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Abstract This paper is concerned first with the behaviour of differences T (t)−T (s) near the origin,

where (T (t)) is a semigroup of operators on a Banach space, defined either on the positive real line or

a sector in the right half-plane (in which case it is assumed analytic). For the non-quasinilpotent case

extensions of results in the published literature are provided, with best possible constants; in the case of

quasinilpotent semigroups on the half-plane, it is shown that, in general, differences such as T (t)−T (2t)

have norm approaching 2 near the origin. The techniques given enable one to derive estimates of other

functions of the generator of the semigroup; in particular, conditions are given on the derivatives near

the origin to guarantee that the semigroup generates a unital algebra and has bounded generator..
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1 Introduction

The first subject of this note is the behaviour of expressions such as T (t)−T (s) near the origin,

where (T (t))t is a semigroup of operators on a Banach space, defined either on R+, or on a
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sector

Sα = {z ∈ C : Re(z) > 0 and | arg(z)| < α}
in the right-hand complex half-plane C+ = {z ∈ C : Re(z) > 0}; in the case of a sector, we

assume further that the semigroup is analytic. The results we shall derive are stronger forms

of those of Bendaoud, Esterle and Mokhtari [1, 2], in the case of semigroups defined on the

positive real line. For example, they show that if

lim sup
t→0

‖T (t) − T ((n+ 1)t)‖ < n

(n+ 1)1+1/n
, (1.1)

then either the semigroup is trivial, or it generates a unital closed subalgebra A, and indeed

T (t) = exp(tu) for some u ∈ A. Moreover, this constant is shown to be optimal.

In Section 2, we relax Condition (1.1) to

‖T (t) − T (t(n+ 1))‖ < n

(n+ 1)1+1/n
,

for all t in an interval (0, δ). In fact, there are two cases to consider, the easier non-quasinilpotent

case, and then the general case. Further, we show that, unlike the results of [2], these results

cannot be extended to a result using only T (t) for t in any proper measurable subgroup of R

(for example, Q).

For analytic semigroups defined in a sector Sα, we shall show in Section 3 that a similar

result holds, where the optimal constants are given explicitly in terms of α. In fact, these

results are put in a much more general framework, which enables us to study quantities such

as T ′(t) = AT (t) (the derivative of the semigroup) and indeed linear combinations of elements

of the semigroup and its derivatives. In the limiting case of the half-plane, an analogous result

is proved by different methods for T (t) − T ((γ + 1)t), although it will be seen that no such

result can hold in the more general situation. We conclude by extending and applying results

of Hille [3, 4] to show that if

sup
t∈Sα,0<|t|<δ

‖tnT (n)(t)‖ <
(

n

e cos(α)

)n

for some δ > 0, then the closed algebra generated by the semigroup is unital, and the generator

of the semigroup is bounded.

2 Semigroups on R+

2.1 The non-quasinilpotent case

The following result is a strengthening of Theorem 2.3 of [2]:

Theorem 2.1 Let (T (t))t>0 be a non-quasinilpotent semigroup in a Banach algebra, let A be

the closed subalgebra generated by (T (t))t>0 and let γ > 0 be a real number. If

ρ(T (t) − T (t(γ + 1))) <
γ

(γ + 1)1+
1
γ

for 0 < t ≤ t0, for some t0 > 0, then A/Rad(A) is unital, and there exist an idempotent J in

A, an element u of JA and a mapping r : R+ → Rad(JA), with the following properties:
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(i) φ(J) = 1 for all φ ∈ Â;

(ii) r(s + t) = r(s) + r(t) for all s, t ∈ R+;

(iii) JT (t) = etu+r(t) for t ∈ R+, where ev = J +
∑

k≥1

vk

k!
for v ∈ JA;

(iv) (T (t) − JT (t))t∈R+ is a quasinilpotent semigroup.

Proof Let φ ∈ Â; then, by Lemma 2.1 of [2] there exists c ∈ C such that φ(T (t)) = ect for all

t > 0. We have

||φ(T (t))| − |φ(T (t))|γ+1| ≤ |φ(T (t)) − φ(T (t))γ+1|
<

γ

(γ + 1)1+
1
γ

for t ∈ (0, t0].

Then either |φ(T (t))| < 1

(γ + 1)
1
γ

, or else |φ(T (t))| > 1

(γ + 1)
1
γ

,

and the set (|φ(T (t))|)0<t≤t0 is an interval I which does not contain
1

(γ + 1)
1
γ

.

Since lim
t→0+

φ(T (t)) = 1, we have

I ⊂
(

1

(γ + 1)
1
γ

,+∞
)
,

and |φ(T (t0)| > 1

(γ+1)
1
γ

for all φ ∈ Â.

Thus Â is compact. By Theorems 3.6.3 and 3.6.6 of [5], the quotient algebra A/Rad(A) is uni-

tal, there exists an idempotent J in A such that φ(J) = 1 for all φ ∈ Â, and (T (t)−JT (t))t∈R+

is a quasinilpotent semigroup.

Consider the algebra B = JA with unit J, and define S(t) = JT (t) for t ∈ R+. Let ψ ∈ B̂;

the mapping φ : x→ ψ(Jx) is a character of A. We have

1

(γ + 1)
1
γ

|1 − ψ(S(tγ))| ≤ |φ(T (t))||1 − ψ(S(tγ))|

= |φ(T (t)) − φ(T (t(γ + 1)))| ≤ γ

(γ + 1)1+
1
γ

for t ∈ (0, t0]. Thus

|1 − ψ(S(tγ))| ≤ γ

(γ + 1)
< 1,

and ρ(J − S(t)) < 1 for 0 < t ≤ t0. We write

ut =
∑

k>1

(−1)k+1(S(t) − J)k

k
for t ∈ (0, t0] .

We have S(t) = eut . We now extend this expression to R+.

Let t ∈ R+, and let n be the least positive integer such that t ≤ nt0. We define ut = nu t
n
,

and then S(t) = eut for t ∈ R+.
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Now consider once more ψ ∈ B̂ and let

φ : x→ ψ(Jx)

be the character of A associated with ψ. There exists c ∈ C such that

ψ(S(t)) = φ(T (t)) = ect

for t > 0. We have

ψ(ut) =
∑

k>1

(−1)k+1ψ(S(t) − J)k

k
,

thus ψ(ut) coincides with the principal value of the logarithm of

1 + ψ(S(t) − J) = ψ(S(t)) = ect

for 0 < t ≤ t0. Thus

ψ(ut) = ct for 0 < t ≤ t0.

We obtain ψ(ut) = nψ(u t
n
) = ct for t > 0. Let u = t−1

0 ut0 and r(t) = ut − tu. We have

ψ(r(t)) = ct− ct = 0,

thus r(t) ∈ Rad(A) for t ∈ R+; also

er(s)+r(t) = e−(s+t)uS(s+ t) = er(s+t).

Since the mapping x → ex is injective on Rad(A), it follows from Lemma 2.2 of [2] that we

have

r(s + t) = r(s) + r(t)

for s, t ∈ R+.

�

We deduce the following corollary:

Corollary 2.2 Let (T (t))t∈R+ be a non-trivial semigroup in a commutative semi-simple Ba-

nach algebra, let A be the closed subalgebra generated by (T (t))t∈R+ and let γ > 0. If

ρ(T (t) − T ((γ + 1)t)) <
γ

(γ + 1)1+
1
γ

,

then A is unital and there exists an element u ∈ A such that T (t) = etu for t ∈ R+.

2.2 The general case

We begin with a preliminary result about quasinilpotent semigroups. Note that the lemma

remains true if we replace R+ by K+ := K ∩ R+, where K is a subfield of R.

Lemma 2.3 Let (T (t))t∈R+ be a quasinilpotent semigroup, and let n ≥ 1 be an integer. If

‖T (t)− T (t(n+ 1))‖ < n

(n+ 1)1+
1
n

for t ∈ (0, t0] for some t0 > 0, then T (t) = 0 for t ∈ R+.
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Proof Let t0 > 0. If (T (t))t>0 is non-zero, then there exists t1 ∈ (0, t0] such that T (t1) 6= 0.

For p ≥ 1 we have

‖T (t1/p)‖ ≥ ‖T (t1)‖
1
p , and ‖T (t1/p)‖ ≥ 1

(n+ 1)
1
n

for p sufficiently large. It follows therefore from Theorem 4.4 of [2] that
∥∥∥∥T
(
t1
p

)
− T

(
t1(n+ 1)

p

)∥∥∥∥ >
n

(n+ 1)1+
1
n

,

which is a contradiction. Hence T (t) = 0 for t ∈ R+.

�

The following result appears implicitly in the proof of Theorem 3.2 of [2].

Lemma 2.4 Let A be a Banach algebra and let θ : (0,+∞) → A satisfy

θ(s+ t) = θ(s) + θ(t) for s > 0, t > 0.

If lim sup
t→0+

‖θ(t)‖ < +∞ then θ(t) = tθ(1) for t > 0.

We employ Lemma 2.4 in the following result.

Lemma 2.5 Let (T (t))t>0 be a non-quasinilpotent semigroup in a Banach algebra. Suppose

that there exist γ > 0 and t0 > 0 such that

‖T (t) − T (t(γ + 1))‖ < γ

(γ + 1)1+
1
γ

for 0 < t < t0. Let J be the idempotent in the closed subalgebra A generated by the semigroup

satisfying Properties (i)–(iv) of Theorem 2.1; then there exists v ∈ JA such that JT (t) = etv

for t > 0.

Proof Let U be the open disc centred at 0 and with radius γ

(γ+1)
1+ 1

γ
, and let g : U → C be

the holomorphic function on U satisfying g(0) = 0 and

eg(z) − e(γ+1)g(z) = z

for z ∈ U. Let

bt = JT (t) − JT (t(γ + 1)) for t > 0.

Since

‖bkt ‖ ≤ ‖J‖
(

γ

(γ + 1)1+
1
γ

)k
for k > 1,

the series ∑

k≥1

g(k)(0)

k!
‖bkt ‖

converges. Write

g(bt) :=
∑

k≥1

g(k)(0)

k!
bkt .

It follows from standard properties of the holomorphic functional calculus that

eg(λbt) − e(γ+1)g(λbt) = λbt for λ < 1.
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By continuity we obtain, with the notation of Theorem 2.1, that

eg(bt) − e(γ+1)g(bt) = bt = etu+r(t) − e(γ+1)(tu+r(t)).

For 0 < t < t0 we have

ρ(tu+ r(t)) = tρ(u),

thus

lim
t→0+

ρ(tu+ r(t)) = 0,

and so

ρ(bt) = ρ(etu+r(t) − e(γ+1)(tu+r(t))) = ρ(etu − et(γ+1)u) ≤ etρ(u)ρ(J − etγu),

from which we conclude that lim
t→0+

ρ(bt) = 0. Since g(0) = 0 we have lim
t→0+

ρ(g(bt)) = 0.

Let f : z 7→ ez − e(γ+1)z, and define

F (z1, z2) =





f(z1) − f(z2)

z1 − z2
if z1 6= z2,

f ′(z1) if z1 = z2.

Then f and F are entire functions. Since f ′(0) 6= 0 there is an open disc D(0, α) such that f is

injective and F (z1, z2) 6= 0 for z1, z2 in D(0, α). Let t1 be such that ρ(g(bt)) < α for 0 < t < t1.

For t ∈ (0, t1] we have

0 = f(g(bt)) − f(tu+ r(t)) = (g(bt) − (tu+ r(t)))(F (g(bt, tu+ r(t)))).

For φ ∈ ĴA we also have

φ(F (g(bt), (tu+ r(t))) = F (φ(g(bt), φ(tu + r(t))) 6= 0

and thus F (g(bt), (tu+ r(t))) is invertible in JA and

g(bt) = tu+ r(t), for t ∈ (0, t1].

On the other hand, by Lemma 2.1 of [1] we have

lim sup
t→0+

‖g(bt)‖ ≤
∑

k≥1

|g(k)(0)|
k!

‖bkt ‖ = −
∑

k≥1

g(k)(0)

k!

[
γ

(γ + 1)1+
1
γ

]γ
< +∞.

Thus

lim sup
t→0+

‖r(t)‖ < +∞,

and it follows from Lemma 2.4 that r(t) = tr(1). We therefore have JT (t) = etv for t > 0 with

v = u+ r(1).

�

We now come to the main theorem of this section, which combines the results in Lemmas

2.3 and 2.5.

Theorem 2.6 Let (T (t))t>0 be a non-trivial semigroup in a Banach algebra, let A be the

closed subalgebra generated by (T (t))t>0 and let n ≥ 1 be an integer. If there exists t0 > 0 such

that

‖(T (t) − T (t(n+ 1)))‖ < n

(n+ 1)1+
1
n
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for 0 < t ≤ t0, then A possesses a unit J, lim
t→0+

T (t) = J and there exists u ∈ A such that

T (t) = etu for all t > 0.

Proof Since

ρ(T (t) − T (t(n+ 1))) ≤ ‖T (t)− T (t(n+ 1))‖,

there exists an idempotent J in A satisfying the conditions of Theorem 2.1. In particular,

S(t) := T (t)−JT (t) is quasinilpotent for t > 0. Let π : A → A/JA be the canonical surjection.

Since π(S(t))t>0 is a quasinilpotent semigroup in A/JA, it follows from Lemma 2.3 that

π(T (t)) = π(S(t)) = 0,

and T (t) ∈ JA, for t > 0. Thus T (t) = JT (t). By Lemma 2.5 there exists v ∈ A = JA such

that T (t) = JT (t) = etv for t > 0.

�

2.3 Counterexamples for subgroups of R

We now show that Theorem 2.6 is sharp, in the sense that analogous results do not hold when

we consider certain additive subgroups of the real line. Indeed, we give a counter-example

applying to any proper measurable subgroup of R.

Proposition 2.7 Let G be an additive subgroup of R which is measurable and with G 6= R.

Then, given a sequence (γn)n in R+ such that tγn ∈ G for all t ∈ G, t > 0, there exists a

semigroup (S(t))t∈G,t>0 in c0 such that

‖S(t) − S(t(γn + 1))‖ < γn
(γn + 1)1+1/γn

,

for all t ∈ G, t > 0.

Proof Note that the measure of G is zero, as otherwise G − G contains an interval (−δ, δ)
with δ > 0 (cf. [6, Thm. 16.B]), and then G = R. Let S(t) = (atk)k≥1, where 0 < ak < 1 for all

k ≥ 1 and ak → 0 as k → ∞. Thus S(t) ∈ c0. Further conditions will be imposed on ak later.

Since ak → 0, we have

‖S(t) − S(t(γn + 1))‖ = max
k

|atk − a
t(γn+1)
k |.

Observe that

|at − at(γn+1)| ≤ γ

(γ + 1)1+1/γ
, (2.1)

for all a ∈ (0, 1), t > 0 and γ > 0. Indeed, its maximum value over t occurs when (ln a)at =

(γ+1)(ln a)at+tγ , i.e. at = 1
(1+γ)1/γ . For this value of t Equation (2.1) is an equality, otherwise

it is a strict inequality. Therefore,

‖S(t) − S(t(γn + 1))‖ ≤ γn
(γn + 1)1+1/γn

(2.2)

and provided that atk 6= 1
(1+γn)1/γn

for all k, the inequality in (2.2) is strict. The set

H =

{(
1

1 + γn

)1/g

: g ∈ G, g > 0, n ≥ 1

}
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is a set of measure 0. So there exists a sequence (ak)k in (0, 1) tending to 0 and such that

ak 6∈ H for all k. With this choice we have

‖S(t) − S(t(γn + 1))‖ < γn
(γn + 1)1+1/γn

,

for all t > 0 with t, tγn ∈ G.

�

Remark 2.8 The same conclusion holds if we assume that G is meagre, since H will also be

meagre as a countable union of meagre sets

3 Sectorial semigroups

Let T (t)t>0 be a strongly continuous semigroup of bounded operators on a Banach space X.

Denote by DA the set of all x ∈ X for which T (t)x−x
t has a limit as t→ 0+. Then DA is a linear

subspace of X which is dense in ∪t>0T (t)X, since it contains all vectors of the form
∫ β
α
T (s)xdx,

x ∈ X, 0 < α < β, and the (infinitesimal) generator of the semigroup is the linear operator

A : DA → A defined for x ∈ DA by the formula

Ax = lim
t→0+

T (t) − x

t
.

We will say that the generator of the semigroup T (t) is bounded if there exists K > 0 such

that ‖Ax‖ ≤ K‖x‖ for every x ∈ DA. This condition is equivalent to the fact that there exists

P ∈ B(X) such that limt→0+ ‖T (t) − P‖ = 0. In this situation DA =
[⋃

t>0 T (t)X
]−
, we can

consider A as a bounded operator on X by using the formula Ax := APx for x ∈ X, and we

have, for x ∈ X, t > 0,

T (t)x = PetAx.

We thus see that for a strongly continuous semigroup (T (t))t>0 of bounded operators on a

Banach space X, the conclusions of Corollary 2.2, Lemma 2.5 and Theorem 2.6 are equivalent

to the fact that the generator of the semigroup is bounded.

Now assume that a semigroup (T (t))t>0 of bounded operators on a Banach space X is

differentiable on (0,+∞), which means that

T ′(t) := lim
h→0

T (t+ h) − T (t)

h

exists in (B(H), ‖.‖) for every t > 0. Then
⋃
t>0 T (t)X ⊂ DA, and we have, for t > 0, (see for

example [4, 10.3.6]

T ′(t) = AT (t).

More generally if (T (t))t>0 is n-times continuously differentiable on (0,+∞), then
⋃

t>0

T (t)X ⊂ DAn ,

and we have, for t > 0, that T (n)(t) = AnT (t).
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We will say that a semigroup (T (t))t > 0 of bounded operators on a Banach space X is norm

continuous if limh→0 ‖T (t+ h)− T (t)‖ = 0 for every t > 0. Notice that if the closed subalgebra

A of B(X) generated by a norm continuous semigroup (T (t))t>0 of bounded operators on a

Banach space X is unital, then the generator A of the semigroup is bounded. Indeed there

exists in this situation a strictly increasing finite sequence (ti)1≤i≤n of positive real numbers

and a family (λi)1≤i≤n of nonzero complex numbers such that

‖P −
n∑

i=1

λiT (ti)‖ < 1,

where P denotes the unit element of A. This shows that

T (t1)

[
P +

n∑

i=2

λiT (ti − t1)

]
=

n∑

i=1

λiT (ti)

is invertible in A. Hence T (t1) is invertible in A, and

P = T (t1)
−1T (t1) = T (t1)

−1 lim
h→0+

T (t1 + h) = lim
h→0+

T (h),

and the generator of the semigroup is bounded.

It is more convenient to consider more generally norm continuous semigroups (T (t))t>0 in

Banach algebras. In this case we can set X = A, where A is the closed subalgebra generated

by the semigroup. Then
⋃
t>0 T (t)A, which contains

⋃
t>0 T (t), is a dense ideal of A. When

A has a unit element P, then the dense ideal DA equals A, P ∈ DA and we see again that

A = limt→0+
T (t)P−P

t is bounded.

We now study the behaviour of ‖T (t) − T ((γ + 1)t)‖ as t → 0 in C+ when (T (t))t∈C+ is

analytic on the open right-hand half-plane C+. Later we look at other sectors, by a different

method.

First, we require an easy technical lemma

Lemma 3.1 Let S be a sector of C+, say

S = Sα,β := {z ∈ C+ : −α < arg(z) < β}

with α, β > 0, and let Θ : S → C be a nonzero analytic function such that Θ(s+ t) = Θ(s)Θ(t)

for all s, t ∈ S such that s+ t ∈ S. Then there exists c ∈ C such that Θ(t) = e−ct for all t ∈ S.

Proof The result is clear for t ∈ Q+ with c such that Θ(1) = e−c. By continuity and analyticity

it is also true on S.

�

Theorem 3.2 Let (T (t)t∈C+ be an analytic non-quasinilpotent semigroup in a Banach algebra.

Let A be the closed subalgebra generated by (T (t))t∈C+ and let γ > 0. If there exists t0 > 0 such

that

sup
t∈C+,|t|≤t0

ρ(T (t) − T (γ + 1)t)) < 2

then A/RadA, is unital, and the generator of (π(T (t))t>0 is bounded, where π : A → A/RadA
denotes the canonical surjection.
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Proof Choose Φ ∈ Â. By Lemma 3.1, there exists c(Φ) ∈ C such that Φ(T (t)) = e−c(Φ)t for

all t ∈ C+. Denote by Q the set {t ∈ C+, |t| < t0}. By hypothesis, we have:

sup
t∈Q

|T (t) − T (t(γ + 1))| < 2.

It follows that c(Φ) 6∈ { iπγt ,− iπ
γt : t ∈ Q}, where Q denotes the closure of Q. Indeed, if ct = iπ

γ

or ct = − iπ
γ , then |e−ct − e−c(γ+1)t| = 2. Therefore, there exists δ > 0 such that |c(Φ)| ≤ δ

for all Φ ∈ Â. It follows that |Φ(T (t0))| ≥ e−δt0 for all Φ ∈ Â, and thus Â is compact. Using

Theorem 3.6.3 and Theorem 3.6.6 in [5], we conclude that A/RadA is unital. Since the algebra

generated by the norm-continuous semigroup (π(T (t))t>0 is dense in A/RadA, the generator

of this semigroup is bounded.

�

A semigroup T (t) defined over the positive reals or on a sector is said to be exponen-

tially bounded if there exists c1 > 0 and c2 ∈ R such that ‖T (t)‖ ≤ c1e
c2|t| for every t. A

classical result of Beurling [7] shows that there exists a universal constant k such that every

exponentially bounded weakly measurable semigroup (T (t))t>0 of bounded operators satisfying

lim supt→0+ ‖I−T (t)‖ = ρ < 2 admits an exponentially bounded analytic extension to a sector

Sφ,φ, with φ ≥ k(2 − ρ)2.

It follows immediately from this result that if a semigroup (T (t)) is analytic on a sector

Sφ,ψ, and if this semigroup does not admit any analytic extension to any sector Sφ1,ψ with

φ1 > φ, then we have, for −ψ < α < φ,

lim sup
t→0+

‖I − T (teiα)‖ ≥ 2 −
√
φ− α

k
.

Similarly, if this semigroup does not admit any analytic extension to any sector Sφ,ψ1 with

ψ1 > ψ, then we have, for −ψ < α < φ,

lim sup
t→0+

‖I − T (teiα)‖ ≥ 2 −
√
ψ + α

k
.

Now if an analytic semigroup (T (t))t>0 on the open half plane has an analytic extension

to any larger open sector, then T (t) is invertible in the closed subalgebra generated by the

semigroup for some t > 0, and so the generator of the semigroup is bounded. So the following

result is an immediate consequence of Beurling’s theorem.

Theorem 3.3 Let (T (t))t∈C+ be an analytic semigroup of bounded operators on a Banach

space X. If the generator of the semigroup is unbounded, then we have, for −π
2 < α < π

2 ,

lim sup
t→0+

‖I − T (t)‖ ≥ 2 −
√

π
2 − |α|
k

,

where k is Beurling’s universal constant.

This suggests that supt∈C+

|t|≤δ

‖T (t) − T ((γ + 1)t)‖ ≥ 2 for every δ > 0 if the generator of a

semigroup (T (t))t ∈ C+ is unbounded. We can prove this for a large class of analytic semigroups.
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Theorem 3.4 Let (T (t))t∈C+ be an analytic semigroup in a Banach algebra. Assume that

there exists η > 0 and c ∈ R such that

sup
y∈R

e−c|y|‖T (η + iy)‖ < +∞.

If the generator of the semigroup is unbounded, then we have, for every γ > 0 and every δ > 0,

supt∈C+

|t|≤δ

‖T (t)− T ((γ + 1)t)‖ ≥ 2.

Proof Let A be the closed subalgebra generated by (T (t))t>0. Since the semigroup is expo-

nentially bounded on a vertical line, and since the generator of the semigroup is unbounded,

it follows from an elementary construction of [8], based on a method which goes back to [9],

that there exists a Banach space (X, ‖.‖1) and a norm-decreasing homomorphism θ : (A, ‖.‖) →
(B(X), ‖.‖1 such that if we set T̃ (t) := θ(T (t)) for t ∈ C+ the following conditions are satisfied

1. there exists µ ∈ R such that ‖T (t)‖ ≤ eµ|t| for t ∈ C+,

2. (T̃ (t))t∈C+ admits a strongly continuous extension to C+ such that T̃ (0) = IX ,

3. the generator of (T̃ (t))t>0 is unbounded.

Notice that the generator of the semigroup (T̃ (it))t>0 is unbounded, for otherwise there

would exist u ∈ B(X) such that T̃ (it) = etu for t > 0. Hence we would have T̃ (it) = etu

for t ∈ R. The analytic semigroup (e−ituT̃ (t))t∈C+ would be constant on vertical lines, hence

constant on C+. Since limt→0 T̃ (t)x = x for every x ∈ X, we would have T̃ (t) = e−itu for

t ∈ C+, which contradicts the fact that the generator of (T̃ (t))t>0 is unbounded. This implies

in particular that lim supt→0+ ‖IX − T̃ (it)‖1 ≥ 2.

We have, for x ∈ X, δ > 0, 0 < t ≤ δ,

‖(IX − T̃ (iγt))x‖1 ≤ ‖T̃ (−it)‖1‖(T̃ (it) − T̃ (i(γ + 1)t))x‖1

≤ e|µ|δ‖(T̃ (it) − T̃ (i(γ + 1)t))x‖1.

Hence, for t ∈ (0, δ], we have

‖IX − T̃ (iγt)‖1 ≤ e|µ|δ lim inf
α→ π

2
+
‖T̃ (teiα) − T̃ ((γ + 1)teiα)‖1.

Hence for every η ∈ (0, δ], we have

2 ≤ lim sup
t→0+

‖IX − T̃ (it)‖1 ≤ e|µ|η sup
t∈C+

|t|≤η

‖T̃ (t) − T̃ ((γ + 1)t)‖1

≤ e|µ|η sup
t∈C+

|t|≤δ

‖T (t) − T ((γ + 1)t)‖,

and supt∈C+

|t|≤δ

‖T (t) − T ((γ + 1)t)‖ ≥ 2.

�

Notice that the argument above shows in fact that

lim inf
α→ π

2
−

[
sup

0<t≤δ
‖T (t) − T (γ + 1)t)‖

]
≥ 2
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and

lim inf
α→−π

2
+

[
sup
0<≤δ

‖T (t)− T (γ + 1)t)‖
]
≥ 2

for every analytic semigroup with unbounded generator which admits exponential growth on a

vertical line. More precise lower estimates for the distance near the origin of elements of such

a semigroup in the quasinilpotent case are given in [8].

Remark 3.5 1. In Theorem 3.2, 2 is the best constant and moreover the lim sup cannot

be replaced by a pointwise condition, contrary to [1], as shown by the following example:

Let S(t) : x 7→ xt for x ∈ [0, 1] with t ∈ C+. The function S(t) belongs to C0([0, 1]),

the Banach algebra of continuous functions on [0, 1] vanishing at 0, equipped with the

supremum norm. Obviously

‖S(t) − S((γ + 1)t)‖∞ ≤ 2

because ‖S(t)‖∞ ≤ 1 since Re(t) > 0. For t = i π
γ log x , note that |S(t)(x)−S((γ+1)t)(x)|

is equal to

|eiπ/γ − eiπ(γ+1)/γ | = 2.

In this case we have

lim sup
t→0,t∈C+

‖S(t) − S((γ + 1)t)‖∞ = ρ(S(t) − S((γ + 1)t)) = 2,

but the conclusion of Theorem 3.2 is not satisfied, since C0([0, 1]) is a Banach algebra

without any idempotent element.

2. If the semigroup is not holomorphic, Esterle and Mokhtari [2, Ex. 2.5] proved that 1/4 is

the best constant (consider S(x+ iy) of the form S(x+ iy) = S(x) and use their example

S(x)(w) = wx, providing a semigroup on R+ with elements in C[0, 1]).

We now consider similar results on smaller sectors than the half-plane, and in fact the result

we prove will be stated in a far more general context.

Theorem 3.6 Let 0 < α < π/2, and let

Sα = {z ∈ C : Re(z) > 0 and | arg(z)| < α}.

Let f be an entire function with f(0) = 0 and f(R) ⊆ R, such that

sup
Re z>r

|f(z)| → 0 as r → ∞, (3.1)

and f is a linear combination of functions of the form zm exp(−zw) for m = 0, 1, 2, . . . and

w > 0. Let (T (t))t∈Sα = (exp(−tA))t∈Sα be an analytic non-quasinilpotent semigroup in a

Banach algebra and let A be the subalgebra generated by (T (t))t∈Sα . If there exists t0 > 0 such

that

sup
t∈Sα,|t|≤t0

ρ(f(tA)) < k(Sα),

with k(Sα) = supt∈Sα
|f(z)|, then A/RadA is unital and the generator of π(T (t))t∈Sα is

bounded, where π : A → A/Rad(A) denotes the canonical surjection.
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Note that f(tA) is well-defined by means of T (t) and its derivatives.

Proof By the maximum principle, for each θ ∈ (−π/2, π/2), f attains its maximum absolute

value Mθ, say, on the ray Rθ = {z : arg z = θ} and Mθ is an increasing function of θ on [0, π/2).

So, indeed, Mθ = k(Sθ) for θ ∈ (0, π/2). Moreover, Mθ = M−θ.

Clearly there exists a d > 0 such that the maximum value of f on each ray Rθ is attained

at a point z such that Re z ≤ d.

By Lemma 3.1, the hypotheses of the theorem imply that for each Φ ∈ Â there exists

c(Φ) ∈ C such that Φ(T (t)) = e−c(Φ)t for all t ∈ Sα, and hence Φ(f(tA)) = f(c(Φ)t). Moreover,

we know that

|f(c(Φ)t)| < k(Sα)

for all t ∈ Sα with |t| ≤ t0.

If for any point t in the sector {t ∈ Sα : |t| ≤ t0} we have Re c(Φ)t > d, and | arg c(Φ)t| ≥ α,

then

|f(λc(Φ)t)| ≥ k(Sα)

for some real λ between 0 and 1, giving a contradiction. Thus if | arg c(Φ)t0| ≥ α, then

Re c(Φ)t0 ≤ d.

Now suppose that 0 ≤ β = arg c(Φ)t0 < α (the other case is similar); then we know

that Re(c(Φ)t0e
i(α−β)) ≤ d; writing c(Φ)t0 = reiβ and c(Φ)t0e

i(α−β) = reiα, we deduce that

Re c(Φ)t0 ≤ d cosβ/ cosα. Hence, in all cases, we obtain Re c(Φ)t0 ≤ d/ cosα and

|Φ(T (t0))| ≥ exp(−d/ cosα),

and this holds for every Φ ∈ Â. As in the proof of Theorem 3.2, it follows that A/RadA is

unital and the generator of π(T (t))t∈Sα is bounded.

�

Remark 3.7 Suitable choices of f(z) are linear combinations of zm exp(−z), m = 1, 2, 3, . . .,

and exp(−z) − exp(−(γ + 1)z); also real linear combinations of the form
∑n

k=1 ak exp(−bkz)
with bk > 0 and

∑n
k=1 ak = 0. This provides results analogous to those of [10, Thm. 4.12],

where the behaviour of expressions such as ‖tA exp(−tA)‖ and ‖ exp(−tA) − exp(−stA)‖ was

considered for all t > 0.

Remark 3.8 Another function considered in [10] is f(z) = e−sz sin z, where we now require

s > tanα for f(tA) to be well-defined for t ∈ Sα. This does not satisfy the condition (3.1),

but we note that it holds for z ∈ Sα, while for z 6∈ Sα there exists a constant C > 0 such that

for each z with Re z > C there exists λ ∈ (0, 1) such that |f(λz)| ≥ supz∈Sα
|f(z)|. Using this

observation, it is not difficult to adapt the proof of Theorem 3.6 to this case.

Remark 3.9 As before, the sharpness of the constants can be shown by considering examples

in C0([0, 1]).

One particular case of the above is used in the estimates considered by Bendaoud, Esterle

and Mokhtari [1, 2].
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Corollary 3.10 Let γ > 0, 0 < α < π/2, and

Sα = {z ∈ C : Re(z) > 0 and | arg(z)| < α}.

Let (T (t))t∈Sα be an analytic non-quasinilpotent semigroup in a Banach algebra and let A be

the subalgebra generated by (T (t))t∈Sα . If there exists t0 > 0 such that

sup
t∈Sα,|t|≤t0

ρ(T (t) − T (t(γ + 1))) < k(Sα),

with k(Sα) = supt∈Sα
| exp(−t)− exp(−(γ+1)t)|, then A/RadA is unital and the generator of

π(T (t))t∈Sα is bounded, where π : A → A/Rad(A) denotes the canonical surjection.

Proof This follows immediately from Theorem 3.6 on taking f(z) = exp(−z)−exp(−z(γ+1)).

�

Remark 3.11 1. As in Remark 3.5, it is easy to write down examples in C0([0, 1]) which

show that the constant Mα = k(Sα) is sharp.

2. The constant Mα = k(Sα) initially grows rather slowly with α: numerical calculations

with γ = 1 give M0 = 0.25, Mπ/12 = 0.26, Mπ/6 = 0.29, Mπ/4 = 0.35, Mπ/3 = 0.47,

M5π/12 = 0.80 and M11π/24 = 1.18. Nonetheless, Mα → 2 as α→ π/2.

3. For sectors Sα,β that are not symmetric it is clear that a similar result holds with the

constant k(Sα,β) = max(k(Sα), k(Sβ)).

The same results hold for norm-continuous semigroups (T (t))t>0 satisfying

lim sup
t→0+

‖f(tA)‖ < k0 := max
t>0

|f(t)|.

These results suggest that if an analytic semigroup (T (t))t∈Sα satisfies

sup
t∈Sα,0≤|t|≤δ

‖f(tA)‖ < k0

for some δ > 0, then the generator of the semigroup is bounded. We do not know whether

this property holds in general, but we will prove it in the special case of functions of the form

f(z) = zne−z, where n ≥ 1 is an integer. We will use a well-known result proved in 1950 by

Hille [3] (see also [4, Thm. 10.3.6]). This result is usually stated for n = 1, but Hille’s argument

works for any positive integer.

Theorem 3.12 Let (T (t))t>0 be a n-times continuously differentiable semigroup over the pos-

itive reals. If lim supt→0+ ‖tnT (n)(t)‖ < (ne )n, then the generator of the semigroup is bounded.

Proof Fix a > 0. We have, for p ≥ 1, by Taylor’s formula

T (t) =

p−1∑

k=0

(t− a)k

k!
T (k)(a) +

1

(p− 1)!

∫ t

a

(t− s)p−1T (p)(s)ds.

Set β = 1
2

([
lim supt→0+ ‖tnT (n)(t)‖

]1/n
+ n

e

)
, set λ = eβ

n ∈ (0, 1), and let δ > 0 such that

t‖T (n)‖1/n ≤ β for t ∈ (0, δ]. We have, for q ≥ 1, s ∈ (0, δ],

T (nq)(s) = AnqT (s) = [AnT (s/q)]q = [T (n)(s/q)]q, ‖T (nq)(s)‖ ≤ λnq
(nq)nq

(es)nq
.
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We obtain, for a ∈ (0, δ], t ∈ (0, δ],

∥∥∥∥
1

(nq − 1)!

∫ t

a

(t− s)nq−1T (nq)(s)ds

∥∥∥∥ ≤ λnq(nq)nq

enq(nq − 1)!

1

min(a, t)nq

∣∣∣∣
∫ t

a

|t− s|nq−1ds

∣∣∣∣

=

[
λ|t− a|
min(a, t)

]nq
(nq)nq

enq(nq)!
.

It follows then from Stirling’s formula that

lim
q→+∞

∥∥∥∥∥T (t) −
nq−1∑

k=0

(t− a)k

k!
T (k)(a)

∥∥∥∥∥ = 0

if |t− a| < min(δ − a, λ+1
a ).

Now consider again a ∈ (0, δ), let µ ∈ (0, 1), and let k ≥ n be an integer. We have k = nq+r,

with q ≥ 1, 0 ≤ r ≤ n− 1, and we obtain

T (k)(a) = Anq+rT (a) =

[
AnT

(
µa

q

)]q
.ArT ((1 − µ)a) =

[
T (n)

(
µa

q

)]q
T (r)((1 − µ)a).

Set m = max0≤r≤n−1 ‖T (r)((1 − µ)a). We obtain, for k ≥ n,

∥∥∥∥
T (k)(a)

k!

∥∥∥∥ ≤ m

(nq + 1)...(nq + r)

1

(nq)!

∥∥∥∥T (n)

(
µa

q

)∥∥∥∥
q

≤ m

(k − n+ 1)n−1

(
λ

µa

)nq
.
(nq
e

)nq
.

1

(nq)!
=

m(1 + ǫk)√
2πnq(k − n+ 1)n−1

(
λ

µa

)nq
,

with limk→∞ ǫk = 0.

Hence lim supk→+∞

∥∥∥T
(k)(a)
k!

∥∥∥
1
k ≤ λ

µa for every µ ∈ (0, 1), which gives

lim sup
k→+∞

∥∥∥∥
T (k)(a)

k!

∥∥∥∥
1
k

≤ λ

a
<

1

a
.

So the radius of convergence R of the series
+∞∑
k=0

zk T
k(a)
k! satisfies R ≥ a

λ , and the series

converges for t ∈ (a− a
λ , a+ a

λ ). But it follows from the discussion above that the map t→ T (t)

is analytic on (0, δ), and so we have, for t ∈ (0, δ),

T (t) =

+∞∑

k=0

(t− a)k

k!
T (k)(a).

Hence we have

lim
t→0+

∥∥∥∥∥T (t) −
+∞∑

k=0

(−a)k
k!

T (k)(a)

∥∥∥∥∥ = 0,

which shows that the generator of the semigroup is bounded.

�

Now set fn(z) = zne−z, and set kn(α) = maxz∈Sα fn(z). An immediate computation shows

that kn(α) =
(

n
e cos(α)

)n
.
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If A is the generator of a semigroup (T (t))t∈Sα analytic on Sα, we have fn(tA) = tnT (n)(t).

So the following result means that if supt∈Sα,0<|t|<δ ‖fn(tA)‖ < kn(α) for some δ > 0, then the

generator of the semigroup is bounded.

Theorem 3.13 Let n ≥ 1 be an integer, let α ∈ (0, π/2) and let (T (t))t∈Sα be a semigroup

analytic on Sα. If supt∈Sα,0<|t|<δ ‖tnT (n)(t)‖ <
(

n
e cos(α)

)n
for some δ > 0, then the closed

algebra generated by the semigroup is unital, and the generator of the semigroup is bounded.

Proof Let β ∈ (0, α) such that
(

n
e cos(β)

)n
> supt∈Sα,0<|t|<δ ‖tnT (n)(t)‖. Set

R(t) = ([teiβ ]nT (n)(teiβ)([te−iβ ]nT (n)(te−iβ)

= t2nA2nT (teiβ + te−iβ) = t2nT (2n)(2t cos(β)).

We have, for t ∈ (0, β],

‖t2nT (2n)(2t cos(β))‖ ≤
∥∥∥[teiβ ]nT (n)(teiβ)

] ∥∥∥[te−iβ ]nT (n)(te−iβ)
]

<

(
n

e cos(β)

)2n

=

(
2n

2e cos(β)

)2n

.

Hence

‖(2t cos(β)2nT (2n)(2t cos(β))‖ <
[
2n

e

]2n

for every t ∈ (0, δ], lim supt→0+ ‖t2nT (2n)(t)‖ <
[
2n
e

]2n
, and the result follows from Hille’s

theorem applied to the derivative of order 2n of the given semigroup.

�

The third author showed in [11] that if (T (t))t>0 is a nontrivial strongly continuous quasi-

nilpotent semigroup, then there exists δ > 0 such that we have, for 0 < t < s ≤ δ,

‖T (t) − T (s)‖ > (s− t)
s

s
s−t

t
t

s−t

.

It is easy to deduce from this result that ‖tT ′(t)‖ ≥ 1
e for t ∈ (0, δ] if (T (t))t>0 is a quasinilpo-

tent differentiable semigroup. In the other direction it does not seem that the inequality from

[11] can be deduced from Hille’s theorem, which implies a weaker inequality.
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