TD2 : The group \((\mathbb{Z}/N\mathbb{Z})^*\)

Key points

— Elementary algorithms for \((\mathbb{Z}/N\mathbb{Z})\), and their complexities,
— Fast exponentiation,
— The order of the group of invertible elements in \((\mathbb{Z}/N\mathbb{Z})\),
— Fermat’s criterion,
— Subgroup generated by an elements of a group,
— Order of an element in a group,
— Cyclic groups,
— If \(N \geq 2\) is prime then \((\mathbb{Z}/N\mathbb{Z})^*\) is a cyclic group,
— Lagrange’s theorem,

\[\star\star\star\]

Prove that an integer \(N \geq 2\) is prime if and only if \(\#(\mathbb{Z}/N\mathbb{Z})^* = N - 1\),

Compute \(2^{12345678987654321} \mod 101\).

\[\star\star\star\]

An integer \(N\) is said to be a Carmichael number if and only if \(N\) is composite and for every prime to \(N\) integer \(x\) one has \(x^{N-1} = 1 \mod N\).

Check that 561 is a Carmichael number.

Can you explain this phenomenon?

\[\star\star\star\]

Give the list of invertible elements in \(\mathbb{Z}/35\mathbb{Z}\). Is the group \((\mathbb{Z}/35\mathbb{Z})^*\) a cyclic group?

\[\star\star\star\]

Compute by hand the inverse of 7 modulo 12 using extended euclidean algorithm.

\[\star\star\star\]

Give a generator \(g\) of \((\mathbb{Z}/11\mathbb{Z})^*\). Write the table of the exponential function with basis \(g\).

Write the table of the logarithm function with basis \(g\).

\[\star\star\star\]

Let \(G\) be an abelian group. Let \(g \in G\) be an element with order \(M\). Let \(h \in G\) be an element with order \(N\). Assume that gcd\((M, N) = 1\).

What can you say about the order of \(gh\)?

What if \(G\) is not abelian?

\[\star\star\star\]

Find a prime integer \(p\) in \([10^{100}, 2 \cdot 10^{100}]\) such that \((p - 1)/2\) is a prime. Give a generator of \((\mathbb{Z}/p\mathbb{Z})^*\).

\[\star\star\star\]

Implement the primality test of Miller and Rabin.