THE RING \mathbb{Z} AND ITS QUOTIENTS

1. THE RING OF INTEGERS

The set \mathbb{Z} with the two composition laws $+$ and \times is a commutative ring. We have a euclidean division in \mathbb{Z}. For a and b in \mathbb{Z}, assuming $b \neq 0$, there exists a unique pair of integers (q, r) such that $a = bq + r$ and $0 \leq r < b$. The integer q is the quotient. And r is the remainder.

Recall that an ideal of \mathbb{Z} is a subset $I \subset \mathbb{Z}$ that is a subgroup for the $+$ law and such that for any $x \in \mathbb{Z}$ and $i \in I$ the product xi belongs to I.

Using the euclidean division one proves that any ideal I of \mathbb{Z} is of the form $I = a\mathbb{Z} = \{ax | x \in \mathbb{Z}\}$ where a is an integer called a generator of I. One says that \mathbb{Z} is a principal ring. If I is not the zero ideal $\{0\}$ then it has a unique positive generator. We call it the generator of I.

A unit in \mathbb{Z} is an invertible element. Only 1 and -1 are units. A prime integer is a non-zero integer which is not a unit and has no positive divisor but 1 and itself. Any positive integer can be decomposed as a product of positive primes (with possible multiplicities) in a unique way, up to permutation of the factors. One says that \mathbb{Z} is a factorial ring.

Call P the set of all positive primes.

If $M = \pm \prod_{p \in P} p^{e_p}$ one says that e_p is the p-valuation of M. On sometimes write $e_p = v_p(M)$. The 2-valuation of $12 = 2^2 \cdot 3$ is 2 and its 3 valuation is 1.

The greatest common divisor of $M = \prod_{p \in P} p^{e_p}$ and $N = \prod_{p \in P} p^{f_p}$ is

$$\gcd(M, N) = \prod_{p \in P} p^{\min(e_p, f_p)}.$$

The ideal generated by M and N is the smallest ideal containing M and N. It is the set $\{\lambda M + \mu N | \lambda, \mu \in \mathbb{Z}\}$. It is equal to $\gcd(M, N)\mathbb{Z}$. In particular there exists a pair of integers (λ, μ) such that $\lambda M + \mu N = \gcd(M, N)$. The triple $(\gcd(M, N), \lambda, \mu)$ can be computed from M and N using the extended euclidean algorithm.

The lowest common multiple of $M = \prod_{p \in P} p^{e_p}$ and $N = \prod_{p \in P} p^{f_p}$ is

$$\text{lcm}(M, N) = \prod_{p \in P} p^{\max(e_p, f_p)}.$$

The intersection of $M\mathbb{Z}$ and $N\mathbb{Z}$ is an ideal of \mathbb{Z}. It is the ideal $\text{lcm}(M, N)\mathbb{Z}$.

It is evident that

$$\gcd(M, N) \times \text{lcm}(M, N) = MN.$$
2. THE RING $\mathbb{Z}/N\mathbb{Z}$

Let $N \geq 2$ be an integer. The quotient of \mathbb{Z} by $N\mathbb{Z}$ is a ring. The class $x + N\mathbb{Z}$ is often denoted $x \bmod N$. The quotient ring $\mathbb{Z}/N\mathbb{Z}$ is finite. We denote $(\mathbb{Z}/N\mathbb{Z})^*$ the group of units (invertible elements) in $\mathbb{Z}/N\mathbb{Z}$. Recall $x \bmod N$ is invertible if and only if $\gcd(x, N) = 1$. If this is the case we have two integers λ and μ such that $\lambda x + \mu N = 1$ and $\lambda \bmod N$ is the inverse of $x \bmod N$ in $(\mathbb{Z}/N\mathbb{Z})^*$.

Computing the addition and subtraction of two classes $x \bmod N$ and $y \bmod N$ in $\mathbb{Z}/N\mathbb{Z}$ takes time $\leq K \log N$ for K a constant.

Computing the multiplication of two classes $x \bmod N$ and $y \bmod N$ in $\mathbb{Z}/N\mathbb{Z}$ takes time $\leq K(\log N)^2$ for K a constant using grade-school algorithm. Using fast arithmetic (based on Fourier transform) one can multiply in time $(\log N)^{1+o(1)}$.

The complexity of inverting modulo N is $\leq K(\log N)^2$ for K a constant using grade-school algorithms and $(\log N)^{1+o(1)}$ using advanced algorithms.

The complexity of computing $(a \bmod N)^e$ is $\log e \times (\log N)^{1+o(1)}$ using fast arithmetic and fast exponentiation. Since e is usually of the same order of magnitude as N this complexity is essentially quadratic in $\log N$.

The group of units $(\mathbb{Z}/N\mathbb{Z})^*$ is cyclic when N is a prime, because this group is a finite group of roots of unity in a field.

2.1. Chinese remainders. Assume $M \geq 2$ and $N \geq 2$ are coprime integers. We define a map $f : \mathbb{Z}/MN\mathbb{Z} \to (\mathbb{Z}/M\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$ by $f(x \bmod MN) = (x \bmod M, x \bmod N)$. It is easy to check that f is well defined and injective. To prove that f is surjective we consider the Bezout coefficients λ and μ such that $\lambda M + \mu N = 1$ and we notice that λM is congruent to 0 modulo M and to 1 modulo N. And μN is congruent to 1 modulo M and to 0 modulo N. Given any pair $c = (x \bmod M, y \bmod N)$ we check that $f(x\mu N + y\lambda M) = c$. So the map f is surjective.

We have a ring isomorphism between $\mathbb{Z}/MN\mathbb{Z}$ and $(\mathbb{Z}/M\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$.

2.2. Euler’s function. For $N \geq 2$ we denote $\varphi(N)$ the order of the group $(\mathbb{Z}/N\mathbb{Z})^*$ of units in $\mathbb{Z}/N\mathbb{Z}$. A consequence of Chinese remainder theorem is that

$$\varphi(MN) = \varphi(M)\varphi(N)$$

when $\gcd(M, N) = 1$.

One checks that $\varphi(p^k) = p^k - (p - 1)$ for every prime p and integer $k \geq 1$.

Alltogether if $N = \prod_{p \in \mathbb{P}} p^{e_p}$ then $\varphi(N) = \prod_{p \in \mathbb{P}} p^{\varphi(e_p)} - (p - 1)$.

2.3. Lagrange’s theorem. Assume G is a finite group and $H \subset G$ a subgroup. We define a relation \mathcal{R} on G by setting $x \mathcal{R} y$ for x and y in G if and only if $y^{-1}x \in H$. This is an equivalence relation. The equivalent class of x is $xH = \{xh | h \in H\}$. So every equivalence class has order $|H|$. And the equivalence classes form a partition of G. So the cardinality of G is the product of $|H|$ times the number of classes.

We deduce that every subgroup of a finite group G has order dividing $|G|$.

Consider now an element g in G. The smallest subgroup of G containing g is denoted by $\langle g \rangle$. It is the set of all powers (positive or negative) of g. This is the set $\{1, g, g^2, \ldots, g^{o-1}\}$ where o is the smallest positive integer such that $g^o = 1$.

Indeed the map \(E : \mathbb{Z} \rightarrow G \) that sends \(n \) onto \(g^n \) is a group homomorphism. Its image is \(<g>\). Its kernel is a non trivial ideal of \(\mathbb{Z} \). We denote by \(o \) the positive generator of this kernel. This is called the \textit{order} of \(g \).

Because \(<g>\) is a subgroup of \(G \) its order \(o \) divides \(|G|\). So \(|G| = oq \) for some integer \(q \) and \(g^{(G)} = g^{oq} = (g^o)^q = 1 \). We have proved the following theorem.

\textbf{Theorem 2.4} (Lagrange). If \(G \) is a finite group and \(g \) an element in \(G \) then \(g^{(G)} = 1 \).

\begin{itemize}
\item \textbf{2.5. Fermat’s and Euler’s theorems.} Assume \(N \geq 2 \) is a positive integer. The group of units \((\mathbb{Z}/N\mathbb{Z})^*\) has order \(\varphi(N) \) so for every integer \(x \) that is prime to \(N \) the class \(x \mod N \) is in \((\mathbb{Z}/N\mathbb{Z})^*\) and according to Lagrange’s theorem its power \(\varphi(N) \) is 1.
\end{itemize}

\textbf{Theorem 2.6} (Euler). Let \(N \geq 2 \) be an integer. Let \(N = \prod_{p \in \mathbb{P}} p^{e_p} \) be the prime decomposition of \(N \) and set \(\varphi(N) = \prod_{p \in \mathbb{P}} p^{e_p}(p-1) \). Let \(x \) be a prime to \(N \) integer. Then \(x^{\varphi(N)} = 1 \mod N \).

In case \(N \) is prime we obtain Fermat’s theorem.

\textbf{Theorem 2.7} (Fermat). Let \(N \geq 2 \) be a prime integer. Let \(x \) be a prime to \(N \) integer. Then \(x^{N-1} = 1 \mod N \).

We deduce from Fermat’s theorem a method to prove that an integer is not prime. If we exhibit some integer \(x \) that is prime to \(N \) and such that \(x^{N-1} \neq 1 \mod N \), then \(N \) is composite. For example

\begin{verbatim}
gp > N=2^8+1
%1 = 115792089237316195423570985008687907853269984665640564039457584007913129639937
gp > Mod(3,N)^(N-1)
%2 = Mod(113080593127052224644745291961064595403241347689552251, 115792089237316195423570985008687907853269984665640564039457584007913129639937)
\end{verbatim}

shows that \(2^{2^8} + 1 \) is not a prime.

It is important to notice that, using fast exponentiation, Fermat’s congruence can be checked in time \((\log N)^{2+o(1)}\).

Notice also that it may happen that a composite number satisfies the Fermat property. Indeed

\begin{verbatim}
gp > N=3*11*17
%1 = 561
> for(k=1,N-1,if(gcd(N,k)==1,print(Mod(k,N)^(N-1))))
Mod(1, 561)
Mod(1, 561)
...
Mod(1, 561)
\end{verbatim}

So we must refine on Fermat’s theorem if we wan to make it usefull to distinguish prime integers from composite ones.
2.8. The Miller-Rabin test. Since Fermat’s theorem is not strong enough to distinguish primes from composite numbers one tries to refine on it.

Assume \(N \) is an odd prime integer. Set

\[
N - 1 = 2^k m
\]

with \(k \geq 1 \) and \(m \) odd. Take some \(x \) in \((\mathbb{Z}/N\mathbb{Z})^*\). According to Fermat’s theorem

\[
x^{N-1} - 1 = 0.
\]

So

\[
x^{m2^k} - 1 = (x^{m2^{k-1}} - 1)(x^{m2^{k-1}} + 1) = 0.
\]

Since \(\mathbb{Z}/N\mathbb{Z} \) is a field, one has

\[
x^{m2^{k-1}} - 1 = 0 \text{ or } x^{m2^{k-1}} + 1 = 0.
\]

In the first case, assuming \(k \geq 2 \) we can go on factoring

\[
x^{m2^{k-1}} - 1 = (x^{m2^{k-2}} - 1)(x^{m2^{k-2}} + 1) = 0,
\]

so

\[
x^{m2^{k-2}} - 1 = 0 \text{ or } x^{m2^{k-2}} + 1 = 0,
\]

and so on.

At the end we have proven that if \(N \) is an odd prime and \(x \) is prime to \(N \) then

\[
x^m = 1 \text{ or } x^{m2^i} = -1 \text{ for some } 0 \leq i \leq k - 1.
\]

If this is the case we say that \(\text{MR}(N,x) \) holds true. If there exists an integer \(x \) prime to \(N \) such that \(\text{MR}(N,x) \) does not hold true then \(N \) is composite.

We call \(\text{MR}(N,x) \) the Miller-Rabin condition for \(N \) and \(x \).

For example assume \(N = 29 \). Then \(k = 2 \) and \(m = 7 \). Choose \(x = 2 \), and check that \(2^{14} = -1 \mod 29 \). So \(\text{MR}(29,2) \) is true.

Note that even if \(N \) is composite, there might exist some \(x \) such that \(\text{MR}(N,x) \) is true. However, Monier has proved that if \(N \geq 15 \) is odd and composite then at most one fourth of the units in \(\mathbb{Z}/N\mathbb{Z} \) satisfy the Miller-Rabin condition \(\text{MR}(N,x) \). These are called the false witnesses.

So in order to test whether and odd integer \(N \) is prime we pick random elements \(x \) in \((\mathbb{Z}/N\mathbb{Z})^*\) and check the Miller-Rabin condition \(\text{MR}(N,x) \). Since three fourth of the units fail to satisfy this condition the probability of missing a composite is \(\leq 1/4 \).

After a few dozens such tests we can either prove that \(N \) is composite or convince ourselves that it is prime.

The condition \(\text{MR}(N,x) \) can be tested at the expense of \((\log N)^{2+o(1)}\) elementary operations using fast arithmetic and fast exponentiation.

The class \(\text{RP} \) consists of all languages such that there exists a polynomial time Turing machine \(M \) that takes as input a word \(w \) and some auxiliary seed \(s \). When \(w \) is not in \(L \) the machine always rejects it whatever \(s \) could be. When \(w \) is in \(L \) the machine will accept if for at least one half of the values of \(s \). It may reject if for the remaining values of \(s \).

The class \(\text{co-RP} \) consists of all languages whose complementary language belongs to \(\text{RP} \). It is easily checked that the intersection of \(\text{RP} \) and \(\text{co-RP} \) is \(\text{ZPP} \).
The existence of Miller-Rabin condition proves that the language PRIME consisting of all prime integers is in co – RP.
Agrawal, Kayal and Saxena have proved that PRIME is in P.

3. Density of prime integers

Remind the size of a positive integer may be defined as the number of digits in its decimal representation, that is \(\lceil \log_{10}(a + 1) \rceil\).

It is known since antiquity that there exist infinitely many prime integers. On may ask how many primes can be found in the interval \([1, A]\). We note \(\pi(A)\) this number. Hadamard and de la Vallée-Poussin have proven that
\[
\pi(A) = \frac{A}{\log A} (1 + o(1)).
\]

This is confirmed by experiments.

<table>
<thead>
<tr>
<th>(A)</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi(A))</td>
<td>4</td>
<td>25</td>
<td>168</td>
<td>1229</td>
<td>9592</td>
</tr>
<tr>
<td>(A/\pi(A))</td>
<td>2.5</td>
<td>4</td>
<td>5.95</td>
<td>8.14</td>
<td>10.4</td>
</tr>
<tr>
<td>(\log A)</td>
<td>2.3</td>
<td>4.6</td>
<td>6.9</td>
<td>9.2</td>
<td>11.5</td>
</tr>
</tbody>
</table>

So a random integer in the interval \([A, 2A]\) is prime with probability close to \(1/ \log(A)\).

A good way of finding a random prime of a given size is to pick random elements in \([A, 2A]\) and test them for the Miller-Rabin condition. Since the complexity of such a test is \((\log A)^{2+o(1)}\) and the probability of success is \((\log A)^{-1+o(1)}\) the total time of this search is \((\log A)^{3+o(1)}\) using fast arithmetic, and \((\log A)^{4+o(1)}\) using grade-school algorithms.

References