport monotone de ν_1 vers ν_i il est donné par $T_i = F_i^{-1} \circ F_i$, en dimension 1, on sait que les transports de Gangbo et de ν_1 vers ν_i sont monotones, ce sont donc les T_i on a donc la formule pour le barycentre

$$\mu := \left(\sum_{i=1}^{N} F_{i}^{-1} \circ F_{1}\right)_{\#} \nu_{1}$$

formule qui ne se généralise pas à la dimension supérieure.

35

Exemples/1

Le cas de deux mesures N = 2

Petit changement de notations, ρ_0 et ρ_1 , $t \in (0, 1)$, barycentre de $(\rho_0, (1-t))$ et (ρ_1, t) minimiseur de

$$\rho \mapsto J(\rho) := (1-t)W_2^2(\rho_0, \rho) + tW_2^2(\rho_1, \rho)$$

Interpolation de McCann $\rho_t := ((1-t) \operatorname{id} + t \nabla u)_{\#} \rho_0$ où ∇u est le transport optimal de ρ_0 vers ρ_1 (si ρ_0 charge les ensembles petits, on raisonne avec un paln optimal, juste plus lourd à écrire). On a $W_2(\rho_0, \rho_t) = (1-t)W_2(\rho_0, \rho_1)$ et $W_2(\rho_t, \rho_1) = tW_2(\rho_0, \rho_1)$ et donc

$$J(\rho_t) = t(1-t)W_2^2(\rho_0, \rho_1).$$

Exemples/2
Soit $\rho \in \mathcal{P}_2(\mathbf{R}^d)$, quelconque, γ_0 (respectivement γ_1) plan optimal entre ρ_0 (resp. ρ_1) et ρ . On les désintègre par rapport à ρ :

$$\gamma_0(\mathrm{d} x_0, \mathrm{d} x) = \gamma_0^x(\mathrm{d} x_0) \otimes \rho(\mathrm{d} x), \ \gamma_1(\mathrm{d} x_1, \mathrm{d} x) = \gamma_1^x(\mathrm{d} x_1) \otimes \rho(\mathrm{d} x)$$

et soit $\gamma \in \Pi(\rho_0, \rho_1, \rho)$ défini par

$$\int_{(\mathbf{R}^d)^3} f(x_0, x_1, x) \mathrm{d}\gamma(x_0, x_1, x)$$
$$:= \int_{\mathbf{R}^d} \Big(\int_{\mathbf{R}^d \times \mathbf{R}^d} f(x_0, x_1, x) \gamma_0^x(\mathrm{d}x_0) \gamma_1^x(\mathrm{d}x_1) \Big) \rho(\mathrm{d}x)$$

pour tout $f \in C_b((\mathbf{R}^d)^3)$.

On a alors

$$J(\rho) = \int_{(\mathbf{R}^d)^3} ((1-t)|x-x_0|^2 + t|x-x_1|^2) d\gamma(x_0, x_1, x)$$

$$\geq \int_{(\mathbf{R}^d)^3} |x - ((1-t)x_0 + tx_1)|^2 d\gamma(x_0, x_1, x)$$

$$+ t(1-t) \int_{(\mathbf{R}^d)^3} |x_1 - x_0|^2 d\gamma(x_0, x_1, x)$$

$$\geq t(1-t) W_2^2(\rho_0, \rho_1) = J(\rho_t)$$

donc l'interpolation de McCann ρ_t est le barycentre de ρ_0 et ρ_1 avec les poids (1-t) et t. $\mathbf{38}$

Le cas gaussien

On suppose que les ν_i sont des gaussiennes (centrées, sans perte de généralité) et de matrice de covariance σ_i dont l'une est inversible, $\nu_i \sim \mathcal{N}(0, \Sigma_i)$

Théorème 4 Le barycentre des ν_i avec les poids λ_i est la gaussienne $\mu = \mathcal{N}(0, S)$ où S est l'unique racine symétrique définie positive de l'équation matricielle

$$\sum_{i=1}^{N} \lambda_i \left(S^{1/2} \Sigma_i S^{1/2} \right)^{1/2} = S.$$
(8)

Exemples

Le transport optimal de $\mathcal{N}(0, S)$ vers $\mathcal{N}(0, \Sigma_i)$ est linéaire donné par la matrice symétrique semi-définie positive

$$T_{S \to \sigma_i} = S^{-1/2} \left(S^{1/2} \Sigma_i S^{1/2} \right)^{1/2} S^{-1/2}$$

donc si S est solution de (8) on a

$$\sum_{i=1}^{N} \lambda_i T_{S \to \sigma_i} = \mathrm{id}$$

qui est une condition suffisante pour le barycentre, ceci donne en particulier l'unicité. Reste à montrer que (8) admet une racine positive. Première preuve (non constructive): Brouwer. Deuxième preuve, bien meilleure et constructive: Alvarez-Esteban et al (2016). On se donne Σ , symétrique définie positive, on calcule les TO vers les σ_i , on interpole et on applique à S, cela donne une nouvelle gaussienne de covariance

$$G(\Sigma) = \Sigma^{-1/2} \left(\sum_{i=1}^{N} \lambda_i \left(\Sigma^{1/2} \Sigma_i \Sigma^{1/2}\right)^{1/2}\right)^2 \Sigma^{-1/2}$$

résoudre (8) c'est pareil que chercher un point fixe de G. On part de S_0 définie positive et on itère

$$S_{n+1} = G(S_n), \ n \ge 0.$$

 $\mathbf{Exemples}/7$

Exemples

Il se trouve que G a de très bonnes propriétés:

• compacité on a (au sens des matrices):

$$G(\Sigma)) \le (\max_{j=1,\cdots,N} \lambda_{\max}(\Sigma_j))$$
 id

• non-dégéneres cence, concavité du déterminant à la puissance 1/d:

$$\det(G(\Sigma))^{1/2d} \ge \sum_{i=1}^{N} \lambda_i (\det(\Sigma_i))^{1/2d}$$

• dissipation

 $J_{\lambda}(\mathcal{N}(0,\Sigma)) \ge J_{\lambda}(\mathcal{N}(0,G(\Sigma)) + \frac{1}{2}W_2^2(\mathcal{N}(0,\Sigma),\mathcal{N}(0,G(\Sigma)).$

On en déduit qu'en sous-suite S_n converge vers un point fixe symétrique défini positif de G. L'équation (8) a donc une solution symétrique définie positive qui est le barycentre, et a posteriori toute la suite S_n converge vers le barycentre.

Convexité, estimations intégrales

Soit μ le barycentre des $\nu_i \in \mathcal{P}_2(\mathbf{R}^d)$ (ne chargeant pas les ensembles petits) avec les poids λ_i , quelles estimations sur les ν_i se transfèrent au barycentre? Convexité à la McCann. On a vu que μ peut s'écrire sous la forme

$$\mu = \Big(\sum_{i=1}^N \lambda_i T_i^1\Big)_{\#} \nu_1$$

avec T_i^1 un transport de ν_1 vers ν_i .

En particulier, si
$$V$$
 est convexe on a

$$\int_{\mathbf{R}^d} V(x) d\mu(x) = \int_{\mathbf{R}^d} V(\sum_i \lambda_i T_i^1(x)) d\nu_1(x)$$
$$\leq \sum_{i=1}^N \lambda_i \int_{\mathbf{R}^d} V(T_i^1(x)) d\nu_1(x) = \sum_{i=1}^N \lambda_i \int_{\mathbf{R}^d} V d\nu_i$$

En particulier, on a des estimations sur les moments du barycentre à partir de ceux des sommets par cet argument de convexité. De la même manière

$$\int_{\mathbf{R}^d \times \mathbf{R}^d} V(x-y) d\mu(x) d\mu(y) \le \sum_{i=1}^N \lambda_i \int_{\mathbf{R}^d \times \mathbf{R}^d} V(x-y) d\nu_i(x) d\nu_i(y)$$

ce qui donne des estimations sur la variance par exemple.

Noter qu'on n'a pas utilisé la structure: T_i^1 de la forme $\nabla u_i^* \circ \nabla u_1$ avec u_i fortement convexe, cette structure va servir pour obtenir des bornes intégrales.

Soit $F : \mathbf{R}_+ \to \mathbf{R}, F(0) = 0$ vérifiant la condition de McCann:

$$t \in (0,\infty) \mapsto t^d F(t^{-d})$$
 convexe décroissante (9)

par exemple $F(t) = t^p$, p > 1 ou $F(t) = t \log(t)$. On a alors

Théorème 5 L'énergie interne associée à $F: J_F:$ $\nu \mapsto \int_{\mathbf{R}^d} F(\nu(x)) dx \ (+\infty \ si \ \nu \notin L^1)$ est convexe le long des barycentres: si μ est barycentre des ν_i avec les poids λ_i vérifie

$$J_F(\mu) \le \sum_{i=1}^N \lambda_i J_F(\nu_i)$$

Rappelons que

$$\mu = \left(\sum_{i=1}^{N} \lambda_i \nabla u_i^*\right)_{\#} \widetilde{\nu}_1, \ \widetilde{\nu}_1 := \nabla u_{1\#} \nu_1$$

supposons ces applications régulières (pas difficile de régulariser), posons aussi $S_i = \nabla u_i^*$, $S = \sum \lambda_i S_i$, $S_{\#} \tilde{\nu}_1 = \mu$, Monge-Ampère

$$\widetilde{\nu}_1 = \mu(S) \det(DS)$$

Changement de variable

$$J_F(\mu) = \int_{\mathbf{R}^d} F(\mu \circ S) \det(DS) = \int_{\mathbf{R}^d} F\left(\frac{\widetilde{\nu}_1}{\det(DS)}\right) \det(DS)$$

Or (Minkowski)

$$\det(DS)^{1/d} \ge \sum_{i=1}^d \lambda_i \det(DS_i)^{1/d}$$

La condition de McCann (monotonie) donne

$$F\left(\frac{\widetilde{\nu}_{1}}{\det(DS)}\right)\det(DS) \leq \\F\left(\frac{\widetilde{\nu}_{1}}{(\sum_{i=1}^{d}\lambda_{i}\det(DS_{i})^{1/d})^{d}}\right)(\sum_{i=1}^{d}\lambda_{i}\det(DS_{i})^{1/d})^{d}$$

puis (convexité)

$$F\left(\frac{\widetilde{\nu}_1}{\det(DS)}\right)\det(DS)$$
$$\leq \sum_{i=1}^N \lambda_i F\left(\frac{\widetilde{\nu}_1}{\det(DS_i)}\right)\det(DS_i)$$

Corollaire 1 Si $p \in (1, +\infty)$ et $\nu_i \in L^p(\mathbf{R}^d)$ alors le barycentre μ est aussi dans L^p et

$$\|\mu\|_{L^{p}(\mathbf{R}^{d})}^{p} \leq \sum_{i=1}^{N} \lambda_{i} \|\nu_{i}\|_{L^{p}(\mathbf{R}^{d})}^{p}$$

De même

$$\int_{\mathbf{R}^d} \mu \log(\mu) \le \sum_{i=1}^N \lambda_i \int_{\mathbf{R}^d} \nu_i \log(\nu_i).$$

Evidemment si tous les ν_i sont dans L^{∞} il en est de même du barycentre, on a en fait un peu mieux

Théorème 6 Si $\nu_1 \in L^{\infty}$ alors $\mu \in L^{\infty}$ et

 $\|\mu\|_{L^{\infty}} \leq \lambda_1^{-d} \|\nu_1\|_{L^{\infty}}.$

On peut aussi atteindre le cas p = 1:

Corollaire 2 Si tous les ν_i sont dans L^1 , leur barycentre aussi.

La famille ν_1, \dots, ν_N est uniformément intégrable, donc il existe une fonction convexe superlinéaire qui a une énergie interne finie sur tous les ν_i on peut la modifier pour qu'elle vérifie la condition de McCann. Bref, le barycentre de mesures à densité est lui même à densité et on a des estimations. Ce qui manque (vraiment) c'est une théorie de la régularité:

- Est ce que le fait que les ν_i sont $C^{0,\alpha}$ (plus des conditions sur le support, peut-être) entraine que le barycentre a une densité $C^{0,\alpha}$?
- Est ce que le fait que les ν_i sont $C^{k,\alpha}$ entraine que le barycentre a une densité $C^{k,\alpha}$?
- peut-on dériver par rapport aux données ν_i, λ_i ? Même la lipschitziannité n'est pas si claire?

En revanche on sait que même pour deux mesures le fait d'avoir un support convexe ne passe pas au barycentre (Santambrogio et Wang).

Calcul numérique

Régularisation entropique

Résoudre un problème de transport optimal est généralement très coûteux, même pour des mesures empiriques, le problème approché en rajoutant ε fois une entropie:

$$\inf_{\gamma \in \Pi(\mu,\nu)} \langle c, \gamma \rangle + \varepsilon \int_{\mathbf{R}^d \times \mathbf{R}^d} \gamma \log \gamma$$

avec $\varepsilon > 0$ et μ et ν d'entropie finie est beaucoup plus simple. C'est un problème de projection pour la divergence de Kullback-Leibler

$$\inf_{\gamma \in \Pi(\mu,\nu)} \operatorname{KL}(\gamma|\gamma^{\varepsilon}) := \int_{\mathbf{R}^d \times \mathbf{R}^d} \gamma \log\left(\frac{\gamma}{\gamma_{\varepsilon}}\right), \ \gamma_{\varepsilon} = e^{-\frac{c}{\varepsilon}}$$

Problème discret

$$\inf_{\gamma \in \Pi(\mu,\nu)} \sum_{ij} \gamma_{ij} \log\left(\frac{\gamma_{ij}}{\theta_{ij}}\right)$$
(10)

 $(\theta_{ij} = \exp(-\varepsilon^{-1}c_{ij}))$. Unique solution de la forme $\gamma_{ij} = \theta_{ij}a_ib_j$ où les a_i et b_j sont telles que les contraintes de marges sont satisfaites (problème de Schrödinger discret):

$$a_i = \frac{\mu_i}{\sum_j b_j \theta_{ij}} := R_i(b), \ b_j = \frac{\nu_j}{\sum_i a_i \theta_{ij}} := S_j(a)$$

problème de point fixe sur a: trouver a dans le cône positif tel que a = Ta (avec $T = R \circ S$). Algorithme de Sinkhorn: itérer T.

Calculs complètement parallélisables, seulement 2*I* coefficients à stocker à chaque étape. Idée ancienne, efficacité pour le transport optimal, lien avec l'algorithme de matrix scaling de Sinkhorn plus récente: Marco Cuturi. Convergence, métrique projective de Hilbert:

$$d_H(a,a') := \log\left(\frac{\max_i \frac{a_i}{a'_i}}{\min_i \frac{a_i}{a'_i}}\right), \ (a,a') \in (0,+\infty)^N.$$

pour laquelle T est une contraction.

Calcul numérique

Autre point de vue; projections alternées

$$\inf_{\gamma \in C_1 \cap C_2} \sum_{ij} \gamma_{ij} \log\left(\frac{\gamma_{ij}}{\theta_{ij}}\right) \tag{11}$$

avec

$$C_1 := \{ \gamma : \sum_j \gamma_{ij} = \mu_i, \ \forall i \}, \ C_2 := \{ \gamma : \sum_i \gamma_{ij} = \nu_j, \ \forall j \}$$

Les projections de θ pour KL sur C_1 et C_2 sont totalement explicites:

$$\operatorname{proj}_{C_1}^{\mathrm{KL}}(\theta)_{ij} = \frac{\theta_{ij}\mu_i}{\sum_l \theta_{il}}, \ \operatorname{proj}_{C_2}^{\mathrm{KL}}(\theta)_{ij} = \frac{\theta_{ij}\nu_j}{\sum_l \theta_{lj}},$$

Sinkhorn revient à faire des projection alternées (IPFP, Iterative Proportional Fitting Procedure):

$$C_{2n+1} = C_1, C_{2n} = C_2, \gamma^n = \operatorname{proj}_{C_n}^{\mathrm{KL}}(\gamma^{n-1})$$

Méthodes des projections alternées s'adapte facilement aux problèmes multimarges, au transport partiel, aux barycentres au sens de W_2 etc... Idée ancienne (remonte à Schrödinger), énorme littérature:

- En optimisation (Bregman, Bauschke, Combettes, Lewis, Cominetti, San-Martin...),
- En statistiques (Csisczar, Dykstra, Rüschendorf,...),
- en probas, analyse fonctionnelle, physique théorique (Schrödinger, Zambrini, Arnaudon, Léonard, Föllmer, Dai Pra, Mikami, Yahsue, Nussbaum, Borwein, Lewis...).

Barycentres pour W_2 : étant données $\nu_1, \dots, \nu_N \in \mathcal{P}_2(\mathbf{R}^d)$ et des poids positifs, $\lambda_1, \dots, \lambda_N$, problème d'interpolation:

$$\inf_{\mu \in \mathcal{P}_2(\mathbf{R}^d)} \sum_{i=1}^N \lambda_i W_2^2(\nu_i, \mu).$$
(12)

une solution= un barycentre (pour W_2) des mesures ν_i avec les poids λ_i .

Sinkhorn/IPFP pour les barycentres, formulation linéaire:

$$\inf_{\vec{\gamma}=(\gamma_1,\cdots,\gamma_N)\in C_1\cap C_2}\sum_{i=1}^N \frac{\lambda_i}{2} \int_{\mathbf{R}^d\times\mathbf{R}^d} |x_i-x|^2 \mathrm{d}\gamma_i(x_i,x)$$

avec

$$C_1 := \left\{ \vec{\gamma} : \pi_{1\#} \gamma_i = \nu_i, \ i = 1, \cdots, N \right\}$$

et

$$C_2 := \left\{ \vec{\gamma} : \pi_{2\#} \gamma_1 = \dots = \pi_{2\#} \gamma_N \right\}$$

Régularisation, $\varepsilon > 0$, $\gamma_i^{\varepsilon}(x_i, x) = \exp(-\frac{1}{\varepsilon}|x_i - x|^2)$,

$$\inf_{\vec{\gamma}=(\gamma_1,\cdots,\gamma_N)\in C_1\cap C_2} \mathrm{KL}_{\lambda}(\vec{\gamma}|\vec{\gamma}^{\varepsilon}) := \sum_{i=1}^N \lambda_i \mathrm{KL}(\gamma_i|\gamma_i^{\varepsilon})$$

dont la solution est

 $\operatorname{proj}_{C_1 \cap C_2}^{\operatorname{KL}_{\lambda}}(\vec{\gamma}^{\varepsilon})$

projections alternées, on part de $\vec{\gamma}^0 = \vec{\gamma}^{\varepsilon}$,

$$C_{2n+1} = C_1, C_{2n} = C_2, \vec{\gamma}^n = \operatorname{proj}_{C_n}^{\operatorname{KL}_{\lambda}}(\vec{\gamma}^{n-1}).$$

Calcul numérique

La projection sur C_1 est explicite (scaling comme dans Sinkhorn):

$$\vec{\gamma} = \operatorname{proj}_{C_1}^{\mathrm{KL}_{\lambda}}(\vec{\theta})$$

donné par

$$\gamma_i(x_i, x) = \frac{\theta_i(x_i, x)\nu_i(x_i)}{\int_{\mathbf{R}^d} \theta_i(x_i, x) \mathrm{d}x}$$

Pour la projection sur C_2 , la condition d'optimalité pour

- -

 $\vec{\gamma} = \operatorname{proj}_{C_2}^{\mathrm{KL}_{\lambda}}(\vec{\theta})$

est que

$$\lambda_i \ln\left(\frac{\gamma_i(x_i, x)}{\theta_i(x_i, x)}\right) = f_i(x)$$

avec

$$\sum_{i=1}^{N} f_i(x) = 0$$

Avec la contrainte de marge commune cela donne

$$\gamma_i(x_i, x) = \frac{\theta_i(x_i, x)}{\int_{\mathbf{R}^d} \theta_i(y, x) \mathrm{d}y} \prod_{k=1}^N \left(\int_{\mathbf{R}^d} \theta_k(x_k, x) \mathrm{d}x_k \right)^{\lambda_l}$$

Comprendre que dans ces formules on est en discret, calculs parallélisables, itérations explicites et très simples. Convergence dans le cas discret (Bregman).

Calcul de barycentres par Sinkhorn (Cuturi, Doucet):

Synthèse de textures (version non régularisée, TO semi-discret, C., Oberman, Oudet)

Propriétés asymptotiques

Notion de barycentre Wasserstein pour une mesure de probamassez générale sur l'espace de Wasserstein: Bigot-Klein et Loubes-Le Gouic.

Un barycentre Wasserstein de m est alors un miniseur de la fonctionnelle de variance:

$$J_m(\mu) := \int_{\mathcal{P}_2(\mathbf{R}^d)} W_2^2(\nu, \mu) \mathrm{d}m(\nu).$$
 (13)

L'hypothèse

$$\int_{\mathcal{P}_2(\mathbf{R}^d)} \left(\int_{\mathbf{R}^d} |x|^2 \mathrm{d}\nu(x) \right) \mathrm{d}m(\nu) < +\infty$$

assure l'existence d'un tel minimiseur.

Propriétés asymptoq
tiques/1

L'unicité est assurée dès que m donne une proba strictement positive aux mesures ne chargeant pas les ensembles petits. Notation $\bar{\mu} = \operatorname{bar}(m)$. On supposera dorénavant en outre qu'il existe $p \in (1, +\infty)$ et C > 0 tels que C > 0 tel que

$$\int_{\mathbf{R}^d} |x|^2 \mathrm{d}\nu(x) \le C \text{ pour } m \text{-preque tout } \nu, \qquad (14)$$

 et

$$\int_{\mathbf{R}^d} \nu(x)^p \mathrm{d}x \le C \text{ pour } m \text{-preque tout } \nu.$$
 (15)

Ce qui assure que $\bar{\mu} = \operatorname{bar}(m)$ a une densité L^p et

$$\|\bar{\mu}\|_{L^p}^p \le C, \ \int_{\mathbf{R}^d} |x|^2 \mathrm{d}\bar{\mu}(x) \le C.$$

Propriétés asymptoq
tiques/2

Suivant Bigot et Klein, considérons maintenant un échantillon i.i.d. de mesures aléatoires de probabilité $\hat{\nu}_1, \ldots, \hat{\nu}_n$ tirées selon $m \operatorname{sur} \mathcal{P}_2(\mathbf{R}^d)$, le barycentre de Wasserstein empirique de cet échantillon est la mesure aléatoire (p.s. bien définie puisque mest portée par les mesures qui ne chargent pas les ensembles petits)

$$\hat{\mu}_n := \operatorname{bar}\left(\hat{\nu}_1, \frac{1}{n} \dots, \hat{\nu}_n, \frac{1}{n}\right).$$
(16)

Propriétés asymptoq
tiques/3 $\,$

Bigot et Klein ont établi, dans un cadre à support compact, une loi des grands nombres, étendue par Le Gouic et Loubes à des cas plus généraux, pour le barycentre Wasserstein empirique:

Théorème 7 (Bigot et Klein, Loubes et Le Gouic) Sous les hypothèses (14) et (15), on a

$$\lim_{n \to \infty} W_2^2(\hat{\mu}_n, \bar{\mu}) \to 0 \ p.s., \ avec \ \bar{\mu} := \operatorname{bar}(m).$$
(17)

En effet, par la LGN, la fonctionnelle de variance empirique converge p.s. vers la vraie fonctionnelle de variance J_m , l'unicité, la stabilité et des estimations qui donnent de la compacité fournissent le résultat. Comme, grâce à (15) à la fois $\bar{\mu} := \operatorname{bar}(m)$ et $\hat{\mu}_n$ sont L^p , il existe un unique transport optimal entre le vrai barycentre $\bar{\mu}$ et le barycentre empirique $\hat{\mu}_n$, notons $\hat{T}_n := T_{\bar{\mu} \to \hat{\mu}_n}$ ce transport optimal que l'on doit comprendre comme une variable aléatoire prenant ses valeurs dans l'espace de Hilbert séparable $L^2(\bar{\mu}, \mathbf{R}^d)$. On a $W_2^2(\hat{\mu}_n, \bar{\mu}) = \|\hat{T}_n - \operatorname{id}\|_{L^2(\bar{\mu})}^2$, avec (14) et on a $W_2^2(\hat{\mu}_n, \bar{\mu}) \leq 2C$, de sorte qu'avec (17) et le théorème de convergence dominée de Lebesgue, on a

$$\|\hat{T}_n - \operatorname{id}\|^2_{L^2(\bar{\mu})} \to 0 \text{ p.s. et } \mathbf{E}\Big(\|\hat{T}_n - \operatorname{id}\|^2_{L^2(\bar{\mu})}\Big) \to 0.$$
 (18)

Propriétés asymptoq
tiques/5

Naturel de chercher à aller un ordre plus loin dans la convergence au travers d'un TLC. La LGN de Bigot et Klein énonce que \hat{T}_n converge p.s. et en moyenne quadratique vers l'identié dans $L^2(\bar{\mu})$, il semble raisonnable de conjecturer une normalité aymptotique de $\sqrt{n}(\hat{T}_n - id)$ au moins pour certaines classes de mesures m. Une stratégie naturelle consiste à essayer de dériver les conditions d'optimalité par rapport à la mesure pour appliquer un théorème d'inversion locale. Cela semble néanmoins délicat, même dans le cas d'une mesure m discrète car la condition d'optimalité caractérisant le barycentre prend la forme d'un problème d'obstacle pour un système d'équations de Monge-Ampère, l'aspect frontière libre du problème compliquant significativement l'analyse..

Par définition, nous dirons que le TLC dans l'espace de Wasserstein est satisfait si $\sqrt{n}(\hat{T}_n - \mathrm{id})$ converge en loi (dans le Hilbert séparable $L^2(\bar{\mu}, \mathbf{R}^d)$) vers une mesure gaussienne centrée $\mathcal{N}(0, \Sigma)$ pour un certain opérateur auto-adjoint positif de trace finie Σ sur $L^2(\bar{\mu}, \mathbf{R}^d)$.

Noter que c'est une question plus académique que vraiment pratique... Avec Martial Agueh, nous avons démontré la validité du TLC Wasserstein dans quelques cas (très très) particuliers.
Théorème 8 Le TLC dans l'espace de Wasserstein est satisfait dans les cas suivants:

- 1. lorsque m est une loi de Bernoulli, $m = (1 \lambda)\delta_{\nu_0} + \lambda\delta_{\nu_1}$ avec $\lambda \in (0, 1), \nu_0, \nu_1$ dans $\mathcal{P}_2(\mathbf{R}^d)$ et ν_0 ne chargeant pas les ensembles petits,
- 2. lorsque d = 1 et que m est portée par les mesures non-atomiques et vérifie (14),
- 3. lorsque $m = \sum_{i=1}^{N} \lambda_i \delta_{\nu_i}$ où chaque ν_i est une gaussienne non dégénérée.

Le cas Bernouilli: Pour deux mesures, ν_0 et ν_1 , le transport optimal de Brenier $T_{\nu_0 \to \nu_1}$ entre ν_0 et ν_1 dérive d'un potentiel convexe ϕ , $T_{\nu_0 \to \nu_1} = \nabla \phi$, pour $t \in [0, 1]$, le barycentre de $(1-t)\delta_{\nu_0} + t\delta_{\nu_1}$ coïncide avec l'intepolation de McCann:

$$\nu(t) := \operatorname{bar}((1-t)\delta_{\nu_0} + t\delta_{\nu_1}) = \nabla \phi_{t\#}\nu_0 \text{ avec } \phi_t := (1-t)\frac{1}{2}|x|^2 + t\phi,$$

(observer que $\nabla \phi_t$ a pour inverse $\nabla \phi_t^*$ qui est Lipschitz dès que $t \in [0, 1)$). D'autre part, il est facile de voir que le transport optimal entre deux points $\nu(t)$ et $\nu(s)$ de la géodésique, avec s, t dans [0, 1] et $s \neq 1$ est donné par

$$T_{\nu(s)\to\nu(t)} = \mathrm{id} + \frac{t-s}{1-s} (\nabla\phi \circ \nabla\phi_s^* - \mathrm{id}).$$

74

Propriétés asymptoq
tiques/9

En particulier, le transport optimal \hat{T}_n entre $\operatorname{bar}(m) = \nu(\lambda)$ et le barycentre emprique $\hat{\mu}_n = \nu(\hat{\lambda}_n)$ (ici $\hat{\lambda}_n$ désigne la fréquence empirique d'apparition de ν_1 dans l'échantillon $\hat{\nu}_1, \ldots, \hat{\nu}_n$) satisfait

$$\sqrt{n}(\hat{T}_n - \mathrm{id}) = \frac{\sqrt{n}(\hat{\lambda}_n - \lambda)}{(1 - \lambda)} (\nabla \phi \circ \nabla \phi_{\lambda}^* - \mathrm{id})$$

et on conclut avec le TLC standard pour $\sqrt{n}(\hat{\lambda}_n - \lambda)$.

Le cas unidimensionnel: le barycentre d'une mesure mportée par les mesures non-atomiques est non-atomique et donné par la formule explicite

$$\operatorname{bar}(m) := \left(\int_{\mathcal{P}_2(\mathbf{R})} T_{\rho \to \nu} \mathrm{d}m(\nu) \right)_{\#} \rho, \qquad (19)$$

où ρ est *n'importe quelle mesure* non-atomique et $T_{\rho \to \nu}$ l'unique transport croissant de ρ vers ν . En prenant $\rho := \operatorname{bar}(m)$ et en appliquant la formule précédente au barycentre empirique $\hat{\mu}_n$, il vient que le transport optimal (i.e. croissant) de $\operatorname{bar}(m)$ vers $\hat{\mu}_n$ est

$$\hat{T}_n := \frac{1}{n} \sum_{i=1}^n T_{\operatorname{bar}(m) \to \hat{\nu}_i}$$
(20)

Propriétés asymptoquiques/11

Et comme les variables aléatoires à valeurs dans $L^2(\text{bar}(m))$, $T_{\text{bar}(m) \to \hat{\nu}_i}$ sont i.i.d. et de carré intégrable par (14), le TLC usuel dans les espaces de Hilbert séparables (voir par exemple Giné et Leòn, 1980) permet de conclure. Le cas gaussien supposons que les ν_i sont des gaussiennes centrées et notons $S_i = K_i^2$ leur matrice de variance covariance. Le point important ici est que si $\alpha \in \Delta_N := \{(\alpha_1, \dots, \alpha_N) \in \mathbf{R}_+^N ; \sum_{i=1}^N \alpha_i = 1\}$ alors $\nu(\alpha) := \operatorname{bar}(\sum_{i=1}^N \alpha_i \delta_{\nu_i})$ est elle même une gaussienne centrée dont la matrice de variance-covariance $S(\alpha)$ est l'unique racine dans \mathcal{S}_d^{++} de l'équation matricielle:

$$I = \sum_{i=1}^{N} \alpha_i \Phi_i(S) \text{ où } \Phi_i(S) := K_i (K_i S K_i)^{-\frac{1}{2}} K_i.$$
 (21)

Propriétés asymptoq
tiques/13

Par le lemme 1 ci-dessous, l'application $\alpha \in \Delta_N \mapsto S(\alpha) \in \mathcal{S}_d^{++}$ est C^{∞} . Le vrai barycentre $\operatorname{bar}(\nu_1, \lambda_1 \dots, \nu_N, \lambda_N)$ est la mesure gaussienne centrée de variance-covariance $S(\lambda)$ tandis que le barycentre empirique $\hat{\mu}_n$ est la mesure gaussienne centrée de variance-covariance $S(\hat{\lambda}_n)$ où $\hat{\lambda}_n$ est le vecteur des fréquences empiriques:

$$(\hat{\lambda}_n)_i = \frac{1}{n} \#\{j = 1..., n : \hat{\nu}_j = \nu_i\}, \ i = 1, ..., N.$$
 (22)

Le TLC implique que $\sqrt{n}(\hat{\lambda}_n - \lambda)$ converge en loi vers $\mathcal{N}(0, \sigma)$ $(\sigma_{ij} := \lambda_i \delta_{ij} - \lambda_i \lambda_j).$ Il est bien connu que le transport optimal entre les gaussiennes centrées de variance covariance $S(\lambda)$ et $S(\hat{\lambda})$ est linéaire et explicitement donné en fonction de $\hat{\lambda}$ par

$$T(\hat{\lambda}) = S(\hat{\lambda})^{\frac{1}{2}} (S(\hat{\lambda})^{\frac{1}{2}} S(\lambda) S(\hat{\lambda})^{\frac{1}{2}})^{-\frac{1}{2}} S(\hat{\lambda})^{\frac{1}{2}}$$

c'est encore une application C^{∞} de $\hat{\lambda} \in \Delta_N$ dans \mathcal{S}_d^{++} et évidemment $T(\lambda) = \text{id.}$ Avec une inégalité d'accroissements finis, il vient

$$\hat{T}_n = T(\hat{\lambda}_n) = \operatorname{id} + T'(\lambda)(\hat{\lambda}_n - \lambda) + \varepsilon_n,$$
$$|\varepsilon_n| \le |\hat{\lambda}_n - \lambda| \sup_{\theta \in [\lambda, \hat{\lambda}_n]} |T'(\theta) - T'(\lambda)|,$$

de sorte que

$$\sqrt{n}(\hat{T}_n - \mathrm{id}) = T'(\lambda)\sqrt{n}(\hat{\lambda}_n - \lambda) + \sqrt{n}\varepsilon_n.$$

Propriétés asymptoq
tiques/15

Ce qui par des arguments classiques (la *méthode delta*) permet aisément de conclure que $\sqrt{n}(\hat{T}_n - id)$ converge en loi vers une distribution gaussienne centrée et de variance-covariance $T'(\lambda)\sigma T'(\lambda)$.

Nous avons utilisé ci-dessus le résultat suivant

Lemme 1 L'application $\alpha \in \Delta_N \mapsto S(\alpha) \in \mathcal{S}_d^{++}$ définie implicitement par l'équation (21) est de classe C^{∞} . Grâce au théorème des fonctions implicites, il suffit de montrer que pour $S \in \mathcal{S}_d^{++}$, $\sum_{i=1}^N \alpha_i \Phi'_i(S)$ est inversible. Pour $\theta \in \mathcal{S}_d$, $L_i := \Phi'_i(S)(\theta) \in \mathcal{S}_d$ est la solution unique de

$$-K_i^{-1}S^{-1}\theta S^{-1}K_i^{-1} = (K_iSK_i)^{-\frac{1}{2}}K_i^{-1}L_iK_i^{-1} + K_i^{-1}L_iK_i^{-1}(K_iSK_i)^{-\frac{1}{2}}.$$

Définissant

$$\widetilde{L}_i := K_i^{-1} L_i K_i^{-1}, \ \widetilde{S}_i := K_i S K_i, \ \widetilde{\theta}_i := K_i \theta K_i,$$

il est commode de réécrire cette expression sous la forme plus concise

$$-\widetilde{S}_i^{-1}\widetilde{\theta}_i\widetilde{S}_i^{-1} = \widetilde{S}_i^{-\frac{1}{2}}\widetilde{L}_i + \widetilde{L}_i\widetilde{S}_i^{-\frac{1}{2}}.$$
 (23)

Propriétés asymptoq
tiques/17

Supposons que $\theta \in S_d$ soit dans le noyau de $\sum_{i=1}^N \alpha_i \Phi'_i(S)$ i.e. $\sum_{i=1}^N \alpha_i L_i = 0$, il vient donc avec (23) et quelques manipulations élémentaires

$$0 = \sum_{i=1}^{N} \alpha_i \operatorname{tr}(L_i \theta) = \sum_{i=1}^{N} \alpha_i \operatorname{tr}(\widetilde{L}_i \widetilde{\theta}_i) = -2 \sum_{i=1}^{N} \alpha_i \operatorname{tr}(\widetilde{S}_i^{\frac{1}{2}} \widetilde{L}_i \widetilde{S}_i^{\frac{1}{2}} \widetilde{L}_i \widetilde{S}_i^{\frac{1}{2}})$$

$$(24)$$

et comme $\widetilde{S}_i^{\frac{1}{2}} \widetilde{L}_i \widetilde{S}_i^{\frac{1}{2}} \widetilde{L}_i \widetilde{S}_i^{\frac{1}{2}} \in \mathcal{S}_d^+$, chaque terme de cette somme est nul de sorte que pour $\alpha_i > 0$ comme $\widetilde{S}_i \in \mathcal{S}_d^{++}$ on a $\widetilde{L}_i = 0$ et donc $\widetilde{\theta}_i = 0$ si bien que $\theta = 0$, ce qui montre l'inversibilité cherchée.

EDPs pour le barycentre régularisé

Bigot, Caselles et Papadakis, 2016, pour des mesures quelconques le(s) barycentre(s) peu(ven)t être irréguliers et ont donc proposé une famille de régularisation pour lesquels ils ont obtenu des résultats de stabilité quantitative (en distance de Bregman). On peut voir ca comme un système d'EDPs non-linéaires mais elliptique et régulier.

Soit $r \in (0, +\infty)$, $\nu_1, \cdots, \nu_N \in \mathcal{P}_2(\mathbf{R}^d)$, $\operatorname{spt}(\nu_i) \subset B_r$ et $\varepsilon > 0$, barycentre régularisé:

$$\inf_{\mu \in \mathcal{P}_2(B_r) \cap L^1(B_r)} \sum_{i=1}^N \frac{\lambda_i}{2} W_2^2(\nu_i, \mu) + \varepsilon \int_{B_r} \mu(x) \log(\mu(x)) \mathrm{d}x.$$
(25)

On a alors

Proposition 2 Le problème (25) admet une solution unique μ_{ε} : barycentre régularisé.

L'entropie ayant horreur du vide on a

Lemme 2 $\mu_{\varepsilon} > 0$ p.p. sur B_r .

Conséquence: unicité des potentiels et donc $\mu \mapsto W_2^2(\nu_i, \mu)$ est Gâteaux-dérivable en $\mu = \mu_{\varepsilon}$ et sa dérivée est donnée par le potentiel de Kantorovich ψ_i^{ε} , de sorte que le potentiel

$$u_i^{\varepsilon}(x) := \frac{1}{2}|x|^2 - \varphi_i^{\varepsilon}(x)$$

est convexe et $\nabla u_{i\,\#}^{\varepsilon} \mu^{\varepsilon} = \nu_i$. L'équation d'Euler-Lagrange de (25) s'écrit donc

$$\sum_{i=1}^{N} \lambda_i \varphi_i^{\varepsilon} + \varepsilon \log(\mu_{\varepsilon}) = 0.$$

Ou encore

$$\mu^{\varepsilon}(x) = \exp\left(-\frac{1}{2}|x|^2 + \sum_{i=1}^{N} \lambda_i u_i^{\varepsilon}(x)\right)$$
(26)

Ce qui donne de la régularité:

Théorème 9 Le barycentre régularisé μ_{ε} a une densité partout positive, localement Lipschitzienne et son gradient est BV_{loc} (autrement dit, la Hessienne de μ_{ε} au sens des distributions est une matrice de mesures). En outre μ_{ε} est totalement caractérisée par (26) et le fait que ∇u_i^{ε} est le transport optimal de μ_{ε} vers ν_i .

Si $r < +\infty$ et ν_i a une densité régulière: $\nu_i \in C^{0,\alpha}$, $\nu_i > 0$ alors la théorie de Caffarelli implique que $u_i^{\varepsilon} \in C^{2,\alpha}$ et donc $\mu_{\varepsilon} \in C^{2,\alpha}$ et on peut itérer:

Théorème 10 Si $r < +\infty$ et $\nu_i > 0$ sur B_r on a:

•
$$\nu_i \in C^{0,\alpha} \Rightarrow \mu_{\varepsilon} \in C^{2,\alpha},$$

•
$$\nu_i \in C^{k,\alpha} \Rightarrow \mu_{\varepsilon} \in C^{k+2,\alpha}$$

On a aussi l'inversibilité (quantifiée) de $[D^2 u_i^{\varepsilon}]^{-1}$.

Beaucoup de régularité en x mais surtout la structure est claire: μ_{ε} est donnée par (26) et une CNS est que les potentiels convexes u_i^{ε} résolvent le système

$$\det(D^2 u_i^{\varepsilon})\nu_i(\nabla u_i^{\varepsilon}) = \exp\left(-\frac{1}{2}|x|^2 + \sum_{j=1}^N \lambda_j u_j^{\varepsilon}(x)\right), \ \forall i \qquad (27)$$

7 7

(et aussi que ∇u_i^{ε} envoie B_r sur elle même, ce sont les conditions aux limites habituelles pour le TO)

La linéarisation de (27) est un système elliptique non dégénérée, avec une argument de fonctions implicites on obtient alors que

Théorème 11 Le barycentre régularisé dépend de manière lisse des données ν_i (dans un espace de Hölder) et λ_i .

Et donc aussi

Corollaire 3 Le barycentre régularisé obéit à un TLC.

Malheureusement, les estimées explosent quand $\varepsilon \to 0$ même (semble-t-il) quand les ν_i sont très régulières.

Références

Références générales sur le transport optimal

- L. Ambrosio, N. Gigli, G. Savaré, *Gradient Flows: In* Metric Spaces and in the Space of Probability, Lectures in Mathematics, ETH, 2005.
- S. Rachev, L. Rüschendorf, Mass Transportation Problems, Vol. I: Theory, Vol. II: Applications, Springer, 1998.
- F. Santambrogio, *Optimal transport for applied mathematicians*, Birkhauser, 2015.
- C. Villani, Topics in Optimal Transportation, AMS, 2003.
- C. Villani, Optimal Transport: Old and New, Springer, 2009.

Références/1

Sur les barycentres

- M. Agueh, G. Carlier, *Barycenters in the Wasserstein space*, SIMA, 2011.
- M. Agueh, G. Carlier, Vers un TLC dans l'espace de Wasserstein?, CRAS, 2017.
- P. C. Alvarez-Esteban, E. del Barrio, J. A. Cuesta-Albertos, C. Matran A fixed-point approach to barycenters in Wasserstein space,
- M. Bernot, J. Rabin, J. Delon, G. Peyré, Wasserstein barycenter and its application to texture mixing, SSVM 2011.

- E. Boissard, T. Le Gouic, J.-M. Loubes, *Distribution's* template estimate with Wasserstein metrics, Bernoulli, 2015.
- J. Bigot, T. Klein, Characterization of barycenters in the Wasserstein space by averaging optimal transport maps, JMAA, 2016.
- J. Bigot, E. Cazelles, N. Papadakis, Regularization of barycenters in the Wasserstein space, 2016.
- G. Carlier, A. Oberman, E. Oudet, Numerical methods for matching for teams and Wasserstein barycenters, M2AN, 2015.

- T. Le Gouic, J.M Loubes, Existence and Consistency of Wasserstein Barycenters, PTRF, 2017.
- B. Pass, Y.-H. Kim, Wasserstein Barycenters over Riemannian manifolds, Adv. Math, 2017.
- B. Pass, Y.-H. Kim, Nonpositive curvature, the variance functional, and the Wasserstein barycenter, 2015.

Sur des problèmes multi-marges très reliés

- G. Carlier, I. Ekeland *Matching for teams*, Econ. Theory, 2009.
- W. Gangbo, A. Święch, Optimal Maps for the Multidimensional Monge-Kantorovich Problem, CPAM, 1998.

Sur la régularisation entropique

- J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyré Iterative Bregman projections for regularized transportation problems, SISC, 2015
- M. Cuturi, Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances, Advances in Neural Information Processing Systems, 2013.
- M. Cuturi, A. Doucet, *Fast computation of wasserstein* barycenters, JMLR, 2014.
- A. Galichon, B. Salanié, Cupid's Invisible Hand: Social Surplus and Identification in Matching Models, 2009.